SPHERICAL REPRESENTATIONS OF p-ADIC GROUPS

LEONARD TOMCZAK

Contents

1.	Preliminaries	1
2.	The Satake Isomorphism	2
3.	Spherical Representations via Principal Series	4
4.	Spherical Representations via Zonal Spherical Functions	6
5.	Relation with the Principal Series	8
References		8

Notes still in progress.

1. Preliminaries

Let G be a locally compact totally disconnected group. The Hecke algebra $C_c^{\infty}(G)$ is denoted $\mathcal{H} := \mathcal{H}(G)$, and if $K \subseteq G$ is a compact open subgroup, we denote by $\mathcal{H}_K := \mathcal{H}(G, K) := C_c^{\infty}(K \setminus G/K)$ the spherical Hecke algebra, the subalgebra consisting of the compactly supported locally constant K-biinvariant functions.

Definition. A smooth representation (V, π) of G is spherical (or unramified) with respect to K if V is irreducible and $V^K \neq 0$. A non-zero vector in V^K is called spherical.

Proposition 1 ([CKD73, p. 33]). Let $(V_1, \pi_1), (V_2, \pi_2)$ be smooth representations of G and assume that V_1^K generates V_1 over G and V_2^K cogenerates V_2 over G. The latter condition means that every G-submodule of V_2 intersects V_2^K non-trivially. Then the natural map

$$\operatorname{Hom}_{\mathcal{H}}(V_1, V_2) \to \operatorname{Hom}_{\mathcal{H}_K}(V_1^K, V_2^K)$$

is an isomorphism.

Note the condition of the proposition is satisfied if for example both V_1, V_2 are irreducible.

Corollary 2. Let $(V_1, \pi_1), (V_2, \pi_2)$ be spherical irreducible admissible representations of G. Then $V_1 \cong V_2$ if and only if $V_1^K \cong V_2^K$ as \mathcal{H}_K -modules.

Proposition 3. If M is a simple \mathcal{H}_K module, then there is an irreducible smooth representation of (V,π) of G such that $V^K \cong M$.

Let **G** be a reductive group over a nonarchimedean local field F. We will assume that **G** is *split*, meaning that **G** admits a maximal torus that splits over F. Let **T** denote such a split maximal torus, **B** a Borel subgroup of **G** containing **T** and **N** the unipotent radical of **B**. We will usually denote algebraic groups by boldface letters **G**, **B**,... and their topological groups of F-valued points by normal letters $G = \mathbf{G}(F), B = \mathbf{B}(F), \ldots$ Assume that K is a compact open subgroup of G such that $G = BK, B \cap K = (T \cap K)(N \cap K)$ and that $K_T := K \cap T$ is a maximal open subgroup of T.

The group of characters (resp. cocharacters) of T is denoted by $X^*(T)$ (resp. $X_*(T)$). There is a surjective map ord : $T \to X_*(T)$ satisfying $\langle \operatorname{ord}(t), \lambda \rangle = \operatorname{ord}(\lambda(t))$ for $t \in T, \lambda \in X^*(T)$. The kernel ker ord is the largest compact subgroup of T, hence ker ord = K_T . The set of roots of (G, T) is denoted by Φ and Φ^+ denotes the subset of positive roots corresponding to the Borel subgroup B. The Weyl group is W = N(T)/T.

The Haar measures on G, T will be normalized such that K, K_T have measure 1.

Lemma 4. \mathcal{H}_K is commutative, hence any finite-dimensional simple module of \mathcal{H}_K is one-dimensional and given by a character $\mathcal{H}_K \to \mathbb{C}$.

Proof. This follows from Theorem 7.

Theorem 5. The spherical representations of G are in bijection with $\operatorname{Hom}(\mathcal{H}_K, \mathbb{C})$, the set of characters of \mathcal{H}_K .

2. The Satake Isomorphism

Let $(\widehat{G}, \widehat{T})$ be the complex dual group to **G**. Let $\widehat{W} = N(\widehat{T})/\widehat{T}$ be its Weyl group. We have canonical isomorphisms (recall that we assumed that **T** is split)

$$\mathcal{H}(T, K_T) \cong \mathbb{C}[X_*(\mathbf{T})] \cong \mathbb{C}[X^*(\widehat{T})] \cong \mathcal{O}(\widehat{S}).$$

These isomorphisms respect the action of W and \widehat{W} , so they induce isomorphisms on the respective invariant rings.

Let $f \in \mathcal{H}_K$. The constant term of f along B is a function $f^B : T \to \mathbb{C}$ defined by

$$f^B(t) := \delta^{1/2}(t) \int_N f(tn) \,\mathrm{d}n.$$

Here $\delta: B \to \mathbb{R}_{>0}$ is the modular function of B. Note that $f^B \in \mathcal{H}(T, K_T)$. Indeed, left invariance under K_T is clear from the formula and right invariance follows from the equivalent description $f^B(t) = \delta^{-1/2}(t) \int_N f(nt) \, dn$. We will also denote f^B by Sf. This defines an algebra homomorphism

$$\mathcal{H}(G,K) \longrightarrow \mathcal{H}(T,K_T),$$
$$f \longmapsto \mathcal{S}f.$$

Lemma 6 ([Sat63, Lemma 4.3]). Let $f \in \mathcal{H}(G, K)$ and $t \in T$. Define

$$D(t) := \left|\det\left(1 - \operatorname{Ad}(t) : \mathfrak{g}/\mathfrak{t} \to \mathfrak{g}/\mathfrak{t}\right)\right|^{1/2}$$

If $D(t) \neq 0$, then

$$Sf(t) = D(t) \int_{G/T} f(gtg^{-1}) \,\mathrm{d}g \tag{(*)}$$

Here the measure dg is a measure on G/T that is invariant for the multiplication action of G and compatible with the measures on G and T. The integral on the right is called an *orbital integral*.

If C_t^0 denotes the centralizer of t in G, then $D(t) \neq 0$ if and only if $C_t^0 = T$ and these elements are dense in T [GH, Proposition 8.7.3]. E.g. if $\mathbf{G} = \operatorname{GL}_n$, then the elements $t \in T$ with $D(t) \neq 0$ are precisely those with distinct eigenvalues. The expression on the right of (*) is easily seen to be invariant under elements in N(T), hence the image of the homomorphism $S : \mathcal{H}(G, K) \to \mathcal{H}(T, K_T)$ is contained in $\mathcal{H}(T, K_T)^W$. In fact:

Theorem 7 (Satake isomorphism [Gro98, Proposition 6.3], [Car79, Theorem 4.1]). S induces an isomorphism

$$\mathcal{S}: \mathcal{H}(G, K) \xrightarrow{\simeq} \mathcal{H}(T, K_T)^W \simeq \mathbb{C}[X_*(\mathbf{T})]^W \simeq \mathcal{O}(\widehat{T})^W.$$

The use of the dual group \widehat{G}, \widehat{T} is useful for the generalization from the split to the unramified case.

This allows us to describe the homomorphisms $\mathcal{H}(G, K) \to \mathbb{C}$ and hence the spherical representations of G by Theorem 5. The map $\operatorname{Hom}(\mathcal{H}(T, K_T), \mathbb{C}) \to \operatorname{Hom}(T/K_T, \mathbb{C}^{\times})$ given by $\varphi \mapsto (t \mapsto \varphi(\mathbb{1}_{tK_T}))$ is a bijection. The inverse is given by

$$\chi \longmapsto \left(\varphi_{\chi} : f \mapsto \int_{T} f(t)\chi(t) \,\mathrm{d}t\right).$$

We call a character $\chi: T \to \mathbb{C}^{\times}$ (not assumed to be unitary) unramified if it is trivial on K_T . Hence unramified characters correspond to characters of the algebra $\mathcal{H}(T, K_T)$. What do the characters of $\mathcal{H}(T, K_T)^W$ look like? Let $\chi: T \to \mathbb{C}$ be an unramified character, so we get a character φ_{χ} as above which we can restrict to $\mathcal{H}(T, K_T)^W$ Conversely, given a character $\tilde{\varphi}$ of $\mathcal{H}(T, K_T)^W$, by commutative algebra¹ we can extend $\tilde{\varphi}$ to a character φ of $\mathcal{H}(T, K_T)$. Hence we get an unramified character χ of T such that $\tilde{\varphi} = \varphi_{\chi}|_{\mathcal{H}(T, K_T)^W}$. Furthermore, two unramified characters χ, χ' restrict to the same character of $\mathcal{H}(T, K_T)^W$ if and only if $\chi' = w\chi$ for some $w \in W$.² Here $(w\chi)(t) := \chi(x^{-1}tx)$ where $x \in N(T)$ is a representative of w.

By pulling back along S we can thus describe all the characters of $\mathcal{H}(G, K)$. Given an unramified character χ of T, define $\xi_{\chi} : \mathcal{H}(K, G) \to \mathbb{C}$ by

$$\xi_{\chi}(f) = \varphi_{\chi}(\mathcal{S}f) = \int_{T} \mathcal{S}f(t)\chi(t) \,\mathrm{d}t$$

The discussion above gives the following:

Theorem 8 ([Car79, Corollary 4.2]). All characters of $\mathcal{H}(G, K)$ are of the form ξ_{χ} for some unramified character χ of T. If χ, χ' are unramified characters of T, then $\xi_{\chi} = \xi_{\chi'}$ if and only if $\chi' = w\chi$ for some $w \in W$.

Definition. A character χ of T is called regular if $w\chi \neq \chi$ for all $w \in W$.

¹I remember having to prove this on an exam, see 2d here.

²If A is a commutative ring and G a finite group acting on A, then G acts transitively on every fiber of Spec $A \rightarrow$ Spec A^G .

3. Spherical Representations via Principal Series

Recall that one way to get representations of G is via parabolic induction, i.e. we start with a parabolic subgroup P with Levi decomposition P = MN and a representation (U, σ) of M. Then we view σ as a representation of P by inflation and then induce to get a representation of G. We do this in our setting with P = B to get the unramified principal series. Let $\chi : T \to \mathbb{C}^{\times}$ be a character which we view as a one-dimensional representation of T.

Definition. The principal series representation corresponding to χ is

$$I(\chi) := \operatorname{Ind}_B^G \chi$$

where we view χ as a character of B via $B \to B/N = T$.

Here Ind is the normalized induction, meaning that $\operatorname{Ind}_B^G \chi$ is the space of functions $f: G \to \mathbb{C}$ that are right invariant under some compact open subgroup of G and satisfy

$$f(bg) = \delta^{1/2}(b)\chi(b)f(g)$$
 (*)

for $b \in B, g \in G$. G acts on this space by right translation. By general results on induced representations we have:

- $I(\chi)$ is admissible,
- $\widehat{I(\chi)} \cong I(\chi^{-1})$, where $\widehat{I(\chi)}$ denotes the contragredient of $I(\chi)$,

1

• $I(\chi)$ is unitarizable if χ is unitary.

By the Iwasawa decomposition G = BK, a function $f \in I(\chi)$ is uniquely determined by its restriction to K. Conversely, if $g: K \to \mathbb{C}$ is smooth and satisfies $g(bk) = \chi(b)g(k)$ for $b \in B \cap K, k \in K$, then it is the restriction of a unique element in $I(\chi)$.

Furthermore, note that B = TN and both δ and χ are trivial on N, hence (*) can be rewritten as $f(tng) = \delta^{1/2}(t)\chi(t)f(g)$ for all $t \in T, n \in N, g \in G$.

Proposition 9. $I(\chi)$ contains spherical vectors if and only if χ is unramified, in which case dim $I(\chi)^K = 1$.

Note that we don't know yet whether $I(\chi)$ is irreducible (and indeed that need not be the case), so according to our definition this does say that $I(\chi)$ is spherical.

Proof. Clearly $0 \neq f \in I(\chi)$ is spherical if and only if f is constant on K. This satisfies (*) precisely when $\chi|_{K_T} = 1$, i.e. when χ is unramified. If that is the case, then $\Phi_{K,\chi}$ defined by $\Phi_{K,\phi}(tnk) := \chi(t)\delta^{1/2}(t)$ is the unique function (up to scaling) satisfying that condition.

Proposition 10 ([GH, Lemma 7.6.6]). $I(\chi)$ admits a a unique spherical subquotient which we will denote by $J(\chi)$.

Proof. It is a fact that $I(\chi)$ has finite length. Then the claim follows easily from dim $I(\chi)^K = 1$ (and the fact that $V \mapsto V^K$ is an exact functor).

What does the character ξ of $J(\chi)$ look like? We can determine this from $I(\chi)$. Indeed, we must have $\pi(f)\Phi_{K,\chi} = \xi(f)\Phi_{K,\chi}$ for $f \in \mathcal{H}(G,K)$. To determine ξ is suffices to evaluate both sides at 1. The calculation in (†) in 4 shows that $\xi(f) = \int_T \mathcal{S}f(t)\chi(t) dt = \xi_{\chi}(f)$. Hence $J(\chi)$ is the spherical representation associated to the character χ by Theorem 8 and Theorem 5.

It is useful to know how the Jacquet module of $I(\chi)$ looks like. Recall that the Jacquet module of a smooth representation (V, π) of G with respect to N is given by $V_N := V/V(N)$ where V(N) is the subspace generated by elements of the form $v - \pi(n)v$, $n \in N, v \in V$. It is a T-module.

Let χ be an unramified character of T.

Theorem 11 ([Car79, Theorem 3.5]). The semisimplification of $I(\chi)_N$ is isomorphic to $\bigoplus_{w \in W} w\chi \otimes \delta^{1/2}$. In particular, if χ is regular, then $I(\chi)_N \cong \bigoplus_{w \in W} w\chi \otimes \delta^{1/2}$.

Corollary 12. Let $w \in W$. Then there is a non-zero intertwining operator $I(\chi) \to I(w\chi)$. If χ is regular, then this operator is unique up to scalars. If $I(\chi)$ is irreducible, then $I(\chi) \cong I(w\chi)$.

Proof. By Frobenius reciprocity we have

$$\operatorname{Hom}_{G}(I(\chi), I(w\chi)) = \operatorname{Hom}_{B}(I(\chi), w\chi \otimes \delta^{1/2}) = \operatorname{Hom}_{T}(I(\chi)_{N}, w\chi \otimes \delta^{1/2}),$$

and the result follows from this.

Taking w = 1 gives $\operatorname{End}_G(I(\chi)) = \mathbb{C}$ if χ is regular. This implies:

Corollary 13. Assume χ is unitary and regular. Then $I(\chi)$ is irreducible.

Assume χ is regular and $w \in W$. Then by Corollary 12 there is a non-zero functional $\Lambda_w : I(\chi) \to \mathbb{C}$ satisfying $\Lambda_w(\pi(tn)f) = \delta^{1/2}(t)(w\chi)(t)\Lambda_w(f)$ for $t \in T, n \in N$ and it is unique up to scalar. Then the associated intertwining operator $T_w^{\chi} : I(\chi) \to I(w\chi)$ is given by $T_w^{\chi}(f)(g) = \Lambda_w(\pi(g)f)$. We can normalize T_w^{χ} such that

$$T_w^{\chi}(f)(1) = \int_{wNw^{-1} \cap N \setminus N} f(w^{-1}n) \,\mathrm{d}n$$

for functions $f \in I(\chi)$ supported in $Bw^{-1}B$. Here the measure is normalized such that the orbit of 1 under $N \cap K$ has measure 1 [Cas80, p. 397]. Note that T_w^{χ} must take $I(\chi)^K$ to $I(w\chi)^K$, hence there is a scalar $c_w(\chi)$ such that $T_w^{\chi}(\Phi_{K,\chi}) = c_w(\chi)\Phi_{K,w\chi}$. The composition $T_{w^{-1}}^{w\chi}T_w^{\chi}$ is an intertwining operator $I(\chi) \to I(\chi)$, and thus a scalar multiple of the identity. This scalar must be $c_{w^{-1}}(w\chi)c_w(\chi)$.

Given a root $\alpha \in \Phi(G,T) \subseteq X^*(T)$, denote by $\alpha^{\vee} \in X_*(T)$ its coroot. Let $a_{\alpha} \in T$ be any element such that $\operatorname{ord}(a_{\alpha}) = \alpha^{\vee}$ under the map $\operatorname{ord} : T \to X_*(T)$. Define

$$c_{\alpha}(\chi) := \frac{1 - q^{-1}\chi(a_{\alpha})}{1 - \chi(a_{\alpha})}.$$

Theorem 14 ([Cas80, Theorem 3.1]). $c_w(\chi) = \prod_{\alpha} c_{\alpha}(\chi)$ where the product runs over the positive roots $\alpha \in \Phi^+$ such that $w\alpha \in \Phi^-$.

Theorem 15 ([Car79, Theorem 3.10], [Cas80, Proposition 3.5]). The representation $I(\chi)$ is irreducible if and only if $c_w(\chi) \neq 0$, $c_{w^{-1}}(w\chi) \neq 0$ for the $w \in W$ that takes Φ^+ to Φ^- .

Let us spell this out in the case $\mathbf{G} = \mathrm{GL}_2$ where we take \mathbf{B} to be the standard Borel subgroup, the group of upper triangular matrices, and \mathbf{T} the diagonal matrices. Under the usual identification $X^*(T) \cong \mathbb{Z}^2$, corresponding to our choice of \mathbf{B} we have $\Phi^+ = \{\alpha\}$ with $\alpha = e_1 - e_2$. Then $\alpha^{\vee} = e_1^{\vee} - e_2^{\vee}$. We may choose $a_{\alpha} = \begin{pmatrix} \varpi & 0 \\ 0 & \varpi^{-1} \end{pmatrix}$. Let χ be a regular unramified character of $T = F^{\times} \oplus F^{\times}$. It is of the form $\chi_1 \otimes \chi_2$ with characters χ_1, χ_2 of F^{\times} . Then

$$c_{\alpha}(\chi) = \frac{1 - q^{-1}(\chi_1 \chi_2^{-1})(\varpi)}{1 - (\chi_1 \chi_2^{-1})(\varpi)}$$

Let w denote the non-trivial element in the Weyl group. Then $c_w(\chi) = c_\alpha(\chi)$ is non-zero iff $\chi_1 \chi_2^{-1} \neq |\cdot|^{-1}$. We have $w\chi = \chi_2 \otimes \chi_1$, and then similarly $c_{w^{-1}}(w\chi) \neq 0$ iff $\chi_1 \chi_2^{-1} \neq |\cdot|$. Hence, we get that $I(\chi)$ is irreducible if and only if $\chi_1 \chi_2^{-1} \neq |\cdot|^{\pm 1}$. This result is also true without either of the assumptions that χ be unramified or regular, see [Bum97, Theorem 4.5.1].

4. Spherical Representations via Zonal Spherical Functions

Definition. A zonal spherical function is a smooth function $\omega : G \to \mathbb{C}$ satisfying

- (i) $\omega(kgk') = \omega(g)$ for $g \in G, k, k' \in K$;
- (*ii*) $\omega(1) = 1;$
- (iii) For every $f \in \mathcal{H}_K$ there is a constant $\lambda_f \in \mathbb{C}$ such that

$$f * \omega = \omega * f = \lambda_f f.$$

Given $\omega \in C^{\infty}(G)$, define the linear map $\xi : \mathcal{H}_K \to \mathbb{C}$ by

$$\xi_{\omega}(f) = \int_{G} \omega(g) f(g) \, \mathrm{d}g$$

Then condition (*iii*) above is equivalent to each of the following $[Car79, p. 149]^3$

- (iii') ξ_{ω} is an algebra homomorphism;
- $(iii'') \ \omega(g_1)\omega(g_2) = \int_K \omega(g_1kg_2) \,\mathrm{d}k$ for all $g_1, g_2 \in G$.

If $\xi : \mathcal{H}_K \to \mathbb{C}$ is a linear map, then $\omega : G \to \mathbb{C}$ defined by

$$\omega(g) = \frac{1}{\operatorname{vol}(KgK)} \xi(\mathbb{1}_{KgK})$$

satisfies (i) and (ii) above and we have $\xi = \xi_{\omega}$. If furthermore ξ is an algebra homomorphism, then ω is a zonal spherical function by the equivalence of (iii') and (iii). Hence, if we denote by Ω the space of zonal spherical functions, we get an isomorphism

$$\operatorname{Hom}(\mathcal{H}(G,K),\mathbb{C}) \longrightarrow \Omega$$
$$\xi \longmapsto \left(\omega : g \mapsto \frac{1}{\operatorname{vol}(KgK)} \xi(\mathbb{1}_{KgK})\right)$$
$$\xi_{\omega} \longleftrightarrow \omega$$

³Warning: I call the zonal spherical functions ω as in [Sat63], but [Car79] denotes them by Γ and instead writes ω for what I call ξ (I think it would have been clearer if I adopted the notation in [Car79]).

So by Theorem 5 the spherical representations of G are in bijections with zonal spherical functions. We also know by Theorem 8 they are in bijection with unramified characters of T modulo W. We make this explicit. Let χ be an unramified character of T. Then consider the spherical vector $\Phi_{K,\chi}$ in the principal series representation $I(\chi)$, defined by

$$\Phi_{K,\chi}(tnk) = \chi(t)\delta^{1/2}(t)$$

where $t \in T, n \in N, k \in K$. Then as in [Sat63, 5.11] and [Car79, p. 150] let

$$\omega_{\chi}(g) = \int_{K} \Phi_{K,\chi}(kg) \,\mathrm{d}k.$$

Using the notation from 2 we have for $f \in \mathcal{H}_K$:

$$\begin{aligned} \xi_{\chi}(f) &= \int_{T} \mathcal{S}f(t)\chi(t) \, \mathrm{d}t \\ &= \int_{T} \chi(t)\delta^{1/2}(t) \int_{N} f(tn) \, \mathrm{d}t \, \mathrm{d}n \\ &= \int_{T} \int_{N} \Phi_{K,\chi}(tn)f(tn) \, \mathrm{d}t \, \mathrm{d}n \\ &= \int_{K} \int_{T} \int_{N} \Phi_{K,\chi}(tnk)f(tnk) \, \mathrm{d}t \, \mathrm{d}n \, \mathrm{d}k \\ &= \int_{G} \Phi_{K,\chi}(g)f(g) \, \mathrm{d}g \qquad (\dagger) \\ &= \int_{K} \int_{G} \Phi_{K,\chi}(g)f(k^{-1}g) \, \mathrm{d}g \, \mathrm{d}k \\ &= \int_{G} \omega_{\chi}(g)f(g) \, \mathrm{d}g = \xi_{\omega_{\chi}}(f). \end{aligned}$$

Now Theorem 8 translates to:

Theorem 16 ([Car79, Theorem 4.2]). The zonal spherical functions on G are exactly the functions ω_{χ} for unramified characters χ of T. Two such functions $\omega_{\chi}, \omega_{\chi'}$ are equal if and only if $\chi' = w\chi$ for some $w \in W$.

Next we look at how this translates to the spherical representations. Let ω be a zonal spherical function on G. Consider $C^{\infty}(G)$ as a representation of G via right translation. Let $(V_{\omega}, \pi_{\omega})$ denote the subrepresentation of $C^{\infty}(G)$ generated by ω . In other words, elements of V_{ω} are \mathbb{C} -linear combinations of functions of the form $g \mapsto \omega(gg')$ with $g' \in G$. Then property (iii'') implies $\omega(g_1)f(g_2) = \int_K f(g_1kg_2) dk$ for $g_1, g_2 \in G$ and $f \in V_{\omega}$.

Theorem 17. The representation $(V_{\omega}, \pi_{\omega})$ is spherical.

Proof. V_{ω} is smooth since $C^{\infty}(G)$ is smooth. By definition we have $\omega \in V_{\omega}^{K}$. Using the functional equation $\omega(g_1)f(g_2) = \int_K f(g_1kg_2) \, dk$ it is easy to see that any non-zero subrepresentation of V_{ω} contains ω , hence is equal to V_{ω} . Therefore V_{ω} is irreducible.

The spherical character of π_{ω} is of course given by ξ_{ω} , i.e. $\pi_{\omega}(f)\omega = \xi_{\omega}(f)\omega$ for $f \in \mathcal{H}_K$. Indeed, the left side is a multiple of ω , so it suffices to evaluate at 1 (recall $\omega(1) = 1$) and we get

$$(\pi_{\omega}(f)\omega)(1) = \int_{G} f(g)\omega(g) \,\mathrm{d}g = \xi_{\omega}(f).$$

Since zonal spherical functions are in bijection with the characters of \mathcal{H}_K under $\omega \leftrightarrow \xi_{\omega}$, we deduce:

Theorem 18. If (V, π) is any spherical representation of G, there is a unique zonal spherical function ω such that $(V, \pi) \cong (V_{\omega}, \pi_{\omega})$.

5. Relation with the Principal Series

We now compare the two versions of the spherical representations constructed in 3 and 4. Let χ be an unramified character of T. Then we have two representations attached to it, the principal series representation $I(\chi)$ (which may be reducible) and the irreducible representation V_{ω} where $\omega = \omega_{\chi}$. Suppose $I(\chi)$ is irreducible. Given $f \in I(\chi)$ define $Q(f) : G \to \mathbb{C}$ by

$$Q(f)(g) = \int_{K} f(kg) \,\mathrm{d}k$$

By definition we have $Q(\Phi_{K,\chi}) = \omega$. Since we assumed $I(\chi)$ to be irreducible, it is generated by $\Phi_{K,\chi}$ as a *G*-representation, hence *Q* maps $I(\chi)$ into V_{ω} . It preserves the *G*-action and hence gives an isomorphism $I(\chi) \cong V_{\omega}$.

For general unramified χ we know that $J(\chi) \cong V_{\omega}$ since they both have to the same character:

$$\xi_{J(\chi)}(f) = \int_T \mathcal{S}f(t)\chi(t) = \xi_\omega(f),$$

see (\dagger) and the discussion after Proposition 10.

References

- [Bum97] D. Bump. Automorphic Forms and Representations. Vol. 55. Cambridge Studies in Advanced Mathematics. Cambridge, GBR: Cambridge University Press, 1997.
- [Car79] P. Cartier. "Representations of p-adic groups -A survey". In: Proc.Symp.Pure Math 33 (1979).
- [Cas80] W. Casselman. "The Unramified Principal Series of P-adic Groups. 1. The Spherical Function". In: Compositio mathematica 40.3 (1980).
- [CKD73] W. Casselman, W. Kuijk, and P. Deligne. "An Assortment of Results on Representations of GL2(k)". In: Modular Functions of One Variable II. Lecture Notes in Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1973.

[GH] J. Getz and H. Hahn. An Introduction to Automorphic Representations.

- [Gro98] B. H. Gross. "On the Satake isomorphism". In: Galois Representations in Arithmetic Algebraic Geometry (1998).
- [Sat63] I. Satake. "Theory of spherical functions on reductive algebraic groups over p-adic fields". In: Publications Mathématiques de l'IHÉS 18 (1963).

DEPARTMENT OF MATHEMATICS, EVANS HALL, UNIVERSITY OF CALIFORNIA, BERKELEY, CA 94720, USA

 $Email \ address: \verb"leonard.tomczak@berkeley.edu"$