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1. Introduction

The investigation of structure in marker sequences has been a recurring
theme of the study of countable Borel equivalence relations and Borel graphs.
This study forms the backbone of our our understanding of what groups
generate hyperfinite equivalence relations [GJ] [SS], and the combinatorics of
Borel graphs generated by these group actions [GJKS]. More broadly, these
ideas underlie many constructions in the study of Borel graph combinatorics
[KM].

Suppose Γ is a finitely generated group which acts on the space 2Γ via
the left shift action. Let Free(2Γ) be the set of x ∈ 2Γ such that for all
nonidentity γ ∈ Γ we have γ · x 6= x, and let G(Γ, 2) be the graph on
Free(2Γ) where x, y ∈ Free(2Γ) are adjacent if there is a generator γ of Γ
such that γ · x = y. Let dG(Γ,2) be the graph distance metric for G(Γ, 2). A
recent result of Gao, Jackson, Krohne, and Seward states the following.

Theorem 1.1 ([GJKS, Theorem 1.1]). Suppose Γ is a finitely generated
infinite group and f : N→ N tends to infinity. Then for every Borel marker
sequence {An}n∈N for G(Γ, 2), there exists an x ∈ Free(2Γ) such that for
infinitely many n, we have dG(Γ,2)(x,An) < f(n)

This result led us to ask the following question: what can we say if the
function f : N→ N is allowed to vary depending on the point x? Of course,
we cannot possibly draw an analogous conclusion for an arbitrary Borel
way of associating some fx : N → N to each point x in our space; given
a Borel marker sequence {An}n∈N for a graph G on X, we could define
fx(n) = dG(x,An) for all x ∈ X. Instead, we show the existence of some
Borel map x 7→ fx for which we can draw a stronger conclusion than that of
Theorem 1.1, showing closeness for all n instead of just infinitely many n.
This is true even when we generalize to arbitrary locally finite non-smooth
graphs.

Theorem 1.2. Suppose G is a locally finite non-smooth Borel graph on
X. Then there exists a Borel map associating to each x ∈ X a function
fx : N→ N such that for every Borel marker sequence {An}n∈N for G, there
exists an x ∈ X such that for all n, we have dG(x,An) < fx(n).
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Now when G is smooth, an easy diagonalization constructs marker se-
quences that do not satisfy the conclusion of our theorem. Hence, this re-
sult provides a novel way of characterizing smoothness; a locally finite Borel
graph is smooth if and only if it does not admit Borel marker sequences that
are somewhere “far” from every point.

We remark here that in Theorem 1.2, the map x 7→ fx may always be
chosen so that it is a Borel homomorphism from the equivalence relation
graphed by G to tail equivalence on NN. We note that standard “sparse”
Borel marker sequence constructions show that a map x 7→ fx witnessing
Theorem 1.2 cannot take a constant value on each connected component of
G.

The theorem is proved in two steps. First, we use the fact that all Borel
subsets of [N]N are completely Ramsey to give an example of a Borel graph G
satisfying the conclusion of Theorem 1.2. Then, we conclude the full result
using the Glimm-Effros dichotomy. We show in the last section that this
theorem cannot be proven using measure or category arguments.

2. Distance from marker sequences and the Ramsey property

Let [N]N be Ramsey space, the space of infinite subsets of N. Given a
finite set s ⊆ N and an infinite set x ⊆ N with min(x) > max(s), recall the
definition [s, x]N = {y ∈ [N]N : s ⊆ y ⊆ s ∪ x}. We can identify [N]N with a
subset of 2N via characteristic functions, and we use the resulting subspace
topology on [N]N throughout. A theorem of Galvin and Prikry [GP] states
that for every [s, x]N and every Borel subset B ⊆ [s, x]N, there exists some
[t, y]N ⊆ [s, x]N such that either [t, y]N ⊆ B or [t, y]N ∩ B = ∅. From this, it
is easy to see that the following:

Lemma 2.1 (Galvin-Prikry [GP]). If {Bn}n∈N is a Borel partition of [s, x]N,
then there exists some n ∈ N and [t, y]N ⊆ [s, x]N such that [t, y]N ⊆ Bn.

Proof. Suppose not. Then we may construct a decreasing sequence [s, x]N ⊇
[s0, x0]N ⊇ [s1, x1]N ⊇ . . ., where [sn, xn]N ∩ Bn = ∅, and sn has at least n
elements. But then setting z =

⋃
n sn, we see that z ∈ [s, x], and z /∈ Bn for

all n, hence {Bn}n∈N does not partition [s, x]N. �

The odometer σ : [N]N → [N]N is defined via the identification of [N]N as
a subspace of 2N by setting σ(x) = 0n1y if x = 1n0y, and fixing σ(111 . . .) =
111 . . . on the sequence consisting of all ones. Define also τ : [N]N → [N]N by
setting τ(x) = {n−1 : n ∈ x∧n > 0}. Let Gt be the graph on [N]N generated
by these two functions, where x, y ∈ [N]N are adjacent if either σ(x) = y,
σ(y) = x, τ(x) = y, or τ(y) = x. So Gt is graphing of tail equivalence on
[N]N, and every vertex in Gt has degree ≤ 5.

Lemma 2.2. Consider the graph Gt defined on [N]N as above, and for each
x ∈ [N]N, let fx(n) be equal to the nth element of x. Then for every Borel
marker sequence {An}n∈N for Gt, there is an x ∈ [N]N such that for all n,
we have dGt(x,An) < fx(n).
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Proof. We construct x as the intersection of a decreasing sequence [s0, x0]N ⊇
[s1, x1]N ⊇ . . ., where sn has exactly n elements. Let s0 = ∅, and x0 = N.
Now given [sn, xn]N, since the sets {{y ∈ [sn, xn]N : d(y,An) = k}}k∈N parti-
tion [sn, xn], we may apply Lemma 2.1 to obtain some [t, y] ⊆ [sn, xn]N and
some k such that every element of [t, y]N is distance exactly k from An. Since
sn ⊆ t, there is some m such that m applications of the odometer applied
to [sn, y]N yield σm([sn, y]N) = [t, y]N. Hence by the triangle inequality, we
see that there is some k∗ = k + m such that all the elements of [sn, y] are
distance ≤ k∗ from An. Now let l be the least element of y that is strictly
greater than k∗ and max(sn), let sn+1 = sn∪{l}, and xn+1 = y\{0, 1, . . . , l}.
We have ensured then that every element of [sn+1, xn+1]N has distance ≤ l
from An. �

We remark here that the above proof works equally well for the usual
graphing of E0 on [N]N induced by the odometer. We have used the larger
graph Gt because we will need a locally finite graphing of tail equivalence
with our desired property in order to finish the proof of Theorem 1.2.

We need one more easy lemma before we complete the theorem. The
lemma roughly states that this question of closeness to marker sequences
is independent of the particular locally finite Borel graph we choose, and
depends only on the equivalence relation we have graphed.

Given a Borel graph G on X, and a Borel map x 7→ fx from X → NN,
say that a marker sequence {An}n∈N satisfies x 7→ fx for G if for all x ∈ X
there exists an n such that dG(x,An) ≥ fx(n).

Lemma 2.3. Suppose G and H are locally finite Borel graphs on a standard
Borel space X having the same connected components. Then for every Borel
map x 7→ gx from X → NN, there exists a Borel map x 7→ hx such that for
every marker sequence {An}n∈N, if {An}n∈N satisfies x 7→ hx for H, then
{An}n∈N satisfies x 7→ gx for G.

Proof. Since the graphs are locally finite, there are only finitely many points
a fixed distance from each x ∈ X. Hence, we may define hx(n) to be the
least k such that dG(x, y) ≤ k for all y ∈ X such that dG(x, y) ≤ gx(n). �

We now complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Suppose G is not smooth. Let E be the equivalence
relation graphed by G, and Et be the equivalence relation of tail equivalence
on [N]N. By the Glimm-Effros dichotomy, there must be some E-invariant
Borel set A such that E � A ∼=B Et. But then G � A and the graph Gt

from Lemma 2.2 are two different locally finite Borel graphings of the same
equivalence relation. Hence, by Lemma 2.3, we can find a Borel x 7→ hx from
A → NN so that no Borel marker sequence can satisfy G � A for x 7→ hx.
Hence, any Borel extension of x 7→ hx to a function x 7→ fx defined on X
suffices to prove the theorem. �
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3. Measure and category

In this section, we prove the following:

Proposition 3.1. Suppose G is a locally finite Borel graph on X, and x 7→
fx is a Borel map from X → NN. Then

(1) For every Borel probability measure µ on X, there is a G-invariant
µ-conull set B and a Borel marker sequence {An}n∈N for G � B such
that for every x ∈ X, there is an n such that dG(x,An) ≥ fx(n).

(2) For every compatible Polish topology τ on X, there is a G-invariant
τ -comeager set B and a Borel marker sequence {An}n∈N for G � B
such that for every x ∈ X, there is an n such that dG(x,An) ≥ fx(n).

Proof. Let {Bn}n∈N be a Borel marker sequence for G, and let Ci,n = {x ∈
X : dG(x,Ai) < fx(n)}. Note since {Bn}n∈N is a marker sequence, for each
n, we have

⋂
iCi,n = ∅.

For part (1), we may assume as usual that µ is G-quasi-invariant. Observe
that for each n, the µ-measure of the sets Ci,n goes to 0. Hence, we may
find a sequence i0, i1, i2, . . . such that µ(Cin,n)→ 0. Now choose our marker
sequence to be {An}n∈N where An = Bin . This marker sequence has the
required property on the complement of the nullset

⋂
iCin,n.

Part (2) follows using a similar argument, since relative to any basic open
set, the set Ci,n can be comeager for only finitely many i. �
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