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1 (Co)homological Algebra
Throughout, A is an abelian category.

Definition.

(a) A complex A• in A is a collection (Ai)i∈Z of objects in A together morphisms di :
Ai → Ai+1 for all i ∈ Z such that di+1 ◦ di = 0 for all i. Often we will give the Ai

only for i in a proper subset of Z. If so, then by convention, Ai = 0 for all other i.

(b) Let A•, B• be complexes in A. Then a morphism f• : A• → B• of complexes is a
collection (f i)i∈Z of morphisms f i : Ai → Bi for all i such that the diagram

· · · Ai−1 Ai Ai+1 · · ·

· · · Bi−1 Bi Bi+1 · · ·

f i−1 f i f i+1

commutes. This gives a category of complexes in A. It is an abelian category.

Definition. Let A• be a complex in A. Then for all i the i-th cohomology hi(A•) is the
quotient

hi(A•) = ker di/ im di−1 := codomain of coker(ker(coker di−1) → ker di)

for all i.

Also for all morphisms f• : A• → B• of complexes, we have a morphism hi(f•) : hi(A•) →
hi(B•) for all i defined uniquely by the condition that

0 im(di−1
A ) ker(diA) hi(A•) 0

0 im(di−1
B ) ker(diB) hi(B•) 0

f i−1 f i hi(f•)

commutes. So hi isa covariant functor {complexes in A} → A.

Proposition 1.1.

(a) Let 0 → A• → B• → C• → 0 be a short exact sequence of complexes in A. Then
there are natural maps δi : hi(C•) → hi+1(A•) such that the sequence

· · · → hi−1(C•)
δi−1

−−−→ hi(A•) → hi(B•) → hi(C•)
δi−→ hi+1(A•) → . . .

is exact.
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(b) Furthermore, δi is functorial, in the following sense. Let

0 A•
1 B•

1 C•
1 0

0 A•
2 B•

2 C•
2 0

f•A f•B f•C

be a commutative diagram of complexes in A with exact rows. Then the diagram

hi(C•
1 ) hi+1(A•

1)

hi(C•
i ) hi+1(A•

2)

δi1

hi(f•C) hi(f•A)

δi2

commutes.

Proof. Use Freyd’s theorem and the Snake Lemma for abelian groups (see Lang’s Algebra
or the movie It’s My Turn).

Definition. Let f•, g• : A• → B• be morphisms of complexes in A. We say that f• and
g• are homotopic and write f• ∼ g•, if there exist morphisms ki : Ai → Bi in A for all i
such that

f• − g• = kd+ dk.

· · · Ai−1 Ai Ai+1 · · ·

· · · Bi−1 Bi Bi+1 · · ·

f,g
ki−1

f,g
ki

f,g
ki+1

Such a collection is called a homotopy operator.

Fact. If f• ∼ g•, then hi(f•) = hi(g•) for all i.

Proof. Use Freyd and chase definitions.

Fact. ∼ is an equivalence relation.

Recall. Let A ∈ A. Then Hom(A, ·) : B 7→ Hom(A,B) and Hom(·, A) : B 7→ Hom(B,A)
are covariant and contravariant functors respectively, fromA toAb. They are also additive
and left exact.

Definition. An object I ∈ A is injective if the functor Hom(·, I) is (right) exact.
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In conrete terms, this means for all short exact sequences 0 → A′ → A → A′′ → 0 in A,
the map Hom(A, I) → Hom(A′, I) is surjective. So all maps A′ → I can be extended to
give maps A→ I.

Dually, an objective P ∈ A is projective if Hom(P, ·) is right exact, i.e. Hom(P,A) →
Hom(P,A′′) surjective.

Definition. A coresolution, or right resolution, of an object A ∈ A is an exact sequence
0 → A

ε−→ E0 → E1 → · · · in A (equivalently, a complex E• in A, zero in all degrees < 0,
together with an augmentaion map ε : A → E0 such that the above sequence is exact).
Dually, a (left) resolution is an exact sequence · · · → E2 → E1 → E0 → A→ 0 in A.

Definition. Let P be a property of objects of A. Then a P resolution or coresolution of
an object A in A is a resolution or coresolution E• or E• of A in which Ei or E

i has P
for all i.

Definition. An abelian category A has enough injectives if for all A ∈ A there is a
monomorphism from A to an injective object of A.

Proposition 1.2. If A has enough injectives, then every object of A has an injective
resolution.

Proof. Let A ∈ A. We construct E• inductively. Let A → E0 be a monomorphism such
that E0 is injective. Given 0 → A → E0 → · · ·En, let coker(En−1 → En) → En+1 be a
monomorphism with En+1 injective for n > 0 and for n = 0 take coker(A → E0) → E1.
Then 0 → A→ E0 → E1 → · · · is an injective resolution of A.

Lemma 1.3. Let φ : A→ B be a morphism in A, and let I•, J• resp. be right resolutions
of A,B with J• injective. Then there is a map f• : I• → J• such that the diagram

0 A I0 I1 · · ·

0 B J0 J1 · · ·

φ f0 f1

commutes.

Proof. Use induction and the definition of injective. Exercise.

Lemma 1.4. With notation as in the previous lemma, any two such morphisms f•, g• :
I• → J• are homotopic.

Proof. Let h• = f• − g•. Then we have the following diagram in which the rectangles
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commute:

coker δ coker d0

0 A I0 I1 I2 · · ·

0 B J0 J1 J2 · · ·

i1

ψ0

i2

ψ1

δ

0

π0

d0

h0

π1

k1

d1

h1

k2
h2

ε

e0 e1

Since h0 ◦ δ = 0, h0 factors through coker δ, giving ψ0 : coker δ → J0. Since coker δ → I1

is a monomorphism, and J0 is injective, this extends to a map k1 : I1 → J0. So k1i1 = ψ0

and ψ0π0 = h0. Also let k0 : I0 → J−1 = 0 be the zero map. Then e−1k0 + k1d0 =
k1d0 = k1i1π

0 = ψ0π0 = h0. Now h1 − e0k1 vanishes on im d0 because (h1 − e0k1)d0 =
e0h0 − e0h0 = 0. So h1 − e0k1 factors through coker d0, i.e. there is ψ1 : coker d0 → J1

such that h1−e0k1 = ψ1 ◦π1. Since coker d0 → I2 is a monomorphism and J1 is injective,
ψ1 extends to k2 : I2 → J1 (so k2 ◦ i2 = ψ1) and e0k1 + k2d1 = h1 − ψ1π1 + k2d1 =
h1 − k2i2π

1 + k2d1 = h1. Then proceed by induction.

1.1 Right-derived functors

For this section, A is an abelian category with enough injectives, B is an abelian category,
and F : A → B is a covariant left exact functor.

Definition.

(a) For each object A ∈ A, choose an injective resolution 0 → A→ I•. Then we define

RiF (A, I•) = hi(F (I•)) ∀i ∈ N.

(b) For each morphism φ : A → B in A, choose injective resolutions 0 → A → I•, 0 →
B → J•, and choose f• : I• → J• as in Lemma 1.3. Then we define

RiF (φ, f•) : RiF (A, I•) → RiF (B, J•)

to be hi(F (f•)) for all i ∈ N.

Lemma 1.5. Let φ : A → B, I•, J• as in (b) of the above definition. Then, for any two
morphisms f•, g• : I• → J• as in Lemma 1.3, we have RiF (φ, f•) = RiF (φ, g•) for all i.

Proof. By Lemma 1.4, f• and g• are homotopic. Let k• be a homotopy operator between
them. Then F (k•) is a homotopy operator between F (f•) and F (g•), so RiF (φ, f•) =
hi(F (f•)) = hi(F (g•)) = RiF (φ, g•).

Definition. Continuation of the above definition. We define RiF (φ, I•, J•) := RiF (φ, f•)
for any f• : I• → J• as in Lemma 1.3. By the lemma this is well defined.
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Now let φ : A→ B and ψ : B → C be morphisms in A, and let

0 A I•

0 B J•

0 C K•

φ f•

ψ g•

be a commutative diagram in which the rows are injective resolutions. Then

RiF (A, I•) RiF (B, J•)

RiF (C,K•)
RiF (ψ◦φ,I•,K•)

RiF (φ,I•,J•)

RiF (ψ,J•,K•)

commutes for all i. So

RiF (idA, I
•, J•) : RiF (A, I•) → RiF (A, J•)

is an isomorphism for all injective resolutions 0 → A → I• and 0 → A → J• of A with
inverse RiF (idA, J

•, I•). Therefore RiF (A) is well defined up to isomorphism for all i,
and so is RiF (φ) for all φ : A→ B (exercise).

Also RiF is an additive functor for all i (because all steps in the above construction are
additive).

This proves part (a) of Theorem 1.1A in [Har77]. Part (b): F ∼= R0F , canonically.

Proof. Let A ∈ A, and let 0 → A→ I• be an injective resolution. Since 0 → A→ I0 → I1

is exact, so is 0 → F (A) → F (I0) → F (I1). So R0F (A) = h0(F (I•)) = ker(F (I0) →
F (I1)) = F (A). For a morphism φ : A→ B in A, we get a commutative diagram

0 A I0 I1

0 B J0 J1

φ f0 f1

Apply F to it, and use commutativity and exactness to get F (φ) = h0(f•) = R0F (φ).

Theorem 1.6 (1.1A(c)). For each short exact sequence

0 → A′ → A→ A′′ → 0
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in A, there are morphisms δi : RiF (A′′) → Ri+1F (Ai) for all i ≥ 0, giving a long exact
sequence

· · · → Ri−1F (A′′)
δi−1

−−−→ RiF (A′) → R′F (A) → RiF (A′′)
δi−→ Ri+1F (A′) → · · ·

in RiF .

Proof. This is “almost” the snake lemma. “Almost” because we need a SES of injective
resolutions. To do this, choose injective resolutions 0 → A′ → I• and 0 → A′′ → J•; then
we will construct a commutative diagram with exact rows (given by the obvious maps
Ii → Ii ⊕ J i and Ii ⊕ J i → J i) and the middle column is an injective resolution of A.

0 0 0

0 A′ A A′′ 0

0 I0 I0 ⊕ J0 J0 0

0 I1 I1 ⊕ J1 J1 0

...
...

...

ε′ ε ε′′

d0
′

d0 d0
′′

The key step is: Given a diagram

0 K ′ K K ′′ 0

I J

f ′ f ′′

in which the top row is exact and I is injective, it can be filled in to give a commutative
diagram

0 K ′ K K ′′ 0

0 I I ⊕ J J 0

f ′ f f ′′

in which the maps 0 → I → I ⊕ J → J → 0 are the obvious ones, and f is injective. We
really just need maps g′ : K → I, g′′ : K → J such that

0 K ′ K K ′′ 0

I J

f ′

g′ g′′
f ′′
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commutes. g′′ is clear, for g′ use that I is injective. Then set f = (g′, g′′).

Remark. In an abelian category any SES 0 → B′ → B → B′′ → 0, in which B′ is
injective, splits.

Use this with K ′,K,K ′′, I, J equal to A′, A,A′′, I0, J0 to get ε : A → I0 ⊕ J0 and then
with coker ε′, coker ε, coker ε′′, I1, J1 to get d0 : I0 ⊕ J0 → I1 ⊕ J1, etc.

Theorem 1.7 (1.1A(d)). δi is natural with respect to morphisms of SES’s in A. In other
words, for all i, δi is a natural transformation from

(0 → A′ → A→ A′′ → 0) 7−→ RiF (A′)

to
(0 → A′ → A→ A′′ → 0) 7−→ Ri+1F (A′′).

Theorem 1.8 (1.1A(e)). If I is an injective object of A, then RiF (I) = 0 for all i > 0.

Proof. Use the injective resolution 0 → I → I → 0 → · · · of I.

Definition. An object A ∈ A is acyclic for F , or F -acyclic, if RiF (A) = 0 for i > 0.

So all injective objects of A are F -acyclic for all left-exact convariant functors F : A → B.

Fact. In the diagram below,

0 0 0 0

coker ε coker d1

0 A I0 I1 I2 I3 · · ·

A coker d0 coker d3

0 0 0 0

ε d0 d1 d2

ε

the horizontal sequence is exact iff all of the diagonal sequences are.

Proposition 1.9 (1.2A). Let A ∈ A and let 0 → A
ε−→ J• be an F -acyclic resolution of

A. Then there are canonical isomorphisms

RiF (A) ∼= hi(F (J•))

for all i.
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Proof. Long exact sequences and induction on i (exercise).

Definition. A (covariant) δ-functor from A to B is a collection (T i)i∈N of additive func-
tors T i, together with morphisms δi : T i(A′′) → T i+1(A′) for all short exact sequences
0 → A′ → A→ A′′ → 0 in A and for all i ≥ 0 such that

(i) There is a long exact sequence as in Theorem 1.6, and

(ii) δi is natural as in Theorem 1.7.

Example. (RiF )i≥0 is a δ-functor (provided F is left exact and A has enough injectives).

Definition. A δ-functor T = (T i : A → B)i≥0 is initial if, for any other δ-functor
U = (U i : A → B)i≥0 and for any morphism φ : T 0 → U0, there is a unique sequence
(f i : T i → U i)i≥0 of morphisms of functors with f0 = φ, that commute with the δi for all
short exact sequences and for all i.

If an initial δ-functor exists, it is unique up to unique isomorphism.

Let A, B be abelian categories.

Definition. An additive functor F : A → B is effaceable if for all A ∈ A there is a
monomorphism u : A→M for some M such that F (u) = 0.

Theorem 1.10 (1.3A). Let T = (T i)i≥0 be a δ-functor from A to B. If T i is effaceable
for all i > 0, then T is initial.

Corollary 1.11. Assume that A has enough injectives. Then

(a) For any left-exact, covariant functor F : A → B, the right-derived functors (RiF )i≥0

form an initial δ-functor with R0F ∼= F .

(b) If T = (T i)≥0 is any initial δ-functor, then T 0 is left-exact, and T i ∼= RiT 0 for all
i ≥ 0.

Proof.

(a) We already know that (RiF )i≥0 is a δ-functor with R0F ∼= F . It remains only to
show that δ is initial. By Theorem 1.10, it is enough to show that T i is effaceable
for all i > 0. Let i > 0 and A ∈ A. Pick a monomorphism u : A → M with M
injective. Then, for all i > 0, RiF (u) = 0 because RiF (M) = 0.

(b) Let T be as given. Then for all short exact sequences 0 → A′ → A → A′′ → 0, the
long exact sequence begins 0 → T 0A′ → T 0A → T 0A′′ → . . . , so T 0 is left-exact.
Since both (T i)i≥0 and (RiT 0)i≥0 are initial δ-functors and T 0 ∼= R0T 0, we have
T i ∼= RiT 0 for all i (uniquely).
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1.2 Categories with enough Injectives

To use this theory, we need to show that certain categories have enough injectives. We
start with Ab.

Lemma 1.12. An abelian group A is injective if and only if it is divisible.

Proof. “⇒” Given a ∈ A and n ∈ Z, n ̸= 0, let φ : Z → A be defined by 1 7→ a. Then
there is ψ : Z → A such that

0 Z Z

A

φ

·n

∃ψ

commutes. Then na′ = a for a′ = ψ(1).

“⇐” Let A be a divisible abelian group, and let

0 M M ′

A

φ

·n

be a diagram in Ab, with M a subgroup of M ′. For any M ′′ with M ⊆ M ′′ ⊊ M ′, any
ψ : M ′′ → A extending φ, any x ∈ M ′, we can extend ψ to a map ρ : ⟨M ′′, x⟩ → A
as follows. Let H = {n ∈ Z : nx ∈ M ′′}; it is a subgroup of Z. If H = 0, then
⟨M ′′, x⟩ ∼=M ′′⊕Z, so we can extend ψ by letting ρ(x) = 0. Otherwise, H = nZ with n ̸= 0.
Choose a0 ∈ A such that na0 = ψ(nx). Then define ρ by ρ(m+ kx) = ψ(m) + ka0 where
m ∈M ′′, k ∈ Z. This is well defined and works. Then conclude by Zorn’s lemma.

Proposition 1.13. The category Ab has enough injectives.

Proof. Recall the Pontryagin dual of an abelian group A is Â = Hom(A,Q/Z). Then
A 7→ Â is a contravariant left-exact functor which is in fact exact as Q/Z is divisible,
hence injective.

Step 1. The natural map A → ̂̂A is injective. Suppose 0 ̸= a ∈ A. Then define φ :
⟨a⟩ → Q/Z by φ(a) = 1

2 if the order of a is infinite and 1
m if the order of a is m <∞.

Since Q/Z is injective, φ extends to α : A → Q/Z. Then α(a) = φ(a) ̸= 0, so

a /∈ ker(A→ ̂̂A ).

Note. ̂̂A is not always injective, for example if A = Z/2Z, then ̂̂A ∼= Â ∼= Z/2Z.

Step 2. Construct an injection from ̂̂A to some injective object. Choose a surjection⊕
i∈I Z↠ Â. This gives an injection

̂̂A →
(⊕
i∈I

Z
)̂
= Hom(

⊕
i∈I

Z,Q/Z) =
∏
i∈I

Hom(Z,Q/Z) =
∏
i∈I

Q/Z,
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which is divisible, and hence injective.

Example. Let A = Z. Then Â = Hom(Z,Q/Z) = Q/Z. The easiest surjection is⊕∞
i=1 Z → Q/Z, ei 7→ 1

i for all i. So Z ↪→
∏∞
i=1Q/Z, n 7→ (n/1, n/2, n/3, . . . ).

So we have proved:

Theorem 1.14. Ab has enough injectives.

Theorem 1.15. Let A be a commutative ring. Then Mod(A) has enough injectives.

Proof. See Homework 2.

Theorem 1.16. Let (X,OX) be a ringed space. Then Mod(X) has enough injectives.

Proof. Let F ∈ Mod(X). For all x ∈ X choose an embedding of the stalk Fx into an
injective OX,x-module Ix. Let I =

∏
x∈X jx∗Ix, where jx : {x} → X is the inclusion (and

therefore jx∗Ix is a skyscraper sheaf). So for all U ⊆ X open, I(U) =
∏
x∈U Ix. We have

a naturally defined map F → I, given by

f
∈F(U)

7−→ (fx)x∈U
∈
∏

x∈U

7−→ (fx)x∈U
∈
∏

x∈U Ix=I(U)

which is injective as it is injective on stalks. We claim that I is injective in Mod(X). Let
G ∈ Mod(X). Then

HomOX
(G, I) =

∏
x∈X

HomOX
(G, jx∗Ix) =

∏
x∈X

HomOX,x
(Gx, Ix).

Let G → H be an injection of sheaves: Then Gx → Hx is injective for all x, so
HomOX,x

(Hx, Ix) → HomOX,x
(Gx, Ix) is surjective for all x, therefore∏

x∈X HomOX,x
(Hx, Ix) →

∏
x∈X HomOX,x

(Gx, Ix) is surjective, so
HomOX

(H, I) → HomOx(G, I) is surjective, and then I is injective.

Corollary 1.17. Let X be a topological space. Then Ab(X) as enough injectives.

Proof. Take OX = Z be the constant sheaf of rings Z on X. Then (X,OX) is a ringed
space and Mod(X) ∼= Ab(X).

So, we have proved that Ab,Mod(A),Mod(X) and Ab(X) have enough injectives.

Definition. Let X be a topological space. Since Ab(X) has enough injectives and Γ(X, ·) :
Ab(X) → Ab is covariant and left-exact, there are right-derived functors RiΓ(X, ·) :
Ab(X) → Ab for all i. We define the cohomology functors H i(X, ·) : Ab(X) → Ab to
be RiΓ(X, ·) for all i.
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Next: We will show that, for any ringed space (X,OX), H
i(X, ·) can be computed as the

right-derived functors of Γ(X, ·) : Mod(X) → Ab for all F ∈ Mod(X).

Recall: A sheaf F ∈ Ab(X) is flasque if the restriction map F(U) → F(V ) is surjective
for all opens V ⊆ U in X.

Example. The injective sheaf I from the earlier proof is flasque.

Lemma 1.18. Let (X,OX) be a ringed space. Then any injective module in Mod(X) is
flasque.

Proof. Let I ∈ Mod(X) be an injective object. Let U ⊆ X be open and let j : U → X
be the inclusion map, and let OU = j!(OX |U ). This is an OX -module. Recall that if F is
a sheaf on U , then j!F is defined to be the sheaf associated to the presheaf

W 7→

{
F(W ) if W ⊆ U,

0 otherwise

the stalks of which are

(j!F)x =

{
Fx if x ∈ U ,

0 otherwise.

Also (j!F)|U ∼= F . For all open V ⊆ U ⊆ X, we have an injection OV ↪→ OU of sheaves
on X. Since I is injective,

HomOX
(OU , I) → HomOX

(OV , I)

is surjective. Note that HomOX
(OU , I) = I(U) and under this identification the above

surjective map corresponds to the restriction I(U) → I(V ), so I is flasque. To see that

equality, let O′
U be the presheaf W 7→

{
F(W ) if W ⊆ U,

0 otherwise.
Then

HomOX
(OU , I) = HomOX

(O′
U , I)

≃−→ HomOX |U (O
′
U |U , I|U )

= HomOX |U (OX |U , I|U ) = HomOX(U)(OX(U), I(U)) = I(U).

Lemma 1.19. Let X be a topological space and let F ∈ Ab(X). If F is flasque, then it
is acyclic.

Proof. Assume that F is flasque. Embed it into an injective sheaf I, and let G = I/F .
Then 0 → F → I → G → 0 is exact. Since F and I are flasque, so is G ([Har77, Ex.
1.16c]), so by [Har77, Ex. 1.16b],

0 → Γ(X,F) → Γ(X, I) → Γ(X,G) → 0

is exact. Since I is acyclic, we get H1(X,F) = 0 from the long exact sequence, and
H i(X,F) ∼= H i−1(X,G) for all i > 1 from the LES, so H i(X,F) = 0 by induction.
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Proposition 1.20. Let (X,OX) be a ringed space. Then H i(X, ·) can also be computed
as the i-th right derived functor of Γ(X, ·) : Mod(X) → Ab for all i ≥ 0.

Proof. Use the previous two results together with the fact that the right derived functors
can be computed from an acyclic resolution.

Corollary 1.21. If X is a scheme over SpecA for some ring A, then H i(X,F) has a
naturally defined A-module structure for all i, for all F ∈ Mod(X).

Proof. For such X, all sheaves in Mod(X) are also sheaves of A-modules. So we can let
ΓA(X, ·) be the global section functor Mod(X) → Mod(A). Then

Mod(X) Mod(A)

Ab
Γ(X,·)

ΓA(X,·)

forgetful

commutes. Therefore the diagram

Mod(X) Mod(A)

Ab
Hi(X,·)

RiΓA(X,·)

forgetful

commutes, because the forgetful functor is exact. So we can identify H i(X,F) with
RiΓA(X, ·), thus giving H i(X,F) the structure of an A-module for all i,F .
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2 Cohomology of Coherent Sheaves on
Noetherian Schemes

2.1 Grothendieck’s Vanishing Theorem

Lemma 2.1. Let X be a noetherian topological space, and let (Fα)α∈A be a directed system
of flasque sheaves on X. Then lim−→Fα is flasque.

Proof. Let V ⊆ U be open subsets of X. Then Fα(U) → Fα(V ) is onto for all α. Then
lim−→Fα(U) → lim−→Fα(V ) is surjective as lim−→ is an exact functor in Ab. Also (lim−→Fα)(U) =
lim−→Fα(U) since X is noetherian ([Har77, Exercise II, 1.11]).

Proposition 2.2. Let X be a noetherian topological space, and let (Fα)α∈A be a direct
system in Ab(X). Then for all i there are natural isomorphisms

lim−→H i(X,Fα)
≃−→ H i(X, lim−→Fα)

compatible with the restriction maps.

Proof. Let C be the category of A-directed systems in Ab(X). We need to show that
lim−→H i(X, ·) and H i(X, lim−→·) are isomorphic functors C → Ab. For each α, inject Fα
into its sheaf G0

α (= U 7→
∏
x∈U (Fα)x) of discontinuous sections, which is flasque. Map

coker(Fα → G0
α) into its sheaf G1

α of discontinuous sections, etc. Then for all α we get a
flasque resolution

0 → Fα → G•
α

of Fα. This process is functorial, so (Giα)α∈A is a directed system for all i. Then we have

lim−→H i(X,Fα) = lim−→hi(Γ(X,G•
α)) =

lim−→ exact in Ab
hi(lim−→Γ(X,G•

α))

=
[Har77, Exercise II, 1.11]

hi(Γ(X, lim−→G•
α)).

Claim: lim−→ is an exact functor on Ab(X).

Proof. Because lim−→ commutes with lim−→ (over two different directed systems), (lim−→Giα)P =

lim−→((Giα)P ) for all i, P and lim−→ is exact in Ab.

Then 0 → lim−→Fα → lim−→G•
α is a flasque resolution, so

hi(Γ(X, lim−→Giα)) = H i(X, lim−→Fα).

14



Corollary 2.3. On a noetherian space cohomology commutes with arbitrary direct sums.

Proof. Any direct sum is the lim−→ of its finite subsums.

Lemma 2.4. Let Y be a closed subset of a topological space X, let j : Y → X be the
inclusion map, and let F ∈ Ab(Y ). Then H i(X, j∗F) ∼= H i(Y,F) for all i.

Proof. Let I• be a flasque resolution of F on Y . Then j∗(I•) is a flasque resolution of
j∗F on X. Indeed, since j is a closed embedding, j∗ is exact. Also Γ(X, j∗F) = Γ(Y,F),
so the cohomology is the same.

Note. By abuse of notation, we will often write H i(X,F) instead of H i(X, j∗F).

Definition. Let X be a topological space, Z ⊆ X a closed subset, U = X \ Z and let
i : Z → X, j : U → X be the inclusion maps. For F ∈ Ab(X) let FZ denote i∗(F|Z) :=
i∗(j

∗F) and let FU := j!(F|U ).

Proposition 2.5 ([Har77, Exercise II 1.19]). We have an exact sequence

0 → FU → F → FZ → 0.

Theorem 2.6 (Grothendieck’s Vanishing Theorem). Let X be a noetherian topological
space of dimension n, and let F ∈ Ab(X). Then H i(X,F) = 0 for all i > n.

Proof. We induct on (n,m) where n = dimX and m is the number of irreducible compo-
nents of X, and the tuples are ordered lexicographically.

Step 1. Reduce from X arbitrary of dimension n ≥ 0 to X irreducible of dimension ≤ n.

Proof. We induct onm as above. Since X ̸= ∅, m > 0. Ifm = 1, then X is irreducible
and we are done, so assume m > 1. Choose an irreducible component Z of X and let
U = X \ Z. Then

0 → FU → F → FZ → 0 (∗)

is exact.

Claim 1. H i(X,FZ) = 0 for all i > n.

Proof. Since Z is irreducible, H i(Z,F|Z) = 0 for all i > n (by the case we are reducing
to). Conclude by Lemma 2.4.

Claim 2. H i(X,FU ) = 0 for all i > n.

Proof. Subclaim: There is a sheaf G on U such that FU ∼= j∗G, where j : U ↪→ X is
the inclusion map. So FU can be regarded as a sheaf on U . To see this note that

0 → (FU )X\U → FU → (FU )U → 0

15



is exact. But also (FU )X\U = 0 because all of its stalks are 0. Therefore FU ∼=
(FU )U = j∗(FU |U ), so we can let G = FU |U .

Next note that H i(X,FU ) ∼= H i(U,FU |U ) = 0 for all i > n by inductive hypothesis as
U has m− 1 irreducible components.

Claims 1 and 2 then show what we want using the long exact sequence of (∗) as we
have 0 = H i(X,FU ) → H i(X,F) → H i(X,FZ) = 0 for all i > n.

Step 2. Prove the base cases X = ∅ and X irreducible of dimension 0.

Proof. The case X = ∅ is trivial, so let dimX = 0 and X irreducible. Note that then
the only closed subsets of X are ∅ and X itself, so the only open subsets are ∅ and X,
so F is flasque, hence acyclic.

Step 3. X irreducible of dimension n > 0, assuming everything holds already for all X
of dimension < n.

Step 3a Reduce to the case where F is finitely generated.

Proof. Let B =
⊔
U⊆X openF(U), and let A be the collection of finite subsets of

B. Then A is a directed set. For all α ∈ A, let Fα be the subsheaf of F generated
by α. Then F = lim−→α

Fα, so H i(X,F) = lim−→α
H i(X,Fα) and it suffices to prove

H i(X,Fα) = 0.

Step 3b Reduce to the case in which F is generated by one element. Use a long
exact sequence argument involving short exact sequences

0 → Fα′ → Fα → G → 0

where ∅ ≠ α′ ⊊ α ∈ A and G := Fα/Fα′ is generated by the images of the elements
of α \ α′.

Step 3c. Now assume F is generated by one section s ∈ F(U) for some open U ⊆ X.
Reduce to ZU and subsheaves of ZU where ZU := j!(Z|U ) and Z is the constant
sheaf Z on X.

Proof. We may assume U ̸= ∅. Then the map ZU → F taking 1 ∈ ZU (U) = Z to
s ∈ F(U) (this map exists on the presheaf used to define j!(Z|U ), so extends to a
map on ZU ). Let R be the kernel of this map, so that

0 → R → ZU → F → 0

is exact. Thus it suffices to prove the theorem for ZU and forR, sinceH i(X,ZU ) →
H i(X,F) → H i+1(X,R) is exact.

Step 3d. Reduce to showing it for ZU .

Proof. Let R be a subsheaf of ZU . We can assume R ̸= 0. Let d be the smallest
positive integer such that d ∈ Rx ⊆ Zx = Z as x ∈ U varies, and let V = {x ∈
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U : Rx ∋ d}. Then v ̸= ∅ and V is open (as in Problem 1 on HW1). Then, by
minimality of d, Rx = dZ for all x ∈ V , so RV ∼= ZV as sheaves on X. Then

0 → ZV
d−→→ R → R/ZV → 0

is an exact sequence of sheaves on X, and Supp(R/ZV ) ⊆ U \ V has dimension
< n. By inductive hypothesis, on dimension, it suffices to show the theorem for
ZV .

Step 3e. Prove it for ZU .

Proof. 0 → ZU → Z → ZX\U → 0 is exact, so for all i > n,

H i−1(X,ZX\U ) → H i(X,ZU ) → H i(X,Z)

is exact. But H i−1(X,ZX\U ) = H i−1(X \ U,Z|X\U ) = 0 by inductive hypothesis
since dim(X \U) ≤ n− 1 < i− 1. Also H i(X,Z) = 0 for all i > 0 since by [Har77,
Exercise II 1.16a], a constant sheaf on an irreducible space is flasque.

Example ([Har77, Exercise III 2.1a]). Let k be an infinite field and let X = A1
k. Let P

and Q be distinct closed points of X and let U = X \ {P,Q}. Then H1(X,ZU ) ̸= 0.

Proof. Let j : U ↪→ X be the inclusion map. Note

FU = j!(const. sheaf F on U) =

(
V 7→

{
Z if V ⊆ U and V ̸= ∅
0 otherwise

)

is already sheaf because U is irreducible. Also Z|{P,Q} is the direct sum (Z at P )⊕(Z at A)
of two skyscraper sheaves. Z{P,Q} has the same description on X. Now look at the short
exact sequence

0 → ZU → Z → Z{P,Q} → 0.

From the long exact sequence we get:

H0(X,Z)
=Z

→ H0(X,Z{P,Q})
=Z⊕Z

→ H i(X,ZU )

The first map cannot be surjective, so H1(X,ZU ) ̸= 0.

2.2 Serre’s Criterion for Affineness

Proposition 2.7. Let I be an injective A-module where A is a noetherian ring. Then the
sheaf Ĩ on SpecA is flasque.

Proof. Omitted.
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Theorem 2.8. Let X = SpecA with A noetherian. Then all quasi-coherent sheaves on
X are acyclic.

Proof. LetM be an A-module and let F = M̃ . Let 0 →M → I• be an injective resolution
of M in Mod(A). Then 0 → M̃ → Ĩ• is a flasque, hence acyclic, resolution in Mod(X)
by Proposition 2.7, so H i(X, M̃) = hi(Γ(X, Ĩ•)) = hi(I•) = 0 for all i > 0.

Theorem 2.9 (Serre). Let X be a noetherian scheme. Then TFAE:

(i) X is affine.

(ii) H i(X,F) = 0 for all quasi-coherent sheaves F on X, for all i > 0.

(iii) H1(X, I) = 0 for all quasi-coherent sheaves I of ideals on X.

Proof. “(i) ⇒ (ii)” has been proved in Theorem 2.8 and “(ii) ⇒ (iii)” is immediate. So
we prove “(iii) ⇒ (i)”. We will use the criterion of [Har77, Exercise II 2.17]: A scheme X
is affine if and only if there is a finite subset {f1, . . . , fr} of A := Γ(X,OX) such that the
open set Xfi is affine for all i and (f1, . . . , fr) = (1) in A.

Claim 1. For all closed points P ∈ X there is an f ∈ A such that P ∈ Xf and Xf is
affine.

Proof. Let P ∈ X be a closed point, let U be an open affine neighborhood of P in X, and
let Y = X \ U . Then we have a short exact sequence

0 → IY ∪{P} → IY → k(P ) → 0

of sheaves onX, where IY ∪{P} and IY are the (coherent) ideal sheaves onX corresponding
to Y ∪ {P} and Y respectively, and k(P ) is the skyscraper sheaf corresponding to the
residue field at P . [Proof that it is exact: On X \ {P}, the first map is an isomorphism

and k(P ) = 0; on U = SpecB it is 0 → m̃P → B̃ → k̃(P ) → 0 where mP is the maximal
ideal of B corresponding to P .]

Then
H0(X, IY ) → H0(X, k(p)) → H1(X, IY ∪{P})

is exact andH1(X, IY ∪{P}) = 0 by assumption (iii), therefore there exists f ∈ H0(X, IY ) ⊆
A such that f /∈ mP . Moreover, Xf ⊆ Uf (because f ∈ IY , so Y ∩ Xf = ∅), so
Xf = SpecBf is affine.

We now use [Vak22, Exercise 5.1E]: Every non-empty quasi-compact scheme has a closed
point. [Let X be such a scheme. By quasi-compactness, X is covered by Ui = SpecAi,
i = 1, . . . , n with n > 0. Suppose X no closed points. Pick a point z0 ∈ U1 corresponding
to a maximal ideal of A1. Then {z0} is closed in U1, but not in X, so its closure contains
points ̸= z0. These points necessarily lie outside of U1. Let y be such a point. Pick i1
such that y ∈ Ui1 \ U1, so {y} ⊆ X \ U1. Pick z1 ∈ Ui1 corresponding to a maximal ideal
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in Ai1 containing the ideal of {y}∩Ui1 . Repeating (and letting i0 = 1), we get a sequence
of points z0 ⇝ z1 ⇝ z2 ⇝ · · · ⇝ zn, such that each zj corresponds to a maximal ideal

in Aij and zj /∈ {zj+1} for all 0 ≤ j < n. By the pigeonhole principle, there are j, l with

0 ≤ j < l ≤ n such that ij = il. But we have zj /∈ {zl}, so zj ̸= zl, yet zj , zl ∈ Uij = Uil
and zl ∈ {zj+1} ̸∋ zj , contradicting the fact that zj corresponds to a maximal ideal of Aij ,

so {zj} ∩ Uij = {zj}.]

Claim 2. There exist f1, . . . , fn ∈ A such that
⋃
Xfi = X and Xfi is affine for all i.

Proof. Let Xcl denote the set of closed points of X. By Claim 1, for all points P ∈ Xcl

there is fP ∈ A such that P ∈ XfP and XfP is affine. Let Z = X \
⋃
P∈Xcl

XfP . Then
Z is closed. Regard it as a closed subscheme of X with the reduced induced subscheme
structure. It is quasi-compact. If Z ̸= ∅, then it has a closed point P which is also
closed in X. But then P ∈

⋃
P ′∈Xcl

XfP ′ , a contradiction as P ∈ Xcl ⊆ XfP . Therefore
{XfP | P ∈ Xcl} is an open covering of X. Let f1, . . . , fn ∈ A correspond to a finite
subcovering. Then

⋃n
i=1Xfi = X.

Finally we show that (f1, . . . , fn) = (1) in A = Γ(X,OX), finishing the proof. Define
α : On

X → OX by On
X(U) ∋ (a1, . . . , an) 7→

∑
aifi ∈ OX(U). This is surjective on stalks,

because
⋃
Xfi = X, so for all x ∈ X there is some i such that x ∈ Xfi and then fi is not

in the maximal ideal of OX,x, and then OX,x
·fi−→ OX,x is surjective. Let F = kerα. Then

0 → F → On
X → OX → 0

is exact and we get the exact sequence

Γ(X,On
X) → Γ(X,OX) → H1(X,F).

We want to show H1(X,F) = 0 which gives what we want. We prove by induction that
H1(X,F ∩ Oi

X) = 0 for all i = 0, . . . , n. The case i = 0 is trivial. Let i > 0 and assume
H1(X,F ∩Oi−1

X ) = 0. Consider the exact sequence

0 → F ∩Oi−1
X → F ∩Oi

X → Gi → 0.

Then Gi is a subsheaf of OX . It is a coherent ideal sheaf, so by assumption H1(X,Gi) = 0
and the long exact sequence gives H1(F ∩Oi

X) = 0.

Corollary 2.10 (of Proposition 2.7). Let X be a noetherian scheme. Then every quasi-
coherent sheaf on X can be embedded in a flasque quasi-coherent sheaf on X.

Proof. Let F be a quasi-coherent sheaf on X. Cover X with finitely many open affines
Ui = SpecAi, and for all i let Mi be an Ai-module such that F|Ui

∼= M̃ i. Embed Mi into
an injective Ai-module Ii so that Ĩi is flasque on Ui by Proposition 2.7. Then for all i we
have an injective map F|Ui → Ĩi, which gives a map F → (fi)∗Ĩi where fi : Ui → X is the
inclusion map. These combine to give a map F →

⊕n
i=1(fi)∗Ĩi. This map is injective on
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stalks, hence injective. For each i, Ĩi is flasque on Ui, hence (fi)∗Ĩi is flasque on X and
therefore

⊕n
i=1(fi)∗Ĩi is flasque. It is also quasi-coherent each Ui is noetherian.
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3 Čech Cohomology
Let X be a topological space, F ∈ Ab(X) and U = (Ui)i∈I an open covering of X. We
fix a well-ordering of I.

Notation. Ui0···ip = Ui0 ∩ · · · ∩ Uip for all i0, . . . , ip ∈ I.

Definition. For all p ∈ N, Cp(U ,F) :=
∏
i0<···<ip F(Ui0...ip). The components of α ∈

Cp(U ,F) will be denoted αi0...ip ∈ F(Ui0...ip).

Convention. Let α ∈ Cp(U ,F). For arbitrary i0, . . . , ip ∈ I, we define

αi0...ip :=

0 if some index is repeated

(signσ)αiσ(0)...iσ(p)

otherwise, where σ ∈ Sp+1 is the unique per-
mutation such that iσ(0) < . . . iσ(p)

This notation is compatible with our earlier notation. In fact, for all i0, . . . , ip ∈ I and
σ ∈ Sp+1, αi0...ip = signσαiσ(0)...iσ(p)

.

Definition. Define d : Cp(U ,F) → Cp+1(U ,F) by

(dα)i0...ip+1 =

p+1∑
j=0

(−1)jαi0...îj ...ip+1
(1)

for all i0 < · · · < ip+1 in I.

Lemma 3.1. The formula (1) holds for all i0, . . . , ip+1 ∈ I.

Proof. First, it is true for arbitrary i0, . . . , ip+1 if and only if it is true for iσ(0), . . . , iσ(p+1)

for all σ ∈ Sp+1.

Proof. We can assume σ = (l l + 1). So we need to show that both sides are multiplied
by −1 in this case. This is true for the LHS by definition and individually for all terms
on the RHS where j ̸= l, l + 1. Then the j = l term on the original RHS is the j = l + 1
term on the new RHS because the subscripts on α are the same and (−1) = −(−1)l+1.
Similarly j = l + 1 term on the original RHS and the j = l term on the new RHS.

If there are no repeated indices, then we are done. Otherwise, we may assume i0 = i1.
Then the LHS is 0, all terms for j > 1 on the RHS are 0, and the j = 0, 1 terms cancel.

Lemma 3.2. d2 = 0.

Proof. Exercise.

Therefore, C•(U ,F) is a complex of abelian groups.
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Definition. The Čech Cohomology groups for F with respect to U are defined by qHp(U ,F) =
hp(C•(U ,F)) for all p ∈ N.

Example. If U = {X}, then

Cp(U ,F) =

{
H0(X,F) if p = 0,

0 otherwise

and qHp(U ,F) is the same.

Remark. Here we usually don’t get a long exact sequence in cohomology.

Remark. For all X,F and U we have qH0(U ,F) = Γ(X,F).

Proof. By the sheaf axioms,

0 → Γ(X,F) →
∏
i

F(Ui)
d−→
∏
i<j

F(Ui ∩ Uj)

is exact and the claim follows.

Example. Let k be a field, let X = P1
k = Proj k[x, y], and let U = {U, V } where U =

D+(x), V = D+(y) and U < V . Then

C0(U ,O(1)) = Γ(U,O(1))× Γ(V,O(1))

= xk[t−1]× yk[t] t =
x

y

= xk[y/x]× yk[x/y]

C1(U ,O(1)) = Γ(U ∩ V,O(1)) = xk[t, t−1]

Cp(U ,O(1)) = 0 p > 1

Let S = k[x, y]. Then O(1) = S̃(1), and

Global Sections Restriction map

O(1)|D+(x) = S̃(1)(x) = xS̃(x) xk[t−1] x

O(1)|D+(y) = S̃(1)(y) = yS̃(y) yk[t] y

O(1)|D+(xy) = ˜S(1)(xy) = xS̃(xy) = yS̃(xy) xk[t, t−1] x x
t = y

Then

qH0(U ,O(1)) = xk[t−1] ∩ yk[t] = xk[t−1] ∩ xt−1k[t−1] = kx⊕ kxt−1 = kx⊕ ky = S1

and
qH1(U ,O(1)) = coker(C0 → C1) = 0

because C0 → C1 is onto: All basis elements xtn (n ∈ Z) of C1 = xk[t, t−1] lie in the
image of C0 → C1: For n ≤ 0 they are in the image of F(U) → C1 and for n ≥ 1 they
are in the image of F(V ) → C1. Also qHp(U ,O(1)) = 0 for all p > 1.
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3.1 Comparison of Čech cohomology with sheaf cohomology

Definition. The Čech complex C•(U ,F) of sheaves on X, is defined by

Cp(U ,F) =
∏

i0<···<ip

j∗(F|Ui0...ip
),

where j : Ui0...ip ↪→ X is the inclusion map. Also define d : Cp(U ,F) → Cp+1(U ,F) as
before.

So for all open V ⊆ X,

Cp(U ,F)(V ) =
∏

i0<···<ip

j∗(F|Ui0...ip
)(V ) =

∏
i0<···<ip

F(Ui0...ip ∩ V ) = Cp((Ui ∩ V )i∈I ,F|V ).

In particular, Γ(X, Cp(U ,F)) = Cp(U ,F) for all p.

Lemma 3.3. Define ε : F → C0(U ,F) by

F(V ) ∋ s 7−→ (. . . , s|Ui∩V , . . . ) ∈ C0(U ,F)(V )

for all open V ⊆ X. Then

0 → F ε−→ C0(U ,F) → C1(U ,F) → . . . (∗)

is exact as a sequence of sheaves on X.

Proof (sketch). The sequence

0 → F(V ) →
∏
i∈I

F(Ui ∩ V ) →
∏
i<j

F(Ui ∩ Uj ∩ V )

is exact by the sheaf axioms, so (∗) is exact at F and at C0(U ,F). To prove exactness at
Cp(U ,F) for all p > 0, it suffices to prove that it is exact at stalks at x for all x ∈ X. This
is done by constructing the appropiate homotopy for all x ∈ X, details omitted.

So (∗) is a (right) resolution of F .

Proposition 3.4. If F is flasque, then qHp(U ,F) = 0 for all p > 0.

Proof. Since F is flasque, F|Ui0...ip
is flasque for all p ∈ N, i0, . . . , ip, so j∗(F|Ui0...ip

) is
flasque for all p, i0, . . . , ip. Then Cp(U ,F) is flasque for all p ≥ 0 and C•(U ,F) is a flasque
resolution of F . Therefore, we can use it to compute Hp(X,F) for all p ∈ N. We get

0 = Hp(X,F) = hp(Γ(X, C•(U ,F))) = hp(C•(U ,F)) = qH(U ,F)

for p > 0.
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Lemma 3.5. For all p ≥ 0, there is a canonical map qHp(U ,F) → Hp(X,F), functorial
in F .

Proof. Let 0 → F → I• be an injective resolution of F . We also have a resolution
0 → F → C•(U ,F). Since I• is injective, there is a morphism C•(U ,F) → I• of complexes,
such that the diagram

0 F C•(U ,F)

0 F I•

commutes. Now apply hp(Γ(X, ·)) to the diagram to get a well-defined map qHp(U ,F) →
Hp(U ,F). It is canonical, because there are no choices for computing qHp(U ,F), and the
map is independent of the choice of I• by earlier results.

For functoriality in F , let φ : F → G be a morphism in Ab(X), and let 0 → F → I• and
0 → G → J • be injective resolutions. Then we have a diagram

0 0 F G C0(U ,F) C0(U ,G) C1(U ,F) C1(U ,G)

0 0 F G I0 J 0 I1 J 1

φ

φ

leading to a diagram

C•(U ,F) C•(U ,G)

I• J •

of complexes and morphisms that commutes up to homotopy. The top map is C•(U , φ),
and the others are constructed using injectivity of I• and J •. Then the corresponding
diagram of qHp(U ,F) and Hp(X,F) commutes for all p.

Theorem 3.6 (Comparison Theorem). Let X be a noetherian separated scheme, let U
be an open affine covering of X, and let F be a quasi-coherent sheaf on X. Then for all
p ∈ N, the maps qHp(U ,F) → Hp(X,F) are isomorphism.

Proof. By induction on p. For p = 0, they are both Γ(X,F) and the map is the identity
map. Inductive step: Assume p > 0 and that qHp−1(U ,F) → Hp−1(X,F) is an isomor-
phism. By Corollary 2.10 we can embed F into a flasque quasi-coherent sheaf G. Let
R = G/F , so

0 → F → G → R → 0
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is exact. For all q > 0, i0 < . . . iq and all open affines V , the set Ui0...iq ∩ V is affine
(recall that a finite intersection of affines in a separated scheme is affine). Since F is
quasi-coherent, H1(Ui0...iq ∩ V,F) = 0 by Theorem 2.8, so

0 → F(Ui0...iq ∩ V ) → G(Ui0...iq ∩ V ) → R(Ui0...iq ∩ V ) → 0

is exact. Then
0 → Cq(U ,F) → Cq(U ,G) → Cq(U ,R) → 0

is exact as it is exact on global sections over open affines V . So we get a long exact
sequence of Čech cohomology groups by the Snake lemma. Also Hq(X,G) = qHq(U ,G) = 0
for all q > 0 because G is flasque.

Now if p > 1, then we have a commutative diagram

0 = qHp−1(U ,G) qHp−1(U ,R) qHp(U ,F) qHp(U ,G) = 0

0 = Hp−1(X,G) Hp−1(X,R) Hp(X,F) Hp(X,G) = 0

δ
≃

δ
≃

By induction the map qHp−1(U ,R) → Hp−1(X,R) is an isomorphism, therefore also
qHp(U ,F) → Hp(X,F) is an isomorphism.

If p = 1, our diagram is

Γ(X,G) Γ(X,R) qH1(U ,F) qH1(U ,G) = 0

Γ(X,G) Γ(X,R) H1(X,F) H1(X,G) = 0

δ

δ

This time the map qH1(U ,F) → H1(X,F) is an isomorphism by the five lemma.

Remarks.

(a) If X is a scheme over SpecA, for some ring A, and if F is a sheaf of OX -modules,
then C•(U ,Z) is a complex in Mod(A), so qHp(U ,F) has a canonical A-module
structure for all p.

(b) Likewise, the complexes C•(U ,F) of sheaves have a natural structure of sheaves of A-
modules on X, so the map (resp. isomorphism) qHp(U ,F) → Hp(X,F) of Lemma 3.5
(resp. Theorem 3.6) is a map of A-modules.

There is another comparison theorem. It works for arbitrary topological spaces X and
F ∈ Ab(X), but only for H1 and only if you take limits of coverings.

Let X be an arbitrary topological space and let Z ∈ Ab(X).
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Definition. A refinement of an open covering U = (Ui)i∈I of X is an open covering
V = (Vj)j∈J of X such that there is a map λ : J → I such that Vj ⊆ Uλ(j) for all j ∈ J .

This gives natural maps λp : qHp(U ,F) → qHp(V,F) for all p.

The natural map is defined as follows: Define φp : Cp(U ,F) → Cp(V,F) by (φp(α))j0...jp =
αλ(j0)...λ(jp)|Vj0...jp for all p, j0, . . . , jp ∈ J . This is compatible with the boundary maps, so

we have a map C•(U ,F) → C•(V,F) of complexes, hence maps λp : qHp(U ,F) → qHp(V,F)
for all p. This is functorial in F (obvious), and functorial in refinements, as follows. Let
W = (Wk)k∈K be refinement of V , and let µ : K → J be a map such that Wk ⊆ Vµ(k) for
all k. Then W is also a refinement of U , via λ ◦ µ : K → I, and the diagram

qHp(U ,F) qHp(W,F)

qHp(V,F)

(λ◦µ)p

λp µp

commutes for all p.

Lemma 3.7. If U ,V are as above, then the maps λp : qHp(U ,F) → qHp(V,F) are inde-
pendent of the choice of λ.

Proof. See Stacks, 09UY.

Furthermore, ( qHp(U ,F))U is a direct system, indexed by coverings U of X, partially
ordered by refinement, for all p. So we can take lim−→U

qHp(U ,F). This is often denoted

qHp(X,F).

Lemma 3.8. For all F and all p, the natural maps of Lemma 3.5 are compatible with the
refinement maps λp, i.e. the diagram

qHp(U ,F) Hp(X,F)

qHp(V,F)

λp

commutes.

Proof. Let I• be an injective resolution of F . We have a commutative diagram

0 F C0(U ,F) C1(U ,F) . . .

0 F I0 I1 . . .

0 F C0(V,F) C1(V,F) . . .

id

id

id
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with exact rows. Now take gloal sections and cohomology to get that the earlier diagram
commutes for all p. (Recall that qHp(U ,F) = hp(Γ(X, Cp(U ,F))).)

We now have well-defined maps lim−→
qHp(U ,F) → Hp(X,F).

Theorem 3.9 ([Har77, Exercise III 4.4]). This is an isomorphism for p ≤ 1.

Proof. If p = 0, then both sides are Γ(X,F). This leaves p = 1. Embed F into a flasque
sheaf G and let R = G/F , so we get a short exact sequence

0 → F → G → R → 0.

We also have injections Cp(U ,F) → Cp(U ,G) for all U and p, so letDp(U) = Cp(U ,G)/Cp(U ,F)
for all p so that we have a short exact sequence

0 → C•(U ,F) → C•(U ,G) → D•(U) → 0

of complexes. If V is a refinement of U , then we get a commutative diagram with exact
rows

0 qH0(U ,F) qH0(U ,G) h0(D•(U)) qH1(U ,F) qH1(U ,G) = 0

0 qH0(V,F) qH0(V,G) h0(D•(V)) qH1(V,F) qH1(V,G) = 0

λ1 λ1 (∗)

Here the middle map is induced by the diagram

0 C•(U ,F) C•(U ,G) D•(U) 0

0 C•(V,F) C•(V,G) D•(V) 0

φ• φ•

We also have a commutative diagram with exact rows

0 h0(D•(U)) h0(C•(U ,R))

0 h0(D•(V)) h0(C•(V,R))

ψ

Now h0(C•(U ,R)) = h0(C•(V,R)) = Γ(X,R), h0(C•(U ,R)) = qH0(U ,R), h0(C•(V,R)) =
qH0(V,R) and ψ is the identity map (via these isomorphisms). So

h0(D•(U))

Γ(X,R)

h0(D•(V))
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commutes, so h0(D•(U)) → h0(D•(V)) is injective, so applying the five lemma to the
diagram (∗) gives that λ1 : qH1(U ,F) → qH1(V,F) is injective. Now consider the following
diagram

0 Γ(X,F) Γ(X,G) lim−→h0(D•(U)) lim−→
qH1(U ,F)

=0

lim−→
qH1(U ,G)

0 Γ(X,F) Γ(X,G) Γ(X,R) H1(X,F) H1(X,G)
=0

(A) f (B) g

(∗∗)
The first and last squares commute, for obvious reasons. Claim. The top row is exact.

Proof. The top row in (∗) was

0 → Γ(X,F) → Γ(X,G) → h0(D•(R)) → qH1(U ,F) → qH1(U ,G) = 0

and is exact. The bottom row of (∗) was the same, but with U replaced by a refinement V.
The vertical maps in (∗) were all injections or equalities, so by arrow chasing and noting
that all of the direct limits are unions, we get that the top row of (∗∗) is exact.

The second row in (∗∗) is exact because it is part of the long exact sequence of sheaf
cohomology.

Square (A) commutes because lim−→h0(D•(U)) is a union of subgroups of Γ(X,R), so it
obviously commutes.

Claim. (B) commutes.

Proof. Let 0 → F → I• and 0 → R → J • be injective resolutions. We have a commutative
diagram

0 C•(U ,F) C•(U ,G) C•(U ,R)

0 I• I• ⊕ J • J • 0

with exact rows by the handout. Now take global sections and restrict to D•(U):

0 C•(U ,F) C•(U ,G) D•(U) 0

0 Γ(X, I•) Γ(X, I• ⊕ J •) Γ(X,J •) 0

This is commutative with exact rows. The naturatlity of the long exact sequence in
cohomology then implies commutativity.
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Hence (∗∗) is a commutative diagram with exact rows. We also know that f is injective
since h0(D•(U)) → Γ(X,R) is injective for all U . We want to show that g is an isomor-
phism. By the five lemma, it suffices to show that f is an isomorphism, so it suffices to
show: Claim. f is surjective.

Proof. Let ψ : G → R be the quotient map, and fix s ∈ Γ(X,R). For all x, the map
ψx : Gx → Rx is surjective, so there is an open neighborhood Ux of x and t(x) ∈ G(Ux)
such that ψx(t

(x)
x ) = sx ∈ Rx. After shrinking Ux, we may assume that ψ takes t(x)

to s|Ux . Let U = (Ux)x∈X and choose a well-ordering on the set of points in X. Then
t := (t(x))x∈X is an element of C0(U ,G) and C0(U , ψ) takes it to (s|Ux)x∈X ∈ C0(U ,R).
So s ∈ h0(D•(U)) because it is in the image of C0(U , ψ). So f is surjective.

3.2 Cohomology of Sheaves on Projective Space

Let A be a noetherian ring, S = A[x0, x1, . . . , xr] with r ≥ 1 and X = ProjS = PrA. Recall
OX(n) = S̃(n) and that that for any OX -module F , Γ∗(F) is defined as

⊕
n∈Z Γ(X,F(n)).

It is a Z-graded S-module.

Theorem 3.10. With notation as above

(a) The natural map S → Γ∗(OX) =
⊕

n∈Z Γ(X,OX(n)) is an isomorphism of Z-graded
S-modules.

(b) H i(X,OX(n)) = 0 for all 0 < i < r and n ∈ Z. (It is also true for all i > r by
Theorem 2.6, if dimA = 0)

(c) Hr(X,OX(−r − 1)) ∼= A.

(d) For all n ∈ Z, the natural map

H0(X,OX(n))×Hr(X,OX(−r − 1− n)) → Hr(X,OX(−r − 1)) ∼= A

is a perfect pairing of free A-modules of finite rank.

Proof. We will use Čech cohomology and Theorem 3.6. Let F =
⊕

n∈ZOX(n). This is a
quasi-coherent sheaf of graded S-modules on X. Since cohomolgoy commutes with

⊕
n∈Z

on a noetherian topological space, H i(X,F) ∼=
⊕

n∈ZH
i(X,OX(n)) for all i and all of our

computations will respect the grading, so we don’t need a graded revision of Theorem 3.6.
Also, as noted earlier, all H i(X,OX(n)) have natural A-module structures and we have
an A-module version of Theorem 3.6.

Our computations will use Čech cohomology, with U = (D+(xj))j=0,...,r. These sets are

affine, so Theorem 3.6 applies: qHp(U ,OX(n)) ∼= Hp(X,OX(n)) for all n and p, as A-
modules. Therefore in particular Hp(X,OX(n)) = 0 for all p > r and for all n.
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Also for all i0, . . . , ip, Ui0...ip = D+(xi0 · · ·xip) and F(Ui0...ip) = Sxi0 ···xip with Z-graded
S-module structure. So C•(U ,F) is

0 →
∏
i0

Sxi0
d0−→

∏
i0<i1

Sxi0xi1 → · · · → Sx0...xr → 0,

with grading (from F on C•, from S on the above).

Proof of (a). We take the intersections in Sx0...xr , which works because all localization
maps involved are injections. See [Har77, II 5.13] to get qH0(U ,F) = ker d0 =

⋂
i Sxi = S.

In fact, Sx0 ∩ Sx1 = S and r ≥ 1.

Proof of (c). Claim. qHr(U ,F) is the free graded A-module with basis {xl00 · · ·xlrr : li <
0 ∀i}.

Note that in degree −r − 1, this has rank 1 because l0 + · · ·+ lr = −r − 1 iff li = −1 for
all i, so the claim implies (c).

We have
qHr(U ,F) = coker

(∏
k

Sx0···x̂k···xr
dr−1

−−−→ Sx0...xr

)
.

Here Sx0...xr is the free A-module with basis {xl00 · · ·xlrr | l0, . . . , lr ∈ Z} and the image of
dr−1 is the A-submodule spanned by {xl00 · · ·xlrr | l0, . . . , lr ∈ Z, lk ≥ 0 for at least one k}.
So the cokernel is isomorphic with grading to the free submodule spanned by {xl00 · · ·xlrr :
l0, . . . , lr < 0}.

Note. The isomorphism qHr(U ,OK(−r − 1)) ∼= A is not canonical.

Proof of (d). The definition of the pairing is as follows: Let s ∈ H0(X,OX(n)). Then
tensoring with s gives an OX -module homomorphism OX(−r − 1 − n) → OX(−r − 1 −
n)⊗OX(n) ∼= OX(−r − 1), so we get a map

Hr(X,−⊗ s) : Hr(X,OX(−r − 1− n)) → Hr(X,OX(−r − 1)),

which is A-linear, so we get a map

H0(X,OX(n)) → HomA(H
r(X,OX(−r − 1− n)), Hr(X,OX(−r − 1))).

This map is also A-linear, so we get a bilinear pairing of A-modules.

Next: If n < 0, then both factors in the pairing are 0: H0(X,OX(n)) = 0 by (a), and
Hr(X,OX(−r−1−n)) by the claim in the proof of (c) because

∑
li = −r−1−n > −r−1,

so some li is ≥ 0. So we may assume n ≥ 0. The pairing takes pairs of cocycles represented
by (xm0

0 · · ·xmr
r , xl00 · · ·xlrr ) to a cocycle represented by xm0+l0

0 · · ·xmr+lr
r (proof later), or

to 0 if mi + li ≥ 0 for some i. Here
∑
mi = n and

∑
li = −r − 1− n.

Claim. The above description determines a unique, well-defined map H0(X,OX(n)) ×
Hr(X,OX(−r − 1− n)) → Hr(X,OX(−r − 1)).

30



Proof of claim. We need a map from (ker d0)n×(Cr(U ,F)−r−1−n/ im dr−1
−r−1−n) to C

r(U ,F)−r−1/ im dr−1
−r−1.

We have (ker d0)n = Sn =
⊕∑

mi=n,mi≥0∀iA·(x
m0
0 · · ·xmr

r ), Cr(U ,F)−r−1−n =
⊕∑

li=−r−1−n,li∈Z,

im dr−1
−r−1−n =

⊕∑
li=−r−1−n,∃i:li≥0, C

r(U ,F)−r−1 =
⊕∑

li=−r−1,li∈Z and imr−1
−r−1 =

⊕∑
li=−r−1,∃i:li≥0.

The pairing is given by multiplication. To show that it is well-defined, we need to show
that elements of Sn × (im dr−1)−r−1−n map to elements of (im dr−1)−r−1. This is true
because (mi ≥ 0∀i) ∧ (∃j : lj ≥ 0) =⇒ ∃i(li +mi ≥ 0).

Claim: The two pairings coincide.

Proof. Each s ∈ H0(X,OX(n)) is an element of Sn canonically, by (a). Tensoring with

s gives a map OX(−r − 1 − n)
⊗s−−→ OX(−r − 1), giving Hr(X,OX(−r − 1 − n)) →

Hr(X,OX(−r − 1)) which comes from C•(U ,OX(−r − 1 − n)) → C•(U ,OX(−r − 1))
which corresponds to multiplication by s on C•(U ,F)−r−1−n = C•(U ,OX(−r−1−n)) →
C•(U ,OX(−r − 1)) = C•(U ,F)−r−1. Recall F = T̃ where T is bi-graded: T =

⊕
S(n).

Consequently, our map in qHr is given by multiplication by s.

Claim: This pairing is perfect.

Proof. H0(X,OX(n)) has a basis {xm0
0 · · ·xmr

r : mi ∈ N ∀i,
∑
mi = n} andHr(X,OX(−r−

1−n)) has basis {[x−m0−1
0 · · ·x−mr−1

r ] ∈ qHr(U ,OX(−r−1−n)) : −m1−1 < 0 ∀i,
∑

(−mi−
1) = −r − 1 − n}. These are dual bases with basis elements corresponding in the obvi-
ous way because the sets of eligible (m0, . . . ,mr) are the same, and the pairing takes

(xm0
0 , . . . , xmr

r , [x
−m′

0−1
0 , . . . , x

−m′
r−1

r ]) to 1 if mi = m′
i for all i and 0 otherwise.

So the pairing is perfect and we have seen that the cohomology modules are free modules
of finite rank.

Proof of (b). We induct on r. Recall r ≥ 1. If r = 1, there is nothing to prove. So suppose
r > 1 and that (b) holds for r − 1.

Claim. For all i > 0, every element of H i(X,F) is annihilated by some power of xr.

Proof. Localizing C•(U ,F) by xr gives C
•(U∩Ur,F|Ur), whose cohomology in degree i > 0

is 0 because it is H i(Ur,F|Ur) by Theorem 2.8 and Theorem 3.6, since Ur is affine and
noetherian, and FUr is quasi-coherent. Since localization is an exact functor, it preserves
cohomology, so qH i(U ,F)xr = H i(X,F)xr = 0 for all i > 0.

Claim. For all 0 < i < r, multiplication by xr is injective on H i(X,F).

Proof. We have an exact sequence

0 → S(−1)
·xr−−→ S → S/(xr) → 0
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of graded S-modules, hence an exact sequence

0 → S(n− 1)
xr−→ S(n) → S(n)/(xr) → 0

of graded A-modules for all n ∈ Z. Therefore

0 → F(−1)
·xr−−→ F → FH → 0

is exact, where FH =
⊕

n∈ZOH(n) and H is the hyperplane {xr = 0} in PrA. Note
H ∼= Pr−1

A . This gives a long exact sequence in cohomology, which gives

H i−1(X,FH) → H i(X,F(−1))
·xr−−→ H i(X,F).

For 1 < i < r we have H i−1(X,FH) = H i−1(H,FH) = 0 by Lemma 2.4 and the inductive
hypothesis. This proves the claim for 1 < i < r. For i = 1 we have that

S = H0(X,F)
φ−→ S/(xr) = H0(X,FH)

ψ−→ H1(X,F(−1))
·xr−−→ H1(X,F)

is exact. Now φ is the quotient map S → S/(xr). It is surjective, so ψ = 0 and therefore
the last map ·xr is injective.

The two claims together now imply that H i(X,F) = 0 for all 0 < i < r.

Theorem 3.11. Let X be a projective scheme over a noetherian ring A, let OX(1) be a
very ample line bundle on X over A, and let F be a coherent sheaf on X. Then:

(a) H i(X,F) is a finitely generated A-module for all i ≥ 0,

(b) There is an integer n0, depending only on F and OX(1), such that H i(X,F(n)) = 0
for all n ≥ n0 and all i > 0.

Proof.

Step 1. Reduce to the case X = PrA and OX(1) = O(1) with r > 0.

Proof. Pick a closed embedding j : X → PrA over A with r > 0 such that OX(1) =
j∗O(1). Then Step 1 is immediate, because j∗F is coherent ([Har77, Exercise II 5.5])
and H i(X,F) = H i(PrA, j∗F). Next we have (j∗F)(n) ∼= j∗(F(n)) for all n because
this is (j∗F) ⊗ OPr

A
(n) ∼= j∗(F ⊗ j∗OPr

A
(n)) which is true by the projection formula,

[Har77, Exercise II 5.1d] which also gives (b).

Step 2. The claims are true for F ∼= O(q), q ∈ Z.

Proof. This is immediate from Theorem 3.10.

Step 3. It is true if F is isomorphic to a finite direct sum OX(q1)⊕ · · · ⊕ OX(qk).

32



Proof. This is immediate.

Step 4. The general case: F is coherent on X = PrA, r > 0.

Proof. We will use descending induction on i. Base case: If i > r, then H i(X,F) = 0
for all coherent F (e.g. a suitable Čech complex ends at i = r). For the inductive step
let 0 ≤ i ≤ r, and assume the theorem is true for i+ 1. There is a surjection E → F ,
where E = OX(q1) ⊕ · · · ⊕ OX(qk), by [Har77, Corollary II 5.18]. So we get a short
exact sequence

0 → R → E → F → 0

of coherent sheaves on X.

(a) From the long exact sequence we get that

H i(X, E) → H i(X,F) → H i+1(X,R)

is exact for all i ≥ 0, with H i(X, E) and H i+1(X,R) finitely generated over A by
Step 3 and by the inductive hypothesis. Therefore H i(X,F) is finitely generated.

(b) For all n ∈ Z,
0 → R(n) → E(n) → F(n) → 0

is exact, so the long exact sequence gives

H i(X, E(n)) → H i(X,F(n)) → H i+1(X,R(n)).

By Step 3 and the inductive hypothesis, H i(X, E(n)) and H i+1(X,R(n)) are 0
for all n sufficiently large. So H i(X,F(n)) = 0 for all n ≥ ni, then we are done
by induction with n0 = max{n1, . . . , nr}.

Corollary 3.12. Γ(X,F) is a finitely generated A-module.

Remark. This generalizes [Har77, II 5.19]

Corollary 3.13. Let A be a noetherian ring, and let X be a closed subscheme of PrA for
some r ≥ 0. Then the restriction map

ρ : Γ(PrA,O(n)) → Γ(X,OX(n))

is surjective for all n≫ 0.

Proof. Let I be the ideal sheaf in OPr
A
corresponding to X. Let i : X → PrA be the closed

embedding. Since I is coherent, H i(PrA, I(n)) = 0 for all n ≫ 0. Taking the short exact
sequence

0 → I → OPr
A
→ i∗OX → 0,
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tensoring it with O(n) and taking the long exact sequence in cohomology gives that

Γ(PrA,OPr
A
(n)) → Γ(PrA, (i∗OX)(n)) → H1(PrA, I(n))

Now note that (i∗OX)(n) = i∗OX(n) and so Γ(PrA, (i∗OX)(n)) = Γ(X,OX(n)).

3.3 Ample Line Bundles

Theorem 3.14 ([Har77, II 5.17], Serre). Let X be a projective scheme over a noetherian
ring A, let OX(1) be a very ample line bundle on X (over A), and let F be a coherent
OX-module. Then there is an n0 ∈ Z (depending on F) such that the sheaf F(n) can be
generated by finitely many global sections.

Proof.

Step 1. Reduce to X = PrA for some r and OX(1) = OPr
A
(1).

Proof. Choose an embedding i : X ↪→ PrA for some r such that OX(1) ∼= i∗OPr
A
(1).

Then i is a closed embedding, so i is finite and therefore i∗F is coherent on PrA by
[Har77, Exercise II 5.5]. By definition of i∗, H

0(X,F) = H0(PrA, i∗F). For all open
affines U = SpecB in PrA, i−1(U) =: V is an open affine SpecB/I in X and F|V ∼= M̃
for some finitely generated B/I-module M . Also (i∗F)|U = B̃M , and if s1, . . . , sn ∈
H0(PrA, i∗F) generate i∗F , then they correspond to m1, . . . ,mn ∈ M which generate

BM as a B-module, hence they generate the (B/I)-module M .

Step 2. Prove the case X = PrA, OX(1) = O(1).

Proof. Cover X = PrA with open sets D+(xi), i = 0, 1, . . . , r. For each i, F|D+(xi)
∼=

M̃ i for some finitely generate module Mi over Bi := A[x0/xi, . . . , xr/xi]. For all i,
let {sij : j = 1, . . . ,mi} be a finite generating set for Mi. Then by [Har77, Lemma
II 5.14] for all i, j there is nij ∈ N such that x

nij

i sij extends to a global section of
F(nij). We may take all nij = n for some fixed n, so xni sij extends to a global section

of F(n) for all i, j. Now F(n)|D+(xi)
∼= M̃ ′

i for some D+(xi)-module M ′
i for all i, and

·xni : F → F(n) induces an isomorphism Mi
≃−→ M ′

i , therefore x
n
i sij (j = 1, . . . ,mi)

generate M ′
i for all i, so {xni sij}ij generate F(n).

Recall the following definition:

Definition. A line bundle L on a noetherian scheme X is ample if for every coherent
sheaf F on X there exists n0 ∈ N depending on F such that F ⊗Ln is generated by global
sections (gbgs) for all n ≥ n0.

Examples.
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• If X is affine (and noetherian), then every line bundle on X is ample, because every
coherent sheaf on X is gbgs.

• If X is projective over a noetherian ring A, then any very ample line bundle on X
over A is ample by Theorem 3.14.

Proposition 3.15. Let L be a line bundle on a noetherian scheme X. Then TFAE:

(i) L is ample;

(ii) Lm is ample for all m > 0;

(iii) Lm is ample for some m > 0.

Proof. “(i) =⇒ (ii) =⇒ (iii)” are easy. “(iii) =⇒ (i)” Assume Lm is ample for some
m > 0, and let F be a coherent sheaf on X. Then for all i = 0, 1, . . . ,m − 1, F ⊗ Li
is coherent, so there are ni ∈ Z such that (F ⊗ Li) ⊗ (Lm)j is gbgs for all j ≥ ni. Let
N := max{i +mni : 0 ≤ i < m}. Then for n ≥ N , write n = i +mj with 0 ≤ i < m.
Then, since n ≥ N ≥ i+mni, j ≥ ni, so F ⊗ Ln = (F ⊗ Li)⊗ (Lm)j is gbgs.

Lemma 3.16. Let L be an ample line bundle on a noetherian scheme X, and let U be an
open subscheme of X. Then L|U is ample on U .

Proof. Let F be a coherent sheaf on U . By [Har77, Exercise II 5.15] there is a coherent
sheaf F ′ on X such that F ′|U ∼= F . Choose n0 ∈ Z such that F ′ ⊗ Ln is gbgs for all
n ≥ n0. Then (F ′ ⊗ Ln)|U ∼= F ⊗ (L|U )n is gbgs for all n ≥ n0, so L|U is ample.

Theorem 3.17. Let X be a scheme of finite type over a noetherian ring A, and let L be
a line sheaf on X. Then L is ample iff Lm is very ample over SpecA for some m > 0.

Proof. “⇐” Suppose Lm is very ample on X over A for some m > 0. Let i : X → PrA
be an embedding such that Lm ∼= i∗O(1). Then i factors as i = i2 ◦ i1 where i1 is an
open embedding i1 : X → X and i2 is a closed embedding i2 : X → PrA over A. Then
OX(1) = i∗2O(1) is very ample over A, hence ample. So by Lemma 3.16, Lm = i∗1OX(1) is
ample, and then Lm is ample.

“⇒” Claim. For any P ∈ X there is n > 0 and a section s ∈ Γ(X,Ln) such that Xs

contains P and is affine.

Proof. Let P ∈ X and let U be an open affine neighborhood of P such that L|U ∼= OU .
Let Y = X \ U be the closed subscheme with the reduced subscheme structure. Then
IY is a coherent sheaf on X, so there is n > 0 such that IY ⊗ Ln is generated by global
sections. So there is s ∈ Γ(X, IY ⊗ Ln) such that sP /∈ mP (IY ⊗ Ln)P . Since IY is a
subsheaf of OX and Ln is locally free, IY ⊗Ln is a subsheaf of Ln, so we can regard s as a
global section of Ln. Since P /∈ Y , (i∗OY )P = 0 (where i : Y → X is the inclusion) and so
(IY )P = OX,P . Therefore sp /∈ mP (IY ⊗ Ln)P = mPLnP . Also sQ ∈ mQLn for all Q ∈ Y
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because (IY )Q ⊆ mQ. So P ∈ Xs and Xs ⊆ U . But also Ln|U ∼= OU , so s corresponds to
an element f ∈ Γ(U,OU ) and so Xs = Uf is affine.

By quasi-compactness, X can be covered by finitely many such Xs, say by Xsi , i = 1, . . . , k

with si ∈ Γ(X,Lni) for all i. Letting n = lcm(n1, . . . , nk) and replacing si with s
n/ni

i for all
i, Xsi remains unchanged and we may assume ni = n for all i. Finally, since Ln is ample,
we can replace L with Ln, so we may assume n = 1. So there are s1, . . . , sk ∈ Γ(X,L)
such that the Xsi are all affine and they cover X. Now, for all i let Xi = Xsi and let
Bi = Γ(Xi,OXi), so Xi = SpecBi for all i. Since X is of finite type over A, each Bi is
finitely generated over A, say Bi = A[bi1, . . . , biki ]. As noted earlier, for all i, j there exists
nij > 0 such that s

nij

i bij extends to a global section cij ∈ Γ(X,Lnij ). We can assume
that nij = n for all i, j. So now we have {sni } ∪ {cij} ⊆ Γ(X,Ln), a finite subset which
generates Ln (because the sni do). So there is a unique morphism φ : X → PNA over A,

where N = k +
∑k

i=1 ki − 1, such that φ∗O(1) ∼= Ln in such a way that φ∗xi = sni and
φ∗xij = cij for all i, j. Moreover, for all i0 = 1, . . . , k, letting Ui0 = D+(xi0) (standard
open affines in PNA ) with affine rings A[{xi/xi0}i, {xij/xi0}ij ], we have that φ(Xi0) ⊆ Ui0
for all i0, and φ

−1(Ui0) = Xi0 is affine, ∼= SpecBi0 , where the map of affine rings is

A[{xi/xi0}i, {xij/xi0}ij ] −→ Bi0

xi/xi0 7−→ sni /s
n
i0 ,

xij/xi0 7−→ cij/s
n
i0 .

This map is surjective, because xi0j/xi0 7→ ci0j/s
n
i0
= bi0j for all j, and these generate Bi0

over A. Therefore φ is a closed immersion into
⋃
Ui (an open subscheme of PNA ), so φ is

an immersion.

More properties:

1. If a line bundle O(1) on X is very ample over Y , for some morphism X → Y , then
so is O(n) for all n > 0 (n-uple embedding which is a closed embedding). If line
bundles L and M on X are very ample over Y , then so is L ⊗M.

2. Ampleness. Let X be a scheme.

• If L and M are ample, then so is L ⊗M.

• If L is ample, and i : X ′ → X is an embedding, then i∗L is ample.

• For all r > 0, n ≤ 0, O(n) is not ample on PrA (A noetherian).

So the set of ample (or very ample) line bundles on X forms a cone in Pic(X).

Proposition 3.18. Let X be a proper scheme over a noetherian ring A. Let L be a line
sheaf on X. TFAE:

(i) L is ample.
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(ii) For each coherent sheaf F on X there is an integer n0 such that H i(X,F ⊗Ln) = 0
for all i > 0, n ≥ n0.

Proof. “⇒” Assume that L is ample. Then Lm is very ample over A for some m > 0 and
X is projective over A. Apply Theorem 3.11 to F ⊗ Lj for j = 0, 1, . . . ,m − 1 to obtain
that F ⊗ Ln = F ⊗ Lj ⊗ (Lm)n1 if n = mn1 + j, 0 ≤ j < n, is acyclic for all n≫ 0.

“⇐” We will show that L is ample by verifying the condition in its definition, i.e. that for
all coherent sheaves F , F ⊗ Ln is gbgs for all n≫ 0.

Claim 1. For all coherent sheaves F on X and for all closed points P on X there is an
integer n0 = n0(F , P ) such that for each n ≥ n0, there exists an open neighborhood U of
P in X such that the global sections in Γ(X,F ⊗ Ln) generate the stalks of F ⊗ Ln at
every point in U (we say that F ⊗ Ln is gbgs over U).

Proof. Let F and P be as above, and let IP be the ideal sheaf of {P} in X. Then there
is an exact sequence

0 → IPF → F → F ⊗ κ(P ) → 0,

where κ(P ) is the skyscraper sheaf OX/IP at P .1 Then

0 → IPF ⊗ Ln → F ⊗Ln → F ⊗ κ(P )⊗ Ln → 0

is exact for all n ∈ Z. By (ii) there is n0 = n0(F , P ) such that H1(X, IPF ⊗ Ln) = 0 for
all n ≥ n0. Therefore,

Γ(X,F ⊗ Ln) → Γ(X,F ⊗ Ln ⊗ κ(P ))

is surjective for all n ≥ n0. For all such n, by Nakayama’s lemma, the germs at P of
elements of Γ(X,F ⊗ Ln) generate the stalk (F ⊗ Ln)P as an OX,P -module. Then there
is an open set U such that P ∈ U and F ⊗ Ln is gbgs over U , take e.g. U to be the
complement of the support of the coherent sheaf coker(ON

X → F ⊗Ln), where (F ⊗Ln)P
can be generated by N elements of Γ(X,F ⊗ Ln).

Claim 2. In Claim 1, we can take U to be independent of n.

Proof. Fix P . By Claim 1, with F = OX , there exists m > 0 and open V ⊆ X depending
on P such that P ∈ V and Lm is gbgs over V . By Claim 1, applied to F , there is
n0 ∈ Z such that for all r = 0, 1, . . . ,m−1, there is an open Ur ⊆ X such that P ∈ Ur and
F⊗Ln0+r is gbgs over Ur. Let UP = V ∩U0∩· · ·∩Um−1. Then we are done. Given n ≥ n0,
write n = n0+n1m+r with n1 ∈ N and 0 ≤ r < m. Then F⊗Ln ∼= (F⊗Ln0+r)⊗(Lm)n1 ,
and F⊗Ln0 and Ln are gbgs over Ur and V resp., hence over UP , therefore so is F⊗Ln.

1Note this comes from tensoring 0 → IP → OX → κ(P ) → 0 with IP and then replacing IP ⊗ F by its
image IPF in F .
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Finishing the proof: We need n0 = n0(F) such that F ⊗ Ln is gbgs over X for all
n ≥ n0. Since X is quasi-compact, every non-empty closed subset contains a closed
point. Therefore

⋃
P UP = X where the UP are as in Claim 2. By quasi-compactness,

choose a finite subcover UP1 , . . . , UPm . Then F ⊗ Ln is gbgs over
⋃
UPi = X for all

n ≥ max{n(F , Pi) : 1 ≤ i ≤ m}.

3.4 Euler Characteristic

Definition. If X is a projective variety over a field k, and let F be a coherent sheaf on
X. The Euler characteristic χ(F) is defined by

χ(F) :=

dim(X)∑
i=0

(−1)i dimkH
i(X,F).

Proposition 3.19. Let X be a projective scheme over a field k, and let 0 → F0 → F1 →
· · · → Fn → 0 be an exact sequence of coherent sheaves on X. Then

n∑
i=0

(−1)iχ(Fi) = 0.

Proof. By [Har77, Exercise III 5.1], this is true for n = 2. The general case follows by
induction on n and using the same method as was used in the exercise.

Proposition 3.20 ([Har77, Exercise III 5.2a]). Let X be a projective scheme over a field
k, let OX(1) be a very ample line bundle on X over k, and let F be a coherent sheaf on
X. Then there is a polynomial P ∈ Q[z] such that χ(F(n)) = P (n) for all n ∈ Z. We call
P the Hilbert polynomial of F with respect to OX(1).

Proof. We may assume that X is a closed subscheme of Prk for some r > 0, and that
OX(1) = i∗O(1), where i : X → Prk is a fixed closed embedding. We use noetherian
induction on SuppF . We may assume that X = Prk and i is the identity map, since
χ(F) = χ(i∗F) by Lemma 2.4. For the base case suppose SuppF = ∅. Then F = 0,
so χ(F(n)) = 0 for all n, so it is true with P = 0. Next the inductive step. Since
∩ri=1{xr = 0} = ∅ and SuppF ̸= ∅, we may choose j such that SuppF ⊈ {xj = 0}. Let R
and Q be the kernel and cokernel of F(−1)

·xj−−→ F , respectively (which is an isomorphism
outside of {xj = 0}). Then

0 → R → F(−1)
·xj−−→ F → Q → 0

is exact. Twisting by O(n) gives that

0 → R(n) → F(n− 1) → F(n) → Q(n) → 0
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is exact for all n. So

χ(F(n))− χ(F(n− 1)) = χ(Q(n))− χ(R(n))

for all n ∈ Z. Since ·xj is an isomorphism on D+(xj), the supports of Q and R are
contained in SuppF ∩ {xj = 0} ⊊ SuppF . Therefore by the inductive hypothesis there
are polynomials R,Q ∈ Q[z] such that χ(Q(n)) = Q(n) and χ(R(n)) = R(n) for all
n ∈ Z. Then by [Har77, Proposition I 7.3b] (which is still true if we replace “n≫ 0” with
“n ∈ Z” throughout), there is a polynomial P0 ∈ Q[z] such that χ(F(n+ 1)) = P0(n) for
all n ∈ Z.

Now let X = Prk (with r > 0), and let M = Γ∗(F) =
⊕

n∈ZH
0(X,F(n)). Then the

Hilbert polynomial P of F just defined is the same as the Hilbert polynomial ofM defined
in [Har77, I §7], i.e. PM ∈ Q[z] such that dimkMn = PM (n) for all n ≫ 0. Indeed,
since dimkMn = dimkH

0(X,F(n)) for all n, this amounts to showing that χ(F(n)) =
dimkH

0(X,F(n)) for all n≫ 0. This is true by definition of χ and Theorem 3.11.
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4 Divisors and Curves
Didn’t really take notes for this section, it was mostly [Har77, II §6].
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5 Duality

5.1 Ext Groups and Sheaves

For the moment, let (X,OX) be a ringed space (not necessarily locally ringed). We will
need two cases in particular:

• X is a scheme.

• X is a point, and OX is a ring.

All sheaves considered will be OX -modules, so we will work in Mod(X). Recall that
Mod(X) has enough injectives, and cohomology of an OX -module can be computed using
an injective resolution on Mod(X). For OX -modules F and G, recall that HomX(F ,G) =
Hom(F ,G) is an abelian group. Also recall thatHom(F ,G) is the sheaf U 7→ HomU (F|U ,G|U ).
This is a sheaf of OX -modules. For all F , Hom(F ,−) and Hom(F ,−) are left exact.

Definition. The functors Exti(F ,−) and Exti(F ,−) are the right derived functors of
Hom(F ,−) and Hom(F ,−) respectively. They are covariant functors Mod(X) → Ab
and Mod(X) → Mod(X) respectively.

Lemma 5.1. If I ∈ Mod(X) is injective and U ⊆ X is an open subset, then I|U is
injective in Mod(U).

Proof. Given a diagram

0 F G

I|U

in Mod(U) with exact top row, we get a

diagram

0 j!F j!G

j!(I|U )

I

f
where j : U ↪→ X is the inclusion map and j! is the

functor extending a sheaf by 0. The top row of the second diagram is exact because it
is exact on stalks. So by injectivity of I there exists f : j!G → I such that the diagram
commutes. Then f |U maps G = (j!G)|U to IU and extends the given map F → I|U .

Proposition 5.2. Exti(F|U ,G|U ) ∼= Exti(F ,G)|U for all F ,G ∈ Mod(X), open U ⊆ X
and for all i.

Proof. Let 0 → G → I• be an injective resolution in Mod(X). Then I•|U is an injective
resolution of G|U in Mod(U). By definition we have HomX(F ,G)|U = HomU (F|U ,G|U ).
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We get

ExtiU (F|U ,G|U ) = hi(HomU (F|U , I•|U ))
= hi(HomX(F , I•)|U ) = hi(HomX(F , I•))|U
= Exti(F ,G)|U

Proposition 5.3. Exti(OX ,G) =

{
F if i = 0,

0 if i > 0.
and Exti(OX ,G) = H i(X,G) for all i.

Proof. By computation. Let I• be an injective resolution of G. Then

Exti(OX ,G) = hi(Hom(OX , I•)) = hi(I•) =

{
G if i = 0,

0 if i > 0.

and

Exti(OX ,G) = hi(Hom(OX , I•)) = hi(Γ(X, I•)) = H i(X,G).

In particular we see that Γ(X, Exti(F ,G)) ̸= Exti(F ,G) in general (unless i = 0).

Recall: If E ,F ,G ∈ Mod(X) with E locally free of finite rank, then Hom(E ,F) ∼= E∨⊗F ,
more generally

Hom(F ⊗ E ,G) ∼= Hom(F , E∨ ⊗ G) ∼= Hom(F ,G)⊗ E∨,

and
Hom(F ⊗ E ,G) ∼= Hom(F ,Hom(E ,G)) ∼= Hom(F , E∨ ⊗ G).

Lemma 5.4. Let E ∈ Mod(X) be locally free of finite rank. If I ∈ Mod(X) is injective,
then so is E ⊗ I.

Proof. − ⊗ E∨ and Hom(−, I) are exact functors, thus so is their composite Hom(− ⊗
E∨, I) ∼= Hom(−, E ⊗ I).

Proposition 5.5. Let E be a locally free sheaf of finite rank. Then for all F ,G:

(a) Exti(F ⊗ E ,G) ∼= Exti(F , E∨ ⊗ G);

(b) Exti(F ⊗ E ,G) ∼= Exti(F , E∨ ⊗ G) ∼= Exti(F ,G)⊗ E∨ for all i.
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Proof. The i = 0 case follows from [Har77, Exercise II 5.1]. For general i ≥ 0: Let
0 → G → I• be an injective resolution. Then 0 → E∨ ⊗ G → E∨ ⊗ I• is also an injective
resolution by the previous lemma. Therefore

Exti(F ⊗ E ,G) = hi(Hom(F ⊗ E , I•)) ∼= hi(Hom(F , E∨ ⊗ I•)) = Exti(F , E∨ ⊗ G).

Likewise for Ext. Also

Ext(F , E∨ ⊗ G) = hi(Hom(F , E∨ ⊗ I•)) = hi(Hom(F , I•)⊗ E∨)

= hi(Hom(F , I•))⊗ E∨ = Exti(F ,G)⊗ E∨.

Proposition 5.6. Let 0 → F ′ → F → F ′′ → 0 be a short exact sequence of OX-modules.
Then for all G there is a long exact sequence

0 → Hom(F ′′,G) → Hom(F ,G) → Hom(F ′,G) → Ext1(F ′′,G) → Ext1(F ′,G) → . . .

and likewise for Hom and Ext.

Proof. Let 0 → G → I• be an injective resolution. Then for all i and all open U ⊆ X we
get a short exact sequence

0 → Hom(F ′′|U , Ii|U ) → Hom(F|U , Ii|U ) → Hom(F ′|U , Ii|U ) → 0

since HomU (−, Ii|U ) is exact for all i, U . Therefore

0 → Hom(F ′′, Ii) → Hom(F , Ii) → Hom(F ′, Ii) → 0

is exact for all i. So we get a short exact sequence of complexes in Mod(X). We conclude
by applying the Snake lemma. The proof for Ext is similar.

Proposition 5.7. Let E• → F → 0 be a left resolution of F in which all Ei are locally
free of finite rank. Then for all G,

Exti(F ,G) = hi(Hom(E•,G)) ∀ i ≥ 0

Proof. Postponed until we do spectral sequences.

Note. This is not true for regular Ext (compare Proposition 5.3).

Proposition 5.8. Let X be a noetherian scheme, let F be a coherent sheaf on X and G
any sheaf of OX-modules. Let x ∈ X. Then:

Exti(F ,G)x ∼= ExtiOX,x
(Fx,Gx) ∀ i ≥ 0.
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Here ExtiOX,x
(Fx,Gx) is Ext of modules over the ring OX,x which is the same as Ext of

OY -modules where Y is the ringed space (Y = {x},OY (Y ) = OX,x).

Proof. Since Ext commutes with restricting to an open subset U ⊆ X, we may assume
that X is affine, equal to SpecA. Then A is a noetherian ring and F ∼= M̃ where M is a
finitely generated A-module. Then there is a left resolution E• →M → 0 with Ei free of
finite rank for all i. Then Ẽ• → F → 0 is a free coherent left resolution of F . Now we
compute

Exti(F ,G)x = hi(Hom(Ẽ•,G))x = hi(Hom(Ẽ•,G)x)
= hi((Ẽ∨

• ⊗ G)x)

and
ExtiOX,x

(Fx,Gx) = hi(HomOX,x
((E•)x,Gx)) = hi((E•)

∨
x ⊗OX,x

Gx)

These are the same ((E•)
∨
x = (E∨

• )x as E• is free).

5.2 Ext and O(1)

Proposition 5.9. Let X be a projective scheme over a noetherian ring A, let O(1) be a
very ample line bundle on X over SpecA, and let F ,G be coherent sheaves on X. Then
there exists n0 ∈ Z, depending only on F ,G, and O(1) such that

Γ(X, Exti(F ,G(n))) ∼= Exti(F ,G(n)) ∀ i, ∀n ≥ n0.

Proof. We induct on i.

Step 0. For i = 0 it is true for all n ∈ Z by definition of Hom and Hom. So we may
assume i > 0.

Step 1. If F is locally free, then the result is true for all i, because

Exti(F ,G(n)) ∼= Exti(OX ,F∨ ⊗ G(n)) ∼= H i(X, (F∨ ⊗ G)(n)) = 0 ∀n≫ 0

and Γ(X, Exti(F ,G(n))) = Γ(X, Exti(OX ,F∨ ⊗ G(n))) = Γ(X, 0) = 0 for all n ∈ Z.

Step 2. General case. Use induction on i ≥ 1. Given F , there is a locally free coherent
sheaf E on X that maps onto F , so there is a short exact sequence

0 → R → E → F → 0

with R coherent. Since E is locally free, Exti(E ,G(n)) = 0 for all n ≫ 0 and
Exti(E ,G(n)) = 0 for all n ∈ Z. So from the long exact sequences in Ext(−,G(n))
and Ext(−,G(n)), if i > 1, we have isomorphisms

Exti(R,G(n)) ≃−→ Exti+1(F ,G(n))
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Exti(R,G(n)) ≃−→ Exti+1(F ,G(n))

for all n, and the latter gives Γ(X, Exti(R,G(n))) ≃−→ Γ(X, Exti+1(F ,G(n))) for all n.
So we get the inductive step for i > 1 as indicated. It remains to consider i = 1. We
have exact sequences

0 → Hom(F ,G(n)) → Hom(E ,G(n)) β−→ Hom(R,G(n)) → Ext1(F ,G(n)) → Ext1(E ,G(n)) = 0

and

0 → Hom(F ,G(n)) → Hom(E ,G(n)) α−→ Hom(R,G(n)) → Ext1(F ,G(n)) → Ext1(E ,G(n)) = 0

The last terms are 0 by ... and ... for n ≫ 0. Taking global sections of the second
sequences gives a sequence of global sections:

0 → Γ(X,Hom(F ,G(n))) → Γ(X,Hom(E ,G(n))) → Γ(X,Hom(R,G(n)))
→ Γ(X, Ext1(F ,G(n))) → Γ(X, 0) = 0.

and this sequence is exact for all n ≫ 0 by 6.7 (can pull out (n)) and Exercise 5.10.
Therefore we get isomorphisms

Ext1(F ,G(n)) ∼= cokerβ ∼= coker Γ(X,α) ∼= Γ(X, Ext1(F ,G(n)))

for all n≫ 0.

To see that we can choose n0 independent of i, e.g. note that if X ↪→ PrA corresponds to
O(1), then

Exti(E ,G(n)) ∼= Exti(OX , Ê ⊗ G(n)) ∼= H i(X, (Ẽ ⊗G)(n)) = 0

for all i > r and all n, E ,G, and we always have Exti(E ,G(n)) = 0 for all i > 0, n, E ,G. So
for all i > r the isomorphism holds for all n.

5.3 Serre Duality on Pnk
Let k be a field and let n ∈ N0. Recall that the canonical sheaf of a nonsingular variety X
over k of dimension n is ωX = ∧nΩX/k. Here ΩX/k = T∨

X is the cotangent bundle, which is
locally free of rank n. We know that when X = PnA, then ωX ∼= OX(−n− 1), see [Har77,
Example II 8.20.1].

Theorem 5.10 (Duality for Pnk). Let k be a field and let X = Pnk with n > 0. Then

(a) Hn(X,ωX) ∼= k (non-canonically). Fix one such isomorphism t : Hn(X,ωX)
≃−→ k

over k.
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(b) For any coherent sheaf F on X, the natural k-bilinear map

Hom(F , ωX)×Hn(X,F) −→ Hn(X,ωX),

(φ, c) 7−→ Hn(X,φ)(c)

when composed with t, is a perfect pairing of finite dimensional vector spaces.

(c) For every i ≥ 0 there is a natural functorial isomorphism

Exti(F , ωX)
≃−→ Hom(Hn−i(X,F), Hn(X,ωX)),

which, when composed with t, gives a non-canonical isomorphism

Exti(F , ωX)
≃−→ Hn−i(X,F)∨.

When i = 0, these maps are the ones induced by the pairing of (b).

Proof.

(a) This is immediate from Theorem 3.10 c since ωX ∼= OX(−n− 1).

(b) The finite dimensionality of Hn(X,F) follow from Theorem 3.10 a. We prove the
rest of the statement in steps:

Case 1. F = O(q) for some q ∈ Z. Then Hom(F , ωX) ∼= H0(X,OX(−q − n− 1))
and Hn(X,F) = Hn(X,OX(q)), so this is Theorem 3.10 d.

Case 2. F = ⊕O(qi) (finite ⊕). This is immediate.

Interlude. What does “natural” mean for the pairing? Let φ : F → G be a
morphism of schemes. Then “naturality” means that the following diagram
commutes

Hom(F , ωX)×Hn(X,F)

Hn(X,ωX)

Hom(G, ωX)×Hn(X,G)

Hn(X,φ)Hom(φ,ωX)

by which we mean that for g ∈ Hom(G, ωX) and c ∈ Hn(X,F) we have

⟨g ◦ φ, c⟩F = ⟨g,Hn(X,φ)(c)⟩G .

They are equal because the top pairing takes (g ◦ φ, c) to Hn(X, g ◦ φ)(c) and
value of the bottom pairing on (g,Hn(X,φ)(c)) is Hn(X, g)(Hn(X,φ)(c)) and
they are equal because Hn(X,−) is a functor.
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Case 3. The general case. By [Har77, Corollary II 5.18] there is an exact sequence
E1 → E0 → F → 0 with E0 ∼= ⊕O(qi) and E1 ∼= O(rj) (both ⊕) being finite.
Then we have a commutative diagram with exact rows:

0 Hom(F , ω) Hom(E0, ω) Hom(E1, ω)

0 Hn(X,F)∨ Hn(X, E0)∨ Hn(X, E1)∨

Exactness of the top row is clear. For the bottom row this follows since for this
X, Hn(X,−) is a right exact functor (because this is the end of the LES), so
Hn(X,−)∨ is a left exact contravariant functor. The vertical arrows all come
from the pairing. The squares commute because the pairing is functorial. Then
by the previous steps the center and right vertical arrows are isomorphism, so
the first one also is.

(c) i = 0 is proved in (b). The rest is an exercise.

Remark. The isomorphism t : Hn(X,ω) → k is in fact invariant under automorphisms of
Pnk (= PGLn(k)), i.e. PGLn(k) → Aut(Hn(Pnk ,O(−n− 1))) is the trivial map, see [Har77,
III 7.1.1].

5.4 Dualizing Sheaves

Definition (First version). Let X be a proper scheme over k of dimension n. Then a
dualizing sheaf for X over k is an ordered pair (ω◦

X , t) consisting of a coherent sheaf ω◦
X

on X and a trace morphism t : Hn(X,ω◦
X) → k such that

Hom(F , ω◦
X)×Hn(X,F) → Hn(X,ω◦

X)
t−→ k

induces an isomorphism Hom(F , ω◦
X) → Hn(X,F)∨ for all coherent sheaves F on X.

Definition (Second version). Let X be a proper scheme over k, and let n ≥ dimX.
Then an n-dualizing sheaf for X is a coherent sheaf ω◦

X on X that represents the functor
F : Coh(X) → Mod(k) given by F 7→ Hn(X,F)∨.

As usual, if ω◦
X exists, it is unique up to unique isomorphism.

Proposition 5.11. If n > dimX, then F is the zero functor and ω◦
X = 0.

Proof. Easy exercise.

Proposition 5.12. Let X be as above and let n = dimX. Then an n-dualizing sheaf
exists iff there is a pair (ω◦

X , t) as in the first version of the definition. If so, then ω◦
X is

the same in both definitions and t is likewise uniquely determined.
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Proof. Clear from Yoneda lemma.

Proposition 5.13 (Revised). Let n = dimX. Let C1 be the category whose objects are
(ordered) pairs (ω, t) where ω ∈ Coh(X) and t : Hn(X,ω) → k is a k-linear map, and
whose morphisms (ω1, t1) → (ω2, t2) are maps φ : ω1 → ω2 in Coh(X) such that the
obvious triangle commutes. Let C2 be the category whose objects are ordered pairs (ω, ψ),
where ω ∈ Coh(X) and ψ is a natural transformation Hom(−, ω) → Hn(X,−)∨ (of
contravariant functors Coh(X) → Mod(k)), and whose morphisms (ω1, ψ1) → (ω2, ψ2)
are morphisms φ : ω1 → ω2 in Coh(X) such that

Hom(F , ω1)

Hn(X,F)∨

Hom(F , ω2)

−◦φ

ψ1(F)

ψ2(F)

commutes for all F . Then:

(a) Define F1 : C1 → C2 on objects by (ω, t) 7→ (ω, ψ) where ψ(F) is the map Hom(F , ω) →
Hn(X,F)∨ given by the pairing Hom(F , ω)×Hn(X,F) → Hn(X,ω)

ω−→ k. On mor-
phisms, define F1 to take φ(ω1, t1) → (ω2, t2) in C1 to the morphism Φ : (ω1, ψ1) →
(ω2, ψ2) in C2 also given by φ. Then F is a functor C1 → C2.

(b) Define F2 : C2 → C1 as follows. On objects, it takes (ω, ψ) ∈ C2 to (ω, t) ∈ C1, where
t : Hn(X,ω) → k is defined as follows: ψ(ω) takes Hom(ω, ω) to Hn(X,ω)∨, then t
is the image of idω. On morphisms F2 takes (ω1, ψ1) → (ω2, ψ2) in C2 corresponding
to φ : ω1 → ω2 to a map (ω1, t1) → (ω2, t2) in C1, also given by φ. Then F2 is a
functor C2 → C1.

(c) These functors are mutually inverse, so they give isomorphisms of categories.

(d) Let (ω, t) ∈ C1 and let (ω, ψ) = F1(ω, t). Then (ω, t) is a dualizing sheaf as in the
first definition if and only if (ω, ψ) is an n-dualizing sheaf.

Proof. Exercise.

Corollary 5.14. An n-dualizing sheaf is unique up to unique isomorphism.

In the case of X = Pnk , ω ∼= O(−n − 1), and hn(X,O(−n − 1)) ∼= k (non-canonically),
but the pair (O(−n− 1), t) gives a canonical element α ∈ Hn(X,O(−n− 1)), defined by
t(α) = 1.
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5.5 Duality for more general X

Lemma 5.15. Let P = PNk with N > 0, let X be a closed subscheme of P , and r =
codimP X. Then

ExtiP (OX , ωP ) = 0 ∀ i < r.

Proof. Let F i = ExtiP (OX , ωP ). By [Har77, Exercise III 6.3], F i is coherent, so F i(q) is
gbgs for all q ≫ 0. So it will suffice to show that Γ(P,F i(q)) = 0 for all q ≫ 0. We have

Γ(P,F i(q)) = Γ(P, ExtiP (OX , ωP (q)))

= ExtiP (OX , ωP (q))

= ExtiP (OX(−q), ωP ) ∼= HN−i(X,OX(−q))∨ = 0.

More generally, this is true for all P which are equidimensional and Cohen-Macaulay
(later).

Note: In the following we will be suppressing pushforwards when considering sheaves on
X or P .

Lemma 5.16. Let k,N, P,X and r as above. Let ω◦
X = Extr(OX , ωP ). Then HomX(F , ω◦

X)
∼=

ExtrP (F , ωP ) for all OX-modules F , functorially in F .

Proof. Let 0 → ωP → I• be an injective resolution of ωP (inMod(P )), so that ExtiP (F , ωP ) =
hi(HomP (F , I•)) and ExtiP (F , ωP ) = hi(HomP (F , I•)).

Claim. Let A be a commutative ring, I an ideal in A, M an A/I-module, and N an
A-module. Then

HomA(M,N) ∼= HomA/I(M,HomA(A/I,N)).

Proof. Clear from HomA(A/I,N) ∼= {n ∈ N | In = 0}.

Corollary. If F is a sheaf of OX-modules and I is a sheaf of OP -modules, then HomP (F , I) ∼=
HomX(F ,HomP (OX , I)).

Proof. First, we have

HomX(F ,HomP (OX , I)) = HomP (F ,HomP (OX , I)) ↪→ HomP (F , I)

as follows: HomP (OX , I) is killed by the ideal sheaf of X in P , so it can be regarded
as a sheaf of OX -modules. That is the first map. For the second map, the surjection
OP → OX gives an injection HomP (OX , I) → HomP (OP , I) = I, which implies that
the map HomP (F ,HomP (OX , I)) → HomP (F , I) is injective. To show surjectivity, it
suffices to show that, for all φ ∈ HomP (F , I), we have imφ ⊆ HomP (OX , I). Let p ∈ P .
Since OX,p is a finitely generated OP,p-module, HomP (OX , I)p = HomOP,p

(OX,p, Ip). So
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it suffices to show that imφp ⊆ HomOP,p
(OX,p, Ip). Note that HomOP,p

(OX,p, Ip) = {tp ∈
Ip : Ann(tp) ⊇ Jp where J is the ideal sheaf of X in P}. So imφp ⊆ HomOP,p

(OX,p, Ip)
because Ann(sp) ⊇ Jp for all sp ∈ Fp.

Claim. If I is an injective OP -module, then J := HomP (OX , I) is an injective OX -
module.

Proof. By the corollary, HomX(F ,J ) = HomP (F , I) and HomP (−, I) is an exact functor
(j : X ↪→ P is a closed immersion, so j∗ is exact in this case).

Recall that 0 → ωP → I• is an injective resolution of ωP in Mod(P ).

Claim. Let J i = HomP (OX , Ii) for all i. Then 0 → J 0 → J 1 → · · · → J r is exact.

Proof. By Lemma 5.15 and the corollary we have

0 = ExtiP (OX , ωP ) = hi(HomP (OX , I•)) = hi(HomX(OX ,J •)) = hi(J •)

for i < r.

Now let J r
1 = im(dr−1 : J r−1 → J r). Then J r

1 ⊆ J r and 0 → J 0 → J 1 → · · · →
J r−1 → J r

1 → 0 is exact.

Fact. Let 0 → J ′ → J → J ′′ → 0 be a short exact sequence of OX -modules.

(a) If J ′ is injective, then this sequence splits.

(b) If J ′ and J are injective, then so is J ′′.

By induction and the claim, J i ∼= im di−1 ⊕ im di, and both factors are injective for
all i < r. Therefore J r

1 = im dr−1 is injective, and so is J r
2 := J r/J r

1 and we have
J r ∼= J r

1 ⊕ J r
2 . Now let

J i
1 =


J i if i < r,

J r
1 if i = r,

0 if i > r,

and J i
2 =


0 if i < r,

J r
2 if i = r,

J i if i > r.

Then we have complexes J •
1 ,J •

2 with J •
1 exact, all J i

1 and J i
2 are injective, J •

1 is in
degrees ≤ r, J •

2 is in degrees ≥ r, and J • = J •
1 ⊕ J •

2 .

Moreover, ω◦
X = ExtrP (OX , ωP ) = hr(J •) = hr(J •

2 ) = ker(J r
2 → J r+1

2 ). Also, for any
OX -module F ,

Extr(F , ωP ) = hr(HomP (F , I•)) = hr(HomX(F ,J •))

= hr(HomX(F ,J •
1 ))⊕ hr(HomX(F ,J •

2 ))

Recall that J r
1 is a direct summand of J r−1 = J r−1

1 , so HomX(F ,J r−1
1 ) → HomX(F ,J r

1 )
is surjective and so the first term in the direct sum is 0. For the second term 0 → ω◦

X →
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J r
2 → J r+1

2 is exact and HomX(F ,−) is left exact, so HomX(F , ω◦
X)

∼= ker(HomX(F ,J r
2 ) →

HomX(F ,J r+1
2 )) ∼= hr(HomX(F ,J •

2 )).

This is all functorial in F .

Proposition 5.17. Let X be a nonempty projective scheme over a field k, and let n =
dimX. Then X has an n-dualizing sheaf (and therefore a dualizing sheaf).

Proof. Embed X into PNk =: P with N > 0, let r = N − n = codimP X, and let ω◦
X =

ExtrP (OX , ωP ). Then for all coherent OX -modules F , by the lemma and duality on P we
have

HomX(F , ω◦
X)

∼= ExtrP (F , ωP ) ∼= HN−r(P,F)∨ = Hn(X,F)∨

contravariantly functorially in F . Therefore ω◦
X represents Hn(X,−)∨.

Theorem 5.18 (Duality). Let X, k and n be as above, let ω◦
X be an (n−)-dualizing sheaf

for X, and let O(1) be a very ample line bundle on X. Then

(a) For all i ≥ 0,F ∈ Coh(X) there are natural functorial maps

θi : ExtiX(F , ω◦
X) → Hn−i(X,F)∨

such that when i = 0, θ0 is the map in the definition of the n-dualizing sheaf.

(b) TFAE:

(i) X is Cohen-Macaulay and equidimensional;

(ii) For any locally free F on X, H i(X,F(−q)) = 0 for all i < 0 and q ≫ 0
(depending on F);

(ii’) H i(X,OX(−q)) = 0 for all i < n and q ≫ 0;

(iii) The maps θi are isomorphisms for all i and F .

Proof.

(a) Write ω = ω◦
X . Let OX(1) be a very ample line bundle on X over k. Given a

coherent sheaf F on X, there is a surjection E → F , with E of the form OX(−ql)
where ql ≫ 0 for all l. Then

ExtiX(E , ω) =
⊕
l

ExtiX(OX , ω(ql)) =
⊕
l

H i(X,ω(ql)) = 0

for all i > 0 and ql ≫ 0. Therefore Ext•X(−, ω) is a coeffaceable contravariant
δ-functor Coh(X) → Mod(k), so it is universal. Since Hn−•(X,−)∨ is also a con-
travariant δ-functor, we get unique morphisms θi as above, including the condition
on θ0.
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(b) “(ii) ⇒ (ii′)” special case. “(ii′) ⇒ (iii)” Given F and E → F as above, we have
Hn−i(X, E)∨ ∼= ⊕Hn−i(X,OX(−ql)) = 0 for all i > 0, ql ≫ 0. So Hn−i(X,−)∨ is
also coeffaceable, so in this case the θi are all isomorphisms.

“(iii) ⇒ (ii)” Let F be locally free. Then

H i(X,F(−q)) ∼= Extn−iX (F(−q), ω)∨ = Extn−iX (OX , ω ⊗F∨(q))∨

∼= Hn−i(X,ω ⊗F∨(q))∨.

This is 0 for all q ≫ 0 and i < n as shown earlier.

We will not prove “(i) ⇔ (ii)”.

Note. if X is regular, then it is Cohen-Macaulay.

Remark. The requires that k be algebraically closed. This isn’t necessary - see the
statement in parentheses in the proof of “(i) ⇒ (ii)”, and also [Eis95, Exercise 19.3]
(which basically says: Assume A is noetherian. Then A is regular iff A[x1, . . . , xn] is
regular, so SpecA is regular iff PNA is regular). Also in Bourbaki or Stacks.

Corollary 5.19. Let X,n and ω◦
X be as above, and assume that X satisfies the conditions

of part (b) (e.g. X is regular and equidimensional). Then for any locally free coherent sheaf
F on X, there are natural isomorphisms

H i(X,F)
≃−→ Hn−i(X,F∨ ⊗ ω◦

X)
∨

for all i ≥ 0.

Proof. H i(X,F)∨ ∼= Extn−iX (F , ω) ∼= Extn−iX (OX ,F∨ ⊗ ω) ∼= Hn−i(X,F∨ ⊗ ω).

5.6 Computing the Dualizing Sheaf

Definition. Let A be a ring, and let f1, . . . , fr ∈ A, r ∈ N. Then the Koszul complex
K•(f1, . . . , fr) of A is defined as follows. Let Kp(f1, . . . , fr) =

∧p(Ar) for all p ∈ N0, so
Kp = 0 for all p > r, K1 = Ar and K0 = A. Let e1, . . . , er be the standard basis of K1 =
Ar, so Kp =

⊕
0<i1<···<ip≤r(ei1 ∧ . . . eip)A for all p ≥ 0. Also define d = dp : Kp → Kp−1

by

d(ei1 ∧ · · · ∧ eip) =
p∑
j=1

(−1)j−1fijei1 ∧ · · · ∧ êij ∧ · · · ∧ eip .

This is a complex of free A-modules. IfM is an A-module, then we define K•(f1, . . . , fr;M) :=
K•(f1, . . . , fr)⊗AM .

Definition. Let A and M be as above. Then a regular sequence for M is a sequence
f1, . . . , fr ∈ A such that fi is a nonzerodivisor on M/(f1, . . . , fi−1)M for all i.
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Proposition 5.20. Let A and M be as above, and let f1, . . . , fr be a regular sequence for
M . Then

hi(K•(f1, . . . , fr;M)) =

{
0 i > 0,

M/(f1, . . . , fr)M i = 0.
.

Proof. Omitted. See [Eis95, 17.5].

Remark. In the above situation, K0 =M and K1 → K0 has image (f1, . . . , fr)M , so

K•(f1, . . . , fr;M) →M/(f1, . . . , fr)M → 0

is a free resolution of M/(f1, . . . , fr)M .

Theorem 5.21. Let k be a field, let P = PNk , and let X be a nonempty closed subscheme of
P with ideal sheaf I. Assume that X is a locally complete intersection in P of codimension
r. Then ω◦

X
∼= ωP ⊗ ∧r(I/I2)∨. In particular, ω◦

X is a line bundle on X.

Proof (sketch). We calculate ω◦
X = ExtrP (OX , ωP ).

Step 1. Compute it locally. Fix a closed point x ∈ X, and let U = SpecA be an open
affine neighborhood of x in P . After shrinking U we may assume X∩U = V (f1, . . . , fr)
with f1, . . . , fr ∈ A. Let m ⊆ A be the maximal ideal corresponding to x. Since Am

is a regular local ring (since P is regular), Am is Cohen-Macaulay, so f1, . . . , fr is a
regular sequence in Am (as a module over itself), see [Har77, Theorem 8.21A (c)].
Therefore K•(f1, . . . , fr;Am) is a free resolution of Am/(f1, . . . , fr)Am = OX,x. Then,
after shrinking U if necessary we may assume that K•(f1, . . . , fr) is a free resolution
of A/(f1, . . . , fr) over A as A-modules, so it is a free resolution of OX |U over OU after
applying ·̃. So

ExtrP (OX , ωP )|U ∼= hr(K•(f1, . . . , fr;OP (U))˜, ωP |U )

=

=ker dr (end of K•)︷ ︸︸ ︷
HomU (K•(f1, . . . , fr;OP (U))˜, ωP |U )

im
(
HomU (Kr−1(f1, . . . , fr;OP (U))˜, ωP |U ) → HomU (Kr(. . . )˜, ωP (U))

)
Now Kr−1(f1, . . . , fr;OP (U))˜ and Kr(. . . )

˜ are free of rank r and 1 respectively. Then
HomU (Kr−1(f1, . . . , fr;OP (U))˜, ωP |U ) = (ωP |U )r and HomU (Kr(. . . )

˜, ωP (U))
)
=

ωP |U and the map is given by

f1...
fr

. So

ExtrP (OX , ωP ) ∼= ωP |U/(f1, . . . , fr)ωP |U ∼= (ωP ⊗OX)|U .

Step 2. Glue. As the point x and the neighborhood U vary, this isomorphism changes
in such a way that if you recast it as

ExtrP (OX , ωP )|U ∼= (ωP ⊗OX ⊗ ∧r(I/I2)∨)|U ,
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the isomorphisms (for various U) are compatible on intersections and you get the the-
orem. This amounts to noting that Kr(f1, . . . , fr;OP (U))˜ ⊗OX

∼= ∧r(I/I2) canoni-
cally.

Corollary 5.22. If X is regular, projective over a field k and nonempty, then ω◦
X

∼= ωX ,
where ωX = ∧dimXΩX/k.

Proof. Embed X into PNk =: P for some N . Then ω◦
X

∼= ωP ⊗ ∧r(I/I2)∨ ∼= ωX by the
adjunction formula, [Har77, II 8.20].

Corollary 5.23. If X is as above and itnegral, and n = dimX, then Hn(X,ωX) ∼=
H0(X,OX)

∨ ∼= k.

Corollary 5.24. If X is a projective, regular scheme of dimension 1 over k, then H1(X,OX) ∼=
H0(X,ωX)

∨. In particular,

pa(X) = h1(X,OX) = h0(X,ωX) = pg(X).1

Now assume X is an integral, projective scheme of dimension 1 over k, possibly singular.
Then pa is still defined as before, and pg = pg(X̃) where π : X̃ → X is the normalization.
If X is singular, then pa(X) > pg(X). Moreover, it is known that

pa(X)− pg(X) =
∑

x∈Xsing

[k(x) : k]δx,

where

δx = dimk(x)(π∗OX̃/OX)x =


0 if x is a regular point,

1 if x is a node or a simple cusp,

> 1 otherwise.

Theorem 5.25 (Kodaira Vanishing). Let X be a nonsingular projective variety over C,
let n = dimX, and let L be an ample line bundle on X. Then

(a) H i(X,L ⊗ ωX) = 0 for all i > 0; equivalently

(b) H i(X,L∨) = 0 for all i < n.

Proof. Omitted (uses analytic methods).

Corollary 5.26. The same is true over any field k of characteristic 0.

It is false in positive characteristic.

1pa, pg are the arithmetic and geometric genus resp., the first equality holds by [Har77, Exercise III 5.3
(a)] and the last equality is the definition of pg.
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Proof. We will prove (a) using the Lefschetz principle. Let X be a smooth projective
variety over an arbitrary field k of characteristic 0, and let n,L be as above. Let i : X ↪→
PNk be a closed embedding over k for some N . Then there exist:

• a field k0, finitely generated over Q,

• a scheme X0 over k,

• a closed embedding i0 : X0 ↪→ PNk0 over k0, and

• a line bundle L0 over X0,

such that

• i0 ×k0 k : X0 ×k0 X ↪→ PNk0 ×k0 k
∼= PNk is isomorphic over PNk to i : X ↪→ PNk and

• the pull-back of L0 to X via X ∼= X0 ×k0 X → X0 is isomorphic to L.

This is because the ideal sheaf of X in PNk and the description of L via finitely many
trivializing open subsets and cocycle conditions involve only finitely many elements of k,
so they are all contained in such a field k0. Also we may assume that X0 is smooth over
k0.

There also exists an embedding k0 ↪→ C. Then the Kodaira Vanishing for LC on XC =
X0 ×k0 C implies Kodaira Vanishing for L0 on X0. We then get Kodaira Vanishing for L
on X. This holds because for all field extensions k′/k, separated finite type schemes X/k,
and quasi-coherent sheaves F on X, we have

H i(X ′,F ′) ∼= H i(X,F)⊗k k
′

for all i ≥ 0, where X ′ = X ×k k
′, p : X ′ → X is the projection, and F ′ = p∗F . This is

true by Flat base change, [Har77, III 9.3], or by computation using Čech cohomology.
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6 Spectral Sequences
We will mostly follow Lang [Lan02], but also Vakil [Vak22]. Note that Vakil interchanges
the roles of p and q.

For concreteness, we will work over the category Ab of abelian groups, but this theory
works over any abelian category. Recall that here N = Z≥0.

Definition. A spectral sequence is a sequence {Er, dr}r≥0 of bigraded objects Er =⊕
p,q∈NE

p,q
r together with homomorphisms, called differentials, dr : Ep,qr → Ep+r,q−r+1

r

of bidegree (r, 1− r) such that

1. d2r = 0, and

2. H(Er) = Er+1, i.e. E
p,q
r =

ker
(
dr:E

p,q
r →Ep+r,q−r+1

r

)
im
(
dr:E

p−r,q+r−1
r →Ep,q

r

) for all p, q, r.

In the above, and generally we let Ep,qr = 0 for all r ∈ N and p, q ∈ (Z× Z) \ (N× N).

Here is a typical picture. The arrow drawn is dr : E
2,4
3 → E5,2

3 .

0 1 2 3 4 5

0

1

2

3

4

Note. Antidiagonals play a key role in this theory: If n = p+ q, then dr is of degree 1 in
n for all r. We will sometimes write En,pr to mean Ep,qr with p+ q = n.

Note. If r > n + 1, then q − r + 1 < 0 and p − r < 0 for all (p, q) ∈ N × N such that
p+ q = n. Therefore dp,qr = dp−r,q+r−1

r = 0, so Ep,qr+1 = Ep,qr and so Ep,qn+1 = Ep,qn+2 = . . . for
all p, q ∈ N where n = p+ q. We call this limiting value Ep,q∞ .

Note. d0 goes this way: ↑, and d1 goes this way: →. So the pair (E0, d0) does not
determine d1.

Definition. A double complex is a bigraded object K•• =
⊕

p,q∈NK
p,q, together with

differentials dp,q : Kp,q → Kp,q+1 and δp,q : Kp,q → Kp+1,q (of bidegrees (0, 1) and (1, 0)
respectively) such that d ◦ d = 0, δ ◦ δ = 0 and d ◦ δ + δ ◦ d = 0.
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Theorem 6.1. A double complex (K =
⊕
Kp,q, d, δ) canonically and functorially deter-

mines a spectral sequence (Er, dr)r∈N, such that Ep,q0 = Kp,q for all p, q ∈ N; d0 = d, d1 is
induced by δ, and d2, d3, . . . are determined in a certain way to be described later.

Definition. Let (K•;D) be a cocomplex of abelian groups. Then a filtration of (K•;D)
is an N-graded filtration Kn = F 0Kn ⊇ F 1Kn ⊇ . . . of Kn for all n ∈ N such that
D(F pKn) ⊆ F pKn+1 for all n, p. We also assume that for all n there exists p0 (depending
on N and (K•;D)) such that F pKn = 0 for all p ≥ p0.

Definition. A filtered complex is a complex (K•;D) with a filtration.

Notation. Given a double complexK••, let n = p + q, so q = n − p, and we let Kn;p :=
Kp,q. Then Kn =

⊕
pK

n;p and F pKn =
⊕

p≥p0 K
n;p. Also (after they are defined)

En;pr = Epn−pr and dr maps En;pr to En+1;p+r
r . Finally, d0 is induced by D, in the sense

that the diagram

F pKn F pKn

F p+1Kn =: En;p0

F pKn+1 F pKn+1

F p+1Kn+1 =: En+1;p
0

d0

So if (K•;D) comes from a double complex (K••, d, δ), then En;p0 = Kn;p and d0 = d

Theorem 6.2. Let (K;D) be a filtered complex, and assume that F pKn = 0 for all p > n.
Also let F pKn = Kn for all n ∈ N, p < 0. For all r, p, n ∈ N, let

Xn;p
−1 = F pKn;

Xn;p
r = F pKn ∩D−1(F p+rKn+1);

Y n;p
r = D(X

n−1;p−(r−1)
r−1 ) +Xn;p+1

r−1 ;

En;pr = Xn;p
r /Y n;p

r

with X,Y = 0 if any of the values r, p, n are out of range. Then

(a) Y n;p
r ⊆ Xn;p

r (and En;pr is actually defined) for all r, n, p,

(b) D induces well-defined maps dr = dn;pr : En;pr → En+1;p+r
r for all r, n, p,

(c) letting Ep,qr = En;pr and dp,qr = dn;pr for all r, n, p, q with n = p + q, {Er; dr}r∈N is a
spectral sequence, and

(d) Fn+1(Hn(K•)) = 0 for all n and F pHn(K•)
F p+1Hn(K•) = En;p∞ for all n ∈ N, p ≤ n.

Proof. See handout.

Definition. The transpose of a double complex (K••, d, δ) is the double complex (K̃••, δ, d)
where K̃p,q = Kq,p for all p, q. This, too, is a double complex, and the transpose of the
transpose is the original double complex.
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Key fact for spectral sequences. If the filtered complexes (K•;D) and (K̃•; D̃) are
obtained from a double complex and its transpose, respectively, thenK• = K̃• andD = D̃,
therefore Hn(K•) = Hn(K̃•) for all n, only the filtrations differ.

Now we can re-prove:

Proposition 6.3 (Proposition 5.7). Let X be a ringed space and let F ,G ∈ Mod(X).
Let · · · → E1 → E0 → F → 0 be a finite-rank locally free resolution of F . Then

Exti(F ,G) ∼= hi(Hom(E•,G)) ∀i.

Proof. Let 0 → G → I• be an injective resolution of G, and let Kp,q = Hom(Ep, Iq) for all
p, q ∈ N with d : Kp,q → Kp,q+1 induced by Iq → Iq+1, and δ : Kp,q → Kp+1,q induced
by Ep+1 → Ep multiplied by (−1)q for all p, q. Then d and δ anticommute. Therefore
(K••, d, δ) is a double complex. We have Ep,q0 = Hom(Ep, Iq), therefore

Ep,q1 = hq(Hom(Ep, I•)) = Extq(Ep,G) ∼= Extq(OX , E∨
p ⊗ G)

=

{
G ⊗ E∨

p if q = 0,

0 if q > 0.

Here d1 is induced by Ep+1 → Ep, so

Ep,q2 = hp(Ep,q1 ) =

{
hp(Hom(E ,G)) if q = 0,

0 otherwise.

Now dr = 0 for all r > 1 because the arrows have negative slope. Therefore Ep,q∞ = Ep,q2 .
Also, all but one of the subquotients of the filtration of Hn(K•) are zero (for each n), so
Hn(K•) ∼= En,0∞ ∼= hn(Hom(E•,G)).

Now do the same with the transpose of (E••, d, δ). Then Ẽp,q0 = Eq,p0 = Hom(Eq, Ip).
Since Hom(−, Ip) is exact, we get

Ẽp,q1 = hq(Hom(Eq, Ip)) = Hom(hq(E•), Ip)

=

{
Hom(F , Ip) if q = 0,

0 otherwise.

and

Ẽp,q2 = hp(Ẽp,q1 ) =

{
hp(Hom(F , I•)) if q = 0

0 otherwise.
=

{
Extp(F ,G) if q = 0,

0 otherwise.

Again, Ẽp,q∞ = Ep,q2 for all p, q, and Hn(K̃•) ∼= Ẽn,02
∼= Extn(F ,G). Therefore

Extn(F ,G) ∼= Hn(K̃•) = Hn(K•) ∼= hn(Hom(E•,G)) ∀n.

Note. The proof does not work with Ext in place of Ext. However it does work with
ExtiA(M,N) (because this is the same as Ext over a one point space).
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7 Higher Direct Images
Definition. Let f : X → Y be a continuous map of topological spaces. Then the higher
direct images Rif∗ : Ab(X) → Ab(Y ) are the right derived functors of f∗ : Ab(X) →
Ab(Y ).

Note that f∗ is left exact.

Key example. A morphism f : X → Y of schemes gives a family of schemes (Xy)y∈Y ,
where Xy = X ×Y {y} for all y ∈ Y . Subexamples:

(i) Moduli spaces. A (fine) moduli space is a (nice) morphism f : U → M of schemes
whose points in M are in canonical bijection with some iven family of curves, abelian
varieties, etc., often with additional data. (or that represents a functor of families
of such objects over S.) The bijection is y ∈ M 7→ Uy.

(ii) A variety V over Q can be extended to a morphism X → SpecZ; e.g. if V is
xn + yn = zn ⊆ P2

Q, then X would be xn + yn = zn in P2
Z. Then rational points in

V (Q) are in canonical bijection with sections of π : X → SpecZ

In both cases, we are interested in how H i(Xy,Fy) varies for a sheaf F on X, as y ∈ Y
varies.

Proposition 7.1. For each i ∈ N and F ∈ Ab(X), Rif∗F is the sheafification of the
presheaf V 7→ H i(f−1(V ),F|f−1(V )) on Y .

Proof. Since the Rif∗ are derived functors, they form a universal δ-functor. On the other
hand, for all i let Hi(F) = (V 7→ H i(f−1(V ),F|f−1(V )))

+. Then H0(F) = (V 7→
Γ(f−1(V ),F))+ = (f∗F)+ = f∗F . Moreover, let 0 → F ′ → F → F ′′ → 0 be a short
exact sequence in Ab(X). Then for all open V ⊆ Y we get a long exact sequence

· · · → H i(f−1(V ),F ′|f−1(V )) → H i(f−1(V ),Ff−1(V )) → . . .

Then the sequence of stalks of the presheaves is exact, so the sequence in Hi is ex-
act. Therefore (Hi(−)) is a δ-functor. It is effaceable because Ab(X) has enough in-
jectives: If I is injective in Ab(X), then I|f−1(V ) is injective for all open V ⊆ Y , so

H i(f−1(V ), I|f−1(V )) = 0 for all i > 0, therefore Hi(I) = 0 for all i > 0. So (Hi(−)) is
effaceable, hence universal, so get our isomorphism.

Corollary 7.2. Let V ⊆ Y be an open subset, and let f ′ : f−1(V ) → V be the restriction
of f . Then Rif∗F|V ∼= Rif ′∗(F|f−1(V )).

Corollary 7.3. If the sheaf F is flasque, then Rif∗F = 0.

Proof. Since F is flasque, so is FU for all open U ⊆ X, so Hi(F) = 0.

59



Proposition 7.4 (Generalization of Proposition 1.20). Let f : X → Y be a morphism
of ringed spaces. Then the higher direct images Rif∗ can be computed on Mod(X) as
the right derived functors of f∗ : Mod(X) → Mod(Y ) (using injectives or flasques in
Mod(X)).

Proof. Same as for Proposition 1.20.

Note. If k is a field and f : X → Y = Spec k is a morphism of schemes, then f∗F =
Γ(X,F)˜, and Rif∗F ∼= H i(X,F)˜ for all i.

More generally:

Proposition 7.5. Let f : X → Y be a morphism of schemes, where X is noetherian and
Y = SpecA is affine (but not assumed to be noetherian). Then, for any quasi-coherent
sheaf F on X, Rif∗F ∼= H i(X,F)˜.
Proof. Think of both sides as functors from QCoh(X) to Mod(Y ). We will use induction
on i. When i = 0, both sides agree, since f∗F is quasi-coherent on Y . For the inductive step
assume i > 0 and that Ri−1f∗F ∼= H i−1(X,F)˜. Embed F into a quasi-coherent, flasque
sheaf G on X. Then Rjf∗G = 0 for all j > 0. Let R = G/F , so 0 → F → G → R → 0 is a
short exact sequence in QCoh(X). Then when i = 1 we have a commutative diagram

0 f∗F f∗G f∗R R1f∗F R1f∗G = 0

0 H0(X,F)˜ H0(X,G)˜ H0(X,R)˜ H1(X,F)˜ H0(X,G)˜ = 0

≃ ≃ ≃ α

with exact rows. Therefore there exists an isomorphism α : R1f∗F
≃
↪−→ H1(X,F)˜ by

uniqueness of the cokernel. The proof for i > 1 is similar but easier.

This globalizes to:

Corollary 7.6. Let f : X → Y be a morphism of schemes, with X noetherian. Then
Rif∗F is quasi-coherent on Y for all quasi-coherent sheaves F on X.

Theorem 7.7. Let f : X → Y be a projective morphism of noetherian schemes, let OX(1)
be a very ample line bundle on X over Y , and let F be a line bundle on X. Then

(a) Rif∗F is a coherent sheaf on Y for all i ≥ 0.

(b) The natural map f∗f∗(F(n)) → F(n) is surjective for all n≫ 0.

(c) Rif∗(F(n)) = 0 for all i > 0, n≫ 0.

Proof. Since Y is quasi-compact and the question is local on Y , we may assume that Y is
affine, say Y = SpecA. Then A is noetherian. Parts (a) and (c) follow from Theorem 3.11
(a) and (b) respectively.
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For (b) Let Mn = H0(X,F(n)). Then f∗(F(n)) = M̃n (on Y ) for all n ∈ Z. For all
n ≫ 0, F(n) is generated by global sections; for such n, the image of Mn → F(n)x
generates F(n)x for all x ∈ X. On open affines U = SpecB in X, (f∗f∗(F(n)))|U =
(f∗M̃n)|U = (Mn⊗AB)˜. Since the images of Mn → F(n)x generate F(n)x for all x ∈ U ,
so does the image of Mn ⊗A B → F(n)x = (Mn ⊗A B)p where p ∈ SpecB equals x

Additional comments on Rif∗

1. To compare Rif∗F ⊗ k(y) with H i(Xy,Fy) (with y ∈ Y ), see [Har77, Theorem 12.8]
and [Har77, Corollary 12.9].

2. For duality, there is a theory, but it is complicated.
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8 Flatness
For the rest of this section, M and N are modules over a ring A.

Recall that the functor M ⊗A − from Mod(A) to Mod(A) is right exact and additive.
Therefore it has left derived functors Li(M ⊗A −) for all i ≥ 0, denoted by TorAi (M,−).

Recall:

Proposition 8.1. TorAi (M,N) ∼= TorAi (N,M) for all i ≥ 0.

Proposition 8.2. TFAE:

(i) M ⊗A − is an exact functor (i.e. M is flat);

(ii) a⊗AM →M is injective for all finitely generated ideals a of A;

(iii) Tor1(M,N) = 0 for all A-modules N ;

(iv) Tori(M,N) = 0 for all A-modules N , i > 0.

Definition. Let f : X → Y be a morphism of schemes, and let F be an OX-module.
Then

1. F is flat over Y at x ∈ X if Fx is a flat OY,f(x)-module (via f# : OY,f(x) → OX,x).

2. F is flat over Y if it is flat over Y at x for all x ∈ X.

3. X is flat over Y if OX is flat over Y .

4. f is flat if X is flat over Y .

5. X is flat over Y at x, or f is flat at x, if Ox is flat over Y at x.

The following follows from the corresponding commutative algebra facts.

Proposition 8.3.

(a) An open embedding is flat.

(b) Flatness is preserved by base change.

(c) A composition of flat morphisms is flat.

(d) Let f : X → Y be a morphism, where X = SpecB and Y = SpecA are affine.
Let M be a B-module. Then the sheaf M̃ on X is flat over Y iff M is flat as an
A-module.

(e) Let F be a coherent sheaf on a noetherian scheme X. Then F is flat over X iff F
is locally free.

(f) A product of flat morphisms is flat.

Some examples.
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(1) SpecFp → SpecZ is not flat. More generally closed embeddings are usually not flat.

(2) Blowing up is usually not flat (e.g. the closure of the graph of x
y : A2 → P1 is not

flat). This follows from Proposition 8.5

(3) A free A-module is flat.

Theorem 8.4. Let
X ′ X

Y ′ Y

f ′

v

f

u

be a cartesian diagram of noetherian schemes, where f is separated of finite type. Let F
be a quasi-coherent sheaf on X. Then there are natural maps u∗(Rif∗F) → Rif ′∗(v

∗F) of
sheaves on Y ′ for all i ≥ 0. Moreover, if u is flat, then these maps are isomorphisms.

Proof. The question is local on Y and Y ′, so by naturality we may assume that Y and
Y ′ are affine, equal to SpecA and SpecA′, respectively. Then A and A′ are noethe-
rian. Then also Rif∗F = H i(X,F)˜, so u∗Rif∗F = (H i(X,F)⊗AA

′)˜. Also Rif ′∗(v∗F) =
H i(X ′, v∗F)˜. So finding a map as above is equivalent to finding a natural mapH i(X,F)⊗A

A′ → H i(X ′, v∗F) of A′-modules. Since X,X ′ are noetherian, we can use Čech cohomol-
ogy: Let U be an open affine cover of X, and let U ′ be the pull-back to X ′ (which is
again an open affine cover of X ′ since the diagram is cartesian). So we want to construct
qH i(U ,F)⊗A A

′ → qH i(U ′, v∗F); i.e.

hi(C•(U ,F))⊗A A
′ → hi(C•(U ′, v∗F)) = hi(C•(U ,F)⊗A A

′).

Define a map C•(U ,F) → C•(U ,F) ⊗A A
′ by x 7→ x ⊗ 1. This is a map of complexes

of A-modules. It gives maps hi(C•(U ,F)) → hi(C•(U ,F) ⊗A A
′) of A-modules for all i

which in turn gives maps hi(C•(U ,F))′ ⊗A A
′ → hi(C•(U ,F)⊗A A

′) of A′-modules. This
is what we wanted. Moreover, if A′ is flat over A, then this map is an isomorphism, which
proves the second part.

8.1 Dimension of Base and Fiber

Recall. If X is a scheme and x ∈ X, then dimxX = dimOX,x = codimX {x}.

Proposition 8.5. Let k be a field, let X and Y be schemes of finite type over k, and let
f : X → Y be a flat morphism. Let x ∈ X and y = f(x) ∈ Y be points. Then

dimxXy = dimxX − dimy Y.

Proof.
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Step 1. Reduce to the case in which y is a closed point in Y , is the only closed point
in Y , and dimy Y = dimY . Indeed, let Y ′ = SpecOY,y, and do a base change to Y ′.
Then X ′ := X ×Y Y

′ is flat over Y ′ and there exists x′ ∈ X ′ mapping to x ∈ X. For
the latter, note that x ∈ Xy, which is unchanged by the base change. Also dimy Y
is unchanged, dimxXy is unchanged, and dimxX = dimx′ X

′. We need to relax our
assumptions: X and Y are essentially of finite type over k, i.e. covered by open affines
which are localizations of k-algebras of finite type.

Step 2. We may assume that Y is reduced. Indeed, base change via Yred → Y . This
does not change the topological spaces of X and Y , and Xy is unchanged.

Step 3. The main step. We induct on dimY = dimy Y . If dimY = 0, then Y = SpecE,
where E is a field, finite over k. Also Xy = X. Therefore dimX Xy = dimxX and
dimy Y = 0. For the inductive step assume dimY > 0. Pick a non-zero divisor t ∈ my

(exists by [Eis95, 3.1b and 3.2]). Let Y ′ = SpecOY,y/(t) and do base change by the
closed embedding Y ′ ↪→ Y . We have dimY ′ = dimY −1 by Krull’s Hauptidealsatz. By
flatness f∗t ∈ mx ⊆ OX,x is also a non-zero divisor. Therefore dimxX

′ = dimxX − 1.
Also dimxXy does not change, so we conclude by induction.

Note. We only used flatness to get dimxX
′ = dimxX − 1. Without flatness, we could

have dimxX
′ = dimxX, and we would still get

dimxXy ≥ dimxX − dimy Y.

8.2 Flatness and Hilbert Polynomials

Recall Proposition 3.20. Let F be a coherent sheaf on a projective scheme X over a
field k, and let OX(1) be a very ample line bundle on X over k. Then there is a unique
polynomial P ∈ Q[z] such that P (n) = χ(F(n)) for all n ∈ Z. By Theorem 3.11, P (n) =
dimkH

0(X,F(n)) for all n≫ 0.

Theorem 8.6. Let T be an integral noetherian scheme, let f : X → T be a projective
morphism, and let OX(1) be a very ample line bundle on X over T . For each t ∈ T , let
Pt ∈ Q[z] be the Hilbert polynomial of OXt on the fiber Xt of f at t, relative to O(1)|Xt,
and k(t) (the residue field of OT,t). Then X is flat over T iff Pt is independent of t.

Proof. Omitted (ran out of time).
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