SPHERICAL REPRESENTATIONS OF p -ADIC GROUPS

LEONARD TOMCZAK

CONTENTS

Notes still in progress.

1. Preliminaries

Let G be a locally compact totally disconnected group. The Hecke algebra $C_c^{\infty}(G)$ is denoted \mathcal{H} := $\mathcal{H}(G)$, and if $K \subseteq G$ is a compact open subgroup, we denote by $\mathcal{H}_K := \mathcal{H}(G,K) := C_c^{\infty}(K \backslash G/K)$ the spherical Hecke algebra, the subalgebra consisting of the compactly supported locally constant K-biinvariant functions.

Definition. A smooth representation (V, π) of G is spherical (or unramified) with respect to K if V is irreducible and $V^K \neq 0$. A non-zero vector in V^K is called spherical.

Proposition 1 ([\[CKD73,](#page-7-2) p. 33]). Let $(V_1, \pi_1), (V_2, \pi_2)$ be smooth representations of G and assume that V_1^K generates V_1 over G and V_2^K cogenerates V_2 over G. The latter condition means that every G-submodule of V_2 intersects V_2^K non-trivially. Then the natural map

$$
\text{Hom}_{\mathcal{H}}(V_1, V_2) \to \text{Hom}_{\mathcal{H}_K}(V_1^K, V_2^K)
$$

is an isomorphism.

Note the condition of the proposition is satisfied if for example both V_1, V_2 are irreducible.

Corollary 2. Let $(V_1, \pi_1), (V_2, \pi_2)$ be spherical irreducible admissible representations of G. Then $V_1 \cong V_2$ if and only if $V_1^K \cong V_2^K$ as \mathcal{H}_K -modules.

Proposition 3. If M is a simple \mathcal{H}_K module, then there is an irreducible smooth representation of (V, π) of G such that $V^K \cong M$.

$2\,$ $\,$ LEONARD TOMCZAK

Let **G** be a reductive group over a nonarchimedean local field F . We will assume that **G** is *split*, meaning that **G** admits a maximal torus that splits over F . Let **T** denote such a split maximal torus, \bf{B} a Borel subgroup of \bf{G} containing \bf{T} and \bf{N} the unipotent radical of \bf{B} . We will usually denote algebraic groups by boldface letters $\mathbf{G}, \mathbf{B}, \ldots$ and their topological groups of F-valued points by normal letters $G = \mathbf{G}(F), B = \mathbf{B}(F), \ldots$. Assume that K is a compact open subgroup of G such that $G = BK$, $B \cap K = (T \cap K)(N \cap K)$ and that $K_T := K \cap T$ is a maximal open subgroup of T.

The group of characters (resp. cocharacters) of T is denoted by $X^*(T)$ (resp. $X_*(T)$). There is a surjective map ord : $T \to X_*(T)$ satisfying $\langle \text{ord}(t), \lambda \rangle = \text{ord}(\lambda(t))$ for $t \in T, \lambda \in X^*(T)$. The kernel ker ord is the largest compact subgroup of T, hence ker ord = K_T . The set of roots of (G, T) is denoted by Φ and Φ^+ denotes the subset of positive roots corresponding to the Borel subgroup B. The Weyl group is $W = N(T)/T$.

The Haar measures on G, T will be normalized such that K, K_T have measure 1.

Lemma 4. \mathcal{H}_K is commutative, hence any finite-dimensional simple module of \mathcal{H}_K is one-dimensional and given by a character $\mathcal{H}_K \to \mathbb{C}$.

Proof. This follows from Theorem [7.](#page-2-0) \Box

Theorem 5. The spherical representations of G are in bijection with Hom $(\mathcal{H}_K, \mathbb{C})$, the set of characters of \mathcal{H}_K .

2. The Satake Isomorphism

Let $(\widehat{G}, \widehat{T})$ be the complex dual group to **G**. Let $\widehat{W} = N(\widehat{T})/\widehat{T}$ be its Weyl group. We have canonical isomorphisms (recall that we assumed that T is split)

$$
\mathcal{H}(T, K_T) \cong \mathbb{C}[X_*(\mathbf{T})] \cong \mathbb{C}[X^*(\widehat{T})] \cong \mathcal{O}(\widehat{S}).
$$

These isomorphisms respect the action of W and \widehat{W} , so they induce isomorphisms on the respective invariant rings.

Let $f \in \mathcal{H}_K$. The constant term of f along B is a function $f^B: T \to \mathbb{C}$ defined by

$$
f^B(t) := \delta^{1/2}(t) \int_N f(tn) \, \mathrm{d}n.
$$

Here $\delta: B \to \mathbb{R}_{>0}$ is the modular function of B. Note that $f^B \in \mathcal{H}(T, K_T)$. Indeed, left invariance under K_T is clear from the formula and right invariance follows from the equivalent description $f^B(t)$ $\delta^{-1/2}(t) \int_N f(nt) \, \mathrm{d}n$. We will also denote f^B by Sf . This defines an algebra homomorphism

$$
\mathcal{H}(G,K) \longrightarrow \mathcal{H}(T,K_T),
$$

$$
f \longmapsto \mathcal{S}f.
$$

Lemma 6 ([\[Sat63,](#page-7-3) Lemma 4.3]). Let $f \in \mathcal{H}(G,K)$ and $t \in T$. Define

$$
D(t) := \left| \det \left(1 - \mathrm{Ad}(t) : \mathfrak{g}/\mathfrak{t} \to \mathfrak{g}/\mathfrak{t} \right) \right|^{1/2}.
$$

If $D(t) \neq 0$, then

$$
\mathcal{S}f(t) = D(t) \int_{G/T} f(gtg^{-1}) \, dg \tag{*}
$$

Here the measure dg is a measure on G/T that is invariant for the multiplication action of G and compatible with the measures on G and T . The integral on the right is called an *orbital integral*.

If C_t^0 denotes the centralizer of t in G, then $D(t) \neq 0$ if and only if $C_t^0 = T$ and these elements are dense in T [\[GH,](#page-7-4) Proposition 8.7.3]. E.g. if $\mathbf{G} = GL_n$, then the elements $t \in T$ with $D(t) \neq 0$ are precisely those with distinct eigenvalues. The expression on the right of ([∗](#page-1-1)) is easily seen to be invariant under elements in $N(T)$, hence the image of the homomorphism $S: \mathcal{H}(G,K) \to \mathcal{H}(T,K_T)$ is contained in $\mathcal{H}(T, K_T)^W$. In fact:

Theorem 7 (Satake isomorphism [\[Gro98,](#page-7-5) Proposition 6.3], [\[Car79,](#page-7-6) Theorem 4.1]). S induces an isomorphism

$$
\mathcal{S}: \mathcal{H}(G,K) \xrightarrow{\simeq} \mathcal{H}(T,K_T)^W \simeq \mathbb{C}[X_*(\mathbf{T})]^W \simeq \mathcal{O}(\widehat{T})^{\widehat{W}}.
$$

The use of the dual group \widehat{G}, \widehat{T} is useful for the generalization from the split to the unramified case.

This allows us to describe the homomorphisms $\mathcal{H}(G, K) \to \mathbb{C}$ and hence the spherical representations of G by Theorem [5.](#page-1-2) The map $\text{Hom}(\mathcal{H}(T, K_T), \mathbb{C}) \to \text{Hom}(T/K_T, \mathbb{C}^{\times})$ given by $\varphi \mapsto (t \mapsto \varphi(1_{tK_T}))$ is a bijection. The inverse is given by

$$
\chi \longmapsto (\varphi_{\chi} : f \mapsto \int_{T} f(t) \chi(t) dt).
$$

We call a character $\chi : T \to \mathbb{C}^\times$ (not assumed to be unitary) unramified if it is trivial on K_T . Hence unramified characters correspond to characters of the algebra $\mathcal{H}(T, K_T)$. What do the characters of $\mathcal{H}(T, K_T)^W$ look like? Let $\chi: T \to \mathbb{C}$ be an unramified character, so we get a character φ_χ as above which we can restrict to $\mathcal{H}(T, K_T)^W$ Conversely, given a character $\tilde{\varphi}$ of $\mathcal{H}(T, K_T)^W$, by commutative
pleasing i we can extend $\tilde{\varphi}$ to a character φ of $\mathcal{H}(T, K_T)$. Hence we get an unramified charac algebra^{[1](#page-2-1)} we can extend $\tilde{\varphi}$ to a character φ of $\mathcal{H}(T, K_T)$. Hence we get an unramified character χ of T such that $\widetilde{\varphi} = \varphi_{\chi}|_{\mathcal{H}(T, K_T)^W}$. Furthermore, two unramified characters χ, χ' restrict to the same
character of $\mathcal{H}(T, K)$ W if and only if χ' and for some $w \in W^2$. Here $(w \chi)(t)$, $\chi(x^{-1}t)$ wher character of $\mathcal{H}(T, K_T)^W$ if and only if $\chi' = w\chi$ for some $w \in W$ ^{[2](#page-2-2)}. Here $(w\chi)(t) := \chi(x^{-1}tx)$ where $x \in N(T)$ is a representative of w.

By pulling back along S we can thus describe all the characters of $\mathcal{H}(G, K)$. Given an unramified character χ of T, define $\xi_{\chi} : \mathcal{H}(K, G) \to \mathbb{C}$ by

$$
\xi_{\chi}(f) = \varphi_{\chi}(\mathcal{S}f) = \int_{T} \mathcal{S}f(t)\chi(t) dt.
$$

The discussion above gives the following:

Theorem 8 ([\[Car79,](#page-7-6) Corollary 4.2]). All characters of $H(G, K)$ are of the form ξ_X for some unramified character χ of T. If χ, χ' are unramified characters of T, then $\xi_{\chi} = \xi_{\chi'}$ if and only if $\chi' = w\chi$ for some $w \in W$.

Definition. A character χ of T is called regular if $w\chi \neq \chi$ for all $w \in W$.

¹I remember having to prove this on an exam, see 2d [here.](https://www.maths.cam.ac.uk/postgrad/part-iii/files/pastpapers/2023/Paper_101.pdf)

²If A is a commutative ring and G a finite group acting on A, then G acts transitively on every fiber of Spec A \rightarrow $\operatorname{Spec} A^G$.

4 LEONARD TOMCZAK

3. Spherical Representations via Principal Series

Recall that one way to get representations of G is via parabolic induction, i.e. we start with a parabolic subgroup P with Levi decomposition $P = MN$ and a representation (U, σ) of M. Then we view σ as a representation of P by inflation and then induce to get a representation of G . We do this in our setting with $P = B$ to get the unramified principal series. Let $\chi : T \to \mathbb{C}^\times$ be a character which we view as a one-dimensional representation of T.

Definition. The principal series representation corresponding to χ is

$$
I(\chi):=\operatorname{Ind}_B^G\chi
$$

where we view χ as a character of B via $B \to B/N = T$.

Here Ind is the normalized induction, meaning that $\text{Ind}_{B}^{G}\chi$ is the space of functions $f:G\to\mathbb{C}$ that are right invariant under some compact open subgroup of G and satisfy

$$
f(bg) = \delta^{1/2}(b)\chi(b)f(g)
$$
\n^(*)

for $b \in B, g \in G$. G acts on this space by right translation. By general results on induced representations we have:

- $I(\chi)$ is admissible,
- $\widehat{I(\chi)} \cong I(\chi^{-1}),$ where $\widehat{I(\chi)}$ denotes the contragredient of $I(\chi)$,
- $I(\chi)$ is unitarizable if χ is unitary.

By the Iwasawa decomposition $G = BK$, a function $f \in I(\chi)$ is uniquely determined by its restriction to K. Conversely, if $g: K \to \mathbb{C}$ is smooth and satisfies $g(bk) = \chi(b)g(k)$ for $b \in B \cap K, k \in K$, then it is the restriction of a unique element in $I(\chi)$.

Furthermore, note that $B = TN$ and both δ and χ are trivial on N, hence [\(](#page-3-1)*) can be rewritten as $f(tng) = \delta^{1/2}(t)\chi(t)f(g)$ for all $t \in T, n \in N, g \in G$.

Proposition 9. $I(\chi)$ contains spherical vectors if and only if χ is unramified, in which case dim $I(\chi)^K =$ 1.

Note that we don't know yet whether $I(\chi)$ is irreducible (and indeed that need not be the case), so according to our definition this does say that $I(\chi)$ is spherical.

Proof. Clearly $0 \neq f \in I(\chi)$ is spherical if and only if f is constant on K. This satisfies [\(](#page-3-1)*) precisely when $\chi|_{K_T} = 1$, i.e. when χ is unramified. If that is the case, then $\Phi_{K,\chi}$ defined by $\Phi_{K,\phi}(tnk) :=$ $\chi(t)\delta^{1/2}(t)$ is the unique function (up to scaling) satisfying that condition.

Proposition 10 ([\[GH,](#page-7-4) Lemma 7.6.6]). $I(\chi)$ admits a a unique spherical subquotient which we will denote by $J(\chi)$.

Proof. It is a fact that $I(\chi)$ has finite length. Then the claim follows easily from dim $I(\chi)^K = 1$ (and the fact that $V \mapsto V^K$ is an exact functor). What does the character ξ of $J(\chi)$ look like? We can determine this from $I(\chi)$. Indeed, we must have $\pi(f)\Phi_{K,\chi} = \xi(f)\Phi_{K,\chi}$ for $f \in \mathcal{H}(G,K)$. To determine ξ is suffices to evaluate both sides at 1. The calculation in [\(](#page-6-0)†) in [4](#page-5-0) shows that $\xi(f) = \int_T \mathcal{S}f(t)\chi(t) dt = \xi_{\chi}(f)$. Hence $J(\chi)$ is the spherical representation associated to the character χ by Theorem [8](#page-2-3) and Theorem [5.](#page-1-2)

It is useful to know how the Jacquet module of $I(\chi)$ looks like. Recall that the Jacquet module of a smooth representation (V, π) of G with respect to N is given by $V_N := V/V(N)$ where $V(N)$ is the subspace generated by elements of the form $v - \pi(n)v$, $n \in N$, $v \in V$. It is a T-module.

Let χ be an unramified character of T.

Theorem 11 ([\[Car79,](#page-7-6) Theorem 3.5]). The semisimplification of $I(\chi)$ _N is isomorphic to $\bigoplus_{w\in W} w\chi \otimes$ $\delta^{1/2}$. In particular, if χ is regular, then $I(\chi)_N \cong \bigoplus_{w \in W} w \chi \otimes \delta^{1/2}$.

Corollary 12. Let $w \in W$. Then there is a non-zero intertwining operator $I(\chi) \to I(w\chi)$. If χ is regular, then this operator is unique up to scalars. If $I(\chi)$ is irreducible, then $I(\chi) \cong I(w\chi)$.

Proof. By Frobenius reciprocity we have

$$
\operatorname{Hom}_G(I(\chi), I(w\chi)) = \operatorname{Hom}_B(I(\chi), w\chi \otimes \delta^{1/2}) = \operatorname{Hom}_T(I(\chi)_N, w\chi \otimes \delta^{1/2}),
$$

and the result follows from this. \Box

Taking $w = 1$ gives $\text{End}_G(I(\chi)) = \mathbb{C}$ if χ is regular. This implies:

Corollary 13. Assume χ is unitary and regular. Then $I(\chi)$ is irreducible.

Assume χ is regular and $w \in W$. Then by Corollary [12](#page-4-0) there is a non-zero functional $\Lambda_w : I(\chi) \to \mathbb{C}$ satisfying $\Lambda_w(\pi(t_n)f) = \delta^{1/2}(t)(w\chi)(t)\Lambda_w(f)$ for $t \in T, n \in N$ and it is unique up to scalar. Then the associated intertwining operator $T_w^{\chi}: I(\chi) \to I(w\chi)$ is given by $T_w^{\chi}(f)(g) = \Lambda_w(\pi(g)f)$. We can normalize T_w^{χ} such that

$$
T_w^{\chi}(f)(1) = \int_{wNw^{-1} \cap N \backslash N} f(w^{-1}n) \, \mathrm{d}n
$$

for functions $f \in I(\chi)$ supported in $Bw^{-1}B$. Here the measure is normalized such that the orbit of 1 under $N \cap K$ has measure 1 [\[Cas80,](#page-7-7) p. 397]. Note that T_w^{χ} must take $I(\chi)^K$ to $I(w\chi)^K$, hence there is a scalar $c_w(\chi)$ such that $T_w^{\chi}(\Phi_{K,\chi}) = c_w(\chi)\Phi_{K,w\chi}$. The composition $T_{w-1}^{w\chi}T_w^{\chi}$ is an intertwining operator $I(\chi) \to I(\chi)$, and thus a scalar multiple of the identity. This scalar must be $c_{w^{-1}}(w\chi)c_w(\chi)$.

Given a root $\alpha \in \Phi(G,T) \subseteq X^*(T)$, denote by $\alpha^{\vee} \in X_*(T)$ its coroot. Let $a_{\alpha} \in T$ be any element such that $\text{ord}(a_{\alpha}) = \alpha^{\vee}$ under the map $\text{ord}: T \to X_*(T)$. Define

$$
c_{\alpha}(\chi) := \frac{1 - q^{-1}\chi(a_{\alpha})}{1 - \chi(a_{\alpha})}.
$$

Theorem 14 ([\[Cas80,](#page-7-7) Theorem 3.1]). $c_w(\chi) = \prod_{\alpha} c_{\alpha}(\chi)$ where the product runs over the positive roots $\alpha \in \Phi^+$ such that $w\alpha \in \Phi^-$.

Theorem 15 ([\[Car79,](#page-7-6) Theorem 3.10], [\[Cas80,](#page-7-7) Proposition 3.5]). The representation $I(\chi)$ is irreducible if and only if $c_w(\chi) \neq 0$, $c_{w^{-1}}(w\chi) \neq 0$ for the $w \in W$ that takes Φ^+ to Φ^- .

${\rm \bf 6}$ ${\rm \bf 6}$

Let us spell this out in the case $G = GL_2$ where we take **B** to be the standard Borel subgroup, the group of upper triangular matrices, and T the diagonal matrices. Under the usual identification $X^*(T) \cong \mathbb{Z}^2$, corresponding to our choice of **B** we have $\Phi^+ = {\alpha}$ with $\alpha = e_1 - e_2$. Then $\alpha^{\vee} = e_1^{\vee} - e_2^{\vee}$. We may choose $a_{\alpha} = \begin{pmatrix} \varpi & 0 \\ 0 & \pi \end{pmatrix}$ 0 ϖ^{-1}). Let χ be a regular unramified character of $T = F^{\times} \oplus F^{\times}$. It is of the form $\chi_1 \otimes \chi_2$ with characters χ_1, χ_2 of F^{\times} . Then

$$
c_{\alpha}(\chi) = \frac{1 - q^{-1}(\chi_1 \chi_2^{-1})(\varpi)}{1 - (\chi_1 \chi_2^{-1})(\varpi)}.
$$

Let w denote the non-trivial element in the Weyl group. Then $c_w(\chi) = c_\alpha(\chi)$ is non-zero iff $\chi_1 \chi_2^{-1} \neq$ $|\cdot|^{-1}$. We have $w\chi = \chi_2 \otimes \chi_1$, and then similarly $c_{w^{-1}}(w\chi) \neq 0$ iff $\chi_1\chi_2^{-1} \neq |\cdot|$. Hence, we get that $I(\chi)$ is irreducible if and only if $\chi_1 \chi_2^{-1} \neq |\cdot|^{1}$. This result is also true without either of the assumptions that χ be unramified or regular, see [\[Bum97,](#page-7-8) Theorem 4.5.1].

4. Spherical Representations via Zonal Spherical Functions

Definition. A zonal spherical function is a smooth function $\omega : G \to \mathbb{C}$ satisfying

- (i) $\omega(kgk') = \omega(g)$ for $g \in G, k, k' \in K;$
- $(ii) \omega(1) = 1;$
- (iii) For every $f \in \mathcal{H}_K$ there is a constant $\lambda_f \in \mathbb{C}$ such that

$$
f * \omega = \omega * f = \lambda_f f.
$$

Given $\omega \in C^{\infty}(G)$, define the linear map $\xi : \mathcal{H}_K \to \mathbb{C}$ by

$$
\xi_{\omega}(f) = \int_G \omega(g) f(g) \, \mathrm{d} g
$$

Then condition (iii) above is equivalent to each of the following [\[Car79,](#page-7-6) p. 149]^{[3](#page-5-1)}

- (*iii'*) ξ_{ω} is an algebra homomorphism;
- (*iii''*) $\omega(g_1)\omega(g_2) = \int_K \omega(g_1kg_2) \,dk$ for all $g_1, g_2 \in G$.

If $\xi : \mathcal{H}_K \to \mathbb{C}$ is a linear map, then $\omega : G \to \mathbb{C}$ defined by

$$
\omega(g) = \frac{1}{\text{vol}(KgK)} \xi(\mathbb{1}_{KgK})
$$

satisfies (i) and (ii) above and we have $\xi = \xi_{\omega}$. If furthermore ξ is an algebra homomorphism, then ω is a zonal spherical function by the equivalence of (iii') and (iii) . Hence, if we denote by Ω the space of zonal spherical functions, we get an isomorphism

$$
\text{Hom}(\mathcal{H}(G,K),\mathbb{C}) \longrightarrow \Omega
$$

$$
\xi \longmapsto \left(\omega : g \mapsto \frac{1}{\text{vol}(KgK)}\xi(\mathbb{1}_{KgK})\right)
$$

$$
\xi_{\omega} \longleftarrow \omega
$$

³Warning: I call the zonal spherical functions ω as in [\[Sat63\]](#page-7-3), but [\[Car79\]](#page-7-6) denotes them by Γ and instead writes ω for what I call ξ (I think it would have been clearer if I adopted the notation in [\[Car79\]](#page-7-6)).

So by Theorem [5](#page-1-2) the spherical representations of G are in bijections with zonal spherical functions. We also know by Theorem [8](#page-2-3) they are in bijection with unramified characters of T modulo W . We make this explicit. Let χ be an unramified character of T. Then consider the spherical vector $\Phi_{K,\chi}$ in the principal series representation $I(\chi)$, defined by

$$
\Phi_{K,\chi}(tnk) = \chi(t)\delta^{1/2}(t)
$$

where $t \in T, n \in N, k \in K$. Then as in [\[Sat63,](#page-7-3) 5.11] and [\[Car79,](#page-7-6) p. 150] let

$$
\omega_{\chi}(g) = \int_{K} \Phi_{K,\chi}(kg) \, \mathrm{d}k.
$$

Using the notation from [2](#page-1-0) we have for $f \in \mathcal{H}_K$:

$$
\xi_{\chi}(f) = \int_{T} Sf(t)\chi(t) dt
$$

\n
$$
= \int_{T} \chi(t)\delta^{1/2}(t) \int_{N} f(tn) dt dn
$$

\n
$$
= \int_{T} \int_{N} \Phi_{K,\chi}(tn) f(tn) dt dn
$$

\n
$$
= \int_{K} \int_{T} \int_{N} \Phi_{K,\chi}(tnk) f(tnk) dt dn dk
$$

\n
$$
= \int_{G} \Phi_{K,\chi}(g) f(g) dg
$$

\n
$$
= \int_{K} \int_{G} \Phi_{K,\chi}(g) f(k^{-1}g) dg dk
$$

\n
$$
= \int_{G} \omega_{\chi}(g) f(g) dg = \xi_{\omega_{\chi}}(f).
$$

Now Theorem [8](#page-2-3) translates to:

Theorem 16 ($[Car79, Theorem 4.2]$ $[Car79, Theorem 4.2]$). The zonal spherical functions on G are exactly the functions ω_χ for unramified characters χ of T. Two such functions $\omega_\chi, \omega_{\chi'}$ are equal if and only if $\chi' = \omega \chi$ for some $w \in W$.

Next we look at how this translates to the spherical representations. Let ω be a zonal spherical function on G. Consider $C^{\infty}(G)$ as a representation of G via right translation. Let $(V_{\omega}, \pi_{\omega})$ denote the subrepresentation of $C^{\infty}(G)$ generated by ω . In other words, elements of V_{ω} are C-linear combinations of functions of the form $g \mapsto \omega(gg')$ with $g' \in G$. Then property (iii'') (iii'') (iii'') implies $\omega(g_1)f(g_2) = \int_K f(g_1 k g_2) dk$ for $g_1, g_2 \in G$ and $f \in V_\omega$.

Theorem 17. The representation $(V_{\omega}, \pi_{\omega})$ is spherical.

Proof. V_ω is smooth since $C^\infty(G)$ is smooth. By definition we have $\omega \in V_\omega^K$. Using the functional equation $\omega(g_1)f(g_2) = \int_K f(g_1kg_2) \,dk$ it is easy to see that any non-zero subrepresentation of V_ω contains ω , hence is equal to V_{ω} . Therefore V_{ω} is irreducible. \square

${\bf \large \bf \color{black} LEONARD\boldsymbol{\color{black} TOMCZAK}}$

The spherical character of π_{ω} is of course given by ξ_{ω} , i.e. $\pi_{\omega}(f)\omega = \xi_{\omega}(f)\omega$ for $f \in \mathcal{H}_K$. Indeed, the left side is a multiple of ω , so it suffices to evaluate at 1 (recall $\omega(1) = 1$) and we get

$$
(\pi_{\omega}(f)\omega)(1) = \int_G f(g)\omega(g) \, dg = \xi_{\omega}(f).
$$

Since zonal spherical functions are in bijection with the characters of \mathcal{H}_K under $\omega \leftrightarrow \xi_\omega$, we deduce:

Theorem 18. If (V, π) is any spherical representation of G, there is a unique zonal spherical function ω such that $(V, \pi) \cong (V_{\omega}, \pi_{\omega}).$

5. Relation with the Principal Series

We now compare the two versions of the spherical representations constructed in [3](#page-3-0) and [4.](#page-5-0) Let χ be an unramified character of T. Then we have two representations attached to it, the principal series representation $I(\chi)$ (which may be reducible) and the irreducible representation V_ω where $\omega = \omega_\chi$. Suppose $I(\chi)$ is irreducible. Given $f \in I(\chi)$ define $Q(f) : G \to \mathbb{C}$ by

$$
Q(f)(g) = \int_K f(kg) \, \mathrm{d}k.
$$

By definition we have $Q(\Phi_{K,\chi}) = \omega$. Since we assumed $I(\chi)$ to be irreducible, it is generated by $\Phi_{K,\chi}$ as a G-representation, hence Q maps $I(\chi)$ into V_ω . It preserves the G-action and hence gives an isomorphism $I(\chi) \cong V_{\omega}$.

For general unramified χ we know that $J(\chi) \cong V_\omega$ since they both have to the same character:

$$
\xi_{J(\chi)}(f) = \int_T \mathcal{S}f(t)\chi(t) = \xi_\omega(f),
$$

see [\(](#page-6-0)†) and the discussion after Proposition [10.](#page-3-2)

REFERENCES

- [Bum97] D. Bump. Automorphic Forms and Representations. Vol. 55. Cambridge Studies in Advanced Mathematics. Cambridge, GBR: Cambridge University Press, 1997.
- [Car79] P. Cartier. "Representations of p-adic groups -A survey". In: Proc.Symp.Pure Math 33 (1979).
- [Cas80] W. Casselman. "The Unramified Principal Series of P-adic Groups. 1. The Spherical Function". In: Compositio mathematica 40.3 (1980).
- [CKD73] W. Casselman, W. Kuijk, and P. Deligne. "An Assortment of Results on Representations of GL2(k)". In: *Modular Functions of One Variable II*. Lecture Notes in Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1973.

[GH] J. Getz and H. Hahn. An Introduction to Automorphic Representations.

- [Gro98] B. H. Gross. "On the Satake isomorphism". In: Galois Representations in Arithmetic Algebraic Geometry (1998).
- [Sat63] I. Satake. "Theory of spherical functions on reductive algebraic groups over p-adic fields". In: Publications Mathématiques de l'IHÉS¹⁸ (1963).

Department of Mathematics, Evans Hall, University of California, Berkeley, CA 94720, USA

Email address: leonard.tomczak@berkeley.edu