Existence of Primitive Roots via p-adic Numbers

LEONARD TOMCZAK

Let $k \geq 1$ be an integer. A primitive root $\bmod k$ is an integer a coprime to k such that $a^{n} \bmod k$ runs through the set of all residue classes mod k coprime to k. In group theoretic language, a primitive root is a generator of the multiplicative group $(\mathbb{Z} / k \mathbb{Z})^{\times}$. The basic result concerning existence of primitive roots is:

Theorem 1 ([IR82 Proposition 4.1.3]). There exists a primitive root $\bmod k$, in other words $(\mathbb{Z} / k \mathbb{Z})^{\times}$ is cyclic, if and only if $k=2,4, p^{n}$ or $2 p^{n}$ for some odd prime p and $n \geq 1$.

Necessity of this condition is not difficult. However, sufficiency requires a little bit more work. One easily reduces this to the case $k=p^{n}$ for p an odd prime. Thus, we want to show that for odd primes $p,\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times}$is cyclic. Various proofs of this are known. A basic approach is to first prove this in the case $n=1$ - in which case this is just the fact that a finite subgroup of the multiplicative group of a field is cyclic. Then one proceeds inductively and shows that one can lift primitive roots mod p^{n} to primitive roots mod p^{n+1}. This method can be found e.g. in IR82, p. 43, Theorem 2]. Some time ago I learnt about another method of proving this which I want to present in this note. It also provides a somewhat conceptual reason why the claim fails for $p=2$.

Assume $p>2$ for now. Our goal is to prove that $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times}$is cyclic, i.e.

$$
\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times} \cong\left(\mathbb{Z} /\left(p^{n-1}(p-1)\right) \mathbb{Z},+\right)
$$

This can be seen as an isomorphism between a multiplicative group and an additive group. We all know of a function which turns addition into multiplication: The exponential function. It gives an isomorphism $\exp :(\mathbb{R},+) \rightarrow\left(\mathbb{R}_{>0}, \cdot\right)$ of the additive group of real numbers with the multiplicative group of positive reals. Wouldn't it be nice if we had something similar for $\mathbb{Z} / p^{n} \mathbb{Z}$? Indeed, there is such a thing, although not over $\mathbb{Z} / p^{n} \mathbb{Z}$, but over the p-adic numbers \mathbb{Q}_{p}. Just as the reals they form a field, complete with respect to an absolute value. Thus, it makes sense to define the p-adic exponential function by the series

$$
\exp (x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

whenever this converges. While over the reals this power series had infinite radius of convergence, this is no longer the case over the p-adics. We have:

Lemma 2. Let $x \in \mathbb{Q}_{p}$. Then $\exp (x)$ converges if $|x|<1$, in particular \exp defines a homomorphism $p \mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p}^{\times}$.

Proof. This requires some basic estimates of $v_{p}(n!)$, see e.g. Neu99, Chapter 2, Proposition 5.5] or Lan94 p. 187].

Note that one can analogously define the p-adic logarithm and study its convergence. One then finds that it converges on the open ball of radius 1 centered at 1 and defines an inverse to exp so that analogously to the real case we get an isomorphism of additive and multiplicative groups:

Theorem 3 (Neu99, Chapter 2, Proposition 5.5]). The exponential function induces isomorphisms $\left(p^{n} \mathbb{Z}_{p},+\right) \cong\left(1+p^{n} \mathbb{Z}_{p}, \cdot\right)$ where $n \geq 1$.

The final ingredient we need is that we have a splitting $\mathbb{Z}_{p}^{\times} \cong\left(1+p \mathbb{Z}_{p}\right) \times(\mathbb{Z} / p \mathbb{Z})^{\times}$. This follows from Hensel's lemma, see e.g. Neu99. Chapter 2, Proposition 5.3]. Under this isomorphism the subgroup $\left(1+p^{n} \mathbb{Z}_{p}\right)$ corresponds to $\left(1+p^{n} \mathbb{Z}_{p}\right) \times 0$, thus we get

$$
\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times} \cong\left(\mathbb{Z}_{p} / p^{n} \mathbb{Z}_{p}\right)^{\times} \cong \mathbb{Z}_{p}^{\times} /\left(1+p^{n} \mathbb{Z}_{p}\right) \cong \frac{1+p \mathbb{Z}_{p}}{1+p^{n} \mathbb{Z}_{p}} \times(\mathbb{Z} / p \mathbb{Z})^{\times}
$$

By Theorem 3, there is an isomorphism of $1+p \mathbb{Z}_{p}$ with $p \mathbb{Z}_{p}$ under which $1+p^{n} \mathbb{Z}_{p}$ is carried onto $p^{n} \mathbb{Z}_{p}$. Hence, we get get $\frac{1+p \mathbb{Z}_{p}}{1+p^{n} \mathbb{Z}_{p}} \cong \frac{p \mathbb{Z}_{p}}{p^{n} \mathbb{Z}_{p}} \cong \mathbb{Z}_{p} / p^{n-1} \mathbb{Z}_{p} \cong \mathbb{Z} / p^{n-1} \mathbb{Z}$. Putting this together, we get

$$
\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times} \cong \mathbb{Z} / p^{n-1} \mathbb{Z} \times(\mathbb{Z} / p \mathbb{Z})^{\times}
$$

Now note that $(\mathbb{Z} / p \mathbb{Z})^{\times}$is cyclic as it is the multiplicative group of a finite field, so $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times}$is cyclic as the product of two cyclic groups of coprime order. This finishes the proof.
Where does this go wrong if $p=2$? The problem is that the 2 -adic exponential series does not converge on $2 \mathbb{Z}_{2}$. It only converges on the smaller disc $2^{2} \mathbb{Z}_{2}$ and thus gives isomorphisms $\left(2^{n} \mathbb{Z}_{2},+\right) \cong\left(1+2^{n} \mathbb{Z}_{2}, \cdot\right)$ only for $n \geq 2$. However, we can still use this to determine the structure of $\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)^{\times}$. Indeed, we have a similar splitting of \mathbb{Z}_{2}^{\times}as above involving $1+2^{2} \mathbb{Z}_{2}$, namely $\mathbb{Z}_{2}^{\times} \cong\left(1+4 \mathbb{Z}_{2}\right) \times(\mathbb{Z} / 4 \mathbb{Z})^{\times}$. Then proceeding as before gives (assuming $n \geq 2$):

$$
\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)^{\times} \cong \mathbb{Z} / 2^{n-2} \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}
$$

Thus, in some sense the non-existence of primitive roots mod 2^{n} for $n \geq 3$ can be attributed to the phenomenon that the 2 -adic exponential series has a smaller radius of convergence than its p-adic counterparts for $p>2$.

References

[IR82] Kenneth F. Ireland and Michael I. Rosen. A classical introduction to modern number theory. Vol. 84. Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1982.
[Lan94] Serge Lang. Algebraic number theory. Second. Vol. 110. Graduate Texts in Mathematics. Springer-Verlag, New York, 1994.
[Neu99] Jürgen Neukirch. Algebraic number theory. Vol. 322. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999.

Department of Mathematics, Evans Hall, University of California, Berkeley, CA 94720, USA

