
Existence of Primitive Roots via p-adic Numbers

LEONARD TOMCZAK

Let k ≥ 1 be an integer. A primitive root mod k is an integer a coprime to k such that an mod k runs
through the set of all residue classes mod k coprime to k. In group theoretic language, a primitive root
is a generator of the multiplicative group (Z/kZ)×. The basic result concerning existence of primitive
roots is:

Theorem 1 ([IR82, Proposition 4.1.3]). There exists a primitive root mod k, in other words (Z/kZ)×
is cyclic, if and only if k = 2, 4, pn or 2pn for some odd prime p and n ≥ 1.

Necessity of this condition is not difficult. However, sufficiency requires a little bit more work. One
easily reduces this to the case k = pn for p an odd prime. Thus, we want to show that for odd primes
p, (Z/pnZ)× is cyclic. Various proofs of this are known. A basic approach is to first prove this in the
case n = 1 - in which case this is just the fact that a finite subgroup of the multiplicative group of a
field is cyclic. Then one proceeds inductively and shows that one can lift primitive roots mod pn to
primitive roots mod pn+1. This method can be found e.g. in [IR82, p. 43, Theorem 2]. Some time ago
I learnt about another method of proving this which I want to present in this note. It also provides a
somewhat conceptual reason why the claim fails for p = 2.

Assume p > 2 for now. Our goal is to prove that (Z/pnZ)× is cyclic, i.e.

(Z/pnZ)× ∼= (Z/(pn−1(p− 1))Z,+).

This can be seen as an isomorphism between a multiplicative group and an additive group. We all
know of a function which turns addition into multiplication: The exponential function. It gives an
isomorphism exp : (R,+) → (R>0, ·) of the additive group of real numbers with the multiplicative
group of positive reals. Wouldn’t it be nice if we had something similar for Z/pnZ? Indeed, there is
such a thing, although not over Z/pnZ, but over the p-adic numbers Qp. Just as the reals they form a
field, complete with respect to an absolute value. Thus, it makes sense to define the p-adic exponential
function by the series

exp(x) =

∞∑
n=0

xn

n!
,

whenever this converges. While over the reals this power series had infinite radius of convergence, this
is no longer the case over the p-adics. We have:

Lemma 2. Let x ∈ Qp. Then exp(x) converges if |x| < 1, in particular exp defines a homomorphism
pZp → Q×

p .

Proof. This requires some basic estimates of vp(n!), see e.g. [Neu99, Chapter 2, Proposition 5.5] or
[Lan94, p. 187]. □
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Note that one can analogously define the p-adic logarithm and study its convergence. One then finds
that it converges on the open ball of radius 1 centered at 1 and defines an inverse to exp so that
analogously to the real case we get an isomorphism of additive and multiplicative groups:

Theorem 3 ([Neu99, Chapter 2, Proposition 5.5]). The exponential function induces isomorphisms
(pnZp,+) ∼= (1 + pnZp, ·) where n ≥ 1.

The final ingredient we need is that we have a splitting Z×
p
∼= (1+ pZp)× (Z/pZ)×. This follows from

Hensel’s lemma, see e.g. [Neu99, Chapter 2, Proposition 5.3]. Under this isomorphism the subgroup
(1 + pnZp) corresponds to (1 + pnZp)× 0, thus we get

(Z/pnZ)× ∼= (Zp/p
nZp)

× ∼= Z×
p /(1 + pnZp) ∼=

1 + pZp

1 + pnZp
× (Z/pZ)×.

By Theorem 3, there is an isomorphism of 1 + pZp with pZp under which 1 + pnZp is carried onto

pnZp. Hence, we get get
1+pZp

1+pnZp

∼= pZp

pnZp

∼= Zp/p
n−1Zp

∼= Z/pn−1Z. Putting this together, we get

(Z/pnZ)× ∼= Z/pn−1Z× (Z/pZ)×.
Now note that (Z/pZ)× is cyclic as it is the multiplicative group of a finite field, so (Z/pnZ)× is cyclic
as the product of two cyclic groups of coprime order. This finishes the proof.

Where does this go wrong if p = 2? The problem is that the 2-adic exponential series does not converge
on 2Z2. It only converges on the smaller disc 22Z2 and thus gives isomorphisms (2nZ2,+) ∼= (1+2nZ2, ·)
only for n ≥ 2. However, we can still use this to determine the structure of (Z/2nZ)×. Indeed, we
have a similar splitting of Z×

2 as above involving 1 + 22Z2, namely Z×
2
∼= (1 + 4Z2)× (Z/4Z)×. Then

proceeding as before gives (assuming n ≥ 2):

(Z/2nZ)× ∼= Z/2n−2Z× Z/2Z.
Thus, in some sense the non-existence of primitive roots mod 2n for n ≥ 3 can be attributed to the
phenomenon that the 2-adic exponential series has a smaller radius of convergence than its p-adic
counterparts for p > 2.
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