
THE SPECTRAL THEOREM

LEONARD TOMCZAK

These are some notes for myself to remember some stuff around the proof of the spectral theorem.
Most of this can be found in [Arv02] or [Fol15, Chapter 1], both books I really like! Throughout, H
denotes a complex Hilbert space. If T is an operator on H, we denote by σ(T ) its spectrum, i.e. the
set of λ ∈ C such that T − λI is not invertible. It is considered as a measurable space equipped with
its Borel σ-algebra.

The spectral theorem comes in different forms:

Theorem (Spectral Theorem). Let T be a bounded normal operator in H. Then

(i) Unitary equivalence to a multiplication operator. T is unitarily equivalent to a multi-
plication operator in some L2 space. This means: There is a measure space (X,µ), a function
f ∈ L∞(X,µ), and a unitary isomorphism U : H → L2(X,µ) such that UT = MfU where
Mf : L2(X,µ) → L2(X,µ) is given by multiplication by f .

(ii) Borel Functional Calculus. There is a unique homomorphism Φ : L∞(σ(T ))1 → B(H) of ∗-
algebras such that Φ(h) = T where h : σ(T ) → C, z 7→ z, and satisfying the following condition:
If (fn)n ⊆ L∞(σ(T )) is a norm-bounded sequence converging pointwise to f ∈ L∞(σ(T )), then
Φ(fn) → Φ(f) in the strong operator topology.

(iii) Spectral Decomposition. There is a unique spectral projection-valued measure (see below)
P on σ(T ) such that T =

∫
σ(T )

λ dP (λ).

In (ii), Φ(f) will also be denoted by f(T ).

A projection-valued measure (or resolution of the identity) P on a measurable space (X,B) is a map
P : B → B(H) such that

(1) P (E) is an orthogonal projection for all E ∈ B;

(2) P (∅) = 0, P (X) = idH;

(3) P (E ∩ F ) = P (E)P (F ) for all E,F ∈ B;

(4) If E1, E2, · · · ∈ B is a sequence of pairwise disjoint sets, then s−
∑

n P (En) = P (
⋃

n En) where
the limit in the infinite sum on the left is taken with respect to the strong operator topology.

Let P be such a measure. Then for any x, y ∈ H, the association Px,y(E) = ⟨P (E)x, y⟩ with E ∈ B
defines a complex measure on (X,B). We denote by L∞(X,B, P ) to be set of essentially bounded
measurable functions on X modulo those that are 0 P -almost everywhere. Given such a measure we
can integrate bounded functions to get operators. More precisely, there is a unique isometric unital

1Here σ(T ) carries no measure, only the σ-algebra of Borel sets, so L∞(σ(T )) is the space of everywhere bounded
Borel measurable functions. It is a C∗-algebra.
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∗-homomorphism Φ : L∞(X,B, P ) → B(H) such that ⟨Φ(f)x, y⟩ =
∫
X
f dPx,y. We then denote Φ(f)

by
∫
X
f dP . This is relatively easy to show: Show everything for simple functions and then extend by

continuity.

In the finite-dimensional case, (i) corresponds to the fact that a normal matrix is unitarily similar
to a diagonal matrix, while (iii) corresponds to writing a normal matrix as a weighted sum of the
projections onto its eigenspaces.

Before going to the proof we sketch some relations between the different formulations:

“(i) ⇒ (ii)” We may assume that H = L2(X) and T = Mf for some function f . In this case the Borel
functional calculus can be written out explicitly via Φ(g) := Mg◦f . This is well-defined as
since ess ran f = σ(T ). Uniqueness on polynomial functions in z, z on σ(T ) is clear by the
requirement that the map be a ∗-homomorphism, and then the usual approximation argument
gives uniqueness on L∞(σ(T )).

“(ii) ⇒ (iii)” The spectral measure is given by P (E) = 1E for Borel sets E ⊆ σ(T ) where 1E is the indicator
function of E.

“(iii) ⇒ (ii)” Define Φ(f) by Φ(f) =
∫
σ(T )

f(λ) dP (λ). In fact, this defines Φ on the quotient L∞(σ(T ), P )

of L∞(σ(T )), and on L∞(σ(T ), P ) with the essential sup norm, Φ is isometric.

“(ii), (iii) ⇒ (i)” I don’t know if there is a direct way to do this direction without going over the proof of the
spectral theorem.

We now sketch the proof of this, making use of the basic theory of commutative C∗-algebras.

Let A be the unital C∗-algebra generated by T . Since T is normal, A is commutative. Denote by Â the
Gelfand spectrum of A, i.e. the space of (unital) algebra homomorphisms A → C with the w∗-topology.

The space of continuous functions on Â is denoted C(Â). There is a canonical map, the Gelfand map,

i : A → C(Â) given by i(x)(φ) = φ(x) for x ∈ A, φ ∈ Â. We shall deduce the spectral theorem from
the main result on commutative C∗-algebras, the little Gelfand-Naimark Theorem: The natural map

i : A → C(Â) is an isometric isomorphism of ∗-algebras. In fact, in view of Proposition 1 below this
already gives us part of (ii), namely the inverse map of i is the continuous functional calculus. Thus,
the statement of (ii) is that this extends to all Borel functions. This can be done somewhat directly by
proving a sort of dominated convergence theorem for strong convergence of operators, but we will go a
different route. Essentially the idea is that if we know how continuous functions act, we get measures
using the Riesz representation theorem, and once we have the measure, we can integrate more general
functions, like those in L∞. We will do this in the context of C∗-algebra representations.

For future reference we note the following proposition which follows from the general theory of com-
mutative Banach algebras that will allow us to relate T and A.

Proposition 1. The map Â → σ(T ), φ 7→ φ(T ) is a homeomorphism.

We now first discuss some aspects of C∗-algebra representations that we will need for the proof.

Let A be a unital C∗-algebra. A representation of A is a ∗-homomorphism A → B(H) for some
Hilbert space H. A homomorphism of C∗-algebras is automatically norm-decreasing, so we don’t need
to assume such homomorphisms to be bounded. In the case we are interested in, A is already given as
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a subalgebra of B(H) for some H, so we get a representation through the inclusion A ↪→ B(H), but it
will still be important to study other representations. How do we get representations of a general A?

Definition. Let π : A → B(H) be a representation of A. A vector ξ ∈ H is called cyclic for π if
π(A)ξ is dense in H. π is called cyclic if H contains a cyclic vector.

If π : A → B(H) is a representation, then π(A) is ∗-invariant, so if X ⊆ H is π(A)-invariant, then so is
X⊥. Using this a straightforward Zorn’s Lemma argument shows that any representation decomposes
as a direct sum of cyclic representations.

Let π : A → B(H) a cyclic representation of A with cyclic vector ξ. Define φξ : A → C by φξ(a) =
⟨π(a)ξ, ξ⟩2. This is a positive functional, meaning that φξ(a) ≥ 0 for all a ≥ 0 in A. Positive functionals
are automatically bounded, though in this case one can of course verify directly that φξ is bounded.
Thus, to any pair (π, ξ) of a cyclic representation π with cyclic vector ξ we can associate a positive
functional φξ. It turns out that this determines (π, ξ) uniquely up to unitary isomorphism.

Proposition 2. Let (H, π), (K, ρ) be two cyclic representations of A with cyclic vectors ξ, η respec-
tively. Assume that φξ = φη. Then there is a unitary isomorphism U : (H, π) → (K, ρ) of representa-
tions such that Uξ = η.

Proof. If a ∈ A, then

∥π(a)ξ∥2 = ⟨π(a)ξ, π(a)ξ⟩ = φξ(a
∗a) = φη(a

∗a) = ∥ρ(a)η∥2 .
From this it follows that we can define a map π(A)ξ → π(A)η by π(a)ξ 7→ π(a)η. It also shows this is
isometric, hence extends to give the desired unitary isomorphism. □

We won’t need this, but mention that conversely for every positive functional φ of A there is a cyclic
representation (π, ξ) of A with φξ = φ. This is called the Gelfand-Naimark-Segal (GNS) construction:

Proposition 3. Let φ be a positive linear functional on A. There is a cyclic representation (H, π) of
A with cyclic vector ξ such that φ = φξ.

Proof. For a, b ∈ A define ⟨a, b⟩φ := φ(b∗a). This is a pre-inner product on A, so if we let Nφ = {a ∈
A : ⟨a, a⟩φ = 0}, then Nφ is a left ideal of A, and ⟨−,−⟩φ descends to an inner product on A/Nφ. Let
H be the completion of A/Nφ with respect to this inner product. Since Nφ is a left ideal, A acts on
A/Nφ by left translations. Furthermore, this action is continuous, hence extends to an action π on H.
Let ξ be the image of 1 ∈ A in A/Nφ. Then ξ is a cyclic vector and φξ(a) = ⟨π(a)1, 1⟩φ = φ(a) for
a ∈ A. □

Now assume that A is commutative and let (H, π) be a cyclic representation with cyclic vector ξ. The

Gelfand map i : A → C(Â) is an isomorphism, so we may view φξ via i as a positive linear functional

on C(Â). By the Riesz representation theorem this determines a regular Borel measure µ on Â such
that ∫

Â
i(a) dµ = φξ(a)

for a ∈ A. Now consider K = L2(Â, µ). C(Â) acts on this via left multiplication and hence so does A.
The constant function 1 ∈ K is a cyclic vector and we have φ1(a) = ⟨i(a) ·1, 1⟩L2 =

∫
Â i(a) dµ = φξ(a).

2For us the inner product is linear in the first and anti-linear in the second argument.
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Therefore, Proposition 2 gives a unitary isomorphism U : H → L2(Â, µ) such that Uξ = 1 and
Uπ(a)v = i(a) · Uv for v ∈ H, a ∈ A.

We can now prove the spectral theorem. Let T be a normal operator in H and A the unital C∗-
algebra generated by T . We have already noted that A is commutative. Let π : A ↪→ B(H) be the

inclusion. Assume first that π is cyclic. By the above there is a regular Borel measure µ on X := Â
and an isometric isomorphism U : H → L2(X,µ) of representations where A acts on L2(X,µ) via i by
leftmultiplication.. Then by the definitions and since U is an intertwining operator, we have

UTv = i(T ) · Uv

for v ∈ Hj , so UT = Mi(T )U . Then ∥i(T )∥L∞(X,µ) ≤ ∥i(T )∥∞ = ∥T∥ = ∥Mi(T )∥.3 This proves part (i)

of the spectral theorem in the case whenH is cyclic for T (i.e. for the C∗-algebra generated by T ). To get
the general case, decompose H =

⊕
j∈J Hj into a Hilbert space direct sum of cyclic subrepresentations

of A. Then for each Hj we can find a measure space (Xj , µj), a function fj ∈ L∞(Xj , µj) and a
unitary isomorphism Uj : Hj → L2(Xj , µj) such that UjT |Hj→Hj = MfjUj . Now take (X,µ) to be
the disjoint union of all these measure spaces. Since this may be an uncountable union, we briefly
note the construction to avoid misunderstanding. The underlying set X is simply the disjoint union
of all the Xj . A subset A ⊆ X is measurable if A∩Xj is measurable in Xj for all j. For a measurable
A ⊆ X we define µ(A) :=

∑
j∈J µj(A∩Xj). Then we have L2(X,µ) =

⊕
j∈J L2(Xj , µj) for 1 ≤ p ≤ ∞

via g 7→ (g|Xj
)j∈J . Let f : X → C be defined by f(x) = fj(x) if x ∈ Xj . Since ∥fj∥L∞(Xj ,µj) =

∥T |Hj→Hj
∥ ≤ ∥T∥, we have f ∈ L∞(X,µ). Finally, let U =

⊕
j∈J Uj : H =

⊕
j Hj → L2(X,µ). Then

we have UT = MfU since this holds on every Hj , and part (i) of the spectral theorem is proven.

We have already indicated after the statement of the theorem how parts (ii) and (iii) can be deduced
from the first.

It seems we never needed Proposition 1, I thought we would... So everything would go through
if we replace A with an arbitrary unital commutative C∗-subalgebra of B(H). If we would like to
describe the Borel functional calculus directly in terms of the above construction, then we would need
Proposition 1 (like we already mentioned at the beginning how the inverse of the Gelfand map is the
continuous functional calculus).

Remarks.

• The proof shows that if H is separable, then the measure space (X,µ) in (i) can be chosen to
be σ-finite. Using additional arguments one can show that (X,µ) can even chosen to be finite.

• The proof shows the following operator algebra version of part (i): Any commutative C∗-
subalgebra A of B(H) is equivalent to a subalgebra of L∞(X,µ) ⊆ B(L2(X,µ)) for some
measure space (X,µ). If A is maximal abelian, then it is unitarily equivalent to L∞(X,µ)
(because this is maximal abelian as it a von Neumann algebra admitting a cyclic vector).

• The image of the continuous functional calculus in B(H) is A, the unital C∗-algebra generated
by T . The image of the Borel functional calculus is contained in the von Neumann algebra
generated by T , i.e. the closure of A in the weak operator topology or equivalently the double
commutant A′′. If H is separable, this is an equality.

3Actually the first inequality is also an equality, since clearly ∥Mi(T )∥ ≤ ∥i(T )∥L∞(X,µ) (this is also an equality for

general f ∈ L∞(X,µ)).



REFERENCES 5

• For any non-empty open subset U ⊆ σ(T ), P (U) ̸= 0.

• For z ∈ σ(T ), P ({z}) is the orthogonal projection onto ker(T − z), so in particular P ({z}) ̸= 0
iff z is an eigenvalue of T .

• If S ∈ B(H), then S commutes with T iff S commutes with all P (E), E ∈ B(σ(T )), iff S
commutes with all f(T ), f ∈ L∞(σ(T )).
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