
Effective Descriptive Set Theory

Andrew Marks

August 13, 2022

These notes introduce the effective (lightface) Borel, Σ1
1 and Π1

1 sets. This
study uses ideas and tools from descriptive set theory and computability theory.
Our central motivation is in applications of the effective theory to theorems of
classical (boldface) descriptive set theory, especially techniques which have no
classical analogues. These notes have many errors and are very incomplete.
Some important topics not covered include:

• The Harrington-Shore-Slaman theorem [HSS] which implies many of the
theorems of Section 3.

• Steel forcing (see [BD,N,Mo,St78])

• Nonstandard model arguments

• Barwise compactness, Jensen’s model existence theorem

• α-recursion theory

• Recent beautiful work of the “French School”: Debs, Saint-Raymond,
Lecompte, Louveau, etc.

These notes are from a class I taught in spring 2019. Thanks to Adam
Day, Thomas Gilton, Kirill Gura, Alexander Kastner, Alexander Kechris, Derek
Levinson, Antonio Montalbán, Dean Menezes and Riley Thornton, for helpful
conversations and comments on earlier versions of these notes.
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Notation/Conventions

• i, j, k, n,m will stand for elements of ω.

• s, t will stand for elements of ω<ω. The length of s is denoted |s| and s⌢t
notes their concatenation.

• σ, τ will typically be finite binary strings in 2<ω. The set of all binary
strings of length ≤ n is denoted 2≤n.

• Ns is the basic open neighborhood of ωω determined by s: Ns = {x ∈
ωω : x ⊇ s}.

• x, y, z will stand for elements of ωω which we call reals.

• An overline x or n will stand for a finite tuple of such elements, so n stands
for a tuple of numbers and x stands for a tuple of reals.

• e will typically stand for a program for a partial computable function.

• φe denotes the eth partial computable function from ω to ω, and φxe
denotes the eth partial computable function relative to x. We will use
Φe to denote the eth partial computable function from ωω → ωω, so
Φe(x)(n) = φxe (n).

• A,B,C will stand for subsets of ω or ωω.

• α, β, λ will stand for countable ordinals.

• A tree on a set X is a nonempty subset T of X<ω that is closed downward
if t ∈ T , then for all t′ ⊆ t, we have t′ ∈ T . Hence, every tree contains
the empty string. The letters S, T will typically stand for trees. If T is a
tree on X, then [T ] denotes the set of infinite paths through T , the set of
x : ω → X such that for every n, x ↾ n ∈ T .

• A tree on a product X × Y is a nonempty subset T of X<ω × Y <ω such
that (s, t) ∈ T implies |s| = |t|, and for all s′ ⊆ s and t′ ⊆ t with |s′| = |t′|,
(s′, t′) ∈ T .

• ≤T denotes Turing reducibility.

• If x ∈ ωω, then x′ denotes the Turing jump of x.

• πk denotes the projection of an n-tuple onto its kth coordinate. We let
π = π0 be the projection onto the 0th coordinate.

• We write A ⊆∗ B if A \B is finite.
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1 Characterizing Σ1
1, ∆

1
1, and Π1

1 sets

1.1 Σ1
n formulas, closure properties, and universal sets

We briefly recall the definition of computable and arithmetic formulas and re-
lations before defining Σ1

n formulas and discussing their closure properties and
universal sets.

A relation R(x1, . . . , xi, n1, . . . , nj) on (ωω)i × ωj is computable if there
is a single computer program φe so that φx1⊕...⊕xi

e (n1, . . . , nj) always halts,
and accepts its input if R(x1, . . . , xi, n1, . . . , nj) is true, and rejects its input if
R(x1, . . . , xi, n1, . . . , nj) is false.

A formula is Σ0
k if it is of the form

∃n1∀n2∃n3 . . . QnkR(x,m, n1, . . . , nk).

where R is computable and the quantifiers alternate between ∃ and ∀ and are
quantifiers over ω. Similarly, a formula is Π0

k if it is of the form

∀n1∃n2∀n3 . . . QnkR(x,m, n1, . . . , nk)

where R is computable.
A formula is arithmetic if it is Σ0

k or Π
0
k for some k. We say a set or relation

is Σ0
k (resp. Π0

k) if it is defined by a Σ0
k (resp. Π0

k, arithmetic) formula.
The following are standard closure properties of arithmetical formulas:

Exercise 1.1.

1. If φ and ψ are Σ0
k formulas, then φ ∨ ψ and φ ∧ ψ are equivalent to Σ0

k

formulas, and ¬φ is equivalent to a Π0
k formula.

2. If φ is a Σ0
k formula which includes a free variable m, then (∃m)φ and

(∀m < n)φ are equivalent to Σ0
k formulas.

A formula is Σ1
k if it is of the form

∃x1∀x2∃x3 . . . QxkA(x1, . . . , xk, y, n)

where the quantifiers are over elements of ωω, alternate between ∃ and ∀, and
A is an arithmetical relation. A formula is Π1

k if it is of the form

∀x1∃x2∀x3 . . . QxkA(x1, . . . , xk, y, n)

where A is an arithmetical relation. We say a set or relation is Σ1
k (resp. Π1

k) if
it is defined by a Σ1

k (resp. Π1
k) formula.

We have the following obvious closure properties for Σ1
n formulas.

Exercise 1.2.

1. If φ and ψ are Σ1
k formulas, then φ ∨ ψ and φ ∧ ψ are equivalent to Σ1

k

formulas, and ¬φ is equivalent to a Π1
k formula.

2. If φ is a Σ1
k formula which includes a free variable n, then ∀nφ and ∃nφ

are equivalent to Σ1
k formulas.
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1.2 Boldface vs lightface sets and relativization

The definitions in Section 1.1 relativize to a real parameter. For example, a for-
mula is Σ1

n relative to x ∈ ωω or Σ1,x
n if it is of the form ∃x1∀x2 . . . QkA(x, y, n),

where A is a relation that is arithmetic relative to x. We will use a superscript
x to denote definitions relativized to x.

We use boldface fonts Σ1
n/Π

1
n and Σ0

α/Π
0
α to denote formulas/sets that are

Σ1,x
n /Π1,x

n and Σ0,x
α /Π0,x

α relative to some real parameter x.
These boldface definitions agree with the usual definitions in classical de-

scriptive set theory. For example, Σ0
1 sets are the open sets, Π0

α sets are com-
plements of Σ0

α sets, and a set A is Σ0
β if A =

⋃
nAn where each An is Π0

α for
some α < β.

All of our lightface proofs relativize to yield boldface versions. For example,
we prove in Theorem 1.27 that a set is ∆1

1 iff it effectively Borel. The relativized
result here is Suslin’s theorem that a set is ∆1

1 iff it is Borel.
Many results in classical descriptive set theory have effective analogues since

their proofs only use computably describable constructions. However, the light-
face version of the result often gives more information and additional tools. For
example, Harrison’s effective perfect set theory tells us that every Σ1,x

1 set either
is countable, or has a perfect subset. But furthermore, if it is countable, every
element is ≤HYP x. It is this extra power and information we are interested in
when studying effective descriptive set theory.

1.3 Normal forms for Σ1
1 formulas

We begin with the following normal form theorem for Σ1
1 formulas.

Exercise 1.3. Every Σ1
1 formula with free variables y and m is equivalent to a

formula of the form
∃x∀nR(x, y, n,m)

where R is computable. (In particular the arithmetical relation R above can
always be taken to be Π0

1.)

One possible solution to this exercise goes as follows. If we think of an arith-
metic formula as a game, with two players (one corresponding to ∀ quantifiers
and the other to ∃ quantifiers), then an arithmetical formula ∃xA(x, y, n) is
equivalent to the formula “there exists x and there exists a strategy for winning
the game associated to the formula R”. This formula has the required form by
Exercise 1.2.(2).

One consequence of the normal form theorem is the existence of universal
Σ1

1 subsets of ω and ωω. These follow from the existence of a universal Turing
machine. From the existence of universal sets it follows that there are Σ1

1 sets
that are not Π1

1.

Exercise 1.4.

1. There is a universal Σ1
1 set U ⊆ ω×ω so A ⊆ ω is Σ1

1 iff there is an m so
that n ∈ A↔ (n,m) ∈ U . Hence, there is a Σ1

1 set that is not Π1
1. [Hint:
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A = {n : (n, n) ∈ U} is Σ1
1. It is not Π1

1 since if it were there would be some
m so that n ∈ A↔ (n,m) /∈ U . But then m ∈ A↔ (m,m) /∈ U ↔ m /∈ A
contradiction.]

2. There is a universal Σ1
1 set U ⊆ ωω × ω so that A ⊆ ωω is Σ1

1 iff there is
an m so that x ∈ A ↔ (x,m) ∈ U . Conclude there is a Σ1

1 subset of ωω

that is not Π1
1.

3. Finally, there is a universal Σ1
1 set U ⊆ ωω × ωω so that A ⊆ ωω is Σ1

1

relative to some real parameter iff there is a y so that x ∈ A↔ (x, y) ∈ U .
Conclude there is a Σ1

1 subset of ωω that is not Π1
1 relative to any real

parameter.

From the normal form theorem we also get the following way of associating
trees with points to determine membership in Σ1

1 sets. Recall a tree T ⊆ ω<ω

is a nonempty set that is closed downwards, so t ∈ T → (∀s ⊆ t)s ∈ T . A tree
is illfounded if it has an infinite branch. That is, there is an x ∈ ωω such that
(∀n)x ↾ n ∈ T .

Lemma 1.5. A set A ⊆ ωω is Σ1
1 if and only if there is a computable map

y 7→ Ty so that y ∈ A iff Ty is illfounded.

Proof. The direction ⇐ is clear. ⇒ follows from the normal form theorem
Exercise 1.3. If A ⊆ ωω is Σ1

1 then it has a definition of the form

y ∈ A↔ ∃x∀nR(x, y, n)

where R is a computable relation. Let Ty be the tree of t such that for all
s ⊆ t and n < |t|, R(s, y, n) has not halted rejecting its input in ≤ |t| steps.
(Where R(s, y, n) is undefined if the computation asks for a bit of s not in its
domain).

Exercise 1.6. A set A ⊆ ω is Σ1
1 if and only if there is a computable map

n 7→ Tn so that n ∈ A iff Tn is illfounded.

Hence, by Lemma 1.5 and Exercise 1.6, the set of illfounded trees, and
illfounded computable trees are Σ1

1 complete subsets of ωω and ω respectively.

Exercise 1.7.

1. Show that if A is Σ1
1, then A ≤m {n : the nth program φn computes an

illfounded subtree of ω<ω.

2. By identifying ω<ω with ω, we can regard the set of trees as a closed subset
of 2ω. Show that the set I of illfounded trees is Σ1

1 complete in the sense
that if A ⊆ ωω is Σ1

1, then there is a computable continuous function
f : ωω → ωω so that x ∈ A↔ f(x) ∈ I.

Exercise 1.8. Show that A ⊆ ωω is Σ1
1 iff there is a computable tree T on

ω<ω × ω<ω (so [T ] ⊆ ωω × ωω) such that A is the projection of [T ]. That is,
A = π[T ] = {x : ∃y(x, y) ∈ [T ]}.
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Our next goal is to characterize ∆1
1 sets in a number of ways. We will begin

by taking the form of a Σ1
1 set given by Lemma 1.5 and bounding the ranks

of the trees it gives in definitions of ∆1
1 sets. Doing this will first require some

basic lemmas on ranking trees.

1.4 Ranking trees and Spector boundedness

Then we can analyze the wellfoundedness of the tree by ranking its elements as
follows.

Definition 1.9. Suppose T ⊆ ω<ω is a tree. We define an ordinal-indexed
decreasing sequence of subtrees of T as follows:

• Let T0 = T

• For all α, Tα+1 = Tα \ {s : ¬(∃t ⊋ s)t ∈ Tα}, where we remove all leaves
of Tα.

• If λ is a limit, then Tλ =
⋂
α<λ Tα.

Then define the rank function rankT : T → ORD ∪ {∞} for elements of T as
follows:

rankT (t) =

{
α if α is least such that t /∈ Tα+1.

∞ if t ∈ Tα for all α.

Finally, define rank(T ) = rankT (∅).

Note that since there are only countably many elements of the tree T to
remove, the sequence of Tα must stabilize at some countable ordinal (which will
be rank(T )).

Exercise 1.10. Prove rankT (s) = supt⊋s rankT (t) + 1.

We will often use the following definition of the tree T above a node s. If T
is a tree, and s ∈ T , then Ts = {t ∈ ω<ω : s⌢t ∈ T}.

Exercise 1.11. rank(T ) = sup
s∈T,|s|=1

rank(Ts) + 1.

Exercise 1.12. Show that for trees S, T we have rank(S) ≤ rank(T ) iff for
every s with |s| = 1, there is a t with |t| = 1 such that rank(Ss) ≤ rank(Tt).

Exercise 1.13. If T is wellfounded, then for every β < rank(T ) there exists
some s so that β = rank(Ts).

Definition 1.14. If T is a tree, let Letting T+ = {∅} ∪ {(0)⌢s : s ∈ T}.

Exercise 1.15. If T is illfounded T+ is illfounded. If T is wellfounded, rank(T+) =
rank(T ) + 1.

Ranking trees provides a way of understanding whether the tree is well-
founded.
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Lemma 1.16. T is illfounded iff rank(T ) =∞.

Proof. If rank(T ) = ∞, then we can find an increasing sequence s0 ⊆ s1 ⊆ . . .
where rankT (sn) = ∞ by recursion. Then x =

⋃
n Sn is an infinite branch in

[T ]. Conversely, if rank(T ) <∞, then T is wellfounded since there is no infinite
descending sequence of ordinals.

We have the following convenient way of comparing ranks of trees. If T, T ′ ⊆
ω<ω are trees, then a function f : T → T ′ is monotone if s ⊊ t→ f(s) ⊊ f(t).

Lemma 1.17. If T, T ′ are trees, rank(T ) ≤ rank(T ′) iff there is a monotone
function from T to T ′.

Proof. The lemma is clear if T ′ is illfounded; take an infinite branch x of T ′ and
let f(t) = x ↾ |t|.

We prove the remaining case by transfinite induction on rank(T ′). To con-
struct a monotone function f : T → T ′ note that for each sequence ⟨n⟩ ∈ T of
length 1, there is some ⟨m(n)⟩ ∈ T ′ such that rank(T⟨n⟩) ≤ rank(T ′

⟨m(n)⟩).
Hence, by our induction hypothesis, there is a monotone function fn from
each such T⟨n⟩ to T ′

⟨m(n)⟩. To finish the theorem, let f(∅) = ∅, and then

f(⟨n⟩⌢s) = ⟨m(n)⟩⌢fn(s).

Remark 1.18. In the proof of the above lemma, our monotone function has
the property that for all t, |f(t)| = |t|.

Definition 1.19. A countable ordinal α is computable if it is the rank of a
computable tree.

Lemma 1.20 (Spector’s Boundedness Lemma). If y 7→ Ty is a uniformly com-
putable function assigning a wellfounded tree to each y ∈ ωω, then there is a
computable ordinal α such that for all y, rank(Ty) ≤ α.

Proof. We will construct a computable wellfounded tree T such that rank(Ty) ≤
rank(T ) for all y. Let e be the program computing Ty. Then let T be the set
of (s, t) with |s| = |t| so that φse does not halt in ≤ |s| steps rejecting any
initial segment of t. Then the following is a monotone function from Ty to T :
t 7→ ⟨y ↾ |t|, t⟩, so rank(Ty) ≤ rank(T ) for all y. T is wellfounded since any
infinite branch (y, z) in T would have z be an infinite branch in Ty.

Exercise 1.21. Suppose A is a Σ1
1 set of wellfounded trees. Then there is a

computable ordinal α such that for all y, rank(Ty) ≤ α.

Our next goal is a normal form for ∆1
1 sets. To get this normal form, we’ll

first use the following way of combining trees:
If T, T ′ ⊆ ω<ω are trees, then let

T × T ′ = {(t, t′) : |t| = |t′| ∧ t ∈ T ∧ t′ ∈ T ′}

(we will often work with trees on {(t, t′) ∈ ω<ω × ω<ω : |t| = |t′|} which is
computably isomorphic to ω<ω).
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Lemma 1.22. rank(T × T ′) = min(rank(T ), rank(T ′)).

Proof. The projection function (t, t′) 7→ t is clearly a monotone function from
T × T ′ to T . Similarly, the other projection is a monotone function to T ′, so
the direction rank(T × T ′) ≤ min(rank(T ), rank(T ′)) is clear. WLOG assume
rank(T ) ≤ rank(T ′). Then there is a monotone function g : T → T ′ with the
property that |g(t)| = |t| by Remark 1.18. Then t 7→ ⟨t, g(t)⟩ is a monotone
function from T to T × T ′.

1.5 ∆1
1 = effectively Borel

A set A ⊆ ωω is ∆1
1 if both A and ωω \A are Σ1

1. We can now prove the normal
form for ∆1

1 sets.

Theorem 1.23. A ⊆ ωω is ∆1
1 iff there is a computable ordinal α and a com-

putable map y 7→ Ty from ωω to trees so that y ∈ A iff rank(Ty) > α iff there is a
computable ordinal α and a computable map y 7→ Sy so y ∈ A iff rank(Ty) ≤ α.

Proof. First assume A is ∆1
1. Then since A and its complement are Σ1

1, there
are computable maps y 7→ Ty and y 7→ Sy to trees such that y ∈ A iff Ty is
illfounded iff Sy is wellfounded. Thus, for each y, exactly one of Ty and Sy
is wellfounded, and so Ty × Sy is wellfounded for all y. Hence, by Spector’s
boundedness lemma, there is a computable ordinal α so that rank(Ty × Sy) =
min(rank(Ty), rank(Sy)) ≤ α. Thus, Ty (resp. Sy) is illfounded iff rank(Ty) > α
(resp. rank(Sy) > α). So y ∈ A iff Ty is wellfounded iff rank(Ty) > α iff Sy is
wellfounded iff rank(Sy) ≤ α.

Suppose now we have a computable ordinal α and computable map y 7→ Ty
such that y ∈ A iff rank(Ty) > α. Let T be a computable tree with rank(T ) = α.
Letting T+ = {∅}∪{(0)⌢s : s ∈ T}, we see that rank(T+) = rank(T )+1. Then
y ∈ A iff there is no monotone function from Ty to T iff there is a monotone
function from T+ to Ty. Hence A is Π1

1 and Σ1
1.

Our next goal is proving the Suslin-Kleene theorem that the ∆1
1 sets are

exactly the effectively Borel sets.

Definition 1.24. An effective Borel code is a pair (T, l) where T is a com-
putable wellfounded tree and l is a computable function

l : T → ω<ω × {“ ∪ ”, “ ∩ ”, “¬”}

such that l(t) ∈ ω<ω iff t is a leaf in T , and if l(t) = “¬”, then t has exactly
one successor in T .

Now if (T, l) is an effective Borel code, then the set of leaves of T is com-
putable. We note that this does not restrict possible rank of T among com-
putable trees.

Exercise 1.25. Show that if T is a computable tree, then there is a computable
tree of the same rank where the set of leaves of T is computable. [Hint: given
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s ∈ ω<ω, let s+ be a sequence of the same length where s+(n) = s(n)+ 1. Then
consider T ′ = {s+ : s ∈ T} ∪ {s+⌢(0) : s ∈ T}. Show T ′ is computable, has a
computable set of leaves, and rank(T ′) ≥ rank(T ). Finish by showing there is
some s ∈ T ′ such that T ′

s is as required.]

We define the interpretation of a Borel code inductively.

Definition 1.26. If (T, l) is a Borel code, then its interpretation is the Borel
set B(T,l) defined as follows.

• if rank(T ) = 0, then B(T,l) = Ns where s = l(∅). Otherwise,

• if l(∅) = “ ∪ ”, B(T,l) =
⋃
s∈T∧|s|=1B(Ts,ls).

• if l(∅) = “ ∩ ”, B(T,l) =
⋂
s∈T∧|s|=1B(Ts,ls).

• if l(∅) = “¬”, B(T,l) = ωω \ B(Ts,ls) where s is the unique successor of ∅
(so |s| = 1).

where ls is the function on Ts where ls(t) = l(s⌢t). A Borel set is effectively
Borel if it is the interpretation of an effective Borel code.

Now we prove ∆1
1 = effectively Borel.

Theorem 1.27 (Suslin-Kleene). A ⊆ ωω is ∆1
1 iff it is effectively Borel.

Proof. To begin, suppose B is effectively Borel with Borel code (T, l). Then
B has the following Σ1

1 definition. y ∈ B iff there exists f : T → {0, 1} with
f(∅) = 1 such that for all t ∈ T ,

• if t is a leaf of T , f(t) = 1 iff l(t) ⊆ y, and

• if l(t) = “∪ ”, f(t) = 1 iff there exists s ∈ T where s ⊋ t and |s| = |t|+ 1,
and f(s) = 1.

• if l(t) = “ ∩ ”, f(t) = 1 iff for all s ∈ T where s ⊋ t and |s| = |t| + 1,
f(s) = 1.

• if l(t) = “¬”, f(t) = 1 iff f(s) = 0 where s ∈ T is the unique successor of
t with |s| = |t|+ 1.

(The above bulleted conditions ensure that f “Skolemizes” whether y is in each
subtree of the Borel code, where 1 represents yes, and 0 represents no. So the
condition f(∅) = 1 corresponds to y actually being in the full set B(T,l)). An
almost identical definition (except saying there does not exists such an f : T →
{0, 1} with f(∅) = 0) gives a Π1

1 definition of A.
Next, we show that every ∆1

1 set is effectively Borel. Suppose A ⊆ ωω is ∆1
1

and hence by Theorem 1.23 there is a computable map y 7→ Ty and a computable
ordinal α such that y ∈ A ↔ rank(Ty) ≤ α. By Exercise 1.25 we can find a
computable tree T with a computable set of leaves such that rank(T ) = α.
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Now we uniformly recursively define an effective Borel set B(s, t) where t ∈ T
and |s| = |t| such that B(s, t) = {y : rank((Ty)s) ≤ rank(Tt)}. First, if t is a
leaf of T , then

B(s, t) = {y ∈ A : rank((Ty)s) = 0}
= {y ∈ A : ¬(∃s′ ⊋ s)s′ ∈ Ty}
= ωω \ {y ∈ A : (∃s′ ⊋ s)s′ ∈ Ty}

Now {y : (∃s′ ⊋ s)s′ ∈ Ty} is clearly a computable union of basic open sets, since
if the program defining Ty halts accepting the string s′, then this computation
only uses a finite initial segment r of y. So the set of such y is the union of all
basic open neighborhoods Nr, which is effectively Borel. If t is not a leaf of T ,
then by Exercise 1.12

B(s, t) = {y : rank((Ty)s) ≤ rank(Tt)}
= {y : (∀s′ ⊋ s)(∃t′ ⊋ t) rank((Ty)s′) ≤ rank(Tt′)}

=
⋂
s′⊋s

⋃
t′⊋t

B(s′, t′)

Which gives an effective Borel code, since the B(s′, t′) for (s′, t′) extending (s, t)
are effective Borel codes.

To finish, note that B(∅, ∅) = A is effectively Borel.

1.6 Computable ordinals, hyperarithmetic sets

In order to develop the hyperarithmetic hierarchy, we need to introduce a dif-
ferent way of representing computable ordinals rather than just as ranks of
computable trees.

Definition 1.28. A computable wellorder is a computable linear ordering
(≤L, L) where L is a computable subset of ω and ≤L is a computable linear
ordering on L which is a wellorder.

It is an important exercise that the ranks of computable trees are precisely
the same ordinals as the ordertypes of computable wellorderings. To see this,
we first have the following connection between linear orderings and wellfounded
trees:

Definition 1.29. The Kleene-Brouwer order on ω<ω is the ordering where
s ≤KB t iff s and t are compatible and s ⊇ t, or s and t are incompatible and s
is lex-less than t. (Recall s is lex-less than t if n is least such that s(n) ̸= t(n)
implies s(n) < t(n)).

Exercise 1.30. Show that T is wellfounded iff the Kleene-Brouwer restricted
to T , ≤KB↾ T is a wellorder.

Now we have the exact correspondence:

11



Exercise 1.31. Show that α is the rank of a computable tree iff α is the or-
dertype of a computable linear order. [Hint: show that if T is a computable
tree, then rank(T ) ≤ ot(≤KB↾ T ), the order type of ≤KB↾ T , which is a com-
putable linear order. Hence, by restricting this order to a computable subset, we
can find a computable wellorder of exactly the same ordertype as rank(T ). Simi-
larly, show if ≤L is a computable wellorder, the tree of ≤L-descending sequences
is a computable tree of rank at least ot(≤L).]

In order to better represent ordinals, we will in addition demand that certain
data on a computable wellorder is computable. Note: in most texts on effective
descriptive set theory, a (computable isomorphic) notion of “ordinal notations”
is used. The set of ordinal notations is denoted O.

Definition 1.32. A labeled computable wellorder or computable ordinal
code is a tuple a = ((≤L, L),m, l, s, t) where m is the ≤L-minimal element
of L, l is a computable subset of L giving the set of elements of L that are
limits, s : L → L is the successor function; s(n) is the ≤L-successor of n in
L except if n is the maximal element of n in which case s(n) = n. Finally
t ∈ {“zero”, “successor”, “limit”} is the type of the wellorder. By abuse of
notation, we write n ∈ a to mean n is an element of the set on which the
computable wellorder of a is defined. We write |a| for the ordinal giving its
ordertype.

Exercise 1.33. If a is a computable ordinal code, the predecessor function
(which is defined on the computable set of elements which are not limits), is
computable.

The restriction of a to its initial segments is a uniformly computable opera-
tion:

Definition 1.34. Given a computable ordinal code a = ((≤L, L),m, l, s, t),
write a<n for the computable ordinal code for the order ≤L↾ {m : m <L n}.
a<n is uniformly computable from a and n. Finally if a is a successor ordinal,
then write a− for a<n where n is the greatest element of x. We call a− the
predecessor of a.

Exercise 1.35. If a is a computable ordinal code for a limit ordinal, then
{a<n : n ∈ a} are unbounded in a, and |a| = sup(|a<n|). Hence show there
is a computable function taking limits to an increasing subsequence that limit to
them.

Similarly to how Exercise 1.25 shows that we can always find a computable
tree of a given computable ordinal rank whose set of leaves is computable, for
every computable wellorder, we can find a computable ordinal code having the
same ordertype.

Exercise 1.36. Show that if ≤L is a computable wellordering, there is a com-
putable ordinal code of the same ordertype. [Hint: begin by replacing every
element of L with a copy of ω to get a computable ordinal code a where |a| is
greater than or equal to the ordertype of ≤L.]

12



Recall that if x ∈ ωω, we use x′ to denote the Turing jump of x. Now we
define how to iterate the Turing jump along a computable ordinal. If a is a
computable ordinal code, then define

x(a) =


x if a represents 0

(x(a
−))′ if a is a successor

{⟨n,m⟩ : n ∈ a ∧m ∈ x(a<n)} if a is a limit

Definition 1.37. x ∈ ωω is hyperarithmetic if x ≤T ∅(a) for some computable
ordinal code a.

In dealing with hyperarithmetic sets, we’ll often use the recursion theorem
to define programs which compute from them.

Lemma 1.38. If a is a computable ordinal code,
(
∅(a)

)′′ ≥T {e : φe computes
a wellfounded tree T with rank(T ) ≤ |a|}.

Proof. By the recursion theorem, we define a program e(a) which takes an

ordinal code a as a parameter and computes the given set from
(
∅(a)

)′′
. We

define e(a) as follows:

• If a represents 0, {e : φe computes a tree of rank 0} is a Π0
2 set. Let e(a)

be a program computing this set from ∅′′.

• If a represents a successor ordinal

{e : φe computes a wellfounded tree T with rank(T ) ≤ |a|}
={e : φe computes a wellfounded tree T and (∀s, |s| = 1) rank(Ts) ≤ |a−|}

since the trees of rank ≤ |a−| are computable from
(
∅(a−)

)′′
via the pro-

gram e(a−), ∀a, |a| = 1 rank(Ts) ≤ |a−| is a Π0
1 fact relative to

(
∅(a−)

)′′
.

Let e(a) be the program computing thisΠ0
1 fact from another Turing jump(

∅(a−)
)′′′

=
(
∅(a)

)′′
.

• If a represents a limit ordinal

{e : φe computes a wellfounded tree T with rank(T ) ≤ |a|}
={e : φe computes a wellfounded tree T and (∀s, |s| = 1)(∃n ∈ a) rank(Ts) ≤ |a<n|}

The set of trees T such that rank(Ts) ≤ |a<n| is uniformly computable

from
(
∅(a<n)

)′′
via the program e(a<n).

(
∅(a<n)

)′′
is uniformly computable

from ∅(a), since
(
∅(a<n)

)′′
=

(
∅(a<m)

)
where m is the double successor of

n in a, which has a computable successor function. So the trees T such
that (∀s, |s| = 1)(∃n ∈ a) rank(Ts) ≤ |a<n| are Π0

2 relative to ∅(a). Let

e(a) be the program computing this set from
(
∅(a)

)′′
13



Similar proofs using a program defined via the recursion theorem where
zero, successor, and limit cases are defined recursively in terms of the program
at previous steps can be used to show that:

Exercise 1.39. If a is a computable ordinal code,
(
∅(a)

)′′ ≥T {b : b is a com-
putable ordinal code with |a| = |b|}.

Exercise 1.40. If x ≥T y and a is a computable ordinal code, x(a) ≥T y(a).

Finally, we have the following theorem which shows that though there are
many ordinal codes for a given computable ordinal, x(a) is well-defined up to
Turing degree.

Theorem 1.41. If a and b are computable ordinal codes with |a| = |b|, then
x(a) ≡T x(b).

Proof. By the recursion theorem, we define a program e(a, b) which takes a and
b are parameters and witnesses x(a) ≥T x(b) for all x.

• If a, b represent 0, e(a, b) is the identity.

• If a, b are successors, x(a
−) ≥T x(b

−) via e(a−, b−). By a fact of com-
putability theory, uniformly in e(a−, b−) there is a program e(a, b) wit-

nessing.
(
x(a

−)
)′
≥T

(
x(b

−)
)′
.

• If a, b are limits, by Exercise 1.40, x(a) ≥T ∅(a). By Exercise 1.39, we
can hence compute (uniformly in a and b) the set {(n,m) : |a<n| = |b<m|}
from x(a). Then to compute x(b) from x(a), for each m ∈ b we compute the
corresponding n ∈ a such that |a<n| = |b<m| and then use e(a<n, b<m) to
compute x(b<m) from x(a<n).

Using this theorem, we will abuse notation and write x(α) for the Turing
degree of x(a) where |a| = α.

1.7 ∆1
1 = hyperarithmetic

Theorem 1.42 (Kleene). A ⊆ ω is ∆1
1 iff it is hyperarithmetic.

Proof. If A ⊆ ω is ∆1
1, then there is a computable ordinal α and a computable

map n 7→ Tn such that n ∈ A ↔ rank(Tn) ≤ α. Let a be a computable

ordinal code representing a. Then by Lemma 1.38,
(
∅(a)

)′′
computes the set of

computable trees of rank ≤ |a|, and hence computes A.
In the other direction, if a is a computable ordinal code and A ≤T ∅(a),

then A is Σ1
1; n ∈ A iff there exists a real representing ∅(a), a Skolem function

witnessing that it is truly ∅(a) by checking the conditions in the definition of
∅(a), and a computation from this real which gives n ∈ A. Since the complement
of A is thus Σ1

1, A is also Π1
1.
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1.8 The hyperjump, ωx
1 , and the analogy between c.e. and

Π1
1

There is a deep analogy between computable sets and hyperarithmetic sets.
This analogy extends to one between Σ0

1 and Π1
1 sets. If we think as a Σ0

1 subset
of ω as an c.e. set which is enumerated via a computable procedure lasting ω
many steps, we can similarly think of a Π1

1 set A ⊆ ω as being “enumerated” via
a transfinite procedure of length ωck

1 (defined below) where n ∈ A is enumerated
at stage α once we see some corresponding computable tree Tn has rank α.

computability hypercomputability
computable/∆0

1 hyperarithmetic/∆1
1

Σ0
1 Π1

1

This isn’t just an analogy; we will discover in Section 5 that there is a pre-
cise connection. Classical computability and hypercomputability are examples
of what is called admissible computability. In this setting, we have so called
“admissible structure” (which is in particular a transitive set satisfying a weak
set of axioms for set theory called KP). In this setting, “computable” becomes
∆1 definability over this structure, and c.e. becomes Σ1 definability over this
structure. Computable sets and hyperarithmetic sets are the smallest two such
notations of computability over the smallest two admissible structure: Hω, the
hereditary finite sets, and Lωck

1
.

We give an example of a theorem whose proof is guided by this analogy.

Theorem 1.43. If A,B ⊆ ω are disjoint Σ1
1 sets, then there is a ∆1

1 set C
separating them: A ⊆ C, and C ∩B = ∅.

The analogous fact is classical computability is that if A,B are co-c.e. there
is a computable set C separating them. We quickly sketch a proof of this
classical fact. Run enumerations of ω \ A and ω \B simultaneously. Note that
since A,B are disjoint, every n must be enumerated into at least one of ω \ A
and ω \B. The computable separating set is the set C of n that are enumerated
into ω \A before they are enumerated into ω \B.

Proof of Theorem 1.43. Fix computable maps n 7→ Tn and n 7→ Sn so that
n /∈ A iff Tn is wellfounded and n /∈ B iff Tn is wellfounded. In our analogy,
if we think of this as “enumerating” ω \ A and ω \ B, then n is enumerated
into ω \ A before it is enumerated into ω \ B if rank(Tn) ≤ rank(Sn). So
let C = {n : rank(Tn) ≤ rank(Sn)}. Then C is clearly a Σ1

1 set (rank(Tn) ≤
rank(Sn) iff there is a monotone function from Tn to Sn. It is also a Π1

1 set since
C = {n : ¬ rank(S+

n ) ≤ rank(Tn)}. (Where S+ is defined in Section 1.5).

Exercise 1.44. If A,B ⊆ ωω are disjoint Σ1
1 sets, show there is a ∆1

1 set C
separating them. [Hint: let y 7→ Ty and y 7→ Sy be computable maps so y ∈ A
iff Ty is illfounded, and y ∈ B iff Sy is illfounded. Let C = {y : rank(Ty) ≤
rank(Sy)}.
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Next, we’ll pursue this connection between computable and hyperarithmetic
a little more, defining notions analogous to classical notions. We begin with the
analogue of the Turing jump:

Definition 1.45 (The hyperjump). Let O = {n : the nth program φn computes
a wellfounded subtree of ω<ω}. By Exercise 1.7, this is a Π1

1 complete subset of
ω. The relativized version of this set is Ox = {n : the nth program φxn relative
to x computes a wellfounded subtree of ω<ω}. This is a complete set among
those sets that are Π1

1 relative to x.

Next, we have the analogue of Turing reducibility.

Definition 1.46. If x, y ∈ ωω, then write x ≤HYP y and say x is hyperarithmeti-
cally reducible to y if there is a ∆1

1 definition of x relative to y. Equivalently,
by the relativized version of Theorem 1.42, x ≤HY P y iff there is a computable-
relative-to-y ordinal code a so that x ≤T y(a). The set {y : y ≡HYP x} is called
the hyperdegree of x.

computability hypercomputability
≤T ≤HYP

Turing degree hyperdegree
Turing jump: x′ hyperjump: Ox

Now we have the following in analogy with facts from classical computability
that x ≤T x′ and x ≤T y implies x′ ≤T y′:

Exercise 1.47. For all x ∈ ωω, we have x <HYP Ox.

Exercise 1.48. If x ≤HYP y, then Ox ≤HYP Oy.

To each hyperdegree, we can associate the least ordinal which is not com-
putable relative to x.

Definition 1.49. If x ∈ ωω, let ωx1 be the least ordinal α such that there is no
tree computable from x of rank α. ω∅

1 is called the Church-Kleene ordinal and
denoted ωck

1 .

This ordinal is the same for every y in the hyperdegree of x.

Exercise 1.50. If x ≥HYP y, then ωx1 ≥ ω
y
1 .

After taking the hyperjump of x, this ordinal increases.

Proposition 1.51. For all x ∈ ωω, ωOx

1 > ωx1 .

Proof. The tree {∅} ∪ {n⌢s : the nth program φxn relative to x computes a
wellfounded tree T xn , and s ∈ T xn} clearly has rank sup of all rank(T ) + 1
where T is a wellfounded tree computable from x. This is equal to ωx1 . Hence
ωOx

1 ≥ ωx1 + 1.

By this proposition, if x ≥HYP O, then ωx1 > ωck
1 . In fact, the converse of

this is true.
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Exercise 1.52. For all x ∈ ωω, ωx1 > ωck
1 implies x ≥HYP O. Hence, x ≱HYP O

implies ωx1 = ωck
1 . [Hint: let a be a computable-relative-to-x ordinal notation

where |a| = ωck
1 . Show that (x(a))′′ ≥T {n : the nth program φn computes a

wellfounded tree with rank(T ) ≤ |a|} = O. Hence x ≥HYP O.]

Definition 1.53. Say that x ∈ ωω is hyperlow if ωx1 = ωck
1 .
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2 Basic tools

2.1 Existence proofs via completeness results

One way to prove that two sets A, B are not equal is to prove that they have
different complexities. For example, if A is Σ1

1 complete, and B is Π1
1, then

A ̸= B. We illustrate with an example:
Say that x0, x1, . . . is a descending jump sequence if xn ≥T x′n+1, where

x′ is the Turing jump of x.

Theorem 2.1. There exists an infinite descending jump sequence (xn)n∈ω.

Proof. Consider the set A = {T ⊆ ω<ω such that there exists a map f : T → ωω

such that if s ⊊ t, then f(s) ≥ f(t)′}. This is a Σ1
1 set of trees. It is easy to

prove by transfinite induction that every wellfounded tree is in A. However,
the set of wellfounded trees is Π1

1 complete, while A is Σ1
1. Hence, there is

an illfounded tree in A. An infinite branch in such an illfounded tree gives an
infinite descending jump sequence.

It is not so easy to construct an infinite descending jump sequence explicitly.
It is easy to see that in an infinite descending jump sequence can have no
xn ∈ HYP. Further, Steel has shown [St75] that there is no infinite uniformly
descending jump sequence, where there is a single program e so that Φe(xn) =
x′n+1.

Another nice example of an existence theorem proved by such a complexity
result is the Theorem of Wesolek and Williams [WW] that the set of elementary
groups is Π1

1 complete. Hence, there is an elementary amenable group that is
not amenable, since the set of amenable groups is arithmetic.

2.2 The effective perfect set theorem

One of the themes of these notes will be the relationship between the definability
of a set of reals vs reals in the set. For example, if {x} ⊆ ωω has a simple
definition as a subset of ωω, does x necessarily have a simple definition as
a function from ω → ω. Here is a pair of exercises illustrating this type of
connection.

Exercise 2.2. Show that if {x} ⊆ ωω is Π0
1, then x is hyperarithmetic.

Exercise 2.3. Show that the Π0
1 singletons are unbounded in the hyperarithmetic

hierarchy. In particular, for every computable α, there is Π0
1 set {x} ⊆ ωω such

that x ≰T ∅α.

It is a standard fact of classical descriptive set theory that analytic sets have
the perfect set property. Our next theorem is the effective perfect set theorem
which gives us more information of the type discussed above.

Theorem 2.4 (Harrison). Suppose A ⊆ ωω is Σ1
1. Then either
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1. A contains a perfect subset.

2. There is a computable ordinal α such that ∅(α) computes every element of
A.

Proof. By Exercise 1.8, there is a computable tree T on ω<ω × ωω so that
A = π[T ]. If (s, t) ∈ T , say that there is a splitting above (s, t) in T if there
exists (s0, t0), (s1, t1) ∈ T such that (s0, t0), (s1, t1) extend (s, t) and s0, s1 are
incompatible. We now define a transfinite derivative of T . Let

T0 = T

Tα+1 = Tα \ {(s, t) ∈ Tα : there is no splitting above (s, t) in T}

Tλ =
⋂
α<λ

Tα

There must be an ordinal β such that Tβ = Tβ+1. Now we break into two cases.
Case 1: if Tβ is nonempty, then we can construct a map 2<ω → Tβ where

we associate to each string σ ∈ 2<ω a pair (sσ, tσ) ∈ Tβ such that for ev-
ery σ, (sσ⌢0, tσ⌢0), (sσ⌢1, tσ⌢1) extend (sσ, tσ) and sσ⌢0, sσ⌢1 are incompatible.
Finally, let T ∗ ⊆ Tβ be the closure of these strings under initial segments.
T ∗ = {(s, t) ∈ Tβ : (∃σ ∈ 2<ω)(sσ, tσ) extends (s, t)}. Then π[T ∗] is a perfect
closed set contained in A.

Case 2: If Tβ is empty, then it is clear that A is countable. This is because
π[Tα] \ π[Tα+1] is countable, since if x is in the difference, then there is some
(s, t) ∈ T and y ∈ ωω so (x, y) extends (s, t) and there is no splitting in T above
(s, t). Note that this also means that x must be computable from Tα. Given
such an (s, t), we can search for any extension (s′, t′) ∈ Tα such that (s′, t′)
extends (s, t), and we must have that s′ is an initial segment of x. There exist
such extensions of arbitrary length. So to finish, it is enough to show there is
some computable β so that ∅(β) computes every Tα.

Say that a function p : 2≤n → T is a splitting map into T , if for all σ ∈
2≤n with |σ| < n, (sσ⌢0, tσ⌢0), (sσ⌢1, tσ⌢1) extend (sσ, tσ) and sσ⌢0, sσ⌢1 are
incompatible. The set of all splitting maps into T forms a tree S by ordering
these maps under extension. S is a computable tree since T is computable, and
it is wellfounded since otherwise T would have a perfect set as in the above case.

Now if we perform the usual derivative process on S where

S0 = S

Sα+1 = Sα \ {p ∈ Sα : there is no extension of p in Sα}

Sλ =
⋂
α<λ

Sα

then it is easy to check by transfinite induction that Sα is the set of splitting
maps into Tα. This is because a splitting map p : 2≤n → T has no extensions to
a splitting map defined on 2≤n+1 iff there exists (sσ, tσ) ∈ ran(p) so that there
is no splitting above (sσ, tσ) in T . Hence, it follows that the least ordinal β such
that Tβ = ∅ is rank(S).
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Now it is an easy exercise to show that ∅β computes Tα for all α < β.
We’ve already noted that from Tα we can compute each x such that x ∈ π[Tα] \
π[Tα+1].

Exercise 2.5. Suppose x ∈ ωω. Then x is hyperarithmetic iff {x} is ∆1
1 iff {x}

is Σ1
1.

2.3 Harrison linear orders, Π0
1 sets with no HYP elements

We’ve shown above that every element of a countable Π0
1 set (and more generally

Σ1
1 set) must be hyperarithmetic. In contrast, there are uncountable Π0

1 sets
with no HYP branches.

Exercise 2.6. The set of computable ordinal codes is a Π1
1 complete subset of

ω.

Exercise 2.7. {∅(a) : a is a computable ordinal code} is Π1
1.

Exercise 2.8. {x ∈ ωω : x is hyperarithmetic} is Π1
1.

Lemma 2.9. There is a computable illfounded tree T ⊆ ω<ω so that [T ] contains
no hyperarithmetic branches.

Proof. Consider the Σ1
1 set of reals that are not hyperarithmetic. Let T be the

tree so that T = π[T ].

Theorem 2.10 (Harrison). There is a computable illfounded linear ordering
with no hyperarithmetic descending sequence.

Proof. Consider the Kleene-Brouwer order on the tree T in Lemma 2.9.

2.4 Π1
1 ranks

Suppose A is a Π1
1 set. By our normal form in Lemma 1.5 there is a map y 7→ Ty

so that y ∈ A iff Ty is illfounded. This map is key to our understanding of A.
However, often we use it a particular way as in our proof of Theorem 1.43, relying
heavily on the relations rank(Tx) ≤ rank(Ty) and rank((Tx)

+) ≤ rank(Ty). We
formalize these two relations in terms of notions of Π1

1 ranks and prewellorder-
ings.

Definition 2.11. A prewellordering on a set A is a symmetric, transitive
relation ≤ such that for all x, y ∈ A either x ≤ y or y ≤ x, and such that the
associated strict ordering < is wellfounded, where x < y ↔ x ≤ y ∧ ¬y ≤ x.

Definition 2.12. A rank on a set A ⊆ ωω is a function φ : A→ ORD. Every
rank φ : A→ ORD on A gives rise to the prewellordering x ≤φ y iff φ(x) ≤ φ(y).
We write φ(x) =∞ if x /∈ A, and extend ≤φ to the whole space ωω by

x ≤∗
φ y ↔ x ∈ A ∧ (φ(y) =∞∨ x ≤φ y)
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x <∗
φ y ↔ x ∈ A ∧ (φ(y) =∞∨ x <φ y)

We say the rank φ : A→ ORD is a Π1
1 rank iff the relations ≤∗

φ and <∗
φ are both

Π1
1.

Lemma 2.13. If A is Π1
1, then it admits a Π1

1 rank.

Proof. Suppose A ⊆ ωω is Π1
1. Let y 7→ Ty be a computable map such that y ∈ A

iff Ty is wellfounded. Then let φ : A → ORD be defined by φ(y) = rank(Ty).
Then φ is a Π1

1 rank since x <∗
φ y if there is no monotone function from Ty to Tx,

and x ≤∗ y if there is no monotone function from Ty to T
+
x , by Exercise 1.15.

Exercise 2.14. If A admits a Π1
1 rank, then A is Π1

1. [Hint: x ∈ A↔ x ≤∗
φ x]

There are many Π1
1 ranks which arise naturally from transfinite mathemat-

ical analyses, and not just from our normal form for Π1
1 sets. See [K, Section

34] for many examples. For instance, in the space of compact subsets of ωω,
the set of countable compact sets is a complete Π1

1, and has a natural Π1
1 rank

arising from the Cantor-Bendixson derivative. The set of everywhere differen-
tiable functions in C([0, 1]) is a complete Π1

1 set and Kechris and Woodin [KW]
have associated a natural rank to this set. Wesolek and Williams show that
the set of elementary amenable groups is Π1

1 complete and that the elementary
amenability rank is a Π1

1 rank.

2.5 Number Uniformization

Suppose A ⊆ X × Y . Then we say A′ ⊆ A uniformizes A if ∀x ∈ X(∃y ∈
Y (x, y) ∈ A ↔ ∃!y ∈ Y (x, y) ∈ A′. So A′ is the graph of a (partial) function
f : π0(A)→ Y such that (x, f(x)) ∈ A.

We’ll use the formalism of Π1
1 ranks to prove the theorem.

Theorem 2.15 (Number uniformization for Π1
1). Suppose A ⊆ ωω × ω is Π1

1.
Then A has a Π1

1 uniformization.

Proof. Fix a Π1
1 rank φ on A. Let A′ = {(x, n) : ∀m < n(x, n) <∗

φ (x,m) ∧
∀m(x, n) ≤∗

φ (x,m)}. That is, (x, n) ∈ A iff n is minimal among all m such that
(x,m) has minimal rank <∞.

We mention the following property of functions:

Lemma 2.16. If f : ωω → ωω is a Σ1
1 total function then it is ∆1

1.

Proof. f(x) = y iff ∀y′ ∈ ωω(y′ ̸= y → f(x) ̸= y′).

An identical proofs give the following:

Exercise 2.17. f : ωω → ω is Σ1
1 iff it is ∆1

1 iff it is Π1
1.

The analogue of Lemma 2.16 is false for Π1
1 functions.

Exercise 2.18. Show there is a Π1
1 function f : ωω → ωω that is not ∆1

1.
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2.6 Π1
1 scales and Π1

1 uniformization

Before defining scales, we’ll briefly discuss Suslin representations of sets, which
are closely related. Recall A ⊆ ωω is κ-Suslin if there is a tree T on ω × κ so
that A = π[T ]. Hence, every Σ1

1 set is ω-Suslin.
Many basic properties and proofs concerning Σ1

1 sets have generalizations to
κ-Suslin sets. For example

Exercise 2.19 (Mansfield). If A ⊆ ωω is κ-Suslin, then |A| ≤ κ, or A contains
a perfect closed set.

In the same way that the ω-Suslin representation of a Σ1
1 set is key to un-

derstanding it, key to understanding Π1
1 sets are their Suslin representations.

Theorem 2.20 (Shoenfield). Every Π1
1 set A ⊆ ωω is ω1-Suslin.

Proof. Fix a computable map x 7→ Tx so that x ∈ A iff Tx is wellfounded. For
s ∈ ω<ω, define a tree Ts ⊆ ω<ω by t ∈ Ts if the program computing Tx run
with oracle s halts accepting t. Let (tn)n∈ω be an enumeration of ω<ω.

Define a tree T ⊆ ω<ω × ω<ω1 as follows. (s, t) ∈ T provided for all i, j < |t|
if ti ⊊ tj ∈ Ts, then t(i) > t(j). Then if there is an infinite branch (x, y) ∈ [T ],
if ti ⊊ tj ∈ Tx, then y(i) > y(j). Hence the map then the map ti 7→ y(ti)
witnesses that Tx is wellfounded. Conversely, if Tx is wellfounded, then the
function y(i) = 0 if ti /∈ Tx, otherwise y(i) = rankT (ti), has (x, y) ∈ [T ].

The ranks on A used in Shoenfield’s proof have the following nice properties,
when paired with a representation of x itself.

Definition 2.21. A very good scale on a set A ⊆ ωω is a sequence φn : A→
ORD of ranks on A such that the following holds. If xi ∈ A and φn(xi) → αn
for all n, then xi → x for some x ∈ A. Furthermore, φn(x) ≤ φn(y) → ∀m ≤
nφm(x) ≤ φm(y)). We say a very good scale on A is Π1

1 if and only if the ranks
φn are uniformly Π1

1.

Here by φn(xi) → αn we mean that for sufficiently large i, φn(xi) = αn.
That is, we’re taking the limit in the discrete topology.

If α is an ordinal, the lex ordering on αn is defined by (α0, . . . , αn−1) <lex
(β0, . . . , βn−1) iff (∃i)(αi < βi ∧ (∀j < i)αj = βj), and it is a wellordering. We
use ⟨α0, . . . , αn−1⟩ to denote the rank of α0, . . . , αn−1 in the lex ordering.

Lemma 2.22. Let A be a Π1
1 set, and x 7→ Tx be such that x ∈ A iff Tx is well-

founded. Let (ti)i∈ω be a computable enumeration of ω<ω so that t0 = ∅. Let
φn : A→ ωn1 be defined by φn(x) = ⟨rank((Tx)t0), x(0), rank((Tx)t1 , x(1), . . . , x(n)⟩.
Then (φn) is a very good Π1

1 scale on A.

Proof. Clearly if φn(xi) converge for each n, then xi → x for some real x, and
for every t, rank((Txi

)t) converges to βt for some βt. Since the map x 7→ Tx is
continuous, we have Tx = limTxi

, and clearly t 7→ βt has the property that if
s ⊊ t ∈ Tx, then for sufficiently large i, s, t ∈ Txi

, hence βs > βt, and the map
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t 7→ βt witnesses that Tx is wellfounded, and hence x ∈ A. It is straightforward
to check that φn are uniformly Π1

1 ranks.
Let ψn be the rank ψn(x) = rank((Tx)tn) on the Π1

1 setAn = {x : (Tx)tn is wellfounded}.
Note that ψn is not a Π1

1 rank on A in general, however, A = A0, and An ⊇ A
for all n. Then for example,

x ≤∗
φ0
y ↔ x ≤∗

ψ0
y ∧ (x <∗

ψ0
y ∨ (y ≤∗

ψ0
x ∧ x(0) ≤ y(0)))

We’ll use scales to select a canonical element of a set by picking the element
which minimizes all of the ranks in the scale. We give an easy example of this
idea:

Theorem 2.23. Let A ⊆ ωω be a Π1
1 set. Then there is some x ∈ A such that

{x} is Π1
1.

Proof. Let (φn)n∈ω be a very good Π1
1 scale onA, and letAn = {x : φn(x) is minimal} =

{x : ∀yx ≤∗
φn

y}. Then by the properties of a very good Π1
1 scale,

⋂
An = {x}

for some x. This is a Π1
1 set, {x : ∀n∀yx ≤φn

y}.

Exercise 2.24. Suppose A ⊆ ωω is Π1
1 then there is some x ∈ A such that

x ∈ L.

Using the same idea as Theorem 2.23, we can prove Π1
1 uniformization, by

taking the y minimizing the scale in each section Ax.

Theorem 2.25 (Π1
1 uniformization). If A ⊆ ωω × ωω is Π1

1, then A has a Π1
1

uniformization A′ ⊆ A.

Proof. Let (φn)n∈ω be a very good Π1
1 scale on A. Then let

A′ = {(x, y) : ∀n∀z(x, y) ≤∗
φn

(x, z)}.

2.7 Reflection

Definition 2.26. Say that a collection of Σ1
1 sets Φ is Π1

1 on Σ1
1 if and only if

n : Un ∈ Φ is Π1
1, where U ⊆ ωω × ωω is a universal Σ1

1 set so that A ⊆ ωω is
Σ1

1 iff (∃n)A = Un.

Theorem 2.27 (The first reflection theorem). If Φ is Π1
1 on Σ1

1, then and
A ∈ Φ, then there is some B ⊇ A that is ∆1

1 such that B ∈ Φ.

Proof. Let n 7→ Sn be a computable map so that n ∈ O iff Sn is wellfounded.
Let y 7→ Ty be a computable map so that y ∈ A iff Ty is illfounded. Consider
the sets An = {y : rank(Ty) ≥ rank(Sn)}. If Sn is wellfounded, then An is a ∆1

1

set with An ⊇ A. So if there is some n such that Sn is wellfounded and An ∈ Φ,
then we are done. Otherwise, since if Sn is illfounded then An = A, we have
Sn is wellfounded iff An /∈ Φ. But since Φ is Π1

1 on Σ1
1 this would give a Σ1

1

definition of O, which is a contradiction.
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Exercise 2.28. Prove that every Σ1
1 singleton is ∆1

1.

Exercise 2.29. Prove that every countable Σ1
1 set is contained in a countable

∆1
1 set.

Exercise 2.30. Prove the separation theorem for Σ1
1 sets (Theorem 1.43) using

the first reflection theorem.

Definition 2.31. Let U ⊆ ω × ωω be a universal Π1
1 set. Let Φ be a collection

of sets of the form A × B where A,B ⊆ ωω are Π1
1. Then we say Φ is Π1

1 on
Π1

1 if {(n,m) : Un × Um ∈ Φ} is Π1
1. Say that Φ is monotone if A × B ∈ Φ

and A ⊆ A′ and B ⊆ B′ implies A′ × B′ ∈ Φ. Finally, say Φ is continuous
downward in the second variable if whenever A × Bn ∈ Φ for B0 ⊇ B1 ⊇ . . .,
then A×

⋂
nBn ∈ Φ.

One natural way such a Π1
1 on Π1

1 property arises is when P ⊆ ωω × ωω is a
Π1

1 relation, and A×B ∈ Φ↔ ∀x /∈ A∀y /∈ Y P (x, y).

Exercise 2.32 (The second reflection theorem). If Φ is Π1
1 on Π1

1 is monotone,
and continuous downward in the second variable, then if there is a Π1

1 set A such
that A× ωω \A ∈ Φ, then there is a ∆1

1 set B ⊆ A so that B × ωω \B ∈ Phi.
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3 Gandy-Harrington forcing

Gandy-Harrington forcing was invented by Gandy to prove the following theo-
rem.

Theorem 3.1 (Gandy basis theorem). If A ⊆ ωω is Σ1
1 and nonempty, there

exists x ∈ A such that Ox ≡T O, and hence x is hyperlow.

Note that we have already showed that there are nonempty Σ1
1 subset of ωω

(indeed, Π0
1 sets) which contain no hyperarithmetic elements in Lemma 2.9.

Theorem 3.1 is proved by forcing with Σ1
1 sets, in analogy to how the low

basis theorem in classical computability is proved by forcing with Π0
1 sets. Ap-

proximating a real using Σ1
1 sets has an additional complication though. There

is no reason a decreasing sequence of Σ1
1 sets of decreasing diameter need in-

tersect to a single real. We will address this by using a winning strategy for
player II in the associated Choquet game to ensure that the real we build is in
the intersection of the sets we use to approximate it.

3.1 The Choquet game on Σ1
1 sets.

Definition 3.2. If X is a space and A ⊆ X is a collection of sets, then the
Choquet game on A is the infinite two player game where the players alternate
playing elements of A which are decreasing:

I A0 A1 A2 . . .
II B0 B1 . . .

where A0 ⊇ B0 ⊇ A1 ⊇ B1. Then II wins the game if and only if
⋂
iAi =

⋂
Bi

is nonempty.

Exercise 3.3 (Oxtoby). If X is a space and A is its collection of open subsets,
then player I has no winning strategy in the Choquet game on A iff X is a Baire
space iff every comeager subset of X is dense.

We’ll begin by showing that player II has a winning strategy in the Choquet
game on Σ1

1 sets. Recall our notation that if T is a subtree of ω<ω × ω<ω, then
T ↾ (s, t) is all nodes in T compatible with (s, t).

Lemma 3.4. There is a winning strategy for player II in the Choquet game on
nonempty Σ1

1 subsets of ωω.

Proof. By Exercise 1.8, every Σ1
1 set is the projection of the paths through a

computable tree. Let Ti be a computable tree so that Ai = π[Ti]. We recursively
define pairs (sni , t

n
i ) for i ≤ n such that |sni | = |tni | = n, and (sn+1

i , tn+1
i ) extends

(sni , t
n
i ), and the move Bn for player II is

Bn = π[T0 ↾ (sn0 , t
n
0 )] ∩ . . . ∩ π[Tn ↾ (snn, t

n
n)]

In particular, on move n, since

Bn−1 ∩An = π[T0 ↾ (sn−1
0 , tn−1

0 )] ∩ . . . ∩ π[Tn−1 ↾ (sn−1
n−1, t

n−1
n−1)] ∩ π[Tn]
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is nonempty, we can find length n extensions (sni , t
n
i ) of (sn−1

i , tn−1, i) for i ≤
n− 1 and some (snn, t

n
n) of length n such that

π[T0 ↾ (sn0 , t
n
0 )] ∩ . . . ∩ π[Tn ↾ (snn, t

n
n)]

is nonempty. Let Bn be this set.
Now having defined this strategy for player II, we show that it is a winning.

For each n and i ≤ n, since π[T0 ↾ (sn0 , t
n
0 )] ∩ . . . ∩ π[Tn ↾ (snn, t

n
n)] is nonempty

we must have sni = snj for all i, j. Let x ∈ ωω be the real x =
⋃
n s

n
i . We claim⋂

iAi =
⋂
iBi = {x}. This is because letting yi =

⋃
n t

n
i , we have (sni , t

n
i ) ∈ Ti

for all n and hence (x, yi) ∈ [Ti] and x ∈ π[Ti] = Ai.

The computability of this winning strategy is important in some of our
applications; it is computable from Kleene’s O.

Lemma 3.5. Consider the game associated to the Choquet game on Σ1
1 sets

where instead of playing a Σ1
1 set, each player plays an index for a program

which computes a subtree T of ω<ω × ω<ω which projects to the desired Σ1
1 set.

O can compute a winning strategy for player II in this game.

Proof. In our strategy defined above, choose (sn0 , t
n
0 ), . . . , (s

n
n, t

n
n) to be the lex-

least sequence extending (sn−1
0 , tn−1

0 ), . . . , (sn−1
n−1, t

n−1
n−1) such that π[T0 ↾ (sn0 , t

n
0 )]∩

. . .∩π[Tn ↾ (snn, t
n
n)] is nonempty. ThenO can compute (sn0 , t

n
0 ), . . . , (s

n
n, t

n
n) since

it can compute which Σ1
1 sets are nonempty.

Exercise 3.6. Show that {x ∈ ωω : x ∈ HYP} is Π1
1. Show that its complement

{xinωω : x /∈ HYP} is a Σ1
1 set that does not contain any Σ1

1 singleton.

Exercise 3.7. Show that there is a winning strategy for player II in the Choquet
game on ∆1

1 subsets of ωω.

The following strengthening of the Choquet game is useful in many applica-
tions:

Definition 3.8. If X is a space and A ⊆ X is a collection of sets, then the
strong Choquet game on A is the infinite two player game where the players
alternate playing elements of A which are decreasing:

I x0, A0 x1, A1 x,A2 . . .
II B0 B1 . . .

where A0 ⊇ B0 ⊇ A1 ⊇ B1, and for all i, xi ∈ Ai and xi ∈ Bi. Then II wins
the game if and only if

⋂
iAi =

⋂
Bi is nonempty.

Exercise 3.9. Show that there is a winning strategy computable from O in the
strong Choquet game on Σ1

1 sets.
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3.2 The Gandy basis theorem

We’re now ready to prove the Gandy basis theorem:

Proof of Theorem 3.1: Fix a Σ1
1 set A ⊆ ωω. We will construct x ∈ A such that

O ≥T Ox. We will do this by constructing a decreasing sequence A0 ⊇ A1 . . . of
Σ1

1 sets such that our desired real x has {x} =
⋂
iAi. We’ll choose An+1 so that

it decides the nth bit of Ox. We will also play an instance of the Choquet game
on Σ1

1 sets to insure ∩iAi is nonempty. Let A0 = A. Let Bn be the response of
the winning strategy computable from O of player II in the Choquet game on
Σ1

1 sets.
Let An+1 = {x ∈ Bn : the nth program φxn relative to x does not compute

a subtree of ω<ω or it computes an illfounded subtree of ω<ω} if this set is
nonempty, otherwise let An+1 = Bn. In the first case we have ensured that
if x ∈ An+1, then n /∈ Ox. In the second case we have insured that n ∈ Ox.
From O we can compute if this set is nonempty, and hence, then nth bit of Ox.
From O we can also compute player II’s response in the Choquet game. Hence,
O ≥T Ox.

By relativizing the Gandy basis theorem, we obtain the following corollary

Corollary 3.10. If {x} is Σ1
1 relative to y, then ωx1 ≤ ω

y
1 .

This generalizes Exercise 1.50.

Exercise 3.11. {x : ωx1 = ωck
x } is Σ1

1 and not ∆1
1.

Lemma 3.12 (Cone avoidance in Σ1
1 sets). Suppose A ⊆ ωω is Σ1

1 and nonempty,
B ⊆ ω is not ∆1

1, and φx(n) and ψx(n) are Σ1
1 formulas relative to a real pa-

rameter x with a single free variable n. Then there is some nonempty Σ1
1 set

A′ ⊆ A so that for all x ∈ A, either φx(n) is not a definition of B or ¬ψx(n) is
not a definition of B, or φx(n) and ¬ψx(n) do not define the same set.

Proof. For each n, let

An,φ = {x ∈ A : φx(n)}
An,ψ = {x ∈ A : ψx(n)}

Case 1: Suppose that there is some n such that ∀x ∈ A(¬φx(n) ∧ ¬ψx(n)).
Then forall x ∈ A, φx and ¬ψx do not define the same set.

Case 2: there is some n /∈ B such that An,φ ̸= ∅. Then for all x ∈ An,φ φx
does not give a Σ1

1 definition of B relative to x.
Case 3: there is some n ∈ B such that An,ψ ̸= ∅, then for all x ∈ An,ψ the

formula ¬ψx does not give a Π1
1 definition of B relative to x.

Finally, if none of the previous cases hold, then for all n

n /∈ B → An,φ = ∅ → (∀x ∈ A)¬φx(n)

Since Case 2 does not hold, and

n ∈ B → An,ψ = ∅ → (∀x ∈ A)¬ψx(n)
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Since Case 3 does not hold. Finally, since Case 1 does not hold, for each n there
must be some x ∈ A such that φx(n)∨ψx(n). Hence n ∈ B ↔ (∀x ∈ A)¬ψx(n)
and n /∈ B ↔ (∀x ∈ A)¬φx(n). These are a Π1

1 and Σ1
1 definition of B, which

is a contradiction.

Exercise 3.13. Suppose A ⊆ ωω is Σ1
1 and nonempty and B ⊆ ω is not ∆1

1.
Then show there is some x ∈ A such that x ≱HYP B.

Exercise 3.14. Show that x ∈ HYP if and only if every countable ω-model
of ZFC contains x. [Hint: every ω-model of ZFC contains every HYP real by
absoluteness. For the other direction, use Exercise 3.13]

Exercise 3.15. Suppose A ⊆ ωω is Σ1
1 and nonempty and B ⊆ ω is not ∆1

1.
Then show there is some x ∈ A such that x ≱HYP B and ωx1 = ωck

1 .

Exercise 3.16. Show that ωx1 = ωck
1 iff for every Σ1

1 set A ⊆ ωω, either x ∈ A
or there exists a Σ1

1 set B disjoint from A so that x ∈ B. [Hint: To prove ←,
note that for each e, x ∈ {x : φxe computes an illfounded subtree of ω<ω}} or x
is in a Σ1

1 set disjoint from this set. Then apply Spector boundedness.]

3.3 The G0 dichotomy

In this section, we’ll study the problem of graph coloring. Recall that if G is
a graph (symmetric irreflexive relation) on a vertex set X, then a Y -coloring
of G is a function c : X → Y such that if x0, x1 ∈ X are G-adjacent, then
c(x0) ̸= c(x1). A G-independent set is a set A ⊆ X so that A contains no two
adjacent points. Note that A is independent iff we could assign every element
of A to be the same color in a coloring of G.

In particular, we’ll prove the G0 dichotomy of Kechris, Solecki, and Todor-
cevic which characterizes when a Σ1

1 graph has a ∆1
1 ω-coloring. We begin with

an example of a class of graphs which do not admit ω-colorings.

Definition 3.17. Suppose S ⊆ 2<ω. Then let GS be the graph with vertex set
2ω where x, y ∈ 2ω are adjacent if there exists some s ∈ S such that x = s⌢i⌢z
and y = s⌢1 − i⌢z for some i, z. That is, x and y differ by exactly one bit,
which occurs immediately after s, which is an initial segment of x and y.

Say that S is dense if for every s ∈ 2<ω there exists t ∈ S such that t
extends s.

Lemma 3.18. If S is dense, There is no Baire measurable ω-coloring of GS.

Proof. Let Cn = {x ∈ 2ω : c(x) = n}. Then by the Baire category theorem,
there is some n such that Cn is nonmeager. Hence, there is some nonempty
open set U such that Cn is comeager in U . It now suffices to prove the following
claim, which contradicts c being a coloring:

Claim: if A is comeager in a basic open set Ns, then A contains two GS-
adjacent points.
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To prove the claim, we begin by noting that since S is dense, by extending
Ns we may assume s ∈ S. Now let f : Ns⌢0 → Ns⌢1 be the function where
f(s⌢0⌢z) = s⌢1⌢z. Note that f maps each x ∈ Ns to a point it is adjacent to.
f is a homeomorphism, so since A is comeager in Ns⌢0, f(A∩Ns⌢0 is comeager
in Ns⌢1. But A is also comeager in Ns⌢1, so f(A ∩Ns⌢0 and A intersect. Any
x in this intersection has x, and f−1(x) are in A and are GS-adjacent.

Suppose now S = {sn}n∈ω is dense and |sn| = n, so S contains one string of
each length. By abuse of notation we use G0 to denote the graph GS (though
it depends on the particular sequence S we have chosen). It will turn out that
all such GS are bi-embeddable.

In this case there is an inductive way of understanding the graph GS as a
sort of inverse limit. Let GmS be the graph on 2m where tt′ ∈ 2n are adjacent if
t = s⌢i⌢r and t′ = s⌢1− i⌢r for some i, r, sm. So x, y are GS-adjacent iff there
exists some m so that x ↾ m and y ↾ m are GmS -adjacent. Then G0

S is the graph
with one vertex (the empty string), and Gm+1

S is the graph obtained by taking
two copies of GmS and adding a single edge between to corresponding vertices
(sn

⌢0 and sn
⌢1). For example, this inductive characterization can be used to

show the following:

Exercise 3.19. Suppose S ⊆ 2<ω has exactly one string of each length. Then
for every m, GmS is acyclic. Hence, GS is acyclic.

If G is a graph on the vertex set X andH is a graph on the vertex set Y , then
a homomorphism from G to H is a map f : X → Y such that if x0, x1 ∈ X
are G-adjacent, then f(x0), f(x1) are H-adjacent. Note that this implies that
if c : Y → Z is a Z-coloring of H, then c ◦ f is a Z-coloring of G.

Theorem 3.20 (Kechris, Solecki, Todorcevic, the G0 dichotomy [KST]). Sup-
pose G is a Σ1

1 graph on ωω. Then exactly one of the following holds.

1. G has a ∆1
1 ω-coloring

2. There is a continuous homomorphism (computable from O) from G0 to
G.

Proof. By Lemma 3.18 options (1) and (2) are mutually exclusive.
Consider the set of Σ1

1 sets A that are G-independent. This collection is Π1
1

on Σ1
1. Hence, every Σ1

1 G-independent set is contained in a ∆1
1 G-independent

set.
Let C =

⋃
{A : A is ∆1

1 and G-independent}. Then C is Π1
1 since ∆1

1 =
effectively Borel. Now we break into two cases:

Case 1: C = ωω.

Exercise 3.21. In this case, G has a ∆1
1 coloring.

Case 2: Fix a sequence S = {sn}n∈ω so G0 = GS . We will construct a
continuous homomorphism f : 2ω → ωω from G0 to G. By abuse of notation we
will use G ⊆ ωω × ωω to indicate the edge relation of the graph.
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Let A∅ = ωω\C. Note that for every Σ1
1 set A

′ ⊆ A∅, we have that A
′×A′∩G

is nonempty.
For each m, we associate to each s ∈ 2m a Σ1

1 set As where if s ⊆ t,
then As ⊆ At. Our homomorphism f : 2ω → ωω will be f(x) = y where
{y} =

⋂
mAy↾m. To ensure that if x0, x1 are G0-adjacent, then f(x0) and

f(x1) are G-adjacent, we will also associate to each edge (s, t) of GmS a Σ1
1 set

A(s,t) ⊆ ωω × ωω where A(s,t) ⊆ G consists only of G-related points. Finally,
we will have that

π0(A(s,t)) = As and π1(A(s,t)) = At (*)

where π0 and π1 are the projections onto the 0th and 1st coordinates respec-
tively. We will also ensure that if (x0, x1) is an edge inG0, then

⋂
mAx0↾m,x1↾m =

{(f(x0), f(x1)}, and hence f(x0), f(x1) are G-related since A(s,t) ⊆ G.
Inductively, suppose we have define As and As,t for all s ∈ 2m and edges

(s, t) in GmS . Now we proceed as follows. Let A′
(sm⌢0,sm⌢1) = Asm × Asm ∩ G.

For every s ∈ 2m, let A′
s⌢0 = A′

s⌢1 = As. For every edge (s, t) in GmS , let
A′

(s⌢0,t⌢0) = A′
(s⌢1,t⌢1) = A(s,t). Note that (*) does not hold here because the

projections of the set A′
(sm⌢0,sm⌢1) are not necessarily Asm⌢0 and Asm⌢1.

However, if we refine any set A′
s, then to make (*) hold we can replace any

adjacent A(s,t) with As×ωω∩A(s,t) and any adjacent A(t,s) with ω
ω×As∩A(t,s).

Similarly if we refine any set A′
(s,t) we can replace A′

s with π0(A
′
(s,t)) and A

′
t with

π1(A
′
(s,t)). Since G

m+1
S is acyclic, this process will finish, having refined each set

associated to each set or vertex once, ending with an assignment satisfying (*).
Hence, we can begin by fixing the projections of the set A′

(sm⌢0,sm⌢1). Then for

each A′
s and A

′
(s,t), we play a move in the Choquet game as player I, replace the

set with the response of player II, and then refine again to ensure (*) holds. It
is clear that the resulting f will be a homomorphism from G0 to G.

Corollary 3.22. If G is a Σ1
1 graph on ωω, then if there is a ∆1

1 ω-coloring of
G, there must be a ∆1

1 coloring of G.

Proof. Suppose not. Then there would be a Borel homomorphism from G0

to G and also a Borel ω-coloring of G. But this is a contradiction, since the
composition would be a Borel (and hence Baire measurable) coloring of G0.

3.4 Silver’s theorem

Perfect set-type properties occur for many structures more complex than just
sets. For example,

Theorem 3.23 (Harrington, Marker, Shelah [HMS]). Every ∆1
1 partial order

either is a union of countable many Borel chains, or has a perfect set of incom-
parable elements.

Our focus in this section is on Silver’s theorem
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Theorem 3.24 (Silver). Suppose E is a Π1
1 equivalence relation on ωω. Then

either E has countably many equivalence classes, or there is a perfect set of
E-inequivalent elements.

We’ll prove this theorem in several ways. Our first proof is due to Ben Miller.
This proof uses the G0 dichotomy to isolate a closed subset of ωω on which E
is meager, and then applies Mycielski’s theorem (Exercise A.5).

Miller has shown that a huge number of dichotomies in descriptive set theory
can be proved this way, by using graph-theoretic dichotomies to isolate the
correct setting for running a Baire category argument to prove the theorem.
For more see Miller’s Paris lectures [Mi].

Miller’s Proof of Theorem 3.24: Consider the graph G on ωω where x G y if
x�Ey. Note that E is Π1

1 so has the Baire property. If G has a countable Borel
coloring, then clearly E has countably many classes, since E-unrelated points
must be assigned different colors.

Suppose now there is a continuous homomorphism f : 2ω → ωω from G0 to
G. Then let x E′ y iff f(x) E f(y).

We claim that for each x, [x]E′ = {y : x E′ y} is meager. Otherwise, [x]E′

would be comeager in some basic open set Ns which contains two G0 related
points by the claim in Lemma 3.18, which is a contradiction since x G0 y →
f(x) G f(y)→ f(x)�Ef(y)→ x��E′y.

Hence, by the Kuratowski-Ulam theorem (Exercise A.6), E′ is meager, and
so by Mycielski’s theorem (Exercise A.5), there is a perfect closed set C ⊆ 2ω

of E′-unrelated points. f ↾ C must be an injection since f(x) = f(y)→ x E′ y.
Hence f(C) is the injective continuous image of a perfect set which is therefore
perfect.

Next, we give a forcing proof of Silver’s theorem. This was Harrington’s first
application of Gandy-Harrington forcing. We begin with an exercise, that every
Gandy-Harrington generic filter intersects to a single real:

Exercise 3.25. Consider the forcing partial order P of Σ1
1 sets under inclusion.

There are countably many dense sets Dn ⊆ P so that if G ⊆ P is a generic filter
which meets every Dn, then

⋂
G is a singleton {g}.

We will use Mostowski’s Absoluteness theorem in Harrington’s proof.

Exercise 3.26. Suppose M is a transitive model of a sufficiently large fragment
of ZFC, and φ(x) is a Σ1

1 formula. Then M |= φ(x) ↔ V |= φ(x). [Hint: use
the absoluteness of wellfoundedness]

Harrington’s Proof of Theorem 3.24: By the first reflection theorem, every Σ1
1

set A that is contained in a single E-class has some ∆1
1 B ⊇ A where B is

contained in a single E-class. Now let C =
⋃
{A : A is ∆1

1 and contained in a
single E-class}. Then C is Π1

1. We now have two cases.
Case 1: C = ωω. Then clearly E has countably many classes.
Case 2: Otherwise, let A = ωω \ C. Fix a countable transitive model M of

a sufficiently large fragment of ZFC. Let P be Gandy-Harrington forcing.
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We claim A × A ⊩P×P ẋ0�Eẋ1, where ẋ0 and ẋ1 are names for the first and
second coordinates of the generic real. Suppose otherwise. Then it must be
that A0 × A1 ⊩P×P ẋ0 E ẋ1 for some A0 × A1 extending A× A. We will build
(x0, x1) and (x0, x

′
1) (with the same first coordinate) which are P × P generic

over M and extend A0 × A1, but where x1�Ex
′
1. This will contradict the fact

that we have forced x0Ex1 and x0Ex
′
1 combined with Σ1

1 absoluteness.
To build these generics, fix an enumeration of the countably many dense sets

in P × P contained in M . We define Bn ∈ P and Σ1
1 sets Cn ⊆ ωω × ωω (with

Cn ⊆ E) so that {(x0, x1)} =
⋂
nB0×π0(Cn) and {(x0, x′1)} =

⋂
nB0×π1(Cn).

Let B0 = A0, and C0 = A1 × A1 ∩ E. Since every condition A′ extending
A has A′ × A′ meets E, we have that C0 is nonempty. To ensure that (x0, x1)
and (x0, x

′
1) are M -generic, we let B∗

n ×D∗
n extend Bn × π0(Cn) meet the nth

dense set in P × P contained in M . Then let C∗
n = D∗

n × ωω ∩ Cn. Next, let
B∗∗
n × D∗∗

n extend B∗
n × π0(C∗

n) meet the nth dense set in P × P contained in
M . Then let C∗∗

n = ωω ×D∗∗
n ∩ C∗

n. Let Bn+1 = B∗∗
n , and Cn+1 = C∗∗

n . This
finishes the proof of our claim.

Now let A∅ = A. We build a map σ 7→ Aσ from 2<ω to P, ensuring that for
any σ ̸= τ with |σ| = |τ |, we have Aσ × Aτ meets the nth dense set in P × P
contained in M . Then we have a corresponding function f : 2ω → ωω defined
by f(x) = y if {y} =

⋂
nAx↾n. Clearly for every x ∈ 2ω, f(x) is P-generic

over M , and for every x0, x1 ∈ 2ω, (f(x0), f(x1)) is P × P generic, and hence
f(x0)�Ef(x1), since A × A ⊩ ẋ0�Eẋ1. Our desired perfect set of E-inequivalent
elements is f(2ω).

In contrast to the situation for Π1
1 equivalence relations, Σ1

1 equivalence
relations may have ω1 many classes, but no perfect set of inequivalent elements:

Exercise 3.27. Consider the equivalence relation where x E y if ωx1 = ωy1 .
Show that E is Σ1

1 but has no perfect set of inequivalent elements.

Burgess has used Harrington’s ideas to prove the following:

Theorem 3.28 (Burgess). Suppose E is a Σ1
1 equivalence relation. Then E

has either at most ω1 many classes, or there is a perfect set of E-inequivalent
points.

Fix a complete first-order theory T in the language L. It is a famous conjec-
ture of Vaught that T has either countably many or continuum many countable
models. Note here that the equivalence relation of isomorphism of models of T
with universe ω is a Σ1

1 equivalence relation. However, this equivalence relation
has the special property that it is generated by a continuous action of the Pol-
ish group S∞ of permutations of ω. More generally, the following is an open
question:

Open Problem 3.29 (The topological Vaught conjecture). Suppose a Polish
group G acts continuously on a Polish space X. Then either this action has
countably many orbits, or there is a perfect set a points that are pairwise in
different orbits.
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3.5 The Polish space of hyperlow reals with basis of Σ1
1

sets

Anther way of formalizing Harrington’s proof is by doing a genuine Baire cate-
gory argument, but on a Polish subspace of ωω where the Σ1

1 sets form a basis.

Exercise 3.30. Show that the set X = {x ∈ ωω : ωx1 = ωck
1 } is a Polish space

when equipped with the topology generated by the Σ1
1 sets. [Hint: let S be the

set of Σ1
1 subsets of ωω. Show that f : X → 2ω defined by f(x)(A) = 1 if x ∈ A

and f(x)(A) = 0 if x /∈ A is a continuous injection onto its image and hence a
homeomorphism onto its image. This is because {x : f(x)(A) = 0} =

⋃
{B : B

is Σ1
1 and B ∩ A = ∅} is Σ1

1. Finally, show ran(f) is a Gδ subset of 2ω, and is
hence Polish. Use Exercise 3.16 and the same idea as the winning strategy for
player II in Choquet game for Σ1

1 sets.

We can then use a genuine Baire category argument mirroring Harrington’s
proof to replace the use of forcing and Mostowski absoluteness. Let X2 =
{(x0, x1) ∈ ωω × ωω : ωx0⊕x1

1 = ωck
1 } equipped with the topology of Σ1

1 sets.
Then letting A = ωω \C be as in Harrington’s proof, we can mirror Harrington’s
proof to show that E is meager in A×A ∩X2, then use Mycielski’s theorem.

3.6 Louveau’s theorem

In this section, we will prove Louveau’s characterization of lightface ∆1
1 that are

boldface Σ0
α. We will prove a stronger version of this theorem which is based

on Σ1
1 separation.

Theorem 3.31 (Louveau). Suppose A0, A1 ⊆ ωω are disjoint Σ1
1 sets, and there

is a set A separating A0, A1 which is Σ1
1 and also Σ0

α for α < ω1. Then there
is a Σ0,x

α set A′ separating A0, A1 where x ∈ HYP.

Corollary 3.32. If A ⊆ ωω is ∆1
1 and Σ0

α for α < ωck
1 , then A is Σ0,x

α for some
x ∈ HYP.

Proof. Let τ be the Gandy-Harrington topology on ωω, let τ1 be the usual Polish
topology, and let τα for α > 1 be the topology on ωω generated by the sets that
are Σ1

1 and Π0
α. Note that all these topologies have a countable basis.

We will prove the following by induction on α < ωck
1 .

(*) If A is Σ1
1, then A

α
, the closure of A in τα, is Σ

1
1.

(**) If A is Σ0
α, then there is a τα-open set A∗ so that A△A∗ is τ -meager.

(***) If A0, and A1 are disjoint Σ1
1 sets, and A is a Σ0

α set separating them,
then A0 and A1

α
are disjoint, and there is a Σ0,x

α set separating them for
some x ∈ HYP.

We begin with the case α = 1. Here (*) and (**) are clear. (Note that x /∈ A
iff ∃s(x ∈ Ns∧Ns∩A = ∅). To prove (***), consider {(x, s) : x ∈ Ns∧Ns∩A1 =
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∅}. By Theorem 2.15 there is a Π1
1 function f : ωω → ω<ω such that if x /∈ A1,

then Nf(x) ∩A1 = ∅. Now

B0 = {s ∈ ω<ω : Ns ∩A1 = ∅} is Π1
1,

and
B1 = {s ∈ ω<ω : (∃x ∈ A0)f(x) = s} = is Σ1

1.

(since B1 = {s ∈ ω<ω : (∃x ∈ A0)∀t ̸= sf(x) ̸= t}). Clearly B1 ⊆ B0. So by
Σ1

1 separation, there is a ∆1
1 set C so that B1 ⊆ C ⊆ B0. Our separating set is⋃

{Ns : s ∈ C} which is Σ0,C
1 .

The inductive step is left as an exercise.

3.7 Further results

Gandy-Harrington forcing has been remarkably useful for proving dichotomy
theorems in descriptive set theory. For example, it is used in the proof of
dichotomies about the structure of Borel partial orders [HMS], and Solecki’s
dichotomy characterizing when a Borel function is piecewise continuous [So].

Many of the most spectacular uses of Gandy-Harrington forcing have been
in the theory of Borel equivalence relations. For example, Harrington, Kechris,
Louveau’s Glimm-Effros dichotomy [HKL], Kechris and Louveau’s classification
of hypersmooth Borel equivalence relations [KL], and Hjorth’s turbulence di-
chotomy [H].
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4 Effective analysis of forcing and ideals

4.1 Hechler forcing; computation from fast-growing func-
tions

Solovay has shown that x ∈ ωω can be computed from sufficiently fast-growing
functions iff x is ∆1

1. In this section, we’ll give a proof of this fact using Hechler
forcing.

Definition 4.1. Say that y ∈ ωω is a modulus for x ∈ ωω if for all z ≥ y
(i.e. (∀n)z(n) ≥ y(n), we have z ≥T x. Say that y is a uniform modulus for
x if there is a program e so that for all z ≥ y we have z ≥T x via e. That is,
Φe(z) = x.

First, we will prove that if x has a modulus, then x has a uniform modulus.
We will prove this using Hechler forcing.

Definition 4.2. Hechler forcing is the forcing where conditions are pairs (s, x)
where s ∈ ω<ω and x ∈ ωω, and (s∗, x∗) ≤ (s, x) iff

• s∗ ⊇ s

• (∀n ∈ dom(s∗) \ dom(s))s∗(n) ≥ x(n).

• ∀nx∗(n) ≥ x(n).

A Hechler generic filter G is in bijective correspondence with the associated
Hechler generic real g =

⋃
{s : (s, x) ∈ G}, where g ∈ ωω. We think of a

condition (s, x) as specifying an initial segment s of the generic real, and a
function x that the remaining values of g must grow at least as fast as.

We’ll prove that if x has a modulus, then x has a uniform modulus using
Mostowski absoluteness.

Lemma 4.3 (Groszek-Slaman). If x has a modulus, then x has a uniform
modulus.

Proof. Let y be a modulus for x. Let g be a Hechler generic real over V extending
the condition (∅, y). The sentence that y is a modulus for x is Π1

1 and hence
absolute and true in V [g] by Exercise 3.26. Since g ≥ y, we must have that
there is some e so that Φe(g) = x. Hence, some condition (s, y′) ⊩ Φe(g) = x.

Consider the oracle Turing machine program e′ so that φze′(n) searches for
any s∗ ∈ ω<ω with s∗ ⊇ s and (∀n ∈ dom(s∗) \ dom(s))s∗(n) ≥ z(n) so that
φs

∗

e (n)↓, and then outputs the value φs
∗

e (n). We claim that y′ is a uniform
modulus for x witnessed by the program e′.

First, if z ≥ y′ and φze′(n) ↓, then we must show φze′(n) = x(n). This
is because if s∗ is the string found by this program making φs

∗

e (n) ↓, then
(s∗, z) ≤ (s, y) is a condition, and so (s∗, z) ⊩ Φe(g) = x, so φs∗e (n) = x(n)
by absoluteness.

Now, we must show that φze′(n) halts for every n provided z ≥ y′. Since
z ≥ y′, we have (s, z) ⊩ Φe(g). But then taking a Hechler generic real g
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extending (s, z), we must have that φge(n)↓ and so it halts relative to a finite
initial segment s∗ ⊆ z. So φze′ must eventually halt, since we have found at least
one such string s∗.

Now we show that any real with a uniform modulus has a ∆1
1 definition.

Lemma 4.4. If x has a uniform modulus, then x is ∆1
1.

Proof. Fix a uniform modulus y for x witnessed by the program φe. Then x
has a Σ1

1 definition:

x(n) = m↔ ∀s ∈ (ω<ω)s ≥ yφse(n)↓→ φse(n) = m.

so x is ∆1
1 by Exercise 2.5.

Finally, we can conclude Solovay’s theorem.

Theorem 4.5 (Solovay). x ∈ ωω is ∆1
1 iff it has a modulus.

Proof. If x has a modulus, it has a uniform modulus by Lemma 4.3, and hence
is ∆1

1 by Lemma 4.4.
In the other direction, it is clear that if x has a modulus, and y ≤T x, then

y has a modulus. So it suffices to show that for each computable oracle code a,
∅(a) has a uniform modulus witnessed by the program e(a), where a 7→ e(a) is
uniformly computable. This is an easy transfinite induction.

4.2 The Ramsey property

Solovay’s original proof of Theorem 4.5 used an effective analysis of the Ramsey
property. We give this effective analysis in this section.

Definition 4.6. If A ⊆ ω, let [A]ω be the collection of infinite subsets of A
and [A]<ω be the set of all finite subset of ω. We can identify [ω]ω with the
closed set of increasing elements {x ∈ ωω : (∀n)x(n) < x(n+ 1)} by identifying
an element of [ω]ω with its increasing enumeration. We endow [ω]ω with this
Polish topology. Say X ⊆ [ω]ω has the Ramsey property if there exists an
infinite A ⊆ ω such that [A]ω ⊆ X, or [A]ω ∩X = ∅.

The Ramsey property is connected with Ramsey’s theorem in the following
way. Suppose f : [ω]2 → 2. Then to f we can associate the open set Xf = {A ∈
[ω]ω : f({A(0), A(1)}) = 0}. (Here by A(0) we mean the least element of A,
and by A(1) we mean the least element of A \min(A).) Then if [A]ω ⊆ Xf or
[A]ω ∩Xf = ∅, then A is f -homogeneous.

Ramsey’s theorem asserts that certain open subset of [ω]ω have the Ramsey
property. However, the collection of sets with the Ramsey property is much
larger:

Theorem 4.7 (Galvin-Prikry, Silver). Every Σ1
1 set has the Ramsey property.
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We will prove a pair of theorems due to Solovay. Our first will given an
example of a closed set so that no witness to the fact that it has the Ramsey
property can be in HYP. Our proof will rely on Kőnig’s lemma:

Exercise 4.8 (Kőnig’s lemma). Let T ⊆ ω<ω be finitely branching, so each
t ∈ T has finitely many successor in T . Then T has an infinite branch iff T is
infinite. Furthermore, T ′ can compute an infinite branch in T if it has one.

Theorem 4.9 (Solovay). There is a lightface Π0
1 set X ⊆ [ω]ω such that if

A ∈ HYP, then neither [A]ω ⊆ X nor [A]ω ∩X = ∅.

Proof. Let T ⊆ ω<ω be a computable illfounded tree with no HYP branches.
Let T ′ = {t ∈ ω<ω : ∃(s ∈ T )|s| = |t| ∧ (∀n ∈ dom(t))s(n) ≤ t(n)}. It is easy
to see that T ′ is also a computable illfounded tree, and [T ′] = {x ∈ ωω : ∃y ∈
[T ](∀n)(y(n) ≤ x(n)} by Kőnig’s lemma.

Using the bijection between increasing elements of ωω and [ω]ω, let X =
[T ′] ∩ [ω]ω. Now since [T ′] is closed upward under ≤, it is clear there is no
A such that [A]ω ∩ X = ∅. However, no x ∈ X is in HYP. This is because
if x ∈ HYP, then S = {s ∈ ω<ω : (∀n ∈ dom(s))s(n) ≤ x(n)}, is a finitely
branching tree. If there was an infinite branch in S ∩ T , then it would be
computable in x′ by Kőnig’s lemma.

Solovay’s proof of Theorem 4.5 was based on the following contrasting result:

Theorem 4.10 (Solovay). Suppose X ⊆ [ω]ω is open, and ∀A ∈ [ω]ω([A]ω∩X ̸=
∅). Then there is exists A ∈ HYP such that [A]ω ⊆ X.

Our proof of this Theorem is due to Avigad [A], and is based on the following
proof that all open sets have the Ramsey property:

Lemma 4.11. If X ⊆ [ω]ω is open, then X has the Ramsey property.

Proof. For this proof, we view X as a subset of the increasing sequences in ωω,
and only work with s ∈ ω<ω and x ∈ ωω, that are increasing. Let U be a
nonprincipal ultrafilter on ω.

Let S be an upwards closed set determining X, so X = {x : (∃s ∈ S)s ⊆ x},
and if s ∈ S and s ⊆ s′, then s′ ∈ S. Say that an increasing sequence s ∈ ω<ω is
0-good if s ∈ S. Say that s is α-good if {n : s⌢n is β-good for some β < α} ∈ U .
Say that s is bad if s is not α-good for any alpha.

Case 1: ∅ is α-good for some α. Then we build an infinite set A ⊆ ω
by recursion as follows. Let s0 = ∅. Suppose we have determined the first n
elements sn of A, where every subsequence of sn is β-good for some β. Now let
s0n, . . . , s

k
n be all subsequences of sn. For each i ≤ k, let V ik = {n : α is least

such that sin is α-good, and either α = 0, or sin
⌢n is β-good for β < α}. So

V in ∈ U . Let Vn =
⋂
i≤k V

i
n, so Vn ∈ U is nonempty. Finally, let sn+1 = sn

⌢m
where m ∈ Vn.

We claim any subset of A is in X. Suppose B =
⋃
n tn ∈ [A]ω where tn is

the finite initial segment of B of length n. Then by construction, tn is αn-good
for some ordinal α, and for every n, either αn > αn+1, or αn = 0. Because there
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is no infinite descending sequence of ordinals, there must therefore be some n
so tn is 0-good. So B ∈ X.

Case 2: ∅ is bad. The we build sn by recursion as in Case 1 where every
subsequence of sn is bad. Let A =

⋃
n sn. Then [A]ω ∩X = ∅. This is because

if t is an initial segment of some B ∈ [A]ω, then t is bad, and hence t does not
witness B ∈ X.

Exercise 4.12. Every Borel set has the Ramsey property.

To prove Theorem 4.10, we will effectivize Lemma 4.11. We will use the
fact that U does not need to be an ultrafilter; it can be a countable filter which
decides the countably many sets used in the definition of goodness. We further
use the fact that if no [A]ω is disjoint from X, then in this analysis, we must
have that ∅ must be 0-good, and since this is a computable transfinite process,
it must terminate in < ωck

1 many steps.

Proof of Theorem 4.10: Let S ⊆ ω<ω be so that X = {x : (∃s ∈ S)s ⊆ x}.
Since X is Σ0

1, S is computable. We may assume that S is closed upwards.
Let T be the tree of attempts to build some infinite A ⊆ ω so that [A]ω∩X =

∅. That is, T = {s : s is increasing and for all subsequences t of s, t /∈ S. T
is a computable tree. It is wellfounded since an infinite branch would yield an
infinite A ⊆ ω such that [A]ω ⊆ X.

Say s is 0-good if s ∈ S. Say that s is bad if s /∈ S and s /∈ T . Now we build
infinite sets Bα ⊆ ω which are decreasing mod finite. We think of these sets
as generating an increasing sequence of filters Uα = {B : B ⊇∗ Bα} on ω. We
classify each s ∈ T as good or bad as follows. We begin with B0 = ω and proceed
by transfinite induction. At stage α we consider the element s of rank α in the
Kleene-Brouwer order ≤KB↾ T (so in particular we have already classified all
extensions of s as good or bad). Consider As = {n : s⌢n is β-good for β < α}.
If As ∩ Bα is finite (so As ∈ Uα), then let Bα+1 = Bα, and say s is bad.
Otherwise, say s is α-good, and let Bα+1 = Bα ∩As. At limit stages, let Bα be
the diagonal intersection of Bβ : β < α, so Uα ⊇ Uβ for β < α.

We finish as in Lemma 4.11. It must be that ∅ is α-good for some α, otherwise
we can construct some infinite A ⊆ ω so that [A]ω∩X = ∅. It is an easy exercise
that we can carry out the above construction and the construction in Case 1 of
Lemma 4.11 computably from ∅α+3 where α is the ordertype of ≤KB↾ T .

4.3 Coloring graphs generated by single Borel functions

A consequence of many dichotomies in descriptive set theory is that they lower
the complexity of the concepts involved from the obvious upper bounds. For
example, the set of closed sets C ⊆ ωω such that π[C] is a Σ1

1 graph on ωω

that admit a Borel countable coloring is naively Σ1
2, but since the set of graphs

which admit a continuous homomorphism from G0 is also Σ1
2, the set of analytic

graphs which admit a countable Borel coloring is ∆1
2 by the G0 dichotomy

(Theorem 3.20).
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In contrast then, a proof that some concept is Σ1
2 complete is often a strong

anti -dichotomy result.
Some recent results of this type concerns graphs generated by single func-

tions. If f : X → X is a Borel function on a Polish space X, let Gf be the graph
where x0, x1 ∈ X are adjacent if x0 ̸= x1, and f(x0) = x1 or f(x1) = x0.

Consider the shift function f : [ω]ω → [ω]ω on Ramsey space defined by:

S(A) = A \min(A)

The associated graph GS has no countable Borel coloring.

Exercise 4.13. GS has no countable Borel coloring. [Hint: use the fact that
every Borel set has the Ramsey property]

For a long time, it was an open question whether for any Borel function
f : X → X on a Polish spaceX, eitherGf has a finite coloring, or there is a Borel
homomorphism from GS to Gf . This was answered negatively by Pequignot [P],
who used a result of Marcone to show that the following:

Theorem 4.14 ([P]). The set of codes for Borel functions f such that there is
a Borel homomorphism from GS to Gf is Σ1

2 complete.

Shortly afterward, Todorcevic and Vidnyánszky ruled out any sort of di-
chotomy for countable colorability of graphs generated by a single function with
the following result.

Theorem 4.15 ([TV]). The collection of closed set C ⊆ [ω]ω such that GS ↾ C
is finitely Borel colorable is Σ1

2 complete.

Their proof uses ideas from the previous section, and has at its core the
following construction of a ∆1

1 set C ⊆ [ω]ω so that Gs ↾ C admits a finite Borel
coloring, but no finite ∆1

1 coloring.

Exercise 4.16. Suppose f : X → X is a Borel function on a Polish space. The
following are equivalent

1. There is finite Borel coloring of Gf .

2. There is a Gf -independent set A ⊆ X which is forward-recurrent that
is, ∀x ∈ X∃n > 0fn(x) ∈ A. [Hint: Let A = {x : c(x) is minimal such
that ∀n∃m > nc(fm(x)) = c(x)}.]

3. There is a Borel 3-coloring of Gf [Hint: let c(x) = 0 if x ∈ A, otherwise,
if n is least such that fn(x) ∈ A, then c(x) = 1 if n is odd, and c(x) = 2
if n is even.

Exercise 4.17 (DiPrisco, Todorcevic). Identify [ω]ω with increasing functions
in ωω as usual. For every x, GS ↾ {y : (∃n)y(n) ≤ x(n)} has a Borel 3-coloring.

Exercise 4.18. Let A ⊆ ω be Σ1
1 complete (and hence not Π1

1).
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1. Show that A = π[C] where C ⊆ ω× ωω is a Π0
1 set such that if (n, x) ∈ C

and (∀n)y(n) ≥ x(n), then (n, y) ∈ C. [Hint: use the idea in Theorem 4.9]

2. Let Cn = {x : (n, x) ∈ C}. Show that GS ↾ [ω]ω \ Cn} has a Borel finite
coloring iff n ∈ A.

3. Show that {n : GS ↾ [ω]ω \ Cn has a ∆1
1 finite coloring is Π1

1.

4. Conclude there is some n such that GS ↾ [ω]ω \Cn} has a Borel 3-coloring,
but no finite ∆1

1 coloring.

4.4 Π0
1 games

The perfect set property, the Baire property, and Lebesgue measurability can
be proved for definable sets using games. In this section we effectively analyze
games with Π0

1 payoff sets. We will use this analysis in the next few sections to
effectively analyze the Baire property, and Lebesgue measurability.

Definition 4.19. If T ⊆ ω<ω, let G(T ) be the two-player game:

I n0 n2 n4
II n1 n3

where the players alternate playing inters kk, and letting sk = (n0, . . . , nk−1),
player I wins iff player I wins if ∀nsk ∈ T .

Definition 4.20. A strategy for player I is a map σ : ω<ω → ω<ω such that
|σ(s)| = |s| + 1, and s ⊆ t → σ(s) ⊆ σ(t). Here if σ((n1, n3, . . . , n2k−1)) =
(n0, n2, . . . , n2k), then n0, n2, . . . , n2k are player I’s moves when player II plays
n1, n3, . . . n2k−1. We say this strategy is a winning strategy if for possible
player of player II n0, n2, . . ., if player I plays according to σ, then player I
wins. We define a strategy for player II similarly.

Theorem 4.21. Suppose T is a computable tree. Then either player I or player
II has a winning strategy in G(T ). Furthermore,

1. If II wins, then there is a HYP winning strategy.

2. O can uniformly compute whether player I or player II has a winning
strategy in the game G(T ), and a strategy for this player.

Proof. Assuming determinacy for closed sets, (1) is trivial. Using a computable
bijection between ω and ω<ω, we can view a real σ ∈ ωω as a strategy for
I. Then it is easy to see that the set of winning strategies for I is a Π0

1 set.
Similarly for II. O can compute which of these sets is nonempty, and a strategy
for the associated player.

To prove (2) we will prove determinacy for closed sets using an ordinal
analysis, and then effectivize this proof. Define the following notion of rank for
s ∈ ωω even length in T as follows. Let T0 = {s ∈ T : (∃k)|s| = 2k}.
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• Tα+1 = Tα \ (n0, . . . , n2k−1)∀n2k∃n2k+1(n0, . . . , n2k−1, n2k, n2k+1) /∈ Tα}

• For limit λ, Tλ =
⋂
α<λ Tα.

Let rank(s) be the least α such that s /∈ Tα+1, if such as α exists, and rank(s) =
∞ otherwise.

If rank(∅) = ∞, then I has a winning strategy; they should play moves n2k
so that ∀n2k+1, the node (n0, . . . , n2k+1) has rank ∞. The definition of our
rank ensure that if (n0, . . . , n2k−1) has rank ∞, then (∃n2k)(∀n2k+1) so that
(n0, . . . , n2k+1) has rank ∞.

Now suppose rank(∅) = α for some countable ordinal α. Then we claim II
has a winning strategy. By the definition of our rank, we can ensure that each
of their moves n2k+1 produces a player (n0, . . . , n2k+1) which is either not in
T , or has smaller rank than their previous move. Since there is not an infinite
descending sequence of ordinals, II will eventually win.

Now if II has a winning strategy, we claim that we can find a HYP winning
strategy for II. Consider the computable wellfounded tree S of attempts to build
a winning strategy for player II. By an argument very similar to our proof of the
effective perfect set theorem, Theorem 2.4 we can consider the usual derivative
process on this tree S of strategies, and can relate it to the rank on T described
above, so that we will have ranked all the even length nodes of T once we
have finished the computable ordinal length derivative process on S. Thus, the
ranking described above stabilizes at some computable ordinal α, and by an
easy effective transfinite recursion, ∅(α+2) can compute a winning strategy for
II.

Exercise 4.22. Suppose T is a ∆1
1 tree, and II wins the game G(T ). Then

show that II has a hyperarithmetic winning strategy.

4.5 Effective analysis via games: Baire category

Now we can apply the analysis of Section 4.4 to the unfolded Banach Mazur
game to analyze Baire category.

Definition 4.23. Suppose A = π[T ] is a Σ1
1 set, where T ⊆ ω<ω × ω<ω is a

computable tree. The unfolded Banach Mazur game G∗(T ) is the game:

I (s0, t0) (s1, t1) (s2, t2)
II s∗0 s∗1

where s0 ⊆ s∗0 ⊆ s1 ⊆ s∗1 ⊆ . . . and t0 ⊆ t1 ⊆ . . ., and I wins if ∀n(sn, tn) ∈ T .

Exercise 4.24. If II has a winning strategy in the unfolded Banach-Mazur game
G∗(T ), then A = π[T ] is meager. If I has a winning strategy in the unfolded
Banach-Mazur game G∗(T ), then A is comeager in some basic open set Ns.
[Hint: use the winning strategies to define countably many dense open sets]

From the above, by a transfinite process pruning away basic open sets inside
which A is comeager, we get the following:
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Exercise 4.25. Every Σ1
1 set has the Baire property.

We can code the unfolded Banach-Mazur by a standard game G(T ) of the
sort considered in the previous section. From this we obtain the following:

Lemma 4.26. Let U ⊆ ω×ωω be a universal Σ1
1 set. Then {n : Un is meager}

is Π1
1.

Proof. Un is meager iff II has no winning strategy in the unfolded Banach-
Mazur game iff if the tree of strategies for player II described in Theorem 4.21
is wellfounded.

Theorem 4.27 (Thomason-Hinman’s basis theorem). If A ⊆ ωω is Π1
1 and

comeager, then there is an x ∈ A so that x ∈ HYP.

Proof. Since the complement of A is Σ1
1 and meager, there must be a winning

strategy for II in the corresponding unfolded Banach-Mazur game. By coding
this game into a standard game of the form G(T ), we have that since II has
a winning strategy in this game, it has a HYP winning strategy. Now playing
this winning strategy against any computable sequence of moves for player I
produces a HYP real in A.

Corollary 4.28. {x : ωx1 = ωck
1 } is comeager.

Proof. Since {x : ωx1 = ωck
1 } is a tailset, it is either meager or comeager. If it was

meager, then its complement would have a HYP element by Theorem 4.27.

Exercise 4.29 (Hyperjump inversion). x ≥h O iff ∃yOy ≡h x. [Hint: follow
the proof of Friedberg jump inversion in classical recursion theory, using the fact
that O can compute winning strategies in the Banach-Mazur game for Σ1

1 sets
to replace the classical fact that 0′ can compute the strong forcing relation for
Σ0

1 sentences]

We can use similar game-based techniques to analyze the effectivity of mea-
surability. Instead, we’ll give an alternate approach using scales, which also
works for Baire category.

4.6 Effective analysis via scales: measure

To begin, we have the following important characterization of measure for an-
alytic sets, which follows from the fact that the measure of a set is the sup of
the measures of its compact subsets (see Exercise B.2).

Exercise 4.30. Suppose µ is a Borel probability measure on ωω, and A ⊆ ωω

is a Σ1
1 set; the projection of a computable tree T , so A = π[T ]. Show that µ(A)

is the sup of µ(π[T ′]) over all finitely branching T ′ ⊆ T . [Hint: first uniformize
[T ] with a function f , use the measurability of the function f : A → ωω, and
then argue that for every ϵ > 0, we can find a compact set Aϵ ⊆ A so that
µ(Aϵ) > µ(A)− ϵ, and f ↾ Aϵ is continuous.]
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The importance of this exercise is that its lets us compute the complexity of
measurability.

Exercise 4.31. For every rational number r, and computable measure µ on ωω,
if U ⊆ ωω × ωω is Σ1

1, then {x : µ(Ux) > r} is Σ1
1. Hence {x : µ(Ux) = 1} is Σ1

1

and {x : µ(Ux) = 0} is Π1
1. [Hint: begin by showing that if A ⊆ ωω × ωω is Π0

1,
then {x : µ(Ux) > r} is arithmetic. Then use Exercise 4.30]

From Exercise 4.31 we have the following important property of the null
ideal:

Corollary 4.32. Let µ be a a computable Borel probability measure, and Iµ be
the σ-ideals of nullsets of µ. Then if A ⊆ ωω × ωω is Π1

1, then {x : Ax /∈ Iµ}
and {x : ωω \Ax ∈ Iµ} is Π1

1.

Definition 4.33. Say that an ideals I is Π1
1 additive if for any transfinite

sequence (Aα)α<λ of sets Aα ∈ I, if the relation ≤ on A =
⋃
α<λAα defined by

x ≤ y iff (the least α such that x ∈ Aα) ≤ (the least β such that y ∈ Aβ)) is
Π1

1, then A ∈ I.

So for example, if µ is a computable measure on ωω, then Iµ is Π1
1 additive

by Exercise B.5.

Exercise 4.34. Show that the ideal of measure sets in ωω is Π1
1 additive. [Hint:

use the Kuratowski-Ulam theorem]

Theorem 4.35. Suppose I is a Π1
1-additive ideal of subset of ωω such that for

every Π1
1 set C ⊆ ωω × ωω, we have {x : Cx /∈ I} and {x : ωω \Cx ∈ I} are Π1

1.
(For example, I = Iµ for a computable Borel probability measure µ). Then if
A ⊆ ωω is Π1

1 and A /∈ I, then there is some x ∈ A so that x ∈ HYP.

Proof. Fix the very good Π1
1 scale (φn) on C from Lemma 2.22. Then for each

n, let An,α = {x ∈ A : φn(x) = α} so A =
⋃
αAα. Since A /∈ I, there must be

some α such that An,α ∈ I. Let An = An,α where α is least such that An,α /∈ I.
So An,α = {x : {y : y ≤∗

φn
x ∧ x ≤∗

φn
y} /∈ I ∧ (ωω \ {z : x ≤∗

φn
z}) ∈ I} is Π1

1.
Then

⋂
nAn = {x}, and we claim x ∈ HYP.

The big difference between this theorem and the basis Theorem 2.23 for Π1
1

sets in general is that determining whether a Π1
1 set is nonempty is Σ1

2. However,
determining whether a Π1

1 set is not in I is much simpler; it is Π1
1. We have

that x ∈ Ns iff Ns ∩ An /∈ I (which is Π1
1) iff for all t incompatible with s,

Nt ∩An ∈ I (which is Σ1
1). So x is ∆1

1.

Exercise 4.36. If µ is a computable Borel probability measure on ωω, then
µ({x : ωx1 = ωck}) = 1. [Hint: the complement of {x : ωx1 = ωck} is Π1

1, and if
this set has positive measure, it would have a HYP element.]

We note that the meager ideal also satisfies the hypothesis of Theorem 4.35.
Using the same idea, we can prove the following uniformization theorem for

sets with large sections:

Exercise 4.37. Suppose I is an ideal as in Theorem 4.35. Then if A ⊆ ωω×ωω
is Π1

1 and for every x, Ax /∈ I, then A has a ∆1
1 uniformization.
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5 Admissible sets, admissible computability, KP

5.1 ω-models of KP

Kripke-Platek set theory, or KP, is the following system of axioms in the lan-
guage of set theory, consisting roughly of ZF without the powerset axiom or
infinity, and with only ∆0 instances of separation and collection.

Definition 5.1. The axioms of KP are

1. Extensionality: (∀x)(∀y)(x = y ↔ (∀z)(z ∈ x↔ z ∈ y)).

2. Foundation: (∀x) [((∃y)y ∈ x)→ (∃y ∈ x)(∀z ∈ x)(z /∈ y)]

3. Pairing: ∀x∀y∃z(x ∈ z ∧ y ∈ z)

4. Union: ∀x∃y∀z ∈ x∀u ∈ z(u ∈ y)

5. ∆0-separation. For every ∆0 formula φ, ∀x∃y∀z(z ∈ x↔ z ∈ y ∧ φ(z))

6. ∆0-collection. For every ∆0 formula φ(x, y). ∀u(∀x ∈ u∃yφ(x, y)) →
(∃v)(∀x ∈ u)(∃y ∈ v)(φ(x, y)).

INF is the axiom of infinity: (∃x)[∅ ∈ x ∧ (∀y ∈ x)y ∪ {y} ∈ x]. We’ll often
work with the system KP+ INF.

KP is sufficient to prove a large amount of standard set theory. For example,
KP proves that the ordinals (i.e. transitive sets wellordered by ϵ) are linearly
ordered, and to define the rank function on sets. Recall that every linear order
has a maximal wellordered initial segment, and if M is a model of KP, we let
s(M) be the ordertype of the maximal wellordered initial segment of M . We
say that an ordinal of M is standard if it is in this wellordered initial segment.

The standard part of a model (M,E) is the set M ′ of x ∈ M such that
M |= rank(x) = α, and α is a standard ordinal. This is true if and only if the tree
of E-descending sequences (x0, . . . , xk) where xkExk−1 . . . Ex0 is wellfounded
in the real universe and has rank α. We identify the standard part of M with
its Mostowski collapse, and the relation E with ϵ. So for example, model M of
KP+ INF is an ω-model iff s(M) > ω iff ωM is the standard ω.

However, KP is still too weak to prove some basic facts, such as the following
important example. We’ll show below that Lωck

1
is a model of KP, and that

ωω ∩ Lωck
1

= HYP. Now there is an illfounded computable tree T . Since T is

computable, T ∈ Lωck
1
. However, Lωck

1
|= T is wellfounded, since Lωck

1
contains

only HYP reals and hence no infinite descending sequence in T .
In contrast, we have the following lemma.

Lemma 5.2. If T ⊆ ω<ω is a wellfounded tree (in the real universe), and M
is an ω-model of KP+ INF, then rank(T ) ∈M .

Proof. By transfinite induction. Suppose that for all s ∈ T with |s| ≥ 1, the
function rankTs

: Ts → ORD is in M . This function is ∆0 definable from s,
hence by ∆0 collection, there is a set of all such rank functions. But then by ∆0
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collection and the union axiom, M contains the set {rank(Ts) : s ∈ T ∧ |s| ≥ 1}.
But this set is the ordinal rank(T ). So the rank function rankT : T → ORD is
in M .

Corollary 5.3. If M is an ω-model of KP+ INF, then s(M) ≥ ωck
1 .

The analysis of L can be developed in KP, which is powerful enough to prove
that L |= V = L.

Exercise 5.4. The function α 7→ Lα from ordinals to sets Lα is a Σ1 (in fact
∆1) definable function in KP. If M is a model of KP, then LM = {x ∈M : M |=
x ∈  L} is a model of KP + V =  L. If M is transitive, then  LM =  Lα for some
α.

Now from KP, we can prove stronger forms of the separation and collection
axioms.

Exercise 5.5. ∆1 separation is provable from KP.

Exercise 5.6. Σ1 collection is provable from KP.

Exercise 5.7. If M is a ω-model of KP + INF, then the standard part of M
is also an ω-model of KP. [Hint: this is trivial for all the axioms except ∆0

separation.]

Exercise 5.8. For every x /∈ HY P , there is an ω-model of KP+ INF that does
not contain X. [Hint: the set of countable ω-models of KP+ INF form a ∆1

1 set.
Then use Theorem 3.13]

5.2 The Spector-Gandy theorem

Theorem 5.9. Lωck
1

is a model of KP + INF. It is the minimal ω-model of
KP+ INF.

Proof. There is a transitive model M of KP + INF that does not contain O.
(Use Exercise 5.8, then take the standard part of an ω-model of KP + INF not
contain O. ). We claim ωck

1 is not in this model. If it was, then Lωck
1

would
also be an element of M . But then O would in M ; the tree Tn computable by
φn is wellfounded iff there is a function f ∈ Lωck

1
such that f ranks the tree Tn.

Hence s(M) = ωck
1 . Finally, this implies LM = Lωck

1
.

Given any ω-model M of KP + INF, if M ′ is the standard part of M , then
LM

′
is also a model of KP by Exercises 5.7 and 5.4. Finally, Lωck

1
⊆ LM

′
by

Lemma 5.2.

Corollary 5.10. If φ(n) is a Σ1 formula, then for all n ∈ ω, Lωck
1
|= φ(n) iff

for every ω-model M of KP+ INF, M |= φ(n).

Proof. If M |= ¬φ(n), then by downwards absoluteness of Π1 formulas, Lωck
1
|=

¬φ(n), since Lωck
1

is the minimal model.
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Theorem 5.11 (Spector-Gandy). A ⊆ ω is Π1
1 iff there is a Σ1 formula φ so

that n ∈ A↔ Lωck
1
|= φ(n).

Proof. Fix a computable map n 7→ Tn so that n ∈ A iff Tn is wellfounded.
Then n ∈ A iff in Lωck

1
there is a function f : Tn → ORD so that s ⊊ t implies

f(s) > f(t).
Conversely, suppose φ(n) is Σ1, and n ∈ A↔ Lωck

1
|= φ(n). Then n ∈ A iff

for every omega-model of KP + INF, φ(n) is true. This is Π1
1, since the set of

ω-models of KP+ INF is ∆1
1.

We mention another variant of the Spector-Gandy theorem.

Exercise 5.12. A ⊆ ω is Π1
1 iff there is a arithmetical formula φ(x, n) so that

n ∈ A↔ ∃x ∈ HYPφ(x, n). [Hint: ← is trivial. For →. Fix a computable map
n 7→ Tn so n ∈ A iff Tn is wellfounded. Then Tn is wellfounded iff there exists
a map x : Tn → ωω so that for all s, t ∈ Tn, if s ⊊ t, then x(s) ≥T x(t)′, where
x(t)′ is the Turing jump of x(t). Show that if x is such a function, then if ρ(s)
is the least α such that x(s) ≤T ∅(α), then s ⊊ t implies ρ(s) > ρ(t).]
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A Baire category

In this section we very briefly give an overview of Baire category. For more, see
[K].

The notion of Baire category concerns topological smallness notions. Recall
that if X is a topological space, then a subset A ⊆ X is nowhere dense if
for every open U there exists an open V ⊆ U such that A ∩ V = ∅. This is a
natural notion of “topological smallness,” but it has a defect of not being closed
under countable unions. To remedy this we say a set A ⊆ X is meager if it
a countable union of nowhere dense set. This is the type of topological which
defines Baire category. The Baire category theorem says for nice X, the whole
space is not small in this sense.

Theorem A.1 (Baire category theorem). Suppose X is a complete metric
space. Then X is not meager, and hence X is not a countable union of meager
sets.

We say A ⊆ X is comeager if X \A is meager. We say that at set A ⊆ X
is Baire measurable if A differs from an open set by a meager set; there is an
open U such that A△U is meager.

Exercise A.2. Suppose A ⊆ ωω is Σ1
1. Then A is Baire measurable.

Exercise A.3. Show that {x ∈ ωω : ωx1 = ωck1 } is comeager.

If A ⊆ X, and U ⊆ X is open, we say that A is comeager inside U and
we write U ⊩ A if U \ A is meager. Note that this does not require A to be a
subset U . Indeed if U ⊩ A, then for all open V ⊆ U , V ⊩ A.

Exercise A.4. If X is Polish and A ⊆ X is Baire measurable, then A is
nonmeager iff there is some nonempty open set U such that A is comeager in
U .

Note that if U and V are open, and f : U → V is a homeomorphism, then
since f preserves notions of density, nowhere density, and meagerness, A ⊆ U
is meager (resp. comeager) in U iff F (A) is meager (resp. comeager) in V .

Exercise A.5 (Mycielski). If X is a perfect Polish space and R is a meager
relation, then there is a perfect closed set C ⊆ X of R-inequivalent elements.

Exercise A.6 (Kuratowski-Ulam). Suppose X,Y are Polish spaces and A ⊆
X × Y has the Baire property. Then A is meager iff for a comeager set of x,
Ax is meager.

B Measure

A Borel probability measure µ on a Polish space X is a countably additive
measure µ defined on the Borel subset of X, and such that µ(X) = 1. Se say
that A ⊆ X is a nullset if A ⊆ B for some Borel set such that µ(B) = 0. We
say that a set A ⊆ X is µ-measurable if it differs from a Borel set (equivalently
a Gδ set) by a nullset.
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Exercise B.1. If µ is a Borel probability measure, then µ is determined by its
values on basic open sets.

Exercise B.2. If µ is a Borel probability measure on X and A ⊆ X is µ-
measurable then µ(A) = supK compact µ(K) = infU open µ(U).

Exercise B.3. If µ is a Borel probability measure on X, and A ⊆ X is Σ1
1,

then A is µ-measurable.

Exercise B.4. Suppose X,Y are Polish spaces, µ is a Borel probability measure
on X, and f : X → Y is µ-measurable. Then show that for every ϵ > 0, there
is a Borel set A ⊆ X so that µ(A) > 1− ϵ, and f ↾ A is continuous.

Exercise B.5. Suppose X is a Polish space, µ is a Borel probability measure
on X, and (Aα)α<λ is a sequence of sets Aα ⊆ X, where each Aα is a µ-nullset.
Let A =

⋃
α<λAα and define the relation ≤ on A by x ≤ y iff α is least such

that x ∈ Aα, β is least such that y ∈ Aβ, and α ≤ β. Then if ≤ is µ × µ
measurable, then A is a nullset. [Hint: use Fubini’s theorem]

We’ll often deal with computable measure.

Definition B.6. Say that a Borel probability measure µ on ωω is computable
if there is a computable function f from ω<ω × ω → Q×Q so that if f(s, n) =
(as,n, bs,n), then µ(Ns) ∈ [as,n, bs,n], and |bs,n−as,n| ≤ 1/2n|. That is [as,n, bs,n]
is a sequence of closed intervals of length at most 1/2n containing the measure
of the basic open set µ(Ns).

So for example, Lebesgue measure λ on 2ω is a computable measure.
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