STRUCTURE IN COMPLETE SECTIONS OF THE SHIFT ACTION OF A RESIDUALLY FINITE GROUP

ANDREW S. MARKS

If Γ is a countable discrete group, and X is a standard Borel, we let Γ act on X^{Γ} via the left shift where for all $\alpha, \beta \in \Gamma$ and $x \in X^{\Gamma}$ we have $(\alpha \cdot x)(\beta) = x(\alpha^{-1}\beta)$. We let $\operatorname{Free}(X^{\Gamma})$ be the set of $x \in X^{\Gamma}$ such that for all nonidentity $\gamma \in \Gamma$, we have $\gamma \cdot x \neq x$. Recall that a countable group Γ is *residually finite* if for every nonidentity $\gamma \in \Gamma$ there is a homomorphism $h \colon \Gamma \to \Delta$ from Γ to a finite group Δ such that $h(\gamma) \neq 1$.

We show the following:

Theorem 1. Suppose Γ is a residually finite group, and $A \subseteq \operatorname{Free}(2^{\Gamma})$ is a Borel complete section of the shift action of Γ . Then there is a finite index normal subgroup $\Gamma' \leq \Gamma$ and an $x \in A$ such that $\Gamma' \cdot x \subseteq A$.

This generalizes previous results of the author for \mathbb{F}_2 , and of Gao-Jackson-Seward for \mathbb{Z}^n .

Definition 2. If Γ is a countable group and X is an arbitrary set, then we say a function $p: \Gamma \to X$ is a *forgetful homomorphism* if we can put a group structure (X, *) on X such that p is a group homomorphism.

Now we have the following lemma:

Lemma 3. If $p: \Gamma \to X$ is a forgetful homomorphism, then for all $\alpha \in \Gamma$, $\alpha \cdot p$ is a forgetful homomorphism.

Proof. Given the group structure (X, *) on X making $p: \Gamma \to X$ a group homomorphism, define a new group structure (X, \odot) on X, where we define $g_1 \odot g_2 = g_1 * p(\alpha) * g_2$ for all $g_1, g_2 \in X$. Then the identity in (X, \odot) is $p(\alpha^{-1})$, the inverse of g in (X, \odot) is $p(\alpha^{-1}) * g^{-1} * p(\alpha^{-1})$, and

$$(\alpha \cdot p)(\beta \gamma) = p(\alpha^{-1}\beta \gamma) = p(\alpha^{-1}) * p(\beta) * p(\gamma)$$
$$= (p(\alpha^{-1}) * p(\beta)) * p(\alpha) * (p(\alpha^{-1}) * p(\gamma))$$
$$= (p(\alpha^{-1}) * p(\beta)) \odot (p(\alpha^{-1}) * p(\gamma)) = (\alpha \cdot p)(\beta) \odot (\alpha \cdot p)(\gamma)$$

so $\alpha \cdot p$ is a group homomorphism from Γ to (X, \odot) .

We now define a forcing partial order:

Definition 4. Given a countable group Γ , let \mathbb{P}_{Γ} be the partial order of forgetful homomorphisms of the form $p: \Gamma \to \omega^n$ for some natural number

Date: November 21, 2013.

ANDREW S. MARKS

n, such that ran(*p*) is finite, and where if $p: \Gamma \to \omega^n$ and $q: \Gamma \to \omega^m$ are conditions, then $q \leq_{\mathbb{P}_{\Gamma}} p$ if $m \geq n$ and $\forall i \leq n \forall \gamma \in \Gamma$ we have $p(\gamma)(i) = q(\gamma)(i)$.

We now note several facts about \mathbb{P}_{Γ} .

Lemma 5. If $\alpha \in \Gamma$, then the map $p \mapsto \alpha \cdot p$ is an automorphism of \mathbb{P}_{Γ} . Thus, x is \mathbb{P}_{Γ} -generic iff $\alpha \cdot x$ is \mathbb{P}_{Γ} -generic.

Proof. That $\alpha \cdot p \in \mathbb{P}_{\Gamma}$ follows from Lemma 3. The map $p \mapsto \alpha \cdot p$ is an automorphism of \mathbb{P}_{Γ} since if $p \colon \Gamma \to \omega^n$, then $q \leq p$ iff $\forall i \leq n \forall \gamma \in \Gamma$ we have $p(\gamma)(i) = q(\gamma)(i)$ iff $\forall i \leq n \forall \gamma \in \Gamma$ we have $\alpha \cdot p(\gamma)(i) = \alpha \cdot q(\gamma)(i)$ iff $\alpha \cdot p \leq \alpha \cdot q$.

Lemma 6. If $p \in \mathbb{P}_{\Gamma}$, then there is a finite set $S \subseteq \Gamma$ such that for all $\alpha \in \Gamma$, there exists a $\gamma \in S$ such that $\alpha \cdot p = \gamma \cdot p$.

Proof. Let S consist of one element in the preimage of each element of ran(p). Since ran(p) is finite, S is finite. Let γ be such that $p(\gamma) = p(\alpha)$. Then since p is a forgetful homomorphism, for all $\beta \in \Gamma$ we have

$$\alpha \cdot p(\beta) = p(\alpha^{-1}\beta) = p(\alpha^{-1})p(\beta) = p(\gamma^{-1})p(\beta) = \gamma \cdot p(\beta).$$

Lemma 7. Suppose Γ is residually finite. Then a generic filter for \mathbb{P}_{Γ} yields some $x \colon \Gamma \to \omega^{\omega}$ such that $x \in \operatorname{Free}((\omega^{\omega})^{\Gamma})$.

Proof. Since Γ is residually finite, for each nonidentity $\gamma \in \Gamma$ there is a homomorphism $h: \Gamma \to \Delta$ to a finite group Δ with $h(\gamma) \neq 1$. Let $k = |\Delta|$ and $\hat{h}: \Gamma \to k$ be obtained by forgetting the group structure on Δ . Then given any condition $p: \Gamma \to \omega^n$ in \mathbb{P}_{Γ} , there is an extension $q: \Gamma \to \omega^{n+1}$ of p where $q(\gamma)(n) = \hat{h}(\gamma)$ for all $\gamma \in \Gamma$. Since $h(\gamma) \neq h(1)$, we also have that $q(\gamma) \neq q(1)$. Thus, the set of $q \in \mathbb{P}_{\Gamma}$ such that $q(\gamma) \neq q(1)$ is dense. Hence, a generic filter yields some generic $x \in \operatorname{Free}((\omega^{\omega})^{\Gamma})$.

It is worth noting that when Γ is finitely generated and residually finite, then \mathbb{P}_{Γ} is a countable partial order. We're now ready to prove Theorem 1.

Proof of Theorem 1. Since Seward and Tucker-Drob have shown for all countable Γ there is a Γ-equivariant continuous function $\operatorname{Free}((\omega^{\omega})^{\Gamma}) \to \operatorname{Free}(2^{\Gamma})$, it suffices to prove the analogous theorem for $\operatorname{Free}((\omega^{\omega})^{\Gamma})$.

Suppose $A \subseteq \operatorname{Free}((\omega^{\omega})^{\Gamma})$ is a Borel complete section of the shift action. Then for some \mathbb{P}_{Γ} -generic $y \in \operatorname{Free}((\omega^{\omega})^{\Gamma})$ there is some $\alpha \in \Gamma$ such that $\alpha \cdot y \in A$. Let $x = \alpha \cdot y$. Now x is also \mathbb{P}_{Γ} -generic by Lemma 5. Since $x \in A$ there must be some p in the filter associated to x such that $p \Vdash x \in A$. Now since p is a forgetful homomorphism to a finite group, the kernel Γ' of p is a normal subgroup of finite index. Since for all $\gamma \in \Gamma'$ we have $\gamma \cdot p = p$, we see that for all $\gamma \in \Gamma'$, we have that $\gamma \cdot x$ is a \mathbb{P}_{Γ} -generic real extending p and hence $\gamma \cdot x \in A$.

 $\mathbf{2}$

We mention one other easy corollary of our forcing. Gao, Jackson, and Seward have shown that for every finitely generated group Γ with elements $\gamma_0, \gamma_1, \ldots$, every function $f: \omega \to \omega$ tending to infinity, and every sequence $\{A_i\}_{i \in \omega}$ of Borel complete sections for the shift action of Γ on Free (2^{Γ}) , there exists some $x \in \text{Free}(2^{\Gamma})$ such that for infinitely many n, there exists some $i \leq f(n)$ such that $\gamma_i \cdot x \in A_n$. Our forcing can be used to see the special case of their theorem when Γ is residually finite.

Indeed, when Γ is residually finite, any generic for \mathbb{P}_{Γ} has this property. To see this, take any $p \in \mathbb{P}$, and let S be the associated finite set as in Lemma 6. Let n be large enough that $S \subseteq \{\gamma_0, \gamma_1, \ldots, \gamma_{f(n)}\}$. Let x be a \mathbb{P}_{Γ} -generic extending p. Since A_n is a complete section, there must be some $\alpha \in \Gamma$ such that $\alpha \cdot x \in A_n$. Further, since $\alpha \cdot x$ is \mathbb{P}_{Γ} -generic, there must be some $q \leq \alpha \cdot p$ such that $q \Vdash x \in A_n$. However, since $q \leq \alpha \cdot p$, we must have that $q \leq \gamma \cdot p$ for some $\gamma \in S$ by Lemma 6. Thus, the condition $\gamma^{-1} \cdot q \leq p$ forces that there is some $i \leq f(n)$ such that a generic x extending $\gamma^{-1} \cdot q$ has $\gamma_i \cdot x \in A_n$. Hence, for each m, there is a dense set of conditions forcing that there is some n > m and $i \leq f(n)$ such that a generic x has $\gamma_i \cdot x \in A_n$.