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Part 1. General Theory of Von Neumann Algebras

1. Topologies on B(H)

Let H denote a Hilbert space over C. For us the inner product will be sesquilinear in the second
argument. The space of bounded operators on H is denoted B(H).

We will consider the following topologies on B(H):

• norm topology.

• Weak operator topology (wo): Induced by the seminorms pξ,η(T ) = |⟨Tξ, η⟩| for ξ, η ∈ H. So a
basis of neighborhoods of 0 is given by {T | |⟨Tξk, ηk⟩| < ε, 1 ≤ k ≤ n} with ε > 0, ξk, ηk ∈ H.

• Strong operator topology (so): Induced by the seminorms T 7→ ∥Tξ∥ for ξ ∈ H. So a basis of
neighborhoods of 0 is given by {T | ∥Tξk∥ < ε, 1 ≤ k ≤ n} with ε > 0, ξk ∈ H.

Proposition 1.1. Let φ : B(H) → C be linear. Then TFAE:

(i) φ is wo-continuous.

(ii) φ is so-continuous.
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(iii) φ(T ) =
∑n
j=1⟨Tξj , ηj⟩ for some ξj , ηj ∈ H.

Proof. The strong operator topology is stronger than the weak operator topology, so “(i) ⇒ (ii)”. Also

“(iii) ⇒ (i)” is clear because
∣∣∣∑n

j=1⟨Tξj , ηj⟩
∣∣∣ ≤ pξ1,η1(T )+· · ·+pξn,ηn(T ). We are left to prove “(ii) ⇒

(iii)”. Assume that (ii) holds. Then |φ(T )| ≤
∑n
j=1 ∥Tξj∥ for all T and some fixed ξj ∈ H. Consider

d : B(H) → Hn given by d(T ) = (Tξ1, . . . , T ξn). The map d(B(H)) ∋ (Tξ1, . . . , T ξn) 7→ φ(T ) is well-
defined and continuous. By Hahn-Banach it extends to a continuous linear functional Hn → C, so by
the Riesz representation theorem there are η1, . . . , ηn such that φ(T ) = ⟨(Tξ1, . . . , T ξn), (η1, . . . , ηn)⟩ =∑n
j=1⟨Tξj , ηj⟩. □

Corollary 1.2. A convex subset of B(H) is so-closed if and only it is wo-closed.

Proof. By Hahn-Banach separation, the closed convex subsets of a locally convex space are intersections
of closed half spaces which are in turn defined by continuous functionals. But by the Proposition the
continuous functionals for the two topologies are the same. □

2. Von Neumann’s Theorem

Let T ∈ B(H). A closed subspace X ⊆ H is invariant for T if TX ⊆ X . This is the case iff
TPX = PXTPX where PX is the orthogonal projection of H onto X . Equivalently, (I − PX )TPX = 0.

Now let A ⊆ B(H) be a subalgebra and let X ⊆ H be invariant for all T ∈ A. Then H is a module
over A and X is a submodule. Again, the invariance is equivalent to (I − PX )APX = 0.

What about T ∗? If X is invariant for T , then PXT
∗(I−PX ) = 0. Suppose A = A∗. Then X is invariant

for A if (I − PX )TPX = 0 for all T ∈ A iff PXT
∗(I − PX ) = 0 for all T ∈ A. By A = A∗ this holds iff

PXT (I−PX ) = 0 for all T ∈ A. In this case we have PXT −TPX = PXT (I−PX )− (I−PX )TPX = 0,
i.e. [T, PX ] = 0. The converse also holds: Suppose [T, PX ] = 0. Then (I−PX )TPX = TPX −PXTPX =
TPX − TPXPX = 0.

Hence we have shown:

Proposition 2.1. A closed subspace X ⊆ H is invariant under both T and T ∗ if and only if
[T, PX ] = 0. If A is a ∗-closed subalgebra of B(H), then X is invariant under A if and only if
[T, PX ] = 0 for all T ∈ A.

Definition. Let Ξ ⊆ B(H) be a subset. Define its commutator by:

Ξ′ = {T ∈ B(H) | [T,Ξ] = 0}.

Ξ′ is an algebra and it is wo-closed. To see the latter note that for fixed X ∈ Ξ, we have [T,X] = 0 iff
⟨[T,X]ξ, η⟩ = 0 for all ξ, η ∈ H iff ⟨TXξ, η⟩ − ⟨Tξ,X∗η⟩ = 0 for all ξ, η ∈ H. So we can write Ξ′ as
the intersection of zero sets of certain wo-continuous functionals. If Ξ = Ξ∗, then (Ξ′)∗ = (Ξ∗)′. So in
this case Ξ′ is a ∗-algebra.
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Theorem 2.2 (von Neumann, Bicommutant Theorem, Double commutant theorem, von Neu-
mann density theorem, ...). Let A ⊆ B(H) be a unital ∗-subalgebra. TFAE:

(i) A is wo closed.

(ii) A is so closed.

(iii) A = A′′.

Proof. (iii) ⇒ (i) ⇐⇒ (ii) are clear by the previous discussion. So we must show (ii) ⇒ (iii). Assume
A is so closed. Trivially, A ⊆ A′′. We must show that if T ∈ A′′, then T ∈ A. We show that T is in the
so closure of A. For this we have to show that for any ξ1, . . . , ξn, dn(A)ξ ∋ Tξ where ξ = (ξ1, . . . , ξn)

and dn : B(H) → B(Hn) is given by dn(S) = S⊕· · ·⊕S. X := dn(A)ξ is invariant under the ∗-algebra
dn(A), so [PX , dn(A)] = 0. Let A ∈ A. Write PX = (Pij)i,j=1,...,n and dn(A) is a diagonal matrix
with diagonal entries A. Then we must have that A commutes with every Pij . Hence Pij ∈ A′, so
[T, Pij ] = 0, and then also [dn(T ), PX ] = 0. This implies that X is invariant under dn(T ). Since ξ ∈ X ,

then Tξ ∈ X = dn(A)ξ. □

Definition. M ⊆ B(H) is a von Neumann algebra if it is a unital ∗-subalgebra satisfying M =
M′′.

Let M be a von Neumann algebra. Then M′ is a von Neumann algebra as (M′)′′ = (M′′)′ = M′.
The intersection of von Neumann algebras is again a von Neumann algebra.

H becomes a (M,M′op)-bimodule.

Definition. The center of a von Neumann algebra M is Z(M) := M∩M′. It is a commutative
von Neumann algebra.

We have Z(M)′ = (M∪M′)′′.

Definition. A von Neumann algebra M is a factor if Z(M) = CI.

Definition. Let Ξ ⊆ B(H). The vN algebra generated by Ξ is (Ξ ∪ Ξ∗)′′.

Example. Let X ,Y be Hilbert spaces. On X ⊗alg Y put the inner product ⟨x1 ⊗ y1, x2 ⊗ y2⟩ =
⟨x1, x2⟩⟨y1, y2⟩ and extend to a sesquilinear scalar product. Then X ⊗ Y is the completion of
X ⊗alg Y. We have (B(X ) ⊗ IY)

′ = IX ⊗ B(Y), so this gives a pair of von Neumann algebras
algebras. Let (ei)i, (fj)j be ONB of X ,Y resp. Then X ⊗ Y =

⊕
j∈J X ⊗ fj .

Example. Let G be a discrete group and take H = ℓ2(G) with ONB (eg)g∈G. Consider the left
regular representation g 7→ λ(g), geh = egh. Similarly we have the right regular representation
g 7→ ρ(g), ρ(g)eh = ehg−1 . We have [λ(g1), ρ(g2)] = 0. Put L(G) = (λ(G))′′ and R(G) = (ρ(G))′′.
One can show that they are each other’s commutant (later).



5

Let A be a von Neumann algebra. By the homework

A′ = {V ∈ A′ | V unitary}′′.

Then

A = {U unitary, U ∈ A′}′.
Note that [T,U ] = 0 iff U∗TU = T , hence

A = {T ∈ B(H) | UTU∗ = T, for all U ∈ A′, U unitary}.

Corollary 2.3. Let A be a von Neumann algebra.

(a) Let N ∈ A be normal, f a Borel function on σ(N). Then f(N) ∈ A.

(b) Let T ∈ A, T = V (T ∗T )1/2 its polar decomposition. Then V, (T ∗T )1/2 ∈ A.

(c) Let T ∈ A. Then PkerT , PTH ∈ A.

(d) Let (Pi)i∈I ⊆ A be orthogonal projections. Let
∨
i∈I Pi,

∧
i∈I Pi be the orthogonal projec-

tions onto the closed linear span resp. intersection of the Pi. Then
∨
i∈I Pi,

∧
i∈I Pi ∈ A.

There are a couple other topologies on B(H) we are interested in. Consider d∞(T ) = T ⊕ T ⊕ T ⊕ · · ·
on H⊕H⊕ · · · . This can also be viewed as T 7→ T ⊗ Iℓ2 on H⊗ ℓ2(N).

(i) The ultraweak operator topology (uwo). The uwo topology is induced by the seminorms

pξ1,ξ2,...,η1,η2,...(T ) =

∣∣∣∣∣∣
∑
j

⟨Tξj , ηj⟩

∣∣∣∣∣∣ ,
where ξi, ηi ∈ H with

∑
i ∥ξi∥

2
,
∑
i ∥ηi∥

2
< ∞. . It is the subspace topology under B(H) ↪→

B(H ⊗ ℓ2(N)), T 7→ T ⊗ I where B(H ⊗ ℓ2(N)) carries the wo topology. Then Ti → T in the

uwo topology iff d∞(Ti)
wo−−→ d∞(T ).

(ii) The ultrastrong operator topology (uso). The uwo topology is induced by the seminorms

pξ1,ξ2,...(T ) =
(∑

j

∥Tξj∥2
)1/2

,

where ξi ∈ H with
∑
i ∥ξi∥

2
<∞. Then Ti → T in the uso topology iff d∞(Ti)

so−→ d∞(T ).

We have the following analogue of Proposition 1.1:

Proposition 2.4. Let φ : B(H) → C be linear. TFAE:

(1) φ is uwo-continuous.

(2) φ is uso-continuous.

(3) φ(T ) =
∑
j⟨Tξj , ηj⟩ = ⟨d∞(T )(ξ1, . . . ), (η1, . . . )⟩ for some (ξi)i, (ηj)j ∈ H ⊗ ℓ2(N).

This can be deduced from Proposition 1.1 by applying it to H⊗ ℓ2(N).
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Corollary 2.5. Convex sets are uwo closed iff they are uso closed.

Proposition 2.6. On the unit ball B(H)1, the uwo and wo topologies coincide. Similarly the uso
and so topologies coincide.

Proposition 2.7. Let A ⊆ B(H) be a unital ∗-algebra. TFAE

(i) A is uwo closed.

(ii) A is uso closed.

(iii) A = A′′.

This can be deduced from the previous von Neumann bicommutant theorem by applying this to
d∞(A) ⊆ B(H⊗ ℓ2(N)).

3. Commutative von Neumann algebras

Proposition 3.1. Let A be a commutative von Neumann algebra with a cyclic vector ξ ∈ H, i.e.
Aξ = H. Then A = A′, so A is a maximal abelian subalgebra.

For the proof we need:

Lemma 3.2. Let B ⊆ B(H) be a ∗-subalgebra. Then B is commutative if and only if ∥bη∥ = ∥b∗η∥
for all η ∈ H and b ∈ B.

This is basically the operator algebra version of the familiar characterization of normal operators.

Proof. “⇒” ∥bη∥2 = ⟨b∗bη, η⟩ = ⟨bb∗η, η⟩ = ∥b∗η∥2. “⇐” We have ⟨b∗bη, η⟩ = ⟨bb∗η, η⟩ for all b, η.
By polarization, we get b∗b = bb∗. First let x = x∗, y = y∗ ∈ B and take b = x + iy. Then
0 = [b, b∗] = [x+ iy, x− iy] = 2i[y, x], so x, y commute. As every operator in B can be written as x+ iy
with x, y ∈ B self-adjoint, B is commutative. □

Proof of Proposition 3.1. We show using the lemma that A′ is commutative. Let y ∈ A′. Then
∥yξ − xnξ∥ → 0 as n → ∞ for suitable xn ∈ A. The lemma implies that the map {xnξ} →
{x∗nξ}, xnξ 7→ x∗nξ is isometric. Since xnξ is Cauchy, so is x∗nξ, so there is a k ∈ H such that
∥x∗nξ − k∥ → 0 as n→ ∞. We prove that k = y∗ξ. For this it suffices to show that ⟨k, xξ⟩ = ⟨y∗ξ, xξ⟩
for all x ∈ A as Aξ is dense in H. We have

⟨k, xξ⟩ = lim
n→∞

⟨x∗nξ, xξ⟩ = lim
n→∞

⟨ξ, xnxξ⟩

= lim
n→∞

⟨ξ, xxnξ⟩ = ⟨ξ, xyξ⟩

y∈A′

= ⟨ξ, yxξ⟩
= ⟨y∗ξ, xξ⟩.
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This proves y∗ξ = k. Next we prove ∥yxξ∥ = ∥y∗xξ∥ for all x ∈ A. Equivalently ∥xyξ∥ = ∥xy∗ξ∥. For
this it suffices to prove ∥xxnξ∥ = ∥xx∗nξ∥ for all n. This is the same as ∥xnxξ∥ = ∥x∗nxξ∥ which is true
by the lemma.

The lemma then implies that A′ is commutative, so A′ ⊆ A′′ = A. □

4. The Trace class

Let H be a Hilbert space and (eα)α∈I an orthonormal basis. Let T ∈ B+(H) be a positive operator.
Then we define the trace of T to be

TrT =
∑
α

⟨Teα, eα⟩ ∈ [0,∞].

Note that if X ∈ B(H), then

Tr(X∗X) =
∑
α

⟨X∗Xeα, eα⟩ =
∑
α

∥Xeα∥2 =
∑
α,β

|⟨Xeα, eβ⟩|2

=
∑
α,β

|⟨X∗eβ , eα⟩|2 = Tr(XX∗)

So for T ∈ B+(H) and U unitary, we have Tr(T ) = Tr(UTU∗) by taking X = UT 1/2.

Definition. The space of trace class operators is

C1(H) = {X ∈ B(H) | Tr((X∗X)1/2) <∞}.
It carries the norm |T |1 = Tr((T ∗T )1/2).

Proposition 4.1.

(i) C1(H) is a Banach space w.r.t. the norm | · |1.

(ii) C1(H) is a two sided ideal in B(H).

(iii) For A,B ∈ B(H) and X ∈ C1(H), we have |AXB|1 ≤ ∥A∥ |X|1 ∥B∥.

(iv) The trace extends by linearity from C1(H) ∩ B+(H) to a linear map Tr : C1(H) → C. It
satisfies |Tr(X)| ≤ |X|1 and TrX =

∑
α⟨Teα, eα⟩ and

∑
α |⟨Teα, eα⟩| ≤ |T |1.

(v) C1(H) ⊆ K(H). Here K(H) is the space of compact operators.

4.1. Rank one operators

Let ξ, η ∈ H. Let Eξ,η ∈ B(H) denote the rank one operator ⟨·, η⟩ξ. It satisfies E∗
ξ,η = Eη,ξ and

E∗
ξ,ηEξ,η = ⟨·, η⟩ ∥ξ∥2 η =

〈
·, η

∥η∥

〉
η

∥η∥
∥ξ∥2 ∥η∥2 = PCη ∥ξ∥2 ∥η∥2 .

So

Tr((E∗
ξ,ηEξ,η)

1/2) = ∥ξ∥ ∥η∥ ,
and so |Eξ,η|1 = ∥ξ∥ ∥η∥.
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Let X ∈ C1(H) ⊆ K(H). Write X = V (X∗X)1/2 (polar decomposition). Then

X = V (X∗X)1/2 =
∑
j

sjEV hj ,hj

where hj is an orthonormal system of eigenvectors of X∗X, and sj the corresponding singular values,

i.e. square roots of the eigenvalues of X∗X. Also
∑
j sj = Tr((X∗X)1/2) = |X|1. Letting ξj =

√
sjV hj , ηj =

√
sjhj , we have X =

∑
j Eξj ,ηj and |X|1 =

∑
|Eξj ,ηj |1.

4.2. Dual of C1(H)

Theorem 4.2. The map

B(H) ∋ T 7−→ (X 7−→ Tr(XT )) ∈ C1(H)∗

is a well-defined isometric isomorphism.

Proof. We have |TrXT | ≤ |XT |1 ≤ |X|1 ∥T∥, so X 7→ TrXT is a functional on C1(H) of norm
≤ ∥T∥. Now take φ ∈ C1(H)∗. Then (ξ, η) 7→ φ(Eξ,η) is a sesquilinear form on H with |φ(Eξ,η)| ≤
∥φ∥ |Eξ,η|1 = ∥φ∥ ∥ξ∥ ∥η∥. So there is T ∈ B(H) with ∥T∥ ≤ ∥φ∥ such that φ(Eξ,η) = ⟨Tξ, η⟩. We
have TEξ,η = ⟨·, η⟩Tξ = ETξ,η and TrEξ,η = ⟨ξ, η⟩, so φ(Eξ,η) = Tr(TEξ,η). We saw that we can
write X =

∑
j Eξj ,ηj with

∑
j |Eξj ,ηj |1 = |X|1. We then get Tr(TX) =

∑
j φ(Eξj ,ηj ) = φ(X). So

φ = Tr(·T ) and ∥T∥ ≤ φ. We have already established the other inequality. □

A uwo continuous functional on B(H) is the same as a weak-∗ continuous functional on the dual of
C1(H), i.e. a functional of the form T 7→ Tr(TX) for fixed X ∈ C1(H).

Consequence for von Neumann algebras: Let M ⊆ B(H) be a von Neumann algebra. Then M is uwo
closed, so

M ∼= (C1(H)/M⊥)
∗ = (C1(H)/{X ∈ C1(H) | Tr(aX) = 0 ∀a ∈ M})∗.

Therefore M is the dual of a Banach space and the uwo continuous functionals on M are the weak-∗
continuous functionals in this duality. M is the dual of the uwo continuous functionals on M.

Theorem 4.3 (Sakai). Let M be a unital C∗-algebra. M is C∗-isomorphic to a von Neumann
algebra if and only if M is the dual of a Banach space. The predual is isometrically unique.

Corollary 4.4. Let M1,M2 be von Neumann algebras and α : M1 → M2 an isomorphism of
∗-algebras. Then α is uwo continuous.

Proof. First note that α is necessarily isometric since in a C∗-algebra the norm can be characterized
purely algebraically. Then use uniqueness of the predual. □

5. The Kaplansky Density Theorem

Theorem 5.1. Let A ⊆ M ⊆ B(H) where A is a (not necessarily unital) ∗-algebra, M a von
Neumann algebra. Suppose A is wo dense in M. Then

• A1 is wo dense in M1.
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• Ah,1 (the set of hermitian elements of norm ≤ 1) is wo dense in Mh,1.

• (A+)1 is wo dense in (M+)1.

Proof. We have A
wo

= M. We claim that Ah
wo

= Mh. Indeed, if ai
wo−−→ m = m∗ ∈ Mh, then also

a∗i
wo−−→ m∗ = m ∈ Mh, so

1
2 (ai + a∗i )

wo−−→ m and 1
2 (ai + a∗i ) ∈ Ah. Then also Ah

so
= Mh.

• Ah1
so

= Mh1: Consider the homeomorphism [−1, 1] ∋ t 7→ 2t
1+t2 ∈ [−1, 1]. If t = tanα

with α ∈ [−π
4 ,

π
4 ], then 2t

1+t2 = sin 2α. So given m ∈ Mh,1 there is y ∈ Mh,1 such that

m = 2y(1 + y2)−1. Then there are ai ∈ Ah such that ai
so−→ y. Then (noting 2t

1+t2 =

(t+ i)−1 + (t− i)−1)

2ai(1 + a2i )
−1 − 2y(1 + y2)−1 = (ai + i1)−1 + (ai − i1)−1 − (y + i1)−1 − (y − i1)−1

= (ai + i1)−1(y − yi)(y + i1)−1 + (ai − i1)−1(y − ai)(y − i1)−1.

Now (y−ai)(y+i1)
so−→ 0 and (ai+i1)

−1 is bounded with norm ≤ 1, similarly for the other term,

so the whole thing converges to 0 in the so topology. Next we claim that 2ai(a
2
i+1)−1 ∈ Ah,1

∥·∥
.

For this we can approximate 2t
1+t2 as the uniform limit of polynomials on [−∥ai∥ , ∥ai∥] with

values in [−1, 1]. To accommodate for the non-unital case, note that we may choose the
polynomials to be without constant term because 2·0

1+02 = 0.

• Next A1
wo

= M1. Let m ∈ M1. For this apply the previous result to M2(A) ⊆ M2(M)
acting on H⊕H. Then (

a11,i a12,i
a21,i a22,i

)
wo−−→

(
0 m
m∗ 0

)
with a12,i = a∗21,i. Then A1 ∋ a12,i

wo−−→ m.

• Finally (A+)1
wo

= (M+)1. Let m ∈ M+
1 . Then m1/2 ∈ Mh,1, so there are ai ∈ Ah,1 such

that ai
so−→ m1/2. Then a2i −m = ai(ai−m1/2)− (m1/2−ai)m1/2. As ai is bounded, this goes

to 0 in the so topology.

□

We introduce yet another topology on B(H): The ∗-strong operator topology. We say that xi
∗so−−→ x if

xi
so−→ x and x∗i

so−→ x∗. The proof of the theorem shows that also A1
∗so

= M1.

Corollary 5.2. Let A ⊆ B(H) be a unital ∗-subalgebra. Then A is von Neumann if and only if
A1 is wo (or uwo, so, uso) closed.

Proof. Apply the theorem to M = Awo
. □

Corollary 5.3. Let A ⊆ B(H) be a unital ∗-subalgebra. Then A is von Neumann if and only if
A1 is wo (or uwo) compact.
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Let A be a C∗-algebra. Then A∗∗ can again be made into a C∗-algebra, and it has a predual, so by
Sakai’s theorem, A∗∗ can be realized as a von Neumann algebra.

6. Projections

Let M ⊆ B(H) be a von Neumann algebra and P ∈ B(H) an orthogonal projection. Recall from
earlier that P ∈ M iff PH is invariant under M′.

Let Ξ ⊆ H. Then M′Ξ is an M′-invariant subspace, so PM′Ξ ∈ M and similarly PMΞ ∈ M′. In
particular, if ξ ∈ H, then Eξ := PMξ ∈ M′, E′

ξ := PM′ξ ∈ M.

Definition. Let Ξ ⊆ H.

• Ξ is cyclic for M if MΞ = H.

• Ξ is separating for M if (M ∋ T 7→ (Ξ ∋ h 7→ Th ∈ H)) is injective, i.e. when T ∈ M
with TΞ = 0, then T = 0.

Proposition 6.1. Let Ξ ⊆ H, M a von Neumann algebra. Then Ξ is cyclic for M iff Ξ is
separating for M′.

Proof. Assume MΞ = H and TΞ = 0 with T ∈ M′. Then 0 = MTΞ = TMΞ, so T = 0. Conversely,
suppose Ξ is separating for M′. Then MΞ is M-invariant, so PMΞ ∈ M′, so T := 1 − PMΞ ∈ M′.

Also TΞ = 0, hence T = 0. So 1 = PMΞ, so MΞ = H. □

Definition. Let M be a von Neumann algebra and P ∈ M a projection. Then PMP |PH ⊆
B(PH) is the reduced algebra by P , denoted MP . Similarly M′|PH ⊆ B(PH) is the induced
algebra by P , denoted (M′)P .

Proposition 6.2. MP , (M′)P are von Neumann algebra and they are each other’s commutant.

Proof. We will prove that (M′)P,1 is uwo compact. Consider the map Φ : M′ → (M′)P , given by
Φ(T ) = T |TH. It is a uwo continuous ∗-homomorphism. So Φ(M1) is uwo compact and clearly
Φ(M1) ⊆ (M′)P,1, so it suffices to prove that we have equality in this inclusion. Let T ∈ (M′)P,1.
Then T = S|PH for some S ∈ M′. We have to show that we can find such S with ∥S∥ ≤ 1.
Write S = V (S∗S)1/2. We have (S∗S)1/2|PH = Φ((S∗S)1/2) = (T ∗T )1/2. Consider the function
f : R ∋ t 7→ (t ∨ 0) ∧ 1. Then f((T ∗T )1/2) = (T ∗T )1/2 as ∥T∥ ≤ 1. Also Φ(f((S∗S)1/2)) =
f(Φ((S∗S)1/2)) = (T ∗T )1/2. So Φ(V f((S∗S)1/2)) = T and

∥∥V f(S∗S)1/2
∥∥ ≤ 1. This shows that

(M′)P is a von Neumann algebra.

For the second part note that clearly [PMP, PM′P ] = 0, so ((M′)P )
′ ⊇ MP and we must show the

other inclusion. Take X ∈ ((M′)P )
′ and extend it to H by X̃ = X ⊕ 0(I−P )H. Any Y ∈ M′ has

PH as an invariant subspace, so y = Y1 ⊕ Y1 where Y1 = PH, Y2 = (I − P )H. Then [Y, X̃] = 0, so
X̃ ∈ M′′ = M and then X = PX̃P ∈ MP . □
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7. The non-unital case

Proposition 7.1. Let A ⊆ B(H) be a wo closed ∗-subalgebra, not necessarily with unit. Then

(1) If T ∈ A, then P(kerT )⊥ ∈ A

(2) Let P,Q be self-adjoint projections in A. Then P ∨Q ∈ A.

(3) There is a largest projection E ∈ A and ET = TE = T for all T ∈ A.

(4) If X = AH, then E = PX and A|X is a von Neumann algebra.

Proof. Homework. □

8. Ideals

Proposition 8.1. Let M be a von Neumann algebra and J ⊆ M wo closed.

(1) J is a left ideal of M if and only if J = Me for some projection e ∈ M.

(2) J is a two-sided ideal of M if and only if J = Me for some projection e ∈ Z(M).

Proof.

(1) Let J ⊆ M be a wo closed left ideal. Consider J ∩ J∗. It is a wo closed ∗-subalgebra. Let E
be the largest projection in J ∩ J∗ as in Proposition 7.1. Let m ∈ J . Then m∗m ∈ J ∩ J∗ and
m∗m = Em∗m = m∗m = Em∗mE. Then (m(I − E))∗(m(I − E)) = (I − E)m∗m(I − E) =
m∗m−Em∗m−m∗mE+Em∗mE = 0, so m(I −E) = 0, i.e. m = mE and so J = JE. Then
J = ME.

(2) Let J ⊆ M be a wo closed two-sided ideal. Then by (1), J = MP = QM for some projections
P,Q ∈ M. Then P = QP = Q and so (I − P )MP = 0 = PM(I − P ). Therefore [P,M] = 0,
so P ∈ Z(M).

□

9. Murray-von Neumann equivalence

Let M be a von Neumann algebra and let P(M) denote its subset of projections.

Definition. Given e, f ∈ P(M), write e ∼ f and say that e, f are Murray-von Neumann equiva-
lent if e = v∗v, f = vv∗ for some partial isometry v ∈ Ma

aA partial isometry is an element v ∈ M for which v∗v, vv∗ are projections. Equivalently, it is unitary on some
closed subspace of H and 0 on its complement. Equivalently v = vv∗v.

Spatially this means: eH, fH are closed invariant subspaces under U(M′) and there is a unitary
map eH → fH commuting with U(M′). In other words eH, fH are unitarily equivalent as U(M′)-
representations.



12

We write e ≺ f if e = v∗v and f ≥ vv∗. In other words eH embeds isometrically into fH as U(M′)-
representations.

Proposition 9.1. Some properties of ∼,≺.

(1) ∼ is an equivalence relation.

(2) ≺ is transitive.

(3) If e, f ∈ P(M), then there is a projection P ∈ Z(M) such that eP ≺ fP and e(I − P ) ≻
f(I − P ).

(4) (Schröder-Bernstein type property) If e ≺ f and e ≻ f , then e ∼ f .

Proof.

(1) Spatially obvious.

(2) Spatially obvious.

(3) We will use a lemma and some definitions. Let x ∈ M. Then Mx
wo

= MP(ker x)⊥ . We

let r(x) := P(ker x)⊥ be the right support of x. Similarly xMwo
= P(ker x∗)⊥M and l(x) :=

P(ker x∗)⊥ = PxH is the left support of x. Also MxMwo
= MZ(x) where Z(x) is the central

support of x.

Lemma. Let e, f ∈ P(M). TFAE:

(i) There is a partial isometry v ̸= 0 such that v∗v ≤ f, vv∗ ≤ e.

(ii) eMf ̸= 0.

(iii) Z(e)Z(f) ̸= 0.

Proof. “(i) ⇒ (ii)” We have 0 ̸= v = evf ∈ eMf . “(ii) ⇔ (iii)” We have 0 ̸= eMf iff

MeMMfM ̸= 0 iff 0 ̸= MeMwoMfMwo
iff 0 ̸= MZ(e)MZ(f) iff 0 ̸= MZ(e)Z(f)M iff

0 ̸= Z(e)Z(f). “(ii) ⇒ (i)” Suppose emf ̸= 0 for some m ∈ M. Then let emf = va be its
polar decomposition. Then vv∗ ≤ e and v∗v = P(ker emf)⊥ ≤ P(ker f)⊥ = f . □

We now prove (3). Let (ei)i∈I , (fi)i∈I be a maximal pair of families of pairwise orthogonal

projections in P(M)\{0} such that ei ≤ e, fi ≤ f and ei ∼ fi. Then consider ẽ =
∑
i∈I ei, f̃ =∑

i∈I fi, e0 = e − ẽ, f0 = f − f̃ . By maximality and the lemma we have Z(e0)Z(f0) = 0. Let

P = Z(f0). Then eP = ẽP + e0P = ẽP and fP = f̃P + f0. Let ei ∼ fi via vi. Then ẽ ∼ f̃ via

u =
∑
vi. Then also ẽP ∼ f̃P . Then eP = ẽP ∼ f̃P = fP − f0 ≤ fP , so eP ≺ fP . Similarly

e(I − P ) = ẽ(I − P ) + e0(I − P ) and f(I − P ) = f̃(I − P ) + f0(I − P ) = f̃(I − P ) and we get
e(I − P ) ≻ f(I − P ).

(4) Let v, w be partial isometries such that vv∗ ≤ e, v∗v = f and ww∗ ≤ f, w∗w = e. Let
e0 = e− vv∗, f0 = f −ww∗. Inductively define fn+1 = wenw

∗, en+1 = vfnv
∗. Then one proves

e0 ⊥ ej and f0 ⊥ fj for all j > 0. Furthermore, e0e1 · · · en and ej are pairwise orthogonal for
j > n and similarly for the fi. Let e∞ = e −

∑
n≥0 en and f∞ = f −

∑
n≥0 fn. Note that
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en ∼ fn+1 as wenw
∗ = fn+1 and also e ∼ f −f0 via w, so we get e∞ ∼ f∞ with we∞w

∗ = f∞.
Now write e =

∑
k≥0(e2k + e2k+1) + e∞ ∼

∑
k≥0(e2k+1 + e2k+2) + e∞ = e− e0 ∼ f .

□

10. Parallelogram rule

Theorem 10.1. Let e, f ∈ P(M). Then:

(a) e ∨ f − e ∼ f − e ∧ f .

(b) e− e ∧ (1− f) ∼ f − f ∧ (1− e).

Lemma 10.2.

(i) For any x ∈ M, l(x) ∼ r(x) by the partial isometry in the polar decomposition.

(ii) Pker ef = (1− f) + (1− e) ∧ f and P(ker ef)⊥ = f − (1− e) ∧ f .

Proof. Exercise. □

Proof of Theorem 10.1.

(a) f − e∧ f = f − (1− (1− e))∧ f (b)∼ (1− e)− (1− f)∧ (1− e) = (1− e)− (1− f ∨ e) = e∨ f − e.

(b) f − (1− e) ∧ f = r(ef) ∼ l(ef) = r(fe) = e− (1− f) ∧ e.

□

11. More stuff on projections...

Definition. e ∈ P(M) is called finite if whenever e1 ∈ P(M) is such that e1 ≤ e, e1 ∼ e, then
e1 = e. If e is not finite, then e is infinite.

Note that if e is finite and f ≤ e, then also f is finite. Indeed, if f ∼ f1, f1 ≤ f , then e ∼ (e− f) + f1
and e− f + f1 ≤ e, so e− f + f1 = e and then f = f1.

We make some simplifying assumptions: Assume H is separable. We also assume that M is a factor.

Proposition 11.1. Let e ∈ P(M) be infinite. Then e = e1 + e2 + . . . where the e1, e2, . . . are
pairwise orthogonal and e1 ∼ e2 ∼ e3 ∼ . . . .

Proof. Omitted. □

Corollary 11.2. e ̸= 0 is infinite if and only if e = e′ + e′′ with e ∼ e′ ∼ e′′.

Proof. “⇐” is clear, for the other implication take e′ = e1 + e3 + e5 + . . . and e′′ = e2 + e4 + e6 + . . .
as in the proposition. □
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Proposition 11.3. If e, f ∈ P(M) are finite, then so is e ∨ f .

Proof.

Step 1. e, f can be assumed to be orthogonal. Indeed, e ∨ f = (e ∨ f − e) + e ∼ (f − e ∧ f) and
e ∨ f − e is finite as it is ∼ f − e ∧ f ≤ f . Also e ∨ f − e ⊥ e.

Step 2. Assume e ∨ f = e + f is infinite, ef = 0. Then by the corollary, e + f = p + q where
p ∼ q ∼ p + q = e + f . Note that automatically pq = 0. Since M is a factor, all projections are
comparable, so we can assume e ∧ p ≺ q ∧ f . We will prove p ≺ f which contradicts f finite and p
infinite. We have

p = e ∧ p+ (p− e ∧ p)
∼ e ∧ p+ (e ∨ p− e)

≺ q ∧ f + (e ∨ p− e) e ∨ p− e ⊥ q ∧ f as q ⊥ p, f ⊥ e

Now note that e ∨ p− e ≤ e+ f − e = f , so both projections are ≤ f and we get p ≺ f .

□

For the following definition we don’t make any assumptions on H,M.

Definition. Let e ∈ P(M).

• e is minimal if eMe = Ce.

• e is abelian if eMe is abelian.

• e is semi-finite if e =
∨
{f | f ≤ e, f finite}.

Examples.

• In B(H) the minimal projections are PCξ with ξ ∈ H.

• Suppose M = B(H)⊕ B(H). Then PCξ ⊕ PCη is an abelian projection.

• Suppose H is a separable (not necessary) infinite dimensional Hilbert space. Then I ∈
B(H) is semifinite.

Definition. Let M be a factor, H separable.

• M is of type I if M has a minimal projection.

• M is finite if I is a finite projection.

• M is semi-finite if there is a finite projection 0 ̸= e ∈ M.

• M is of type II1 if M is finite and has no minimal projection.

• M is of type II∞ if I is not finite, but semi-finite, and M has no minimal projection.

• M is of type III if it has no finite projection.
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An example of a type II∞ factor is N ⊗ B(ℓ2) where N is of type II1.

Theorem 11.4. Any type I algebra is isomorphic to B(H) for some Hilbert space H.

Proposition 11.5. Let M be a type I factor and e0 ∈ M a minimal projection. Let (ej)j∈J
be a maximal family of pairwise orthogonal projections such that ej ∼ e0 for all j ∈ J . Then∑
j∈J ej = I.

Proof. Proof. Let f = I −
∑
j∈J ej . Assume f ̸= 0. Since M is a factor, either e0 ≺ f or f ≺ e0. In

the second case we also get e0 ≺ f as e0 is minimal, so can assume e0 ≺ f . Then v∗v = e0, vv
∗ ≤ f

for some partial isometry v. Add the projection vv∗ to (ej)j∈J . Then the new family is still pairwise
orthogonal and vv∗ ∼ e0, contradicting maximality. □

So we get I =
∑
j∈J ej . Let vj be a partial isometry from e0 to ej . Put eij = viv

∗
j . This is a partial

isometry from ei to ej . We have eijekl = δjkeil, e
∗
ij = eji, eii = ei and

∑
eii = I.

Now one can put all these ej together to get an isomorphism M ∼= B(H′) for some Hilbert space H′.

Pick i0 ∈ J . Then ei0H is cyclic for M. There is a partial isometry from ei0H to ejH. We have
Mei0H ⊇ ejH for all j. Then ei0H is separating for M′. M′ is isomorphic to (M′)ei0 and the

commutant is Mei0
= ei0Mei0 |ei0H = CIei0H and (M′)ei0 = B(ei0H). Then consider ℓ2(J)⊗ei0H

U−→
H given by εi ⊗ h 7→ vih. Then one gets (M,M′) ∼ (B(ℓ2(J))⊗ Iei0H, Iℓ2(J) ⊗ B(ei0H)). □

Now suppose M is a type II1 factor, so M has no minimal projection and I is finite. Hence every
projection in M is finite. Note that equivalently, I is finite and M is infinite dimensional.

Recall that a state on a C∗-algebra A is a positive functional φ : A → C of norm 1. It is tracial (or a
trace) if φ(xy) = φ(yx). It is faithful if τ(x∗x) = 0 implies x = 0.

Lemma 11.6. Let M be a von Neumann algebra, τ : M → C a faithful trace. Then any
0 ̸= e ∈ P(M) is finite. If M is a factor, then e ≺ f if and only if τ(e) ≤ τ(f), and e ∼ f if and
only if τ(e) = τ(f).

Proof. Suppose e ∼ f . Then e = vv∗, f = v∗v for some partial isometry v and τ(vv∗) = τ(v∗v), so
τ(e) = τ(f). Suppose e ≺ f . Then e ∼ e1 ≤ f . Then τ(e) = τ(e1) and τ(e1) + τ(f − e1) = τ(f).
But note that τ(f − e1) = τ((f − e1)

∗(f − e1)) > 0 if f − e1 ̸= 0. So we get τ(e) ≤ τ(f) and if
τ(e) = τ(f) we get e ∼ f . For the reverse implication use that M is a factor, so that all projections
are comparable. □

12. Example: Groups

Let G be a group and consider ℓ2(G) with ONB (εg)g∈G. For g ∈ G, let λ(g) ∈ B(ℓ2(G)) be defined
by λ(g)εh = εgh. λ(g) is unitary, λ(g1)λ(g2) = λ(g1g2), λ(g)

∗ = λ(g−1) and λ(e) = I. This is the left
regular representation. Similarly, define the right regular representation ρ by ρ(g)εh = εhg−1 .
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Proposition 12.1. Let M be the weak operator closure of the linear span of λ(G) ⊆ B(H).
Similarly let N be the wo closure of the span of ρ(G). Then

(i) M,N are von Neumann algebras and [M,N ] = 0. εe is cyclic and separating for M and
N . τ(T ) = ⟨Tεe, εe⟩ defines a faithful positive trace on M.

(ii) M′ = N and N ′ = M.

(iii) M is a factor if and only if G has the infinite conjugacy class property (icc), meaning
that every non-identity conjugacy class is infinite.

Proof.

(i) Let A be the linear span λ(G). This is clearly a ∗-subalgebra in B(ℓ2(G)). Then of course

Awo
= A′′ is von Neumann. We have [spanλ(G), spanλ(H)] = 0 because λ(g)ρ(h)εk =

λ(g)εkh−1 = εgkh−1 = ρ(h)λ(g)εk. Then take wo closure (need to be a bit careful) and get
[M,N ] = 0. Let ξ = εe. Clearly ξ is cyclic for M,N . Therefore it is separating for M′,N ′.
As M ⊆ N ′,N ⊆ M′, it is also separating for M,N . Take x ∈ M. Then there is a net

(xι)ι∈Λ in A such that xι
so−→ x. Recall from the Kaplansky density theorem, we can assume

that also x∗ι
so−→ x∗. Then we get ∥xιξ∥2 → ∥xξ∥2 and ∥x∗ι ξ∥

2 → ∥x∗ξ∥2, so τ(x∗ιxι) → τ(x∗x)
and τ(xιx

∗
ι ) → τ(xx∗). So if we show τ(y∗y) = τ(yy∗) for y ∈ A, then we get that this

also holds for y ∈ M. So let y =
∑
cgλ(g) where only finitely many cg are non-zero. Then

y∗ =
∑
cgλ(g

−1) =
∑
cg−1λ(g). Then τ(y∗y) = ∥yξ∥2 =

∑
|cg|2 = ∥y∗ξ∥2 = τ(yy∗). Then

for hermitian a, b we get τ(ab) = τ(ba) by looking at x = a+ bi, and therefore τ is a trace. τ
is clearly positive. It is faithful because ξ is separating for M.

(iii) Let T ∈ M. Then T ∈ Z(M) if and only if [T, λ(g)] = 0 for all g ∈ G. Also [T, λ(g)] = 0 if and
only if λ(g−1)Tλ(g) = T . Since ξ is separating, T ∈ Z(M) if and only if λ(g−1)Tλ(g)ξ = Tξ
for all g ∈ G. Write Tξ =

∑
chεh with

∑
|ch|2 <∞. Then

λ(g−1)Tλ(g)ξ = λ(g−1)Tεg = λ(g−1)Tρ(g−1)ξ = λ(g−1)ρ(g−1)Tξ

=
∑
h

chλ(g
−1)ρ(g−1)εh =

∑
h

chεg−1hg =
∑
h

cghg−1εh.

So λ(g−1)Tλ(g)ξ = Tξ holds for all g ∈ G if and only if cghg−1 = ch for all g, h ∈ G, i.e. h 7→ ch
is central (invariant under conjugation). If G is icc, then if h 7→ ch is central and (ch)h∈G ∈ ℓ2,
then ch = cδhe, so T = cI. So if G is icc, then Z(M) = CI. Conversely, if G is not icc, some
conjugacy class X ⊆ G with e /∈ X is finite. Then

∑
g∈X λ(g) is a non-trivial central operator

in M, the map h 7→ ch is χX .

(ii) To prove M = N ′,N = M′ it suffices to show [M′,N ′] = 0. Indeed, then we get N ⊆ M′ ⊆
(N ′)′ = N and M ⊆ N ′ ⊆ (M′)′ = M. How to describe T ∈ N ′ using Tξ ∈ ℓ2(G)? We know
that T 7→ Tξ is injective because ξ is separating for N ′. Put η = Tξ. Then

Tεh = Tρ(h−1)ξ = ρ(h−1)Tξ = ρ(h−1)η.

Depending on η ∈ ℓ2(G), when does this define a bounded operator? We must have∥∥∥∥∥∑
h∈G

chρ(h
−1)η

∥∥∥∥∥ ≤ C
(∑

|ch|2
)1/2
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for some constant C > 0. Not all η will satisfy this. If this holds, denote T by Lη. Similarly
if T ∈ M′ and Tξ = ζ, then

Tεh = Tλ(h)ξ = λ(h)ζ,

and the operator
∑
chεh 7→

∑
chλ(h)ζ, denoted Rζ , is bounded, i.e. we have∥∥∥∥∥∑

h∈G

chλ(h)ζ

∥∥∥∥∥ ≤ C
(∑

|ch|2
)1/2

.

We need to show [Lη, Rζ ] = 0. Equivalently, ⟨Rζεh, L∗
ηεk⟩ = ⟨Lηεh, R∗

ζεk⟩. So we need

formulas for R∗
ζ , L

∗
η
1. Since Lη ∈ N ′, L∗

η ∈ N ′ and so L∗
η = Lη∗ for some η∗ ∈ ℓ2(G). We have

⟨η∗, εk⟩ = ⟨L∗
ηξ, εk⟩ = ⟨ξ, Lηεk⟩ = ⟨ξ, ρ(k−1)η⟩. Write η =

∑
cgεg, so ⟨η∗, εk⟩ = ck−1 and then

η∗ =
∑
cg−1εg. Same type of formula for ζ∗, so that R∗

ζ = Rζ∗ . Write ζ =
∑
bhεh, so that

ζ∗ =
∑
bh−1εh. Then

⟨Rζεh, Lη∗εk⟩ = ⟨
∑

bgεhg,
∑

cg−1εgk⟩

=
∑
hg=gk

bgcg−1

=
∑
gh=kg

cgbg−1

= ⟨
∑

cgεgh,
∑

bg−1εkg⟩
= ⟨Lηεh, Rζ∗εk⟩.

□

Example. Let S∞ denote the group of permutations of N fixing all but finitely many elements.
Then S∞ has icc.

13. Type II∞ factors

Proposition 13.1. Let M be a factor, p ∈ P(M). Then Mp = pMp|pH is a factor.

Proof. Show that if 0 ̸= x ∈ Mp, then MpxMp
so

= Mp. We have MpxMp
so

= pMpxpMp
so

=

pMxMso
p = pZM(x)Mp = pMp = Mp. □

Let M be a type II∞ factor, so I is infinite, M has no nontrivial minimal projections and has a
nontrivial finite projection.

Let p ∈ P(M) be a non-zero finite projection. Then pMp|pM is a factor and its identity is a finite
projection. It has no minimal projection, so Mp is a type II1 factor. There is a maximal family
(pι)ι∈J of pairwise orthogonal projections with pι ∼ p,

∑
ι∈J pι = I.

Conclusion: M is isomorphic to Mp ⊗ B(ℓ2(J)).

1L.T.: It seems to me that directly verifying LηRζεh = RζLηεh is also not difficult, perhaps even quicker.
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Remark. (M⊗N )′ = M′ ⊗N ′ (non-trivial!). First solved as application of Tomita-Takesaki theory.
Later simpler proofs were found.

14. Complements about GNS construction

LetA be a unital C∗-algebra. Let φ : A → C be a bounded positive linear functional. A is a left module
over itself. Recall that in the GNS construction we define the semi inner product ⟨a, b⟩φ = φ(b∗a) with
a, b ∈ A. Let Hφ be the associated Hilbert space and ξφ = 1A ∈ Hφ. Then let πφ be the representation
on Hφ of A given by πφ(a)a1 = aa1. ξφ is a cyclic vector for πφ.

If ρ is some other representation of A on a Hilbert space K with cyclic vector η such that ⟨ρ(a)η, η⟩ =
φ(a), then these are unitarily equivalent, i.e. there is an unitary equivalence U : Hφ → K such that
Uξφ = η and Uπφ(a) = ρ(a)U .

Lemma 14.1. Let ψ,φ : A → C with φ ≥ ψ ≥ 0. Then there is map T : Hφ → Hψ with ∥T∥ ≤ 1,
Tπφ(a) = πψ(a)T and Tξφ = ξψ. Also T ∗πψ(a) = πφ(a)T

∗.

Lemma 14.2. Let A be a unital C∗-subalgebra of B(H). Suppose ξ, η ∈ H are such that φ ≥
0 where φ(a) = ⟨aξ, η⟩. Then there is a ζ ∈ H so that φ(a) = ⟨aζ, ζ⟩ and (Hφ, πφ, ξφ) ∼=
(Aζ,A|Aζ , ζ).

Proof. Let a ∈ A with a ≥ 0. Then φ(a) = 1
4 (⟨a(ξ+ η), (ξ+ η)⟩− ⟨a(ξ− η), ξ− η⟩) (the other terms in

the polarization identity cancel because φ(a) ∈ R). Then 0 ≤ φ ≤ ψ where ψ(a) = 1
4 ⟨a(ξ+η), (ξ+η)⟩.

Then (Hψ, πψ, ξψ) ∼= (A ξ+η
2 ,A|

A ξ+η
2

, ξ+η2 ). Denote the restriction a|
A ξ+η

2

by ρ(a) for a ∈ A (i.e. the

action of A on A ξ+η
2 ). Let T : A ξ+η

2 → Hφ be the map from the previous lemma. Then

φ(a) = ⟨πφ(a)ξφ, ξφ⟩ = ⟨πφ(a)T
ξ + η

2
, T
ξ + η

2
⟩

= ⟨T ∗πφ(a)T
ξ + η

2
,
ξ + η

2
⟩

= ⟨ρ(a)T ∗T
ξ + η

2
,
ξ + η

2
⟩

[T∗T,ρ(A)]=0
= ⟨ρ(a)(T ∗T )1/2

ξ + η

2
, (T ∗T )1/2

ξ + η

2
⟩.

So take ζ = (T ∗T )1/2 ξ+η2 . □

Proposition 14.3. Let M ⊆ B(H) be a von Neumann algebra. Let φ : M → C be uwo continuous
and φ ≥ 0. Then there is a ζ =

∑
k ζk ⊗ ek ∈ H ⊗ ℓ2(N) so that

φ(m) = ⟨(m⊗ Iℓ2)ζ, ζ⟩ =
∑
k∈N

⟨mζk, ζk⟩.

where ζk ∈ H,
∑
k ∥ζk∥

2
<∞. Moreover, πφ : M → B(Hφ) is continuous if both spaces carry the

uwo topology, and same for the uso topology.
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Proof. Consider M⊗ Iℓ2(N) acting on H⊗ ℓ2(N). Since φ is uwo continuous, there are ξ, η ∈ H⊗ ℓ2(N)
such that φ(m) = ⟨(m⊗ Iℓ2(N))ξ, η⟩ for all m ∈ M. Now apply the lemma. So there is ζ ∈ H ⊗ ℓ2(N)
such that φ(m) = ⟨(m⊗ Iℓ2(N))ζ, ζ⟩.

For the last part: (Hφ, πφ, ξφ) is unitarily equivalent to ((M⊗ Iℓ2(N))ζ, restriction to ..., ζ). The re-
striction to a subspace is clearly uwo continuous. □

Remark. If instead of uwo we have wo continuous, then we can use H ⊗ Cn instead of H ⊗ ℓ2(N).
Then πφ is wo/so continuous.

15. Traces on Type II1 Factors

Theorem 15.1. Let M be a type II1 factor. Then there is an uwo continuous linear functional
τ : M → C such that τ(1) = 1, τ(x∗x) ≥ 0, τ([x, y]) = 0. Furthermore, τ is faithful and unique
and τ(P(M)) = [0, 1].

15.1. Idea of construction of τ

Idea: Construct a “dimension function” on P(M), i.e. a function δ : P(M) → [0, 1] such that:

• If P ∼ Q, then δ(P ) = δ(Q),

• If P ⊥ Q, then δ(P +Q) = δ(P ) + δ(Q).

Recursively define projections: Take a projection Pn. Since M has no minimal projection, we can
write Pn = P ′

n + P ′′
n with P ′

n ≺ P ′′
n and P ′

n, P
′′
n ̸= 0 and then set Pn+1 = P ′

n.

Let Q,P ∈ P(M). Take (Tι)ι∈J a maximal family of pairwise orthogonal projections such that∑
ι∈J Pι ≤ Q and Pι ∼ P . Since Q is finite, we must have |J | < ∞. Put [Q : P ] = |J |. This is

well-defined (omitted). Now do something like

lim
n→∞

[P : Pn]

[I : Pn]
,

this is a candidate for δ(P ).

Next observe that P(M) has linear span norm-dense in M. Extend δ by linearity to get τ .

Proposition 15.2. τ is faithful, i.e. if τ(x∗x) = 0, then x = 0.

Proof. Let J = {x ∈ M | σ(x∗x) = 0}. Since τ is a trace, if x ∈ J , then x∗ ∈ J . If x ∈ J, y ∈ M,

we have 0 ≤ τ((yx)∗yx) = τ(x∗(y∗y)x) ≤ τ(x∗ ∥y∥2 1x) = ∥y∥2 τ(x∗x) = 0. So J is a left-ideal, and
then also a right ideal since it is a ∗-ideal. If x ∈ J , ε > 0, then E([ε,∞), x∗x) ∈ J (e.g. because this
is f(x∗x)x∗x for f : R>0 → R given by f(t) = 1

t if t ≥ ε and 0 otherwise). So if J ̸= 0, there is a
projection 0 ̸= P ∈ J . Then I = P1 + · · ·+ Pn + Pn+1 where Pj ∼ P for j ≤ n and P ≻ Pn+1. Write
Pj = vjPv

∗
j where Pj ∼ P via vj . Write Pn+1 = w∗w with P ≥ ww∗, so Pn+1 = wPw∗. Then we get

P1, . . . , Pn+1 ∈ J , and therefore I ∈ J , so J = M. But this is impossible since τ ̸= 0. □

Note that this proof shows that in a II1 factor any (algebraic) two-sided ideal is either 0 or M.



20

Proposition 15.3. Let τ : M → C be as above. Then

(a) τ is unique.

(b) τ(P(M)) = [0, 1].

Proof.

(a) Recall the construction of Pn. First show that τ |P(M) is unique. Fix n. If Q ∈ P(M), write

Q =
∑
ι∈J Pι + P̃ with Pι ∼ Pn and P̃ ≺ Pn. Then τ(Pn)|J | ≤ τ(Q) ≤ τ(Pn)(|J |+ 1). Apply

this to I = Q =
∑
ι∈J̃ P̃ ι +

˜̃P to get τ(Pn)|J̃ | ≤ 1 ≤ τ(Pn)(|J̃ |+ 1). We get

τ(Q) ∈
[ |J |
|J̃ |+ 1

,
|J |+ 1

|J̃ |

]
.

Also |J̃ | ≥ 2n+1, hence τ |P(M) is unique.

Next, for x ≥ 0 consider

1

n

∞∑
k=1

E([
k

n
,∞), x) ≤ x ≤ 1

n
+

1

n

∞∑
k=1

E([
k

n
,∞), x).

Note that the sums are actually finite. Therefore τ |P(M) determines τ on the set of positive
elements, and hence everywhere.

(b) Let λ ∈ (0, 1). Construct recursively

P (1) ≤ P (2) ≤ · · · ≤ P (n) ≤ Q(n) ≤ Q(n−1) ≤ · · · ≤ Q(1)

with τ(P (n)) ≤ λ ≤ τ(Q(n)) and Q(n)−P (n) = E1+· · ·+Em+Em+1, Ej ∼ Pn for j = 1, . . . ,m

and Em+1 ≺ Pn. Take k such that τ(P (n)+E1+ · · ·+Ek) < λ < τ(Q(n)−Ek+2−· · ·−Em+1).
Let

∨
P (n) = P,

∧
Q(n) = Q. Then τ(P ) ≥ τ(P (n)) ≥ λ− τ(Pn) and τ(Q) ≤ λ+ σ(Pn).

□

15.2. Kadison-Fuglede positive determinant

Let M be a type II1 factor. Take x ∈ GL1(M). Set ∆(x) = exp(τ(log(x∗x)1/2)). It is true that
∆(xy) = ∆(x)∆(y).

16. The Standard Form of a von Neumann algebra with a faithful uwo-continuous
tracial state

Theorem 16.1. Let M be a von Neumann algebra with a faithful uwo continuous tracial state τ
and consider the GNS construction (Hτ , πτ , ξτ ). πτ (M) is a von Neumann algebra isomorphic to
M as a C∗-algebra with uwo-topology with remarkable spatial properties:

• ξτ is a cyclic and separating vector for πτ (M).

• (πτ (M))′ is isomorphic to Mop, the C
∗-algebra with opposite multiplication and with the

same predual as M.
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• The isomorphism with the opposite algebra has a spatial implementation by a conjugate-
linear unitary operator Jτ with J2

τ = I and the antiisomorphism with the commutant is
πτ (M) ∋ a 7→ Ja∗J ∈ πτ (M)′.

Definition. If N is a ∗-algebra on H, a vector ξ ∈ H is a tracial vector if ∥nξ∥ = ∥n∗ξ∥ for all
n ∈ N .

The first step toward the proof of the theorem will be to show that via the GNS construction we can
pass to the situation of a von Neumann algebra with a cyclic tracial vector.

Remarks.

• ξ is a tracial vector iff ωξ : N → C, ωξ(n) = ⟨nξ, ξ⟩ is a trace.

• If ξ is a cyclic tracial vector, then ξ is separating. Indeed, if nξ = 0, then n1nξ = 0 for all
n1 ∈ N , so n∗n∗1ξ = 0 as ξ is tracial, and then n∗N ξ = 0, so n∗ = 0, so n = 0.

Back to τ : M → C uwo-continuous faithful tracial state. We first show that πτ (M) is a von Neumann
algebra. Here are the steps:

1. ξτ is a tracial vector for the C∗-algebra πτ (M).

2. ξτ is cyclic by GNS, so also separating.

3. ∥m∥ = ∥πτ (m)∥. Indeed, τ is faithful, so πτ is injective, and an injective ∗-homomorphism of
C∗-algebras is isometric.

4. πτ (M) is a von Neumann algebra: πτ is uwo continuous because τ is uwo continuous. By 3,
(πτ (M))1 = πτ (M1), hence (πτ (M))1 is uwo compact and hence Corollary 5.3, πτ (M) is a
von Neumann algebra.

5. Actually πτ (M) and M are not only isomorphic as rings with involution via πτ , but also
ultraweakly (and still via πτ ). Indeed, πτ being uwo continuous, the predual of πτ (M) identi-
fieswith a closed subspace (isometrically) of the predual of M. But the predual is unique, so
they must coincide.

So we reduced to the case of a von Neumann algebra with a tracial vector producing the tracial state,
we are for the rest in this situation: M is a von Neumann algebra on H, with cyclic tracial vector
ξ. We define J : H → H by Jmξ = m∗ξ and extend the definition to H by continuity, since J is
isometric. Since J2 = I, we also have that J is invertible. So J is a conjugate-linear unitary operator.
We call J an antiunitary operator.

Remark. Aside: How to handle conjugate-linear operators. Let X : H1 → H2 be a bounded
conjugate-linear operator. We can view X as a linear operator X : H1 → (H2)c where Hc

is the Hilbert space with the same underlying real vector space of H, but λ · hc = (λh)c and

⟨hc, h′c⟩ = ⟨h, h′⟩. So then X : H1 → H2,c becomes unitary. For a conjugate-linear operator, the
adjoint is defined as the adjoint of the operator X : H1 → H2,c. Thus ⟨Xh1, h2⟩c = ⟨h,X∗h2⟩ or
⟨Xh1, h2⟩ = ⟨h,X∗h2⟩.

For anti-unitaries when we polarize the isometricity relation, we get ⟨Xh,Xk⟩ = ⟨h, k⟩.
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Introducing λ(m), ρ(m). If m ∈ M, we will also denote m by λ(m). The reason is that λ(m)m1ξ =
(mm1)ξ. We define ρ(x) = Jλ(x∗)J . Since there are two J ’s, this is a linear operator and ρ(cx) = cρ(x).
We have

ρ(m1)mξ = Jλ(m∗
1)Jmξ = Jλ(m∗

1)m
∗ξ = Jm∗

1mξ = mm1ξ.

So ρ(m1) is “right multiplication by m1” on Mξ ∼ M. [Actually often in this situation one identifies
H with L2(M, τ) which we may view as another notation for the GNS Hilbert space mξ → m. Then
λ(m) and ρ(m) are left and right multiplication and ρ is a representation of Mop.]

Theorem 16.2. Let M be a von Neumann algebra on H, ξ a cyclic tracial vector, J closure of
mξ 7→ m∗ξ. Then

JMJ =M ′.

This will finish the proof of ??.

Remark. JMJ is actually by the definition of ρ just ρ(M).

Proof.

1. ξ is cyclic and separating for M′ (as it is separating and cyclic for M).

2. ρ(M) ⊆ M′. Indeed, ρ(m1)λ(m2)mξ = · · · = λ(m2)ρ(m1)mξ, hence [ρ(m1), λ(m2)]Mξ = 0,
so the commutator is 0.

3. The main idea of the proof will be to show Jzξ = z∗ξ if z ∈ M′. Indeed, this would have the
following consequences:

(i) ∥zξ∥ = ∥z∗ξ∥ for z ∈ M′ so that ξ is a tracial cyclic and separating vector M′ ⊇ ρ(M).

(ii) The map J closure of zξ 7→ z∗ξ for z ∈ M′ is the same as the map we got from M. Then
we get JM′J ⊆ (M′)′ = M, hence M = J(JMJ)J = Jρ(M)J ⊆ JM′J ⊆ M, so that
JM′J = M or equivalently M′ = JMJ .

4. Prove that Jzξ = z∗ξ for z ∈ M′. Let m ∈ M, z ∈ M′. Then

⟨mξ, zξ⟩ = ⟨z∗ξ,m∗ξ⟩ = ⟨z∗ξ, Jmξ⟩ = ⟨Jz∗ξ, J2mξ⟩

= ⟨Jz∗ξ,mξ⟩ = ⟨mξ, Jz∗ξ⟩.

Since Mξ is dense in H, we get zξ = Jz∗ξ.

□

Corollary 16.3. Let M be a von Neumann algebra with cyclic tracial vector. Then Mop ∼ M′.

Note that moreover, x ∈ Z(M) =⇒ Jx∗J = x. Indeed, Jx∗Jmξ = Jx∗m∗ξ = mxξ = xmξ and
Mξ = H.

Definition. A von Neumann algebra M on H is in standard form if there is J : H → H,
anti-unitary, with J2 = I such that JMJ = M′ and Jx∗J = x if x ∈ Z(M).
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Remarks.

• It is a fact: Every von Neumann algebra has a standard form [i.e. there is an uwo contin-
uous representation π of M which is an isomorphism of C∗-algebras and so that π(M) is
in standard form]

• The von Neumann algebra (λ(G))′′ of a group is isomorphic to its opposite, since G ∼ Gop

(via g 7→ g−1).

• There is a II1 factor M so that M ̸∼ Mop (due to Connes).

Example (to HW 6). Suppose U, V are unitaries (on some Hilbert space) such that UV =
V Ue2πiθ for some irrational θ. Let Aθ be the C∗-algebra generated by them. E.g. on L2(S1)
consider g 7→ g(z)z and g(·) 7→ g(·e2πiθ). Suppose τ : Aθ → C is a trace state. The closed linear
span of the UmV n, m,n ∈ Z, is Aθ. We have τ(UmV n) = τ(V nUm) = e±2πimnθτ(UmV n). So
if mn ̸= 0, then τ(UmV n) = 0. Also one shows that τ(Un) = 0 = τ(V m) for n,m ̸= 0. (e.g.
θ(U) = θ(V ∗UV ) = . . . similar argument as before).

17. Isomorphisms of von Neumann Algebras

There are two kinds of isomorphisms of von Neumann algebras. Let Mk be von Neumann algebras on
Hilbert spaces Hk, k = 1, 2.

(a) M1 and M2 are isomorphic as C∗-algebras and the isomorphism is a homeomorphism w.r.t.
their uwo topologies. We already saw that the Sakai Theorem and the uniqueness of predual
in its statement implies that M1 and M2 are isomorphic in this sense if M1 and M2 are
isomorphism as C∗-algebras. Actually, even more, it suffices that M1,M2 are isomorphic as
∗-algebras (purely algebraically). We will refer sometimes to such isomorphisms as non-spatial.

(b) M1 and M2 are spatially isomorphic if there is a unitary operator U : H1 → H2 so that
M1 = U∗M2U .

The following theorem says that abstract isomorphisms can turned into spatial isomorphisms in a
suitable way.

Theorem 17.1. If ρ : M1 → M2 is an uwo continuous isomorphism, then there is a Hilbert space
X and a projection P ∈ (M1⊗IX )′ = M′

1⊗B(X ) (amplification) which is separating for M1⊗IX
(i.e. P (H1 ⊗ X ) is separating) and so that there is a unitary operator V : P (H1 ⊗ X ) → H2 for
which

ρ(m) = V ((m⊗ IX )|P (H1⊗X ))V
∗

for m ∈ M1. If H2 is separable, one may choose X = ℓ2(N).

Conversely, a homomorphism of M1 defined in this way (i.e. ampliation and restriction to a sep-
arating reducing subspace) has as range a von Neumann algebra and is an ultraweak isomorphism
of the two.
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Lemma 17.2. Let M be a von Neumann algebra on H, π : M → B(H2) a C∗-homomorphism,
ker ρ = 0, π uwo continuous. Then π(M) is a von Neumann algebra and M and π(M) are uwo
isomorphic via π.

Proof of Theorem 17.1. The converse is a direct application of the lemma, hence clear. For the other
direction, the idea is to decompose H2 into M2-cyclic subspace, they correspond to GNS constructions,
then pullback states to M1. See notes for rest. □

18. The hyperfinite II1 factor

Here all Hilbert spaces will be assumed to be separable. For every n ≥ 1, letMn =Mn×n(C) = B(Cn).
For n | m, fix the embedding Mn ↪→ Mm given by A 7→ A ⊗ I where we view Cm = Cn ⊗ Cm/n. If
n1, n2, . . . is a sequence with nj | nj+1 for all j, we can then consider M0 = ∪jMnj

. On each Mn we

normalize the trace such that τ(I) = 1. Then we get an induced trace on M0. Then denote by ∪Mnj

the corresponding GNS algebra. It turns out that these are all (for different sequences nj) isomorphic
type II1 factors, and also isomorphic to L(S∞). The key to this is the notion of hyperfiniteness.

Definition. A II1 factor M is hyperfinite if for any given ε > 0 and x1, . . . , xn ∈ M, there
is a finite-dimensional ∗-subalgebra A ⊆ M and are a1, . . . , an ∈ A such that |aj − xj |2 < ε
where |·|2 is the Hilbert space norm coming from the GNS construction corresponding to τ (i.e.

|m|22 = τ(m∗m)).

The group S∞ is the union of the finite groups
⋃
n Sn and similarly ∪j≥1Mnj

contains the dense
subalgebra ∪j≥1Mnj

. So in both cases for the corresponding II1 factors there are increasing sequences
1 ∈ A1 ⊆ A2 ⊆ . . . ⊆ M where Aj are ∗-subalgebras, dimAj < ∞ and

⋃
j≥1 Aj is wo dense in M.

Then it is also so dense, so get density in |·|2-norm.

Theorem 18.1. Let M1,M2 be separable II1 factors. If M1 and M2 are hyperfinite, then they
are isomorphic.

Why 2-norm in the definition of hyperfiniteness and not the uniform norm? Suppose P,Q are or-
thogonal projections with ∥P −Q∥ < 1, then P ∼ Q. Consider G = PQ + (I − P )(I − Q). Then
GQ = PQ = PG. Now G − I = P (Q − P ) + (I − P )((I − Q) − (I − P )) = (2P − I)(Q − P ).
Now 2P − I is unitary, so ∥G− I∥ = ∥Q− P∥ < 1, so G is invertible. So from GQ = PQ we get

GQG−1 = P , so P,Q have the same trace and are therefore equivalent. Suppose P ∈ P(∪Mnj

∥·∥
),

there exists Q ∈ P(∪Mnj
) with ∥P −Q∥ < ε. Indeed, start with X ∈ ∪Mnj

with ∥P −X∥ small

and X self-adjoint. Then X − X2 is small, then take Q = φ(X) for a suitable function φ (φ = 0
around 0 and φ = 1 around 1 (so that it is locally constant on σ(X)) and otherwise close to identity
function). By what we have seen above, then τ(P ) = τ(Q). Therefore τ(P(∪Mnj

)) = τ(P(∪Mnj
)).

So
⋃
j{

k
nj

| 0 ≤ k ≤ nj} is an invariant of ∪Mnj

∥·∥
.

Now suppose P,Q ∈ (M, τ) are such that |P − Q|2 < ε. Then there are P ′ ≤ P,Q′ ≤ Q such that
τ(P − P ′), τ(Q−Q′) are small and P ′ ∼ Q′.
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Remark. One can define Lp spaces, e.g. L1(M, τ) where |m|1 = τ((m∗m)1/2). Then L1(M, τ)∗ =
L∞(M, τ). IfN ⊆ M, then the dual of L1(N , τ) ↪→ L1(M, τ), i.e. a map L∞(M, τ) → L∞(N , τ),
is the conditional expectation EM

N .

19. Conditional Expectations in the case of a uwo continuous faithful tracial state

Let M be a von Neumann algebra and τ : M → C a uwo continuous faithful tracial state. Via GNS
(Hτ , πτ , ξτ ) we can get a standard form, which makes this equivalent to M acting on H with cyclic
and hence separating tracial vector ξ. There is also another equivalent notation for this which is quite
convenient: L2(M, τ) ⊇ L∞(M, τ) ∋ 1.

L2(M, τ) L∞(M, τ) 1

Hτ Mξ ξ

H M

⊇ ∋

On H ∼ Hτ ∼ L2(M, τ) we then have λ(m) and ρ(m), m ∈ M, acting, so that λ(m)m1ξ = mm1ξ
and ρ(m) = Jm∗J , J(m)m1ξ = m1mξ.

The standard form for I ∈ N ⊆ M, a unital von Neumann subalgebra, is then obtained from τ |N , and
amounts to restrictions of λ to N and N ξ, which identifies with L2(N , τ |N ), and J |Nξ (≃ J |L2(N ,τ |N ))
is the involutive antiunitary.

Let EM
N be the orthogonal projection from H = Mξ onto N ξ.

Note that M ∼ L∞(M, τ) ∼ Mξ is a dense subspace of L2(M, τ) and similarly with N .

Proposition 19.1. Facts (E = EM
N ):

• EL∞(M, τ) ⊆ L∞(N , τ) and ∥Em∥ ≤ ∥m∥, E2 = E, E(m∗) = E(m)∗ for m ∈ M.

• E(n1mn2) = n1E(m)n2 for m ∈ M, n1, n2 ∈ N .

• E(m∗m) ≥ E(m∗)E(m) for m ∈ M.

• If M ∋ m ≥ 0, then E(m) ≥ 0.

• E is uwo-continuous.

• τ ◦ E = τ .

Definition. The conditional expectation for M given N is the induced map E : M → N .

Proof. E2 = E, E|N = idN is obvious. L2(N ) = N ξ ⊆ Mξ = L2(M, τ) is an invariant subspace
for λ(N ), ρ(N ), J . Since λ(N ),ρ(N ) are ∗-algebras, the orthogonal projection E onto an invariant
subspace commutes with these: [E, λ(N )] = [E, ρ(N )] = 0. The relation [E, J ] = 0 can be obtained
similarly. If one wants to avoid discussing conjugate-linear operators, see notes.
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To prove EL∞(M) ⊆ L∞(N ), let m ∈ M and let T = Eλ(m)|Nξ be the compression of T to N ξ.

Clearly ∥T∥ ≤ ∥m∥. Also if m ≥ 0, then T ≥ 0, and T ∗ = Eλ(m∗)|Nξ. Since E and λ(m) commute

with ρ(N ), we get [T, ρ(N )|L2(N )] = 0. But (L2(N ), λ(N )|L2(N ), J |L2(N )) is the standard form of N
and ρ(N )|L2(N ) is just the corresponding ρ(N ) for (N , τ |N ). Then [T, ρN (N )] = 0 gives T ∈ λN (N ),
i.e. T = λ(n) for some n ∈ N . Then Emξ = Eλ(m)Eξ = Tξ = λN (n)ξ = nξ, so E takes L∞(M) to
L∞(N ).

The remaining properties follow easily. For example (see notes) □

Examples.

1. M = L∞(X,Σ, µ), the L∞-space of a probability measure space with σ-algebra Σ and
N = L∞(X,Σ′, µ|Σ′) where Σ′ ⊆ Σ is a σ-subalgebra. M and N are von Neumann
algebras of multiplication operators on L2(X,Σ, µ). The tracial state is τ(f) =

∫
fdµ =

⟨Mf1X , 1X⟩L2(X,Σ,µ) for f ∈ L∞ where 1X is the constant function 1 and is the tracial
vector. Then E : L∞(X,Σ, µ) → L∞(X,Σ′, µ|Σ′) is the classical conditional expectation
in probability theory.

2. G a discrete group, λ the left regular representation of G on ℓ2(G), H ⊆ G a subgroup.

Let M = L(G) = spanλ(G)
uwo

, N = spanλ(H)
uwo

and L(H) = spanλ(H)
uwo

ℓ2(H). Then

N ∼ L(H) and

E
∑
g∈G

cgλ(g) =
∑
g∈H

cgλ(g).

Let (M, τ) be a von Neumann algebra with faithful uwo continuous tracial state τ . Let G be a finite
group acting on (M, τ) (preserving τ) via α. Let

Mα(G) = {m ∈ M | α(g)m = m∀g ∈ G}.
Then E := EM

Mα(G)(x) =
1
|G|
∑
g∈G α(g)(x). For this verify that E2 = E and RanE = Mα(G). Next

E∗ = E: α(g) is isometric in L2: Indeed, τ(α(g)(m)∗α(g)(m)) = τ(α(g)(m∗m)) = τ(m∗m). So α is
unitary in L2, i.e. α(g)∗ = α(g−1). Then

E =
1

|G|
∑
g∈G

α(g) =
1

|G|
1

2

∑
g∈G

α(g) + α(g−1) =
1

2
(E + E∗),

so E = E∗.

Example. This can be applied to the second part of HW 7: Consider G = {±1}n, and ε =
(ε1, . . . , εn) ∈ G acts on M via α(ε)(m) = UεmU

−1
ε where Uε =

∑n
j=1 εjPj .

20. The Connes Theorem and Amenability

There is a C∗-algebraic notion related to the conditional expectation, that of projection of norm
one:
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Theorem 20.1. Let A be a unital C∗ algebra and B a unital C∗-subalgebra. Let π : A → B be a
linear map so that π|B = idB and ∥π(a)∥ ≤ ∥a∥. Then:

• If a ∈ A, a ≥ 0, then π(a) ≥ 0.

• π(b1ab2) = b1π(a)b2 for b1, b2 ∈ B and a ∈ A.

• π(a)∗π(a) ≤ π(a∗a) for a ∈ A.

This also plays a role in the theory of von Neumann algebras.

Theorem 20.2 (Connes). Let M ⊆ B(H) be a type II1 factor (with H separable). TFAE:

1. M is hyperfinite.

2. There is a projection E of norm one of B(H) onto M as in the previous theorem.

3. Let M′ be the commutant of M in the standard form of M. Then the norm on the ∗-
algebra generated by M and M′ in B(L2(M, τ)) is the same as the norm on M⊗M′ in
B(L2(M, τ)⊗ L2(M, τ)), i.e. ∥

∑
xkyk∥ = ∥

∑
xk ⊗ yk∥ for xk ∈ M, yk ∈ M′.

4. There are finite rank maps Φn : M → M with |Φn(m) − m|2
n→∞−−−−→ 0 for m ∈ M,

Φn(1) = 1, τ ◦ Φn = τ , and that are completely positive, i.e. if
∑
mij ⊗ eij ≥ 0, then∑

Φn(mij)⊗ eij ≥ 0 for mij ∈ M, eij ∈MN .

Note in 4. Φ is competeley positive if the induced map MN (M) →MN (M) is completely positive for
all N .

Corollary 20.3. Let M ⊆ B(H) be a hyperfinite II1-factor. If I ∈ N ⊆ M is a subfactor, which
is not finite-dimensional, then N is also hyperfinite.

Proof. Since M is hyperfinite, there is a projection of norm 1 of B(H) onto M. Then if EM
N is the

conditional expectation of M onto N we have that EM
N ◦E is a projection of norm one of B(H) onto

N . This implies by the Connes theorem that N is hyperfinite. □

Definition. A discrete group G is amenable if there is a state

Φ : ℓ∞(G) → C
which is invariant under right shifts, i.e. Φ(f(·h)) = Φ(f) for all h ∈ G.

Lemma 20.4. Assume G is amenable, M ⊆ B(H) a von Neumann algebra and u : G → M a
homomorphism with u(g) unitary and (u(G))′′ = M. Then there is a projection of norm one
E : B(H) → M′.

Proof. The idea is to define E(T ) where T ∈ B(H) as some kind of average of u(g)Tu(g)∗, g ∈ G,
where the averaging is done using the amenability of G. To do this we pass to the sesquilinear forms
defined by operators. So if T ∈ B(H) and ξ, η ∈ H, let

fξ,η(g) = ⟨u(g)∗Tu(g)ξ, η⟩.
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Then fξ,η ∈ ℓ∞(G). We define the sesquilinear form B[T ](ξ, η) = Φ(fξ,η), where Φ is the invariant
state as in the definition. Since |fξ,η(g)| ≤ ∥ξ∥ ∥η∥ ∥T∥ and Φ is a state, which implies |Φ(f)| ≤ ∥f∥∞,
we get |B[T ](ξ, η)| ≤ ∥ξ∥ ∥η∥ ∥T∥. It follows that there is a unique operator E(T ) ∈ B(H) so that
B[T ](ξ, η) = ⟨E(T )ξ, η⟩ for all ξ, η and ∥E(T )∥ ≤ ∥T∥. Note that if h ∈ G,

fξ,η(gh) = ⟨u(gh)∗Tu(gh)ξ, η⟩
= ⟨u(g)∗Tu(g)u(h)ξ, u(h)η⟩
= fu(h)ξ,u(h)η(g)

which implies Φ(fξ,η) = Φ(fξ,η(·h)) = Φ(fu(h)ξ,u(h)η). Hence

B[T ](ξ, η) = B[T ](u(h)ξ, u(h)η)

so that

⟨E(T )ξ, η⟩ = ⟨E(T )u(h)ξ, u(h)η⟩ = ⟨u(h)∗E(T )u(h)ξ, η⟩.
Since this holds for all ξ, η ∈ H, we have E(T ) = u(h)∗E(T )u(h) which gives that E(T ) ∈ (u(G))′ =
M′. If T ∈ M′ = (u(G))′, we have u(g)∗Tu(g) = T , so fξ,η(g) = ⟨Tξ, η⟩ (constant) and hence
⟨E(T )ξ, η⟩ = Φ(fξ,η) = ⟨Tξ, η⟩, so E(T ) = T . □

Corollary 20.5. If M is a II1 factor so that M = (u(G))′′ for a unitary representation of an
amenable group G, then M is hyperfinite.

Proof. Use the standard form of M, so that M′ ∼ Mop. Then by the lemma there is a projection
of norm one of B(L2(M, τ)) onto M′. By Connes’ Theorem, Mop is hyperfinite. Clearly Mop is
hyperfinite iff M is hyperfinite. □

As a converse of the lemma we have:

Proposition 20.6. If G is a discrete group so that there is a projection of norm one E :
B(ℓ2(G)) → (λ(G))′′, then G is amenable.

Proof. If f ∈ ℓ∞(G), let Mf be the multiplication operator in ℓ2(G) and define Φ(f) = τ(E(Mf ))
where τ is ⟨· εe, εe⟩ on (λ(G))′′. □

Conclusion:

Corollary 20.7. If G is a countable icc group, then (λ(G))′′ is hyperfinite iff G is amenable.

Let Fn denote the free group on n generators g1, . . . , gn. For n ≥ 2, Fn is icc and non-amenable. Here
is how this can be seen when n = 2. Let X(g±1

j ) be the subsets of F2 \ {e} which consist of reduced

words which start on the right with a positive power of g±1
j . Then we have a disjoint decomposition

F2 \ {e} = X(g1) ⊔X(g−1
1 ) ⊔X(g2) ⊔X(g−1

2 ).

Then

F2 = X(g1) ∪X(g−1
1 )g1 = X(g2) ∪X(g−1

2 )g2.
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Let f1, f2, f3, f4 be the indicator functions ofX(g1), X(g−1
1 ), X(g2), X(g−1

2 ). The decompositions above
tell us that

1 ≥ f1 + f2 + f3 + f4

1 = f1 + f2(·g1) = f3 + f4(·g2)

If Φ : ℓ∞(G) → C is a right-invariant state, we would have Φ(fj) ∈ [0, 1] for 1 ≤ j ≤ 4 and

1 ≥ Φ(f1) + Φ(f2) + Φ(f3) + Φ(f4)

1 = Φ(f1) + Φ(f2) = Φ(f3) + Φ(f4)

These imply 2 ≤ 1, so F2 is non-amenable. (These decompositions are examples of “paradoxical
decompositions”)

F2 is icc. If g ∈ F2 \ {e}, then g ∈ F (g±1
j ) for some j and with a + or − sign. If k ∈ {1, 2} \ {j}, then

the length of gnk gg
−n
k goes to ∞ as n→ ∞. Therefore F2 is icc.

21. Property Γ

Since L(Fn) for n ≥ 2 is not amenable, it cannot be isomorphic to the hyperfinite II1 factor. This can
also be proven in a different way. Murray and von Neumann defined a so-called property Γ, a property
of asymptotic center. The hyperfinite II1 factor has Γ, but L(Fn) does not.

Let M by a type II1 factor. The orginial definition of Γ involved unitary operators:

Definition. M has property Γ if for every x1, . . . , xn ∈ M and ε > 0 there is u ∈ M, unitary,
τ(u) = 0, so that |[u, xj ]|2 < ε.

This is equivalent to the following: Given x1, . . . , xn ∈ M there is a sequence yk ∈ M so that
supk∈N ∥yk∥ <∞ and limk→∞ |[yk, xj ]|2 = 0 for j = 1, . . . , n, but lim infk→∞ |yk − τ(yk)1|2 > 0. Such
a sequence (yk)1≤k is called a central sequence and the last condition is that it is non-trivial. If we
don’t restrict, like here, to the separable setting, then one has to consider central nets.

The condition about the bound on the uniform norms is still unpleasant. In the big paper of Connes
on injective II1 factors, he also shows that Γ is equivalent to: Given x1, . . . , xn ∈ M and ε > 0 there
is ξ ∈ L2(M, τ) so that |ξ|2 = 1, |λ(xj)ξ − ρ(xj)ξ|2 < ε, but ⟨ξ, 1⟩ = 0.

We record this here:

Theorem 21.1. The following are equivalent:

(1) M has property Γ,

(2) Given x1, . . . , xn ∈ M there is a non-trivial central sequence, i.e. a sequence yk ∈ M so
that supk∈N ∥yk∥ < ∞ and limk→∞ |[yk, xj ]|2 = 0 for j = 1, . . . , n, but lim infk→∞ |yk −
τ(yk)1|2 > 0,

(3) Given x1, . . . , xn ∈ M and ε > 0 there is ξ ∈ L2(M, τ) so that |ξ|2 = 1, |λ(xj)ξ −
ρ(xj)ξ|2 < ε, but ⟨ξ, 1⟩ = 0.

Proposition 21.2. L(F2) does not have property Γ.
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Proof. We will use the last condition. Let x1 = λ(g1), x2 = λ(g2) where g1, g2 are the two generators
of F2. Assume there are ξk ∈ ℓ2(F2) so that |λ(xj)ξk − ρ(xj)ξk|2 → 0 (beware of the two distinct

λ’s! we have λ(xj) = λ(gj), but ρ(xj) = ρ(g−1
j )). So |λ(gj)ρ(gj)ξk − ξk|2 → 0. Moreover ⟨ξk, 1⟩ =

0 means ξk(e) = 0. Let S be the set of words in F2 ending on a non-zero power of g1. Then

S ∪ g1Sg−1
1 = F2 \ {e}. But gk2Sg

−k
2 are pairwise disjoint in F2 for k ∈ Z. Let P be the projection

of ℓ2(F2) onto ℓ
2(S). The projection onto ℓ2(gSg−1) is just λ(g)ρ(g)Pλ(g−1)ρ(g−1). Note that since

g 7→ λ(g)ρ(g) is a representation of G = F2, we get that limk→∞ |ξk − λ(g)ρ(g)ξk|2 = 0 implies
||Pξk|2−|λ(g)ρ(g)Pλ(g−1)ρ(g−1)ξk|2| ≤ ||Pξk|2−|Pλ(g−1)ρ(g−1)ξk|2| → 0. Since S∪g1Sg−1

1 = F2\{e}
and ξk(e) = 0, ||Pξk|2 − |λ(g)ρ(g)Pλ(g−1)ρ(g−1)ξk|2| → 0, we get that

1 = |ξk|22 ≤ |Pξk|22 + |λ(g1)ρ(g1)Pλ(g−1
1 )ρ(g−1

1 )ξk|22
implies that if k is sufficiently large, |Pξk|2 > 1√

2
− ε for a given ε > 0, for instance |Pξk|2 > 2

3 . If k

is sufficiently large, |λ(gp)ρ(gp)Pλ(g−p)ρ(g−p)ξk|2 > 2
3 for p = 0, 1, 2. But∑

p∈Z
|λ(gp2)ρ(g

p
2)Pλ(g

−p
2 )ρ(g−p2 )ξk|22 ≤ 1,

giving a contradiction. □

Property Γ is related to other important properties of II1 factors. Other names: non-Γ, spectral gap,
full.

Fact:

Theorem 21.3. If G has property Γ, then the action of G on G by conjugation is amenable.a

The converse is not true.
aI believe an action of a group on a set X is amenable if there is an invariant mean on X.

Proposition 21.4. If M is the hyperfinite II1 factor, then M has property Γ.

Proof. We can construct M via GNS from ∪k≥1M2k
norm

w.r.t. its unique trace state. Let π be the

GNS representations. Then M = π(∪k≥1Mnorm
2k

)
wo

. Then yk = I2 ⊗ . . . I2 ⊗
(
1 0
0 −1

)
∈M2k gives a

non-trivial central sequence (π(yk))k≥1. If x ∈ M, there is a a ∈M2n for some n so that |x−π(a)|2 < ε
(use Kaplansky applied to the dense subalgebra and x

∥x∥ ∈ M1). Then if k > n,

|[x, π(yk)]|2 ≤ |[a, π(yk)]|2 + |[x− a, π(yk)]|2 = |[x− a, π(yk)]|2 ≤ 2|x− π(a)|2 · ∥π(yk)∥ ≤ 2ε.

Also τ(π(yk)) = 0 while |π(yk)|2 = 1, so that lim infk→∞ |π(yk)− τ(π(yk))1|2 > 0. □

Let Aut(M) be the automorphism group of M. By uniqueness of the trace we always have τ ◦ α = τ
if α ∈ Aut(M). In particular, α gives rise to a unitary operator on L2(M, τ):

|α(x)|2 = τ(α(x)∗α(x))1/2 = ((τ ◦ α)(x∗x))1/2 = τ(x∗x)1/2 = |x|2.

Let Uα denote the unitary operators defined by α on L2(M, τ). In this way one can embed Aut(M)
into U(L2(M, τ)). In Aut(M) there is the subgroup Int(M) of inner automorphisms M ∋ m 7→
umu−1 ∈ M. This is a normal subgroup.
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Theorem 21.5. Let M be a separable II1-factor. Then TFAE

(1) M does not have property Γ.

(2) Int(M) is closed in Aut(M).

(3) C∗(λ(M)∪ρ(M)) ⊇ K(L2(M, τ)) where K(H) is the set of compact operators on a Hilbert
space H. (λ(M), ρ(M) in the standard form)

22. Haagerup property

Let M be a separable II1 factor.

Definition. M has the Haagerup property if there are completeley positive maps Φj : M → M
so that τ ◦ Φj ≤ τ , Φj(I) ≤ I and limj→∞ |Φj(x) − x|2 = 0 if x ∈ M and Φj are compact in
L2(M).

On the free groups Fn let l(g) be the length of the reduced word g. Then if t > 0, consider the
multiplication operator on ℓ2(Fn):

(Mtξ)(g) = e−tl(g)ξ(g)

for ξ ∈ ℓ2(Fn). One can show that MtL(Fn)εe ⊆ L(Fn)εe. Then let Φt : M → M be defined by
Φt(x)εe = Mt(xεe). One can show that these are completely positive, have the other properties that
establish that L(Fn) has the Haagerup property.

Later we will use another construction based on free probability to prove that L(Fn) has the Haagerup
property, see Corollary 27.3.

23. Affiliated operators

Let M be a von Neumann algebra on H.

Definition. An unbounded operator T , defined on D(T ) ⊆ H, is affiliated to M if for any u ∈
U(M′), uD(T ) = D(T ) and Tuh = uTh for h ∈ D(T ).

More concisely: uTu∗ = T (as unbounded operators).

Examples.

• The bounded operators affiliated to M are precisely the operators in M.

• Let H = L2(X,Σ, µ) where (X,Σ, µ) is a probability space. Let M be the von Neumann
algebra L∞(X,Σ, µ) acting as multiplication operators on L2(X,Σ, µ) and note that M =
M′. Let f : X → C be measurable. For each λ ≥ 0, let Xλ = f−1({|z| ≤ λ}) ⊆ X and
D = {h ∈ L2(X,Σ, µ) | h−1(C \ {0}) ⊆ Xλ for some λ ≥ 0}. Then T defined as Th = fh,
h ∈ D is an unbounded operator affiliated to M. Remark that unitary operators in
M = M′ are multiplication operators by g ∈ L∞(X,Σ, µ) where |g| = 1.
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• Let M be a II1 factor on H and let X ∈ M be an operator so that kerX = 0. If
D = RanX. We define T on D to be the inverse of X, i.e. TXh = h for h ∈ H.
If u ∈ M′ is unitary, then uXu∗ = X implies Xuh = uXh so that uD = D. Then
TuXh = TXuh = uh = uTXh, so that uTu∗ = T .

To deal with the graph of affiliated operators to M we introduceM2(M) ∼M2⊗M, the von Neumann
algebra of 2× 2 matrices with entries in M acting on H⊕H. Then

(M2(M))′ = I2 ⊗M′ =

{(
X 0
0 X

)
∈ B(H⊕H) | X ∈ M′

}
.

If T with domain D(T ) is affiliated with M, then the graph of T

GT = {(h, Th) ∈ H ⊕H | h ∈ D(T )}.

is invariant under the unitary operators in (M2(M))′, which are

(
u 0
0 u

)
with u ∈ U(M′). If GT is

closed, then PGT
∈ M2(M). The densely defiend closed affiliated operators to M can be described

using the projection onto the graphs which satisfy

P ∧
(
0 0
0 1

)
= 0,

i.e. GT ∩ (0⊕H) = 0, and with right support P

(
1 0
0 0

)
=

(
1 0
0 0

)
(densely defined)

If M is finite, the affiliated operators which are closed and densely defined are particularly nice. Let
Aff(M) be the densely defined closed operators affiliated to M.

Proposition 23.1.

• If T1, T2 ∈ Aff(M) and T1 ⊆ T2, then T1 = T2.

• If T1, T2 ∈ Aff(M), then the closures (T1 + T2), T1T2 ∈ Aff(M), and if T ∈ Aff(M), then
T ∗ ∈ Aff(M).

• Aff(M) with these operations is a ∗-algebra.

• If T is a densely defined operator on H which is self-adjoint, then T ∈ Aff(M) iff its
spectral measure is in M

• etc.

Part 2. Free Probability

Reference: [VDN92].

24. Noncommutative Probability

In classical probability theory a probability space (Ω,Σ, µ) corresponds roughly to an algebra of nu-
merical random variables f : Ω → C and the expectation functional Ef =

∫
fdµ.

So, an algebraic caricature of this is a noncommutative probability space:



33

Definition. A noncommutative probability space is (A, φ), where A is an unital algebra over C,
and φ : A → C a linear map satisfying φ(1) = 1, called the expectation functional. The elements
a ∈ A will be called noncommutative random variables.

This is like in quantum mechanics: A is an algebra of operators, observables, and φ(T ) = ⟨Tξ, ξ⟩,
where ξ ∈ H is the state vector.

To add to the purely algebraic framework positivity we need to use C∗-algebras (this more or less
generalizes the quantum mechanics framework):

Definition. A C∗-probability space is (A, φ), A a unital C∗-algebra and φ : A → C a state.

To introduce measurability we must pass to von Neumann algebras.

Definition. A W ∗-probability space is a von Neumann algebra A with an uwo continuous state
φ : A → C.

In the classical setting, the W ∗-probability spaces (A, φ) are A = L∞(X,Σ, µ) and φ(f) =
∫
fdµ. To

deal with unbounded random variables, there are affiliated operators.

Denote by C⟨Xι | ι ∈ I⟩ the noncommutative polynomial ring in the variables Xι.

Definition. If a ∈ A, the distribution of a is the map

µa : C⟨X⟩ −→ C,
p 7−→ φ(p(a)).

The space of distributions is the set Σ of linear functionals µ : C[X] → C with µ(1) = 1.

Classically, (Ω,Σ, dω), the distribution µ(fι)ι∈I
of a family fι : Ω → C, ι ∈ I, of random variables, is

the pushforward ((fι)ι∈I)∗(dω) on CI . Roughly as a functional over functions on CI this corresponds
to

Functions(CI) ◦(fι)ι∈I−−−−−→ (random var. over Ω)
E−→ C.

So the definition in noncommutative algebraic caricature is: If (aι)ι∈I ⊆ (A, φ) noncommutative
random variables, their joint distribution is

µ(aι)ι∈I
: C⟨Xι | ι ∈ I⟩ → C

µ(aι)ι∈I
(P (Xι | ι ∈ I)) = φ(P (aι | ι ∈ I)).

This amounts to giving the noncommutative moments of the (aι)ι∈I : φ(aι1 · · · aιn), n ∈ N, ι1, . . . , ιn ∈
I. Of course there are many variants with additional structure, instead of C⟨Xι | ι ∈ I⟩ take certain
universal C∗-algebras etc.

In case (A, φ) is a C∗-probability space and a = a∗ ∈ A, is a hermitian random variable, then

C[X] → C(σ(a)) → A
P (X) 7→ polynomial function on σ(a) 7→ continuous functional calculus

Thus actually C(σ(a)) ∋ f 7→ φ(f(a)) is a genuine probability measure on σ(a).

So µa can be identified with the measure on R so that µa(f) =
∫
fdµa.
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If we are in theW ∗-probability context with (A, φ), then actually if ∆ ⊆ R is a Borel set, then µa(∆) =
φ(E(a; ∆)) where E(a;−) is the spectral measure of a. In the classical context, the spectral projection
for ∆ in L∞(Ω,Σ, dω) is χa−1(∆) and E(χa−1(∆)) = ω(a−1(∆)) which gives that µa(∆) = ω(a−1(∆)).

25. Classical Independence

There is a classical noncommutative probability theory corresponding to the quantum mechanics pre-
scriptions. There independence of observables corresponds to tensor products. That is T and S are
independent, if roughly T and S have distribution like X ⊗ I, I ⊗ Y w.r.t. φ = φ1 ⊗ φ2.

In the algebraic caricature one could define this as follows:

Definition. A family (Aι)ι∈I of unital subalgebras in (A, φ) is classically independent if [Ai,Aj ] =
0 for all i ̸= j, i, j ∈ I and φ(a1 · · · an) = φ(a1) · · ·φ(an) for aj ∈ Aι(j) and ι(1), . . . , ι(n) are pair-
wise distinct.

This generalizes the classical probability independence. Subsets of (A, φ), ωj ⊆ A, ι ∈ I are indepen-
dent if the unital subalgebras they generate are independent.

26. Free Independence

What distinguishes free probability from other varieties of noncommutative probability theory, is the
definition of independence.

Definition. In (A, φ) a family (Aι)ι∈I of unital subalgebras is freely independent (or free) if
φ(a1 · · · an) = 0 whenever aj ∈ Aι(j), φ(aj) = 0 for 1 ≤ j ≤ n, and consecutive indices ι(j), ι(j+1)
are distinct for 1 ≤ j ≤ n− 1.

This is very noncommutative. But a very large part of basic probability theory has free analogues.

Again, subsets are freely independent if the unital subalgebras they generate are freely independent.

Examples.

• Let G = ∗ι∈IGι be a free product of a family of groups. Let C[Gι] ⊆ C[G] be the
corresponding group rings. Then in (C[G], τ) (where τ is the von Neumann trace τ(x) =
⟨xεe, εe⟩) the C[Gι] are freely independent. Indeed, G = ∗ι∈IGι means the Gι’s generate
G and every reduced word g1 · · · gn where gj ∈ Gι(j) \ {e} with ι(j) ̸= ι(j + 1), 1 ≤ j < n
is non-trivial, i.e. ̸= e. If aj ∈ C[Gι(j)], 1 ≤ j ≤ n and (εg)g∈G is the basis in C[G] and
ι(j) ̸= ι(j + 1), then aj is a linear combination of εg, g ∈ Gι(j) and τ(aj) = 0 means no
constant term, so aj is a linear combination of εg ∈ Gι(j) \ {e}. Expanding a1 · · · an we
get a sum of terms of the form τ(εg1 · · · εgn) where gj ∈ Gι(j) \ {e}, ι(j) ̸= ι(j + 1). Then
εg1 · · · εgn = εg1···gn which has trace 0.

• Creation and destruction (or annihilation) operators on the full Fock space. Let H be a
complex Hilbert space. Let T H =

⊕
n≥0 H⊗n where H⊗0 = C1 (1 = vacuum vector).
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The creation operator ℓ(h) on T H, where h ∈ H, is ℓ(h) ∈ B(T H) given by ℓ(h)ξ = h⊗ ξ.
The adjoint ℓ∗(h) := ℓ(h)∗ is given by ℓ∗(h)1 = 0 and ℓ∗(h)h1 ⊗ · · · ⊗ hn = ⟨h1, h⟩h2 ⊗
· · · ⊗ hn.

If (eι)ι∈I is an ONB in H we let ℓι = ℓ(eι), and ℓ
∗
ι = ℓ∗(eι) = (ℓι)

∗.

Proposition 26.1. {ℓι, ℓ∗ι }ι∈I is freely independent in (B(T H), ⟨·1, 1⟩).

Proof. We have to check that the algebras these elements generate are freely independent.
The algebra generated by ℓι, ℓ

∗
ι consists of finite sums

∑
p,q≥0 cp,qℓ

p
ι (ℓ

∗
ι )
p (use that ℓ∗ι ℓι = id

and ℓιℓ
∗
ι = ...). After expanding sums, the free independence boils down to

⟨ℓpι1(ℓ
∗
ι1)

q1ℓpι2(ℓ
∗
ι2)

q2 · · · ℓpιn(ℓ
∗
ιn)

qn1, 1⟩ = 0

when pj + qj > 0, pj ≥ 0, qj ≥ 0, ιj ̸= ιj+1. (Note that the expectation of ℓp(ℓ∗)q is 1 if
p = q = 0 and 0 otherwise). Assume the expectation is not 0. Then we must have p1 = 0,
otherwise (ℓ∗ι1)

p11 = 0. Then q1 > 0. But then (ℓ∗ι1)
q1ℓp2ι2 is 0 if p2 > 0, so p2 = 0, and

then q2 > 0 etc. Then also qn > 0, but then (ℓ∗ιn)
qn1 = 0. □

If (Aι)ι∈I are subalgebras of A, denote by
∨
ι∈I Aι the subalgebra they generate.

Some properties of free independence:

Proposition 26.2.

(1) If (Aι)ι∈I are freely independent unital subalgebras in (A, φ), then φ|∨
ι∈I Aι

is completely

determined by the φ|Aι
.

(2) If (Aι)ι are freely independent unital subalgebras in (A, φ), and I =
⊔
j∈J Ij is a partition

and Bj =
∨
ι∈Ij Aι, then the (Bj)j∈J are freely independent in (A, φ).

(3) If (Aι)ι are freely independent unital subalgebras in (A, φ), and (Cι,k)k∈Kι are freely in-
dependent subalgebras in (Aι, φ|Aι), then (Cι,k)(i,k)∈⊔

i∈I{ι}×Kι
is freely independent in

(A, φ)

(4) If A =
∨
ι∈I Aι and the (Aι)ι are freely independent in (A, φ), then if all φ|Aι

are traces,
then also φ is a trace.

Proof.

(1) The elements of A are linear combinations of products a1, . . . , an where aj ∈ Aι(j), so must
show that free independences gives us what φ(a1 · · · an) should be if we know the φ|Aι . We
shall use induction over n. For n = 1 this is clear, assume known for φ(a1 · · · an) if n < N .
Then consider φ(a1 · · · aN ) if ι(j) = ι(j + 1) for some j reduces to a product of N − 1, ... If
ι(j) ̸= ι(j + 1) for all j, then consider a◦j = aj − φ(aj)1, so that φ(a◦j ) = 0. Then expand
φ(a1 · · · aN ) = φ((a◦1 + φ(a1)) · · · (a◦N + φ(aN )1)) and use induction.

(2) Exercise or see [VDN92].

(3) Exercise or see [VDN92].
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(4) Given an algebra A with expectation φ, denote A◦ = kerφ. In this case A =
∨
ι∈I Aι gives

A = C1 +
∑
n≥1

∑
ι1,...,ιn∈In,ιj ̸=ιj+1

A◦
ι1 · · · A

◦
ιn

So we must show φ(xy) = φ(yx) when x = a1 · · · an, y = bm · · · b1 with ak ∈ Aι(k), bk ∈ Aj(k)

where φ(ak) = 0, φ(bk) = 0 and ι(k) ̸= ι(k + 1), j(k) ̸= j(k + 1). Then

φ(a1 · · · anbm · · · b1) = δι(n),j(m)(φ(anbm)φ(a1 · · · an−1bm−1 · · · b1) + φ(a1 · · · an−1(anbm)◦bm−1 · · · b1))
= δι(n),j(m)φ(anbm)φ(a1 · · · an−1bm−1 · · · b1)

Repeat this (say m ≤ n), so that

φ(a1 · · · anbm · · · b1) = δm,nφ(anbm)φ(an−1bm−1) · · ·φ(an−m+1b1)δι(n),j(m) . . . δι(n−m+1),j(1).

Now do the same with yx and we see that we get the same if φ|Aι
are traces.

□

Corollary 26.3. If A =
∨
ι∈I Aι and the Aι are freely independent and commutative, then φ is

a trace.

27. The Semicircular function (aka free Gaussian functor)

Lemma 27.1. Let ℓ1 be the creation operator corresponding to some norm 1 vector in H. Then

µℓ1+ℓ∗1 =
1

2π
χ[−2,2]

√
4− t2dt

in (B(T H), ⟨·1, 1⟩), where dt is the Lebesgue measure.

This can be proven directly, but we will deduce it later.

Theorem 27.2. Let H be a real Hilbert space, HC its complexification and T HC the full Fock
space over HC. For h ∈ H ⊆ HC, let s(h) =

1
2 (ℓ(h) + ℓ(h)∗) and let Φ(H) = (s(H))′′ ⊆ B(T HC),

and let τH be the restriction of ⟨·1, 1⟩ to Φ(H). Then

(i) Φ(H) ≃ L(FdimH). (For dimH = 1 this is just L(Z)).

(ii) 1 is a cyclic and separating trace vector for Φ(H).

(iii) If (hι)ι∈I are orthogonal vectors in H, then the (s(hι))ι∈I are freely independent and

µs(h) =
2

π∥h∥2χ(−∥h∥,∥h∥)

√
∥h∥2 − t2dλ(t).

(iv) If T : H1 → H2 is a linear map with ∥T∥ ≤ 1 between real Hilbert spaces, let T (TC) =⊕
n≥1 T

⊗n
C : T ((H1)C) → T ((H2)C) and there is a a unique map Φ(T ) : Φ(H1) → Φ(H2)

such that (Φ(T )X)1 = T (TC)(X1) for all X ∈ Φ(H1). Φ(T ) is linear, bounded, completely
positive, unital, trace-preserving. If T is isometric, then Φ(T ) is a faithful homomorphism
and if T is the orthogonal projection onto a subspace H2 ⊆ H1, then Φ(T ) is the conditional
expectation onto Φ(H2) ≃ (s(Th1), h1 ∈ H1)

′′ ⊆ Φ(H1).



37

(v) If (Hι)ι∈I is a family of pairwise orthogonal subspaces in H and Vι : Hι → H are the inclu-
sions, then the family of subalgebras (Φ(Vι))(Φ(Hι)) are freely independent in (Φ(H), τH).

(vi) Φ(H) is in standard form on T (HC) and Jh1 ⊗ · · · ⊗ hn = hn ⊗ · · · ⊗ h1, if hj ∈ H, and
Φ(H)′ = (d(H))′′ where d(h) = 1

2 (r(h) + r(h)∗) and r(h)ξ = ξ ⊗ h is the right creation
operator.

Corollary 27.3. L(Fn) has the Haagerup compact approximation property.

Proof. Φ(Rn) = L(Fn) and T ((rIRn)C) =
⊕

m≥0 r
mIH⊗m

C
, H = Rn, is compact if 0 ≤ r < 1. But

Φ(rIRn) are completely positive and as r ↗ 1 they converge strongly to the identity and note that
Φ(H) ∋ X 7→ X1 ∈ T (HC) is just the map Φ(H) ↪→ L2(Φ(H), τH), 1 being a separating and cyclic
tracial vector. □

Proof of Theorem 27.2. (iii) follows immediately by dilation from Lemma 27.1. The free independence
statement is due to the fact that the ({ℓ(hι), ℓ∗(hι)})ι∈I are freely independent in (B(T HC), ⟨·1, 1⟩).
Next (ii).

(a) We prove by induction over n that h1 ⊗ · · · ⊗ hn ∈ Φ(H)1. If n = 0, 1 = I1. Also
s(h1) · · · s(hn)1 ∈ 2−nh1 ⊗ · · · ⊗ hn +

⊕
0≤k<nH⊗k. So 1 is cyclic.

(b) Separating. Let (eι)ι∈I be an ONB in H (hence in HC) and ℓι = ℓ(eι), rι = r(eι). Then

[ℓι, rj ] = [ℓ∗ι , r
∗
j ] = 0

[ℓ∗ι , rj ] = διjPC1

[r∗ι , ℓj ] = διjPC1

All the commutators are 0 on
⊕

n>0 H⊗n, so only need to check the equalities on 1. We
infer that [ℓι + ℓ∗ι , rj + r∗j ] = διj(−PC1 + PC1) = 0. Since Φ(H) = ((s(eι))ι∈I)

′′, we have
Φ(H)′ ⊇ ((d(eι))ι∈I)

′′ and by the argument in (a) applied to the d(eι))ι∈I) we get that 1 is
cyclic for (Φ(H))′, hence separating for Φ(H).

(c) Since the (s(eι))ι∈I are freely independent, we infer that on the algebra generated by the
(s(eι))ι∈I , τH is a trace (as this is generated by abelian freely independent subalgebras). Then
pass to the closure (maybe use Kaplansky)

Next (i). Φ(H) is generated by the commutative freely independent subalgebras ((s(eι))
′′)ι∈I . Using

the lemma one finds that ((s(eι))
′′, τH|(s(eι))′′) ≃ (L∞([−1, 1], semicircle measure,

∫
). The function

g(x) =
∫ x
−1

2
π

√
1− t2dt is continuous, strictly increasing, g(−1) = 0, g(1) = 1, a homeomorphism of

[−1, 1] and [0, 1]. Note that µg = Lebesgue measure on [0, 1]. Hence e2πig is an isomorphism from
[−1, 1) with the semicircle measure and S1 with the Haar measure. Then

L∞([−1, 1], semicircle) ≃ . . . L∞(S1,haar) ≃ (L(Z), τZ) ≃ (λZ(1))
′′ ≃ (λFdimH(gι))

′.

The isomorphism Φ(H) ≃ L(FdimH) follows from the fact that the sets (e±2πig(s(eι)))ι∈I and (λ(gι), λ(gι)
−1)ι∈I

are generators for the two algebras, have the same distribution etc.

(iv)
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(a) Suppose first that T is an isometric injection. Clearly T (TC) : T (H1,C) → T (H2,C) isometric
injection and the map intertwines sH1(h) and sH2(Th), h ∈ H1. Since T (TC)T (H1,C) contains
the cyclic tracial vector 1 for Φ(H2), the subspace T (TH1)C is separating for (sH2

(TH1))
′′.

We then get a map Φ(H1) → Φ(H2), given by X 7→ X|T (TH1,C). This is Φ(T ).

Why completely positive? If A → B is a ∗-homomorphism, then Mn(A) → Mn(B) is still a
∗-homomorphism, so completely positive.

(b) Next assume that T is a projection. Then T (TC) is just the conditional expectation on L2

spaces. Define then Φ(T ) to be the conditional expectation defined earlier.

(c) General case. Write T as an isometry followed by a projection, e.g.

H1 −→ H1 ⊕H2 −→ H2

h 7−→ ((I − T ∗T )1/2h, Th) 7−→ Th

Note that
∥∥((I − T ∗T )1/2h, Th)

∥∥2 = ∥Th∥2+
∥∥(I − T ∗T )1/2h

∥∥2 = ⟨T ∗Th, h⟩+⟨(I−T ∗T )1/2h, (I−
T ∗T )1/2h⟩ = ∥h∥2, so the first map is indeed an isometry. Then define Φ(T ) as the composition
of the corresponding Φ’s. Note that the characterization of Φ is compatible with composition.

Trace is preserved because Φ doesn’t change the degree 0 (vacuum) component. □

28. The free product construction

Definition. The algebraic free product A = ∗ι∈IAι of algebras Aι is the free product with amal-

gamation over C1, defined by the universal property: There are maps Aι
ψι−→ A such that if there

are maps Aι
fι−→ B, then there is a unique morphism A → B making the obvious triangle commute.

As a vector space, if Aι = C1⊕ Vι, one could identify A as a vector space with

C1⊕
⊕
n≥1

⊕
ι1 ̸=ι2 ̸=...ιn

Vι1 ⊗ · · · ⊗ Vιn

and ψι the inclusion of C1⊕ Vι (to n = 1).

Similarly one can define the free product of C∗-algebras. This is obtained by taking the algebraic
free product, and completing it with respect to a suitable norm (taking the universal enveloping C∗-
algebra).

Now if we actually have noncommutative probability spaces, i.e. if the algebras are equipped with
states φι, we want to give the free product the structure of such a space, i.e. extend the state. In the
algebraic this is clear. In the C∗-algebra case less so.

If we have a family of Hilbert spaces Hι with distinguished norm 1 vectors ξι, then we can form their
free product (H, ξ) with respect to the ξι. Denote H◦

ι = Hι ⊖ Cξι, then

Cξ ⊕
⊕
n≥1

⊕
ι1 ̸=ι2 ̸=...ιn

H◦
ι1 ⊗ · · · ⊗ H◦

ιn .

Let (H(ι), ξ) be the free product over all the (Hj , ξj) except for j = ι. Then we have unitary identifi-
cation operators Vι : Hι ⊗H(ι) → H given by

Vι(ξι ⊗ η) = η,
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Vι(hι ⊗ (hι1 ⊗ · · · ⊗ hιn)) = hι ⊗ hι1 ⊗ · · · ⊗ hιn ,

where η ∈ H(ι) and hι ∈ Hι, hιj ∈ Hιj , ι ̸= ι1 and ιj ̸= ιj+1. Then via Vι we may embed B(Hι) into
B(H).

Now going back to the setting with algebras. Suppose Aι are C∗-algebras and for each ι we have
a representation ρι on (Hι, ξι). Then we get an induced representation ρ of A = ∗ιAι on H. Then
if iι : Aι → A is the natural map, then ⟨ρ(iι(a))ξ, ξ⟩ = ⟨ρι(a)ξ, ξ⟩ for a ∈ Aι. Hence if each Aι is
equipped with a state φι, then we can take the ρι to be the associated GNS representations, and in
this way get an induced state φ = ∗ιφι on A.

Proposition 28.1. The Aι are freely independent in A, i.e. if aj ∈ Aιj satisfy φιj (aj) = 0 for
all j = 1, . . . , n and ιj ̸= ιj+1, then φ(a1 · · · an) = 0.

Proof. [VDN92, Proposition 1.5.5] □

Finally if the Aι areW
∗ algebras, and the φj are uwo continuous states, then one does the same thing.

The W ∗ free product is the uwo closure of the GNS representation of ∗ιAι w.r.t. ∗ιφι.

Examples.

• If Gι are groups, then

∗ι(ℓ2(Gι), εe) = (ℓ(∗ιGι), εe).

•
∗ι(T (Hι), 1) = (T (

⊕
ι

Hι), 1)

There was a guest lecture by Takahiro Hasebe: Regrettably I didn’t take notes for this.

29. Free Brownian Motion

Take Xt = s(χ[0,t)) in H = L2([0,∞)). Then χ[0,t1), χ[t1,t2), χ[t2,t3), . . . are orthogonal in H, so
s(χ[0,t1)), s(χ[t2,t3)), s(χ[t3,t4)), . . . are freely independent and they follow a semicircular law.

30. Free Convolution

Suppose (A, φ) is a noncommutative probability space. If a, b ∈ A, how do we find the distribution
of a + b in terms of those of a, b? In general not really possible without more information, but if
a, b are freely independent, we can do it. Indeed, then by Proposition 26.2, the expectation φ on the
subalgebra generated by a, b is determined by the distributions of a, b, hence the distribution of a+ b
is determined.

Definition. The additive free convolution of distributions µ : C[X] → C, ν : C[Y ] → C, is the
distribution denoted µ⊞ν and obtained through the composition C[Z] → C[X]∗C1C[Y ] → C where
the first map maps Z 7→ X + Y and the second is µ ∗ ν.
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Proposition 30.1. If a, b ∈ A are freely independent, then µa+b = µa ⊞ µb.

If (A, φ) is a C∗-noncommutative probability space, and a, b are self-adjoint, we can do the same thing,
and then µa, µb, µa+b are compactly supported measures on R.

Similarly we can define:

Definition. The multiplicative free convolution of distributions µ : C[X] → C, ν : C[Y ] → C, is
the distribution denoted µ⊠ ν and obtained through the composition C[Z] → C[X] ∗C1 C[Y ] → C
where the first map maps Z 7→ XY and the second is µ ∗ ν.

Proposition 30.2. If a, b ∈ A are freely independent, then µab = µa ⊠ µb.

Proposition 30.3. If a, b ∈ A are freely independent, then µab = µba, i.e. multiplicative free
convolution is commutative.

Proof. The subalgebras generated by a and b respectively are commutative., hence by Proposition 26.2
(4), φ is a trace on the algebra generated by a, b. Therefore φ((ab)n) = φ((ba)n) for all n which gives
the claim. □

31. The R-Transform

How do we compute µ ⊞ ν? In the classical setting we have the Fourier transform F which satisfies
F(µ∗ν) = (Fµ)(Fν), and we can further take log to linearize. In our setting we have the R-transform.

Theorem 31.1. For a distribution µ : C[X] → C let

Gµ(z) =
∑
n≥0

z−n−1µ(Xn),

Kµ(z) = G−1
µ (z) (compositional inverse),

Rµ(z) = Kµ(z)− z−1.

Then for any distributions µ, ν : C[X] → C we have

Rµ⊞ν = Rµ +Rν .

Rµ is the R-transform of µ. We won’t prove it, but the main idea is:

Lemma 31.2. Let e1, e2 be orthonormal vectors in a Hilbert space and ℓ1, ℓ2 the corresponding
creation operators on T H. Let

T1 = ℓ∗1 +
∑
k≥0

αk+1ℓ
k
1 ,

T2 = ℓ∗2 +
∑
k≥0

βk+1ℓ
k
2 ,
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T3 = ℓ∗1 +
∑
k≥0

(αk+1 + βk+1)ℓ
k
1 .

Then
µT3 = µT1+T2 = µT1 ⊞ µT2 .

Here of course the expectation functional is ω = ⟨·1, 1⟩ as in the example before Proposition 26.2.

Proof. One can do this relatively directly by comparing ω(T k3 ) and ω((T1 + T2)
k). □

The idea is that every distribution comes from a unique T as in the lemma, then can use the lineariza-
tion in the lemma to prove the theorem.

Theorem 31.3. Let µ be a distribution. Then there are unique α1, α2, . . . such that T = ℓ∗1 +∑
k≥0 αk+1ℓ

k
1 has µT = µ, and moreover Rµ =

∑∞
k=0 αk+1z

k.

Proof. [VDN92, 3.2.2] and [VDN92, Theorem 3.3.1]. □

Theorem 31.1 follows at once from this and the lemma.

Lastly consider the case of a C∗-algebra where our distributions are genuine measures. Then

Gµ(z) =
∑
n≥0

z−n−1

∫
tndµ(t) =

∫
(z − t)−1dµ(t)

is called the Cauchy transform, or Stieltjes transform, of µ. Gµ(z) is holomorphic in (C∪{∞})\ suppµ.

We can recover µ from Gµ(z)? We have

Gµ(x+ iε) =

∫
dµ(t)

x+ iε− t
,

and

− 1

π
Im

1

x+ iε− t
=

1

π

ε

(x− t)2 + ε2
.

Then, if dλ denotes the Lebesgue measure on R, we get

− 1

π
Gµ(x+ iε)dλ(x) =

(∫
1

π

ε

(x− t)2 + ε2
dµ(t)

)
dλ(x)

= µ ∗
(
1

π

ε

(x− t)2 + ε2
dλ(x)

)
Now note that

1

π

ε

(x− t)2 + ε2
dλ(x) −→ δ0

weakly as ε↘ 0, hence

− 1

π
ImGµ(x+ iε)dλ(x) → µ

weakly as ε↘ 0.
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Example. What is µℓ∗1+ℓ1 in (B(T H), ⟨·1, 1⟩)? We have Rµ = z, so Kµ = z−1 + z. We can thus

find Gµ as the compositional inverse: Solving 1
G +G = z gives

Gµ =
z ±

√
z2 − 4

2
=
z ± z

√
1− 4

z2

2
.

To figure out the sign, or equivalently what square root to take, note that we must have Gµ(∞) =

0, so we take the square root for which
√
1 = 1, and then

Gµ =
z − z

√
1− 4

z2

2
.

We see that

− 1

π
ImGµ(x+ iε)

converges uniformly to
1

2π
χ[−2,2]

√
4− x2

as ε↘ 0. Hence,

µℓ∗1+ℓ1 =
1

2π
χ[−2,2]

√
4− t2dλ(t),

finally proving Lemma 27.1.

32. The Central Limit Theorem

Theorem 32.1. Let a1, a2, · · · ∈ (A, φ) be freely independent. Assume

• the ai are centered, i.e. φ(ai) = 0,

• limn→∞
1
n

∑n
j=1 φ(a

2
j ) =

α2

2 ,

• supj≥1

∣∣φ(akj )∣∣ <∞.

Then

µ 1√
n
(a1+···+an) −→

2

πα2
χ[−α,α]

√
α2 − t2dλ(t)

in moments as n→ ∞.

Sketch of proof. Similar idea as in the classical case, but with the R-transform in place of the Fourier
transform. See notes for details. □

Is there similarly a Poisson limit law? In the classical setting:

lim
n→∞

(
(1− λ

n
)δ0 +

λ

n
δ1

)∗n

=
∑
k≥0

λk

k!
e−λδk.

The free analogue would be

lim
n→∞

(
(1− λ

n
)δ0 +

λ

n
δ1

)⊞n

=?
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Let µn = (1− λ
n )δ0 +

λ
nδ1. Then

Gµn(z) =

∫
(z − t)−1dµn(t) = (1− λ

n
)z−1 +

λ

n
(z − 1)−1 =

z − (1− λ
n )

z(z − 1)
.

We can then solve for Kµn
and Rµn

and obtain

Rµn =
z − 1

2z

(
1−

√
1 +

4λ

n

z

(z − 1)2

)
,

where we take the branch of the square root with
√
1 = 1. We have

Rµn
=
z − 1

2z

(
−2λ

n

z

(n− 1)2
+O(n−2)

)
,

so we see that

lim
n→∞

Rµ⊞n
n

= lim
n→∞

nRµn(z) =
λ

1− z
.

So this should be the R-transform of the free Poisson measure ν. We then get Kν(z) = z−1+ λ
1−z , and

Gν =
1− λ+ z +

√
(z − 1− λ)2 − 4λ

2z
.

From this one can get

ν =

{
(1− λ)δ0 + Ξ if 0 ≤ λ ≤ 1,

Ξ if λ > 1,

where

Ξ =
1

2πt
χ[(1−

√
λ)2,(1+

√
λ)2]

√
4λ− (t− (1 + λ))2dλ(t).

This corresponds to the Marchenko–Pastur law from random matrix theory.

33. S-Transform

We used the R-transform to compute the additive free convolution. To compute the multiplicative free
convolution we use the S-transform.

Theorem 33.1. Let µ be a distribution with µ(X) ̸= 0. Let

ψµ(z) =
∑
k≥1

µ(Xk)zk

χµ(z) = ψ−1
µ (z) (compositional inverse),

Sµ(z) = χµ(z)
1 + z

z
.

Then for any two such distributions µ, ν:

Sµ⊠ν = SµSν .
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34. Free Convolution of Measures with unbounded support

One can extend the operations ⊞,⊠ to general probability measures on R or (0,∞) (not necessarily
compactly supported!), I didn’t really take notes on this. For example the R-transform of the Cauchy
distribution µ = 1

π
1

1+x2 dλ(x) is rµ(z) = −i.

35. Free Independence with Amalgamation

The idea is to define free independence conditioned on a subalgebra.

Definition. Let B be a unital algebra. A noncommutative B-probability space is (A,Φ) where
A is a unital algebra with B as a subalgebra, and Φ : A → B a B − B-bimodule map so that
Φ|B = idB.

Definition. If (A,Φ) is a noncommutative B-probability space, and (Aι)ι subalgebras with B ⊆
Aι ⊆ A, then the (Aι)ι are B-free if

Φ(a1 · · · an) = 0,

whenever aj ∈ Aιj , Φ(aj) = 0 for j = 1, . . . , n and ι1 ̸= ι2 ̸= . . . ̸= ιn.

There are also C∗-, W ∗-analgoues of this.

36. Multivariate Normal Form

37. Free analogue of Wick’s Theorem

38. Random Matrices
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