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Abstract. We consider an old question of Slaman and Steel: whether Tur-

ing equivalence is an increasing union of Borel equivalence relations none of

which contain a uniformly computable infinite sequence. We show this ques-
tion is deeply connected to problems surrounding Martin’s conjecture, and

also in countable Borel equivalence relations. In particular, if Slaman and

Steel’s question has a positive answer, it implies there is a universal countable
Borel equivalence relation which is not uniformly universal, and that there is a

(≡T ,≡m)-invariant function which is not uniformly invariant on any pointed

perfect set.

1. Introduction

This paper is a contribution to the study of problems surrounding Martin’s con-
jecture on Turing invariant functions and countable Borel equivalence relations.
Our central focus is an old open question of Slaman and Steel which they posed
[SS] in reaction to their proof in the same paper that Turing equivalence is not hy-
perfinite. The question they asked is whether Turing equivalence can be expressed
as a union of Borel equivalence relations En where En ⊆ En+1 for all n and so that
no En-class [x]En

contains an infinite sequence of reals uniformly computable from
x. While this seems to be a very specific question about computability, we show
(Theorem 3.5) that it is equivalent to a much more general question of whether
every countable Borel equivalence relation is what we call hyper-Borel-finite (see
Definition 3.1).

This question of Slaman and Steel has been completely unstudied since the 1988
paper where it was posed, and it remains open. However, we show that it is deeply
connected to problems in both Borel equivalence relations, and problems surround-
ing Martin’s conjecture. In particular, we show (Corollary 5.6.(1)) that if Slaman
and Steel’s question has a positive answer, then there is a Borel invariant function
from Turing equivalence to many-one equivalence which is not uniformly invariant
on any pointed perfect set. (In Section 2 we discuss some open problems concerning
invariant functions from Turing equivalence to many-one equivalence which are sug-
gested by Kihara-Montalbán’s recent work [KM]). We also show (Corollary 5.6.(2))
that if Slaman and Steel’s question has a positive answer, then many-one equiv-
alence on 2ω is a universal countable Borel equivalence relation. Since many-one
equivalence on 2ω is not uniformly universal [M, Theorem 1.5.(5)], this implies that
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if Question 3.4 has a positive answer, the conjecture of the second author that every
universal countable Borel equivalence relation is uniformly universal ([M, Conjec-
ture 1.1]) is false.

Our main construction is given in Theorem 5.5. This is the first result construct-
ing a non-uniform function between degree structures in computability theory from
any sort of hypothesis.

Suppose we want to construct a counterexample to part I of Martin’s conjecture.
That is, we want to build a Turing invariant function f : 2ω → 2ω such that the
Turing degree of f is not constant on a cone, and f(x) ≱T x on a cone. An obvious
strategy is to build f in countably many stages. At stage n, we determine some
partial information about f(x) in order to diagonalize against f(x) computing x
via the nth Turing reduction. At stage n we also specify how to “code” f(y)
into f(x) for some of the y such that y ≡T x (to ensure that at the end of the
construction, f is Turing invariant). Now consider the relation En where x En y if
f(y) has been coded into f(x) by the nth stage of the construction. Clearly En is
an equivalence relation, En ⊆ En+1 for all n, and Turing equivalence is the union
of these equivalence relations: ≡T =

⋃
n En.

A problem in attempts to construct counterexamples to Martin’s conjecture is
that we know essentially nothing about the ways in which Turing equivalence can
be written as an increasing union, apart from Slaman and Steel’s original theorem
that Turing equivalence is not hyperfinite. In particular, it is open whether every
way of writing Turing equivalence as an increasing union ≡T =

⋃
n En must be

trivial in the sense that there is some n and some pointed perfect set P where En

is already equal to Turing equivalence, i.e. En ↾ P = (≡T ↾ P ) (see Conjecture 6.1).
If Conjecture 6.1 is true, attempts to build counterexamples to Martin’s conjecture
in the way indicated above seem hopeless.

In the authors’ opinion, understanding how Turing equivalence may be expressed
as an increasing union, and Slaman and Steel’s Question 3.4 seem to be a vital
steps towards understanding Martin’s conjecture. If Question 3.4 has a positive
answer, one can hope to improve on the construction in Theorem 5.5 to give a
counterexample to Martin’s conjecture. If Question 3.4 has a negative answer,
perhaps Conjecture 6.1 is true, and there is no nontrivial way of approximating
Turing equivalence from below in countably many stages.

1.1. Preliminaries. Our conventions and notation are largely standard. For back-
ground on Martin’s conjecture, see [MSS]. For a recent survey of the field of count-
able Borel equivalence relations, see [K19].

We use lowercase x, y, z to denote elements of 2ω, and f, g for functions on 2ω.
If x ∈ 2ω, we use x to denote the real obtained by flipping all the bits of x (or the
complement of x, viewing x as a subset of ω). If f : 2ω → 2ω, we similarly use f

to denote the function where f(x) = f(x) for all x. If A ⊆ ω and x ∈ 2ω, we let
x ↾ A denote the restriction of the function x to A. Equivalently, viewing elements
of 2ω as subsets of ω, x ↾ A is x ∩A. Provided y ∈ 2ω is not the constant sequence
of all 1s, if A is computable, then x ↾ A ≤m y iff there is a computable function
ρ : A → ω so that for all n ∈ A, x(n) = y(ρ(n)). This is because given such a
ρ : A → ω, we can fix n0 so y(n0) = 0, and define ρ′ : ω → ω by ρ′(n) = ρ(n) if
n ∈ A and ρ′(n) = n0 otherwise. Then ρ′ gives a many-one reduction of x∩A to y.

Fix a computable bijection ⟨·, ·⟩ : ω2 → ω. We will assume that for all i, j we have
⟨i, j⟩ ≥ i and ⟨i, j⟩ ≥ j. If A ⊆ ω, the ith column of A is A[i] = {⟨i, j⟩ ∈ A : j ∈ ω}.
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2. Versions of Martin’s conjecture for invariant functions from
Turing to many-one degrees

In [KM], Kihara and Montalbán study uniformly degree invariant functions from
Turing degrees to many-one degrees. One of our main results is that if Slaman and
Steel’s question has a positive answer, then there is a degree invariant function from
Turing degrees to many-one degrees which is not uniformly Turing invariant on any
pointed perfect set. In this section, we briefly discuss some open problems around
such functions which are suggested by Kihara-Montalbán’s work.

Recall a function f : 2ω → 2ω is (≡T ,≡m)-invariant if x ≡T y implies f(x) ≡m

f(y). (In the terminology of Borel equivalence relations, we would say f is a
homomorphism from ≡T to ≡m.) A function f : 2ω → 2ω is uniformly (≡T ,≡m)-
invariant if there is a function u : ω2 → ω2 so that if x ≡T y via the programs
(i, j), then f(x) ≡m f(y) via the programs u(i, j). If c ∈ 2ω, then x ≤c

m y if there
is a function ρ : ω → ω computable from c so that x(n) = y(ρ(n)) for all n. If
f, g : 2ω → 2ω, then we write f ≤▽

m g if there is a Turing cone of x with base c so
that f(x) ≤c

m g(x).
Kihara and Montalbán show that uniformly (≡T ,≡m)-invariant functions are

well-quasi-ordered by ≤▽
m and are in bijective correspondence with Wadge degrees

via a simply defined map which they give [KM]. It follows from this bijection with
Wadge degrees that the smallest uniformly (≡T ,≡m)-invariant functions which are
not constant on a cone are the Turing jump: x 7→ x′ and its complement x 7→ x′,
which are easily seen to correspond to the maps associated to universal open and
closed sets; the lowest nontrivial classes in the Wadge hierarchy.

Implicit in Kihara-Montalbán’s work are obvious analogues of Martin’s conjec-
ture [SS, Conjecture I, II] and Steel’s conjecture [SS, Conjecture III] for (≡T ,≡m)-
invariant functions. We state these conjectures:

Conjecture 2.1 (Martin’s conjecture for (≡T ,≡m)-invariant functions). Assume
AD+ DC. Then

I. If f : 2ω → 2ω is (≡T ,≡m)-invariant and the many-one degree [f(x)]m of
f is not constant on a Turing cone of x, then f ≥▽

m j, or f ≥▽
m j, where

j(x) = x′ is the Turing jump.
II. If f, g : 2ω → 2ω are (≡T ,≡m)-invariant, then f ≥▽

m g or g ≥▽
m f . Fur-

thermore, the order ≤▽
m well-quasi-orders the functions on 2ω that are

(≡T ,≡m)-invariant.

Conjecture 2.2 (Steel’s conjecture for (≡T ,≡m)-invariant functions). Suppose
AD+DC, and suppose f : 2ω → 2ω is (≡T ,≡m)-invariant. Then there is a uniformly
(≡T ,≡m)-invariant function g so that f ≡▽

m g.

Conjecture 2.2 implies Conjecture 2.1 by Kihara-Montalbán’s work in [KM].
There is an important relationship between Turing invariant functions and (≡T ,≡m)-

invariant functions. Since x ≤T y if and only if x′ ≤m y′, any Turing invariant
function can be turned into a (≡T ,≡m)-invariant function by applying the Turing
jump. However, because of the parameter c in the definition of ≤▽

m, it is not true
that if f ′ ≥▽

m g′, then f(x) ≥T g(x) on a Turing cone of x. In particular, we do
not know whether Conjecture 2.1 and Conjecture 2.2 imply Martin’s conjecture
and Steel’s conjecture. However, if we strengthen Conjecture 2.2 to use the rela-
tion “≤m on a cone” rather than ≤▽

m, then we do obtain a strengthening of Steel’s
conjecture [SS, Conjecture III].
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Conjecture 2.3. Suppose AD, and suppose f is (≡T ,≡m)-invariant. Then there
is a uniformly (≡T ,≡m)-invariant function g so that f(x) ≡m g(x) on a Turing
cone of x.

A standard argument (see the first footnote in [MSS]) shows that if f is (≡T ,≡m)-
invariant, then f(x) ≡m g(x) on a cone for some uniformly (≡T ,≡m)-invariant
function g if and only if f is itself uniformly (≡T ,≡m)-invariant on a pointed
perfect set.

Proposition 2.4. Conjecture 2.3 implies Steel’s conjecture, [SS, Conjecture III].

Proof. Suppose f : 2ω → 2ω is Turing invariant. Then by Conjecture 2.3, the map
x 7→ f(x)′, is uniformly (≡T ,≡m)-invariant on a pointed perfect set. Hence f is
uniformly Turing invariant on the same pointed perfect set. □

Kihara and Montalbán’s work is more generally stated for functions to the space
Qω, where Q is a better-quasi-order. One can more generally ask about the ana-
logues of the above conjectures for functions to Qω. We have the following observa-
tion due to Kihara-Montalbán that the relation ≤▽

m cannot be replaced with “≤m

on a cone” in their work when Q ≠ 2:

Proposition 2.5 (Kihara-Montalbán, private communication). Suppose AD. Then
the (≡T ,≡m)-invariant functions from 2ω to 3ω which are not constant on a cone
are not well-quasi-ordered by the relation “≤m on a cone”.

Proof. By [M, Theorem 3.6], many-one reducibility on 3ω is a uniformly universal
countable Borel equivalence relation. Letting =R denote equality on the real num-
bers, there is hence a uniform Borel reduction f : 2ω × R → 3ω from ≡T × =R to
many-one reducibility on 3ω. For each y ∈ R, the function fy(x) = f(x, y) is thus a
uniformly (≡T ,≡m)-invariant function. Note that if y ̸= y′, then fy(x) and fy′(x)
are not ≡m-equivalent on a cone of x, nor are they constant on a cone (since f is
a Borel reduction).

Thus, the relation on Borel functions “≤m on a cone” cannot be a well-quasi-
order on the Borel uniformly (≡T ,≡m)-invariant functions from 2ω → 3ω, since
then it would therefore give a well-quasi-order of R. □

In fact, it is easy to see from the proof of [M, Theorem 3.6] that for all y, y′ and
all z, fy(z) ≱m fy′(z). So all the functions fy constructed above are incomparable
under ≤m.

It is an open question whether the relation ≤▽
m can be replaced with “≤m on a

cone” in Kihara-Montalbán’s theorem on the space 2ω.

Question 2.6. Assume AD+ DC. Is there is an isomorphism between the Wadge
degrees and the degrees of the uniformly (≡T ,≡m)-invariant functions under the
relation “≤m on a cone”? If f is uniformly (≡T ,≡m)-invariant and the many-one
degree [f(x)]m of f is not constant on a Turing cone of x, then is f(x) ≥m j(x) on

a cone, or f(x) ≥m j(x) on a cone, where j(x) = x′ is the Turing jump?

3. Slaman and Steel’s Question

The following notion is essentially due to Slaman and Steel:
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Definition 3.1 ([SS]). Suppose (fi)i∈ω is a countable sequence of Borel functions
fi : X → Xω. Say that a countable Borel equivalence relation F on X is (fi)i∈ω-
finite if there is no i ∈ ω and x ∈ X such that the set {fi(x)(j) : j ∈ ω} is infinite
and {fi(x)(j) : j ∈ ω} ⊆ [x]F . That is, no fi(x) is a sequence of infinitely many
different elements in the F -class of x. Say that E is hyper-(fi)i∈ω-finite if there
is an increasing sequence F0 ⊆ F1 ⊆ . . . of Borel subequivalence relations of E
such that Fn is (fi)i∈ω-finite for every n, and

⋃
n Fn = E. Finally, say that E is

hyper-Borel-finite if for every countable collection of Borel functions (fi)i∈ω where
fi : X → Xω, E is hyper-(fi)i∈ω-finite.

Here we can think of each set {fi(x)}i∈ω as being a potential witnesses that some
F -class is infinite, which we would like to avoid.

Clearly every hyperfinite Borel equivalence relation is hyper-Borel-finite. It is
an open problem to characterize the hyper-Borel-finite equivalence relations.

Question 3.2. Is there a non-hyperfinite countable Borel equivalence relation that
is hyper-Borel-finite?

Question 3.3. Is every countable Borel equivalence relation hyper-Borel-finite?

Slaman and Steel consider the special case of Definition 3.1 where the function
fi : 2

ω → (2ω)ω gives the columns from the real given by the ith Turing reduction
Φi(x):

fi(x)(j) =

{
{n : ⟨j, n⟩ ∈ Φi(x)} if Φi(x) is total

x otherwise.

We say that Turing equivalence is hyper-recursively-finite if ≡T is hyper-(fi)i∈ω-
finite for the above functions (fi)i∈ω. Slaman and Steel posed the question of
whether Turing equivalence is hyper-recursively-finite in [SS, Question 6], though in
the setting of AD rather than just for Borel functions. We work in the Borel setting
because it makes the statements of some of our theorems more straightforward.
However, all the arguments of the paper can be adapted to the setting of AD as
usual.

Question 3.4 ([SS]). Is Turing equivalence hyper-recursively-finite?

This problem about Turing equivalence is equivalent to the more general problem
of whether every countable Borel equivalence relation is hyper-Borel-finite. This
self-strengthening property of hyper-recursive-finiteness of ≡T will be an essential
ingredient in our proof of Theorem 5.5.

Theorem 3.5. The following are equivalent:

(1) ≡T is hyper-recursively-finite.
(2) Every countable Borel equivalence relation E is hyper-Borel-finite.

Proof. (1) is a special case of (2), and is hence implied by it. We prove that (1)
implies (2). Fix a witness F0 ⊆ F1 ⊆ . . . that ≡T is recursively finite. We wish to
show that every countable Borel equivalence relation E is hyper-Borel-finite. We
may assume that E is a countable Borel equivalence relation on 2ω. We may further
suppose that E is ∆1

1 and (fi)i∈ω is uniformly ∆1
1; our proof relativizes.

Since E is a ∆1
1 relation with countable vertical sections, and (fi)i∈ω is uniformly

∆1
1, there is some computable ordinal notation α such that for all x ∈ 2ω and

for all y E x, x(α) ≥T y , and x(α) ≥T

⊕
i∈ω fi(x). Now if we let β = ω · α,
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then x(α) ≥T y implies x(β) ≥T y(β). Hence, if x E y, then x(β) ≡T y(β), and

x(β) ≥T

(⊕
i∈ω fi(x)

)(β)
. Note that the function x 7→ x(β) is injective.

Define Ek by
x Ek y ⇐⇒ xEy ∧ x(β)Fky

(β).

We claim that (Ek)k∈ω witness that E is hyper-(fi)-finite. Suppose not. Then
there exists Ek, x and i such that {fi(x)(j) : j ∈ ω} is infinite and x Ek fi(x)(j) for
all j ∈ ω. This implies x(β) Fk (fi(x)(j))

(β) for all j by definition of Ek. Now the
sequence

(
(fi(x)(j))

(β)
)
j∈ω

is uniformly recursive in x(β) since x(β) ≥T (fi(x))
(β).

The set
{
(fi(x)(j))

(β) : j ∈ ω
}
is still infinite since the jump operator x 7→ x(β) is

injective. This contradicts that (Fk)k∈ω is a witness that ≡T is hyper-recursively-
finite. □

The key in the above proof is that given any countable Borel equivalence E
on X and Borel functions (fi) from X → Xω, we can find an injective Borel
homomorphism h from E to ≡T so that the image of each fi under h is a computable
function. Similar theorems to Theorem 3.5 are true for other weakly universal
countable Borel equivalence relations, and collections of “universal” functions with
respect to them. For example, let E∞ be the orbit equivalence relation of the shift
action of the free group Fω = ⟨γi,j⟩i,j∈ω on ωFω (so we are indexing the generators
of Fω by elements of ω2). Let fi(x)(j) = (γi,j · x). Then E∞ is hyper-(fi)-finite if
and only if every countable Borel equivalence relation is hyper-Borel-finite.

Boykin and Jackson have introduced the class of Borel bounded equivalence
relations [BJ]. For these equivalence relations it is an open problem whether there
is some non-hyperfinite Borel bounded equivalence relation, and also whether all
Borel equivalence relations are Borel bounded. Similarly both these problems are
open for the hyper-Borel-finite Borel equivalence relations. We pose the question of
whether there is a relationship between E being hyper-Borel-finite and being Borel
bounded.

Question 3.6. Is every Borel bounded countable Borel equivalence relation hyper-
Borel-finite?

Straightforward measure theoretic and Baire category arguments cannot prove
that any countable Borel equivalence relation is not hyper-Borel-finite. This follows
for Baire category from generic hyperfiniteness. To analyze hyper-Borel-finiteness
in the measure theoretic setting, we first need an easy lemma about functions
selecting subsets of a finite set. Below, Prob(X) indicates the probability of an
event X.

Lemma 3.7. Suppose (X,µ) is a standard probability space, k ≤ n, Y is a finite
set where |Y | = n, and g : X → [Y ]k is any measurable function associating to each
x ∈ X a subset of Y of size k. Then for any m ≥ 1, there is a set S ⊆ Y with
|S| ≤ m such that Prob(g(x) ∩ S ̸= ∅) ≥ 1− (1− k/n)

m
.

The point of the lemma for us is the case where 0 ≪ k ≪ n, and m = ⌈ n√
k
⌉.

Think of g as being a probabilistic process for choosing k elements out of our set
Y of size n. Then the lemma says we can choose S ⊆ Y of size |S| ≤ m such that
Prob(S ∩ g(x) ̸= ∅) is close to 1. That is, we can find a “small” S (of size much
less than |Y | = n) so that with very high probability, one of the k elements we
choose using the process g comes from S. This is because (1 − k/n)n/k ≈ 1/e, so

(1− k/n)m ≈ (1/e)
√
k ≈ 0.
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Proof. If we select i from Y uniformly at random, and x from X at random (wrt µ),
then Prob(i /∈ g(x)) = 1−k/n, since g(x) has k elements. So if we pick m elements
i1, . . . , im from Y uniformly at random (allowing repetitions in the list), and let
S = {i1, . . . , im}, then Prob(S ∩ g(x) = ∅) = (1− k/n)

m
. Hence, there must be

some fixed set S = {i1, . . . , im} such that Prob(g(x) ∩ S = ∅) ≤ (1− k/n)
m
, and

so Prob(g(x) ∩ S ̸= ∅) ≥ 1− (1− k/n)
m
. (It is possible that |S| < m if we have

repetitions). □

We now have the following theorem analyzing hyper-Borel-finiteness in the mea-
sure theoretic setting:

Theorem 3.8. Suppose E is a countable Borel equivalence relation on a stan-
dard Borel space X, (fi)i∈ω are Borel functions from X to Xω, and µ is a Borel
probability measure on X. Then there is a µ-conull Borel set B so that E ↾ B is
hyper-(fi)-finite.

Proof. We claim that for any ϵ > 0, and any single Borel function f : X → Xω,
there is a Borel set A ⊆ X with µ(A) > 1 − ϵ such that E ↾ A is f -finite. (By
f -finite for a single f , we mean that no E ↾ A-class contains an infinite set of the
form {f(x)(j) : j ∈ ω}).

The theorem follows easily from this claim. Choose a sequence of positive real
numbers (ai,n)i,n∈ω so that

∑
i,n ai,n < ∞. Then for each i and n, let Ai,n ⊆ X be

a Borel set so that E ↾ Ai,n is hyper-fi-finite (just for the single function fi), and
µ(Ai) > 1 − ai,n. Then let Bm =

⋂
n≥m∧i∈ω Ai,n. Since Bm ⊆ Ai,m for every i,

E ↾ Bm is (fi)i∈ω-finite (for the entire sequence of (fi)i∈ω). The Bm are increasing
sets. We have µ(Bm) > 1−

∑
n≥m∧i∈ω ai,n, so µ(Bm) → 1. Let A =

⋃
m Bm. Then

E ↾ A is hyper-(fi)-finite as witnessed by E ↾ Bm.
We prove the claim. Fix a Borel function f : X → Xω. Without loss of generality

we may assume that {f(x)(j) : j ∈ ω} is infinite for every x. The idea here is to
use Lemma 3.7 to find a set A of measure µ(A) > 1− ϵ such that for every x ∈ A,
there is some j such that f(x)(j) /∈ A.

We may first assume by the Borel isomorphism theorem that X = 2ω. Consider
the function Ul(x) = {Ns : s ∈ 2l ∧ (∃j)f(x)(j) ∈ Ns}. That is, Ul(x) is the collec-
tion of basic open neighborhoods Ns, where s has length l, such that Ns contains
some element of the sequence f(x). Since the neighborhoods Ns separate points,
for every x we have |Ul(x)| → ∞ as l → ∞. Letting Xl,k = {x ∈ X : |Ul(x)| ≥ k},
we may choose a sufficiently large l so that µ(Xl,k) > 1− ϵ.

Now by picking l ≫ k ≫ 0 sufficiently large and applying Lemma 3.7 to the
function selecting the least k elements of Ul(x), we can choose a set S ⊆ {Ns : s ∈
2l} of size |S| < 2l/

√
k so that µ({x ∈ Xl,k : Ul(x)∩ S ̸= ∅}}) is arbitrarily close to

µ(Xl,k). Note that µ(
⋃
S) < 1√

k
. Let

A = {x ∈ Xl,k \
⋃

S : ∃if(x)(i) ∈
⋃

S}

The claim follows. □

The above proof is trivial in the sense that the subequivalence relations wit-
nessing hyper-(fi)-finiteness are simply the original equivalence relation restricted
to some Borel subset of X. This style of witness that an equivalence relation
is hyper-Borel-finite cannot work in general to show that an equivalence relation
is hyper-Borel-finite. For example, there is no increasing sequence of Borel sets
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(Ak)k∈ω such that 2ω =
⋃

k Ak, and the equivalence relations ≡T ↾ Ak witness
that ≡T is hyper-recursively finite. To see this, note that some An must contain
a pointed perfect set, and hence ≡T ↾ An must contain a uniformly computable
infinite sequence.

4. Strengthenings of the Kuratowski-Mycielski theorem

Two often used constructions in computability theory are

(1) There is a Borel function f : 2ω → 2ω so that if x0, . . . , xn are distinct, then
f(x0), . . . f(xn) are mutually 1-generic.

(2) There is a Borel function f : 2ω → 2ω so that for all x, f(x) is x-generic.

(1) is true since there is a perfect tree whose infinite paths are mutual 1-generics
(hence f in (1) may be continuous). (2) is true since x′ can compute an x-generic
real uniformly, and so f in this case may be Baire class 1 (i.e. Σ0

2-measurable).
It is impossible to have a function f with both properties (1) and (2):

Proposition 4.1. There is no Borel function f : 2ω → 2ω so that:

(1) If x0, . . . , xn are distinct, then f(x0), . . . f(xn) are mutually 1-generic.
(2) For all x, f(x) is x-generic.

Proof. If (2) holds, then ran(f) is nonmeager. This is true because if ran(f) is
meager, the complement of ran(f) is comeager and hence it would contain a dense
Gδ set A which is coded by some real z. But since f(z) is z-generic, f(z) ∈ A, and
so f(z) /∈ ran(f).

Now ran(f) is Σ1
1 and so it has the Baire property. Since ran(f) is nonmeager,

it is therefore comeager in some basic open set Ns. But this implies that ran(f)
contains two elements f(x0) ̸= f(x1) which are equal mod finite and hence are not
mutually 1-generic. □

The point of this section is to prove Lemma 4.2 where we make (1) above com-
patible with a weakening of (2). Instead of f(x) being x-generic, we can make f(x)
and x a minimal pair. The precise lemma we will need is the following, which will
be an essential ingredient in the proof of Theorem 5.5.

Lemma 4.2. Suppose E is a countable Borel equivalence relation on X. Then
there is a Borel function f : 2ω → 2ω such that

(1) If x0, . . . , xn are distinct, then f(x0), . . . f(xn) are mutually 1-generic.
(2) For all x, y ∈ 2ω such that x E y, there is no z so that z ≤m f(y) via a

many-one reduction with infinite range, and z ≤m x or z ≤m x.

Note that since f(x) is 1-generic, if z ≤m f(x) via a many-one reduction with
infinite range, then z is not computable.

This lemma follows easily from the more general Lemma 4.3:

Proof of Lemma 4.2: Apply Lemma 4.3 where X = Y = Z = 2ω, Cn ⊆ (2ω)n is the
set of mutually 1-generic n-tuples, S1 is the relation ≥m via a many-one reduction
with infinite range, and x R z if x ≥m z or x ≥m z. Note that if ρ : ω → ω is a
many-one reduction with infinite range, then there is no z ∈ 2ω such that z ≤m y
via ρ for comeagerly many y, since the set of y such that there exists an n such
that n ∈ z ⇐⇒ ρ(n) /∈ y is dense. □
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We now prove the following strengthening of the Kuratowski-Mycielski theorem
[K95, Theorem 19.1]. Say that a relation R ⊆ X×Y has countable vertical sections
if for all x ∈ X there are countably many y ∈ Y such that x R y.

Lemma 4.3. Suppose E is a countable Borel equivalence relation on a Polish space
X. Let Y,Z be Polish spaces and R ⊆ X × Z and Sn ⊆ Y n × Z be Borel relations
with countable vertical sections. Then for any collection (Cn)n∈ω of comeager sets
Cn ⊆ Y n, there is a Borel injection f : X → Y such that

(1) For all x1, . . . , xn ∈ X, (f(x1), . . . , f(xn)) ∈ Cn.
(2) For all x ∈ X and distinct x1, . . . , xn ∈ [x]E, if x R z and (f(x1), . . . , f(xn)) Sn z,

then there is a nonmeager set of y⃗ ∈ Y n such that y⃗ Sn z.

Roughly this says that there is a Borel function f so that any finitely many
elements of ran(f) are “mutually generic” (i.e. in Cn), and that if x1, . . . , xn ∈ [x]E ,
then x and (f(x1), . . . , f(xn)) form a “minimal pair” (with respect to R and Sn).

Proof. Fix countable bases BX ,BY ,BZ of X,Y , and Z. Also fix a complete metric
d generating the topology of Y . Say that an approximation p of f is a function
p : P → BY where P is a Borel partition of X into finitely many Borel sets. Say that
an approximation p′ : P ′ → BY refines p : P → BY if P ′ refines P , and if A′ ∈ P ′

and A ∈ P are such that A′ ⊆ A, then p′(A′) ⊆ p(A).
Suppose that p0, p1, . . . is a sequence of approximations where pn+1 refines pn,

(a) max{diam(U) : U ∈ ran(pn)} → 0 as n → ∞, and
(b) for all n, there exists m > n, so that A ∈ dom(pn), A

′ ∈ dom(pm) and
A′ ⊆ A implies cl(pm(A′)) ⊆ pn(A), where cl denotes closure.

Then we can associate to this sequence the function f : X → Y where f(x) = y if
{y} =

⋂
n pn(Ax,n) where Ax,n is the unique element of dom(pn) such that x ∈ An.

Conditions (a) and (b) ensure that
⋂

n pn(Ax,n) is a singleton for every x. We will
construct f in this way, where the sequence (pi)i∈ω is a sufficiently generic sequence
of approximations. Clearly (1) in the statement of the Lemma will be true for a
sufficiently generic sequence. We give a density argument to justify why (2) will be
true.

Since R, Sn have countable vertical sections, by Lusin-Novikov uniformization
[K95, 18.5], there are Borel functions (gi)i∈ω and (hn,i)i,n∈ω where gi : X → Z and
hn,i : Y

n → Z such that x R z iff gi(x) = z for some i, and y⃗ Sn z iff hn,i(y⃗) = z for
some i. By perhaps refining the sets Cn, we may assume that the functions hn,i are
continuous on Cn, since any Borel function is continuous on a comeager set [K95,
Theorem 8.38]. By the Feldman-Moore theorem, we may fix a Borel action of a
countable group Γ generating E. Let G be the set of z ∈ Z such that for some n,
there is a nonmeager set of y⃗ ∈ Y n such that y⃗ Sn z.

Fix an approximation p, finitely many disjoint basic open sets V1, . . . , Vn ⊆ X
and group elements γ1, . . . , γn ∈ Γ, and j, k ∈ ω. It suffices to show that we can
refine p to an approximation p∗ such that for all x ∈ X, if γi · x ∈ Vi for all i ≤ n,
then either

(*) (hn,k ↾ Cn)(p
∗([γ1 · x])× . . .× p∗([γn · x])) ∈ G, or

(**) gj(x) /∈ (hn,k ↾ Cn)(p
∗([γ1 · x])× . . .× p∗([γn · x]))



10 ADAM R. DAY AND ANDREW S. MARKS

where by [γi · x] we mean the element of dom(p∗) that contains γi · x. That is, the
condition above is that if γi · x ∈ Vi for all i ≤ n, then the value of hn,k(f(γ1 ·
x), . . . , f(γn · x)) is “forced” by p∗ to be in G, or forced to be different from gj(x).

Let B = {x : (∀i ≤ n)γi · x ∈ Vi}. These are the x for which me must ensure
that either (*) or (**) holds. Let P = dom(p). By refining the domain of p, we
may assume that every element of P is either contained in or disjoint from γi · B
for every i ≤ n. By similarly refining the domain, we may furthermore assume that
if A ∈ P is such that A ⊆ γi ·B, then γi′γ

−1
i ·A ∈ P for all i′ ≤ n.

We now define p∗. For all A ∈ P such that A ⊈ γi · B for all i ≤ n, put
A ∈ dom(p∗), and define p∗(A) = p(A). Any remaining A ∈ P belongs to a tuple
(A1, . . . , An) of elements of P where Ai ⊆ γi ·B for all i ≤ n and Ai′ = γi′ ·γ−1

i ·Ai

for all i, i′ ≤ n (by our assumption on P from the previous paragraph). So for all
x, if γi · x ∈ Ai for some i ≤ n, then γi · x ∈ Ai for all i ≤ n. We will define p∗ on
these Ai to satisfy (*) or (**). Letting Ui = p(Ai) for every i ≤ n, we ask if there
are basic open sets U ′

i , U
′′
i ⊆ Ui and disjoint basic open sets W ′,W ′′ ⊆ Z so that

(hn,k ↾ Cn)(U
′
1, . . . , U

′
n) ⊆ W ′ and (hn,k ↾ Cn)(U

′′
1 , . . . , U

′′
n ) ⊆ W ′′.

Case 1: if such W ′ and W ′′ do not exist, then put Ai ∈ dom(p∗) and define
p∗(Ai) = p(Ai) = Ui for every i ≤ n. Since hn,k ↾ Cn is continuous, then (hn,k ↾
Cn)(U1, . . . , Un) must be a singleton, which must therefore be in G. So in this case
(*) is satisfied for all x such that γi · x ∈ Ai for i ≤ n.

Case 2: if such W ′ and W ′′ do exist, let A′
i = {x : gj(γ−1

i · x) ∈ W ′}, and for
every i ≤ n, put both A′

i and Ai \ A′
i in dom(p∗), and define p∗(A′

i) = U ′′
i , and

p∗(Ai \ A′′
i ) = U ′

i . Then by definition, (**) holds for every x such that γi · x ∈ Ai

for i ≤ n. □

We remark that there are interesting open problems about the extent to which
the Kuratowski-Mycielski theorem can be generalized. For example,

Question 4.4. Does there exist a Borel function g : 2ω → 2ω, so that for all distinct
x, y with x ≤T y, g(x) and g(y) are mutually x-generic?

5. A nonuniform construction

In our main construction in the proof of Theorem 5.5, we will do coding using
countably many computable injective strictly increasing functions cm : ω → ω with
disjoint ranges. Precisely, we will ensure that if x E y, then f(x) ≤1 f(y) via one
of these one-one reductions cm. We begin this section with some definitions and
lemmas related to the kind of coding we will do. The reader may want to read
the first few paragraphs of the proof of Theorem 5.5 up to the definition of f and
verification of (1) to motivate these definitions.

Definition 5.1. Suppose (cm)m∈ω is a sequence of strictly increasing functions
cm : ω → ω with disjoint ranges. We define the decoding function d : ω → ω<ω

associated to (cm)m∈ω as follows:

d(n) =

{
∅ if n /∈ ran(cm) for any m

m⌢d(c−1
m (n)) if n ∈ ran(cm)
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Where ∅ denotes the empty string and ⌢ denotes concatenation of strings. Similarly,
define ds : ω → ω<ω in the same way but where we only use cm where m ≤ s.

ds(n) =

{
∅ if n /∈ ran(cm) for any m ≤ s

m⌢ds(c
−1
m (n)) if n ∈ ran(cm) and m ≤ s

Finally, define b, bs : ω → ω as follows. Define b(n) = (cm0 ◦ . . . ◦ cmk
)−1(n) where

m0, . . . ,mk are such that d(n) = (m0, . . . ,mk). Similarly, bs(n) = (cm0
◦ . . . ◦

cmk
)−1(n) where m0, . . . ,mk are such that ds(n) = (m0, . . . ,mk).

We can think of d in the following way. Any n ∈ ω can be in the range of
at most one cm since the (cm)m∈ω have disjoint ranges. If n is in the range of
some cm, the number c−1

m (n) is strictly less than n since cm is strictly increasing.
Iterating this process, there is a unique longest sequence m0, . . . ,mk so that n ∈
ran(cm0

◦ . . . ◦ cmk
). This longest such sequence (m0, . . . ,mk) is defined to be d(n).

The function ds is defined the same way but where we restrict to only considering
cm with m ≤ s. Finally, b and bs are the functions which maps n to the number
obtained by repeatedly taking the inverse image of n under cm0

, . . . , cmk
where

(m0, . . . ,mk) is either d(n) or ds(n) respectively. Note that ds(n) is an initial
segment of d(n), and in fact d(n) = ds(n)

⌢d(bs(n)) for every n, s.
We now describe the functions (cm)m∈ω we will use in the proof of Theorem 5.5.

Below if t ∈ ω<ω is a sequence, then max t denotes the largest number in the
sequence t. We take the convention that max ∅ = 0. Recall that A[i] = {⟨i, j⟩ ∈
A : j ∈ ω} is the ith column of A.

Lemma 5.2. There is a sequence (cm)n∈ω of injective strictly increasing com-
putable functions cm : ω → ω with disjoint ranges and an infinite computable set
D0 ⊆ ω so that D0 is disjoint from

⋃
m∈ω ran(cm), and

(1) For all computable ρ : ω → ω, there exists an s ∈ ω so that either bs(ρ(ω))
is finite, or there exists a computable infinite set B so that for all n ∈ B,
max d(ρ(n)) ≤ s, and bs(ρ(B)) is infinite.

(2) For all computable ρ : ω → ω, there exists an s ∈ ω so that either for
infinitely many i, bs(ρ(ω

[i])) is finite, or there is a computable set B so that
for all n ∈ B, max d(ρ(n)) ≤ s, and for all but finitely many i, bs(ρ(B

[i]))
is infinite.

Proof. Suppose ρ : ω → ω is computable and ρ′ : ω → ω is defined by ρ′(⟨i, j⟩) =
ρ(j), so ρ′ copies the values of ρ on every column of ω. Then if (2) holds for ρ′ then
(1) holds for ρ. So we only need to verify property (2).

We construct the sequence (cm)m∈ω in countably many stages where at stage
s we define the computable function cs. We will also build a sequence (Dm)m∈ω

of subsets of ω where for all m, Dm ⊇ Dm−1, Dm is disjoint from ran(cm), and
ran(c0) ∪ . . . ∪ ran(cm) ∪Dm is coinfinite. Though each cm and Dm will be com-
putable, neither the sequence (cm)m∈ω nor (Dm)m∈ω will be uniformly computable.

Note that since each cm is computable and strictly increasing, ran(cm) is com-
putable. Hence for each s, the functions ds and bs will be computable.

Let c0 be any computable strictly increasing function and D0 ⊆ ω be any com-
putable infinite set so that D0 and ran(c0) are disjoint and D0∪ran(c0) is coinfinite.
Since we will ensure that ran(cm) is disjoint from Dm ⊇ D0 for every m, the re-
quired property that D0 will be disjoint from ∪m ran(cm) will be true at the end of
the construction.
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At stage s, let ρ : ω → ω be the sth total computable function, and suppose we
have defined cs and Ds. We will define cs+1 and Ds+1 so that (2) is true. We many
assume that there is some k so that for all i ≥ k, bs(ρ(ω

[i])) is infinite. If this is not
the case, then property (2) is already true for ρ and we may define Ds+1 = Ds, and
let cs+1 to be an arbitrary strictly increasing computable injection so that ran(cs+1)
is disjoint from ran(c0)∪. . . ,∪ ran(cs)∪Ds+1 and so that ran(c0)∪. . . ,∪ ran(cs+1)∪
Ds+1 is cofinite.

So fix k so that for all i ≥ k, bs(ρ(ω
[i])) is infinite. Now we can find a computable

set Ds+1 ⊇ Ds so that for every i ≥ k, Ds+1 ∩ bs(ρ(ω
[i])) is infinite and disjoint

from ran(c0) ∪ . . . ∪ ran(cs). We do this by at step n defining Ds+1 on a large
enough finite segment to ensure that there are at least n elements of bs(ρ(ω

[i]))
in Ds+1 for every k ≤ i ≤ n. Note that every element of ran(bs) is disjoint from
ran(c0)∪ . . .∪ ran(cs) by definition of bs. At step n we also choose n new elements
not in Ds ∪ ran(c0) ∪ . . . ∪ ran(cs) and promise that they will not be in Ds+1 (so
that at the end of the construction Ds+1 ∪ ran(c0) ∪ . . . ∪ ran(cs) is coinfinite.

Once we have defined Ds+1 as above, we have that for every n such that
bs(ρ(n)) ∈ Ds+1, max d(ρ(n)) ≤ s. This is since d(ρ(n)) = ds(ρ(n))

⌢d(bs(ρ(n))) =
ds(ρ(n)) since bs(ρ(n)) is not in the range of any cm since it is inDs+1. By definition
of ds, we have max ds(m) ≤ s for all m. Finally, the set B = {n : bs(ρ(n)) ∈ Ds+1}
is computable (since Ds+1 and bs are computable) and is our desired computable
set. □

Of course, the range ρ(ω) of a computable function ρ : ω → ω is just a c.e.
set, and we could equivalently state Lemma 5.2 to be about c.e. sets instead. For
example, part (2) of Lemma 5.2 would become: if (Ai)i∈ω is a uniformly c.e. family
of subsets of ω, then either for infinitely many i, bs(Ai) is finite, or there is a
computable set C ⊆

⋃
i Ai so that max d(n) ≤ s for all n ∈ C and for all but

finitely many i, bs(Ai ∩ C) is infinite. Here (Ai)i∈ω is (ρ(ω[i]))i∈ω, and B in the
above lemma would be ρ−1(C). We stated the Lemma 5.2 in the above form since
this is the way it will eventually be used, where ρ is some many-one reduction.

Two important ideals in the proof of Theorem 5.5 will be the first and second
iterated Fréchet ideals on ω which we denote I1 and I2. We use I2 when we are
simultaneously analyzing all the columns of a many-one reduction.

Definition 5.3. Let I1 = {A ⊆ ω : A is finite}. Let I2 = {A ⊆ ω : for all but
finitely many i, A[i] is finite}.

An important idea in our proof of Theorem 5.5 is captured by the following
simple proposition. One should think here of a set not being in an ideal I on ω as
a notion of largeness. For example for the Fréchet ideal I1, A /∈ I1 iff A is infinite.

Proposition 5.4. Suppose S ⊆ ω<ω is a finitely branching tree, t : ω → S is an
arithmetic function, and I is an arithmetically definable ideal on ω (such as I1 or
I2). Let T ⊆ S be defined by T = {s ∈ S : {n : t(n) ⊇ s} /∈ I}. Then T is an
arithmetically definable subtree of S. Furthermore any s ∈ T with no extensions in
T has {n : t(n) = s} /∈ I. So by Kőnig’s lemma, either T has an infinite branch
and hence an arithmetically definable infinite branch, or there is some s so that
{n : t(n) = s} /∈ I.
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Proof. First we show T is closed downwards and is hence a tree. Suppose s1 ∈ T ,
and s0 ⊆ s1. Then since {n : t(n) ⊇ s0} ⊇ {n : t(n) ⊇ s1} and any superset of a set
not in I is also not in I, we have s0 ∈ T .

Now if s ∈ T , and s0, . . . , sk are the immediate extensions of s in S, then
we can partition the set {n : t(n) ⊇ s} which is not in I into finitely many sets:
{n : t(n) = s}, and {n : t(n) ⊇ si} for each i ≤ k. At least one of theses sets must
be not in I since a union of finitely many sets in I is in I. Hence, any s ∈ T with
no extensions in T has {n : t(n) = s} /∈ I. □

In the proof of Theorem 5.5 we will use same idea as the above proposition,
but in a relativized form, and where t is a function to finitely branching tree in a
different space (a tree made of elements of [x]<ω

E ).
We are ready to prove our main theorem showing that a positive answer to

Question 3.4 implies the existence of non-uniform invariant functions that are in-
comparable with the identity function.

Theorem 5.5. Suppose E is a hyper-Borel-finite Borel equivalence relation on
2ω. Then there exists an injective Borel function f : 2ω → 2ω such that for all
x0, x1 ∈ 2ω

(1) If x0 E x1, then f(x0) ≡1 f(x1)
(2) If x0 �E x1, then f(x0) ̸≡m f(x1).
(3) For every noncomputable x, f(x) is ≤m-incomparable with both x and x.
(4) For all x ∈ 2ω, there does not exist an infinite sequence (xi)i∈ω of distinct

reals such that
⊕

i f(xi) ≤m f(x).

Proof. Let Fω ↷ 2ω be a Borel action of the group Fω that generates the equivalence
relation E. Let (γi)i∈ω be a computable enumeration of the group Fω so that group
multiplication is computable. Let hi : 2

ω → (2ω)ω be the Borel function where
hi(x) ∈ (2ω)ω is the ith real arithmetically definable from

⊕
j∈ω γj · x (using some

computable bijection to identify 2ω with (2ω)ω). Intuitively,
⊕

j∈ω γj · x codes the
entire orbit of the x under the group action. For example, for every x ∈ 2ω, the
stabilizer of x (i.e. {i : γi ·x = x}) is arithmetically definable from

⊕
j∈ω γj ·x. Since

the function x 7→
⊕

j∈ω γj · x is Borel, each hi is Borel since it is the composition

of a Borel function with an arithmetic function. Let (Ej)j∈ω be a witness that E
is hyper-(hi)i∈ω-finite, so E0 ⊆ E1 ⊆ . . ., and E =

⋃
j∈ω Ej .

Let g : 2ω → 2ω be a function as in Lemma 4.2, letting the relation E be our given
equivalence relation E. Let (cm)m∈ω be as in Lemma 5.2. We define f : 2ω → 2ω

by:

f(x)(n) =

{
f(γi · x)(c−1

⟨i,j⟩(n)) if ∃i, j so n ∈ ran(c⟨i,j⟩) and x Ej γi · x
g(x)(n) otherwise.

This definition is self-referential, but it is not circular. If f(x)(n) = f(γi0 · x)(n0)
where n0 = c−1

⟨i0,j0⟩(n), then n0 < n since c⟨i0,j0⟩ is strictly increasing. So after

finitely many applications of the definition of f we will reach the base case of the
definition and find a sequence i0, . . . , ik and nk where f(x)(n) = g(γik · · · γi0 ·x)(nk).
These kinds of self-referential definitions where we code values of f into itself have
been used before in the study of the Borel complexity of equivalence relations from
computability theory (see e.g. [MSS, Theorem 2.5] and [M, Theorem 3.6]).
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By the definition of f , part (1) of the theorem is true. Given any x0 E x1, let i be
such that γi ·x0 = x1. There is some j such that x0 Ej x1. Then the function c⟨i,j⟩
is a one-one reduction witnessing f(x1) ≤1 f(x0). This is because for all n0 ∈ ω,
f(γi · x0)(n0) = f(x0)(c⟨i,j⟩(n0)) by letting n = c⟨i,j⟩(n0) in the definition of f(x0).
Arguing symmetrically, we also have f(x0) ≤1 f(x1).

The idea of the proof is that f as generic as possible, given that we have to
do coding to ensure that if x0 E x1, then f(x0) ≡1 f(x1). Intuitively, there are
two types of bits n of f(x). There are infinitely many “generic” bits n where
f(x)(n) = g(x)(n). The remaining bits are used for coding where we record the
value of the bits of f(γi · x) for i ∈ ω. This coding scheme is also chosen to be
generic (as made precise by Lemma 5.2). Supposing z ≤m f(x), the crux of the
proof is understanding how well this many-one reduction can iteratively decode this
coding to find bits of g(γi · x)(n) for many different i and n. The high level idea of
the proof is that if there is a many-one reduction whose range decodes to be values
of g(γi · x)(n) for a “large” set of i and n (according to some ideal), then we get
a contradiction to (Ej)j∈ω being a hyper-(hi)i∈ω-finiteness witness for E. But if a
many-one reduction only uses values of g(γi ·x)(n) for finitely many i on a large set,
then since these g(γi · x) are mutually generic (and g has the stronger properties
give in Lemma 4.2), then z cannot be x or values of f(y) for y�E x.

Our next goal is to give a definition of f(x) that is only in terms of the function
g and is not self-referential. First we make a definition that describes when we
recursively use the first clause f(x)(n) = f(γi · x)(c−1

⟨i,j⟩(n)) of the definition of

f(x)(n) to “decode” it. Say a sequence (⟨i0, j0⟩, ⟨i1, j1⟩, . . . , ⟨ik, jk⟩) ∈ ω<ω is x-
valid if

(γim−1 · · · γi0 · x) Ejm (γim · · · γi0 · x)

for every m ≤ k. Note that if a sequence is x-valid then every initial segment of it
is x-valid.

Let dx(n) be the longest initial segment of d(n) that is x-valid. So dx : ω → ω<ω.
Hence if dx(n) = (⟨i0, j0⟩, ⟨i1, j1⟩, . . . , ⟨ik, jk⟩), then

f(x)(n) = f(γi0 · x)(c−1
⟨i0,j0⟩(n))

by the definition of f since n ∈ ran(c⟨i0,j0⟩) by the definition of d, and since x Ej0

γi0 · x by the definition of being x-valid. Similarly, we have inductively that for
every m ≤ k,

f(γim−1
· · · γi0 · x)(c−1

⟨im−1,jm−1⟩ ◦ . . . ◦ c
−1
⟨i0,j0⟩(n))

= f(γim · · · γi0 · x)(c−1
⟨im,jm⟩ ◦ . . . ◦ c

−1
⟨i0,j0⟩(n))

again using the definition of f , the definition of d, and since (γim−1
· · · γi0 · x) Ejm

(γim · · · γi0 · x) by the definition of being x-valid. Finally, either dx(n) = d(n) and
so c−1

⟨ik,jk⟩ ◦ . . . ◦ c
−1
⟨i0,j0⟩(n) /∈ ran(cm) for any m by the definition of d, or dx(n) is

a proper initial segment of d(n) = (⟨i0, j0⟩, ⟨i1, j1⟩, . . . , ⟨ik, jk⟩, ⟨ik+1, jk+1⟩, . . .), so
c−1
⟨ik,jk⟩ ◦ . . . ◦ c

−1
⟨i0,j0⟩(n) ∈ ran(c⟨ik+1,jk+1

⟩) but (γik · · · γi0 ·x)���Ejk+1
(γik+1

· · · γi0 ·x),
since dx(n) is the longest initial segment of d(n) that is x-valid. In either case, in
the definition of f(γik · · · γi0 · x)(c

−1
⟨ik,jk⟩ ◦ . . . ◦ c

−1
⟨i0,j0⟩(n)) we use the second clause
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of the definition, and so

f(γik · · · γi0 · x)(c
−1
⟨ik,jk⟩ ◦ . . . ◦ c

−1
⟨i0,j0⟩(n))

= g(γik · · · γi0 · x)(c
−1
⟨ik,jk⟩ ◦ . . . ◦ c

−1
⟨i0,j0⟩(n)).

Putting together the above three displayed equations, we have shown that if dx(n) =
(⟨i0, j0⟩, ⟨i1, j1⟩, . . . , ⟨ik, jk⟩), then we have the following explicit definition of f(x)
in terms of g.

f(x)(n) = g(γik · · · γi0 · x)(c
−1
⟨i0,j0⟩ ◦ . . . ◦ c

−1
⟨ik,jk⟩(n)).

To make this definition more compact, we introduce two more functions. Define
yx : ω → [x]E and bx : ω → ω as follows. If dx(n) = (⟨i0, j0⟩, . . . , ⟨ik, jk⟩), then
yx(n) = γik · · · γi0 · x and bx(n) = c−1

⟨i0,j0⟩ ◦ . . . ◦ c
−1
⟨ik,jk⟩(n). Hence for all n,

(*) f(x)(n) = g(yx(n))(bx(n)).

That is for all n, f(x)(n) codes the bit bx(n) of g(yx(n)). Note that for all n,
bx(n) ≥ b(n) since dx(n) is an initial segment of d(n).

Similarly, we define ds,x : ω → ω<ω by letting ds,x(n) be the longest initial
segment of ds(n) that is x-valid. Note that dx(n) = ds,x(n) for sufficiently large
s (i.e. s ≥ max d(n)). Define also ys,x : ω → [x]E and bs,x : ω → ω as follows. If

ds,x(n) = (⟨i0, j0⟩, . . . , ⟨ik, jk⟩), then ys,x(n) = γik · · · γi0 · x and bs,x(n) = c−1
⟨i0,j0⟩ ◦

. . .◦c−1
⟨ik,jk⟩(n). An identical kind of induction to the one above using the properties

of being x-valid show that for all n and s,

(**) f(x)(n) = f(ys,x(n))(bs,x(n)).

Note, though, that in this equation (**) we have f on the right hand side instead
of g. This is because it is possible that dx(n) ⊋ ds(n) and so n needs to be further
decoded using functions cm for m > s.

Our analysis of reals that are many-one reducible to f(x) will be based on
analyzing a finitely branching tree built out of elements in [x]E , which is re-
lated to (*) above. Let [x]<ω

E be the set of finite sequences (y0, . . . , yl) so that
yi ∈ [x]E for all i ≤ l. We define a function tx(n) : ω → [x]<ω

E as follows. Given
d(n) = (⟨i0, j0⟩, . . . , ⟨ik, jk⟩), consider the sequence (x, γi0 ·x, . . . , γik · · · γi0 ·x). This
sequence may contain elements that are repeated so we define tx(n) to be a “de-
duplicated” version of this sequence, so tx(n) = (y0, . . . , yl) has the same elements
as (x, γi0 ·x, . . . , γik · · · γi0 ·x), but where each element occurs exactly once. Precisely,
let y0 = x and yj+1 be the first element of the sequence (x, γi0 ·x, . . . , γik · · · γi0 ·x)
that is not equal to ym for any m ≤ j. Intuitively, if tx(n) = (y0, . . . , yl), this
means y0 = x and f(y0)(n) codes a bit of f(y1) which codes a bit of f(y2), . . . ,
which codes a bit of f(yl) which is equal to a bit of g(yl), assuming that d(n) is
x-valid. Note that even if d(n) is not x-valid, then yx(n) is an element of tx(n).
One final fact we will often use about the relationship between yx(n) and tx(n) is
that if max d(n) ≤ s, r = (y0, . . . , yl), yl ��Es x, and tx(n) ⊇ r, then yx(n) = yi for
some i ≤ l. That is, in this case even though tx(n) may contain many elements
not in r, the value yx(n) must come from r. This is since any part of the sequence
d(n) that yields part of tx(n) that extends r cannot be x-valid since yl ��Es x, and
max d(n) ≤ s.

Note that we are defining tx(n) using the function d(n) instead of dx(n) because
we want tx(n) to be arithmetically definable relative to

⊕
j∈ω γj · x. This is so we
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can use the idea of Proposition 5.4, relative to
⊕

j∈ω γj ·x. (The definition of dx(n)

depends on our hyper-Borel-finiteness witness (Ej)j∈ω and we have no bound its
complexity).

We will also define a similar function to tx but using the function ds(n) in-
stead of d(n). Precisely, define ts,x(n) : ω → [x]<ω

E as follows. Given ds(n) =
(⟨i0, j0⟩, . . . , ⟨ik, jk⟩), let ts,x(n) be the de-duplicated version of the sequence (x, γi0 ·
x, . . . , γik · · · γi0 · x) as in the definition of tx. Note that since ds(n) = d(n) for
s ≥ max d(n), we have that tx(n) = ts,x(n) if s ≥ max d(n). An important prop-
erty of ts,x is that its values (unlike tx) form a finitely branching tree. Precisely,
If ts,x(n) = (y0, . . . , yl), we must have that for every k ≤ l, yk = γi · yj for some
i ≤ s and j ≤ k. This is by definition of ds and ts,x. Hence, the downward closure
of all the values of ts,x(n) forms a finitely branching tree in [x]<ω

E . Mostly (ex-
cept at the end of Claim 3), using Lemma 5.2 we will work on sets B ⊆ ω where
max d(ρ(n)) ≤ s, and hence tx(ρ(n)) = ts,x(ρ(n)) for all n ∈ B.

Because we have introduced many different functions, we briefly summarize:

• g : 2ω → 2ω is the generic function from Lemma 4.2 whose range is a set
of mutual 1-generics, and so that if x E y and z ≤m g(x) via a many-one
reduction with infinite range, then z ≰m y and z ≰m y.

• (Ej)j∈ω are the witness that E is hyper-(hi)i∈ω–finite. The functions
(hi)i∈ω are those that are arithmetically definable from

⊕
j γj ·x (i.e. arith-

metically definable from the orbit of x).
• f : 2ω → 2ω is the Borel reduction from E to ≡m we’re building. The
definition of f in terms of g, (Ej)j∈ω and (cm)m∈ω is given at the beginning
of the proof.

• (cm)m∈ω are the “coding functions” used to ensure that if x E y, then
f(x) ≤1 f(y). Precisely, if x Ej γi ·x, then f(γi ·x) ≤1 f(x) via c⟨i,j⟩. Each
cm is computable, injective, and increasing, and but the sequence (cm)m∈ω

is not uniformly computable. The cm have disjoint ranges. The sequence
(cm)m∈ω is a “generic” such sequence and is constructed in Lemma 5.2.
The functions d, ds : ω → ω<ω and b, bs : ω → ω are associated functions
used for decoding and defined in Definition 5.1.

• The function dx : ω → ω<ω is defined so that dx(n) is the longest substring
of d(n) that is x-valid, where we define x-valid sequences according to which
clause of the definition of f(x)(n) would be used to decode them. Using
dx, we then gave a definition (*) above of the function f(x) just in terms
of g: f(x)(n) = g(yx(n))(bx(n)), where yx : ω → [x]E , and bx : ω → ω were
defined in terms of dx(n).

• The function tx : ω → [x]<ω
E maps each bit n to the sequence of distinct

y0, y1, . . . , yk where y0 = x and f(x)(n) is a coded bit of f(y1) which is
a coded bit of f(y2) . . . , assuming d(n) is x-valid. Note that yx(n) is an
element of tx(n) for all n. The function ts,x is defined similarly to tx, except
where we use the sequence ds(n) instead of d(n). We use this function ts,x
because its values form a finitely branching tree. Typically below (except
at the end of Claim 3) we will work on sets B ⊆ ω on which max d(n) ≤ s,
and hence there is no difference in these functions: tx(n) = ts,x(n) for all
n ∈ B. Similarly, ys,x, bs,x and ds,x are defined analogously to yx, bx, and
dx but using ds instead of d.
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Now dx and bx are not computable in general since d is not computable and
the set of x-valid sequences is also not computable in general. However, there are
certain subsets of ω on which dx and bx are computable.

Claim 1. Suppose ρ : ω → ω is computable, r = (y0, . . . , yl) ∈ [x]<ω
E , yi is an

element of r, and s ∈ ω. Then

(1) A = {n ∈ ω : ts,x(n) = r ∧ ys,x(n) = yi} is computable, and ds,x ↾ A is
computable. Hence if B ⊆ ω is computable and max d(ρ(n)) ≤ s for all
n ∈ B, then A′ = {n ∈ B : tx(ρ(n)) = r ∧ yx(ρ(n)) = yi} is computable and
bx ◦ ρ is computable on A′.

(2) If yl ��Es x, then A = {n : ts,x(ρ(n)) ⊇ r ∧ yx(ρ(n)) = yi} and ds,x ↾ A are
computable. Hence if B ⊆ ω is computable and max d(ρ(n)) ≤ s for all
n ∈ B, then A′ = {n ∈ B : tx(ρ(n)) ⊇ r ∧ yx(ρ(n)) = yi} is computable and
bx ◦ ρ is computable on A′.

Proof. The idea is that given r and s, there is a finite amount of information about
how group elements γi for i ≤ s act between elements of r, and how elements of r
are Ej related for j ≤ s. From this we can compute all of the above.

More precisely, the set of tuples (i, j0, j1) such that i ≤ s and j0, j1 ≤ l and
γi · yj0 = yj1 is finite. Suppose we are given ds(n) = (⟨i0, j0⟩, . . . , ⟨ik, jk⟩), where
im, jm ≤ s for every m ≤ k by definition of ds. Then for each m ≤ k we can
iteratively compute which element of r is equal to γim · · · γi0 ·x, provided all previous
values of γim′ · · · γi0 · x for m′ < m have been elements of r. We can also similarly
compute the least m so that γim · · · γi0 · x is not an element of r.

Similarly, the set of tuples (i0, i1, j) such that j ≤ s and i0, i1 ≤ l so that
yi0 Ej yi1 is finite. From this information, if tx,s(n) = r, we can determine what
subsequences of ds(n) are x-valid, and hence compute ds,x(n) ↾ A in case (1). In
case (2), note that since yl ��Es x, the least m so that (⟨i0, j0⟩, . . . , ⟨im, jm⟩) is not
x-valid must have the property that γim′ · · · γi0 ·x is an element of r for all m′ ≤ m.
Hence in this case we can also compute ds,x ↾ A. The claim follows. □ Claim 1.

We will prove two main claims about z ∈ 2ω such that z ≤m f(x). Recall that if
y, z ∈ 2ω and A ⊆ ω is computable, by z ↾ A ≤m y we mean there is a computable
function ρ : A → ω so that for all n ∈ A, z(n) = y(ρ(n)).

Claim 2. Suppose x, z ∈ 2ω are such that z ≤m f(x), and z is incomputable. Then
there is a computable infinite set A ⊆ ω and some y E x so that z ↾ A ≤m g(y) via
a many-one reduction with infinite range.

Proof. Let ρ : ω → ω be the many-one reduction witnessing z ≤m f(x). The
idea of the proof is to make a finitely branching tree T of elements of [x]E where
(y0, . . . , yl) ∈ T means that a “large” (according to some ideal) number of bits
f(x)(ρ(n)) code values of f(y0) which code values of f(y1) . . . which code values
of f(yl) (assuming the code is x-valid). If the tree is finite, a “large” number
of bits of the many-one reduction can be many-one reduced to a single g(y) for
y ∈ [x]E . If the tree is infinite, some finite branch r in the tree must be coded in a
way that is not x-valid, otherwise we would contradict that hyper-(hi)-finiteness of
the (Ej)j∈ω (since our tree will be arithmetically definable relative to

⊕
i∈ω γi · x).

Then we can find a “large” set of incorrectly coded bits corresponding to extensions
of r that reduce to a single g(y). We will make this tree using the same idea as
Proposition 5.4 using the function tx.
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We break into two cases depending on which case hold for ρ in Lemma 5.2.(1).
Case 1: there is a computable set B and an s so that max d(ρ(n)) ≤ s for all

n ∈ B and bs(ρ(B)) is infinite.
In this case, let I be the ideal on subsets of B where for A ⊆ B, we have A ∈ I

if bs(ρ(A)) is finite. Let T = {r ∈ [x]<ω
E : {n ∈ B : tx(ρ(n)) ⊇ r} /∈ I}. Hence T

is a finitely branching tree analogously to Proposition 5.4, and it is arithmetically
definable relative to

⊕
i∈ω γi · x. (The reason we are using this ideal I rather than

the Fréchet ideal I1 is in order to make the proof that the many-one reduction has
infinite range easier).

If T is finite, as in Proposition 5.4, there must be some r ∈ T such that {n ∈
B : tx(ρ(n)) = r} /∈ I. Let A = {n ∈ B : tx(ρ(n)) = r}. Let r = (y0, . . . , yl).
Since yx(n) is an element of tx(n) for every n, we can partition A into the finitely
many sets Ai = {n ∈ B : tx(ρ(n)) = r ∧ yx(ρ(n)) = yi} for each i ≤ l. Hence,
there must be some yi so that the set Ai /∈ I. Fix this i. Now for every n ∈ Ai,
f(x)(ρ(n)) = g(yi)(bx(ρ(n))) by (*). Since by Claim 1, bx ◦ ρ is computable on Ai,
we therefore have z ↾ Ai ≤m g(yi). To see this many-one reduction has infinite
range note first that bs(ρ(Ai)) is infinite by definition of I, b(ρ(n)) = bs(ρ(n)) for
all n ∈ Ai (since max d(ρ(n)) ≤ s for all n ∈ B), and so b(ρ(Ai)) is infinite. Finally,
bx(m) ≥ b(m) for all m by definition of bx, and so bx(ρ(Ai)) is infinite.

Now suppose T is infinite. Then there is an infinite branch in T that is arith-
metically definable from

⊕
i∈ω γi · x. Since each tx(n) contains no repeated ele-

ments by definition, the set of y ∈ [E]x in this branch is infinite. So there is some
r = (y0, . . . , yl) ∈ T in this branch so that yl ��Es x. Otherwise, this would contradict
that Es is (hi)-finite. Now for all n such that tx(n) ⊇ r, we must have yx(n) = yi
for some i ≤ l. So since {n ∈ B : tx(ρ(n)) ⊇ r} /∈ I, there must be some yi so that
A = {n ∈ B : t(ρ(n)) ⊇ r ∧ yx(n) = yi} /∈ I. Since f(x)(ρ(n)) = g(yi)(bx(ρ(n))) for
all n ∈ A, we have z ↾ A ≤m g(yi) by Claim 1 since bx is computable on A. This
many-one reduction has infinite range on A by the same argument as the above
paragraph: bs(ρ(A)) is infinite, bs(ρ(A) = b(ρ(A)), and bx(m) ≥ b(m) for all m.

Case 2: There is an s ∈ ω so that bs(ρ(ω)) is finite.
Let s′ be larger than both s and max d(bs(ρ(n))) for all n ∈ ω. This is finitely

many values since there are only finitely many values of bs(ρ(n)). So max d(ρ(n)) ≤
s′ for all n ∈ ω since d(n) = ds(n)

⌢d(bs(n)) for every n, s. Let T = {r ∈
[x]<ω

E : {n : tx(ρ(n)) ⊇ r} is infinite}. T is a finitely branching tree as in Propo-
sition 5.4 since max d(ρ(n)) ≤ s′ for all n ∈ ω, and so ts′,x(ρ(n)) = tx(ρ(n)) for all
n ∈ ω.

If T is finite, then for all but finitely many n, we have t(ρ(n)) = r for some r ∈ T .
For each r = (y0, . . . , yl) ∈ T and i ≤ l, let Ar,i = {n : tx(ρ(n)) = r∧yx(ρ(n)) = yi}.
So all but finitely many n ∈ ω are in some Ar,i, and there are finitely many sets
Ar,i. By Claim 1, every Ar,i is computable and z ↾ Ar,i ≤m g(yi) for each Ar,i. If all
these many-one reductions have finite range, then z is computable, since there are
finitely many Ar,yi

. This is a contradiction. So one of these many-one reductions
z ↾ Ai ≤m g(yi) has infinite range.

Now suppose T is infinite, and so there is an infinite branch in T that is arith-
metically definable from

⊕
i∈ω γi ·x. The infinite set of y ∈ [E]x that appear in this

branch is arithmetically definable from
⊕

i∈ω γi · x. So there some r = (y0, . . . , yl)
in this branch so that yl ��Es x. Otherwise, this would contradict that Es is (hi)-
finite. Let A = {n : tx(ρ(n)) ⊇ r}. Let Ai = {n ∈ A : yx(ρ(n)) = yi}, so A0, . . . Al
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partition A. Since {tx(ρ(n)) : n ∈ A} is infinite since it includes our infinite branch,
we can find i ≤ l so that {tx(ρ(n)) : n ∈ Ai} is infinite. In particular, the lengths
of these |tx(ρ(n))| where n ∈ Ai are arbitrarily large. Then Ai is computable and
bx ◦ ρ is computable on Ai by Claim 1. Since f(x)(ρ(n)) = g(yi)(bx(ρ(n))) by (*)
we have that z ↾ Ai ≤m g(yi).

We now show the many-one reduction bx ◦ ρ witnessing z ↾ Ai ≤m g(yi) has
infinite range on Ai. For all n ∈ Ai, tx(ρ(n)) ⊇ r, and the difference in their lengths
is bounded by |tx(ρ(n))| − |r| ≤ |d(ρ(n))| − |dx(ρ(n))|. This because the elements
of tx(ρ(n)) that are not in r must come from elements of d(ρ(n)) that are not x-
valid (i.e. not in dx(ρ(n))) since yl ��Es x. Finally |d(ρ(n))| − |dx(ρ(n))| ≤ bx(ρ(n)),
since b(ρ(n)) ≥ 0 and b(ρ(n)) is obtained from bx(ρ(n)) by taking additional inverse
images of bx(ρ(n)) by the elements of cm that are in d(ρ(n)) but not in dx(ρ(n)), and
the cm are strictly increasing. Hence, bx(n) ≥ |tx(ρ(n))| − |r| and since the lengths
of |tx(ρ(n))| are unbounded on Ai, the values of bx(ρ(n)) are also unbounded on
Ai. □ Claim 2.

To show f has property (2), we prove the prove the contrapositive. Suppose
f(y) ≤m f(x) for some x, y ∈ 2ω. By Lemma 5.2 there is a computable infinite
set D0 so that D0 is disjoint from ran(cm) for every m, and hence f(y) ↾ D0 =
g(y) ↾ D0, so g(y) ↾ D0 ≤m f(x). Note that g(y) ↾ D0 is incomputable, since any
1-generic restricted to a computable set is incomputable. By Claim 2, there is some
y′ E x and infinite A ⊆ D0 so that g(y) ↾ A ≤m g(y′). (By applying the Claim
to z = {n : the nth element of D0 is in g(y)}. Note that z ≤m f(x).) We must
have y = y′, otherwise a computable subset of g(y) is many-one reducible to g(y′)
contradicting their mutual 1-genericity. Hence y = y′ E x.

To show f has property (3), first note that f(x) ≰m x since there is an infinite
computable set D0 such that f(x) ↾ D0 = g(x) ↾ D0, and g(x) ↾ D0 ≰m x by
the properties of g from Lemma 4.2. Similarly, f(x) ≰m x. Next, suppose x is
incomputable. We will show x ≰m f(x). Supposing x ≤m f(x) for a contradiction,
by Claim 2 there is some computable infinite set A ⊆ ω and some y E x so that
x ↾ A ≤m g(y) via a many-one reduction with infinite range. Let z = x ↾ A
so z ≤m x and z ≤m g(y) via a many-one reduction with infinite range. This
contradicts the properties of g from Lemma 4.2. An identical argument replacing
x with x shows that x ≰m f(x).

Now we prove a similar result to Claim 2 above but where we analyze all the
columns of a many-one reduction using the ideal I2. This is required to prove part
(4) of the theorem.

Claim 3. Suppose x, z ∈ 2ω are such that z ≤m f(x), and z[n] is incomputable for
every n. Then there is a computable set B ⊆ ω with B /∈ I2 and some y E x so
that z ↾ B ≤m g(y).

Proof. Let ρ : ω → ω be the many-one reduction witnessing z ≤m f(x). We break
into two cases depending on which case hold for ρ in Lemma 5.2.(2).

Case 1: There is a computable set B so that max d(ρ(n)) ≤ s for all n ∈ B and
for all but finitely many i, and bs(ρ(B

[i])) is infinite.
In this case, we use a similar idea as in Claim 2. Note that B /∈ I2. Let

T = {r ∈ [x]<ω
E : {n ∈ B : tx(ρ(n)) ⊇ r} /∈ I2}. So as in Proposition 5.4, T is a

finitely branching tree that is arithmetically definable relative to
⊕

i∈ω γi · x.
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Suppose T is finite. Then as in Proposition 5.4, there must be some r ∈ T such
that {n ∈ B : tx(ρ(n)) = r} /∈ I2. Let A = {n ∈ B : tx(ρ(n)) = r}. Let r =
(y0, . . . , yl). We can partition A into finitely many sets Ai = {n ∈ A : yx(n) = yi}
for each i ≤ l, and so there must be some yi so that the set Ai /∈ I2. Now for
every n ∈ Ai, f(x)(ρ(n)) = g(yi)(bx(ρ(n))). Since by Claim 1, Ai is computable
and bx ◦ ρ is computable on Ai, we therefore have z ↾ Ai ≤m g(yi).

Now suppose T is infinite, so there is an infinite branch in T that is arithmetically
definable from

⊕
i∈ω γi · x. There must be some r = (y0, . . . , yl) in this branch so

that yl ��Es x. Otherwise, this would contradict that Es is (hi)-finite. Now for
all n such that tx(n) ⊇ r, we must have yx(n) = yi for some i ≤ l. So since
{n ∈ B : tx(ρ(n)) ⊇ r} /∈ I2, there must be some yi so that A = {n ∈ B : t(ρ(n)) ⊇
r ∧ yx(n) = yi} /∈ I2. A is computable and bx ◦ ρ ↾ A is computable by Claim 1. So
since f(x)(ρ(n)) = g(yi)(bx(ρ(n))) for all n ∈ A we have z ↾ A ≤m g(yi).

Case 2: There is an s so that for infinitely many i, bs(ρ(ω
[i])) is finite. Let B =⋃

{ω[i] : bs(ρ(ω
[i])) is finite}. B is not necessarily computable, but it is arithmetical.

Now let T = {r ∈ [x]<ω
E : {n ∈ B : ts,x(ρ(n)) ⊇ r} /∈ I2}.

If T is infinite, then there must be some r = (y0, . . . , yl) ∈ T so that yl ��Es x,
otherwise there would be an infinite branch in T that is arithmetically definable from⊕

i∈ω γi · x and an infinite subset of Es contradicting that (Ej)j∈ω is a hyper-(hi)-
finiteness witness. So fix an r ∈ T so that {n ∈ B : ts,x(ρ(n)) ⊇ r} /∈ I2. Then the
larger set A = {n ∈ ω : ts,x(ρ(n)) ⊇ r} (where we have replaced B with ω) also has
A /∈ I2. Finally, there must be some yi with i ≤ l so that Ai = {n ∈ A : yx(n) = yi}
has Ai /∈ I2. This set Ai is computable by Claim 1, and z ↾ Ai ≤ g(yi).

If T is finite and there is an i so that bs(ρ(ω
[i])) is finite and all but finitely

many n ∈ ω[i] have ds(ρ(n)) is x-valid, then we claim z[i] is computable, which is
a contradiction. Now f(x)(n) = f(ys,x(n))(bs,x(n)) for all n by (**), and if ds(n)
is x-valid, then bs,x(n) = bs(n) and bs is computable. So for each r ∈ T and yi
in r, Ar,i = {n : ts,x(ρ(n)) = r ∧ ys,x(ρ(n)) = yi} is computable by Claim 1, and

z ↾ (ω[i] ∩ Ar,i) ≤m f(yi) via a reduction that has finite range since bs(ρ(ω
[i])) is

finite. So since the finitely many sets Ar,i ∩ ω[i] are computable and disjoint, and

their union is equal to ω[i] mod finite, we have that z ↾ ω[i] = z[i] is computable
since we can partition it mod finite into finitely many computable pieces.

Thus, for all i such that ω[i] ⊆ B, there are infinitely many n ∈ ω[i] so ds(ρ(n))
is not x-valid. So let B′ = {n ∈ B : ds(ρ(n)) is not x-valid}. Then B′ /∈ I2.
Let T ′ = {r ∈ [x]<ω

E : {n ∈ B′ : ts,x(ρ(n)) ⊇ r} /∈ I2}. Then T ′ is finite since
it is a subset of T , and there must be some r ∈ T ′ and some yi ∈ r so that
{n ∈ B′ : tx,s(ρ(n)) = r ∧ yx(ρ(n)) = yi} /∈ I2. Hence, the larger computable set:
A = {n : tx,s(ρ(n)) = r ∧ ds(ρ(n)) is not x-valid ∧ yx(ρ(n)) = yi} /∈ I2. Finally,
z ↾ A ≤m g(yi) by Claim 1. □ Claim 3.

Now to prove (4) given the above claim, let D0 be a computable infinite set
disjoint from ran(cm) for every m. So f(x) ↾ D0 = g(x) ↾ D0. Then assuming that⊕

i∈ω f(xi) ≤m f(x), we also have that
⊕

i∈ω(f(xi) ∩ D0) ≤m f(x), and hence⊕
i∈ω(g(xi) ∩ D0) ≤m f(x). But then by the Claim 3, there is a single y ∈ [x]E

and a computable infinite set B ⊆
⊕

i∈ω D0 so B /∈ I2 so that
⊕

i∈ω(g(xi) ∩D) ↾
B ≤m g(y). Taking some i so that B[i] is infinite and xi ̸= y gives a contradiction
since g maps to a set of mutual 1-generics. □

Hence, we have the following corollaries
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Corollary 5.6. Suppose ≡T is hyper-recursively-finite. Then

(1) There is a Borel homomorphism from ≡T to ≡m which is not uniform on
any pointed perfect set. Hence, Conjecture 2.3 is false.

(2) ≡m and ≡1 on 2ω are universal countable Borel equivalence relations. Hence,
there is a universal countable Borel equivalence relation which is not uni-
formly universal. So [M, Conjecture 1.1] is false.

Proof. To prove (1), let f be as in Theorem 5.5 for the equivalence relation E =≡T .
Let Φe : 2

ω → 2ω be a total Turing functional with inverse Φd : 2
ω → 2ω such that

x,Φe(x),Φe(x)
2, . . . are all distinct and have the same Turing degree. Then if f was

uniformly (≡T ,≡m)-invariant it would contradict condition (4) of Theorem 5.5.
To prove (2), note first that if every countable Borel equivalence relation E is

hyper-Borel-finite, the function f given in Theorem 5.5 is a Borel reduction from E
to many-one equivalence ≡m and one-one equivalence ≡1 on 2ω. However, ≡m is
not uniformly universal by [M, Theorem 1.5.(5)], so not every universal countable
Borel equivalence relation is uniformly universal. □

It is open whether there is a counterexample to Martin’s conjecture or Steel’s
conjecture assuming ≡T is hyper-recursively-finite.

Question 5.7. Assume ≡T is hyper-recursively-finite. Is Martin’s conjecture false?
Is Steel’s conjecture false?

6. Open questions

We pose a conjecture which would give a negative answer to Question 3.4. It
states in a strong way that Turing equivalence cannot be nontrivially written as an
increasing union of Borel equivalence relations.

Conjecture 6.1. Suppose we write Turing equivalence as an increasing union
(≡T ) =

⋃
n En of Borel equivalence relations En where En ⊆ En+1 for all n. Then

there exists a pointed perfect set P and some i so that Ei ↾ P = (≡T ↾ P ).

In the context of probability measure preserving equivalence relations, an analo-
gous phenomenon of non-approximability has been proved by Gaboriau and Tucker-
Drob [GTD], e.g. for pmp actions of property (T) groups.

We know that Conjecture 6.1 implies some consequences of Martin’s conjecture.
In particular, Conjecture 6.1 implies that Martin measure is E0-ergodic in the sense
of [T].

Proposition 6.2. Suppose Conjecture 6.1 is true. Then if f : 2ω → 2ω is a Borel
homomorphism from Turing equivalence to E0, i.e. x ≡T y =⇒ f(x)E0f(y), then
the E0-class of f(x) is constant on a Turing cone.

Proof. Let En be the subequivalence relation of ≡T defined by x En y if x ≡T y
and ∀k ≥ n(f(x)(k) = f(y)(k)). That is the f(x) and f(y) are equal past the first
n bits. By Conjecture 6.1, there is some i and some pointed perfect set P such
that Ei ↾ P = (≡T ↾ P ). Then by [MSS][Lemma 3.5] there is some pointed perfect
set P ′ ⊆ P such for x, y ∈ P ′, if x ≡T y, then f(x) = f(y). Define f ′(x) = f(y)
if there is y ∈ P ′ such that x ≡T y, and f ′(x) = ∅ otherwise. Thus, f ′ : 2ω → 2ω

is such that if x ≡T y, then f ′(x) = f ′(y). Now any homomorphism from ≡T to
equality must be constant on a Turing cone, so f ′ is constant on a Turing cone.
This implies the E0-class of f is constant on a cone. □
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It is open if Conjecture 6.1 implies Martin’s conjecture.

Question 6.3. Assume Conjecture 6.1 is true. Does this imply Martin’s conjecture
for Borel functions?

The following is a diagram of some open questions surrounding Martin’s con-
jecture. All relationships between these open problems which are not indicated by
arrows are open.

Strong Steel’s conjecture for

(≡T ,≡m), Conjecture 2.3

Steel’s conjecture [SS, Conjecture III]

Martin’s conjecture

[SS, Conjecture I, II]

Martin measure is E0-ergodic [T]

≡T is not Borel bounded [BJ]

Steel’s conjecture for
(≡T ,≡m), Conjecture 2.2

Martin’s conjecture for

(≡T ,≡m), Conjecture 2.1
≡T is non-approximable,

Conjecture 6.1

≡T is not hyper-

recursively-finite

Every universal countable

Borel equivalence relation
is uniformly universal [M]
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