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1 Introduction: Hilbert’s program

1.1 A brief history of rigor in mathematics

Throughout much of history, mathematics was a practical tool seen as largely inseparable from its
applications. Even up through the 18th century, there was no sharp distinction drawn between
mathematics and physics, and many famous mathematicians such as Isaac Newton were equally
regarded as physicists. Little attention was paid to the formalization of mathematics, and axiomatic
foundations were not widely sought. Euclid’s axiomatic presentation of geometry was perhaps the
lone exception. Euclidean geometry was viewed by many as the epitome of logical precision and
rigor, though foundational questions remained such as the role of the parallel postulate.

This view began to change in the 19th and 20th centuries. Mathematics was increasingly seen
as a subject in its own right, whose interest did not depend only on its utility. Moreover, numerous
controversies moved the philosophy and foundations of mathematics into the spotlight. For example,
Lobachevsky’s discovery of models for non-Euclidean geometry in 1870s led to disagreements over
their acceptability.

An early example of this was the formalization of analysis. Newton and Leibniz’s calculus
was inarguably revolutionary and of immense practical use. However, putting calculus on precise
mathematical footing took hundreds of years and involved the efforts of many mathematicians.
Cauchy, Riemann, and Weierstrass were among those who laid the modern foundations of analysis.1

Another foundational controversy was Cantor’s set theory. Cantor’s work in the late 19th century
let to fierce debate over its validity. A notable opponent of Cantor’s work was Kronecker, who
famously opined that “Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk”
[“God made natural numbers; all else is the work of man”] [We]. Russell discovered his famous
paradox in 1901, which made urgent the problem of putting set theory on firm foundations. By
the 1920’s Zermelo and Fraenkel had proposed their axioms for set theory based on the iterative
conception of the set, which seemed to be a satisfactory resolution of Russell’s paradox.

1.2 Hilbert’s program

David Hilbert had long been involved with the formalization of mathematics. His work in this area
began with his axiomatization of geometry, culminating in his influential 1899 tome Grundlagen
der Geometrie. Since foundational questions had long been of particular importance to Hilbert, it
was not surprising that his famous list of 23 problems for the 20th century included the problem of
proving that the axioms of arithmetic are consistent.

Over the following couple decades, Hilbert’s views on the foundations of mathematics became
particularly influential. In the 1920s, Hilbert proposed what is now known as “Hilbert’s program”:
finding a finite axiomatization of all of mathematics, and then proving that these axioms are con-
sistent and complete. This would finally immunize mathematics from inconsistencies like Russell’s
paradox, and from constant arguments over foundations. Furthermore, Hilbert proposed that this
consistency proof should be carried out in arithmetic, whose validity could not be doubted.

Hilbert’s program was shown to be impossible in the 1930’s by Gödel, Turing, and others. Their
theorems sent shockwaves through the mathematical community and changed our views of mathe-
matical truth. Their theorems are also the traditional starting point for a course on computability
theory.

Key to proving Gödel and Turing’s theorems was making a precise definition of a computable
function. For centuries, mathematicians had an informal understanding of what an algorithm was:
a finitely describable deterministic procedure which can be executed in a finite amount of time.
This idea goes back at least to the ancient Greeks, with examples such as the Euclidean algorithm.

1In the 1960s, Abraham Robinson at UCLA finally made Leibniz’s original notion of infinitesimals rigorous with
his invention of nonstandard analysis.
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However, there was no formal definition of all possible algorithms; mathematicians had a subjective
view: “I know an algorithm when I see it”.

Church, Gödel, Herbrand, Turing, and others in the 1930s formally defined computability. Once
computable functions had been precisely defined, it now became possible to prove that there are
functions that are not computable. For example, one of Gödel’s theorems is that the function that
maps each sentence in the language of arithmetic to whether it is true or false in the structure
(N; 0, 1,+, ·, <) is not computable. Hence, the algorithm that searches for a proof of a sentence
or its negation from the axioms of PA and returns true or false once it finds such a proof cannot
compute this function. Since any sentence that is provable is true, this algorithm must not be total:
there must therefore be a sentence that is independent from PA. This is essentially Gödel’s first
incompleteness theorem. A modern proof of Gödel’s theorem is to show that the halting problem
can be reduced to the problem of computing truth for sentences in the language of arithmetic. Hence,
truth for sentences in arithmetic is incomputable as a corollary of Turing’s theorem that the halting
problem is incomputable.

It is worth pausing for a moment before we begin down this road. It may be too easy to forget
now the plausibility and appeal of Hilbert’s program. By the 1920’s essentially all mathematics
had been axiomatized, and so Hilbert’s program was “half complete”. Hilbert had also put forth a
plausible outline as to how consistency could be proven.

Before we start this journey of incompleteness and undecidability, we will sketch a proof of a
theorem that one could view as perhaps the last great triumph of Hilbert’s program: the completeness
and decidability of “elementary geometry”.

1.3 The Tarski-Seidenberg theorem*

Theorem 1.1 (Tarski-Seidenberg). The structure (R; 0, 1,+, ·, <) has quantifier elimination, and
a decidable theory: there is an algorithm which computes what sentences are true and false in this
structure.

Essentially all of elementary geometry can be formalized as first order statements in this structure,
and it includes a great deal of deep and interesting mathematics. For example, an interesting family
of problems that can be stated in this language is the kissing spheres problem. For each n, fixing a
central unit sphere in Rn, how many other unit spheres can one arrange that each touch the central
sphere, but do not intersect each other? This problem in dimension three was the source of a famous
disagreement between Isaac Newton and David Gregory, and remained unsolved for a few hundred
years (the answer is 12 as Newton conjectured and not 13 as Gregory suggested). Several sketched
solutions were given in the nineteenth century. However, it wasn’t until 1953 that the first detailed
correct proof was given by Schütte and van der Waerden. The four dimensional generalization of the
kissing spheres problem was settled by Musin in 2003: it there can be at most 24 kissing spheres.
The five dimensional version remains open, though the answer is known to be between 40 and 44.
See the paper [PZ] for a survey of progress on this problem.

Recall the definition of elimination of quantifiers.

Definition 1.2. Suppose S is a structure with language L. Then S has elimination of quantifiers
if for every quantifier free formula φ(x,y) in L having free variables x and y, there is a formula φ′

such that S ⊨ ∃xφ(x,y) ↔ φ′(y). We say that S has computable elimination of quantifiers if the
signature of S is computable, and there is an algorithm that takes as input a quantifier free formula
φ(x,y) and outputs a formula φ′(y) such that S ⊨ ∃xφ(x,y) ↔ φ′(y).

Note that we can similarly define quantifier elimination for theories. A theory T with language
L has quantifier elimination if for every quantifier free formula φ(x,y) in L having free variables x
and y, there is a formula φ′ such that T ⊨ ∃xφ(x,y) ↔ φ′(y).

6



Figure 1: Twelve unit spheres kissing a central (red) one. Based on Sage code of Robert Bradshaw:
http://en.wikipedia.org/wiki/File:Kissing-3d.png.

Exercise 1.3. Show that if a structure S has computable quantifier elimination, and the set of
quantifier-free sentences that are true in S is computable, then the theory of S is computable. [Hint:
observe that a formula can be computably put in prenex normal form, and then iteratively eliminate
each of the quantifiers.]

You already know many examples of elimination of quantifiers in the structure (R; 0, 1,+, ·, <).
For example, since a quadratic has a root if and only if its determinant is nonnegative,

∃x(a2x+ bx+ c = 0)

is equivalent to the quantifier-free formula

b2 − 4ac ≥ 0.

To prove that the structure (R; 0, 1,+, ·, <) has computable elimination of quantifiers, we will
build on an earlier algorithm due to Sturm which can be used to decide whether a polynomial with
rational coefficients has a root. One of the main tools used in Strum’s algorithm is polynomial
division, and we use the notation rem(p0(x), p1(x)) to indicate the remainder when p0(x) is divided
by p1(x), so that p0(x) = p1(x)q(x) + rem(p0(x), p1(x)), for some q(x), where rem(p0(x), p1(x)) has
degree strictly less than the degree of p1(x).

Theorem 1.4 (Sturm). Given a real polynomial p(x) and its derivative p′(x), consider the sequence
of polynomials given by repeatedly doing polynomial division, and taking remainders,

p0(x) = p(x)

p1(x) = p′(x)

p2(x) = − rem(p0(x), p1(x))

p3(x) = − rem(p1(x), p2(x))

...

pn(x) = − rem(pn−2(x), pn−1(x))

so pn(x) is nonzero, but pn(x) divides into pn−1(x) with a remainder of 0. Let s(x) be the number of
times the sign of the number changes in the sequence p0(x), p1(x), . . . pn(x). If x < x′, the number
of roots of p(x) between x and x′ is s(x′)− s(x).
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Before we prove this theorem, we give an example.

Example 1.5. If p(x) = x3 − 3x2 + x− 1, then the sequence of polynomials from Sturm’s theorem
is2:

p0(x) = x3 − 3x2 + x− 1

p1(x) = 3x2 − 6x+ 1

p2(x) = 4/3x+ 2/3

p3(x) = −19/4

Now taking the limit as x → −∞, we see p0(x) is negative, p1(x) is positive, p2(x) is negative,
and p3(x) is negative. So s(−∞) = 2 since the sign changes twice in this sequence. As x → ∞,
we see that p0(x) is positive, p1(x) is positive, p2(x) is positive, and p3(x) is negative, so s(∞) = 1
since the sign in this sequence changes once. So Sturm’s theorem says that there is 2 − 1 = 1 root
between −∞ and ∞.

We’re ready to prove Sturm’s theorem.

Proof of Theorem 1.4. First, we prove the theorem in the case when pn(x) is a constant (which is
not zero). This implies that p(x) = p0(x) and p′(x) = p1(x) do not have any common polynomial
factor; a common factor of p0(x) and p1(x) must also be a common factor of p2(x), since p0(x) =
p1(x)q(x) − p2(x) for some q(x) and inductively, a common factor of p(x) and p′(x) must be a
common factor of pi(x) for all i between 0 and n. (We are essentially doing the Euclidean algorithm
for finding the greatest common divisor of p(x) and p′(x) in the definition of our sequence of the
pi(x)). Note that this means that the multiplicity of every root of p(x) is 1; if a root of p(x) has
multiplicity greater than 1, its multiplicity in p′(x) is one less.

We will show that as x increases, whenever p0(x) has a root, the number of sign changes in
the sign sequence from the pi drops, and whenever any other pi(x) has a root, the number of sign
changes in the sequence stays the same. This is enough to prove the theorem.

First, if p0(x) = p(x) has a root at x, then p1(x) = p′(x) must be the opposite from p0(x− ϵ) for
some small ϵ. This is because if p(x− ϵ) > 0, then p must be decreasing to have a root, so p′(x) < 0.
Similarly, if p(x− ϵ) < 0, then p must be increasing and so p′(x) > 0. Thus, the signs of p0(x) and
p1(x) must either change from +− to −−, or from −+ to ++.

Now suppose pi+1(x) has a root. By definition, pi(x) = pi+1(x)q(x)− pi+2(x) for some quotient
polynomial q(x). Since pi(x) and pi+1(x) have no common factor, they do not share any roots so
if pi+1(x) = 0, then pi(x) ̸= 0. Further, pi(x) and pi+2(x) have opposite signs when pi(x) = 0.
Hence, whenever pi+1(x) has a root and changes sign, then the total number of sign changes in our
sequence says the same; the three signs of pi(x), pi+1(x), pi+2(x) either flip from ++− to +−− or
vice versa, or −++ to −−+ or vice versa.

So we have shown that whenever p0(x) has a root, the number of sign changes in the sign sequence
of the pis decreases by 1, and whenever pi+1(x) has a root, the total number of sign changes stays
the same.

To do the general case now, if p(x) and p′(x) have a common factor f(x), then the theorem follows
by dividing the sequence p0(x), p1(x), . . . , pn(x) by f(x), and then applying the above argument.

The proof of the Tarski-Seidenberg finishes by generalizing Sturm’s algorithm so that it works
symbolically (when the coefficients of the polynomial are variables) and so that it can determine if a
collection of polynomials satisfies some combination of inequalities (instead of just whether a single
polynomial equals zero). Some boolean combinations of inequalities can be combined using tricks
of algebra. For example, p(x) = 0 ∧ q(x) = 0 ↔ p(x)2 + q(x)2 = 0, and p(x) = 0 ∨ q(x) = 0 ↔
p(x)q(x) = 0. However, other combinations need a generalization of Sturm’s theorem. Here is an
exercise which handles the case of eliminating the following quantifier: ∃x(p(x) = 0 ∧ q(x) > 0).

2since for example, x3 − 3x2 + x− 1 = (x/3− 1/3)(3x2 − 6x+ 1) + (−4/3x− 2/3)
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Exercise 1.6. [Sturm’s algorithm for inequalities] Suppose p(x) and q(x) are polynomials with
integer coefficients, and consider the following sequence of polynomials:

p0(x) = p(x)

p1(x) = p′(x)q(x)

p2(x) = − rem(p0(x), p1(x))

p3(x) = − rem(p1(x), p2(x))

...

pn(x) = − rem(pn−2(x), pn−1(x))

so pn(x) is nonzero, but pn(x) divides into pn−1(x) with a remainder of 0. Suppose a and b are not
roots of p(x). Show that the number of sign changes in this sequence of polynomials p0(x), . . . , pn(x)
between x = a and x = b is equal to the number of roots p(x) in (a, b) such that q(x) > 0 minus the
number of roots of p(x) in (a, b) such that q(x) < 0.

For a full proof of the Tarski-Seidenberg theorem, see Chapter 1 of Coste’s book “An Introduction
to Semialgebraic Geometry” [C00].

An interesting avenue of investigation is how much the Tarski-Seidenberg theorem can be gener-
alized. Does the theorem remain true when we add more functions to our language so that we can
discuss more complicated phenomena? For example, Tarski asked in 1940 whether one can prove
the same theorem when exponentiation is added to our language:

Open Problem 1.7 ([Tar67]). Is there an algorithm for computing what sentences are true in the
structure (R; 0, 1,+, ·, exp, <)?

Not only is this question an open problem, but we don’t even know if there is an algorithm for
deciding the truth of sentences such as e−e2 − 60e−15 = e−3e1+2e−1−e−9

involving no variables or
quantifiers! Are there any surprising identities involving exponentiation and the integers beyond
obvious ones that follow from the fact that exey = ex+y? This is a difficult open problem in
transcendental number theory. However, there is a widely believed conjecture due to Schanuel
which implies that indeed, the only such true identities are the obvious ones, and that there is
an algorithm for deciding quantifier-free sentences. In fact, if Schanuel’s conjecture is true, then
Macintyre and Wilkie have shown Problem 1.7 has a positive answer [MW96]. See [Mar96] for a
survey of this result.

What about if we change what number system we use to something other than the real numbers?
This is also an interesting avenue of investigation, and may results are known. For example, if we
work over the complex numbers instead, then Tarski showed in 1948 that the analogous theorem is
true: there is algorithm to decide the truth of sentences in the complex field.

1.4 The efficiency of Tarski-Seidenberg*

How good is the Tarski-Seidenberg algorithm from a practical perspective? When we have a com-
puter execute it, can it quickly solve interesting problems, such as the kissing spheres problem? The
answer is that the algorithm takes far too much time to run except for sentences that have very few
quantifiers. Each time a quantifier is eliminated, our sentences becomes exponentially larger, and
so the formulas involved become massive.

Significant progress has been made on finding faster algorithms, using techniques such as cylin-
drical algebraic decomposition. There is an algorithm which decides sentences with n symbols in
O(22

n

) time, and an algorithm for deciding existential formulas (ones beginning with a single block
of existential quantifiers, and containing no other quantifiers) in O(2n) time. This first result is
known to essentially be optimal.
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Alas, even these improved algorithms are still far too slow when run on practical problems.
For example, modern implementations of quantifier elimination are able to solve the kissing spheres
problem in 2 dimensions (with a little ingenuity to make the problem slightly easier, such as fixing the
position of the first two kissing spheres). However, the kissing spheres problem in higher dimensions
is completely out of reach even on modern supercomputers. Still, these algorithms are an important
part of almost all computer algebra systems and receive a great deal of use for people working on
practical mathematics. There are lots of interesting formulas which are rather short.

It is worth noting that in general, algorithms for quantifier elimination in any interesting structure
(one with a nontrivial definable set) will always be inefficient. This is because any such quantifier
elimination procedure can also solve the quantified Boolean formula problem: determining
whether a sentence is true in the boolean algebra ({⊤,⊥},∧,∨,¬). Simply replace ⊤ and ⊥ in a
given structure with being an element of this definable set and its complement (e.g. being equal to 0
or being not equal to 0 in the structure (R; 0, 1,+, ·, <)). The quantified Boolean formula problem is
known to be a PSPACE complete problem in computational complexity theory [AB, Theorem 4.13],
and it is thus conjectured to require exponential time to solve.

1.5 Hilbert’s 17th problem*

There is a beautiful application of the Tarski-Seidenberg theorem to Hilbert’s 17th problem. Hilbert
17th problem asks whether every rational function f on Rn which is everywhere non-negative can
be written as a sum of squares of finitely many rational functions g0, . . . , gk, so f =

∑
i≤k g

2
i .

As recounted in [Sch12] this problem had its roots in the thesis defense of Minkowski in 1885
where Hilbert was one of the official opponents. Minkowski in his defense conjectured that there were
everywhere non-negative polynomials which cannot be expressed as a sum of squares of polynomials.
Hilbert didn’t believe this at the time, but Minkowski eventually convinced him that it was true.
Hilbert proved the conjecture a few years later in 1888 [Hil88]

Here is an easy example of such a polynomial which is due to Motzkin from 1967 [Mot67]. The
function

f(x, y) = x4y2 + x2y4 + 1− 3x2y2 =
x2y2(x2 + y2 + 1)(x2 + y2 − 2)2 + (x2 − y2)2

(x2 + y2)2

is always positive (since it is a sum of squares of rational functions). However, if this function is a
sum of squares of real polynomials f =

∑
i g

2
i , since f(x, 0) = f(0, y) = 1, all the polynomials gi(x, 0)

and gi(0, y) must be constants. Hence, each gi must be of the form gi = ai + bixy + cix
2y + dixy

2.
Now the coefficient of x2y2 in the sum

∑
i g

2
i is equal to −3 =

∑
i b

2
i . This is a contradiction.

Hilbert eventually came to believe Hilbert’s 17th problem for rational functions had a positive
solution. Indeed, he proved the special case that an everywhere nonnegative polynomial in two
variables can be expressed as a sum of squares of rational functions [Hil93]. Eventually, Hilbert’s
17th problem was completely solved by Artin in 1927. The connections between this problem in
logic were first realized and pursued by Abraham Robinson in the mid 1950s.

Recall that an ordered field is a field F with an additional total ordering ≤ such that for all
a, b, c ∈ F .

1. b ≤ c implies a+ b ≤ a+ c.

2. If 0 ≤ a and 0 ≤ b, then 0 ≤ a · b. An ordered

field is called a real closed field if a ≥ 0 implies there exists b such that b2 = a, and every
polynomial of odd degree with coefficients in F has at least one root in F .

Now we are ready to state an important consequence of the Tarski-Seidenberg theorem:

Theorem 1.8 (Tarski’s transfer principle). Suppose F is an ordered field which contains R, we have
a quantifier-free formula φ(x1, . . . , xn) in the language {0, 1,+, ·,≤} and there exists a1, . . . , an ∈ F

10



such making φ(a1, . . . , an) true in F . Then there exists b1, . . . , bn ∈ R such that φ(b1, . . . , bn) is true
in R.

Proof sketch. A careful examination of the proof of the Tarski-Seidenberg theorem shows that same
proof for the structure (R; 0, 1,+, ·, <) works for the theory of real closed fields. Hence all real closed
fields have the same theory. One then proves the theorem by taking the real closure F of F . Since
F ⊨ ∃x1, . . . , xnφ(x1, . . . , xn) we have that F ⊨ ∃x1, . . . , xnφ(x1, . . . , xn) but then since F and R
have the same theory, we must have that R ⊨ ∃x1, . . . , xnφ(x1, . . . , xn)

We’ll use this theorem to solve Hilbert’s 17th problem.
Let F = R(X1, . . . , Xk) be the field of rational functions over R in the variables X1, . . . , Xk. Let

I = {
∑
g2i : gi ∈ F are nonzero}. Then I has the property that

1. If g ∈ F is nonzero, then g2 ∈ I,

2. If g, h ∈ I, then g + h and gh ∈ I.

3. 0 /∈ I.

In any field, a set with these properties is called an order ideal.

Lemma 1.9. If I is an order ideal in a field F and f ̸= 0 and f /∈ I, then there exists an order
ideal J ⊇ I such that −f ∈ J .

Proof. Let J be the set of nonzero polynomials in (−f) with gi ∈ I as coefficients. Clearly J satisfies
properties 1 and 2. Now if property 3 fails, then there is some polynomial p such that p(−f) = 0.
Separate even and odd exponents to get p(−f) = q(f2) − fr(f2) for some q, r. Note that if either
q or r is a nonzero polynomial, then the corresponding q(f2) or r(f2) is nonzero, since it must then
be in I. Hence, if r(f2) = 0, then q(f2) must also be zero, since p(−f) = 0, but then this means p
is the zero polynomial. Thus, r(f2) is nonzero and hence we may divide to get

f =
q(f2)

r(f2)
= q(f2) · r(f2) · 1

r(f2)2
∈ I

which is a contradiction.

Now we are ready to solve Hilbert’s 17th problem:

Theorem 1.10 (Artin). Suppose f(x1, . . . , xn) is a rational function which is positive everywhere
it is defined. Then there exist rational functions g0, . . . , gk such that f =

∑
i≤k g

2
i .

Proof. Work in the field F = R(X1, . . . , Xk) of rational functions in the variables X1, . . . Xk. So
examples of elements of F are things like 3, X1 +X2, 1/(X

2
3 ) + 7X5, etc. Let I ⊆ F be the order

ideal of elements of F of the form
∑

i≤k g
2
i where every gi ̸= 0.

Now suppose f ∈ F is such that f /∈ I. By the lemma above, we can find J ⊇ I containing −f .
Iteratively use the lemma to extend J to a maximal order ideal K ⊆ F using Zorn’s lemma. Then
K satisfies properties 1-3 and also satisfies that ∀g ̸= 0 in F , either g ∈ K or −g ∈ K. For g, h ∈ K,
let g < h iff h = g ∈ K. Then we have that F with this order is an ordered field which contains R.

Now we use the transfer principle. Since f < 0 and f is a rational function in R(X1, . . . , Xk) the
following sentence is true over F:

∃x1, . . . , xnf(x1, . . . , xk) < 0

To see this is true just plug in xi = Xk, and then f(X1, . . . , Xk) = f .

11



Note that f(x1, . . . , xk) < 0 can be written as a quantifier-free formula in the language {0, 1,+, ·,≤
}. Hence, by Tarski’s transfer principle, the formula

∃x1, . . . , xnf(x1, . . . , xk) < 0

is also true over R. Hence, we have proved that if f(X1, . . . , Xk) is not a sum of squares of rational
functions, there are real numbers b1, . . . , bk such that f(b1, . . . , bk) < 0.
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2 Defining computability

The goal of this section is to define precisely what it means for a function f : N → N to be computable
by an algorithm. The precise definitions in this section aren’t used heavily in the rest of these notes;
they only are used when we need the precise definition of computable functions for undecidability
proofs. Instead, the definitions in this section are more of historical and philosophical interest. In
subsequent sections, whenever we specify a computable function, we will typically just informally
describe the algorithm that computes it.

In Section 2.4 we will discuss a few basic properties of all computable functions at that we will
use a great deal: the existence of a universal machine, the S-m-n theorem, and the padding lemma.
These are the some of the basic ingredients we will use to construct incomputable functions.

2.1 Partial recursive and primitive recursive functions

Historically, several mathematicians in the early 1930s (Church, Gödel, Herbrand, and others) gave
what we now recognize to be the correct definition of computability. However, they were unable
to give a convincing argument that their definition included all possible algorithms. For example,
Herbrand-Gödel defined the class of partial recursive functions to be the smallest class of partial
functions from Nk → N that

1. Contain the constant functions x 7→ n for each fixed n ∈ N.

2. Contain the successor function x 7→ x+ 1.

3. Contain the projection functions (x1, . . . , xk) 7→ xi

4. Are closed under composition: if h : Nk → N is partial recursive and g1, . . . , gk are partial
recursive, then so is h(g1, . . . , gk).

5. Are closed under primitive recursion: if g : Nk → N and h : Nk+2 → N are partial recursive,
then so is the function f : Nk+1 → N defined by

f(y, x1, . . . , xk) =

{
g(x1, . . . , xk) if y = 0

h(y − 1, f(y − 1, x1, . . . , xk), x1, . . . , xk) if y > 0
.

6. Are closed under the minimization operator: if f : Nk+1 → N is partial recursive, the so is the
function g : Nk → N where g(x1, . . . , xk) is equal to the least y such that f(y, x1, . . . , xk) = 0
if such a y exists and for all y′ < y we have that f(y′, x1, . . . , xk) is defined. Otherwise,
g(x1, . . . , xk) is undefined.

We may then define the recursive functions to be all partial recursive functions f : Nk → N
that are total. It should be clear that there is an algorithm to compute any recursive function since
there are simple algorithms for computing constant, successor, and projection functions, composing
them, and performing primitive recursion, and minimization.

Note here that the 6th item above is very important to the above definition. The smallest
collection of functions closed under items 1-5 are called the primitive recursive functions. They
were first defined by Gödel in his 1931 paper [G31] on incompleteness. However, there is an obvious
algorithm for computing a function that is not a primitive recursive function: by diagonalizing
against all primitive recursive functions (see Exercise 2.1). As we will discuss in Section 3.2, the
partiality introduced in item 6 is necessary to prevent this sort of diagonalization.

Exercise 2.1. Show that there is an algorithm for computing a function that is not primitive
recursive. [Hint: describe an algorithm for diagonalizing against all primitive recursive functions
by defining a function g where g(n) = fn(n) + 1 where fn is the nth primitive recursive function
according some listing of all such functions.]
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Note also that sufficiently fast growing functions are not primitive recursive. Recall Knuth’s
up-arrow notation. The operation ↑1 is exponentiation: x ↑1 y = xy, and the operation x ↑n+1 y is
the operation ↑n repeated y times. That is,

x ↑n+1 y = x ↑n (x ↑n (· · · ↑n x))︸ ︷︷ ︸
y times

So since repeated multiplication is exponentiation, x ↑1 y = xy. Similarly, x ↑2 y = xx
x···x︸ ︷︷ ︸

y times

is

repeated exponentiation, which is sometimes called tetration. Define x ↑n 0 = 1 for all n and all
x. The following exercise shows that all primitive recursive functions grow slower than some ↑n
function.

Exercise 2.2.

1. Show that if f : Nk → N is primitive recursive, then there exists some n so that f(x1, . . . , xk) ≤
2 ↑n (maxi(xi) + 3).

2. Show that the function f(x) = 2 ↑x x is not primitive recursive.

So primitive recursion does not give the correct definition of computability. But what about the
class of all recursive functions? Some mathematicians tried to argue that every possible function
computable by an algorithm (in the informal sense) must be a recursive function, but no-one was
particularly convinced. Their arguments basically boiled down to being unable to think of any
counterexamples.

2.2 Turing machines

In 1936, Alan Turing suggested a new definition of computability via what are called now Turing
machines. Turing’s model leads to the same definition as the Herbrand-Gödel recursive functions (see
Exercise 2.8). However, what was important about Turing’s model is that it included a convincing
philosophical argument that it encompassed all possible algorithms.

Turing’s philosophical argument analyzes an idealized human agent executing an algorithm. We
give this person an unlimited supply of paper, pencils, and erasers, and then observe everything
they do during their execution of the algorithm until they finish. If you prefer, you can think of a
machine executing the algorithm with access to an unlimited supply of memory. Turing made a few
mild assumptions on this process:

1. Each piece of paper can only have finitely many possible things written on it and the pieces
of paper are arranged in a fixed order, say, where the person can flip through the pages from
left to right or right to left.

2. The agent executing the algorithmmany only have finitely many possible “states” or “thoughts”
they can think during the algorithm, no matter how long it runs, or what the input is. Another
way of saying this is that there must be finitely many steps describing the algorithm. Note
however, that there is unlimited space for storing information on the paper they have.

3. What the agent does at each stage is deterministic, and hence depends completely on what
“state” they are in, and what is on the page in front of them.

For example, if we are adding two numbers, we cannot hold the entirety of arbitrarily long
numbers in our head. Instead we should use the provided paper/memory for this. The steps of the
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Figure 2: Turing’s idealized agent executing an algorithm. This image was created with the assis-
tance of DALL·E 2

algorithm for addition should be things like adding two digits, or carrying a one, or writing down
part of the answer, etc.3

Turing broke down the execution of such an idealized description of an algorithm into finitely
many steps, at which the agent does one or more of the following:

1. Erase what is on the current page and write something else.

2. Flip forward a page, or back a page.

3. Change to a new state

4. Decide they are finished performing the algorithm.

We now make a mathematical definition describing all processes having the features we’ve just
described. Machines which execute these processes are calledTuring machines. Instead of thinking
of infinitely many pieces of paper, a Turing machine is described as having an infinite tape of
infinitely many cells (what we were calling pages before) that are arranged left-to-right in order
type Z.

Definition 2.3 (Turing machine). A Turing machine consists of:

3We remark that the determinism of assumption (3) is part of the usual definition of what an algorithm is. More
generally, mathematicians and computer scientists often work with randomized algorithms, where we can flip a fair
coin and use the result as part of the algorithm. However, probabilistic algorithms are much more important when we
want to make efficient algorithms (e.g. in computational complexity theory) than in computability theory where we
can compute how a probabilistic algorithm would perform on every sequence of possible coins flips, and the compute
the probability it will behave any given way.
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1. A finite set S called the alphabet of the Turing machine whose elements we call symbols.
These symbols are the possible things that can be written on each tape cell of the Turing
machine. The alphabet includes a distinguished blank symbol that we denote ⌞⌟.

2. A finite set Q of states, one of which is distinguished as the state at which the computation
begins (the starting state), and one of which is distinguished as the state at which the
computations finishes (the halting state).

3. A partial function t : S×Q→ S×Q×{L,R} called the transition map which specifies that
if we are in the state q, the current cell contains the a ∈ S, and t(a, q)) = (a′, q′, X), then we
should change the current cell to be the symbol a′, change to state q′, and then move the tape
of the Turing machine one cell in the direction X (i.e left or right) depending on whether X
is L or R.

A tape configuration of a Turing machine is a function T : Z → S A state of a Turing machine
is a triple (T, q, n) where T is a tape configuration, q ∈ Q is the state the machine is in, and n ∈ Z
is the location of the Turing machine head.

Definition 2.4 (Execution of a Turing machine). Given a Turing machineM = (S,Q, qstart, qhalt, t),
and a starting tape configuration T0 : Z → S, the corresponding run of the Turing machine is the
sequence of states (T0, q0, n0), (T1, q1, n0), . . . defined as follows. The first state is (T0, q0, 0) were q0
is the distinguished starting state, and n0 = 0. We define the rest of the sequence inductively. Given
any (Ti, qi, ni), if qi is the halting state, then the sequence giving the run of the Turing machine
stops at this point (and is hence finite).Suppose, that qi is not the halting state. Then if t(Ti(ni), qi)
is defined and equal to (a, q,X), then qi+1 = q, the head moves according to ni+1 = ni+1 if X = R

and ni+1 = ni − 1 if X = L, and finally Ti+1(n) =

{
a if n = ni

Ti(n) otherwise.

We give an example of a simple Turing machine:

Example 2.5. Consider the following Turing machine with alphabet Σ = {0, 1} and three states
S = {q0, q1, q2}. q0 is the distinguished starting state, and q2 is the halting state. Finally, the
transition map is given by the following table:

τ(0, q0) = (0, q0, R)

τ(1, q0) = (1, q0, R)

τ(B, q0) = (1, q1, L)

τ(0, q1) = (1, q2, L)

τ(1, q1) = (0, q1, L)

τ(B, q1) = (1, q2, R)

The Turing machine we have just described is intended to do the following: if we write a number
n in binary on the tape starting at the position 0, then this Turing machine will output n + 1 in
binary. Roughly, what happens is that the machine will stay in the state q0 and move right until it
finds the least significant digit of the number, and then stays in the state q1 repeatedly carrying a
1 and moving left until it halts at state q2.

We illustrate an example run of this Turing machine in Figure 2.2. That is, what the tape looks
like and where the head is at each stage of the computation.

Recall that if S is a set, then Sn is all strings of length n in S, and S<∞ = ∪n≥0S
n is the set

of all strings over S. Note that S<∞ includes the empty string.
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q0

1 0 1 1 1 . . .. . .

q0

1 0 1 1 1 . . .. . .

q0

1 0 1 1 1 . . .. . .

q0

1 0 1 1 1 . . .. . .

q0

1 0 1 1 1 . . .. . .

q0

1 0 1 1 1 . . .. . .

q1

1 0 1 1 1 . . .. . .

q1

1 0 1 1 0 . . .. . .

q1

1 0 1 0 0 . . .. . .

q1

1 0 0 0 0 . . .. . .

q2

1 1 0 0 0 . . .. . .

Figure 3: A run of the Turing machine from Example 2.5

Suppose S is a Turing machine alphabet, and Σ = S \ {⌞⌟} is all the non-blank symbols of the
Turing machine. Say the tape configuration T : Z → S represents a string s ∈ Sn if

T (i) =

{
s(i) if 0 ≤ i < n

⌞⌟ otherwise

so the tape configuration is blank except starting at 0 where the symbols of the string are written
in the first n cells.

We can now define what it means for a function f : Σ<∞ → Σ<∞ to be computable.

Definition 2.6. Let Σ be a finite alphabet that does not include the blank symbol ⌞⌟. Say that
a partial function f : Σ<∞ → Σ<∞ is partial computable iff there is a Turing machine M with
alphabet whose non-blank symbols are Σ so that if we run the Turing machine M beginning with
a tape configuration representing s ∈ Σ<∞, then if f(s) is defined, the machine halts after a finite
number of steps in a tape configuration representing f(s), and otherwise if f(s) is undefined, then
the Turing machine does not halt.
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Exercise 2.7. Show that the partial computable functions from Σ<∞ → Σ<∞ are closed under
composition.

We can define partial computable functions from Nk → N by representing natural numbers in
an alphabet in some reasonable way. For example, say that a function f : N → N is computable if
the function 1n 7→ 1f(n) is computable, where 1n is the string with n 1s in a row in the alphabet
Σ = {1}.

This definition may seem arbitrary. Why are we representing the number n with n 1s written in
a row, instead of represeting numbers in binary, or using Roman numerals? Of course, we are forced
to represent numbers in some way for our Turing machines; our definition of Turing machine doesn’t
allow an infinite alphabet, so we can’t just input a natural number on a single cell. Fortunately,
while each of these choices is indeed rather arbitrary, they all give equivalent definitions. This is
because there are Turing machines that convert between all of these different ways of representing
numbers, and so if we can compute some function in any of these different representations then we
can compute it in all of the others, by effectively “composing” the Turing machine computing the
function along with two other Turing machines converting between how we represent the input and
output.

This robustness is a fact that we will often use. Whenever we deal with natural numbers,
polynomials, finite trees, equations in number theory, tilesets, strings, etc., the way that we define
computable subsets or functions of these objects will not depend on the way we represent them to the
computer, provided we do this in a reasonable way; all such definitions will be equivalent. from now
on we won’t bother to explicitly define ways of representing these types of objects to a computer.
We will take it as given that we have implicitly picked some reasonable way of representing such
objects for our Turing machines, and that this choice doesn’t affect the definition of which such
functions or sets are computable.

2.3 The Church-Turing thesis

The assertion that the our analysis above is a good one, and we’ve really captured the essence of
what an algorithm is called the Church-Turing thesis, or Turing’s thesis. Having a name for the idea
that a definition is the correct formalization of an intuitive notion is quite unusual in mathematics
(for instance, there isn’t a “Cauchy’s thesis” asserting the ϵ-δ-definition of continuity is the correct
definition of the intuitive idea of “continuous”). We simply say this is the correct mathematical
definition of continuity. Similarly, for the purposes of these notes, we’ll simply take this as correct
mathematical definition of computability (a fact which is not seriously disputed).

It is a tedious but important exercise that Turing’s definition is the same as the earlier definition
of recursive functions (and also equivalent to Church’s λ-calculus, Minsky’s register machines, the
programs that you can write in python, etc.).

Exercise 2.8. Prove that every partial computable function from Nk → N is computable by a
Turing machine [Hint: show that the functions computable by a Turing machine have all the closure
properties 1-6 in the definition of partial recursive functions.]

Along similar lines, it is worth noting another way in which our definition of a computable
function is robust: if we change the definition of what a Turing machine is in any inessential way
(restricting the alphabet, adding more tapes, changing the tapes to be one-sided instead of two-sided,
or higher-dimensional) this will not affect our definition of what a computable function is. The way
we prove such theorems is by showing that when we do any a change to the definition, both kinds
of Turing machine can “simulate” each other. For example, we can argue as follows that a Turing
machine with alphabet {0, 1, ⌞⌟} can “simulate” a Turing machine with alphabet {0, 1, 2, 3, ⌞⌟} (and
a similar trick will work for an alphabet of any size). We can have each two adjacent cells in our
machine with alphabet {0, 1, ⌞⌟} represent a single cell in a machine with alphabet {0, 1, 2, 3, ⌞⌟} via
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some correspondence like 0 7→ 00, 1 7→ 01, 2 7→ 10, 3 7→ 11, and ⌞⌟ 7→ ⌞⌟⌞⌟. We can then replace
each single state in the machine with alphabet {0, 1, 2, 3, ⌞⌟} with a handful of states in the machine
with alphabet {0, 1, ⌞⌟} which scan each two adjacent cells to determine what they represent, then
overwrite each of them according to the transition function, then move to the next pair of cells.

Exercise 2.9. Consider the following variation on the definition of a Turing machine: instead of a
transition function t : S ×Q→ S ×Q× {L,R} there is a transition function t : S ×Q→ S ×Q× Z
where if t(a, q) = (a′, q′, n), then the symbol in the current cell is changed to a′, the state is changed
to q′, and the head of the Turing machine moves by n cells. Explain why this new type of machine
can compute exactly the same partial functions as the usual sort of Turing machine.

2.4 Basic properties of computable functions

An important consequence of our definition of a Turing machine is that we can explicitly list out
all possible Turing machines. Indeed, we can do this in a computable way so that its possible to
analyze and understand Turing machines using other Turing machines.

To be very clear, we could do something like the following: since a Turing machine is specified
by just its alphabet, its states, and its transition function, and all these objects are finite, we can
assume that the alphabet and states are just sets of the form {0, . . . , n} and then order a list of
Turing machines by the size of their alphabet and numbers of states, where for each such pair, we list
all possible transition functions in lexicographic order. As usual, the exact way we do this shouldn’t
matter provided it is computable. All we want to make explicit is that there is some way of making
this list which is understandable by a Turing machine. We will fix some such method for the rest of
these notes:

Definition 2.10. Fix a computable listing of all the Turing machines. Throughout these notes we
will use the notation φn to denote the nth partial computable function computed by this nth Turing
machine.

We have said above that we will use the notation φn to indicate the nth partial computable
function, but we have not said between what type of sets. Are we talking about functions from
N → N, or functions from {0, 1}<∞ → {0, 1}<∞, or from N2 → N, or something else? This is a
standard abuse of notation were we can regard the nth machine as operating on any of these kinds
of inputs. So if we write φn(i, j), we mean the partial function from N2 → N computed by the
nth Turing machine. If instead we write φn(i) we mean to consider the nth Turing machine as
computing a partial function from N → N.

A vitally important feature of Turing’s definition is the following theorem:

Theorem 2.11. There exists a Turing machine (called a universal Turing machine) u which
defines a function of two variables so that φu(m,n) = φm(n) for all m,n. That is, φu(m,n) halts
and outputs φm(n) if and only if φm(n) halts.

We will not prove this theorem. The proof simply consists of writing a Turing machine program
which simulates any other Turing machine. Precisely, the universal machine takes as input a de-
scription of another Turing machine and an initial state of its tape, and then step by step updates
our representation of its tape according to the given Turing machine program. Finally, if we have
entered a halting state, then we stop and output the value that is left on the tape.

If you are particularly eager to look at the details of this proof, then you can find a proof of this
theorem in many elementary computability theory books (or take Math 114C at UCLA).

Certainly, one should believe that taking a description of a Turing machine and then simulating
how it runs step by step is an example of an algorithm. Thus, if one believes that our analysis of a
Turing machine being able to implement any algorithm, you ought to believe Theorem 2.11.

We now give two more important properties of the set of computable functions that we will often
use.
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Figure 4: The start of the description of a universal Turing machine from Turing’s original paper

Lemma 2.12 (The padding lemma). Given any n, there are infinitely many Turing machine pro-
grams computing the nth Turing machine program φn. Moreover, these programs can be found
computably. That is, there is a computable injective function f : N2 → N so that for every n and
every i, φn = φf(n,i).

Proof sketch. Given any Turing machine program, we can add extra unused states to make a larger
program which computes the same partial function.

Note that by two partial functions being equal, we mean that their domains are equal and they
take the same value on all the elements of their domain.

We record one last more technical theorem about computable functions.

Theorem 2.13 (The S-m-n theorem). There is a injective computable function s : N2 → N so that
for all x, y, z

φs(x,y)(z) = φx(y, z).

Proof sketch. The program defining s(x, y) outputs a computer program which does the following.
First, it writes y on the tape of the Turing machine before where z is written, then it executes the
program x. It is easy to see that such a function is injective (or, we could define s(x, y) by induction
and use the padding lemma at each step to ensure that s is injective.

As we will see going forward, having a precise mathematical definition of what a Turing machine
is useful mathematically for proving that Turing machines can’t do certain things. However, when
we want to show that something is computable, it’s almost never a good idea to write a giant
Turing machine program to do it. It is almost always much more convincing and clear to simply
describe informally the way that you can go about calculating the thing in question. For example,
the following examples of computable functions:
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Example 2.14. There is a computer program that takes as input a one-variable integer polynomial,
and outputs whether it has an integer root. Given such a polynomial anx

n + an−1x
n−1 + . . .+ a0 it

first computes b = max(|an|, |an−1|, . . . , |a0|). Then since any root of the polynomial must contained
in [−nbn, nbn], the program tries each of these integers in turn to determine whether they are a root
of the polynomial.

Here is another example:

Example 2.15. There is a computer program takes as input an integer representing a Turing
machine that computes a bijection f : N → N and computes its inverse. To find f−1(n), the
program calculates f(0), f(1), . . . until it finds some m such that f(m) = n. Then it outputs m.

The above level of detail is exactly what you should use when you’re writing proofs about
computability theory, and it is about the level of detail you will find throughout the computer
science and computability theory literature.

2.5 What sorts of questions can we analyze using tools from computabil-
ity?

We briefly discuss the types of questions we can analyze using computability theory. First, there
is an algorithm implementing any function with a finite set of inputs and outputs. Hence, finite
classes of problems become trivial from the perspective of computability. So for example, there is an
algorithm which correctly outputs the answer to the twin prime conjecture. It is one of the following
two algorithms:

Algorithm 1: Output true

Algorithm 2: Output false

(But it is an open problem which algorithm is the correct one). A more suitable related question to
analyze from the perspective of computability would be the following: is there an algorithm which
takes a natural number n as input and outputs whether there are infinitely many primes p such
that p+ n is also prime? This question has recently been proved to have a positive answer; Yitang
Zhang has shown that for any even number n ≥ 7 · 107, there are infinitely many primes with gap
n4. There is therefore some algorithm which outputs yes for any even n ≥ 7 ·107, and for the finitely
many values n < 7 · 107, the algorithm it outputs the correct answers (though we do not know what
these finitely many correct answers are).

Asking whether an algorithm exists for doing some task is sometimes a very different question
from asking what the algorithm is, as we’ve demonstrated above. We will sometimes be able to
prove that there is an algorithm to do something without being able to specify exactly what the
algorithm is, or even narrow it down to less than countably many possibilities.

Exercise 2.16. Is there an algorithm which takes a positive integer n as input, and outputs “yes”
if there is a sequence of n consecutive 7s in the decimal expansion of π and “no” if there is not?

4Subsequent work of the Polymath Project and James Maynard have since reduced this number to 246
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3 Incomputability

3.1 The halting problem

Having defined what computability means, we now turn to incomputability. We begin with a very
simple observation:

Theorem 3.1. There is a function f : N → N that is not computable.

Proof. There are countably many Turing machine programs, and uncountably many functions N →
N.

Next, we’d like to give an explicit example of an incomputable function. First we give a definition.

Definition 3.2. We say that a computation φn(m) halts, and write φn(m)↓ if the computation of
φn(m) eventually terminates in a halting state. We say that φn(m) does not halt and write φn(m)↑
otherwise.

Our explicit example of an incomputable function comes from copying Cantor’s diagonal argu-
ment:

Proposition 3.3. The function

f(n) =

{
φn(n) + 1 if φn(n)↓
0 otherwise

is not computable.

Proof. If f was computable, then we would have f = φm for some m. Now φm = f is total, so
f(m) = φm(m) + 1 by definition of f . But this is a contradiction since f(m) = φm(m) by our
assumption f = φm.

Our next goal is to find a more natural example of incomputability than Proposition 3.3. First
we define what it means for a subset of N to be computable.

Definition 3.4. A set A ⊆ Nk is computable if its characteristic function

1A(x1, . . . , xk) =

{
1 if (x1, . . . , xk) ∈ A

0 if (x1, . . . , xk) /∈ A

is computable.

For example, if A ⊆ N is computable, then N \A is computable.
Our more natural example of incomputability is the halting problem.

Theorem 3.5 (Undecidability of the halting problem). The set K = {n : φn(n)↓} is not computable.

Proof. If K was computable, we could then also compute the function f from Proposition 3.3 as
follows: On input n, first compute whether n ∈ K. If n /∈ K, then output 0. If n ∈ K, then
simulate φn(n) using a universal Turing machine (we know it will eventually halt) and then output
φn(n) + 1.

Many interesting mathematical statements can be transformed into questions about whether
computer programs eventually halt. For example, there is a computer which examines each even
integer 2, 4, 6, 8 . . . in turn and halts if this integer can not be expressed as a sum of two primes.
This computer program eventually halts if and only if the Goldbach conjecture is false. Thus, it
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shouldn’t be that surprising that there is no easy way of figuring out whether a computer program
eventually stops running; if there was, there would be an easy way of determining the truth of a
large number of very difficult mathematical problems.

Note that the fact that we are running φn on input n is not so important to incomputability of
K. For example:

Exercise 3.6. Show that {n : φn(0)↓} is incomputable.

3.2 The need for studying partial computable functions

We are mostly only interested in studying total computable functions in computability theory. Yet,
our theory includes partial functions. One reason for this is that there is no set of functions (fn)n∈N
(which we would like to be all total computable functions from N → N) with the following properties:

1. The functions fn are all total.

2. The functions fn are closed under composition and include the function x 7→ x+ 1.

3. There function x 7→ fx(x) is in the collection (i.e. there is a computable “universal machine”).

This is because if we had all three properties, the function x 7→ fx(x) + 1 would be in this
collection (by composing the function from (3) with the addition function using (2)). So x 7→ fx(x)
would be equal to fn for some n, but then fn(n) is defined (since every fn is total by (1)) and
fn(n) = fn(n) + 1. Contradiction!

To make a reasonable theory of computation we have to include property (2). We also should have
property (3): if executing the nth algorithm on the nth input is not computable, then we haven’t
made a notion of algorithm that we can actually compute. So we are forced to drop property (1).

Questions about what computations halt, and what programs are total, etc. will be quite im-
portant in computability theory.

3.3 Rice’s theorem

The halting problem poses a very serious limitation on our ability to computably understand the
behavior of Turing machines. However, the situation is actually much worse. Using the incom-
putability of the halting problem, we can show that there is not a single nontrivial property of
partial computable functions which we can distinguish in a computable manner.

Definition 3.7. Say that a set A ⊆ N is an index set if for all n,m, if φn and φm compute the
same partial function (i.e. φn = φm), then n ∈ A↔ m ∈ A.

So an index set A consists of all programs that give partial computable functions that have some
property. For example, all programs that compute total functions, all functions φn so that φn(m)↓
for some n, all n such that φn(m) = m+ 1, etc.

It turns out that there are no nontrivial computable index sets:

Theorem 3.8 (Rice’s theorem). Suppose A ⊆ N is a computable index set. Then either A = N or
A = ∅.

Proof. By contradiction assume that A is a computable index set such that A ̸= N and A ̸= ∅. Let
φn0

a partial computable function which is undefined on every input. Since A is computable iff its
complement is computable, by exchanging A for its complement, we may as well assume n0 ∈ A.
Since A ̸= N, there is some n1 such that n1 /∈ C.

Now we obtain a contradiction by showing that the halting problem is computable. Consider
the partial computable function f(n,m) deifned as follows to compute f(n,m) we first compute
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φn(n), and if this halts, then we compute φn1(m) and output the answer. Let x be the program
computing f so φx(n,m) = f(n,m), and by the S-m-n theorem there is a computable s so that
φs(x,n)(m) = f(n,m). Now by the definition of f , if φn(n) does not halt, then φs(x,n)(m) = f(n,m)
is undefined for all m, so φs(x,n) = φn0

, so s(x, n) ∈ A since n0 ∈ A. If φn(n) does halt, then
φs(x,n) = f(n,m) = φn1

(m) for all m, so φs(x,n) = φn1
and so s(x, n) /∈ A since n1 /∈ C.

Thus, φn(n) halts iff s(x, n) /∈ A. Since we are assuming A is computable and s is computable,
we conclude that the halting problem K is computable. Contradiction!

We are explicitly explaining where we are using the S-m-n theorem above. However, this type of
argument – computably producing a computer program from finitely many inputs which has some
desired behavior – is constantly used in the computability, and most books don’t bother pointing
out that by doing this they are implicitly using the S-m-n theorem. So you’ll often see definitions
like the following: Define a computable function g : N → N so that

φg(n)(m) =

{
φn1

(m) if φn(n)↓
undefined if φn(n) ↑.

Then φg(n) = φn1 if φn(n)↓ and φg(n) = φn0 if φn(n)↑.
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4 Computably enumerable sets

The central focus of computability theory is on understanding, analyzing, and classifying the in-
computability of subsets of N. In this section, we discuss an important class of subsets of N which
includes sets that are just beyond being computable.

Definition 4.1. A set is computably enumerable or c.e. if it is the domain of a partial computable
function. We let We denote the domain of the eth partial computable function φe; this is the eth
c.e. set.

4.1 Characterizing c.e. sets

We have already seen an example of a c.e. set: the halting problem K. Consider the partial com-
putable function f : N → N defined by letting f(n) compute φn(n), and if this computation halts,
then output n. Then the domain of f is K.

K is connected to closely connected to the class of all c.e. sets. We will show eventually that in
a precise sense, the halting problem is the “most complicated” c.e. set (see Theorem 5.5).

Proposition 4.2. The following are equivalent for a set A ⊆ N.

1. A is computably enumerable.

2. There is a computable relation R on Nk+1 so that

x ∈ A↔ ∃y1, . . . , ykR(x, y1, . . . , yk).

Proof. First, suppose f : N → N is a partial computable function. Let R(x, y) be defined by R(x, y)
is true iff the computation of f(x) halts in y steps.

Conversely, suppose R is a computable relation. Then let f : N → N be defined by letting f(x)
be defined by searching through all tuples (y1, . . . , yk) in lexicographic order and then outputting x
once we find some tuple (y1, . . . , yk) such that R(x, y1, . . . , yk) is true.

Using the above proposition, we have a more natural way of seeing that K is a c.e. set:

n ∈ K ↔ ∃s“φn(n) halts in s steps”.

Since the relation “φn(n) halts in s steps” is a computable relation on pairs of n, s, K is c.e. by the
above proposition.

If R and S are both computable relations, then R ∧ S and R ∨ S are also computable relations.
From this observation, it is easy to show the following:

Exercise 4.3. Show that if A,B ⊆ N are c.e. then A ∪B and A ∩B are c.e.

Our next characterization of c.e. sets will be via sequences of finite sets. We start by briefly
describing how finite sets can be computably represented. Fix some computable bijection ξ : N →
[N]<∞ between N and all finite subsets of N. For example, let ξ enumerate all finite sets by beginning
with the empty set, then all sets with maximum element 0, all sets with maximum element 1, and
so on in lexicographic order. Using ξ, we can regard each number n as representing a finite set via
this bijection. By a computable sequence of finite sets (As)s∈N we mean a computable function
f : N → N so that As = ξ(f(s)). That is, there is a program computing the sth element As of the
sequence for every s.

Definition 4.4. A computable enumeration of a set A ⊆ N is a computable sequence of finite
sets (As)s∈N so that
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• A0 = ∅.

• (As)s∈N is increasing (As ⊆ As+1 for all s).

• For all s, |As+1 \ As| ≤ 1, so at most one new number is added to each As. If x ∈ As+1 \ As,
we say that x is enumerated at stage s.

•
⋃
As = A.

You should think of a computable enumeration of a set as a program that runs for infinitely many
steps. At stage s, the program computes the set As which may contain at most one new number.
Over time the program “enumerates” the entire set A. Once x is enumerated, we know that x ∈ A.
However, we can never be sure at any finite stages s whether x /∈ A; x could always be enumerated
at some later stage .

Proposition 4.5. The following are equivalent for a set A ⊆ N.

1. A is computably enumerable.

2. There is a computable sequence of finite sets (As)s∈N so that A =
⋃
As.

3. There is a computable enumeration of A.

Proof. (1) → (2): let As = {n ≤ s : f(n) halts in ≤ s steps}.
(2) → (3): We make a computable enumeration (Bs)s∈N of A. Let B0 = ∅. Suppose we have

already defined Bs so that Bs =
⋃

i≤nAi. Let k = |An+1 \ Bs|. If k = 0, then let Bs+1 = Bs.
Otherwise, let An+1 \An = {m1, . . . ,mk}, and define Bs+i = Bs ∪ {m1, . . . ,mi}.

(3) → (1) Given a computable enumeration (As)s∈N, of a set A ⊆ N, we can define a partial
computable function f : N → N where f(x) = s if x is enumerated at the sth stage of the enumeration
procedure (i.e. x ∈ As+1 \As). To compute f(x), we compute A0, A1, . . . in turn until we find some
s so that As+1 \ As = {x}. Then we halt outputting s. The domain of this partial computable
function f is our computably enumerable set.

In computability theory, we often verify that sets are c.e. using Proposition 4.2. The definition
of most c.e. sets naturally have this logical form. When working with c.e. sets, we typically think
about them intuitively using enumerations and Proposition 4.5. This is the form we will use when
proving some basic properties of c.e. sets in the next couple sections.

We give one last characterization of c.e. sets as an exercise:

Exercise 4.6. A is computably enumerable iff A is the range of a partial computable function iff
A = ∅ or A is the range of a total computable function.

4.2 Computable vs c.e. sets

In this section, we’ll discuss several connections between computable and c.e. sets. We begin with
the following observation:

Proposition 4.7. Every computable set is c.e.

Proof. If A ⊆ N is computable, then As = A ↾ s is a computable enumeration of A.

Above, we are using the standard abuse of notation identifying each natural numbers s with the
set of all smaller natural numbers {0, 1, . . . , s− 1}.

We know that the converse of the above proposition is false: the halting problem K is a c.e. set
that is not computable.

We have the following relationship between c.e. sets and computability.
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Theorem 4.8. A is computable iff both A and N \A are c.e.

Proof. ⇒: A is computable iff N \ A is computable. Hence A and N \ A are both c.e. by Proposi-
tion 4.7.

⇐: Fix computable enumerations of both A and N \ A. We can compute whether x ∈ A using
the following procedure: run the enumeration of both A and N \ A. Eventually x must either be
enumerated into A or be enumerated into N \ A. Once this happens we can output whether x ∈ A
or x /∈ A.

We give another connection between c.e. sets and computability.

Theorem 4.9. A total function f : N → N is computable iff its graph

graph(f) = {(x, y) : f(x) = y}

is a c.e. subset of N2.

Proof. If f is computable, then it is clear that its graph is computable (and hence c.e.): to determine
if (x, y) ∈ graph(f), compute f(x), and then output that (x, y) ∈ graph(f) iff f(x) = y.

If the graph of f is computably enumerable, then to compute f(x), run the enumeration of
graph(f) until some element (z, y) is enumerated such that z = x. Then f(x) = y.

Exercise 4.10 (Uniformization of c.e. relations). Suppose A ⊆ N2 is c.e. Then show that there is
a partial computable function f : N → N such that f(x) is defined iff ∃y(x, y) ∈ A, and for every
x ∈ dom(f), (x, f(x)) ∈ A.

To help us understand when a c.e. set is computable, we having the following propositions which
relate the computability of c.e. sets to properties of their enumerations:

Proposition 4.11. Suppose A is computably enumerable. Then A ⊆ N is computable iff there is
a computable enumeration (As)s∈N of A that is in increasing order. That is, if x ∈ As+1 \ As and
x′ ∈ As′+1 \ As′ , where s < s′, then x < x′. So if x′ is enumerated at a later stage than x, then
x′ > x.

Proof. ⇒: If A is computable, then As = A ↾ s is such an enumeration in increasing order.
⇐: Suppose A is c.e. and has an enumeration in increasing order. If A is finite, then clearly A is

computable. Otherwise, if A is infinite, then to compute whether x ∈ A, search for a stage s so that
max(As) ≥ x. Eventually we must find such a stage since A is infinite. Then x ∈ A↔ x ∈ As.

Roughly, the contrapositive of the above proposition says the following: If a c.e. set is incom-
putable, then it must be that the order of any enumeration is very complicated and impossible to
make in increasing order.

A different corollary of the Proposition 4.11 is the following:

Exercise 4.12. Suppose A is an infinite c.e. set. Show that there is an infinite computable subset
B ⊆ A. [Hint: fix an enumeration (As)s∈N of A. Then let B = {x : (∃s)[x ∈ (As+1 \ As) ∧ x =
max(As+1)} be the elements enumerated into A that are greater than any previous elements that
have been enumerated.]

Another way of understanding when a c.e. set is incomputable is via moduli. If (As) is a com-
putable enumeration, then a modulus m : N → N is a function so that for all x, A ↾ x = Am(x) ↾ x.
That is, m tells us a large enough stage of the enumeration so that all the elements less than x that
will ever be enumerated into A will be enumerated by stage m(x).

Exercise 4.13. A c.e. set A is computable iff it has a computable enumeration that has a com-
putable modulus.

Thus, the incomputability of a c.e. set arises from it being impossible, given some x, to compute
a large enough stage s to be sure that all elements less than x that will ever be enumerated will
have been enumerated by stage s. Any modulus must grow incomputably fast.
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4.3 Computably inseparable c.e. sets

Way say that two disjoint sets A,B ⊆ N are computably inseparable if there is no computable
set C ⊆ N such that A ⊆ C, and C ∩B = ∅.

Theorem 4.14. A = {x : φx(x) = 0} and B = {x : φx(x) = 1} are computably inseparable c.e. sets.

Proof. A and B are c.e. by Proposition 4.2.
Suppose C was a computable separating set. Then there is some e such that φe is a total

computable function computing the characteristic function of C. But then e ∈ C → φe(e) = 1 →
e ∈ B → e /∈ C. Similarly, e /∈ C → φe(e) = 0 → e ∈ A→ e ∈ C. Contradiction!

Computably inseparable c.e. sets are sometimes useful for proving incomputability results. For
example, we will use them to prove Tennenbaum’s theorem that there is no computable nonstandard
model of PA. They also give one way of solving the following exercise:

Exercise 4.15. Show that there is a partial computable function f : N → N with no total computable
extension g ⊇ f . That is, there is no total computable function g : N → N so that if x ∈ dom(f),
then g(x) = f(x).

In contrast to the computable inseparability of c.e. sets, we can computably separate co-c.e. sets.

Definition 4.16. A set A ⊆ N is co-c.e. iff N \A is c.e.

Exercise 4.17 (Computable separation of co-c.e. sets). Suppose A,B ⊆ N are disjoint co-c.e. Then
show there is a computable set C such that A ⊆ C and C ∩B = ∅.

28



5 Reducibilities and Myhill’s theorem

5.1 Many-one and 1-1 reducibility

Reducibilities give us a way of comparing the relative incomputability of subset of N.

Definition 5.1. Suppose A,B ⊆ N. Say that A is many-one reducible to B and write A ≤m B if
there is a computable function f : N → N such that x ∈ A ↔ f(x) ∈ B. In this case we call f a
many-one reduction from A to B. Similarly say A ≤1 B and say A is one-one reducible to B if there
is an injective computable function f : N → N such that x ∈ A↔ f(x) ∈ B.

Note that the reducibilities ≤m and ≤1 are reflexive (via the identity function) and transitive
(by composing reductions). Hence, the relation where A ≡m B iff A ≤m B and B ≤m A is an
equivalence relation called many-one equivalence. We define ≡1 similarly.

Intuitively, A ≤m B means that A is “at least as easy” to compute as B, in the sense that we
can computably transform any question about membership in A into a question about membership
in B.

As an example, let TOT = {x : φx is total}. Both K and TOT are incomputable (note that
TOT is a nontrivial index set). We claim that K ≤m TOT. To see this, let f : N → N be the
computable function where f(x) is the program that on any input, first computes φx(x), and then
halts outputting 1 if φx(x) ever halts. So

φf(x)(n) =

{
1 if φx(x)↓
undefined otherwise

.

Then φx(x)↓ iff φf(x) is total, and so f is a many-one reduction from K to TOT.

Exercise 5.2. Show that TOT ≰m K, so in the sense of many-one reducibility, TOT is strictly
more complicated than K. [Hint: Show that K ≤m TOT. Then conclude that if TOT ≤m K, then
K ≤m K, and so K would be c.e., Contradiction!]

Here is an example of a proposition making precise the idea that if A ≤m B, then A is at least
as easy to compute as B:

Proposition 5.3. If B is computable and A ≤m B, then A is computable.

Proof. Assume B is computable. To compute whether x ∈ A, compute f(x), and then compute if
f(x) ∈ B.

The contrapositive of the above proposition gives us a way to show that a set is incomputable.

Corollary 5.4. If A is incomputable and A ≤m B, then B is incomputable.

We have already used the above corollary. For example, in using this new terminology, Rice’s
theorem states that if C is an index set such that C ̸= ∅ and C ̸= N, then either K ≤m C or
K ≤m C.

In the sense of many-one reducibility, K is the most complicated c.e. set. Moreover, a set is c.e.
iff it is many-one reducible to K.

Theorem 5.5. A ⊆ N is c.e. iff A ≤m K.

Proof. ⇒: Given a c.e. set A with a computable enumeration (As)s∈N, define a computable many-
one reduction from A to K as follows. Given x, let f(x) be the program that iteratively computes
the enumeration A0, A1, . . . until it find s such that x ∈ As, then the program halts. So for every n,
φf(x)(n) halts iff x ∈ A. So x ∈ A↔ f(x) ∈ K.

⇐: Suppose f is a many-one reduction fromA toK. Then n ∈ A↔ f(n) ∈ K ↔ (∃s)“φf (n)(f(n))↓
in s steps”. Hence A is Σ1 and so it is c.e.
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Note that using the padding lemma, it is easy to improve the above theorem to show that if
A ⊆ N, then A is c.e. iff A ≤1 K.

Exercise 5.6. Let φx ↓ denote that the Turing machine x halts on the empty input, and let
⟨·, ·⟩ : N2 → N denote some computable bijection from N2 to N. Let K ′ = {x : φx(0) ↓}, and
K ′′ = {⟨x, y⟩ : φx(y)↓}. Show that K ≡1 K

′ ≡1 K
′′.

So all these versions of the halting problem are equivalent.

Figure 5: A picture of all subset of N organized by many-one reducibility

5.2 Myhill’s isomorphism theorem

Next, we give a characterization of ≡1 due to Myhill. Say that A,B ⊆ N are computably isomor-
phic iff there is a computable bijection h : N → N such that for all x, x ∈ A↔ f(x) ∈ B.

Theorem 5.7. A ≡1 B iff A and B are computably isomorphic.

Recall that Cantor-Shröder-Bernstein theorem: if X and Y are arbitrary sets such that there
is an injection from X to Y and an injection from Y to X, then there is a computable bijection
between X and Y . This theorem above is essentially a computable version of this theorem, and is
proved using a similar argument.

Proof of Theorem 5.7. Let f : N → N be the computable injection such that x ∈ A ↔ f(x) ∈ B.
and let g : N → N be the computable injection so the x ∈ B ↔ g(x) ∈ A.

We define h : N → N in stages (essentially, we will give an enumeration procedure for the graph
of h, and appeal to Theorem 4.9). Inductively we will assume that for all x such that h(x) has been
defined, x ∈ A ↔ h(x) ∈ B, and h is a partial injection. We will ensure that h is total by making
sure dom(h) = N and ran(h) = N.

At step 2s, let x0 be the least element of N not already in dom(h). We define h(x0) using the
following inductive procedure. Given xi, let yi = f(xi), and if yi ∈ ran(h), let xi+1 = h−1(yi). Note
that the yi and xi are all distinct since f and h−1 are partial injections, and xi ∈ A ↔ yi ∈ B ↔
xi+1 ∈ A by our induction hypothesis. Since h is a finite partial function, we must eventually find
some n so that yn /∈ ran(h). Define h(x0) = yn for this n. We have x0 ∈ A↔ yn ∈ B by the above,
and h will be a partial injection since yn was not yet in the range of h by definition.

At step 2s + 1, let y0 be the least element of N not already in ran(h), and define h−1(y0) by
exchanging the roles of A,B, f, g, xi, yi and h, h

−1 in the process above.
At the end of this process h will be total, since there cannot be a least element missing from its

domain or range. We have that for every x ∈ N, x ∈ A ↔ h(x) ∈ B by our construction. Finally,
h is computable, since its graph is c.e.; we can enumerate each step of our construction (so apply
Theorem 4.9).
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In computability theory, we largely only care about properties of sets of natural numbers that
are invariant under computable isomorphism. Similarly, in geometry we only care about properties
of shapes that are invariant under isometries.
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6 The recursion theorem, acceptable numberings

6.1 The recursion theorem

The recursion theorem is a fixed-point theorem for computable functions acting on programs:

Theorem 6.1 (Kleene’s recursion theorem). Let f : N → N be a total computable function. Then
there is some e ∈ N such that φe = φf(e) (i.e. the two indices e and f(e) for Turing machines define
the same partial computable function).

Proof. Let d : N → N be a total computable function defined so that for every n, d(n) is the index
for the program so φd(n)(k) first computes φn(n), and if this halts and outputs m = φn(n), then
the machine then computes φm(k).5 So

φd(n)(k) =

{
φφn(n)(k) if φn(n) halts

undefined otherwise
.

Now let v be an index for a Turing machine computing f ◦d, which is a total computable function,
so φv = f ◦ d. Then if we let e = d(v), then

φe = φd(v) = φφv(v) = φf(d(v)) = φf(e)

We illustrate some simple applications of the recursion theorem.

Proposition 6.2. There is an e such that φe is the constant function e.

Proof. Let f : N → N be the computable function so φf(e)(n) = e for all e.6 So by the recursion
theorem, there exists an e such that φe = φf(e).

Proposition 6.2 is essentially a program that outputs its own source code. Such programs (which
are sometimes called “Quines”) date back to ideas of von Neumann in the 1940s. A simple example
of such a program uses the following basic idea:

Print the following twice, the second time in quotes:
“Print the following twice, the second time in quotes:”

Exercise 6.3. Show there is an e so that We = {e}.

Another nice application of the recursion theorem is to minimal programs.

Definition 6.4. An index n for a Turing machine is called minimal if for all m < n we have
φn ̸= φm. That is, n is the least index implementing the partial computable function φn.

Proposition 6.5. There is no infinite computable set of minimal indices. In particular, the set of
all minimal indices is not computable.

5There is a computable function u(n,m) so u(n,m) = φn(m) (by the existence of a universal Turing machine
Theorem 2.11). Let g be the computable function g(n, k) = u(u(n, n), k) = φφn(n)(k). Note g(n, k) is undefined if
φn(n) does not halt. By the S-m-n theorem, since g(n, k) = φx(n, k) for some x, there is a computable function s so
that φs(x,n)(k) = g(n, k) = φφn(n)(k). Let d be the computable function where d(n) = s(x, n).

6There is a computable function g so that g(e, n) = e for all e, n. So g(e, n) = φx(e, n) for some x. By the S-m-n
theorem, φs(x,e)(n) = φx(e, n) = g(e, n) = e. Let f be the computable function f(e) = s(x, e).
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Proof. For a contradiction, supposeM is a infinite computable set of minimal indices. Let f : N → N
a the total computable function mapping e to an index f(e) for a Turing machine which on input
k, first computes the least element n of M such that n > e, and then computes φn(k). So for every
φf (e) = φn for some n > e where n ∈ M . (Note that f is total; it is computing a description of a
Turing machine, and not actually running the Turing machine itself).

By the recursion theorem there is an e such that φe = φf(e) = φn for some n > e where n ∈M .
But this implies that n is not a minimal index. Contradiction!

Exercise 6.6. Show there is no infinite c.e. set of minimal indices.

Generally, the way we apply the recursion theorem is that it allows us to use the index e for a
program φe as part of the program itself. Formally, we can justify this by letting f map e to an
index of a program f(e) that implements the behavior we want (and whose description can include
e), and then by applying the recursion theorem.

We finish this section by reproving that the halting problem is incomputable using the recursion
theorem. We’ll give a formal and informal version of this proof to illustrate this type of formal vs
informal argument.

Proposition 6.7. K ′ = {n : φn(0)↓} is not computable.

Proof. Informal proof: Assume for a contradiction that K ′ is computable. By the recursion theorem,
consider the program φe so that φe(0) first computes whether e ∈ K ′ (using the computability ofK ′)
and then halts if e /∈ K ′, and never halts if e ∈ K ′. Then φe(0)↓ iff e /∈ K ′ iff φe(0)↑. Contradiction!

Formal proof: Assume for a contradictionK ′ is computable. Let f : N → N be a total computable
function where φf(e)(0) first computes whether e ∈ K ′ (using the computability of K ′) and then
halts if e /∈ K ′, and never halts if e ∈ K ′. (The existence of such a total computable f follows from
the S-m-n theorem). By the recursion theorem, let e be such that φe = φf(e). Then φe(0) ↓ iff
φf(e)(0)↓ iff e /∈ K ′ iff φe(0)↑. Contradiction!

There is a version of the recursion theorem that includes parameters. It proof uses the uniformity
in the proof of the recursion theorem: we use the same computable procedure for finding a fixed
point for any computable function f .

Exercise 6.8. If f : N2 → N is a computable function, then there is a computable injection n : N → N
such that for all y,

φn(y) = φf(n(y),y)

Exercise 6.9. Prove that K is not an index set.

6.2 Acceptable numberings*

In Definition 2.10, we fixed some computable enumeration of all Turing machines. However, there are
many possible ways we could have done this: enumerating all Turing machines is a different order,
using a different notion of computation like general recursive functions, python programs, etc.. In
this section, we discuss acceptable numbers: orderings of all partial computable functions which
would also give us a reasonable computability theory.

Definition 6.10. An acceptable numbering is a sequence (ψn)n∈N of partial computable func-
tions so that:

1. The sequence includes every partial computable function:
⋃

n{φn} =
⋃

n{ψn}.

2. There are computable functions f : N → N and g : N → N such that for every x, ψx = φf(x),
and φx = ψg(x).
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We call (φn)n∈N the standard numbering of all partial computable functions.

One way to think of condition (2) above is that there must be a “compiler” that converts programs
of the type ψx into standard programs φy, and also a “compiler” that converts standard programs
φx into programs of type ψy.

We will show using the recursion theorem that any acceptable numbering actually has the much
stronger property of being computably isomorphic to the standard numbering:

Theorem 6.11. Suppose (ψn)n∈N is an acceptable numbering of partial computable functions. Then
there is a computable bijection h : N → N such that for all x, φx = ψh(x).

It follows from this theorem that if we picked any other acceptable numbering of the partial
computable functions, then all the all the various sets we have defined: the halting problem, the set
of total functions, etc. would be computably isomorphic to the standard versions. Hence, identical
from the perspective of computability theory.

Proof. If f and g are injective, then the theorem follows easily using the same idea as in the proof
of Myhill’s isomorphism theorem Theorem 5.7. So it suffices to show that we can find injective f
and g satisfying condition (2) in the definition of an acceptable numbering.

For the function f , we can inductively use the padding lemma to inductively define a computable
f ′ : N → N so that for all n, φf ′(n) = φf(n), and f

′(n) ̸= f ′(i) for any i < n. However, to do the
same for the function g, we need to prove there is a version of the padding lemma for our acceptable
numbering (ψn)n∈N.

Precisely, we need to define a computable function h : N2 → N so that for all x, φh(e,x) = φe,
and for all x ̸= x′ g(h(e, x)) ̸= g(h(e, x′)). We define h(e, k + 1) recursively, where h(e, 0) = e. Let
Bk = {g(h(e, 0)), . . . , g(h(e, k))}. By the recursion theorem, consider the program n where:

φn(z) =

{
φe(z) if g(n) /∈ Bk

undefined otherwise

Case 1: If g(n) /∈ Bk, then φn = φe, and g(n) ̸= g(h(e, 0)), . . . , g(h(e, k)). So we define h(e, k +
1) = n.

Case 2: if g(n) ∈ Bk, then φn is the program which is undefined on all inputs by the second
clause of its definition, and so since g(n) ∈ Bk, g(n) = g(h(e, i)) for some i ≤ k, and so φn = ψg(n) =
ψg(h(e,i)) = φe. So ψe, and all the other partial computable functions in Bk are programs which are
undefined on all inputs.

Now m be the program where

φm(z) =

{
1 if m ∈ Bk

undefined if m /∈ Bk

.

If m ∈ Bk, then φm(z) = 1 for all z by definition, but m ∈ Bk implies φm(z) is undefined for all z
by the above paragraph. Hence, we must have m /∈ Bk, and hence φm(z) is undefined for all z. Let
h(e, k + 1) = m.

Often the recursion theorem is taken to mean that there is a formal trick that lets us “pretend”
that we know the index n of a program φn while defining it. However, using Theorem 6.11 we can
show that we can literally use a programming language where one of the possible instructions in the
language is to return the index of the program that is running. Consider such a programming lan-
guage. It is easy to show that there are computable functions f, g : N → N converting back and form
between this language, and the language where we do not include this “self-reference” instruction
(simply replace the request for the index of the currently running program with the number giving
the index). Hence, this different programming language gives an acceptable numbering of programs.
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Exercise 6.12. Suppose (ψn)n∈N is an acceptable numbering of partial computable functions. Show
there is an e ∈ N so that ψe = φe.

Exercise 6.13. Show that there is a computable strictly increasing sequence e0 < e1 < . . . such
that for every n, Wen = {en+1} (in the standard numbering of r.e. sets). [Hint: use the padding
lemma, and the observation from the previous paragraph. For an alternate proof, see [Mi08]].

Exercise 6.14 (A computable listing of all partial computable functions that isn’t an acceptable
numbering). Let f0, f1 : N → N be computable functions so that x 7→ (f0(x), f1(x)) is a computable
bijection. Define ψn as follows.

ψn(m) =


φf1(n)(m) if m > 0

undefined if m = 0 and f0(n) = 0

f0(n)− 1 if m = 0 and f0(n) > 0

1. Show that
⋃

n{ψn} =
⋃

n{φn}.

2. Show that the function (n,m) 7→ ψn(m) is partial computable.

3. Prove that (ψn)n∈N is not an acceptable numbering.
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7 Undecidability and tiling problems

Definition 7.1. A yes/no problem is said to be undecidable if there is no computer program that
correctly computes answers to each instance of the problem.

Famous examples of undecidable problems include deciding whether a sentence of number theory
true, deciding whether a diophantine equation have a solution, and the word problem for finitely
presented groups.

Undecidability is found throughout mathematics and draws a diving line through most sub-
jects: those classes of problems which can be completely solved, and those we will never be able
to completely understanding. An excellent introduction to undecidable problems in mathematics is
Poonen’s paper [P].

7.1 Wang tiles

A Wang tile is a square tile whose left, right, top, and bottom edges have each been given by some
label/color. For example, here are three Wang tiles, where we use the colors red, blue and green for
the labels:

A tiling of the plane using a finite set T of Wang tiles is a function f : Z2 → T so that
for all (n,m) ∈ Z2, the top label of the tile f(n,m) matches the bottom label of the tile f(n,m+1),
and the right label of the tile f(n,m) matches the left label of the tile f(n + 1,m). Intuitively, we
are arranging copies of the tiles from T in an infinite grid where the edges of adjacent tiles match
each other. In such a tiling we may repeat any tile as many times as we like, however, each tile may
only be translated horizontally and vertically (and not reflected or rotated). Here is a picture of a
tiling using the above three tiles:

A famous theorem of Berger says that determining whether a finite set of Wang tiles can tile the
infinite plane is incomputable.

Theorem 7.2 (Berger, 1966). There is no computer program which takes as input a finite set T of
Wang tiles and outputs whether there is a tiling of the plane using the tiles T .

We will prove a simpler special case of Berger’s theorem: it is undecidable whether there is a
tiling of the plane with a finite set T of Wang tiles that includes a particular Wang tile t0 ∈ T .
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Theorem 7.3 (Undecidability of the completion problem for Wang tiles). The problem of whether a
finite set T of Wang tiles and has a tiling of the infinite plane that uses a given t0 ∈ T is undecidable.

Proof. Fix a Turing machine M with alphabet S states Q, starting state q0, and transition function
t : S × Q → S × Q × {L,R}. We will define a set of tiles T (M) and a tile t0 ∈ T (M) so that
(T (M), t0) is computable from M . This tileset will have the property that M halts iff there is no
tiling of the plane using the tiles T (M) and containing t0. The labels in our tileset will elements of
S ∪ {L,R} ∪ {∗, L∗, R∗} where {∗} is a special symbol we introduce to help represent tiles below, to
the left, and to the right of the start of the computation.

The finite set T (M) of tiles consists of:

1. The tile t0:

L∗

∗

⌞⌟, q0

R∗

2. The three tiles:

L∗

∗

⌞⌟

L∗ R∗

∗

⌞⌟

R∗ ∗
∗

∗
∗

3. For every a ∈ S

L
a

a

L R
a

a

R

4. For every transition of the form t(a, q) = (a′, q′, L), and every b ∈ S, the tiles

L

b

b, q′

q′ q′

a, q

a′

R

5. For every transition of the form t(a, q) = (a′, q′, R), and every b ∈ S, a tile:

L
a, q

a′

q′ q′

b

b, q′

R

Let f : Z2 → T (M) be a tiling using the tile t0. By shifting the origin of a tiling f : Z2 → T (M)
we may assume that f(0, 0) = t0. Since the only tile whose left label is L∗ is the first tile from (2),
inductively f(−n, 0) must be this tile for every n > 0. Similarly, f(n, 0) must be the second tile in
(2) for every n > 0. Since the bottom label of every tile f(n, 0) for n ∈ Z must be ∗, inductively,
f(n,m) must be the third tile from (2) for every m < 0.
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Now inductively, we show that for each i ≥ 0, there is exactly one n such that the top label of
f(n, i) is of the form S ×Q. We have already shown this for i = 0. For i > 0, note there must be at
least one such tile because of the rules (4) and (5): if a tile has a label in S ×Q, then the tile above
and right or above and left of it must have a label in S ×Q. Furthermore, because of (3) combined
with (4) and (5), any tile to the left of a tile with top label in S × Q must have the label on the
right side equal to L, and any tile to the right of a tile with top label in S ×Q must have its label
on the left side equal to R. So there is exactly one such title.

Now for each i, let Ti(n) = a if the top label of f(n, i) is a or (a, q) for some q. Let ni be the
unique n such that the top label of f(n, i) is in S × Q, and let qi be such that the top label of
f(ni, i) = (Ti(n), qi). Now we show inductively that (Ti, qi, ni) is the state of the Turing machine
M at step i when run on the empty input, and hence M never halts. This is by (3), (4), (5). For
all m, Ti+1(m) = Ti(m) unless m = ni in which case the symbol Ti+1(m) changes in accordance to
the Turing machine rules (because of rules (4) and (5)) and the next state and value of ni+1 change
according to t(Ti(ni), qi) similarly.

So we have shown that if there is a tiling using the tileset T and incorporating t0, then M must
not halt when run on the empty input. The proof that if M halts, then there is no tiling is similar.
Any such tiling must similarly have the ith row exactly corresponding to the run of the Turing
machine, but once the state of the Turing machine becomes the halting state qhalt, since t(a, qhalt)
is undefined, there is no tile we can place above this tile. So if the machine halts, then there is no
such tiling.

A compactness argument can be used to show that Wang tiling problems are equivalent to
checking that we can tile arbitrarily large squares.

Exercise 7.4.

1. A finite set of Wang tiles can tile the infinite plane iff for every n,> 0, this set of Wang tiles
can tile an n× n square.

2. Suppose T is a finite set of Wang tiles, and t0 ∈ T . Then there is a tiling of the infinite
plane which includes the tile t0 if and only if for every n > 0 there is a tiling of the region
[−n, n]× [−n, n] with the tile t0 at the origin.

By part (2) of above exercise, the set of pairs TILE0 = {(T, t0) : there is a tiling of the the plane
using the tiles T include the tile t0} is a c.e. set, so TILE0 ≤m K. Our proof of Theorem 7.3 above
show that K ≤m TILE0. So these types of tiling problem are equivalent to the halting problem in a
strong sense.

Exercise 7.5. A 1-dimensional Wang tile is a rectangle with a label on just its left and right side.
Show that the completion problem for finite sets of 1-dimensional Wang tiles is decidable. [Hint:
use the pigeonhole principle to show that if a 1-dimensional tileset can tile an infinite line, it can do
so periodically].
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8 Consequences of undecidability

Once we know that a problem of mathematics is undecidable, we can sometimes learn something
about the problem by considering potential algorithms that attempt to solve it.

8.1 Aperiodic Wang tilings

In Exercise 7.5 you showed that 1-dimensional tiling problems are decidable. Key to the solution is
using the pigeonhole principle to show that if a 1-dimensional tileset can tile the infinite plane, it
can do so periodically.

Hao Wang conjectured in 1961 that the same phenomenon holds true in 2 dimensions. Say that
2-dimensional Wang tiling is periodic if there are M,N > 0, so that for every x, y ∈ Z the tile at
location (x, y) is equal to the tile at location (x + iN, y + jM) for every i, j ∈ Z. Hence, the tiling
is the same m× n rectangle repeated over and over again.

Conjecture 8.1 (Wang’s conjecture). If a finite set of Wang tiles can tile the infinite plane, then
it has a periodic tiling.

Wang’s conjecture would have implied that the problem of determining whether a finite set of
Wang tiles can tile the infinite plane is decidable.

Proposition 8.2. If Wang’s conjecture is true, then there is an algorithm for deciding whether a
finite tileset can tile the infinite plane.

Proof. The algorithm goes as follows. For each m,n, check first whether there is an n×m rectangle
which can periodically tile the plane (so the colors on the left match the colors on the right, and the
colors on the top match the colors on the bottom). If so, output that there is a tiling of the plane.
Then check if there is no tiling at all of an m × n rectangle. If there is none, then output there is
no tiling of the plane.

This algorithm will always halt assuming Wang’s conjecture, since either there is a tiling of the
plane (and hence a periodic tiling by Wang’s conjecture which we will eventually find), or there is
no tiling of the plane (and hence by Exercise 7.4

Exercise 8.3. Consider the following variation on the definition of a Turing machine: instead of a
transition function t : S ×Q→ S ×Q× {L,R} there is a transition function t : S ×Q→ S ×Q× Z
where if t(a, q) = (a′, q′, n), then the symbol in the current cell is changed to a′, the state is changed
to q′, and the head of the Turing machine moves by n cells. Explain why this new type of machine
can compute exactly the same partial functions as the usual sort of Turing machine.

there is no tiling of some n×m rectangle, which we will eventually find.

In 1966, Berger refuted Wang’s conjecture in a strong way:

Theorem 8.4 ([B66] (see [DRS] for a modern proof)). There is no algorithm for checking in a finite
amount of time whether a given finite tileset can tile the infinite plane.

Corollary 8.5. there is a finite set of Wang tiles that can tile the plane, but only aperiodically.

Proof. If Wang’s conjecture is true, it would give an algorithm for deciding what tilesets can tile the
infinite plane by Proposition 8.2. Since Berger proved there is no such algorithm, Wang’s conjecture
is false.

By tracing through the undecidability result, and implementing a tiling that simulates Turing
machine that performs Wang’s algorithm, Berger found an explicit example of such a tiling set. It
used more than a hundred Wang tiles. In recent years, the smallest possible such tileset (which tiles
the plane but only aperiodically) has been found by Jeandel and Rao [JR]. It uses 11 tiles and 4
colors (and no set of Wang tiles with either fewer than 11 tiles or fewer than 4 colors is aperiodic):
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Figure 6: The smallest set of tiles that can tile the plane, but only aperiodically. Taken from the
paper [JR]

8.2 Undecidability implies incompleteness

Suppose we have some undecidable problem. One algorithm for attempting to solve the problem
is to fix some computable set of axioms (e.g. PA or ZFC) and notion of proof (e.g. proofs in a
Hilbert-style proof system) for, and search through all proofs until we find a proof that the answer
to the problem is yes, or the answer is no. Since this type of algorithm cannot always work to
decide the problem (since we’re assuming the problem is undecidable), either the algorithm outputs
the wrong answer on some input (hence we can prove a false statement from the axioms), or the
algorithm never halts on some input (hence, one of our problems can never be proved to have a yes
or no answer).

Gödel’s first incompleteness theorem essentially boils down to proving that the problem of decid-
ing whether a sentence of arithmetic is true or false is undecidable, and then appealing to the above
observation. Hence, for any computable system of axioms that is true about the natural numbers N
there must be a sentence that is independent from these axioms.

The more general Gödel-Rosser incompleteness theorem removes the assumption that our axioms
are true (this is useful for studying nonstandard models, for instance), and just that it is consistent,
and extends some basic axiom system (e.g. PA or Robinson’s Q).

We will prove these incompleteness theorems carefully in following sections.
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8.3 Non-residually finite groups via the undecidability of the word prob-
lem*

In this section, we give another example of a an interesting mathematical consequence of an undecid-
ability result. (This example is not historically how the existence of non-residually finite groups was
proved, but similar proof techniques have been used to great effect for other types of approximation
properties of algebraic structures.)

We will prove that there is a finitely presented non-residually finite group by exploiting the
incomputability of the word problem for groups. Recall that a group G is residually finite if for
all nonidentity g ∈ G, there is a homomorphism φ : G→ F to a finite group F such that φ(g) ̸= 1F .
Residual finiteness is a kind of finite approximation property for groups. By taking products of
homomorphisms to finite groups, one can easily see that a group G is residually finite iff for every
finite sequence g1, . . . , gn ∈ G with gi ̸= 1G there is a homomorphism φ : G→ F to a finite group F
so that φ(gi) ̸= 1F for all i ≤ n. So roughly speaking, a group is residually finite iff any finite part
of its Cayley table can be replicated inside of a finite group.

Exercise 8.6. Show that for every n, the group Zn is residually finite.

Exercise 8.7. For each n, show that the free group on n generators Fn is residually finite. [Hint:
given a word g of length m in Fn, construct a homomorphism from Fn to the symmetric group Sm

on a set of size m+ 1.

Lemma 8.8 (McKinsey, Dyson, Mostowski). The word problem for a finitely presented residually
finite group is computable.

Proof. The following algorithm decides if a word w in a finitely presented residually finite group
⟨S|R⟩ is equal to the identity. Simultaneously search for both:

• A sequence of relations showing that w = 1

• A homomorphism φ : ⟨S|R⟩ → F to a finite group F where φ(w) ̸= 1F .

Note that even though the group ⟨S|R⟩ may be infinite, a homomorphism from ⟨S|R⟩ to a group F
is determined by its image on the generators S, and to check that φ is a homomorphism, we just
need to check that the images under φ of the relations in R are satisfied in F . Hence, it’s easy to
enumerate all homomorphisms φ from ⟨S|R⟩ to finite groups F .

Eventually one of these two searches must terminate showing that either w = 1 or w ̸= 1.

It is a famous theorem of Boone and Novikov that the word problem for finitely presented groups
is incomputable. We will prove this in the next section. Hence, we have:

Corollary 8.9. There is a finitely presented non-residually finite group.

Proof. If every finitely presented group was residually finite, then the word problem for all finitely
presented groups would be computable by Lemma 8.8.

A more typical proof of this corollary would be an example like the following:

Exercise 8.10. Show that the Baumslag-Solitar group BS(2, 3) = ⟨a, b|a−1b2a = b3⟩ is not residu-
ally finite.
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8.4 Unsolvability of the word problem*

In this section, we prove the undecidability of the word problem for finitely presented groups. The
following exercise follows easily from the normal form theorem for HNN extensions, and encapsulates
exactly the facts about them which we will need to carry out the proof.

See Chapter IV in [LS] for a detailed introduction to HNN extensions. We encapsulate the basic
facts about HNN extensions that we will need in the following exercise:

Exercise 8.11. Let G be a group, A,B ≤ G be subgroups of G that are isomorphic via ϕ : A→ B,
and let the HNN extension of G with respect to A, B, and ϕ be G∗ = ⟨G, t; t−1at = ϕ(a)⟩a∈A. Show
that:

1. IfA is generated by a0, a1, . . . an, thenG
∗ is equivalently presented as ⟨G, t; t−1a0t = ϕ(a0), . . . , t

−1ant =
ϕ(an)⟩.

2. For all g ∈ G, if there exists a g′ ∈ G such that t−1gt = g′, then g ∈ A.

3. If H is a subgroup of G such that ϕ(H ∩ A) = H ∩ B, then if H∗ is the subgroup of G∗

generated by H and t, then H∗ ∩G = H.

It is an important aspect of undecidability proofs that it is often easier to prove a particular
undecidability using a particular model of computation. For example, the undecidability of Tilings
problems is easiest to prove using the Turing machine model. Whereas the undecidability of solving
diophantine equations is easiest to prove using register machines (see [JM91]). Our proof of the
undecidability of the word problem will use a variation of the notion of a Turing machine called a
modular machine. This will make our undecidability proof much cleaner.

Definition 8.12 (Definition of a modular machine). A modular machine program is some
M > 1, and a finite set called the transitions of the machine of the form (a, b, c, R) or (a, b, c, L)
where a, b, c ≥ 0, a, b < M and c < M2. The set of transitions must have the property that there
is at most one transition beginning with any particular pair of a and b. A configuration of a
modular machine is a pair (α, β) ∈ N2.

Definition 8.13 (The execution of modular machine). Fix a modular machine program. To each
configuration (α, β) of the modular machine, we definite an infinite sequence of configurations that
. Suppose α = uM + a and β = vM + b for 0 ≤ a, b, u, v < M . Then if there is a transition of the
form (a, b, c, R), then the next configuration after (α, β) is defined to be (uM2 + c, v). If there is a
transition of the form (a, b, c, L), then the next configuration after (α, β) is defined to be (u, vM2+c).
Finally, if there is no transition beginning with (a, b, . . .), then the next configuration is defined to
be (α, β).

By using the base M representation of α to represent the left half of a Turing machine tape and
base M representation of β to represent the right half of a Turing machine tape, and by storing the
current state of the Turing machine in either a = rem(α,M) or b = rem(β,M), it is straightforward
to show the following:

Exercise 8.14. Show that there is a modular machine such that the set of (α, β) that eventually
reach (0, 0) is incomputable.

The undecidability of the word problem is originally due to Boone and Novikov, however, the
proof of the theorem we will present is due to Aanderaa and Cohen from 1980.

Theorem 8.15 (Boone-Novikov). There is a finitely presented group whose word problem is incom-
putable.
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Proof. By Exercise 8.14 Fix a modular machine with modulus M and transitions {(ai, bi, ci, R) : i ∈
I} ∪ {aj , bj , cj , L) : j ∈ J} such that there is no transition beginning (0, 0, . . .) and the set of config-
urations (α, β) that eventually reach (0, 0) is incomputable. We will construct a finitely presented
group such that from the word problem for this group, we can determine which configurations (α, β)
in this machine eventually reach (0, 0).

We begin with the group G = ⟨x, y, p;xy = yx⟩ in which x and y generate a copy of Z2. For every
(α, β) ∈ Z2, we let p(α, β) = xαyβpx−αy−β . Intuitively, we will think of p(α, β) as representing the
configuration (α, β) in our modular machine, when α, β ∈ N. Now of course, the group G does
contain any information about the modular machine program or what computations it does. The
next step in our proof addresses this issue; we will move to an iterated HNN extension G∗ of G in
which we add stable letters for each transition in the modular machine program.

Now given any K,N > 0 and (a, b), the subgroup GK,L
a,b of G generated by xK , yL, and p(a, b) is

isomorphic toG, via the unique isomorphism ϕ which maps ϕ(xK) = x, ϕ(yL) = y, and ϕ(p(a, b)) = p

(the reader should explicitly check this if it is not obvious). Therefore, these subgroups GK,L
a,b are all

isomorphic to each other.
Our motivation for considering these subgroups and isomorphisms between them is that we can

use them to represent transitions from our modular machine program. Indeed, for each i ∈ I and

corresponding transition (ai, bi, ci, R), consider the unique isomorphism ϕi : GM,M
ai,bi

→ GM2,1
ci,0

for

which ϕi(x
M ) = xM

2

, ϕi(y
M ) = y, and ϕi(p(ai, bi)) = p(ci, 0). Note that this isomorphism correctly

implements the transition (ai, bi, ci, R) in our modular machine:

ϕi(p(uM + ai, vM + bi)) = ϕi(x
−uMy−vMp(ai, bi)x

uMyvM )

= ϕi(x
−uM )ϕi(y

−vM )ϕi(p(ai, bi))ϕi(x
uM )ϕi(y

vM )

= x−uM2

y−vp(ci, 0)x
uM2

yv = p(uM2 + ci, v)

Similarly, for each j ∈ J , the unique isomorphism ψj : GM,M
aj ,bj

→ G1,M2

0,cj
for which ψj(x

M ) = x,

ψj(y
M ) = yM

2

, and ψj(p(ai, bi)) = p(0, ci) carries out the transition (aj , bj , cj , L).
Now we do an iterated HNN extension of G using each pair of subgroups and the associated

isomorphism discussed in the previous paragraph. We will use the stable letters ri for the isomor-
phisms ϕi and lj for the isomorphisms ψj . Then by Exercise 8.11.1, we can equivalently present the
resulting group as:

⟨G, ri, lj ; r−1
i xMri = xM

2

, r−1
i yMri = y, r−1

i p(ai, bi)ri = p(ci, 0)

l−1
j xM lj = x, l−1

j yM lj = yM
2

, l−1
j p(aj , bj)lj = p(0, cj)⟩i∈I,j∈J

Now this group G∗ has a good way of representing configurations of our machine, as well as
its transitions. However this group still has a computable word problem; informally, the reason is
because from the word problem of G∗, we can only figure out answers to questions such as: “does the
following finite sequence of transitions change the configuration (α, β) to the configuration (α′, β′)”?
We will need to take one more HNN extension to get a group with an incomputable word problem.
Our goal is now to analyze the set of configurations that eventually halt, and how they appear in
this group, this will be the key to finishing.

Let Chalt = {p(α, β) : (α, β) ∈ N2 ∧ (α, β) eventually reaches (0, 0)}; the set of configurations
that eventually reach (0, 0). Now let H be the subgroup of G generated by Chalt. Note that since
⟨p(α, β) : (α, β) ∈ Z2⟩ generates a free group (the reader should check this), we have that p(α, β) ∈ H
if and only if p(α, β) ∈ Chalt.

Now let H∗ = ⟨H, ri, lj⟩i∈I,j∈J . We claim that this is equal to the group ⟨p, ri, li⟩i∈I,j∈J . Since
p(0, 0) = p, it is clear that H∗ contains this group. To show that ⟨p, ri, li⟩i∈I,j∈J contains H∗ it
is enough to show that it contains all the generators p(α, β of H. We can do this by induction on
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the number of steps it takes for the configuration (α, β) to reach (0, 0). The base case is clear since
p(0, 0) = p. Now for our induction step, if (α, β) = (uM + ai, vM + bi) for some i ∈ I so that the
next transition applied to (α, β) is (ai, bi, ci, R) then since r−1

i p(α, β)ri = ϕi(p(uM +ai, vM + bi)) =
p(ci, 0) by our discussion of ϕi above, we are finished. A similar argument works in the case our
next transition is of the form (aj , bj , cj , L). Hence, by Exercise 8.11.(3) we have that p(α, β) is in
the group ⟨p, ri, lj⟩i∈I,j∈J if and only if (α, β) eventually reaches (0, 0) in our machine.

We’re now ready to finish our proof; there’s a beautiful way of taking one more HNN extension
so that the word problem of the resulting group can be used to determine what words are elements
of the subgroup ⟨p, ri, lj⟩i∈I,j∈J of G∗. Let θ : ⟨p, ri, lj⟩i∈I,j∈J → ⟨p, ri, lj⟩i∈I,j∈J be the identity
isomorphism, and let G∗∗ be the HNN extension of G∗ with respect to these subgroups and this
isomorphism, so that:

G∗∗ = ⟨G, t; t−1pt = p, t−1, t−1rit = ri, t
−1ljt = lj⟩i∈I,j∈J

Now by Exercise 8.11.(2) we have that a word w of G∗ is an element of ⟨p, ri, lj⟩i∈I,j∈J if and
only if t−1wt = w is true in G∗∗. Thus we are done; (α, β) eventually reaches (0, 0) if and only if
t−1p(α, β)t = p(α, β) is true in G∗∗.

Above, we have been concerned with finitely presented groups. Say that a group is computably
presented if it has a computable set of generators, and a computable set of relations. For example,
every finitely presented group is computably presented. It is easy to show that there is a computably
presented group with an undecidable word problem.

Exercise 8.16. Show (without using the Boone-Novikov theorem) that there is a computably
presented group with an undecidable word problem. [Hint: let S be an infinite set of generators
g0, g1, . . .. Describe a computable set of relations R so that the nth program φn does not correctly
compute whether gn = 1.]

By using the same basic tools as the Boone-Novikov theorem above, one can show that there is
a finitely presented group so that every computably presented group embeds into it in a computable
way. This is Higman’s embedding theorem.

Theorem 8.17 (Higman [?H61]). There is a finitely presented group G so that for every computable
group H, there is a computable embedding of H into G.

Higman’s embedding theorem gives a different proof of the undecidability of the word problem
for finitely presented groups; simply use Exercise 8.16.
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9 Undecidability in arithmetic

9.1 Undecidability of truth in (N; 0, 1,+, ·, <)

In this section we’ll prove that the set of sentences that are true in the structure (N; 0, 1,+, ·, <) is
undecidable. The key to this proof is a way of representing sequences using natural numbers.

Definition 9.1 (Gödel’s β function). Define the function β : N3 → N by β(x1, x2, x3) = rem(x1, 1+
(x3 + 1) · x2). That is, β is the remainder when x1 is divided by 1 + (x3 + 1) · x2).

Note that β(x1, x2, x3) = r iff (∃q ≤ x1)[q · (1 + (x3 + 1) · x2) + r = x1]. Hence, since β is a
definable function in (N; 0, 1,+, ·, <) we can rewrite any formula containing β with an equivalent
formula in this structure that just uses the symbols 0, 1,+, ·, <. Our next lemma says that we can
use the β function to represent sequences.

Lemma 9.2 (Gödel’s β lemma). For any sequence of natural numbers a0, a1, . . . an, there are natural
numbers b and c so that for every i ≤ n, β(b, c, i) = ai.

Proof. By the Chinese remainder theorem, if m0, . . . ,mn are relatively prime and a0, . . . , an are
integers, there is some x such that x ≡ ai mod mi for every i ≤ n. Choose k such that k > ai for every
i, and k > n. Let b be such an x solving this system of equations for the moduli mi = 1+ (1 + i)k!,
and c = k!. Note that the mi are all relatively prime for i ≤ n since if p | 1 + (1 + i)k! and
p | 1 + (1 + j)k!, then p divides the difference p | (i− j)k!, and since |i− j| < k, this implies p ≤ k.
But this contradicts p | 1 + (1 + i)k!.

Exercise 9.3. Prove the Chinese remainder theorem: if m0, . . . ,mn ∈ N are relatively prime then
for every integer sequence a0, . . . , an there is some integer x such that x ≡ ai mod mi. [Hint:
first show there are b0, . . . , bn such that bi ≡ 1 mod mi, and bi ≡ 0 mod mj for j ̸= i. Then let
x =

∑
i≤n aibi.]

Now we prove the undecidability of the problem of deciding what sentences are true in the
structure (N; 0, 1,+, ·, <). We could directly reduce the problem of whether the nth Turing machine
halts to a sentence of arithmetic, but it is a little cleaner to instead use the model of computation
given by partial recursive functions.

Lemma 9.4. For every partial recursive function f : Nk → N there is a formula φf (x1, . . . , xk, y)
that represents it in the sense that N ⊨ φf (x1, . . . , xk, y) if and only if f(x1, . . . , xk) = y.

Proof. We define this map by recursion.
The constant function f(x) = n is represented by the formula y = 0 if n = 0, and otherwise by

the formula y = 1 + 1 + . . .+ 1︸ ︷︷ ︸
n times

.

The successor function is represented by the formula y = x+ 1.
The projection function (x1, . . . , xk) 7→ xi is represented by the formula y = xi.
If h : Nk → N and g1, . . . , gk : Nm → N are partial recursive functions, then their composition

h(g1(x1, . . . , xm), . . . , gk(x1, . . . , xm)) is maps to the formula

(∃y1, . . . , yk)

 ∧
i∈{1,...,k}

φgi(x1, . . . , xm, yi)

 ∧ φh(y1, . . . , yk, y)

 .
Next suppose f is defined by recursion where g : Nk → N and h : Nk+2 → N are partial recursive,

and f : Nk+1 → N is defined by

f(z, x1, . . . , xk) =

{
g(x1, . . . , xk) if z = 0

h(z − 1, f(z − 1, x1, . . . , xk), x1, . . . , xk) if z > 0.
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Now note that f(z, x1, . . . , xk) = y if and only if there is a sequence a0, . . . , az so that a0 =
g(x1, . . . , xk), and for every i < z h(i, ai, x1, . . . , xk) = ai+1, and y = az. So using Gödel’s β
lemma to represent this sequence a0, . . . , az, we can represent f by the formula

(∃b, c)
[
(∃w < b)[β(b, c, 0) = w ∧ φg(x1, . . . , xk, w)]

∧ (∀i < z)(∃w < b)(∃v < b)[β(b, c, i) = w ∧ β(b, c, i+ 1) = v ∧ φh(i, w, x1, . . . , xk, v)]

∧ β(b, c, z) = y
]

From Gödel’s β lemma we have that this formula holds iff there is such a sequence having the
properties above.

Finally, for the minimization operator, suppose f : Nk+1 → N is partial recursive. Consider the
partial recursive function g : Nk → N where g(x1, . . . , xk) which is equal to the least y such that
f(y, x1, . . . , xk) = 0 if such a y exists and for all y′ < y f(y′, x1, . . . , xk) is defined. So this formula
holds iff there is a sequence a0, . . . , ay such that ai = f(i, x1, . . . , xk) and ay = 0 and ay′ ̸= 0 for all
y′ < y. So using the β lemma, we can define φg(x1, . . . , xk) to be

(∃b, c)[(∀i ≤ y)(∃z < b)(φf (i, x1, . . . , xk, z)∧β(b, c, i) = z)∧β(b, c, y) = 0∧ (∀y′ < y)¬β(b, c, y′) = 0]

Corollary 9.5. The problem of determining what first-order sentences are true in the structure
(N; 0, 1,+, ·, <) is undecidable.

Proof. Let f : N → N be the partial computable function where f(n) = φn(n) if φn(n) is defined,
and f(n) is undefined otherwise. Then φn(n) ↓↔ N ⊨ (∃y)φf (n, y). So the function mapping the
number n to the formula (∃y)φf (n, y) is a many-one reduction from the halting problem to the set
of true sentences in the structure (N; 0, 1,+, ·, <). Hence {θ : N ⊨ θ} is incomputable.

From this undecidability of truth in arithmetic, we get a weak version of Gödel’s first incom-
pleteness theorem as a corollary.

Corollary 9.6. Suppose T is a computable first order theory that is true in (N; 0, 1,+, ·, <). Then
there is some sentence φ that is independent of T (so T ̸⊢ φ and T ̸⊢ ¬φ).

Proof. As discussed in Section 8.2, consider the algorithm that attempts to decide whether sentences
φ in (N; 0, 1,+, ·, <) are true or false by searching for a proof that T ⊢ φ or T ⊢ ¬φ (here we are
using the fact that T is computable to make such an algorithm). By Corollary 9.5, this algorithm
cannot correctly halt giving the right answer for each sentence.

The algorithm never outputs an incorrect answer since T is true in (N; 0, 1,+, ·, <) by assumption,
and by soundness of first order logic. Thus, the algorithm must fail to halt on some input, and hence
there is some sentence φ independent from T .
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10 Peano arithmetic

Our next goal is to prove a stronger form of incompleteness: any consistent computable extension
T of Peano Arithmetic is incomplete (even if T is not true in (N; 0, 1,+, ·, <)). To do this we first
we need to replace much of our work in the previous section about what is true in the structure
(N; 0, 1,+, ·, <) with the more technical concept of what is provable in PA.

10.1 Standard and nonstandard models of PA, and initial segments

The theory of Peano arithmetic contains basic algebraic facts about the natural numbers along with
axioms for induction. These axioms are in the language of arithmetic LA which is the first order
language whose signature has constants 0, 1 the relation <, and binary functions +, ·. Below, we
will use x ≤ y as an abbreviation of the formula x < y ∨ x = y.

Definition 10.1. Peano Arithmetic or PA is the following theory in the language of arithmetic.
First, the theory contains the axioms of the positive part of a discrete ordered semiring. We call
these following 16 axioms PA−:

1. (∀x, y, z)((x+ y) + z = x+ (y + z)).

2. (∀x, y)(x+ y = y + x).

3. (∀x, y, z)((x · y) · z = x · (y · z)).
4. (∀x, y)((x · y) = (y · x)).
5. (∀x, y, z)(x · (y + z) = x · y + x · z).
6. (∀x)(x+ 0 = x).

7. (∀x)(x · 0 = 0).

8. (∀x)(x · 1 = x).

9. (∀x, y, z)(x < y ∧ y < z → x < z).

10. (∀x)(¬x < x).

11. (∀x, y, z)(x < y ∨ y < x ∨ x = y).

12. (∀x, y, z)(x < y → x+ z < y + z).

13. (∀x, y, z)(0 < z ∧ x < y → x · z < y · z).
14. (∀x, y)(x < y → (∃z)x+ z = y).

15. 0 < 1 ∧ (∀x)[x > 0 → x ≥ 1)].

16. (∀x)(x ≥ 0).

Second, the theory contains an induction axiom for each formula φ:

φ(0) ∧ ∀k(φ(k) → φ(k + 1))] → ∀nφ(n) (Indφ)

So PA = PA− + ∪φ{Indφ}.

A good reference for Peano Arithmetic is Kaye’s book [K91].
Note that induction is an axiom schema which contains countably many axioms; one for each

formula. So PA contains infinitely many axioms. We will prove later that there is no finite set of
equivalent axioms.

The standard model of PA is (N; 0, 1,+, ·, <). However, there are many nonstandard models
of PA (i.e. models that are not isomorphic to the standard model). Each element of the standard
model has a term in the language of arithmetic that represents it. For each n ∈ N, we will use the
notation n to mean the term in the language of arithmetic where 0 denotes the constant symbol 0,
and if n > 0, then

n denotes 1 + 1 + . . .+ 1︸ ︷︷ ︸
n times

One way to construct nonstandard models of PA is via a compactness argument. Consider the
language of arithmetic but where we add a new constant c, and the theory Th(N) with an additional
axiom that c > n for each n ∈ N. Each finite subset of these axioms are consistent, since any finite
subset is true in the standard model if we interpret c to be a sufficiently large natural number.
However, a model M of the entire theory must have M ⊨ c > n for each n, and hence M cannot be
isomorphic to the standard model. Note that such a nonstandard model can be a model of Th(N).

A more elaborate version of such a compactness argument shows the following:
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Exercise 10.2. There are 2ℵ0 non-isomorphic countable models of Th(N). [Hint: Let pn denote
the nth prime number. Add a new constant symbol c to LA, and for each subset A ⊆ N, consider
the theory Th(N) ∪ {pn | c}n∈A ∪ {pn ∤ c}n/∈A.]

What does a nonstandard model of PA look like? To answer this question, we will begin with the
following lemma, which will implies that the natural numbers for an initial segment of every model
of PA−.

Lemma 10.3. For every k,m, n ∈ N,

• n+m = k implies PA− ⊢ n+m = k.

• n ·m = k implies PA− ⊢ n ·m = k.

• n < m implies PA− ⊢ n < m

Proof. If n = 0, PA− ⊢ 0 + m = m by axiom 6. Now inductively, suppose n + m = k and
PA− ⊢ n+m = k. Then (n+ 1) +m = (k + 1), so PA− ⊢ n+ 1 +m = n+m+ 1 = k + 1 = k + 1
by axiom 1. Hence, the first bullet point is true for each m by induction on n.

Next, if n = 0, PA− ⊢ 0 · m = 0 for each m, by Axiom 7, and if PA− ⊢ n · m = k, then
PA− ⊢ n+ 1 ·m = n ·m+m = nm+m by axiom 5, and the first bullet point. So the second bullet
point is also true for each m by induction on n.

Lastly, PA− ⊢ 0 < 1 by axiom 15, and PA− ⊢ 0 < m → PA− ⊢ 0 < m+ 1 by axiom 9 since
PA− ⊢ m < m+ 1 by axioms 12.

Finally, given any n < m, let k = m − n. Then PA− ⊢ 0 < k by the above paragraph, and so
PA− ⊢ n < k + n by axiom 12, and so PA− ⊢ n < m.

Recall that if (X,<X) is a linear order, an initial segment of X is a subset that is closed
downwards. That is Y ⊆ X is an initial segment of X if for every a ∈ Y and b ∈ X, if b < a, then
b ∈ Y .

Corollary 10.4. If M is any model of PA−, then (N; 0, 1,+, ·, <) embeds into M as an initial
segment.

Proof. Consider the map n 7→ nM ; the mapping from n ∈ N to the interpretation of n in M . Note
that this map preserves the interpretations of the functions + and · by Lemma 10.3, and it preserves
the truth of < by the same lemma and also axiom 9.

We claim that the range of the map n 7→ n is an initial segment of M . Suppose b ∈ M is such
that b ≤ n for some n. Any subset of N has a least element by induction in N, so we may assume
n is least with this property. Now we claim b = n. If n = 0, then b ≤ 0 and b ≥ 0 by axiom 16, so
b = 0 (if x ≥ y and y ≥ x, then x = y by axioms 9 and 10). If n ̸= 0, then since n is least such
that b ≤ n, we must have n− 1 < b. Hence n− 1 + z = b for some z by axiom 14. We must have
z > 0 by axiom 10, and so z ≥ 1 by axiom 15. But then b = n− 1+ z ≥ n− 1+1 = n by axiom 12.
Hence, putting this together with our assumption that b ≤ n, we have b = n.

Order-theoretically, it is easy to understand nonstandard models of PA.

Exercise 10.5. Suppose that (X; 0, 1,+, ·,≤) is a countable nonstandard model of PA. Define the
equivalence relation ∼ on X by a ∼ b if there is some n such that n + a = b or n + b = a. Show
that (X/ ∼,≤) is a dense linear order having a least element, but no maximum element. Hence, the
ordertype of (X,≤) is N+Q · Z.

However, note that we will later prove Tennenbaum’s theorem that there is no computable
nonstandard model of PA.

We end this section with an interesting model of PA− that is quite far from being a model of PA.
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Figure 7: A nonstandard model of PA

Exercise 10.6. Consider the set of all integer polynomials Z[X] with the linear ordering where
p < q iff for sufficiently large x ∈ Z, p(x) < q(x). Consider the structure Z[X]+ in LA with universe
{p ∈ Z[X] : p ≥ 0}, and the usual operations +, · on polynomials, and the ordering < defined above.
Show that Z[X]+ ⊨ PA−, but Z[X] ̸⊨ PA. [Hint: PA ⊨ ∀x∃y(2y = x ∨ 2y + 1 = x)].
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11 Gödel-Rosser incompleteness

11.1 Provability of ∆0 and Σ1 formulas

We use the abbreviations (∃x < y)φ(x, y) for (∃x)[x < y∧φ(x, y)], and (∀x < y)φ(x, y) for (∀x)[x <
y → φ(x, y)]. We call (∃x < y) and (∀x < y) bounded quantifiers (as opposed to the unbounded
quantifiers (∃x) and (∀y)). To avoid trivialities, in a bounded quantifier we require that y must
be a variable not equal to x. Formulas containing only bounded quantifiers (and no unbounded
quantifiers) are called ∆0 formulas, and they have an important absoluteness properties which we
will discuss below. Note that (∃x < y) and (∀x < y) are dual to each other in the sense that
¬(∃x < y)φ(x, y) is equivalent to (∀x < y)¬φ(x, y). Similarly, the unbounded quantifiers (∃x) and
(∀y) are dual to each other.

Definition 11.1. A formula φ in the language of arithmetic is ∆0 if every quantifier in φ is bounded.
A formula φ is Σ1 if it is of the form

∃x1, . . . , xnψ(x1, . . . , xn, y1, . . . , ym)

where ψ is a ∆0 formula. A formula φ is Π1 if it is of the form

∀x1, . . . , xnψ(x1, . . . , xn, y1, . . . , ym)

where ψ is a ∆0 formula.

For example, y > 1 ∧ (∀x1, x2)[x1 · x2 = y → x1 = 1 ∨ x2 = 1] is a ∆0 formula expressing that y
is a prime number.

Clearly if PA− ⊢ φ, then N ⊨ φ, since the axioms of PA− are true in N. The converse of this
statement is false – we’ve already seen the example of the sentence ∀x∃y(x = 2y∨x = 2y+1) which
is not provable in PA−, but is true in N. However, the next two lemmas are special cases where this
is true: types of sentences φ with the property that if φ is true in N, then φ is provable from PA−.

Lemma 11.2. Suppose φ(x1, . . . , xk) is a ∆0 formula. Then for all n1, . . . , nk ∈ N, we have that
N ⊨ φ(n1, . . . , nk) ↔ PA− ⊢ φ(n1, . . . , nk).

Proof. Essentially, this is true since every model of PA− has N as an initial segment, and bounded
quantifiers in ∆0 formulas can only quantify over numbers in this initial segment.

By the completeness theorem, we just need to show that if M is a model of PA−, then

N ⊨ φ(n1, . . . , nk) ↔M ⊨ φ(n1, . . . , nk). (*)

(*) is clearly true when φ is quantifier free since n 7→ n is an embedding of N into M . The class
of formulas satisfying (*) is clearly closed under ∧, and ¬. Finally, the class of formulas satisfying
(*) is closed under bounded quantification since if φ satisfies (*), then N ⊨ ∃x < mφ(n1, . . . , nk, x)
iff there exists nk+1 < m such that N ⊨ φ(n1, . . . , nk, nk+1) iff there exists nk+1 < m such that
M ⊨ φ(n1, . . . , nk, nk+1) iff ∃x <M mM ⊨ φ(n1, . . . , nk, x) iff M ⊨ ∃x < mφ(n1, . . . , nk). The
second-to-last equivalence here is true since the embedding n 7→ n is into an initial segment of m,
and so {x ∈M : x <M m} = {n : n < m}.

Corollary 11.3. Suppose φ is a Σ1 sentence. If N ⊨ φ, then PA− ⊢ φ.

Proof. Suppose N ⊨ ∃x1, . . . , xnφ(x1, . . . , xn) where φ is a ∆0 formula. Take n1, . . . , nk ∈ N wit-
nessing this statement, so N ⊨ φ(n1, . . . , nk). Then PA− ⊢ φ(n1, . . . , nk) by Lemma 11.2, and so
PA− ⊢ ∃x1, . . . , xkφ(x1, . . . , xk).

Next, we would like to apply Corollary 11.3 to the formulas φf that we used in the proof of
Lemma 9.4. Unfortunately, these formulas are not quite Σ1 formulas, but they are equivalent to
them via the following quantifier manipulations:
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Lemma 11.4.

• If φ(x⃗) and ψ(y⃗) are Σ1 formulas, then φ(x⃗) ∧ φ(y⃗) is equivalent to a Σ1 formula.

• If φ(x⃗) and ψ(y⃗) are Σ1 formulas, then φ(x⃗) ∨ φ(y⃗) is equivalent to a Σ1 formula.

• Is φ(x⃗) is a Π1 formula, then ¬φ(x⃗) is equivalent to a Σ1 formula.

Proof. If θ and ξ are ∆0, then:
∃z⃗θ(x⃗, z⃗) ∧ ∃w⃗ξ(y⃗, w⃗) ↔ (∃z⃗, w⃗)[θ(x⃗, z⃗) ∧ ξ(y⃗, w⃗)].
∃z⃗θ(x⃗, z⃗) ∨ ∃w⃗ξ(y⃗, w⃗) ↔ (∃z⃗, w⃗)[θ(x⃗, z⃗ ∨ ξ(y⃗, w⃗)].
¬∀z⃗θ(x⃗, z⃗) ↔ ∃z⃗(¬θ(x⃗, z⃗).

We also note than any Σ1 formula is equivalent to a formula with a single unbounded existential
quantifier, assuming PA−:

Lemma 11.5. If φ(x⃗) is a Σ1 formula, then there is a Σ1 formula φ′(x⃗) with a single unbounded
existential quantifier such that PA− ⊢ φ(x⃗) ↔ φ′(x⃗).

Proof. Since PA− proves that < is a linear order with no maximal element, we can quantify to
find an upper bound for y1, . . . , yn, and then replace the quantifiers over y1, . . . , yn with bounded
quantifiers (∃y1 < y)(∃y2 < y) . . . So PA− ⊢ ∃y1, . . . , ynθ(x⃗, y⃗) ↔ (∃y)(∃y1 < y)(∃y2 < y) . . . (∃yn <
y)θ(x⃗, y⃗).

The equivalences in Lemma 11.4 just use the rules of first order logic and are true in any structure.
The next lemma is that Σ1 formulas are closed under bounded quantification. However, we only
state it just in the model N. (The lemma is true more generally in PA, and uses some induction in
the proof).

Lemma 11.6. If φ(x⃗, y) is a Σ1 formula, then there is a Σ1 formula ψ(x⃗, z) so that N ⊨ (∀y <
z)φ(x⃗, y) ↔ ψ(x⃗, z).

Proof. By Lemma 11.5, we may assume that φ has a single existential quantifier.
Let φ(x⃗, y) be the formula ∃wθ(x⃗, y, w) where θ is ∆0. Then (∀y < z)(∃w)θ(x⃗, y, w) is true iff

there exists w0, w1, . . . , wz−1 such that for all y < z, θ(x⃗, y, wy). Using Gödel’s β lemma to encode
this sequence, we therefore have

N ⊨ (∀y < z)(∃w)θ(x⃗, y, w) ↔ (∃b, c)(∀y < z)θ(x⃗, y, β(b, c, y)).

Note here that β is ∆0 definable.

11.2 The complexity of the set of provable sentences

Combining all the above manipulations of Σ1 formulas and Corollary 11.3, we have the following:

Theorem 11.7. For every partial computable function f , there is a Σ1 formula ψf (x1, . . . , xk, y)
such that f(x1, . . . , xk) = y iff N ⊨ ψf (x1, . . . , xk, y). Furthermore, if f(x1, . . . , xk = y), then
PA− ⊢ ψf (x1, . . . , xk, y), and PA− ⊢ ∀y′ψf (x1, . . . , xk, y

′) → y′ = y.

The basic idea to prove this theorem is that the formula φf from Lemma 9.4 is equivalent to
a Σ1 formula by our quantifier manipulations, and Corollary 11.3 implies that this Σ1 formula
is therefore provable in PA−. The slight difficult in the proof will be dealing with the second
condition PA− ⊢ ∀y′ψf (x1, . . . , xk, y

′) → y′ = y. We handle this by including in the definition of
ψf (x1, . . . , xk, y) that no there is no smaller witness that φf (x1, . . . , xk, y

′) is true for any y′ ̸= y.
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Proof. Consider the formula φf from Lemma 9.4, where f(x1, . . . , xk, y) ↔ N ⊨ φf (x1, . . . , xk, y).
By applying Lemmas 11.6, 11.5, and 11.4 to the proof of Lemma 9.4, it is clear that φf (x1, . . . , xk, y)
is equivalent in N to a Σ1 formula (∃z)θ(x1, . . . , xk, y, z), where θ is ∆0, and we may also assume
y < z using the idea of Lemma 11.5. Define ψf to be the formula

(∃z)[y < z ∧ θ(x1, . . . , xk, y, z) ∧ (∀z′ < z)(∀y′ < z)(y ̸= y′ → ¬θ(x1, . . . , xk, y′, z′))]

Suppose f(x1, . . . , xk) = y. Then N ⊨ φf (x1, . . . , xk, y), so the equivalent Σ1 statement is true:
N ⊨ ∃zθ(x1, . . . , xk, y, z). So by Corollary 11.3, PA− ⊢ ∃zθ(x1, . . . , xk, y, z).

Furthermore, since N ⊨ φf (x1, . . . , xk, y) iff f(x1, . . . , xk) = y, we must have that for every y′ ∈ N
with y′ ̸= y, N ⊨ ¬∃zθ(x1, . . . , xk, y′, z). Hence, for any model M of PA− (which has N as an initial
segment), M ⊨ (∃z)[y < z ∧ θ(x1, . . . , xk, y, z) ∧ (∀z′ < z)(∀y′ < z)¬θ(x1, . . . , xk, y′, z′)]. This is
true since we can take z to be the standard natural number witnessing N ⊢ ∃zθ(x1, . . . , xky, z),
and hence any y′, z′ < z are also standard numbers so M ⊨ ¬θ(x1, . . . , xk, y′, z′) because N ⊨
¬θ(x1, . . . , xk, y′, z′).

Now we claim N ⊨ ψf (x1, . . . , xk, y) iff f(x1, . . . , xk) = y. We have already proved the reverse di-
rection, and the forward direction is true since N ⊨ ψf (x1, . . . , xk, y) implies N ⊨ ∃zθ(x1, . . . , xk, y, z)
which is true iff N ⊨ φf (x1, . . . , xk) which is true iff f(x1, . . . , xk) = y by Lemma 9.4.

So now assume that M ⊨ ψf (x1, . . . , xk, y
∗) for some y∗ ̸= y. The witness z∗ for this existential

statement must be a nonstandard number by previous paragraph, since ∆0 formulas with standard
number parameters are true in M iff they are true in N. But then if z∗ is nonstandard, then
y < z∗ and the witness z that ∃zθ(x1, . . . , xk, y, z) is true is also standard and hence less then
z∗. Hence, M ⊨ ¬φf (x1, . . . , xk, y

∗). Thus, M ⊨ (∀y′)[ψ(x1, . . . , xk, y
′) → y = y′], and so PA− ⊢

(∀y′)[ψ(x1, . . . , xk, y
′) → y = y′] by the completeness theorem.

In what follows, we represent formulas in the language or arithmetic by natural numbers in
some computable way (analogously to how we have represented finite sets via natural numbers).
Typically, we use the notation ⌜φ⌝ to denote the number coding the formula φ. This is called the
Gödel number of φ after Gödel who first gave an explicit way to do this. All we need to assume
here is that operations of conjunction , negation, and existential quantification, substitution, etc.
are all computable.

From Theorem 11.7, we can show that the set of sentences provable from PA− are a complete
c.e. set.

Theorem 11.8. {⌜φ⌝ : PA− ⊢ φ} is a c.e. set and K ≤m {⌜φ⌝ : PA− ⊢ φ}.

Proof. We can enumerate all provable sentences by enumerating all proofs from PA−.
Let f(n) be the partial computable function which computes φn(n), and outputs 0 if this com-

putation halts. Then n ∈ K ↔ φn(n) ↓↔ f(n) = 0 ↔ N ⊨ ψf (n, 0) ↔ PA− ⊢ ψf (n, 0). The
last three equivalence are true since f(n) = 0 implies PA− ⊢ ψf (n, 0) by Theorem 11.7 which
implies N ⊨ ψf (n, 0) (since N ⊨ PA−) which implies f(n) = 0 by Theorem 11.7. So that map
n 7→ ⌜ψf (⌜n⌝, 0)⌝ is our desired many-one reduction.

Similarly, the sentences that are provable from PA− and whose negations are provable from
PA− are computably inseparable, similarly to how we prove {n : φn(n)0} and {n : φn(n) = 1} are
computably inseparable.

Theorem 11.9. The two sets {⌜φ⌝ : PA− ⊢ φ} and {⌜φ⌝ : PA− ⊢ ¬φ} are computably inseparable
c.e. sets.

Proof. Let f(n) be the partial computable function which computes φn(n), and outputs 0 if this
computation halts and outputs 0, and outputs 1 if this function halts and outputs any other value.

Now suppose C was a computable separating set for {⌜φ⌝ : PA− ⊢ φ} and {⌜φ⌝ : PA− ⊢ ¬φ}.
Consider D = {n : ⌜ψf (n, 0)⌝ ∈ C}. D is computable since C is. Now φn(n) ↓= 0 implies PA− ⊢
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ψf (n, 0), and so n ∈ D. Similarly φn(n) ↓= 1 implies f(n) = 1 and so PA− ⊢ ψf (n, 1) and also
PA− ⊢ ¬ψf (n, 0) by Theorem 11.7. Hence ⌜ψf (n, 0)⌝ is in {⌜φ⌝ : PA− ⊢ ¬φ} and so n /∈ D.

But this is a contradiction to Theorem 4.14.

Corollary 11.10 (Gödel-Rosser incompleteness). Let T be any computable consistent extension of
PA−. Then T is incomplete.

Proof. If T is complete, then {⌜φ⌝ : T ⊢ φ} is computable; simply search through every proof from
T until we find a proof of φ or ¬φ; we are guaranteed to find proof or the other eventually. But then
{⌜φ⌝ : T ⊢ φ} would be a computable separating set for {⌜φ⌝ : PA− ⊢ φ} and {⌜φ⌝ : PA− ⊢ ¬φ},
contradicting Theorem 11.9.

11.3 Representability in PA−

In the following section, we’ll give a different proof of incompleteness which uses the following notion
of representability in PA−. It also gives yet another natural way of defining computability.

Definition 11.11. A function f : Nk → N is representable in PA− if there is a formula ψf so
that if f(x1, . . . , xk) = y, then PA− ⊢ ψf (x1, . . . , xk, y) ∧ (∀y′)[φf (x1, . . . , xk, y

′) → y′ = y].

Theorem 11.12. A function is computable iff it is representable in PA−.

Proof. (⇒): by Theorem 11.7.
(⇐): if f is representable in PA−, then there is an algorithm that computes f : search through

all y and all proofs from PA− until we find a y such that PA− ⊢ ψf (x1, . . . , xk, y).

The theory here PA− does not really matter much to this theorem. We could replace PA− with a
stronger theory like PA or ZFC and we could still prove the same theorem: a function is computable
iff it is representable in ZFC. All that matters here is that PA− is strong enough to prove that N is
an initial segment of any model of PA−.

Exercise 11.13. Say that a relation R on Nk is representable in PA− if there is a formula φR such
that for all x1, . . . , xk ∈ Nk, R(x1, . . . , xk) → PA− ⊨ φR(x1, . . . , xk), and ¬R(x1, . . . , xk) → PA− ⊨
¬φR(x1, . . . , xk). Prove that a relation R is representable in PA− iff R is computable.

11.4 The search for natural examples of statements independent from PA

Once Gödels incompleteness theorem was proved, mathematicians began searching for “natural” the-
orems of mathematics that are independent of PA, but don’t have a “logical” flavor of self-referential
statements or consistency statements. A beautiful example of such a mathematical statement in
Ramsey theory that is independent of PA is due to Paris and Harrington. See [PH77].
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12 Gödel’s original proof of incompleteness

In this section, we’ll give a different proof of the incompleteness theorem: Gödel’s original proof. This
proof will give nice and explicit examples of independent sentences. These independent sentences
will be important for our proof of the second incompleteness theorem.

12.1 The first incompleteness theorem

In 1931, there wasn’t yet a satisfactory notion of computability. Instead, Gödel instead used primitive
recursive functions, and proved a version of Theorem 11.7 for them. Gödel also did not have the
unsolvability of the halting problem to reduce to the problem of what sentences can be proved in PA−

to obtain a contradiction. Instead, he used a similar idea as our second proof of the undecidability
of the halting problem via the recursion theorem in Proposition 6.7, but in the context of sentences
of arithmetic instead of computer programs. This required him to prove a fixed-point theorem
analogous to the recursion theorem, but for formulas in arithmetic.

In the following, we will abuse notation by writing natural numbers such as n in formulas of LA

instead of using our notation n for the term representing them. (So for example, the conclusion of
Lemma 12.1 should be PA− ⊢ θ ↔ η(⌜θ⌝)). We do this to make the theorem and proofs easier to
read.

Lemma 12.1 (The fixed point lemma). Let η(x) be a formula in LA with one free variable. Then
there is a sentence θ such that PA− ⊢ θ ↔ η(⌜θ⌝).

Proof. The proof is essentially the same as the proof of the recursion theorem.
Fix a computable function d : N → N where we define d(z) as follows that if z = ⌜φ(x)⌝ is the

Gödel number of a formula ψ with one free variable, then d(z) = ⌜φ(⌜φ(x)⌝)⌝.
By Theorem 11.7, d is represented by some formula ψd, so for each formula φ(x),

PA− ⊢ (∀y)[ψd(⌜φ(x)⌝, y) ↔ y = ⌜φ(⌜φ(x)⌝⌝)] (*)

Given the formula η(x), let φ(x) be the formula (∃y)[ψd(x, y) ∧ η(y)],. By definition, φ(⌜φ(x)⌝)
is just the formula:

(∃y)[ψd(⌜φ(x)⌝, y) ∧ η(y)]

Since (*) is true, PA− proves y = ⌜φ(⌜φ(x)⌝)⌝ is the unique witness to the first half of this formula,
so

PA− ⊢ φ(⌜φ(x)⌝) ↔ η(⌜φ(⌜φ(x)⌝)⌝)

Let θ be the sentence φ(⌜φ(x)⌝). So

PA− ⊢ θ ↔ η(⌜θ⌝)

Definition 12.2 (The provability predicate). Suppose T is a computable set of axioms. Let
fT : NtoN be the partial computable where fT (x) is defined iff x = ⌜φ⌝ is the Gödel number of
some sentence φ, and there is a proof of φ from T . By Theorem 11.7, let ψfT be a formula repre-
senting the function fT . Finally, define the formula ProvT (x) to be (∃y)ψfT (x, y) which expresses
that there exists some proof of the formula with Gödel number x.

Lemma 12.3. Suppose T is a computable set of axioms extending PA−. Then

PA− ⊢ ProvT (⌜θ⌝) ↔ N ⊨ ProvT (⌜θ⌝) ↔ T ⊢ θ

Proof. ProvT (x) is a Σ1 formula, and hence by Corollary 11.3 PA− ⊢ ProvT (⌜θ⌝) ↔ N ⊨ ProvT (⌜θ⌝).
By the definition of ProvT and the partial function fT , T ⊢ θ iff N ⊨ ProvT (⌜θ⌝).
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Gödel’s original proof of the first incompleteness theorem was via analyzing the following “Gödel
sentence”.

Definition 12.4 (The “Gödel sentence”). Let T be a computable theory extending PA−. Then
by the fixed point lemma (letting η(x) be the formula ¬ProvT (x)), there is a sentence θ so that
PA− ⊢ θ ↔ ¬ProvT (⌜θ⌝). We call θ the Gödel sentence of T .

We’ll show that if T is a computable consistent theory such that N ⊨ T and θ is the Gödel
sentence of T , then θ is independent of T . We’ll break this proof into two separate lemmas, since
proves T ̸⊢ θ requires fewer assumptions than showing T ̸⊢ ¬θ.

Lemma 12.5. Suppose T is a computable theory extending PA− and let θ be the Gödel sentence of
T . If T ⊢ θ, then T is inconsistent.

Proof. Suppose T ⊢ θ. Then PA− ⊢ ProvT (⌜θ⌝) by Lemma 12.3, and hence T ⊢ ProvT (⌜θ⌝) since
T extends PA−. Now since PA− ⊢ θ ↔ ¬ProvT (⌜θ⌝), since we are assuming T ⊢ θ, we have
T ⊢ ¬ProvT (⌜θ⌝). Hence T proves both ProvT (⌜θ⌝) and its negation, and so T is inconsistent.

To show that T ̸⊢ ¬θ, we need to assume more about T than just T is computable and extends
PA−.

Remark 12.6. Say that a theory T in LA is Σ1-sound if for every Σ1 sentence θ, if T ⊢ θ, then
N ⊨ θ.

Of course, one way for a theory T to be Σ1 sound is for it to simply be true of N (e.g. PA is Σ1

sound). But in general Σ1 soundness of T is a weaker assumption than assuming N ⊨ T .

Lemma 12.7. Suppose T is a computable theory extending PA− and let θ be the Gödel sentence of
T . If T is Σ1 sound and T ⊢ ¬θ, then T is inconsistent.

Proof. If T ⊢ ¬θ, then N ⊨ ¬θ since T is Σ1 sound. Now T ⊢ ProvT (⌜θ⌝) since PA− ⊢ θ ↔
¬ProvT (⌜θ⌝) by definition of the Gödel sentence. Hence N ⊨ ProvT (⌜θ⌝) by Lemma 12.3 and so
T ⊢ θ. Thus T is inconsistent since it proves θ and ¬θ.

As a corollary we have Gödel’s first incompleteness theorem.

Corollary 12.8. Suppose T is a computable consistent Σ1 sound theory extending PA−. Then if θ
is the Gödel sentence of T , then θ is independent of T (i.e. T ̸⊢ θ and T ̸⊢ ¬θ.

There’s a more computational way of thinking of the above proof of Gödel’s incompleteness
theorem. Consider a program φe which (using the recursion theorem) searches for a proof from PA
that it does not halt. If it finds such a proof, then the program halts. This cannot happen since if a
program halts, then PA proves that it halts (using Theorem 11.7 to represent this statement), and
so PA would prove a contradiction. So the program does not halt, but PA cannot prove this. So this
statement “φe halts” is independent of PA. This program φe is analogous to the Gödel sentence θ.

Building on the proof of Theorem ??, Rosser proved incompleteness for all consistent computable
theories extending PA− using what is called Rosser’s trick:

Theorem 12.9. Let T be any computable consistent theory extending PA−. Then T is incomplete.

Proof. Let P̃T (x, y) be the relation which holds iff x = ⌜φ⌝ is the Gödel number of some sentence φ,
and y codes a proof of ¬φ from T . Let ψP̃T

be a formula representing the relation P̃T . Finally, define

the modified provability predicate Prov′T (x) by (∃y)[ψPT
(x, y) ∧ (∀y′ < y)¬ψP̃T

(x, y′)]. Informally,
this expresses that there exists some proof of the formula with Gödel number x, and no shorter proof
of its negation. The use of this modified provability predicate is known as “Rosser’s trick”. Note
that Prov′T (x) implies ProvT (x).
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By the fixed point Lemma ??, there is some formula θ such that PA− ⊢ θ ↔ ¬Prov′T (⌜θ⌝).
Case 1: T ⊢ θ. In this case, T ⊢ ¬Prov′T (⌜θ⌝). We claim that N ⊨ ¬Prov′T (⌜θ⌝). If this were

not the case, then N ⊨ Prov′T (⌜θ⌝), so PA− ⊢ Prov′T (⌜θ⌝) since the witness y to this statement is
standard, and for every y′ < y PA− ⊢ ¬ψP̃T

(⌜θ⌝, y′) by our assumption that T is consistent. So

N ⊨ ¬Prov′T (⌜θ⌝) is true. But this means there is truly no proof of θ from T , which contradicts our
assumption that T ⊢ θ.

Case 2: T ⊢ ¬θ. So T ⊢ Prov′T (⌜θ⌝). Let M ⊨ T , so

M ⊨ (∃y)[ψPT
(⌜θ⌝, y) ∧ (∀y′ < y)¬ψP̃T

(⌜θ⌝, y′)]

Consider the witness y to this statement. Now y cannot be nonstandard. If it was, our assumption
that T ⊢ ¬θ means there is some standard natural number y′ coding a proof that T ⊢ ¬θ, and so
PA− ⊢ ψP̃T

(⌜θ⌝, y′), but this standard y′ is less than y, contradiction. So y must be standard, but
that means that there is a real proof in N that T ⊢ θ. So T ⊢ θ and T ⊢ ¬θ contradicting our
assumption that T is consistent.

So neither case 1 nor case 2 can hold, so θ must be independent of T .

12.2 The truth of the Gödel sentence

Suppose that T is a computable consistent theory extending PA−. Let θ be the Gödel sentence for
T . We’ve shown that the Gödel sentence θ is independent of T , but is it really true or false in the
model N? This question is easy to answer; we must have N ⊨ θ.

Suppose for a contradiction that N ⊨ ¬θ. Then N ⊨ ProvT (⌜θ⌝) by the fact that θ is a Gödel
sentence. Hence, T ⊢ θ. However, we have already proved this is impossible in Lemma 12.5 since
this implies that T is inconsistent.

In the above proofs, θ is a Π1 sentence. We have the following more general lemma:

Proposition 12.10. If a Π1 sentence φ is independent of PA−, then N ⊨ φ.

Proof. If N ⊨ ¬φ, then PA− ⊢ ¬φ by Corollary 11.3 since ¬φ is Σ1.
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13 The second incompleteness theorem

13.1 Gödel’s second incompleteness theorem

Let Con(T ) denote the sentence ¬ProvT (⌜0 = 1⌝) of LA that expresses that there is no proof
of a contradiction from T , i.e. T is consistent. Here we have taken 0 = 1 as an easily written
contradiction, but any other false statment would do. Recall that if θ is the Gödel sentence, then
N ⊨ ¬θ iff N ⊨ ProvT (⌜θ⌝) iff T ⊢ θ by definition of θ and Lemma 12.3. So a different way of stating
Lemma 12.5 (which says T ⊢ θ implies T is inconsistent) is that N ⊨ ¬θ implies T is inconsistent.
That is, “if ¬θ is true, then ¬Con(T )”.

Now the proof of Lemma 12.5 can be formalized in PA, and so a careful analysis of the proof
shows that if T is a consistent computable extension of PA, then T ⊢ ¬θ → ¬Con(T ), or equivalently
T ⊢ Con(T ) → θ. However, we have already shown that T ̸⊢ θ. Hence T ̸⊢ Con(T ), since if
T ⊢ Con(T ), then T ⊢ θ which is a contradiction. This is Gödel’s second incompleteness theorem:
no computable consistent theory extending PA can prove its own consistency. Formalizing the proof
of Lemma 12.5 in PA requires some careful analysis of what PA can prove about the provability
predicates ProvT . The requisite properties used to prove the second incompleteness theorem are as
follows:

Definition 13.1. Suppose T is a computable theory in LA. Then we say that T satisfies the
Hilbert-Bernays provability conditions7 if:

1. If T ⊢ φ, then T ⊢ ProvT (⌜φ⌝).

2. T ⊢ (ProvT (⌜φ→ ψ⌝) → (ProvT (⌜φ⌝) → ProvT (⌜ψ⌝)).

3. T ⊢ ProvT (⌜φ⌝) → ProvT (⌜ProvT (⌜φ⌝)⌝).

We now have the following lemma:

Lemma 13.2. If T is any computable extension of PA, then ProvT satisfies the Hilbert-Bernays
provability conditions.

We do not prove this lemma, but we give some idea of the proof. First, item (1) is trivial. If
T ⊢ φ, then the Σ1 formula ProvT (⌜φ⌝) is true in N and hence it is provable by Lemma 12.3.

Item (2) requires showing that we can combine a proof that φ→ ψ and a proof that φ is true to
give a proof of ψ.

Item (3) is the messiest. It follows from the following more general lemma that we state without
proof (note that ProvT (⌜φ⌝) is a Σ1 sentence):

Lemma 13.3. Suppose T is a computable consistent extension of PA. Then if φ is a Σ1 formula,
then PA ⊢ φ→ ProvT (φ).

The basic idea of the proof of Lemma 13.3 is that a number x witnessing some Σ1 formula ∃xψ(x)
is true can be used be written down and then the ∆0 property ψ(x) can be finitely verified, and then
this consistutes a proof the the formula ∃xψ(x) is true. Essentially, this amounts to formalizing the
proofs of Lemma 11.2 and Corollary 11.3 inside PA.

The proofs of these Lemmas 13.2 and 13.3 use induction and they are not true in just PA−.
We need induction to prove basic facts like the Chinese remainder theorem which is used to code

7A more compact notation for ProvT (⌜φ⌝) that is sometimes used is 2φ. Using this notation, these three conditions
are:

1. If T ⊢ φ, then T ⊢ 2φ.

2. T ⊢ [2(φ→ ψ) ∧ 2φ] → 2ψ.

3. T ⊢ 2φ→ 22φ.
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sequences in Gödel’s β lemma, and to prove basic facts about how representations of sequences can
be concatenated. We need also induction to prove item (3) using structural induction on formulas.

We note here that this property of Σ1 sentences: that if they are true, then they are provable, is
not true for all sentences φ.

Exercise 13.4. Show that there is a sentence φ so that PA ̸⊢ φ→ ProvPA(φ).

Gödel merely sketched a proof of the second incompleteness theorem in his 1931 paper, and
promised the tedious details of a full proof later. He never gave a detailed proof; everyone was
convinced by his sketch. A fully rigorous proof of the second incompleteness theorem was given by
Hilbert and Bernays in 1938. Some details were further refined by Löb in 1955 [L55]. The precise
conditions on the provability predicate in Definition 13.1 are due to Löb.

Theorem 13.5 (Gödel’s second incompleteness theorem). Let T be any computable consistent theory
extending PA. Then T ̸⊢ Con(T ).

Proof. Let θ be the Gödel sentence so T ⊢ (θ ↔ ¬ProvT (⌜θ⌝)). Below in our explanations we refer
to the Hilbert-Bernays provability conditions.

T ⊢ θ → ¬ProvT (⌜θ⌝) since θ is the Gödel sentence

T ⊢ ProvT (⌜θ → ¬ProvT (⌜θ⌝)⌝) by (3)

T ⊢ ProvT (⌜θ⌝) → ProvT (⌜¬ProvT (⌜θ⌝)⌝)) by (2)

T ⊢ ¬ProvT (⌜θ⌝) → (ProvT (⌜θ⌝) → 0 = 1) by basic logic

T ⊢ ProvT (⌜¬ProvT (⌜θ⌝)⌝) → ProvT (⌜ProvT (⌜θ⌝) → 0 = 1⌝)) by (1) and (2)

T ⊢ ProvT (⌜θ⌝) → ProvT (⌜ProvT (⌜θ⌝) → 0 = 1⌝)) combining the above lines

T ⊢ ProvT (⌜θ⌝) →
(
ProvT (⌜ProvT (⌜θ⌝)⌝) → ProvT (⌜0 = 1⌝))

)
by (2)

T ⊢ ProvT (⌜θ⌝) → ProvT (⌜ProvT (⌜θ⌝)⌝) by (3)

T ⊢ ProvT (⌜θ⌝) → ProvT (⌜0 = 1⌝) combining the above

T ⊢ ¬ProvT (⌜0 = 1⌝) → ¬ProvT (⌜θ⌝) contraposition

T ⊢ Con(T ) → θ definition of Con(T ) and since θ is a Gödel sentence

Now to finish, we have that if T ̸⊢ θ by Lemma 12.5. Hence, T ̸⊢ Con(T ).

If T is a consistent computable extension of PA that is Σ1-sound (e.g. if N ⊨ T ), then we
cannot have T ⊢ ¬Con(T ). This is because ¬Con(T ) is Σ1, and so by Σ1-soundness we would
have N ⊨ ¬Con(T ), and hence T would be inconsistent, contrary to our assumption. So if T is
Σ1-consistent, then Con(T ) is independent of T . This is true, for example, for PA itself: Con(PA) is
independent of PA.

Note, however, that there are computable consistent extensions of T of PA so that T ⊢ ¬Con(T ).
For example, let T be the theory PA + ¬Con(PA). This theory is consistent, since Con(PA) is
independent from PA. However, for this T , T ⊢ ¬Con(PA), which implies T ⊢ ¬Con(T ), since any
proof from the axioms of PA is also a proof from the larger set of axioms T .

13.2 Löb’s theorem

If we can prove that there exists a proof of φ, does that imply that φ is true? Löb’s theorem shows
that whenever we have a sentence φ and we can prove that the existence of a proof of φ implies φ
is true, then φ is actually provable.

Theorem 13.6. Suppose T is a computable consistent theory extending PA. If T ⊢ ProvT (⌜φ⌝) → φ,
then T ⊢ φ.
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Proof. Assume T ⊢ ProvT (⌜φ⌝) → φ. By Gödel’s fixed point lemma applied to the formula
ProvT (y) → φ, there is a sentence θ such that T ⊢ θ ↔ (ProvT (⌜θ⌝) → φ). So

T ⊢ θ → (ProvT (⌜θ⌝) → φ) by defn of θ

T ⊢ ProvT (⌜θ → (ProvT (⌜θ⌝) → φ)⌝)) by (1)

T ⊢ ProvT (⌜θ⌝) → ProvT (⌜(ProvT (⌜θ⌝) → φ)⌝)) by (2)

T ⊢ ProvT (⌜θ⌝) → (ProvT (⌜ProvT (⌜θ⌝)⌝) → ProvT (⌜φ⌝)) by (2)

T ⊢ ProvT (⌜θ⌝) → ProvT (⌜ProvT (⌜θ⌝)⌝) by (3)

T ⊢ ProvT (⌜θ⌝) → ProvT (⌜φ⌝) combining the above two lines

T ⊢ ProvT (⌜φ⌝) → φ by assumption

T ⊢ ProvT (⌜θ⌝) → φ combining the above two lines

T ⊢ θ since T ⊢ θ ↔ (ProvT (⌜θ⌝) → φ)

T ⊢ ProvT (⌜θ⌝) by (1)

T ⊢ φ by combining the above

Löb’s theorem can be used to easily deduce Gödel’s second incompleteness theorem. By Löb’s
theorem,

(T ⊢ ProvT (⌜0 = 1⌝) → 0 = 1) → T ⊢ 0 = 1.

Taking the contrapositive, T ̸⊢ 0 = 1 implies T ̸⊢ 0 ̸= 1 → ¬ProvT (⌜0 = 1⌝). That is, if T is
consistent, then T ̸⊢ Con(T ).

13.3 An analogy

One way to understand Löb’s theorem is via the following logical paradox which uses a self-referential
sentence. This is similar to how Gödel’s theorem can be thought of as a formalized version of the
Liar paradox: “this sentence is false”.

Let’s prove the moon is made of cheese.

1. Let X be the sentence “If X is true, the moon is made of cheese.”

2. Suppose X is true.

3. Then the statement of X is true: “If X is true, then the moon is made of cheese.”

4. Hence, since we are assuming X is true, it follows that the moon is made of cheese.

5. We have just proved that if X is true, then the moon is made of cheese.

6. But this is X; we have just proved X is true.

7. By repeating our above argument we conclude the moon is made of cheese.
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14 Tennenbaum’s theorem

14.1 Standard systems of models of PA

Definition 14.1. Suppose M ⊨ PA. Then the standard system of M is the set of X ⊆ N so that
there exists a formula in LA and parameters a⃗ ∈M so that n ∈ X ↔M ⊨ φ(n, a⃗).

For example, for the model N, the standard system of N is called the arithmetical sets; the
sets which can be defined in the structure N.

There is an alternate way of characterizing the standard system of a nonstandard model. To do
this, we first need to prove the overspill principle.

Suppose M ⊨ PA. A cut I in M is an nonempty initial segment of the model so that if x ∈ I,
then x+ 1 ∈ I (i.e. I is closed under the successor operation). We will call a cut I a proper cut if
I ̸=M . If x ∈M , we write x > I if M ⊨ x > y for every y ∈ I.

Lemma 14.2 (The overspill principle). Suppose M ⊨ PA and I is a proper cut in M . Then if
M ⊨ φ(x) for every x ∈ I, then there is some y > I such that M ⊨ φ(y).

Proof. Suppose M ⊨ φ(x) for all x ∈ I, however if y > I, then M ⊨ ¬φ(y). Then M ⊨ φ(0) ∧
(∀x)(φ(x) → φ(x + 1)). However since any y > I has M ⊨ ¬φ(y), M ⊨ ¬(∀y)φ(y). Hence M does
not satisfy the induction axiom Indφ for the formula φ.

Now every natural number can be regarded as coding a finite set. One simple way of doing this
is the following. Let p(n) be the nth prime number. Then we can regard a number a as coding the
set {n : p(n) | a}.

Note that since p is a computable function, there is a formula ψp representing it, so N ⊨ ψp(n, y)
iff p(n) = y for each n. We will regard this formula ψp as defining the function p in any model of
PA.

Even if M is a nonstandard model of PA, we can think of some nonstandard b ∈M as similarly
coding a set {n : M ⊨ p(n) | b}. We will show that the standard system of a nonstandard model of
PA is equal to all the subset of N that are coded in this way by elements of M .

Lemma 14.3. Let M be a nonstandard model of PA. Then the standard system of M is equal to
the set of X ⊆ N such that there is some x ∈ M such that n ∈ X ↔ M ⊨ p(n) | x. More formally,
n ∈ X ↔M ⊨ (∃y)[ψp(n, y) ∧ (∃z)y · z = x].

Proof. Clearly for each x ∈ M , the set of n such that M ⊨ (∃y)[ψp(n, y) ∧ (∃z)y · z = x] is in the
standard system of M .

Conversely, suppose φ(n, y⃗) is any formula of LA, and a⃗ is a tuple of element of M . Consider
the formula with free variable x:

(∃b)(∀n ≤ x)[φ(n, a⃗) ↔ p(n) | b] (*)

I claim that the formula holds in M for every natural number x. Fix x ∈ N. Then if A = {n ≤
x : M ⊨ φ(n, a⃗)}, then since A is coded as a finite set by some natural number, there is a b such that

• N ⊨ p(n) | b and thus M ⊨ p(n) | b for every n ≤ x such that n ∈ A.

• N ⊨ p(n) ∤ b and thus M ⊨ p(n) ∤ b for every n ≤ x such that n /∈ A.

Thus, by overspill inM for the formula defined in (*) and for the cut of standard natural numbers,
there is some b ∈M so that M ⊨ p(n) | b iff M ⊨ φ(n, a⃗).
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14.2 Computable structures

We say that a signature L is computable if there is a program which computes all the constant
symbols, function symbols, relation symbols, and their arities of this signature. For example, this
implies that the set of first order formulas using the variable {xn : n ∈ N} is computable. So for
example, we can discuss whether a particular set of formulas in this signature is computable.

If L is a computable signature, we say that an L-structure S is computable if the universe of
S is computable, and

1. There is a program which given any constant symbol c returns the value of cS .

2. There is a program which takes as input a relation symbol R and a tuple a⃗ ∈ S, and returns
whether RS (⃗a) provided a⃗ has the same length as the arity of S.

3. There is a program which takes as input a function symbol f and a tuple a⃗ ∈ S, and returns
the value fS (⃗a) provided a⃗ has the same length as the arity of R.

Note that any computable set is countable. Hence, the universe of any computable structure is
a countable set. So for example (R; 0, 1,+, ·, <) is not a computable structure.

Exercise 14.4. An L-structure is computable iff its atomic diagram (the set of true atomic sen-
tences) is computable.

So for example, the signature of LA is computable, and then the standard model (N; 0, 1,+, ·, <)
is a computable structure since the universe N is computable, and function +, · and the relation <
are computable.

Similarly, the structure Z[X]+ discussed in Exercise 10.6 is a computable structures whose uni-
verse is all integer polynomials that are eventually nonnegative.

The following exercise consists of verifying the standard Henkin construction in model theory is
computable.

Exercise 14.5. Suppose L is a computable signature, and T is a complete computable first order
theory in L. Then there is a computable L-structure S so that S ⊨ T .

14.3 Tennenbaum’s theorem

We are ready to show that there is no computable nonstandard model of PA.

Lemma 14.6. Suppose M is a model of PA. Then there is an incomputable set in the standard
system of M .

Proof. Let f : N → N be the partial computable function where f(n) runs the program φn(n), and
then outputs the value of φn(n). Let ψf be the formula from Theorem ?? representing f . Then
consider the set

C = {n : M ⊨ ψf (n, 0)

This set C contains {n : φn(n)↓= 0}, since any Σ1 formula true in N is true in any model of PA−.
The set C is disjoint from {n : φn(n)↓= 1}, since if φn(n)↓= 1, then N ⊨ ψf (n, 1), so M ⊨ ψf (n, 1),
and finally PA− ⊢ ψf (n, 1) → (∀y′)(ψf (n, y

′) → y′ = 1).
Hence, C separates the two sets A = {n : φn(n)↓= 1} and B = {n : φn(n)↓= 1} and hence C is

incomputable by Theorem 4.14.

Now we use the fact that if M is nonstandard, then any set in its standard system is coded by
some element. From this we can deduce that there is no computable nonstandard model of PA.

Theorem 14.7 (Tennenbaum). There is no computable nonstandard model of PA.
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Proof. Suppose M was a computable nonstandard model of PA. By Lemma ?? there is some
incomputable set C in the standard system of M , and by Lemma 14.3 there is some b ∈M so that
n ∈ C ↔M ⊨ p(n) | b.

We claim that we can compute whether p(n) | b. Fix 1M . By computing

1M +M 1M + . . .+M 1M︸ ︷︷ ︸
p(n) times

we can compute p(n)M . Now PA ⊢ (∀x, p)(∃q, r)(x = p · q + r ∧ r < p). Hence, given x and p(n)M ,
we can search for q ∈ M and r ∈ M with r < p(n) such that x = p(n)Mq + r. We must eventually
find such q and r. Then we have p(n) | x iff r = 0.

We note here that Tennenbaum’s theorem implies a version of the first incompleteness theorem.
Suppose T is a computable consistent theory extending PA. Add a new constant symbol c to our lan-
guage and consider the theory T∪{c > n}n∈N. This theory is consistent by the compactness. It is not
difficult to adapt the construction of Exercise 14.5 to show that there must be a computable model
of this theory. This would be a nonstandard model of PA contradicting Tennenbaum’s theorem.

Exercise 14.8.

• There is no nonstandard model of PA whose universe is a computable set and where the
addition operation + is computable.

• There is no nonstandard model of PA whose universe is a computable set and where the
multiplication operation · is computable.

Exercise 14.9. Show there is no computable model of ZFC.
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15 Relative computability

15.1 Computability relative to an Oracle

Given some incomputable A ⊆ N, what partial computable functions can be computed if we are al-
lowed to access the information in A as part of our algorithm? This kind of relative computability
was first introduced by Turing. Informally, a partial computable function f : N → N is computable
relative to A if there is an algorithm for computing f(n) where the algorithm may ask (and will
receive answers to) as many question of the form “is m ∈ A?” as it would like during its execution.

Formally, to define the functions which are partial computable relative to A, we can use the
notion of an oracle Turing machine. An oracle Turing machine has an extra read-only tape on
which the bits of A (i.e. where the nth bit is 0 if n /∈ A, and 1 if n ∈ A) are written, as well as its
usual working tape where the input is written, and where the output will be written. The two tapes
may each move independently of each other, depending on the current state, and the bit written on
each cell of each of the tape.

So for example, both the characteristic function of A and the characteristic function of N \A are
partial computable relative to A. If f is partial computable, then f is partial computable relative
to A for any A ⊆ N (just compute f as normal and never use the ability to ask questions about A).
If A ⊆ N is computable, then every partial computable function relative to A is partial computable.
(Just replace the algorithm that asks question of the form “is m ∈ A” with the algorithm which
computes the answer to this question at this step using the computability of A).

A key fact about oracle computability that we will often use is that if some computation φA
n (m)

halts relative to some oracle A. Since the computation only takes finitely many steps, only finitely

many bits of the oracle can be queried. So there must be some k so that φ
A∩{0,...,k}
n (m) halts and

gives the same answer. This fact is sometimes called the use principle.
Just as with ordinary computability, relative computability has many equivalent definitions.

Exercise 15.1. The partial recursive functions relative to A ⊆ N are equal to the smallest collection
of functions that

1. Contain the characteristic function χA.

2. Contain the constant, successor, and projection functions.

3. Are closed under composition, primitive recursion, and minimization.

Show that the partial recursive functions relative to A ⊆ N are equal to the partial computable
functions relative to A.

Just as we did in Section 2, we fix notation for the partial computable functions relative to A.

Definition 15.2. Fix a computable listing of all oracle Turing machine programs. If A ⊆ N, let φA
n

denote the partial function given by the nth oracle Turing machine oracle using A as the oracle.

For relative computability we still have versions of the padding lemma, the S-m-n theorem,
existence of a universal Turing machine, and the recursion theorem for oracle Turing machines.
Their proofs are essentially identical to the non-oracle versions:

Exercise 15.3.

• (The S-m-n theorem) There is a injective computable function s : N2 → N so that for all x, y, z
and all A ⊆ N,

φA
s(x,y)(z) = φA

x (y, z).

• (The padding lemma) There is a computable injective function f : N2 → N so that for every
n and every i, φA

n = φA
f(n,i).
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• (The recursion theorem) Let f : N → N be a computable function. Then there is some e ∈ N
such that φA

e = φA
f(e) (i.e. the two indices e and f(e) for Turing machines define the same

partial computable function).

In general, it is a very common (but not universal) phenomenon that any theorem about partial
computable functions relativizes to give an analogous theorem for all partial computable functions
relative to any oracle, just as in Exercise 15.3 above. When a proof relativizes, typically the exact
same argument works where we just replace each φn with φA

n .

15.2 Turing reducibility and the Turing jump

Relative computability gives us another way to compare the incomputability of subsets of N.

Definition 15.4 (Turing reducibility). If A,B ⊆ N, we say that A is Turing reducible to B and
write A ≤T B if the characteristic function of A is computable relative to the oracle B.

Turing reducibility is a coarser reducibility than many-one equivalence.

Proposition 15.5. If A ≤m B, then A ≤T B.

Proof. Suppose f : N → N is a computable function so that for all x ∈ N, x ∈ A↔ f(x) ∈ B. Then
to compute χA(x) using B as an oracle, first compute f(x), and then output 1 if f(x) ∈ B, and 0 if
f(x) /∈ B.

Note that the converse is false. For example, if K is the halting problem, then we have shown
K ≰m K, but clearly K ≤T K. Indeed, for every A ⊆ N we have A ≤T A. So Turing reducibility is
a coarser reducibility.

We have the following basic properties of Turing reducibility:

Exercise 15.6. Turing reducibility ≤T is a reflexive and transitive.

By the above exercise, the symmetrization of ≤T is an equivalence relation.

Definition 15.7. Turing equivalence, denoted ≡T , is the equivalence relation where A ≡T B if
A ≤T B and B ≤T A.

The equivalence classes of ≡T are called the Turing degrees, DT , and ≤T forms a partial order
on DT . (Note that ≤T is not a partial order on subsets of N since it is not antisymmetric).

What is the structure of the partial order of Turing degrees? Is it linear? Is it dense? How
long can chains and antichains be? What countable partial orders embed into it? What is its
automorphism group? These types of questions became a central focus of computability theory in
the second half of the twentieth century.

Lets begin listing some basic facts about this structure. First, the Turing degree of ∅ is the
smallest Turing degree, and it contains exactly the computable sets.

Exercise 15.8. For all A ⊆ N, A ≡T ∅ if and only if A is computable.

Next, observe that there is no largest Turing degree.

Definition 15.9. If X ⊆ N, the Turing jump of X is defined to be X ′ = {n : φX
n (n)↓}. That is,

the set of n so that φX
n (n) halts.

Theorem 15.10. For all X ⊆ N, X <T X ′.
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Proof. First we show that from X ′ we can compute X. That is, X ′ ≥T X. In fact we have the
stronger statement that X ≤m X ′. For each n, construct a program φX

f(n)(m) which halts (on any

input m) if n ∈ X, and does not halt if n /∈ X. Then the computable function f witnesses that
X ≤m X ′ since n ∈ X iff φX

f(n)(f(n))↓ iff f(n) ∈ X ′.

The fact that X ′ is not computable relative to X is a relativized version of the proof that the
halting problem K is not computable. Below we copy this old proof word-for-word, replacing φn

with φX
n and occasionally adding the words “relative to X”.

To see that X ≱T X ′, first note that the function

f(n) =

{
φX
n (n) + 1 if φX

n halts on input n

0 otherwise

is not computable relative to X since If f was computable, then we would have f = φm for some
m. Now φX

m must be total, so f(m) = φX
m(m) + 1 by definition of m. But this is a contradiction

since f(m) = φX
m(m) by our assumption f = φX

m.
Now if X ′ was computable relative to X, we could then also compute the function f from

Proposition 3.3 as follows: On input n, first compute whether n ∈ X ′. If n /∈ X ′, then output 0. If
n ∈ X ′, then simulate φX

n (n) using a universal Turing machine and output φX
n (n)+1 (we know this

computation will eventually halt).

The Turing jump of ∅ is just the usual halting problem

Exercise 15.11. ∅′ ≡1 K.

Exercise 15.12. Show that A ≤T B iff A′ ≤m B′.

The Turing degrees are an upper semilattice meaning that any two elements have a least upper
bound.

Definition 15.13. If A,B ⊆ N, let A ⊕ B = {2n : n ∈ A} ∪ {2n + 1: n ∈ B}, so A ⊕ B codes A
using its even bits and B using its odd bits.

Note that clearly A ≤T A⊕B. We also have that A⊕B is the least upper bound of A and B.

Proposition 15.14. For all A,B ⊆ N, if C ≥T A and C ≥T B, then C ≥T A⊕B. Hence, A⊕B
is the least upper bound of A and B.

Proof. If C ≥T A and C ≥T B, then to compute A⊕B relative to C, combine these two programs
and use the program computing A from C to compute the even bits of A ⊕ B, and the program
computing B from C to compute the odd bits of A⊕B.

We can similarly define recursive joins of finitely many elements subset of N:

A0 ⊕A1 ⊕A2 ⊕ . . .⊕An = (((A0 ⊕A1)⊕A2)⊕ . . .⊕An).

and it is easy to show that A0 ⊕ . . .⊕An is the least upper bound of A0, . . . , An.
We can also define a computable join of countably many subsets of N. Let ⟨·, ·⟩ : N2 → N denote

a computable bijection between N2 and N, and if Ai ⊆ N for each i, then let⊕
i

Ai = {⟨n, i⟩ : n ∈ Ai}

Clearly
⊕

iAi ≥T Ai for all the Ai.
Compared to joins of finitely many sets, countable joins are very poorly behaved. For example,

countable joins are not a well defined operation on the Turing degrees, and do not give a least upper
bound of the sequence (Ai)i∈N.
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Exercise 15.15.

1. Show finite joins are well-defined on the Turing degrees. If A0 ≡T B0 and A1 ≡T B1, then
A0 ⊕A1 ≡T B0 ⊕B1.

2. Show there are sequences (Ai)i∈N and (Bi)i∈N so that Ai ≡T Bi for every i, but
⊕

iAi ̸≡T⊕
iBi.

3. Show there is a sequence (Ai)i∈N so that
⊕

iAi is not a least upper bound of the collection
(Ai)i∈N.

Indeed, we will eventually show that there are countable sequences (Ai)i∈N with no least upper
bounds in the Turing degrees Note, however,

⊕
iAi is the least uniform upper bound of (Ai)i∈N in

the following sense:

Exercise 15.16. Suppose (Ai)i∈N is a sequence of subsets of N. Suppose also that C ≥T Ai

uniformly in the sense that there is a single program relative to C which on input i, n computes
whether n ∈ Ai. Then C ≥T

⊕
iAi.

One consequence of taking countable joins is that we see there cannot be any sequence (Ai)i∈N
that is cofinal in the Turing degrees in the sense that for all C ⊆ N, there is some i so that Ai ≥T C.
To see this, take any sequence (Ai)i∈N and let C = (

⊕
iAi)

′
. Then C >T Ai for every i.
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16 The arithmetical hierarchy

16.1 The arithmetical hierarchy

The arithmetical hierarchy measures the complexity of definable subsets of N by how complicated
they are to define. We measure the complexity of a definition by how many alternations of quantifiers
it has. We introduce the arithmetical hierarchy in this section, and prove some relationships between
it, Turing reducibility, and the Turing jump.

Definition 16.1 (The arithmetical hierarchy). Suppose A ⊆ Nk and X ⊆ Nm. Then A is ΣX
n if

there is a relation R(x, y) on Nk+m which is computable relative to X so that

x ∈ A↔ ∃y1∀y2∃y3 . . . QynR(x, y1, . . . , yn).

where Q stands for the quantifier ∃ if n is even and ∀ if n is odd. A is ΠX
n if there is a relation

S(x, y1, . . . , yn) on Nk+n which is computable relative to X so that

x ∈ A↔ ∀y1∃y2∀y3 . . . QynS(x, y1, . . . , yn).

A ⊆ Nk is ∆X
n if it is both ΣX

n and ΠX
n . In this case where X = ∅, we just write Σn, Πn, or ∆n.

For example, the set of programs defining defining finite c.e. sets is Σ2: FIN = {e : We is finite} =
{e : ∃k∀s ≥ k“We,k =We,s”}. The set of programs defining total functions is Π2: TOT = {e : φe is total} =
{e : ∀n∃s“φe(n) halts in s steps”}. In both cases, the quoted relations on e, n, s are computable.

Note that taking complements converts Σn to Πn sets and vice versa.

Proposition 16.2. A ⊆ Nk is Σn if and only if its complement is Πn.

Proof. If
x ∈ A↔ ∃y1∀y2∃y3 . . . QynR(xy1, . . . , yn),

then the negation of this formula flips all the ∃ quantifiers to ∀ and vice versa. So

x /∈ A↔ ∀y1∃y2∀y3 . . . Qyn¬R(x1, . . . , xk, y1, . . . , yn).

Finally note that a relation R(x, y1, . . . , yn) is computable iff its negation ¬R(x, y1, . . . , yn) is com-
putable.

Note that if we work instead in the language of arithmetic, and replace computable relations in
the above definition with ∆0 formula in arithmetic, we would still obtain the same definable sets.
For example:

Exercise 16.3. Show that a set A ⊆ N is Σ1 iff it is defined by a Σ1 formula in LA in the structure
(N; 0, 1,+, ·, <).

We have the following characterization of Σ1 sets:

Proposition 16.4. A set A ⊆ N is c.e. relative to X iff it is ΣX
1 iff A ≤m X ′.

Proof. By relativizing the proof of Proposition 4.2 and Proposition 5.5.

Our next goal it to prove a generalization of this theorem to all levels of the arithmetical hierarchy.
First, we will need to basic closure properties of Σn and Πn sets.
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Lemma 16.5 (Closure properties of ΣX
n ). Suppose X ⊆ N is some oracle.

1. Suppose A,B ⊆ Nk are ΣX
n . Then A ∪B and A ∩B are ΣX

n .

2. If A ⊆ Nk is ΣX
n , then {(x1, . . . , xk−1) : ∃xk(x1, . . . , xk−1) ∈ A} is ΣX

n .

3. If A ⊆ Nk is ΣX
n , then {(x1, . . . , xk) : (∀y < xk)(x1, . . . , xk−1, y) ∈ A} is ΣX

n .

4. If X ≤T Y and A ⊆ N is ΣX
n , then A is ΣY

n .

5. If A is ΣX
1 , and X is ΣY

n for some Y ⊆ N, then A is ΣY
n+1.

Proof. (1) If R,S are relations computable from X, both R ∧ S and R ∨ S are computable from X.
(2) The idea here is that we can contract two existential quantifiers ∃x∃y into a single exis-

tential quantifier ∃z by using a computable bijection between N2 and N. Fix computable functions
π, ρ : N2 → N so that n 7→ (π(n), ρ(n)) is a bijection from N2 → N. Then ∃x1∃y1∀y2 . . . QynR(x1, . . . , xk, y1, . . . , yn)
is equivalent to ∃z∀y2 . . . QynR(x1, . . . , π(z), ρ(z), . . . , yn). (Note here thatR(x1, . . . , π(z), ρ(z), . . . , yn)
is a computable relation)

(3) Is proved using the same idea as Lemma 11.6 and induction. We can replace the quantifier
∀y < xz∃zR(y, z, . . .) with the statement ∃w∀x < y “w codes a sequence z0, . . . , zy−1 and R(x, zx, . . .)
holds”.

(4) is since ≤T is transitive. If R is a relation computable from X and X ≤T Y , then R is
computable from Y .

(5) To prove (2), suppose x ∈ A ↔ (∃y)R(x, y) where R is computable relative to Y . Fix a
computable listing F0, F1, . . . , of all finite subset of N. Let e be the program used to compute R, so
R(x, y) iff φY

e (x, y) = 1. Then

x ∈ A↔ (∃y)(∃n)(∃k)(∃s)“φFn
e (x, y) = 1 halts in s steps and only queries oracle bits < k ”

∧(∀m < k)m ∈ Fn ↔ m ∈ X

The reason this is a valid definition of A is the use principle: if the computation φX
e (x, y) halts,

the it only uses finitely many bits of X, so there is some finite set Fn = X ∩ {0, . . . , k − 1} so that
φFn
e (x, y) halts and gives this same answer and only queries bits of the oracle smaller than k.
Note that since the set of (n,m) such that m ∈ Fn ↔ m ∈ X is ΣY

n+1 (since both ΣY
n and ΠY

n

sets are ΣY
n+1), and so Hence, the above shows that A is a ΣY

n+1 definition, using closure properties
(1), (2), and (3) above.

Our next goal is to relate the arithmetical hierarchy to Turing reducibility and the Turing jump,
which we define as follows:

Definition 16.6 (The iterated Turing jump). If X ⊆ N, define X(0) = X, and X(n+1) = (X(n))′.
So X(n) is the nth Turing jump of X.

Theorem 16.7 (Post’s hierarchy theorem). For every n ≥ 1, and every X, A is ΣX
n iff A is c.e.

relative to X(n−1) iff A ≤m X(n).

Proof. We have proven the base case that A is ΣX
1 iff A is c.e. relative to X iff A ≤m X ′ in

Proposition 16.4.
Also, by relativizing Proposition 16.4 to the oracle X(n−1), we have that A is c.e. relative to

X(n−1) iff A ≤m X(n).
Now inductively assume the theorem is true for n, suppose A is ΣX

n+1. Then x ∈ A ↔
∃y1∀y2 . . . Qyn+1R(x, y1, . . . , yn) for some relation R computable relative to X. So x ∈ A ↔
∃y1S(x, y1) where S(x, y1) holds iff ∀y2 . . . QynR(x, y1, . . . , yn+1). Note A is ΣS

1 . Now S is ΠX
n

and so by our induction hypothesis the complement of S is ≤m X(n). Hence S ≤T X(n). So by

Lemma 16.5.(4), A is ΣX(n)

1 , and so A is c.e. relative to X(n) by Lemma 16.4.

Now to finish, assume A is c.e. relative to X(n) (i.e ΣX(n)

1 . Then by our induction hypothesis,
X(n) is ΣX

n , since X(n) is many-one reducible to itself. So A is ΣX
n+1 by Lemma 16.5.(5)
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Corollary 16.8. Suppose X ⊆ N and A ⊆ N. Then A is ∆X
n if and only if A ≤T X(n−1).

Proof. A is ∆X
n if and only if A is ΣX

n and ΠX
n iff A is c.e. relative to X(n−1) and A is co-c.e.

relative to X(n−1) iff A is computable relative to X(n−1). (Here we are using the relativized version
of Theorem 4.8. A is computable relative to Y if and only if A is c.e. relative to Y and co-c.e.
relative to Y .

Corollary 16.9 (Properness of the arithmetical hierarchy). For every n, there is some A ⊆ N so
that A is Σn and A is not Πn.

Proof. ∅(n) cannot be both Σn and Πn, since then it would be ∆n, and hence ∅(n) ≤T ∅(n−1) by
Corollary 16.8. But this contradicts the properness of the Turing jump: Theorem 15.10

Note that in the above corollary, even though a relativized version of the above result is true (i.e.
for every X, there is some A so that A is ΣX

n and not ΠX
n ), we have just stated the unrelativized

version. This is usually done in all theorems of computability theory. Even though the result is
true when relativized to an arbitrary oracle, we just state the unrelativized version for simplicity of
notation.

Note that the complement of such an A likewise gives an example of a Πn set that is not Σn.
More generally the following class of sets can be used to show properness of the arithmetical

hierarchy:

Definition 16.10. Say that A ⊆ N is Σn complete if A is Σn and for all Σn sets B ⊆ N, B ≤m A.

So by Post’s theorem, ∅(n) is Σn complete.

Proposition 16.11. If A is Σn complete, then X(n) ≤m A. Hence A cannot be ∆n since then
A ≤T X(n−1) which would implies X(n) ≤ X(n−1).

16.2 The limit lemma

In this section, we give a characterization of what sets are computable relative to the halting problem
(or equivalently, what sets are ∆0

2). Suppose (As)s∈N is a sequence of subsets of N, and A ⊆ N.
Say that A = limsAs exists if for all x, x ∈ A implies (∀r > s)[x ∈ Ar] and x /∈ A implies
(∃s)(∀r > s)[x /∈ Ar]. That is, the characteristic function χA of A is the limit of the characteristic
functions χAs

. We say that limsAs exists if there is some A such that A = limsAs.

Definition 16.12. A set A ⊆ N is limit computable iff there is a computable sequence (As)s∈N
of finite subsets of N so that A = limsAs.

So for example, every c.e. set A is limit computable: take any computable enumeration (As)s∈N
of A. However, not limit computability is more general than being computably enumerable: there
is no requirement in Definition 16.12 that the sets As are increasing. For example, given any c.e.
set We and its standard enumeration We,s, let As = {0, . . . , s} \We,s. Then it is easy to check that
limAs = N \We. Hence, any co-c.e. set is computable.

We characterize the limit computable sets:

Theorem 16.13 (The limit lemma). Suppose A ⊆ N. Then A ≤T ∅′ (or equivalently A is ∆2) if
and only if A is limit computable.

Proof. First suppose that A is limit computable and A = limsAs. We give an algorithm to compute
A relative to ∅′ as an oracle. For each x and s, construct a program φf(x,s) that halts iff there is
some r > s so that x ∈ Asx /∈ Ar or x /∈ As and x ∈ Ar. Now for each x and s, using the halting
problem as an oracle, we can ask if φf(x,s) halts. Now for each x, since limsAs exists by asking this
question for larger and larger s, there must be some s so that for all larger r, x ∈ As ↔ x ∈ Ar. So
we will find some s so that φf(x,s) never halts. Then x ∈ A iff x ∈ As for this s.
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Conversely, suppose that A ≤T ∅′ via the program φ∅′

e . Let (Ks)s∈N be a computable enumeration
of ∅′. Let As be the set of x such that φKs

e (x) halts in ≤ s steps and outputs 1 Now given any
x, we know that φ∅′

e halts in some number of steps. Let r be larger than the number of steps this
computation takes, and let r also be large enough so that all elements of ∅′ that are every queried
in this computation have been enumerated before stage r. Then clearly x ∈ Ar iff x ∈ A.

Exercise 16.14.

1. Show that f : N → N is computable relative to ∅′ iff there is a function f : N2 → N so that for
every x, f(x) = limy g(x, y).

2. Show that f : N → N is computable relative to ∅(n+1) iff there is a function g : Nn+1 → N so
that for every x,

f(x) = lim
y1

lim
y2

. . . lim
yn

g(x, y1, . . . , yn).
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17 Completeness in the arithmetical hierarchy

17.1 Complete Σn and Πn sets up to computable isomorphism

Up to computable isomorphism there is exactly one complete Σn set (and exactly one complete Πn

set) for each n. It is the set ∅n (and N \ ∅(n)).
This follows from the following special property of the Turing jump: being many-one equivalent

to X ′ is equivalent to being 1-1 equivalent to X ′.

Lemma 17.1. Suppose A ≡m X ′. Then A ≡1 X
′.

Proof. By relativizing the proof of Exercise 5.6, we have that X ′ ≡1 {n : φX
n (0) ↓}. So we may

instead work with this version of the halting problem.
By the padding lemma, it is clear if A ≤m {n : φX

n (0)↓}, then A ≤1 {n : φX
n (0)↓}.

Suppose {n : φX
n (0)↓} ≤m A. We would like to show {n : φX

n (0)↓} ≤1 A. We will use an identical
idea to our proof of the acceptable number theorem: Theorem 6.11.

Let g : N → N be the many-one reduction witnessing {n : φX
n (0) ↓} ≤m A. We would like

to find a function h : N2 → N so that for all x, φX
h(e,x)(0) ↓ iff φX

e (0) ↓, and for all x ̸= x′ we have

g(h(e, x)) ̸= g(h(e, x′)). Given such an h, we can define a 1-1 reduction g′ from {n : φX
n (0)↓} ≤m A to

A by defining g′(0) = g(0), and g′(e+1) is g(h(e+1, n)) where n is least such that g(h(e+1, n)) ̸= g′(i)
for any i ≤ e.

We define h(e, k+1) recursively, where h(e, 0) = e. Let Bk = {g(h(e, 0)), . . . , g(h(e, k))}. By the
recursion theorem, consider the program n where:

φX
n (z) =

{
φX
e (z) if g(n) /∈ Bk

undefined otherwise

Case 1: If g(n) /∈ Bk, then φX
n = φX

e , and g(n) ̸= g(h(e, 0)), . . . , g(h(e, k)). So we define
h(e, k + 1) = n.

Case 2: if g(n) ∈ Bk, then since g(n) = g(h(e, i)) for some i ≤ k, we have φX
n (0)↓↔ g(n) ∈ A↔

g(h(e, i)) ∈ A ↔ φX
h(e,i)(0) ↓↔ φX

e (0) ↓. By definition of n, we must also have that φX
n (0) ↑, hence

φX
e (0)↑.
Now let m be the program where

φX
m(z) =

{
1 if g(m) ∈ Bk

undefined if g(m) /∈ Bk

.

If g(m) ∈ Bk, then g(m) = g(h(e, i)) for some i, So φX
m(0) ↓↔ g(m) ∈ A ↔ g(h(e, i)) ∈ A ↔

φh(e,i)
X(0)↓↔ φX

e (0)↓. But this is a contradiction since φX
m(0)↓ and φX

e (0)↑.
So we must have that g(m) /∈ Bk and so φX

m(0)↑ by definition of m. Hence φX
m(0)↓ iffφX

e (0)↓.
So let h(e, k + 1) = m.

Note that we are using special properties of the Turing jump to prove the above theorem:

Exercise 17.2. Show there are incomputable sets A,B ⊆ N so that A ≡m B, but A ̸≡1 B.

Corollary 17.3. If A is Σn complete, then A ≡1 ∅(n).

Proof. Since A is Σn, A ≤m ∅(n) by Post’s hierarchy theorem. Since ∅(n) is Σn and A is Σn complete,
we therefore have that ∅(n) ≤m A. So A ≡m ∅(n). Now lettingX = ∅(n−1) and applying Lemma 17.1,
we see A ≡1 ∅(n).

71



17.2 Examples of complete Π2/Σ2 sets

Many naturally occurring sets are Σn/Πn complete. We prove some theorems illustrating how these
types of results are proven.

Proposition 17.4. TOT = {e : φe is total} is Π2 complete.

Proof. First, we need to establish that TOT is Π2. e ∈ TOT iff (∀x)(∃s)φe(x) halts in s steps. Since
the relation on tuples (e, x, s) that “φe(x) halts in s steps” is computable, TOT is Π2.

Now suppose A ⊆ N is any Π2 set. We must show that A ≤m TOT. Now x ∈ A↔ ∀y∃zR(x, y, z)
for some computable relation R. For each x, consider the program φf(x)(y) where φf(x)(y) searches
through all possible z until it finds a z such that R(x, y, z) is true. If it finds such a z, then it halts
and outputs this z.

If x ∈ A, for every y there is some z such that R(x, y, z) is true, and so φf(x) will be total.
x ∈ A→ f(x) ∈ TOT.

If x /∈ A, then there is some y so that for all z, R(x, y, z) is false. Hence φf(x)(y) will be undefined,
and so x /∈ A→ f(x) /∈ TOT.

We give another example:

Proposition 17.5. FIN = {e : We is finite} is Σ2 complete.

Proof. First, we need to establish that FIN is Σ2. We is finite iff (∃n)(∀s)We,s ⊆ {0, . . . , n}. Since
this last condition is computable, FIN is clearly Σ2.

Now suppose A ⊆ N is any Σ2 set. We must show that A ≤m FIN. Now x ∈ A↔ ∃y∀zR(x, y, z)
for some computable relation R. For each x, consider the program f(x) which considers each pair
(y, z) ∈ N2 infinitely many times and enumerates y if R(x, y, z) is false, and every y′ < y has already
been enumerated. Note this construction is similar to the proof of Proposition 17.4. The one new
feature is that we considering y′ < y when making the decision about whether to enumerate y.

If x ∈ A, then there must be some y so that for all z, R(x, y, z) is true. Hence, y will never be
enumerated and thus every number larger than y will also never be enumerated. So Wf(x) will be
finite. So x ∈ A→ f(x) /∈ FIN

If x /∈ A, then for every y there is some z such that R(x, y, z) is false. Hence, by induction we can
see that we will eventually enumerate every y, and hence Wf(x) = N. So x /∈ A→ f(x) /∈ FIN.

Exercise 17.6. Show that the {(d, e) : Wd ⊆We} is Σ2 complete.

17.3 Complete Σ3 sets

Recall that a set A ⊆ N is cofinite if its complement is finite.

Theorem 17.7. COF = {e : We is cofinite} is Σ3 complete.

Proof. e ∈ COF if (∃n)(∀x)(∃s)(x > n → x ∈ We,s). Since the relation x > n → x ∈ We,s is
computable, COF is therefore Σ3.

Now suppose A ⊆ N is any Σ3 set. We must show that A ≤m COF. Now x ∈ A↔ ∃yS(x, y) for
some Π2 relation S. Since FIN is Σ2 complete, its complement {e : We is infinite} is if Π2 complete.
Hence, there is some computable function g : N2 → N so that S(x, y) ↔Wg(x,y) is infinite, and thus
x ∈ A↔ (∃y)[Wg(x,y) is infinite].

For each x, we will give a program f(x) so that the c.e. setWf(x) is cofinite iff (∃y)[Wg(x,y) is infinite].
The program f(x) works as follows. We watch the enumeration of the sets Wg(x,y) for all y. (For
example, at step n = ⟨y, t⟩ of the program, run the tth step of the enumeration of Wg(x,y)). Let
bs0 < bs1 < bs2 . . . be the elements that we have not yet been enumerated into Wf(x) by stage s. If we
see an element enumerated into Wg(x,y), we enumerate bsy.
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We claim x ∈ A↔ e ∈ COF.
Case 1: For all y, Wg(x,y) is finite. Then if s is sufficiently large so that no new elements of

Wg(x,y′) are ever enumerated after stage s for any y′ ≤ y, then we will never enumerate any of the
numbers bs0, . . . , b

s
y. Hence, for each y, by = lim bsy is never enumerated, and so the set Wf(x) has an

infinite complement.
Case 2: There exists y such that Wg(x,y) is infinite. Note that bsy ≤ bs+1

y , and if we enumerate bsy
at stage s, then bsy < bs+1

y . Hence, if we enumerate the number bsy at infinitely many stage s, then
lims b

s
y = ∞, and so the complement of We contains less than or equal to y many elements.

Exercise 17.8. Show that {e : We is computable} is Σ3 complete.
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18 The structure of the Turing degrees

18.1 The Kleene-Post theorem

By identifying subsets of N with their characteristic functions, we can think of any A ⊆ N as an
infinite binary string. We use the notation 2N for the set of all infinite binary strings, and 2<N for the
set of all finite binary strings. (The reason for the base 2 in this notation is the usual identification
logicians make where we identify 2 with the set {0, 1}). If s ∈ 2<N we let |s| denote the length of s.
We let s(n) denote the nth bit of s, which may be 0, 1, or undefined if n is greater than or equal to
the length of s. If s, t ∈ 2<N are finite binary strings, we say that s is an initial segment of t and write
s ⊆ t if for all n < |s|, s(n) = t(n). If s, t are finite binary strings, we let s⌢t denote the finite binary
string which is s concatenated with t, so that (s⌢t)(n) = s(n) if n < |s|, and (s⌢t)(n) = t(n − |s|)
otherwise.

Suppose (sn)n∈N is an increasing sequence of finite binary strings so s0 ⊆ s1 ⊆ s2 . . ., and
limn |sn| = ∞. Then the union A =

⋃
n sn of this sequence is an infinite binary string A ∈ 2N. In

computability theory, we can construct A ∈ 2N with interesting computability-theoretic properties
is in this way by building an increasing sequence of finite initial segments (sn)n∈N whose limit is our
desired element of 2N.

The reason we have switched from using subset of N to binary strings is that using finite subsets of
N to approximate infinite subset of N is more clumsy, since it is not as natural to include information
that some number is missing from a finite set S if this number is greater than max(S). However,
with finite binary strings we can have zeroes in this sequence which encode this negative information.

We now discuss some computability-theoretic aspects of computing with finite and infinite binary
sequences. If s ∈ 2<N is a finite binary sequence then we define the computation φs

e(x) using the
oracle s identically to how we define φA

e (x) except that if the program φs
e(x) asks for the nth bit of

the oracle for some n ≥ |s| (so s(n) is undefined), then the computation φs
e(x) is undefined. Note

that if φs
e(x) is defined, then for all extensions t ⊇ s of s, we must also have that φt

e(x) is defined
and φs

e(x) = φt
e(x).

Suppose A ∈ 2<N, and φA
e (x) halts. Then since φA

e (x) runs in finite time, it must only access
finitely many bits of the oracle A, and hence there is some initial segment s ⊆ A so that φs

e(x) is
defined and φs

e(x) = φA
e (x).

We can put a topology on 2N where the basic open neighborhoods are the sets Ns = {A ∈ 2N : s ⊆
A} of infinite binary strings extending a given finite binary string s ∈ 2N. For each e, define a partial
function Φe : 2

N → 2N by defining A ∈ dom(Φe) if φ
A
e (n) halts for every n, and the nth bit of Φe(A)

is Φe(A)(n) = 0 if φA
e (n) = 0 and Φe(A)(n) = 1 otherwise (so essentially we are forcing the output

to always be 0 or 1). So informally, Φe maps each A ∈ 2N to the infinite binary sequence computed
by the eth program using A as an oracle.

Topologically, our discussion above says that the function Φe is a partial continuous function.
To prove this, note that the set of A so that φA

e (n) halts and is equal to a particular value is an
open set. It is equal to the union of the Ns where φs

e(n) halts and equals this value.

Theorem 18.1 (Kleene-Post). There are A,B ∈ 2N such that A ≱T B and B ≱T A.

Proof. We construct A and B by finite initial segments. We will definite increasing binary sequence
(sn)n∈N and (tn)n∈N and at the end of the construction let A =

⋃
n sn and B =

⋃
n tn. Begin by

defining s0 = t0 = ∅ to be the empty sequences. We will ensure in our construction that the length
of these sequences increases at each step (|sn+1| > |sn| and |tn+1| > |tn|) so that the unions are
infinite binary sequences.

At stage 2n + 1, suppose we have already defined s2n and t2n. We will define s2n+1 ⊇ s2n and
t2n+1 ⊇ t2n to ensure that Φn(A) ̸= B. Let m = |tn| be so that tn(m) has not been defined.

Case 1: suppose that there is some extension s∗ ⊇ s2n such that φs∗

n (m) halts. Then define
s2n+1 = s∗ and if φs∗

n (m) = 0, define t2n+1 = t2n
⌢1. Otherwise, define t2n+1 = t2n

⌢1. At the end
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of the construction, since A ⊇ s2n+1 and B ⊇ t2n+1, we therefore have that φA
n (m) ̸= B, and hence

Φn(A) ̸= B.
Case 2: if there is no extension s∗ ⊇ s2n such that φs∗

n (m) halts, the define s2n+1 = s2n
⌢0 and

t2n+1 = t2n
⌢0. Then at the end of the construction, since A ⊇ s2n, we must have that φA

n (m) does
not halt. If it did halt, then there would be some initial segment s∗ ⊆ A such that φs∗

n (m) halts,
contradicting that we are in case 2. Thus, Φn(A) is undefined and so Φn(A) ̸= B.

At stage 2n+2, we perform the same process, switching the roles of A and B and sn and tn.

By paying closer to exactly how complicated each step in this construction is to compute, we
have the following refinement of the theorem.

Theorem 18.2. There are A,B ≤T ∅′ such that A ≱T B and B ≱T A.

Proof. This follows by noting that each step in the construction of Theorem 18.1 can be computed
relative to ∅′ as an oracle, so from ∅′, we can compute the sequences (sn)n∈N and (tn)n∈N.

Given any s2n and m, we can write a program which searches through all s∗ extending s2n and
possible finite running times and halts if it ever finds any s∗ so that φs∗

n (m) halts. By asking ∅′ if
this program ever halts we can determine whether we are in Case 1 or Case 2. If we are in Case
1, then we can computably perform this search again until we actually find such a s∗, and then let
s2n+1 = s∗, and define t2n+1. Otherwise, the extension made in Case 2 is clearly computable.

Note that in the proof of the above theorem, we really aren’t using anything about computability
other than the fact that computability is partial continuous.
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19 Baire category, forcing, and the Turing degrees

19.1 Forcing Σ1 sentences

Say that a set D ⊆ 2<N of strings is dense if for every s ∈ 2<N there exists some s∗ ⊇ s so that
s∗ ∈ D. Likewise, say that a set D ⊆ 2<N×2<N of pairs of strings is dense if for all (s, t) ∈ 2<N×2<N

there exists (s∗, t∗) ∈ D so that s∗ ⊇ s and t∗ ⊇ t.

Example 19.1. The set of strings of even length {scolon|s| is even} is dense. The set of strings
containing a 1 is dense. If A ∈ 2N, {s : s ⊈ A} is dense.

Suppose we are going to build an infinite binary string by finite initial segments. In this middle
of the construction we will have committed to some finite initial segment s of this infinite binary
string, but we will have not yet defined any of the remaining bits. Still, it is useful to have a “name”
for the infinite binary string we are building, even though we have not finished with the construction
yet. We typically let the symbol G be this name. (Formally, G is part of what is called the forcing
language.)

Definition 19.2. Suppose s ∈ 2<N is a finite string. Say that s forces φG
e (m) ↓ and write

s ⊩ φG
e (m)↓ if φs

e(m) ↓. Similarly, say that s forces φG
e (m) = k and write s ⊩ φG

e (m) = k if
φs
e(m) = k. Say s forces φG

e (m)↑ and write s ⊩ φG
e (m)↑ if for all s∗ extending s, it is not the case

that s ⊩ φG
e (m)↓.

Exercise 19.3. The relations s ⊩ φG
e (m) ↓ and s ⊩ φG

e (m) ↑ are both computable relative to ∅′.
That is, the set of tuples (s, e,m) so that these relations hold are computable relative to ∅′.

In what follows, we will re-examine the proof of Theorem 18.1, and break up the argument into
some smaller sublemmas that will be useful on their own.

Lemma 19.4. Fix a program e. Let De be the set of strings (s, t) ∈ 2<N×2<N such that there exists
some m so that either:

• s ⊩ φG
e (m)↑, or

• s ⊩ φG
e (m) = k and t(m) ̸= k.

Then De is dense.

Proof. Given any (s0, t0) ∈ 2<N × 2<N, we will show there is some (s, t) ∈ De so that s ⊇ s0 and
t ⊇ t0. Let m = |t0|.

Case 1: there is some extension s ⊇ s0 such that s ⊩ φG
e (m) ↓. Then choose t ⊇ t0 so that

t(m) ̸= φs
e(m), and note that (s, t) ∈ De.

Case 2: there is no extension s ⊇ s0 such that s ⊩ φG
e (m) ↓. Then s0 ⊩ φG

e (m) ↑ by definition,
and so (s0, t0) ∈ De.

If A ∈ 2N and D ⊆ 2<N, say that A meets D if there is some s ∈ D such that A ⊇ s. Similarly,
if D′ ⊆ 2<N × 2<N, and A,B ∈ 2N, say that (A,B) meets D′ if there is some (s, t) ∈ D′ such that
A ⊇ s and B ⊇ t.

The importance of the dense set De from Lemma 19.4 is the following.

Lemma 19.5. If (A,B) ∈ 2N × 2N meets the set De from Lemma 19.4, then Φe(A) ̸= B.

Proof. Fix (s, t) ∈ De so that A ⊇ s and B ⊇ t. Then there is some m so that either

• s ⊩ φG
e (m)↑. In this case φA

e (m)↑, since otherwise if φA
e (m)↓, there would be some finite initial

segment s∗ ⊆ A so that φA
e (m) ↓. Here we make take s∗ sufficiently long so that |s∗| ≥ |s|.

But then s∗ ⊇ s, contradicting that definition of s ⊩ φG
e (m)↑.
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• s ⊩ φG
e (m) = k and t(m) ̸= k. In this case, we also have φA

e (m) = k since A ⊇ s, and
B(m) ̸= k since B ⊇ t. So Φe(A) ̸= B.

Now we prove that we can meet countably many dense sets:

Lemma 19.6. Suppose D0, D1, . . . are countably many dense sets in 2<N × 2<N. Then there are
(A,B) ∈ 2N × 2N such that (A,B) meets Dn for every n ∈ N.

Proof. We define increasing sequences (sn)n∈N and (tn)n∈N. Let s0 = t0 = ∅. Given (sn, tn) define
(sn+1, tn+1) to be such that (sn+1, tn+1) extends (sn, tn), (sn+1, tn+1) ∈ Dn, and |sn| ≥ n and
tn+1| ≥ n. Such an (sn+1, tn+1) exists by the density of Dn. To finish, define A =

⋃
n sn and

B =
⋃

n tn. So (A,B) meets Dn since A ⊇ sn+1 and B ⊇ tn+1.

If we think topologically, the above lemma is really a special case of the Baire category theorem.
The topology on the space 2N that we have already defined (with basic open sets of the form Ns)
can be generated by the metric d where d(A,B) = 1/min{n : A(n) ̸= B(n)}.

Exercise 19.7 (Baire category theorem). Suppose X is a complete metric space, and (Un)n∈N is a
countable sequence of open dense subsets of X. Then

⋂
Un is nonempty.

We could put together the above lemmas to re-prove the Kleene-Post theorem. Instead, we will
prove a slightly stronger theorem. Since there are countably many pairs of natural numbers, we can
construct countably many An ∈ 2N that pairwise meet a countable collection of dense sets.

Lemma 19.8. Suppose (Dn)n∈N are countably many dense sets in 2<N × 2<N. Then there are
countably many (An)n∈N in 2N so that (Ai, Aj) meets Dn for every i, j, n with i ̸= j.

Proof. For each i, we will define an increasing sequence (si,n)n∈N of finite strings such that
⋃

n si,n =
Ai. Let si,0 = ∅ for every i.

Choose a bijection ρ : N → N3. At step k, if ρ(k) = (i, j, n) define si,k+1 and sj,k+1 extending
si,k and sj,k to be so that (si,k+1, sj,k+1) ∈ Dn, and |si,k+1| ≥ k and |sj,k+1| ≥ k. This is possible
by the density of Dn. For all i

′ where i′ ̸= i and i′ ̸= j, let si′,k+1 = si,k.

Corollary 19.9. There are countably many (An)n∈N where An ∈ 2N such that Ai ≱T Aj for any
i ̸= j.

Proof. Apply Lemma 19.8 to the dense sets in Lemma 19.4 and apply Lemma 19.5.

19.2 Turing incomparability with a given A ∈ 2N

Suppose A ∈ 2N is incomputable. Must there always be some B such that B ≱T A and A ≱T B?
The answer to this question is yes, and this follows from the following lemma.

Lemma 19.10. Suppose A ∈ 2N is incomputable. Let DA
e be the set of s ∈ 2N such that there exists

an m such that

• s ⊩ φG
e (m)↑, or

• s ⊩ φG
e (m) ̸= A(m).

Then DA
e is dense.
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Proof. Suppose s0 ∈ 2<N. We need to show there is some s ⊇ s0 so that s ∈ DA
e . Now if there is

some m so that s0 ⊩ φG
e (m)↑, then we are done. So assume that for every m, s0 ⊮ φG

e (m)↑ (which
by definition means that for some s ⊇ s0, s ⊩ φG

e (m)↓).
We claim there must be some m and s ⊇ s0 so that s ⊩ φG

e (m) ̸= A(m). If this were not the
case, then we could compute A using the following algorithm. To compute A(m), search through
all s ⊇ s0 and all possible running times until we find some s such that s ⊩ φG

e (m) ↓. We must
eventually find such an s by our assumption that s0 ⊮ φG

e (m) ↑. Now for this s, we must have
φs
e(m) = A(m) by our assumption that there is no s such that s ⊩ φG

e (m) ̸= A(m).

Corollary 19.11. If A ∈ 2N is incomputable, then there is some B ∈ 2N such that A ≱T B and
B ≱T A.

Proof. For each set C ∈ 2N that is computable relative to A, the set DC = {s : ∃ms(m) ̸= C(m)}
is dense, and if B meets this dense set DC , the B ̸= C. Construct B to meet the countably many
dense sets DA

e in the above lemma, and also the dense sets DC . Then B ≱T A, and we also have
that B is not equal to any C that is computable relative to A, so A ≱T B.

A similar proof shows that if we have a countable set A0, A1 . . . of incomputable element of 2N,
there is some B that is Turing incomparable with all of them, by meeting the countably many dense
sets DAi

e for every i and e. By taking larger and large Turing incomparable sets in this way, we can
construct antichains in the Turing degrees of size ℵ1.

19.3 Trees and antichains

How big can antichains in the Turing degrees be? We will show there are antichains with cardinality
2ℵ0 .

Definition 19.12. A tree in 2<N is a nonempty set T ⊆ 2<N closed downwards under ⊆ so that
if s ∈ T and t ⊆ s, then t ∈ T . If T is tree, then the set of paths through T , noted [T ] is the set
of A ∈ 2N so that for all s ⊆ A we have s ∈ T . An element s ∈ T is a leaf if there is no proper
extension t ⊋ s so that t ∈ T . A tree T is perfect if for all t ∈ T , there are t0, t1 ∈ T so that t0 ⊇ t
and t1 ⊇ t so t0, t1 ∈ T and t0 and t1 are incompatible (i.e. t0 ⊈ t1 and t1 ⊈ t0).

If T is a tree we say that t ∈ T is a splitting node if t⌢0 ∈ T and t⌢1 ∈ T . So a tree T is
perfect if for every t ∈ T , there is some t∗ ⊇ t that is a splitting node. If s, t ∈ 2N we say that s, t
are compatible, and write s ∥ t if either s ⊆ t or t ⊆ s. Using this language, note that if t∗ ⊇ t is
the splitting above t of minimal length, then for all s ⊇ t, we must have s ∥ t∗.

Proposition 19.13. Suppose {ts}s∈2<N of strings so that:

• If s ⊆ s∗, then ts ⊆ ts∗ .

• For all s, ts⌢0 and ts⌢1 are incompatible.

Then T = {t : t ⊆ ts for some s ∈ 2<N} is a perfect tree.

Proof. T is clearly closed downwards, and if t ⊆ ts, then ts⌢0 and ts⌢1 are two incompatible exten-
sions of t inside T .

In fact, every tree is of this form.

Lemma 19.14. If T ⊆ 2<N is perfect, then there is some set {ts}s∈2<N of strings so that:

• If s ⊆ s∗, then ts ⊆ ts∗ .

• For all s, ts⌢0 and ts⌢1 are incompatible.
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and T = {t : t ⊆ ts for some s ∈ 2<N}.

Proof. Let t∅ be the minimal splitting in T above ∅. We will inductively ensure that ts is a splitting
node for each s. Given ts ∈ T , since ts is a splitting node, ts

⌢0 and ts
⌢1 are both elements of

T . So let ts⌢0 be the least splitting node above ts
⌢0 and ts⌢1 be the least splitting node above

ts
⌢1. Clearly ts ∈ T for every s, and so the tree {t : t ⊆ ts for some s ∈ 2<N} is contained in T .

Conversely, for any t′ ∈ T , it is easy to prove that t′ ∈ {t : t ⊆ ts for some s ∈ 2<N} by induction on
the number of splitting nodes in t′.

Lemma 19.15. If T is a perfect tree, then there is a continuous bijection f : 2N → [T ], and hence
the cardinality of [T ] is equal to the cardinality of 2N which is equal to 2ℵ0 .

Proof. Let {ts}s∈2<N be a set of strings as in Lemma 19.14. Then define f(A) =
⋃

s⊆A ts.
The map f is an injection since if A ̸= B, then if n is least such that A ↾ n ̸= B ↾ n, then since

A ↾ n and B ↾ n are equal to s⌢0 and s⌢1 for some s. Hence, f(A) and f(B) extend incompatible
strings ts⌢0 and ts⌢1.

Now f is onto, since if Y ∈ [T ], then we can find the X ∈ 2N such that f(X) = Y as follows.
We will construct a sequence (sn)n∈N such that Y =

⋃
n tsn . Let s0 = ∅, and given sn, let t

∗ be
the least splitting node in T above tsn , so since Y extends tsn , Y extends t∗. If Y ⊇ t∗⌢0, let
sn+1 = sn

⌢0. Otherwise, if Y ⊇ t∗⌢1, let sn+1 = sn
⌢1. So then Y ⊇ tsn+1 . It is easy to check that

f is continuous.

Exercise 19.16. Suppose C ⊆ 2N. Then C = [T ] for some perfect tree T iff there is a continuous
injection f : 2N → 2N so that c = ran(f).

Lemma 19.17. If (Dn)n∈N are countably many dense sets in 2<N×2<N, then there is a perfect tree
T ⊆ 2<N so that for any two A,B ∈ [T ] such that A ̸= B, we have that (A,B) meets Dn for every
n.

Proof. First, we claim that for any collection s0, . . . , sk of strings and any n, we can find s∗0, . . . , s
∗
k

extending them (i.e. s∗i ⊇ si for all i ≤ k) so that for any i, j ≤ k we have (s∗i , s
∗
j ) meets Dm for

every m ≤ n. This is because there are finitely many i, j ≤ k and for each such pair, we can extend
the strings si, sj to meet each Dm for m ≤ n.

We will construct strings (ts)s∈2<N where ts∗ ⊇ ts if s∗ ⊇ s, and let our tree T be {t : (∃s)t ⊆ ts}.
Let t∅ = ∅.

Now suppose we have defined ts for all s of length n. Let rs⌢0 = ts
⌢0 and rs⌢1 = ts

⌢1 for
every s ∈ 2<N. Now take the collection {rs : |s| = n + 1} and extend them by the above claim to
a collection {ts : |s| = n + 1} so ts ⊇ rs and so given any s ̸= s′ we have the (ts, t

′
s) meets Dm for

every m ≤ n.
Now if A,B ∈ [T ] as defined above, and A ̸= B, then we must have A ⊇ ts and B ⊇ ts′ for some

incompatible s, s′ where |s| ≥ n and |s′| ≥ n. Hence, (A,B) meets Dn.

Corollary 19.18. There is an antichain in (DT ,≤T ) of cardinality 2ℵ0

Proof. Applying Lemma 19.17 to the dense sets Dn from Lemma 19.4, we obtain a perfect tree T
so that for any A,B ∈ [T ] with A ̸= B, we have A ≱T B and B ≱T A.
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20 1-generics

20.1 Forcing=truth for 1-generics

There is an important asymmetry in the definition of the forcing relation. Suppose that A ∈ 2N. If
φA
e (n)↓, then there is some s ⊆ A so that s ⊩ φG

e (n)↓. However, if φA
e (n)↑, then it is not necessarily

the case that there is some s ⊆ A so that s ⊩ φG
e (n) ↑. For example, consider the case where A is

the infinite binary sequence of all 0s, and let φe be the program that halts if there is a some n so
that the nth bit of the oracle is a 1.

However, for certain types of sets, we will have this property that anything true about A must
be forced.

Definition 20.1. Suppose S ⊆ 2<N. The densification of S is the set S′ = S ∪ {s : (∀s∗ ⊇ s)[s∗ /∈
S]}. That is, S′ is S together with the strings having no extension above S.

It is clear that the densification of any set is a dense set. For example, the densification of the
empty set ∅ is 2<N

Definition 20.2. Say that A ∈ 2N is 1-generic if for every Σ1 set S ⊆ 2<N, either A meets S, or
there is some s ⊆ A so that for all s∗ ⊇ s, we have s∗ /∈ S. That is, A meets the densification of S.

Note that the set of 1-generics is not empty, since we can meet the countably many dense sets
in its definition.

Lemma 20.3. Suppose A ⊆ 2N. The following are equivalent.

1. A is 1-generic.

2. For every e, n, there is some s ⊆ A such that s ⊩ φG
e (n)↓ or s ⊩ φG

e (n)↑.

Proof. (1) ⇒ (2): Suppose A is 1-generic. Then for each e, n {s : s ⊩ φG
e (n)↓} is a Σ1 set of strings;

we can enumerate this set by running φs
e(n) for all s and all possible finite numbers of steps, and

enumerating the s for which this computation halts. Hence, either A meets this set, or by definition
of 1-genericity, there is some s ⊆ A so that no s∗ ⊇ s has s∗ ⊩ φG

e (n)↓. But by definition this means
that s ⊩ φG

e (n)↑.
(2) ⇒ (1): Suppose S ⊆ 2<N is a Σ1 set of strings. Then we can construct an oracle program

which watches the enumeration of S, and halts if there is some initial segment of its oracle which is
in this set. Thus, there must either be some s ⊆ A so that s ∈ S, or some s ⊆ A so that no s∗ ⊇ s
has s∗ ∈ S.

Corollary 20.4 (Forcing=Truth for 1-generics). If A is 1-generic iff for all e, n

• φA
e (n)↓ iff (∃s ⊆ A)s ⊩ φG

e (n)↓.

• φA
e (n)↑ iff (∃s ⊆ A)s ⊩ φG

e (n)↑.

Lemma 20.5. Suppose A is 1-generic. Then A′ ≤T ∅′ ⊕A.

Proof. e ∈ A′ if and or equivalently φA
e (e)↓. To determine if φA

e (e)↓ using A as an oracle, we take
each finite initial segment s ⊆ A, and then compute using ∅′ as an oracle whether s ⊩ φG

e (e) ↓, or
s ⊩ φG

e (e)↓.

The property that A′ ≤T ∅′ ⊕A is sometimes called being GL1. Note that all A do not have this
property. For example, if A ≥T ∅′, then A cannot be GL1

Exercise 20.6. If A,B ∈ 2N, then A ⊕ B is 1-generic iff A is 1-generic and B is 1-generic relative
to A.
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20.2 Friedberg jump inversion

Theorem 20.7. Suppose B ∈ 2N is such that B ≥T ∅′. Then B ≡T A′ for some A ∈ 2N.

Proof. We will find A such that
A′ ≡T A⊕ ∅′ ≡T B

Fix a program which runs using the oracle ∅′, which takes s ∈ 2N and a c.e. set R of strings,
and then outputs some s∗ ⊇ s, so that s∗ is in the densification of S. (i.e. the program outputs s if
there is no extension s∗ ⊇ s so that s∗ ∈ S, and otherwise outputs some outputs some s∗ ⊇ s such
that s∗ ∈ S.

We will construct A by finite initial segments, so A =
⋃

n sn. Let Rn be the nth c.e. set of finite
binary strings. Let s0 = ∅. Given sn, let s

∗ ⊇ sn be the string found by the program using the
oracle ∅′ so that s∗ is in the densification of Rn, then let sn+1 = s∗⌢0 if B(n) = 0, and sn+1 = s∗⌢1
if B(n) = 1.

Clearly, this set A can be computed by B, since B ≥T ∅′. So B ≥T A⊕∅. Conversely, A⊕∅ can
compute B, since using ∅, we can find this s∗ extending sn, and from the next bit we can recover
the value B(n).

Now A will be 1-generic, so A ≥T A ⊕ ∅′. Finally, A′ ≥T ∅′ and A ≥T A are trivial, so
A′ ≥T A⊕ ∅′.
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21 Forcing in arithmetic

21.1 The forcing relation and n-generics

In what follows, we will always use lowercase letters n,m, x, y to indicate natural numbers, and
uppercase letters A,B,X, Y to indicate elements of 2N.

Suppose R(x1, . . . , xn, Y1, . . . , Yn) is a relation where x1, . . . , xn are variables taking values in N
and Y1, . . . , YN take values in 2N. We say that R is computable if its truth value can be computed
by an oracle Turing machine with oracle Y1 ⊕ . . . ⊕ Yn on input (x1, . . . , xn). For example, the
relation R(x, Y ) which is true if x ∈ Y is a computable relation.

We define the arithmetical hierarchy on formulas built from these relations as usual. A formula
φ is Σ0

n if it of the form

∃x1∀x2 . . . QxnR(x1, . . . , xn, y1, X1, . . . , Xn)

where R is computable. A formula is Π0
n if it is of the form

∀x1∃x2 . . . QxnR(x1, . . . , xn, y1, X1, . . . , Xn)

where R is computable.
We similarly say a set is Σ0

n/Π
0
n iff it is defined by a Σ0

n/Π
0
n relation.

Definition 21.1. Define the forcing relation on arithmetical formulas ψ(X) with one free variable
as follows. For computable relations R, s ⊩ R(G) if the computation of R terminates returning true
using the bits of s for the oracle. Then inductively,

• s ⊩ ∃xψ(x,G) iff there exists some n such that s ⊩ ψ(n,G).

• s ⊩ ¬ψ(G) if for all s∗ ⊇ s, it is not the case that s ⊩ ψ(G).

Note here that we regard ∀x as being an abbreviation for ¬∃x¬. If we wanted, we could also
define the forcing relation for conjunctions: s ⊩ ψ(G) ∧ θ(G) if s ⊩ ψ(G) and s ⊩ θ(G), however we
will not use this in our proofs, since all the formulas we will consider will be in prenex normal form
followed by a computable relation.

In our definition of the forcing relation above, it is not true that if ψ and θ are logically equivalent,
then s ⊩ ψ(G) iff s ⊩ θ(G). For example, this is true even if θ is the formula ¬¬ψ. (In the set
theory literature, what we have defined above is usually called the strong forcing relation, which
differs slightly from what is usually called the forcing relation).

Lemma 21.2. For each Σ0
n formula ψ, {s : s ⊩ ψ(G)} is a Σ0

n set. For each Π0
n formula ψ,

{s : s ⊩ ψ(G)} is a Π0
n set.

Proof. By induction. If R is computable, {s : s ⊩ ∃xR(G, x)} is c.e., since we can enumerate all s
for which there is some n such that R(n, s) halts and is true.

If ψ is Π0
1, For each Π0

n

For each Σ0
n formula ∃xR(x,G), we have that s ⊩ ∃xS(x,G) iff (∃n)[s ⊩ S(n,G)] and so {s : s ⊩

∃xR(x,G)} is Σ0
n assuming that {(s, n) : s ⊩ S(n,G)} is uniformly Σ0

n.
For each Π0

n formula ∀xS(x,G) where S is Σ0
n−1, we have

s ⊩ ∀xR(x,G) ↔ s ⊩ ¬∃x¬R(x,G)
↔ (∀s∗ ⊇ s)¬s ⊩ ∃x¬R(x,G)
↔ (∀s∗ ⊇ s)¬(∃n)s∗ ⊩ ¬R(n,G)
↔ (∀s∗ ⊇ s)¬(∃n)(∀s∗∗ ⊇ s∗)¬s∗∗ ⊩ R(n,G)

↔ (∀s∗ ⊇ s)(∀n)(∃s∗∗ ⊇ s∗)s∗∗ ⊩ R(n,G)

which is Π0
n since the relation s∗∗ ⊩ R(n,G) is Σ0

n−1 by our induction hypothesis.
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Definition 21.3. Say that A ∈ 2N is n-generic iff for every Σ0
n set S ⊆ 2<N, either there is some

s ∈ S such that s ⊆ A, or there is some s ⊆ A such that for all s∗ ⊇ s, s∗ /∈ S.

Lemma 21.4 (Forcing = truth). Suppose A is n-generic. Then for every Σ0
n or Π0

n formula ψ(X),
ψ(A) is true iff there is some s ⊆ A such that s ⊩ ψ(G).

Proof. By induction. We have already shown that this is true n = 1. Suppose that A is k+1-generic
and ψ(X) = ∃xR(x,X) is a Σ0

k+1 formula. Then ψ(A) is true iff there is some n such that R(n,A)
is true which is true iff there is some n and some s ⊆ A such that s ⊩ R(n,G) (since A is k-generic)
iff there is some s ⊆ A such that s ⊩ ∃xR(x,G) (by definition).

Suppose now that ψ(X) = ∀xR(x,X) is a Π0
k+1 formula. Now ¬R(x,X) is a Π0

k relation. Hence,
{s : s ⊩ ∃x¬R(x,G)} is Σ0

k+1. Thus, either

1. there exists s ⊆ A such that s ⊩ ∃x¬R(x,G), or

2. there exists s ⊆ A so that no s∗ ⊇ s has s∗ ⊩ ∃x¬R(x,G).

(1) and (2) are mutually exclusive, and (1) is true iff ψ(A) is false by the above. So ψ(A) is true iff
(2) is true iff s ⊩ ¬∃x¬R(x,G).

Exercise 21.5. Suppose A ⊆ 2N. The following are equivalent.

1. A is k-generic.

2. For every Σn sentence φ(G) with one free variable X, there is some s ⊆ A such that s ⊩ φ(G)
or s ⊩ ¬φ(G).

Exercise 21.6. For each n, there are A,B ∈ 2N such that A(n) ≱T B and B(n) ≱T A.

Exercise 21.7. If A is n-generic, then A(n) ≡T A⊕ ∅(n).

Exercise 21.8. For each n, if B ≥T ∅n then there is some A such that A(n) ≡T B.
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22 A minimal Turing degree

Our goal in this section is to prove Spector’s theorem that there is a minimal Turing degree.
We will prove this theorem using a forcing construction, however, we will not approximate A

using finite initial segments. Instead, our approximations to A will be computable perfect trees. (In
set theory, forcing using perfect trees is called Sacks forcing and forcing with finite binary sequences
is called Cohen forcing).

Definition 22.1. Suppose e ∈ N and T ⊆ 2<ω is a computable perfect tree. Let {ts}s∈2<N be the
set of splitting nodes in T as in Lemma 19.14. Say that T is e-splitting if for all s ∈ 2N, there exists

some k so that both φ
t
s⌢0
e (k) and φ

t
s⌢1
e (k) halt and φ

t
s⌢0
e (k) ̸= φ

t
s⌢1
e (k).

For example, if φe is a program which just outputs its oracle, so φs
e(n) = s(n) and so Φe(A) = A

for all A ∈ 2N, then every computable perfect tree T is e-splitting. For all s, if ts has length k, then

φ
t
s⌢0
e (k) ̸= φ

t
s⌢1
e (k). If φe′ is a program which ignores its oracle and always just computes a fixed

computable function, then no computable perfect tree is e′-splitting.
The key property of an e-splitting tree is the following lemma:

Lemma 22.2. Suppose T is a computable perfect e-splitting tree, A ∈ [T ], and A ≥T B via e, so
Φe(A) = B. Then B ≥T A.

Proof. Suppose A ∈ [T ] and Φe(A) = B. We will give an algorithm for computing A from B.
We will recursively define a sequence (sn)n∈N where sn+1 ⊇ sn for all n so that A =

⋃
n tsn . Let

s0 = ∅. Suppose we have already determined tsn , and we would like to compute tsn+1
. Since T is

computable, we can compute tsn⌢0 and tsn⌢1. We need to compute which of these two strings A
extends.

Since T is e-splitting, we know there must be some k such that φ
t
sn

⌢0
e (k) ̸= φ

t
sn

⌢1
e (k). By

searching through all possible k and running times, we can eventually find such a k. Now since
Φe(A) = B, we can check the kth bit of B to determine whether A extends tsn⌢0 or A extends
tsn⌢1.

Now we define an opposite type of notion:

Definition 22.3. Say that a computable perfect tree T is e-trivial if there is no two branches
s, t ∈ T and k such that φs

e(k) and φ
t
e(k) both halt and φs

e(k) ̸= φt
e(k).

We have a corresponding lemma for e-trivial trees.

Lemma 22.4. Suppose T is a computable perfect e-trivial tree, A ∈ [T ], and A ≥T B via e, so
Φe(A) = B. Then B is computable.

Proof. We claim that we can compute B as follows. To compute B(k), search for some t ∈ T such
that φt

e(k) halts. We can do this search computably since T is computable, and it must eventually
terminate since some initial segment of s ⊆ A makes φs

e(k) halt, and we have s ∈ T . Finally, the
answer we get from φt

e(k) must be B(k). This is because φt
e(k) = φs

e(k) since otherwise we would
contradict T being e-trivial.

Finally, we have the following lemma:

Lemma 22.5. For all computable perfect trees T and all e, there is a subtree T ′ ⊆ T such that
either T ′ is e-splitting, or T ′ is e-trivial.

Proof. Case 1: Suppose that for every t ∈ T , there exists k and t′, t′′ ⊇ t such that φt′

e (k)↓≠ φt′′

e (k)↓.
Then we claim that we can find an e-splitting subtree T ′ ⊆ T . We will define the computable T ′ ⊆ T
by defining a sequence (ts)s∈2<N so that s ⊆ s∗ implies ts ⊆ ts∗ and for every s, ts⌢0 and ts⌢1 are
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incomparable as usual (so T ′ = {t : (∃s)t ⊆ ts}). Let t∅ = ∅. Given ts, define ts⌢0 and ts⌢1 as
follows: search for k and two extensions t′, t′′ ⊇ t such that φt′

e (k) ↓̸= φt′′

e (k) ↓. This search must
eventually terminate by our assumption of Case 1. Then let ts⌢0 = t′ and ts⌢1 = t′′.

Case 2: There is some t ∈ T such that for all k and t′, t′′ ⊇ t, if φt′

e (k) and φt′′

e (k) halt, then
φt′

e (k) = φt′′

e (k). Then let T ′ = {s ∈ T : s ⊆ t ∨ s ⊇ t}. Clearly T ′ is computable since T is.

Definition 22.6. If T is a perfect tree, say t is the trunk of T is the splitting node in T of minimal
length. That is

Theorem 22.7 (Spector, 1956). There is an incomputable A ∈ 2N so that if A ≥T B, then either
B ≡T ∅ or B ≡T A.

Proof. We can construct a decreasing sequence (Tn)n∈N of computable perfect trees where Tn ⊇ Tn+1

for every n so that:

1. For all e, there is some n such that Tn is e-splitting or e-trivial

2. The lengths of the trunks of the Tn goes to infinity

3. For all computable B ∈ 2N there is some n such that B ̸= [Tn].

The reason we can construct such a sequence (Tn)n∈N is that each of these properties is “dense”.
(1) can be achieved using Lemma 22.5. We can achieve (2) since for every computable perfect tree
T , choose any t ∈ T such that |t| ≥ n, then T ′ = {s ∈ T : s ⊆ t ∨ s ⊇ t} is also a computable
perfect tree, and has a trunk of length ≥ n. We can achieve (3) since for every computable perfect
tree T , and every computable B ∈ 2N we can find some t ∈ T that is incompatible with B. Then
T ′ = {s ∈ T : s ⊆ t ∨ s ⊇ t} does not contain B.

Given such a sequence (Tn)n∈N, let tn ∈ 2<N be the trunk of Tn for each n. Note that tn ⊆ tn+1

for every n. Now if m ≥ n, then tm ∈ Tm ⊆ Tn so tm ∈ Tn for every m ≥ n, and so A =
⋃

n tn is
in Tn for every n. Note that A is the unique path that is in all these trees; if A′ ̸= A, then A′ is
incompatible with tn for some n, and hence A′ ̸= Tn.

We claim that A has a minimal Turing degree. Suppose A ≥T B via the eth program, so
Φe(A) = B. Then there is some n such that Tn is either e-splitting, or e-trivial. Since A ∈ Tn, we
therefore have that either B ≥T A by Lemma 22.2, or B is computable by Lemma 22.4.

Note that we cannot make a minimal Turing degree using Cohen forcing.

Exercise 22.8. If A ∈ 2N is 1-generic, then A does not have minimal Turing degree. [Hint: show
that if B ∈ 2N is the even bits of A, so B(n) = A(2n) for every n, then B is incomputable, but
B ≱T A].
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23 Diagonal incomputability

23.1 DNC functions

Our original proof that that halting problem is incomputable made a function f : N → N with the
property that for every n, f(n) ̸= φn(n), if φn(n) is define. Functions with this property are called
diagonally noncomputable. We investigate these types of functions in this section. Does all
incomputability come from this type of diagonally incomputability?

Theorem 23.1. There is an incomputable A ∈ 2N such that A cannot compute any DNC function.

Proof. This is an easy construction by finite initial segments. We claim that for each e ∈ N, the set
of s∗ ∈ 2N such that there exists an n such that s∗ ⊩ φG

e (n)↑ or s∗ ⊩ φG
e (n) = φn(n) is dense.

Suppose that s ∈ 2N. We may assume that there for every n there exists some s∗ ⊇ s such that
φs∗

e (n)↓, since otherwise we can extend s to some s∗ that forces s∗ ⊩ φG
e (n)↑. Then we claim there

is some n and s∗ ⊇ s such that s∗ ⊩ φG
e (n) = φn(n). If this was not the case, then there would be

a computable DNC function f : to compute f(n), search for some extension s∗ ⊇ s such that φs∗

e (n)
halts, and let f(n) be the value of φs∗

e (n) for the first such s∗ that we find. This contradicts the fact
that there is no computable DNC function!

23.2 DNCk functions and trees

A function f : N → N is DNCk, if ran(f) ⊆ {0, . . . , k − 1}.
As we will see, DNCk functions are closely connected with computable trees. In this section we’ll

prove a few more basic facts about computable trees, and establish some of these connections.

Lemma 23.2 (König’s lemma). T ⊆ 2N has an infinite path iff T is infinite.

Proof. If A ∈ T , then the strings A ↾ n are in T for ever n.
Conversely, suppose T is an infinite tree. We will construct an increasing sequence (sn)n∈N of

strings so that for every n, sn has infinitely many extensions in T . Then A =
⋃

n sn will be in [T ].
Let s0 = ∅. Inductively, given sn, since there are infinitely many extensions of sn, by the

pigeonhole principle, there are infinitely many extensions of sn
⌢0 or sn

⌢1. Let sn+1 be one of these
two strings having infinitely many extensions.

We have the following corollary of our proof of König’s lemma:

Lemma 23.3. If T is an infinite computable tree, ∅′ can compute a path in [T ].

Proof. ∅′ can compute a sequence (sn)n∈N as in Lemma 23.2, since given any s ∈ T , there is a
program that searches the tree about s, and halts if s only has finitely many extensions (if there is
some length n > |s| so that there are no extensions of s in T of length n).

Lemma 23.4. If T is a co-r.e. tree, there is a computable tree T ′ so that [T ] = [T ′].

Proof. Define T ′ as follow. To compute whether s ∈ T ′, for each n ≤ |s|, run the enumeration of the
complement of T for n steps and see if s ↾ n is enumerated into the complement of T , if so s /∈ T ′.
Otherwise, s ∈ T ′.

Now T ′ ⊇ T , so [T ′] ⊇ [T ]. We also have [T ′] ⊆ [T ]. Since if A /∈ [T ], then there is some initial
segment t ⊆ A so that t /∈ T . But then if s is enumerated into the complement of T in n steps, then
the initial segment of length sup(|s|, n) is not in T ′.

Theorem 23.5. There is a computable tree T so that [T ] is exactly the DNC2 functions.
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Proof. Let T = {s : ∀n < |s|s(n) ̸= φn(n)}. Then T is clearly a co-r.e. tree, and its paths are
exactly the DNC2 functions. There is a computable tree with the same set of infinite paths by
Lemma 23.4.

Exercise 23.6. Suppose T is a computable tree, and [T ] contains exactly one infinite path A. Then
show that A is computable.

We now have the following alternative characterizations of DNC2 functions.

Theorem 23.7. Suppose A ∈ 2N. The following are equivalent:

1. A ∈ 2N can compute a complete consistent extension of PA.

2. For every computable infinite tree T ⊆ 2N, A can compute a path in [T ].

3. A can compute a DNC2 function.

Proof. (1) ⇒ (2): Given a infinite computable tree T , we can compute an increasing sequence
(sn)n∈N of elements of T as follows. Construct a program that searches both extensions of sn

⌢0 and
s⌢1, and halts if there is some m > n so that there are no extensions of sn

⌢0 of length m, but there
is an extension of s⌢1 of length m. The question of whether this program halts can be transformed
into a Σ1 sentence in the language of arithmetic.

If the set of extensions of sn
⌢0 is finite, then PA proves that it halts. Taking the contrapositive,

then if this sentence is false in the extension of PA, then sn
⌢0 must be infinite, and so let sn+1 = sn

⌢0.
Otherwise, it the the sentence is true, then let sn+1 = sn

⌢1.
(2) ⇒ (3): by Theorem 23.5.
(3) ⇒ (1): Suppose A can compute a DNC2 function f . We can compute a complete extension

of PA as follows. Suppose we have already computed that the sentences ψ0, ψ1, . . . , ψn are in the
theory. Given another sentence ψ, we need to compute whether to add θ or ¬θ to the theory. Now
construct a program e which searches for a contradiction from PA + {ψ0, ψ1, . . . , ψn} + θ, and if it
finds one outputs 0, and also searches for a contradiction from PA+ {ψ0, ψ1, . . . , ψn}+¬θ, and if it
finds one outputs 1. If f(e) = 0, then this program doesn’t halt outputting 0, and so we can put θ
into our theory. Otherwise if f(e) = 1, then this program doesn’t halt outputting 1 and so we can
put ¬θ into our theory.

Theorem 23.8. If A ∈ 2N can compute a DNCk function, then it can compute a DNC2 function.

Proof. It suffices to show that if A can compute a DNCk2 function f , then A can compute a DNCk

function. Suppose A computes a DNCk2 function f . Let ⟨·, ·⟩ : N2 → N be a computable bijection
which maps {0, . . . , k − 1} × {0, . . . , k − 1} to {0, . . . , k2 − 1}. Now for each programs a and b, we
can compute a program c so that φc(c) = ⟨φa(a), φb(b)⟩. So let f1(a, b) and f2(a, b) be functions so
that f(c) = ⟨f1(a, b), f2(a, b)⟩. So f1, f2 : N2 → N are both computable functions, and for every a
and b, either

f1(a, b) ̸= φa(a) or f2(a, b) ̸= φb(b).

Case 1: For every a, there exists a b with f2(a, b) = φb(b). Then we can compute a DNCk

function f as follows. Given any a, we can search for and find such a b. Then set g(a) = f1(a, b).
Case 2: There is an a so that for all b, f2(a, b) ̸= φb(b). Then fix such an a, and set g(b) = f2(a, b)

for all b.

It turns out that we have to break up into cases like this, and we won’t be able to computably
tell which case we are in. Even though from a DNCk function we can compute a DNC2 function,
there is not a single algorithm that takes a DNCk function as input and from it computes a DNC2

function. That is, there is no uniform way of computing a DNC2 function from a DNCk function.

Exercise 23.9. There is no program e so that for all DNC3 functions f , is such that φf
e is a DNC2

function.
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24 The structure of the c.e. sets

Post in a famous 1943 address proposed the problem of studying the structure of the Turing degrees
of the c.e. sets. At the time, only two such Turing degrees were known: that of ∅, and ∅′. The
problem of whether there were any others became known as Post’s problem. The problem was
independently solved by Friedberg and Muchnik in the 1950s, using a technique that is now called
a priority argument.

24.1 Post’s problem and the Friedberg-Muchnik theorem

Theorem 24.1 (Friedberg-Muchnik). There are c.e. sets A,B ⊆ N such that A ≱T B and B ≱T A.

Proof. We describe ways of enumerating such c.e. sets A and B.
We define the requirements

Re : Φe(A) ̸= B

and
Qe : Φe(B) ̸= A.

If we satisfy all of these requirements for our c.e. sets A and B, then we will be finished. At times
during our construction, there will be conflicts between actions that Re and Qe would like to take,
so we order our requirements by priority. R0 has highest priority, followed by Q0, R1, Q1, . . ..

We will have a strategy for satisfying each requirement. At each point in time a strategy may
restrain finitely bits of A or B so that they may not be enumerated. Strategies may also request
that a bit of A or B be enumerated. If a higher priority strategy requests a bit be enumerated that
a lower priority strategy has restrained, then the lower priority strategy will be injured, and this
bit will be enumerated, and the lower priority strategy will be restarted.

Our strategy for satisfying Re is as follows. When we first start this strategy, we pick some
witness n ∈ B that has not yet been restrained, and then restrain it. At the sth step of the
construction, this strategy computes φAs

e (n) for s steps. If we see this halt and output 0, then we
say the strategy requires attention. If the strategy is allowed to act, then we enumerate n into B,
and restrain all the bits of A used in this computation so that they may no longer be enumerated.
(Hence, if this strategy is never injured from this point on, the computation φAr

e (n) remains the
same at all stages r > s). We then restart all strategies of lower priority that were using bits of A
that we have restrained as witnesses, or have restrained the bit of B that we enumerated.

Our strategy for satisfying Qe is identical, with the role of A and B switched.
At step s, we run the strategies Re, Qe for e ≤ s. We pick the highest priority strategy that

requires attention, and allow it to act.
We claim that all the requirements only act finitely many times, and are eventually satisfied. We

prove this by induction. Suppose that s is large enough so that all strategies of higher priority than
Re act before stage s. Then if the strategy for Re ever sees φAs

e (n) halt at some stage and equal 0,
then the strategy will restrain the bits of A used in this computation, and enumerate the nth bit
of B, so Φe(A) ̸= B. From this point on the strategy will never be injured, since no higher priority
strategies will ever injure it. Otherwise, n will never be enumerated, but we never see φAs

e (n) halt
and equal 0. So Φe(A) ̸= B. In either case, the strategy for Re will act at most once after stage s,
and the requirement will be satisfied.

Exercise 24.2. Show there is an incomputable c.e. set A so that A′ = ∅′

24.2 The theory of the c.e. degrees*

After Friedberg and Muchnik proved Theorem 24.1, priority arguments opened the door to deeply
understanding the structure of the c.e. Turing degrees. Soon, much more complicated priority
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arguments were found in which some of the strategies would be injured infinitely many times (but
they way in which this happens means the corresponding requirements will still be satisfied at the
end of the construction). An early theorem proved using these types of infinite injury priority
arguments was the following theorem of Sacks:

Theorem 24.3 (Sack’s density theorem, 1964). Suppose A <T B are c.e. sets. Then there is a c.e.
set C so that A <T C <T B.

After Sacks’s density theorem, Shoenfield conjectured that the r.e. Turing degrees under ≤T were
a dense upper semi-lattice analogously to how the rationals are a dense linear ordered. Shoenfield’s
conjecture was quickly proved to be false by the following result of Lachlan and Yates that there is
a minimal pair in the c.e. degrees.

Theorem 24.4 (Lachlan-Yates, 1966). There are incomputable c.e. sets A and B such that if
C ≤T A and C ≤T B, then A is computable.

However, not only is Shoenfield’s conjecture is false. It is in some sense as false as possible.
Shoenfield’s conjecture would imply that the that set of formulas in the language {≤T } that are
true about the c.e. Turing degrees would be computable (just as the theory of dense linear orders
has quantifier elimination and is computable). But in fact, the theory of the c.e. degrees is as
complicated as possible. Let R denote the Turing degrees of all c.e. sets.

Theorem 24.5 (Harrington-Shelah 1982). The first order theory of (R,≤T ) is incomputable.

Indeed, not only is the theory incomputable, it is as incomputable as possible. Each statement
about (R,≤T ) can be computably transformed into a sentence about the structure (N; 0, 1,+, ·, <).
This gives an obvious upper bound to how complicated the theory of the r.e. degrees can be. This
upper bound is the best possible:

Theorem 24.6 (Harrington-Slaman and Slaman-Woodin). Th(R,≤T ) is computably isomorphic to
Th(N; 0, 1,+, ·, <).

In more computably-theoretic terms, these theories are computably isomorphic to ∅ω =
⊕

n ∅(n).
The type of phenomenon seen in Theorem 24.6 has become a common theme in computability

theory. The structures studied in computability theory often end up being as complicated as possible.
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25 Complexity theory*

25.1 TIME(f), P, and the time hierarchy theorem*

Computational complexity theory studies how efficiently computable sets can be computed. The
sets considered are typically subsets of 2<N instead of N, since binary strings is the format in which
most models of computer more naturally work. A subset of 2<N is called a decision problem or
language in complexity theory (an unfortunately conflicting terminology with languages in model
theory).

Definition 25.1. If f : N → N is a function, a language A ⊆ 2<N is computable in O(f)-time, if
there is some Turing machine program so that for all strings s ∈ 2<N, when this machine is run with
s as input, it halts in O(f(|s|)) steps and then halts outputting whether s ∈ A. TIME(f) is set of
all languages computable in O(f) time.

For every f : N → N, TIME(f) is a countable set of languages, and the union of TIME(f) over
all f is equal to the set of all computable languages. (Which is also equal to the union of TIME(f)
over all computable f).

A very important complexity class is P: the class of problems which can be solved in polynomial
time.

Definition 25.2. P =
⋃

k∈N TIME(nk).

One reason that the class P is nice is that it has many desirable closure properties. For example,
since the polynomials are closed under multiplication and composition, polynomial-time algorithms
that use polynomial-time computable subroutines are also polynomial time computable. If a lan-
guage A is polynomial time computable, then any language B computable in polynomial time using
the oracle A is also in P.

Some examples of interesting problems in P are deciding whether a number is prime (by the AKS
theorem), linear programming (by a theorem of Khachiyan in 1979), and whether a graph has an
Euler cycle.

Polynomial-time computability is regarded as containing the class of problem that can be effi-
ciently solved in the real world. One reason for this is that there are many commonly used n2-time
and n3-time algorithms that are often used in the real world, and making a good theory of efficient
computations requires us to have closure under the types of multiplication and composition described
above. Another reason that poly-time computability is natural is that different models of computer
(the Turing machine model, Turing machines with several tapes or 2-dimensional tapes, random
access machines, etc.) may take different amounts of time to compute some given computable lan-
guage. However, all natural models of computer can simulate each other in polynomial time, so
the model of computation that we use does not matter if we just care about whether a problem is
poly-time computable. The idea that all natural models of computation that can be made in the real
world can be simulated in polynomial time on a Turing machine is sometimes called the extended
Church-Turing thesis. Compelling evidence for it is that a Turing machine can be modeled inside
classical physics, and likewise classical physics can be simulated in polynomial time on a Turing
machine.8

The time hierarchy theorem adapts the proof of the undecidability of the halting problem to
show that as f grows, the class TIME(f(n)) also grows. Here we need a technical assumption that f
is time constructible. A function f : N → N is time constructible if f(n) ≥ n for all n, and there
is a Turing machine that computes f(n) when given a string of n ones in time f(n).

Theorem 25.3. Suppose f : N → N is time constructible. Then TIME(f) ⊊ TIME(f(n)2).

8Quantum computers, however, are believed to be able to not be able to be simulated on classical computers,
though this is an open.
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Proof. Consider the language A = {s : s codes a Turing machine program M and an integer k so
that the program M halts in at most kf(|s|) steps}. Assuming that f is time constructible, and
there is a universal Turing machine that runs in quadratic time, it is easy to see A is computable in
O(f(n)2) time.

The language A is not computable in O(f(n)) time by the usual diagonalization argument.
Suppose there was a program than ran in O(f(n)) time that computed A. Then using the recursion
theorem (which can be implemented in n2 time assuming there is a universal Turing machine that
runs in n2 time), make a Turing machine that runs this program to determine whether it will hall,
and then do the opposite.

So for example, if EXPTIME =
⋃

k TIME(2n
k

), then P ⊊ EXPTIME since TIME(p) ⊆ TIME(2n)
for every polynomial p, since 2n is time constructible and grows faster than any polynomial, and
TIME(2n) ⊊ TIME(2n

2

).

25.2 NTIME(f), NP, and the Cook-Levin theorem*

Definition 25.4. A language A ⊆ 2<N is in NTIME(f) if there is a f -time computable set B ⊆
2<N × 2<N and a function g ∈ O(f) so that

s ∈ A↔ (∃t)[|t| ≤ g(|s|) ∧ (s, t) ∈ B]

The string t is often called a witness or certificate that s ∈ A.

Definition 25.5. NP =
⋃

k∈N NTIME(nk)

Some example of problems in NP include deciding whether a graph is 3-colorable, or deciding
whether a boolean formula has a satisfying assignment. We can easily check whether a purported col-
oring or satisfying assignment really is one in polynomial time, and the 3-colorable graphs/satisfiable
formulas are those having such a coloring/satisfying assignment.

If we think of P as being analogous to all computable sets, then NP is analogous to all c.e.
sets. Indeed, one can similarly make a version of the arithmetical hierarchy called the polynomial
hierarchy, where computability is replaced with poly-time computability. For example, a language
A is ΣP

2 if there is a language B in P and a polynomial p such that

s ∈ A↔ (∃t1, |t1| ≤ p(|s|))(∀t2, |t2| ≤ p(|s|))[(s, t1, t2) ∈ B]

Just as we compare the relative computability of problems in computability theory by Tur-
ing reducibility, we can compare the relative complexity of problems in complexity theory by
polynomial-time computable many-one reducibility noted≤P

m (sometimes called Karp reductions), or
polynomial-time Turing reducibility noted ≤P

T (sometimes called Cook reductions). So for example,
A ≤P

T B if there is an algorithm which computes A in polynomial time using B as an oracle.
Just as we know of many complete c.e. sets, Cook and Levin showed in the early 1970s that many

natural problems are NP complete under ≤P
m. That is, any problem in NP is poly-time many-one

reducible to them. For example, boolean formula satisfiability is NP complete. To see this, given
any language A in NP, we show we can map each s ∈ 2<N to a formula which is satisfiable iff s ∈ A.
This formula will contain variables that describe each of the bits of a certificate t, variables giving
the state of a Turing machine at each point in time, and variables for the symbol written on each cell
of the Turing machine at time. The natural formula stating that the rules of the Turing machine are
follows and halts accepting its input is poly-time computable. This formula is satisfiable iff s ∈ A.
Graph 3-coloring can be shown to be NP complete by reducing boolean satisfiability to it.

Some of the very basic facts about computability theory and complexity theory mirror each other
via the analogy described above between computable and polynomial-time computable. However,
this analogy quickly stops being helpful. The question analogous to whether there is an incomputable
c.e. set is open:
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Open Problem 25.6. Is P = NP?

One might hope now to copy the same proof that the halting problem is incomputable. However,
the language containing the pairs (M,p) where M is a Turing machine program that halts in time
p(|M |) is not naturally in NP; it is in EXPTIME (and is essentially how we separate P and EXPTIME
using the time hierarchy theorem). More generally, the theory of NP has many provable difference
from the theory of the Σ1 sets. For example, it is easy to show there is not a universal language in
NP under polynomial-time reducibility. This follows from a version of the TIME hierarchy theorem
for NTIME.

Exercise 25.7. Suppose c, d are integers and c > d. Then show NTIME(nc) ⊊ NTIME(nd).

It is widely believed that P ̸= NP. There are thousands of known NP complete problems that
have been studied in many forms in many different fields of mathematics for thousands of years.
In not a single case has there been any real better algorithm found for solving them in general
than going through every possible certificate t, and checking whether it is valid. In contrast, most
other problems in these fields which are not known to be NP complete like primality checking, linear
programming, graph isomorphism, etc., it is very often the case that we have often found deep
mathematical structures hidden in them that make solving them much easier, even if they are not
known to be in P (e.g. it is still open whether graph isomorphism is in P).

The P vs NP question is one of the most important open problems in mathematics. Is there
hidden structure in the thousands of NP complete problems that we find in math that we can use
to understand and quickly solve all of them? Because the problem of whether we can efficiently
understand and compute solutions to problems in mathematics is a vital part of almost every field,
it touches on almost all of modern mathematics.

25.3 The relativization barrier*

There are theorems explaining why the P vs NP problems is quite hard, and cannot be solved using
simple diagonalization tricks like those used to separate the computable and c.e. sets is the following
theorem:

Theorem 25.8 (Gill, Baker, and Solovay, 1970s). There is an oracle A ⊆ 2<N so that PA ̸= NPA.
There is also an oracle B ⊆ 2<N so that PB = NPB.

Proof sketch. A language that is always in NPA is the set of strings s so that the oracle A contains
a string of length |s|. The certificate t is just the string of the same length as s that is in the oracle
A (which can be verified by one query to A). However, we can easily construct an oracle A so that
this problem is not poly-time computable relative to A. Any polynomial-time algorithm can only
check a polynomial-time number of strings of length |s| to see if they are in A, before it makes its
decision. We define A so that all the strings that it checks of this length are not in A. Once it halts,
we can then put a string of this length into A that it has not checked to diagonalize if it says there
is a string of this length, and otherwise leave out all strings in A of this length.

The construction of an oracle B so that PB = NPB is similarly easy. We code the answers to prob-
lems in NPB into strings of larger polynomial length so that they are polynomial-time computable
relative to B.

Thus, any proof technique that relativizes cannot solve the P vs NP question. This basically
rules out all the ideas and techniques from computability theory. Indeed, modern complexity theory
has very little to do with modern computability theory, though these two fields have the same ori-
gins. Computability theorists and complexity theorists don’t publish in the same journals, attend
the same conferences, or talk to each other very often. Modern combinatorics, algebraic geometric,
number theory, functional analysis, etc. are more closely connected to complexity theory than logic
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or computability. These fields all contain problem whose computational complexity is of huge impor-
tance. Likewise, mathematical progress on them on them leads to breakthroughs in computational
complexity theory. For example, the theory of expander graphs in combinatorics has become hugely
important in theoretical computer science and is connected to derandomization, probabilistically
checkable proofs, etc.
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26 Computing with real numbers*

The study of computability on the real numbers goes back to Turing, who used real numbers instead
of infinite binary sequences in his famous 1936 paper.

26.1 Representations of real numbers and functions on the reals*

A little bit of care needs to be taken in how we represent real numbers in an appropriate way for
doing computability theory. For example, suppose we want a function f : 2N → R which maps
infinite binary sequences to real numbers that they represent. Any reasonable such function must
be continuous: once we know a large finite amount of information about an infinite binary sequence
representing a real number, we should be able to determine this real number within some small
ϵ. However, this implies that f cannot be total and injective. The space 2N is compact, and any
injective continuous function from a compact space to a Hausdorff space is a homeomorphism onto
its image. However, 2N is zero dimensional it has a basis of clopen sets. Hence, 2N cannot be
homeomorphic to R, or any intervals (a, b) or [a, b], since there is not a basis of clopen sets for these
spaces; clopen sets in these spaces are trivial. Thus, we cannot have an injective way of representing
real numbers.

We are used to such duplicate representations of real numbers: for example, in decimal, the
number 1 has two representations: 1, and 0.9999 . . .. However, decimal representations (or more
generally representations in any base) are a poor choice of representation for computability theory:

Proposition 26.1. There is no computer program which takes as input two programs for computing
decimal representation of reals numbers, and outputs a program computing a decimal representation
of their sum.

Proof. Suppose we had such a program φn(a, b). Now we construct two programs for computing
real numbers that this procedure does not correctly add. Our first program computes 0.50000 . . .,
and keeps appending 0s until we decide otherwise. Our second number begins 0.49999 . . . and keeps
appending more 9s to this number until we decide otherwise. By the recursion theorem, we may
watch the computation of the sum of these two numbers. If their sum begins 1.something, then we
keep making our first number equal to 0.5, but we make our second number less than 1/2 by making
all further digits zeroes: 0.49999 . . . 0000 . . ., so this program computes their sum incorrectly. If the
program outputs that the sum is 0.something, then we make our first number greater than 0.5, and
our second number equal to 1/2 by having the remaining digits be 9s forever: making the decimal
representation 0.49999 . . ., so this program also computes their sum incorrectly. If the program
computing their sum never outputs the first decimal digit, then it also not a correct computation of
their sum.

Essentially the problem is in decimal, we are forced to declare whether any number is ≥ 1 or ≤ 1
(or more generally, ≥ m

10n or ≤ n
10n for any integers m and n > 0. Instead, we’ll take the following

approach:

Definition 26.2. A representation of a real number x is a sequence of rational numbers
(an)n∈N so the x = limn an and so |x− an| ≤ 1

n for all n. A real number x is computable if it has
a computable representation.

The bound 1
n is not really important here; we could replace it with any computable sequence

(yn) of positive real numbers so that limn yn = 0. There are other reasonable ways of representing
real numbers. For instance, a representation could be a sequence [bn, cn] of closed intervals whose
lengths go to 0, which represent x = lim bn = lim cn. Or, we could use functions λ : Q+ → Q, which
represent the real number x where |x − λ(ϵ)| < ϵ for each rational ϵ > 0. Each of these types of
representations can be computably turned into each of the other types. They key point is that in
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an representation of a real number, we want to be able to obtain each rational ϵ, an approximation
of the number x within epsilon.

Suppose a number x is the limit of a computable sequence of rational numbers x = limn an (but
with no bound on how far an is from x). Then it is not necessarily the case that x is computable.

Definition 26.3. A real number x is left-computably enumerable if there is a computable
increasing sequence of rational numbers (bn)n∈N so that x = limn bn. x is right-computably
enumerable if there is a computable decreasing sequence of rational numbers (cn)n∈N so that
x = limn cn.

Proposition 26.4. There is a left-c.e. real number that is not computable.

Proof. Let A be any c.e. set that is not computable. Then let x be the number
∑

n∈A
1
2n , whose

nth binary digit encodes the nth bit of A. If (As)s∈N is a computable enumeration of A, then the
sequence of rational numbers (as)s∈N where as =

∑
n∈As

1
2n are computable, and limn an = x, so

x is left-c.e. However, if we were able to compute x up to an error of 1
2n+1 , we would be able to

compute the first n bits of A. (Note that A is not eventually 0 or eventually 1). Hence, x is not
computable.

Proposition 26.5. If a real number x is left-c.e. and right-c.e., then x is computable.

Proof. Let (bn)n∈N be a computable increasing sequence of rationals so that limn bn = x, and
let (cn)n∈N be a computable decreasing sequence of rational numbers so that limn cn = x. Then
x ∈ [bn, cn] for each x. So To obtain some am so that |x− am| ≤ 1

m , compute bn and cn until we
find some large enough n so that |bn − cn| ≤ 1

m . Then let am = bn.

Exercise 26.6. If x is computable, then it is left-c.e. and right-c.e.

We note that it is incomputable to determine whether a computable real number is ≥ 0. This is
related to un-suitableness of the representation of number by its decimal expansion:

Proposition 26.7. There is a computable function f : N → N which maps each n to a program
computing a representation of a real number so that φn(n)↓ if and only if the real number computed
by f(n) is ≥ 0.

Proof. The Cauchy sequence computed by f(n) is

ak =

{
0 if φn(n) does not halt in ≤ k

− 1
s if φn(n) halts in s ≤ k steps

.

Now we have the following definition of a computable function on R.

Definition 26.8. A function f : Rk → R is computable if there is a computable function φe

which given representations of real numbers x1, . . . , xk as oracles, computes a representation of
f(x1, . . . , xk).

Note that the function φe must correctly compute f(x1, . . . , xk) given any representations of
x1, . . . , xk.

For example, the step function f(x) =

{
1 if x ≥ 0

0 if x < 0
is not computable because of Proposi-

tion 26.7. We cannot compute whether a representation of a real number represents a number ≥ 0.
Indeed, every computable function must be continuous.
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Proposition 26.9. If f is computable function from Rk → R, then f is continuous.

Proof. For notational convenience, we’ll prove the theorem for k = 1. The proof for k > 1 is
identical.

We need to show that for ever x, for every ϵ > 0, there exists a δ > 0 so that |x0−x| < δ implies
|f(x) − f(x0)| < ϵ. Take any representation (an)n∈N of x so that |an − x| ≤ 1

2n for each n. For
any ϵ > 0, the function computing f must compute finitely many elements of a representation of
f(x) which specify its value within ϵ/2 using only finitely many elements of the sequence (an)n∈N.
Let k be the largest element of the sequence (an)n∈N that the computation uses. Then any x0 with
|x0 −x| ≤ 1

2k has a representation which begins a0, . . . , ak, hence such a representation of x0 will be
mapped to a representation of a real number within ϵ of f(x).

Theorem 26.10. There is a computable function f : N → N which maps each n to a program
computing a representation of a real number so that φn(n)↓ if and only if the real number computed
by f(n) is ≥ 0.

Exercise 26.11. Show that addition, multiplication, subtraction, and the exponential function, are
all computable.

Theorem 26.12 (Kleene). If f : Rk → R is continuous, there is an oracle A ∈ 2N , so that f is
computable relative to A.

Proof. The oracle A should record for each rational interval [a, b], representations of the endpoints
c, d of the closed interval [c, d] = f([a, b]).

Kleene’s theorem suggests a way of studying analysis and functions on the real numbers: stratify
them by how complicated they are to compute, and try to prove theorems about them by leveraging
these types of computable representations. We will see some examples of theorems proved by a fine
grained analysis of this type in later sections.

26.2 The incomputability of the derivative*

Recall that the sup norm ∥f∥∞ of a function f is ∥f∥∞ = supx∈R |f(x)|.
We begin with an easy lemma:

Lemma 26.13. Suppose (fn)n∈N is a uniformly computable sequence of continuous functions, and
∥fn∥∞ ≤ 1

2n for all n. Then
∑

n fn is computable.

Proof. To compute
∑

n fn(x) within
1
2k

compute each of f0(x), . . . , fk+1(x) within
1

(k+2)2k+1 . Then

since
∥∥∑

n>k fn(x)
∥∥ ≤ 1

2k+1 this approximation of f0(x)+. . .+fk+1(x) is within
1
2k

of f0(x), . . . , fn(x).

Note that in this lemma we could replace the series 1
2n with any summable series whose partial

sums are uniformly computable.

Theorem 26.14 (Myhill). There is a differentiable computable function whose derivative is contin-
uous but not computable.

Proof. Let fn,s : R → R be the piecewise linear function:

fn,ϵ(1/n) =


0 if x ≤ 1

n − ϵ
1
n−x

ϵ + 1 if 1
n − ϵ < x ≤ 1

n
x− 1

n

ϵ + 1 if 1
n < x ≤ 1

n + ϵ

0 if x > 1
n − ϵ
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which is a triangle with height 1 and width 2ϵ reaching its maximum at the point 1
n , so if Fn,ϵ(x) =∫ x

0
fn,ϵ(t) dt, then ∥Fn,ϵ∥ = ϵ.
Let A be an incomputable c.e. set, and

f =
∑

{(n,s):n∈As\As−1}

1

n
fn,1/2s

Now f is a continuous function, and if we could compute f from some oracle B, we could also
compute A from B by determining whether f(1/n) is equal to 0 or 1/n.

However, the antiderivative F (x) =
∫ x

0
f(t) dt of f is computable since the functions Fn,1/2s are

uniformly computable, and their norms satisfy the hypotheses of Lemma 26.13. (Identifying this
sequence indexed by N2 with a sequence indexed by N using a computable bijection between N2 and
N).
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27 Kolmogorov complexity*

27.1 Kolmogorov complexity and failure of subadditivity*

Kolmogorov complexity goes back to the work of Solomonoff, Kolmogorov, and Levin in the 1960s
and 1970s. Suppose M : 2<N → 2<N is a partial computable function (sometimes called a machine
in the literature. If M(s) = t, we can think of string s as a M-description of the string t. We
define the shortest length of an M -description of t as:

CM (t) = min{|s| : M(s) = t}.

In everyday life, we are used to shortening descriptions of strings in this way. Files on computers are
long binary strings t, and often we would like to “compress” these files and store them in a shorter
form. We are familiar with many algorithms of this sort like the Lempel-Ziv-Welch compression
algorithm which is used in the ZIP and GIF file formats.

Proposition 27.1. For every n, there is some string t of length n so that CM (t) ≥ |t|.

Proof. By the pigeonhole principle. There are only
∑n−1

i=0 2i = 2n − 1 strings of length less than n,
but there are 2n strings of length n.

We say that a partial computable function U : 2<N → 2<N is universal if for every computable
M : 2<N → 2<N, there is a constant c so that for every t, CU (t) ≤ CM (t) + c. For example, consider
the machine U which on input 0e⌢1⌢s runs the eth machine on the input s (where 0e is the string
of e zeroes). Then for the eth machine Me, CU (t) ≤ CMe(t) + e + 1 for every t, since if s is an
Me-description of t, then 0e⌢1⌢s is a U -description of t.

In the theory of Kolmogorov complexity, we are typically only interested in results up to an
additive constant. If f, g are functions to R, we write f ≤+ g to note that there is some c so that
for all x, f(x) ≤+ g(x). So if U is universal, then for every machine M , CU ≤+ CM , and we let C(t)
denote CU (t) for some universal machine U , whose value is well defined up to an additive constant
(which suffices for most theorems studying infinite families of binary strings).

For example,

Proposition 27.2. C(t) ≤+ |t| for all t.

Proof. If M : strings→ 2<N is the identity function, then for all t, C(t) ≤+ CM (t) = |t|.

Now Kolmogorov complexity has some unfortunate drawbacks, chief among them is that it fails
to be subadditive. Let ⟨·, ·⟩ : 2<N × 2<N → 2<N be a computable bijection coding pairs of strings
using single strings. We would like it to be true that C(⟨s, t⟩) ≤+ C(s) + C(t): the shortest way to
describe two strings s and t the sum of the shortest descriptions of each of them. Unfortunately this
is badly false. We can’t concatenate a description of s and a description of t because we will not be
sure where the description of s ends, and the description of t starts.

Theorem 27.3. There is a constant c so that for arbitrarily large n, there are strings s, t so that
|s⌢t| = n, and C(⟨s, t⟩) ≥ C(s) + C(t) + log2 n+ c.

Proof. Note that C(⟨s, t⟩) ≥ C(s⌢t) + c1 for some c1, since given any universal machine U , there is
a machine M which takes a U -description of a string ⟨s, t⟩ as input, and then outputs s⌢t. We’ll
show the stronger theorem that there are strings s, t of arbitrarily length |s⌢t| = n such that

C(s⌢t) ≥ C(s) + C(t) + log2 n+ c

The basic idea of the proof is to take a long string w that has no short description (by Proposi-
tion 27.1), and then find a way of breaking it up into two strings s and t so that w = s⌢t where the
length of s can be used as extra information to give a shorter description of s than just |s|.
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By Proposition for each d, we can find a string w of length n = 2d+1 + d such that C(w) ≥ |w|.
Let L : N → 2<N take a number n to the nth binary string in lexicographic order, by length. Let

M be a machine which on input r, output L(|r|)⌢r. Let k be such that L(k) is the first d bits of
w. Note that

∑
i<d 2

i = 2d − 1 ≤ k ≤ 2d+1 − 1. Let r be string of length k that is the dth through
d+kth bits of w, and let s be the string of length d+k that is the first d+k bits of w. SoM(r) = s.
Then let t be the remaining bits of w, so s⌢t = w.

Then there is a constant c2 so that C(s) ≤ CM (s)+ c2 ≤ k+ c2 = |s|−d+ c2, and C(t) ≤ |t|+ c3
by Proposition 27.2. So C(s⌢t) ≥ n, and C(s) + C(t) + log2(n) + c ≤ n.

27.2 Prefix-free Kolmogorov complexity*

Prefix free Kolmogorov complexity fixes the failure of subadditivity that we saw with C in Theo-
rem 27.3. In many ways prefix-free Kolmogorov complexity has nicer properties that make it better
for studying the interplay between randomness, dimension, and complexity.

Definition 27.4. Say that a functionM : 2<N → 2<N is prefix-free if for all s ⊆ s∗, if s ∈ dom(M)
and s∗ ∈ dom(M), then s = s∗.

If M is a partial computable function that is prefix-free, then we use the notation KM instead
of CM to denote the corresponding notion of Kolmogorov complexity.

KM = min{|s| : M(s) = t}.

Just as with C, forK there are universal prefix-free partial computable functions U : 2<N → 2<N

so that for any prefix-free partial computable functionM , we have thatKU (t) ≤+ K(t). For example,
consider the machine U which on input 0e⌢1⌢s starts computingMe on all possible strings as input.
(Where 0e is the string of length e of all zeroes). Then if we every see that Me(s) halts and outputs
t, then the machine U also outputs t, provided there has not already seen a string s∗ that Me(s

∗)
halts, where s∗ ⊆ s or s ⊆ s∗. Clearly U will be prefix-free and if Me is any partial computable
function that is prefix free, then KU (t) ≤ KMe(t) + e+ 1.

One use of Kolmogorov complexity is to characterizing randomness in computability theory.

Theorem 27.5. Suppose A ∈ 2N is an infinite binary string. Then the following are equivalent.

• For all n, K(A ↾ n) ≥+ n. (The initial segments of A have highest possible Kolmogorov
complexity and are as difficult as possible to describe.

• For every uniformly c.e. set of strings Sn, where
∑

s∈Sn

1
2|s| ≤ 1

2n , A /∈
⋂⋃

s∈Sn
Ns. (A is

not an any nullset that can be described in an uniformly c.e. way).

• For every martingale B : 2<N → [0,∞) so B(s⌢0) + B(s⌢1) = 2B(s), that is uniformly left
c.e., lim supnB(A ↾ n) <∞. (No c.e. betting strategy succeeds on A).

Proof. See [?].

A infinite binary string A that has these equivalent properties is called Martin-Löf random.
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28 Kolmogorov complexity and Hausdorff dimension*

28.1 Hausdorff dimension*

Hausdorff dimension is a fractal dimension notion for subsets of Rn. In a s-dimension space Rs, a
ball of radius r has volume csr

s where cs is a constant9. Lebesgue measure in dimension s measures
a subset of Rs by the smallest measure of an open cover of s. By carefully packing balls, it is
straightforward to show that this is equal to the inf over

∑
i csr

s
i where (Bri(xi))i∈N is an open

cover of E by open balls. Note that we can make the sup of the radiuses supi ri arbitrarily small
here and still be arbitrarily close to this infimum.

Suppose we have a set E ⊆ Rn which is also a subset of an s-dimensional space. Then in Rn

we can take the same covers of E by balls, and show that the inf of
∑

i csr
s
i over all covers by open

balls (Bri(xi))i∈N of E (where now Bri(xi) is the ball in n-dimensional space) correctly gives the
s-dimensional Lebesgue measure of E.

Using this idea, we make a general definitions of this type for any real number s > 0. If E ⊆ Rn,
s ≥ 0, and δ > 0 then define:

Hs
δ (E) = inf{

∑
i∈N

rsi : (Bri(x))i∈N is cover of E by open balls with radiuses ri < δ}

We then define the s-dimensional Hausdorff outer measure Hs(E) to be:

Hs(E) = lim
δ→0+

Hs
δ (E)

This quantity is always defined since as δ → 0+, Hs
δ (E) is nondecreasing. Finally, we define

dimH(E) = inf{s > 0: Hs(E) = 0}. We drop the constant cs in the definition of Hs
δ (E) since

we are interested in finding the smallest dimension s in which Hs(E) is zero (and so the constant
cs does not change this).

A Kakeya set in Rn is a set containing a unit line segment in every direction.

Open Problem 28.1 (The Kakeya problem). Suppose E ⊆ Rn contains a line segment in every
direction. Must dimH(E) = n?

The Kakeya problem has connections to a surprising number of other fields of mathematics. It
is related to geometric measure theory, harmonic analysis, and arithmetic combinatorics. Variants
and generalizations in other contexts such as over finite fields also have applications to problems in
computer science and randomness extraction.

In this section, we will give an argument of Lutz and Lutz that the n = 2 case of the Kakeya
problem has a positive answer, using computability theory.

28.2 Effective dimension and the point-to-set principle*

We can measure the Kolmogorov complexity of rational numbers q ∈ Q via some coding of rational
numbers via binary sequence. Using this notion, we can define the Kolmogorov complexity of real
numbers at some given precision r. If x ∈ Rn and r ∈ N , then define

Kr(x) = min{K(q) : q ∈ Qn ∩B2−r (x)}

to be the Kolmogorov complexity of x at precision r. For example, if x ∈ R, then Kr(x) is roughly
the shortest description of the first r bits of x in binary.

We now define the effective dimension of x ∈ Rn as follows.

9cs is equal to πs/2

Γ(s/2+1)
where Γ is Euler’s gamma function
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dim(x) = lim inf
r→∞

Kr(x)

r

So if dim(x) ≤ α, for x ∈ Rn then for arbitrarily large k, we can find descriptions of the first k
digits of each of the n coordinates of x where the description has length ≈ αx.

Exercise 28.2. Show that 0 ≤ dim(x) ≤ n for every x ∈ Rn.

Exercise 28.3. Show that if x ∈ Rn is computable then dim(x) = 0.

Exercise 28.4. The set of x ∈ Rn such that dim(x) < n is a Lebesgue null set. [Hint: for every
r, c, the set of x such that Kr(x) ≤ r − c has measure at most 2−c+1. Now use the Borel-Cantelli
lemma.

One can show (see [?]) that for every 0 ≤ α ≤ n there are uncountably many x ∈ Rn such that
dim(x) = α.

We can similarly define the dimension of x relative to an oracle A ∈ 2N by relativizing the
definition of Kolmogorov complexity to A. Using this notion, we have the following point-to-set
principle for Hausdorff dimension:

Theorem 28.5 ([LL18]). For every set E ⊆ Rn

dimH(E) = min
A∈2N

sup
x∈E

dimA(x)

Proof sketch. To show dimH(E) ≥ minA∈2N supx∈E dimA(x) we can construct an oracle A from a
countable sequences open covers used to witness the value of dimH(E). Relative to this oracle, any
x ∈ E can be described by what elements of the cover it belongs to. This shows that dimH(E) ≥
dimA(x).

Now given any A ∈ 2N we can show that dimH(E) ≤ supx∈E dimA(x). To do this, take the
descriptions used relative to A to describe element of x as x varies of all of E. One can show this
gives a sequence of open covers of E showing its Hausdorff dimension is at most supx∈E dimA(x).

For details, see [LL18, Theorem 1].

The utility of this theorem is that in order to prove a lower bound dimH(E) ≥ α, it suffices to
show that for every A ⊆ N and every ϵ > 0, there is a point x ∈ E such that dimA(x) ≥ α− ϵ.

28.3 The Kakeya problem in dimension 2*

If t, r ∈ 2<N are strings, then the conditional Kolmogorov complexity of t given r, noted
K(t|r), is defined by

K(t|r) = inf{|s| : U(⟨s, r⟩) = t}

where U is a universal machine. Informally, it is the shortest description of t, given that we already
have the information r given to us.

For example, there is a constant c so that for all t ∈ 2<N, K(t|t) ≤ c. We can similarly define
conditional complexity for real numbers, given some finite data. If x ∈ Rn, and q ∈ Rm is rational,
then

Kr(x|q) = min{K(p|q) : p ∈ Qn ∩B2−r (x)}

and if y ∈ Rm, then
Kr,s(x|y) = min{Kr(x|q) : q ∈ Qm ∩B2−s(y)}.

and we use the notation Kr(x|y) to denote Kr,r(x|y).
Now we have the following technical lemmas:
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Lemma 28.6.
Kr(x, y) = Kr(x|y) +Kr(y) + o(r)

Proof sketch. K(s, t) =+ K(s) +K(t|s∗). See [?LV, Theorem 3.9.1]. This is called the chain rule for
prefix-free Kolmogorov complexity. The lemma follows easily.

Using this, it is not difficult to prove the following:

Lemma 28.7. Suppose m ∈ [0, 1] and b ∈ R. Then for a.e. x ∈ [0, 1] (wrt Lebesgue measure),

lim inf
r→∞

Kr(m, b, x)−Kr(b|m)

r
≤ dim(x,mx+ b)

We can now use this machinery to give a solution to the Kakeya problem in dimension 2.

Theorem 28.8 (Davies [D71]). Suppose E ⊆ R2 is a Kakeya set. Then E has Hausdorff dimension
dimH(E) = 2.

Proof. Let A be as in Theorem 28.5 so that dimH(E) = supx∈E dimA(x). Let m ∈ [0, 1] be such that

dimA(m) = 1. (Such an m exists since almost every m (wrt Lebesgue measure) has this property).
Let L be a unit line segment contained in E of slope m. Let (x0, y0) be the left endpoint of L. Now
choose a rational number q so that the unit line segment L′ of slope m starting at x0 − q has a y
intercept b.

We need to find some point (x, y) ∈ L such that dimA(x, y) = 2. We know that for a.e. x ∈ [0, 1/2]
we have

dimA,m,b(x) = 1 (*)

(by Exercise 28.4) and

lim inf
r→∞

Kr(m, b, x)−Kr(b|m)

r
≤ dimA(x,mx+ b) (**)

(by the relativized version of Lemma 28.7). So choose an x with both properties (*) and (**). Note
that (x,mx + b) ∈ L′ and (x + q,mx + b) ∈ L, and dimA(x + q,mx + b) = dimA(x,mx + b). So it
suffices to show dimA(x,mx+ b) = 2.

dimA(x,mx+ b) ≥ lim inf
r→∞

KA
r (m, b, x)−KA

r (b|m)

r
by (**)

= lim inf
r→∞

KA
r (m, b, x)−KA

r (b,m) +KA(r)(m)

r
by Lemma 28.7

= lim inf
r→∞

KA
r (x|b,m) +KA

r (m)

r
by Lemma 28.7

≥ lim inf
r→∞

KA,b,m
r (x)

r
+
KA

r (m)

r

= dimA,b,m(x) + dimA(m) = 2

by our choice of m and x.
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[L55] M.H. Löb, Solution of a Problem of Leon Henkin, J. Symb. Logic 20 (1955), 115-118.

[LL18] J.H. Lutz and N. Lutz, Algorithmic information, plane Kakeya sets, and conditional dimension, ACM Trans-
actions on Computation Theory 10 (2018), article 7.

[LS] Lyndon and Schupp, Combinatorial Group Theory, Springer-Verlag, 1977.

[MW96] A. Macintyre, and A.J. Wilkie, On the decidability of the real exponential field, in Kreiseliana, P. Odifreddi
ed. (1996) 451–478.

[Mar96] D. Marker, Model theory and exponentiation, Notices Amer. Math. Soc, 43, (1996) 753–759.

[Mi08] A. Miller, The Recursion Theorem and Infinite Sequences arXiv: https://arxiv.org/abs/0801.2097.

[Mot67] T.S. Motzkin, The arithmetic-geometric inequality Inequalities (Proc. Sympos Wright-Patterson Air Force
Base, Ohio, 1965) 205–224 Academic Press, New York.

[PH77] J. Paris and L. Harrington, A Mathematical Incompleteness in Peano Arithmetic. In Barwise, J.
(ed.). Handbook of Mathematical Logic. Amsterdam, Netherlands: North-Holland. https://doi.org/10.1016/
S0049-237X(08)71130-3

[P] B. Poonen, Undecidable Problems: A sampler, In J. Kennedy (Ed.), Interpreting Gd̈el: Critical Essays (2004),
pp. 211-241. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511756306.015.

[PZ] F. Pfender and G. Ziegler, Kissing numbers, sphere packings, and some unexpected proofs, Not. Amer. Math.
Soc., 51 No 8 (2004) 873–883.
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