Problem 1) Can Newton method be used to solve \(f(x) = (x - 3)^{1/2} = 0 \) given an initial approximation \(p_0 = 4 \)? Explain why.

Problem 2) Consider function \(f(x) = \sin(x) \) on the interval \([0, 1]\) on equally spaced nodes. If \(h \) is the spacing between the nodes Determine the size of \(h \) you need so that the cubic Lagrange interpolating polynomial approximates \(f(x) \) with an accuracy of \(10^{-5} \), i.e. \(|E_3(x)| \leq 10^{-5} \) for any \(x \in [0, 1] \).

Problem 3) Let \(g(x) = 3x^4 - 8x^3 + 6x^2 \).

Part a) Show that \(p = 0 \) and \(\hat{p} = 1 \) are fixed points of the function \(g(x) \).

Part b) Assume that you used fixed point iteration with some initial approximation \(p_0 \) which was sufficiently close to \(p = 0 \) so that the sequence of approximations \(p_0, p_1, p_2, \ldots \) you generated converges to the fixed point \(p = 0 \). Derive what will be the order of convergence of this sequence.

Part c) Assume that you used fixed point iteration with some initial approximation \(\hat{p}_0 \) which was sufficiently close to \(\hat{p} = 1 \) so that the sequence of approximations \(\hat{p}_0, \hat{p}_1, \hat{p}_2, \ldots \) you generated converges to the fixed point \(\hat{p} = 1 \). Derive what will be the order of convergence of this sequence.

Problem 4) Show that any third-degree polynomial \(f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \) is its own clamped cubic spline on any closed interval \([a, b]\). \textit{Hint:} use uniqueness of a clamped cubic spline interpolating a function \(f(x) \) on a given set of nodes.

Problem 5) Suppose real numbers are represented with a 5-bit mantissa and a 3-bit characteristic.

Part a) How many positive real numbers such representations system contains?

Part b) What is the magnitude of a maximum number that can be represented with this system?