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4 LEONARD TOMCZAK

Some notes for Qualifying exam preparation. Mainly GLs stuff (automorphic forms/representations,
local representations), and also some Algebraic Number theory, and GL; theory. Unfortunately, the
notation is not consistent throughout (sometimes not even whithin a a single section), since I wrote
different parts at different times, and used many different sources, etc.

Part 1. GL; Theory (Tate’s Thesis and More)

1. LocAL THEORY

1.1. Haar Measures

Let F be a local field (which we allow to be archimedean in this section).

The absolute value |-| on F' is defined by the property d(ax) = |a| dz where dz is a fixed Haar measure
on F'. We have:

e || is the usual absolute value if F =R,
e || is the square of the usual absolute value if F' = C,

e |2| = ¢ @ if F is nonarchimedean, where ¢ is the cardinality of the residue field and v(z) is
the valuation of x.

Fix a non-trival additive character ¢ : F — C*.

Definition. For “nice” functions f : F' — C, define their Fourier transform f: F—C by

fle) = /F F(@)(at) de.

For example, f could be in the Bruhat Schwartz space S(F'), which is the usual Schwartz space if
F=TRor F=C=R? and the space C>*(F) of compactly supported locally constant functions for
nonarchimedean F'.

The association a — 1, gives a topological isomorphism F — F , where ¥, (z) = ¥(ax). Therefore
the above definition of the Fourier transform coincides with the one from general abstract harmonic
analysis. We let dz denote the self-dual measure on F with respect to this identification, in other
words for nice functions f, we have

f(x) = /F Fl&)(—at) de.

Here “nice” could mean that f, fe L'(F). We note that an easy computation shows that the self-dual
measure for 1, is |a\1/2 dz.

We introduce an explicit choice of ¢ (which we will call the standard character) and give the corre-
sponding self-dual measures. Let K be the closure of Q in . We first define a map A : K — R/Z.
If K =R, then A(z) = —x mod 1. If K = Q,, then we let A\ be the composition Q, — Q,/Z, =
Z[1/pl/Z — Q/Z — R/Z Then we define ¢ (x) = 2™MTrr/x2) for x € F.

1)\(x) for © € Qp can be characterized as follows: It is the unique rational number z with the property that z has
only a p power in the denominator, and z — x € Zp.
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Proposition 1.1. For this particular choice of character the self-dual measure dx is given as
follows:

e usual Lebesque measure if FF =R,
o twice the Lebesgue measure if F' = C,

e the Haar measure that gives Op the measure No—z if F' nonarchimedean. Here 0 is the
absolute different of F.

If ¢ has conductor p®, then O has measure 1.
We normalize the multiplicative Haar measure on F'* as follows:

o &z = % if F' is archimedean,

o d*r = %‘% if F' is nonarchimedean and ¢ the cardinality of the residue field.

We note that in the nonarchimedean case the volume of O with respect to this choice of multiplicative
Haar measure is N0~ 2. In particular if F//Q, is unramified, the volume of O is 1.

We will also need multiplicative characters. Let U be the subgroup of F' consisting of the elements z
with |z] = 1. x is called unramified if y is trivial on U, otherwise it is ramified. There is a surjective
map F* HUgivenbyzHEwhere%:‘;—lifF:R,iz ¢_ if F =C, and T = z/w"® if F is

Vizl

nonarchimedean for some fixed choice of uniformizer w. This map splits:

o [~ U x Ryg if F is archimedean,
o =2 U x Z if F is nonarchimedean.

An unramified character  is of the form x(x) = |z|® for some s € C. s is uniquely determined if F'
is archimedean, if F' is nonarchimedean, s is only uniquely determined mod 27i/logq. Let x be any
quasi-character of F'*, i.e. a continuous homomorphism F* — C*. From the above we see, that x
can be written as x(z) = xo(Z) |z|” where Yo is a character of U and s € C. Note that in this way we
get a complex coordinate s on the set of quasi-characters of F'*, hence we can speak of holomorphic
or meromorphic functions on the set of quasi-characters.

We have |x(z)| = |2|°®, and we call ¢ = Re s the ezponent of y.
1.2. Zeta Functions
We consider the class 3 of functions f: F' — C on F'

(1) f and f are in LY(F,dx),

(2) f|-|” and f|-| are in L}(F*,d*z) for ¢ > 0.

A function f : F — C is Bruhat-Schwartz if f is a Schwartz function in the ordinary sense for F
archimedean, and f is compactly supported locally constant if F' is nonarchimedean. We denote the
space of Bruhat Schwarz functions on F' by S(F). Note that S(F) C 3.

We define the local Zeta functions as Mellin transforms of functions in 3:
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Definition. For f € 3 and x a quasi-character of F'* we define

Z(f,x) = - f@)x(z)d .

We might also write
2(foxs) = [ S ol
F><
Note that Z(f, x,s) = Z(f, x|-|?), so this doesn’t give us anything new, it is just notational convenience.

It is easy to see that the integral defining Z(f, x) converges absolutely if the exponent of x is > 0 and
defines a holomorphic function of x there.
—1 |.|175

Given a quasi-character x of F* we let Y = |-| x~!. Note that x |-|* = x . If o is the exponent

of x, then the exponent of ¥ is 1 — .

Lemma 1.2 (|Tat67a Lemma 2.4.2)). Let x be a quasi-character with exponent 0 < o < 1. Then
for f,g € 3, we have

~

Z(f,x)2(9,X) = Z(f,X)Z(9, x)-
Proof. Write all the integrals out and do a change of variables, pretty straightforward computation. [

Theorem 1.3 ([Tat67al Theorem 2.4.1], [Bum97, Proposition 3.1.5]). Fiz f € 3. Then Z(f,x)
has an meromorphic continuation to all quasi-characters x and satifies a functional equation
Z(f,%) =106 ¥)2(f,x) (%)

where v does not depend on f, but on x and the choice of additive character ¢ defining the self-dual
measure.

As usual we write v(x, s,%) = v(x||7,%). If ¥ is fixed we also write v(x) = v(x,v). Note that
v(x,%) = x(=1)p(x,®¥)~! in the notation of [Tat67a], the factor y(—1) coming from the different
definition of the Fourier transform (in Tate it is [ f(z)y(—z€)dz.)

(f

If ¢ gets replaced by 1), then Z(J?, X) becomes x(a)Z(f,Xx) and Z(f, x) becomes \a|1/2 Z(f,x), hence

(% %a) = x(a) lal "2 v (x, ).

Proof of Theorem[I.3 Let o denote the exponent of x. Choose a function f such that Z(f,x) is not
identically 0. Then let v(x, 1) be the quotient

Z(f,X)
Z(f,x)

By the lemma above we then have Z (g, X) = v(x,%¥)Z(g, x) for all g € 3. Tt is defined in 0 < o < 1.
There are different ways to continue and show that v admits a meromorphic continuation to all quasi-
characters.
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e Proof in . The point is to explicitly exhibit for each y a function f such that Z(f,x)
is not identically 0 and compute y(x) in this case. The explicit computation will show that
~(x) is meromorphic in all y, since Z (f, X) is defined for all y is defined for all x of exponent
< 1, the functional equation then extens Z(f, x) to all x.

e Proof in [Bum97]. TODO
O

Proposition 1.4 ([Bum97, Exercise 3.1.9]). Assume F is nonarchimedean. If the exponent of x
is < 1, and N is sufficiently large, then

Proof. For convenience we consider v(x, s,4) with x unitary and Res < 1. We need to compute
Z((/£7 X_17 1- S)
Y8 ¢) = ——F
Z(®,x,s)
Note that both integrals on the right converge, the numerator by Res < 1 and the denominator by
the next calculation. By definition,

2@ = [

[ sex@pr e [ @ae

1+pN

Since x is continuous, x|i4,~ is trivial for N large enough, hence for such N we have Z(®, x,s) =
Sy e =1—q¢ ) [ ydr=(1-¢ )" volg, (p?). For the other integral, let m denote the
conductor of ¥. Then we have

#) = [ Sy o = [

1+pN

#a)dr = 9) |6 dr = 90) vl (p) Ly ).

2@, 11— ) = / B(r)x M) 2]~ d¥x
FX

volga(5™) / o[ (@) ()
pm—N—{0}

= volg, (p™) (1 —qil)*l/ lz| ™% xH(2)y(x) da.

pm—N—{0}
We can also include 0 as it is of measure 0, so

o
V(s x9) = W - /pmN 2" x (@) () dar

Note for this calculation it was not important that dx is self-dual. I believe Bump only mentions this
because it was assumed in the definition of ~7 g

Proposition 1.5. Some properties of the local gamma factor:
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('Z) 7(X7 S7¢)7(X_17 1- S7w) = X(_l)
(2) 1(x3,%a) = x(a) |al" ™" 1(x, 5,9).
(3) v(x,¥)| =1 if x has exponent .

Proof.

(1) A B2 x) = AT W Z(FX) = Z(7, %), Now note that J (x) = f(~) and ¥ = x.

(2) If ¢ gets replaced by 1), then Z(]/C\, X) becomes X(G)Z(f’ X) and Z(f, x) becomes |UL|1/2 Z(f:x),
hence (x, ¥a) = X(a) |a| /> 4(x, ).

O

The real and complex Gamma functions are as follows:
s

Pa(s) = /20 (3

) . Tc(s) = Dr(s)Tr(s + 1) = 2(2m)~*T(s)

Definition. We define L-functions as follows.
o If F =R and x(z) = sgn(x)® |z|°, then

L(x) = Tr(s +¢) = 7 C+9/21 <§) |

L(x) has poles at the even (resp. odd) nonpositive integers for e =0 (resp. € = 1).

o If F=C and x(z) = (ﬁ)" |z|®, then

20 = Tels-+ ) = 2emy -t (s ).

L(x) has poles at s =1 — % for monpositive integers l.

e If F' is nonarchimedean and x is unramified, then

L(x) = (1 —x(@)™
where w is a uniformizer of F. If x is ramified, then we set L(x) = 1.

We also set L(x,s) = L(x|-]?). In every case L(,s) is a meromorphic function without zeros.

Theorem 1.6 ([Bum97] Proposition 3.1.8]). For any f € S(F), the quotient

Z(f,x)

L(x)
defines an analytic function in x. Moreover for fivred x, L(x,s) has a pole at s = so if and
only if Z(f,x,s) has a pole there for some f € S(F). For any x there is f € S(F) such that
Z(f,ch,s) = L(x, s) for all s. If F is nonarchimedean, then Z(f,x,s) is a rational function in

q~° (for fized x).
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Thus, in some way L(x, s) is a greatest common denominator of the Z(f, x, s) for f € S(F). [Bum97]
only says that there is f € S(F') such that % is of exponential type (i.e. of the form ab® with

constants a € C*,b € R), but it seems we can actually make this 1.

Proof. First suppose that F' is nonarchimedean. Then
209 = [ flapnia) ol @

= Z f(@™u)x(w"u) |w"ul® du
nez JueU

=3 x(=@")g /U F (™ u)x ()

Since f has compact support, there is ng € Z such that f(w"u) = 0 for all u € U,n < ng. Also f is
constant in a neighboorhood of 0, so there is n; > ng such that f(w"u) = f(0) for all u € U,n > n;.
So

n1
209 = Y a0 [ e ondu s 3 @ 0) [ .
n= no n>ni U
The first summand is certainly an entire function in y and moreover easily seen to be rational in ¢—*.
In the second summand note that fU x(u)d*z is 0 if x is ramified and volgx, (U) if x is unramified.

This shows that % = L(f, x) is entire if x is ramified. Suppose x is unramified, then the second
term is

S 0@ 0) [ x(wdu = 3 x(@")a " (0) vl (0)

—s\ni1+1 1
= £(0) volgxy (U) (x (w)g~ %)™ * T x(@)g
= £(0) volgey (U) (x(@)g~*)" T L(x;, 5).

We see that this second term is also a rational function in ¢~° and moreover, ZL({ : )) is entire.

Examining the calculation shows that taking

) volge (U)o, if x is unramified
| volgxe (U)"1x My if y is ramified

gives Z(f,x,s) = L(x, s).

Now suppose F' is archimedean. For that use m Proposition 3.1.7] and the explicit description
of the poles of L(x,s) above, though note that in the assumption of that Proposition, we can only
assume that ) . a(v)z” is an asymptotic expansion of f near 0, not that it converges to f. In the
complex case one also needs to work slightly more.

We now give explicit functions f such that Z(f,x) = L(x). First suppose F' is real. Write x(z) =
sgn(x) |z|® with e € {0,1}. Take
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Then

Z(f,x) =m" T <S;E> = L(x).

If F is complex, write y(z) = (—)" |z|°. Take

Vx|
£( {;zmez’” if n >0,
Z) =

%z'"‘e_%‘z‘ ifn<O0.

(Recall |z| is the square of the usual absolute value on C.) Then

Z(f.x) = 2(2m) "+ ET ('Z') = L(x)-

We also introduce the e-factors.

Definition. For any multiplicative quasi-character we define

1) = v(x;/;))g(x) .

And as usual we set €(x,s,¥) = e(x||°,%). So the epsilon factors measure how far L(x) is from
satisfying the functional equation Note from the corresponding fact for v, we have e(x,v,) =

x(a) |a|_1/2 e(x, w) Also note that if f € S(F) is such that Z(f,x) = L(x), then
2(f,%)
L(X)

Here is the most important information summarized, for the standard character :

e(x, ) =

F X L-factor | f € S(F') such that Z(f,x) = L(x) v(x, ) e(x, )

R (sgnz)® |x|* Ig(s) afe T i€ EEB i€

c | (&)1 | Tets+ ) {: e il 262 in
nonarch. -I° —— Noile, Noi—s L8 Noi—s
nonarch. | o mied, |1 Notx NN polxo) " | 700 1)

TABLE 1. Local data

2In some sources (e.g. or [RV99]), the e-factors are denoted to be dependent of the additive measure dz, but
for us we only consider the Haar measure that is self-dual with respect to v, so it is determined by .
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Here,

_1 €
po(Xxo) = Nf 2 Z Xo(e)¥ (m) .
c€0L/(1+)

where we write x = xo ||* with xo(zw) = 1, and f is the conductor of xg. Also in the row with F' = C,
when we write |n|, we mean the usual absolute value, so |n| = £n.

Proposition 1.7 ([Bum97 Proposition 3.1.9]).
(1) E(X7 S, w)S(X_lv 1- S, ¢) = X(_l)

(2) e(x, 5,%a) = X(a) |al* "2 e(x, 5, ).

(3) For fized x, €(x,s,v) is a function of exponential type, i.e. of the form ab® with a €
C*,beR.

(4) If F is nonarchimedean, x unramified and the conductor of ¥ is O, then (x, s,¥) = 1.
(5) If F is nonarchimedean and x is ramified, then £(x, s,%) = v(x, s, ¥).

Proof.

(1) Follows from Proposition
(2) Follows from Proposition
3)

(4) From the table.

(5)

5) In this case both L-factors in the definition of the e-factor are 1.

1.3. Viewpoint of Invariant Distributions
TODO (reference: [Kud04])

2. BACKGROUND ON ADELES

We fix some notation. F' is a number field, and A (resp. A*) the ring of adeles (resp. group of ideles)
of F. S, denotes the set of infinite places of F. For a finite set S of places of F', containing S, we

let
As =[] Fo x [] O
veS vgS
A =TI Fx = [T o,
veS vgS
AS=AnN H F,={(zy) € H F, |z, € O, for almost all v},
vgS vgS

AXS = AX N H F={(z,) € H F) |z, € OF for almost all v},
vgS vgS
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0% =] 0.,

vgS
OS=FNO°={zecF|zecO,forallvg¢s}

We also set A = AS~ and
Fo= [ Fo=FeqR,

VES

so that A = F x Ag.
Recall that F sists discretely inside A. If we drop just one of the places, the following happens:

Theorem 2.1 (Strong Approximation Theorem, § 15 Theorem)|). Let vy be any place of
F. Let V = Hv;ﬁvo (Fy, Oy) be the restricted direct product over all places except vy. Then the
image of the diagonal map F' — V is dense.

Explicitly, this means: Let places vi,...,v, and x1 € F,,,...,x, € F,,, be given. For any e > 0
there exists x € F such that |x — xi|vi <efori=1,....n, and x € O, for all v # vy, v1,...,0,.

For comparison the weak approzimation theorem says that the image of Fin [], .4 F, is dense for any
finite set S of places. In the following will ever only need the weak version (I think).

Lemma 2.2 (Adelic Minkowski Lattice Theorem). There is a constant ¢ > 0 such that for any
a € A* with |a| > ¢, there exists x € F* such that |z|, < |a,|, for all v.

Proof. The same proof as the usual Minkowski lattice point theorem works, using A/F has finite
volume and the measure-theoretic pigeonhole principle. O

Proof of Theorem[2.1} Let places v1,...,v, and 21 € F,,,...,z, € F,, be given. Let ¢ > 0. There
are 0, > 0 such that ¢, = 1 for almost all v and the set X = {z € A | |z,|, < J, Vv} surjects onto
A/F. Tt follows from Lemma that there exists A € F* such that ||, < 0, e foralli=1,...,n
and |\, < 5,1 for all v # vg,...,v,. Let y be any adele with y,, = x; for i = 1,...,n, and integral
components elsewhere. Then since X surjects onto A/F there exists z € F such that A=ty = a + 2
where a € X. Then y = Aa + Az. Let = Az. This works because |(Aa),|, < 1 for v # vo, ..., v, and
[(Aa)y| < € for v=wy,...,0,. O

The absolute value |z| of x € A is |z| = [], |2o,, it is trivial on F* by the product formula. We
denote the subgroup of A* consisting of the elements  with |z| = 1 by A*1. The idele class group of
Fis C =Cp = A*/F* and we denote C! = A1 /F*.

Let I be the set of nonzero fractional ideals of F, and P the subgroup of fractional principal ideals,
so that /P = Clp is the ideal class group of F. There is a surjective map Id : A* — I given by
U(Iv)

Id(z,) = va Po where p, is the prime ideal of F' corresponding to v. The kernel of this map is
Ag_, so we get an isomorphism A*/(F*Ag ) = Clp.

Theorem 2.3. C! is compact.
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This implies that A§71 / (Ag’l N F*) is compact as this embeds as an open and closed subgroup of
AX1/FX. Also note that A3 N F* = (05)*.

We show how to deduce the unit theorem and the finiteness of the class number from this. The class
number is easy: A*'! maps continuously onto Cl (where Cl has the discrete topology) via Id, and we
get a surjective continuous map C' — CI, hence Cl is compact and discrete, so finite. For the unit
theorem, we consider the usual logarithmic map. Let S O S, be a finite set of places. Consider the
map

1:A} — RS

(zy)y — (log \m,u\v)ves.

Then Ag’l := A% N A*! maps surjectively onto the trace 0 hyperplane H consisting of elements
(20)ves € R satisfying the equation
Z 2y = 0.

The image of 1((O0%)*) is a discrete subgroup of H (this is not difficult to see). It is easy to see that
ker N (O%)* is the group of roots of unity, so it suffices to show that I((0%)*) is a lattice of full rank
(#S — 1) in H. By the theorem (O%)* is cocompact in A}, hence I((O%)*) is cocompact in H,
which implies that [((O%)*) is a lattice of full rank in H. We get (O%)* = Z#5~1 x u(F).

More succinctly, the equivalence of Theorem [2.3] and the combination of finiteness of class group and
unit theorem, is expressed in the exact sequence

0— ALY/OF — A/ F* — Clp — 0.

Direct proof of Theorem (from ). Let X C A be compact with measure larger than the
one of A/F (i.e. 1 in our case). For a € A*! aX has the same measure as X, hence there are
x1 # xa € X such that axy,ars have the same image in A/F, i.e. there is a € F* such that
a=alr; —x2) € a(X — X) N FX. Similarly there is b € a=}(X — X) N F*. We have

ab = (aa"Y)(ba) € (X — X)2 N F*.

Let Z = (X — X)?NF*. (X — X)? is compact in A, and F* is discrete in A, hence Z is finite. For
z € Z,let Y, C A* be the subset

Y, = {8 € A* |6€X7X,5’1Ez’l(XfX)}:i’l((XfX)xz’l(XfX))

Here i is the map i : AX — A x A, given by i(z) = (z,27!). i is a homoemorphism onto its image, and
the image is closed in A x A. In particular Y, is a compact set in A*. Hence, the finite union (J,., Y-
is compact. We show that it surjects onto A*'1/F* finishing the proof. Let 8 € Al Let a = 871
As in the beginning there are a,b € F* such that aa ™' € X — X and ba € X — X. Let z = ab € Z.
Then a8 € X — X and (aB) "' =bz ta € 271 (X — X), hence a3 € Y., as desired. d

2.1. Adelic Realization of Ray Class Groups

Let m be a cycle of F, i.e. a formal finite product of places of F', where each place v occurs with finite
nonnegative multipicity m(v). Real primes occur with multiplicity at most 1, while complex primes

have multiplcity 0. If a = (a,), € A%, we write a = 1 mod m if a, € 1 + an(U)OU for nonarchimedean
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v | m and a, > 0 for v | m real. The subgroup of ideles = 1 mod m is denoted AX. Let F, = FNAJ.
We denote by S(m) the set of places v of F' such that m(v) > 0.

Some more notation. For v | m we let Wi (v) be the preimage of Af in I, so that AZ = [, Wim(v) x

A3 Wor v f m we let Wiy (v) = OF (which we define to be FX for archimedean v). We also define
the subgroup W C Ag by Wi = [, W (v) X [y O2F = [Lany Wi (0).

By the approximation theorem the map A}y — A*/F* is surjective, hence C = AX/F* = AX /F,,.

For a finite set S of primes let I° be the subgroup of fractional ideals that have no prime divisor in
S. If m is a cycle we define the subgroup Py, of I°(™) as the image of K, under Id, i.e. it is the set of
principal ideals that have a generator in K.

The quotient Cly, := IS(‘“)/Pm is called the ray class group of F' modulo m.

The map Id : AX — T restricts to a surjective map AX — I*(™) with kernel Wy,. The preimage of Py,
under this map is Fi, Wy, hence we get an isomorphism

AWy 2 AL JFy Wy 2 T5™ /P = Cl,, .
2.2. Admissible Maps

Let S be a finite set of places of F' containing Ss.. We define the map Id° : AX — I° by Ids(a) =
vaspﬁ(a“), so basically Id(a) without the primes in S. Let G be a commutative topological group.
A homomorphism ¢ : I° — G is called admissible if for every neighborhood N of 1 in G there is € > 0
such that ¢(Id° a) € N whenever a € F* is such that |a — 1, <eforallves.

Proposition 2.4 ([Tat67b| Proposition 4.1]). Assume in addition to the above that G is complete.
Let ¢ : I° — G be an admissible map. There is a unique homomorphism ¢ : AX — G such that

(1) v is continuous,
(it) v is trivial on F*,
(i) Y(a) = ¢(Id° @) for all a € A5,

Conversely, suppose v : A* — G is a continuous homomorphism that is trivial on F*. If G has
no small subgroups, then there is a finite set S O So of places and an admissible map ¢ : [° — G
such that v is the map associated to ¢ as above.

Proof. Conditions (ii) and (#i4) define ¥ uniquely on F'* AX-%. By the approximation theorem F*A*>S
is dense in A*. Using the admissibility of ¢ and the completeness of G we can extend v to a continuous
homomorphism on all of A*. Uniqueness is clear.

For the converse, let 9 : A* — G be a continuous homomorphism that is trivial on F'*, and assume
G has no small subgroups. Let IV be a neighborhood of 1 in G such that N contains no nontrivial
subgroups (this is the no small subgroups hypothesis). Then for S O S, large enough we have
Y(U¥) € N, where U = [L¢s O, since ¢ is continuous. As U?, and hence 1 (U%), is a subgroup,
we have (U®) = {1}. Then ¢ descends to a map A*°/U — G. We know that A*%/U® is
isomorphic to I° via Id*, hence we get a map ¢ : IS — G satisfying ¢(Id° a) = ¥(a) for all a € AXS.
To show that ¢ is admissible, let N’ be a neighborhood of 1 in G. Suppose ¢ > 0 and a € F*
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is such that [a — 1|, < e for v € 5. Write a = aga® with ag € [[,cq F and a® € A*S. Then
©(1d° a) = p(1d° a®) = ¥ (a®) = (as) "Y(a) = P(ag)~'. Since ¢ is continuous, ¢ (ag)~! € N’ for e
small enough (independently of a). O

Note as an important special case take G discrete. Then ¢ : I° — G is admissible if and only if
¢ factors through I°/P,, for some cycle m with S(m) = S. In this case the map v is given by the
composition

A = AXJF* 2 AXJFy — AYJFaWa 215 /Py — G.
3. GLOBAL THEORY

Let F be a number field. A place of F' is usually denoted v and the corresponding completion F,.
A quasi-character on A* will always be assumed to be trivial on F'*.
3.1. Haar Measures

Fix a nontrivial character ¥ of A that is trivial on F'. Via the inclusion F,, < A, we get in this way a
nontriviaﬂ character 1, on F, for each place v of F. Then for = (z,), € A we have ¢, (z,) =1 for
almost all v, and ¢ = Q), ¥y.

It is a fact that A — 1&, a +— 1, where ¥,(x) = ¥(ax) is an isomorphism. Under this isomorphism we
have A/F = F+ = F, ie. 1, is trivial on F if and only if a € F

For each place v we get a self-dual Haar measure dz, on F, with respect to ¢,. We can then define
a self-dual Haar measure dz on A by the formula do = &), dz,. Note that as in the local case the
self-dual measure for 1, is |a|1/ >dz. Since |a| = 1 for a € F*, we sec that the self-dual measure is
indepedendent of the choice of ¥ as long as v is trivial on F'.

If for every place v of F' we choose the standard character ¢, as in Section [I.I} then it is easy to
check that 1) = &), 1., defines a non-trivial character on A that is trivial on F'. We again call this the
standard character.

Suppose F' is given the counting measure. Then we get an induced Haar measure on the compact
quotient A/F such that
Lor

for f € C.(A). Note that with this definition if X C A is such that the map X — A/F is injective
then the measure of X in A is the same as that in A/F.

Zf(ﬁJrac)d(erF):/Af(z)dx

£eF

3That this character is nontrivial seems somewhat nontrivial (...) to me. One way to see this is as follows: Let ¢,
be the standard character on Fy and ¢ = ®v (. For this character we know that every character of A is of the form
pa(z) = p(az) with a € A (because ¢, is nontrivial for all v), and ¢q is trivial on F iff a € F. Hence ¢ = ¢, for some
a € F and a # 0 as @ is nontrivial, then 1, is nontrivial for all v.

4Note this part is different from the analogous situation R,Z. If ¢ is a non-trivial character of R trivial on Z, then
under the identification R = R induced by v, Z+ may be strictly larger than Z. The reason is that F is an infinite field,
so it cannot be a finite index proper subgroup of F+ (which is also a field), while Z can be.
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Proposition 3.1. A/F has measure 1.

Proof. There are several ways of doing this. Here we give an explicit computation using a fundamental
domain, but later in Proposition we will see it also follows from the Poisson summation formula.
Basically the point is roughly that the dual measure of a group is compatible with quotients and the
dual measure of a discrete group gives the compact dual group the measure 1.

We noted above that the Haar measure on A is independent of the choice of ¥ (under the restriction
that v be trivial on F'), so we might as well choose the standard character.

To compute the volume of A/F we find a fundamental domain of F' in A. This is accomplished as
follows. Suppose wy,...,w, is a basis for the ring of integers O over Z. Let D, C Fow = F @ R be
the (half-open) parallelotope spanned by the w;. Then it is easy to see that D := Dy, X @F, where
Op = HDJ[OO Op, is a fundamental domain for F in A. Thus the measure of A/F is

/dx:/ dxoo/ dz>.
D Deo Or

(@]

vtoo Fu vtoo

We have

/ dz> =
Or

where d is the absolute discriminant of F. The computation of the volume fo D, is very classical
from Minkowski theory. We briefly recall the argument. We identify Fo, = R™ x C™. Let ng),
§j+r2) = wl(j) for my < j <71+ 712 In R” the
volume of D, would be |det A| where A is the matrix with columns (wi(j))i:l’wn for1 <j<n
and columns (Rewi(j))i:l,__.’n, (Imng))i:lwm, for j =ry+1,...,r1 +ro. Note however that in our
case we take on the complex factors twice the usual Lebesgue measure, hence the volume of D, is
2" |det A|. By elementary column operations we see that |det A| = 2_r2|det(w§j))i)j| =272, /]d|,
hence the result. O

j = 1,...,n be the conjugates of w; such that w

3.2. Poisson Summation Formula

Definition. For “nice” functions f : A — C define the Fourier transform by

fle) = /A F(@)w(Ex)dz.

Proposition 3.2 (Poisson Summation Formula). Let f € C(A)NLY(A) such that deer f(@+E)

~

is locally uniformly convergent and Z&F |f(&)| < o0. Then

PIOEDINIS

ner {er

Proof. The proof is the usual one, the point is to consider the F-periodic function p(z) = Z&F f(z+¢&)
and compute its Fourier series. If we had not computed the volume of A/F earlier to be 1, this
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computation would only give

vol(A/F) Y (&)=Y fn)

EEF ner
and then iteration of this formula using }A\(f ) = f(=£) (for suitable functions) would give vol(A/F)? =
1, hence vol(A/F) = 1. So we get the promised second proof of vol(4/F) = 1. O

Corollary 3.3. Let f € C(A)NLY(A) such that > cer fla(z+E)) converges for alla € A*,x € A,

~

locally uniformly in x, and 3¢ p [f(a€)| < oo for all a € A*. Then

> fan) = o 3 fiefa)

ner EEF
fora e AX.

3.3. Zeta Functions

We consider a class 3 of functions f : A — C satisfying
(1) f and f are continuous,

~

(2) Yeer flalz +§)) and 3 . p fla(z + €)) are convergent for each o € A and z € A. The
convergence is assumed to be locally uniform in x and a.

(3) f(a)|e|” and f(a)|a|” are in L*(AX) for all ¢ > 1

A Bruhat Schwartz function is a finite linear combination of functions of the form ), f, with f, €
S(Fy) and f, = 1o, for almost all v. In other words, the Bruhat Schwartz space S(A) is the restricted
tensor product of the local Bruhat Schwartz spaces S(F,).

‘ Proposition 3.4. The Schwartz functions lie in 3.

Proof. See [RV99, Lemma 7.6] for the convergence of the sums. As for the integrals, if f = @), fo,

then
[ t@lel @ =TT [ 18wl boof] o,
AX " Fr
1

For almost all v we have f, = 1o, in which case the integral evaluates to = The convergence

—qu

therefore boils down to the convergence of the infinite product
H 1
—0c
v finite 1- Qv

This can be reduced to the case of Q = F', where it is classical. O

Let x be a quasi-character on A*. There is a unique s € C such that xy = xo|-|* where xq is unitary.
o := Res is called the exponent of .
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Definition. We define the zeta distribution (or function) Z(f,x) for f € 3 by

2,0 = | Flexe)da

The integral defining Z(f, x) converges in the domain of quasi-characters of exponent > 1.

As in the local theory we define ¥ = |-| x~'. We have x |-|* = x~! Hlfs. The exponent of X is 1 — 0.

Theorem 3.5 ([Tat67a) Theorem 4.4.1]). Z(f, x) can be extended to a meromorphic function on
the space of quasi-characters of A* and satisfies the functional equation

Z(f,X) = 2(f,x)
Z(f,x) is holomorphic except for simple poles at x = 1 and x = |-| with residues —kf(0) and
kf(0) where K is the volume of AX-*/F*.

Proof. We have
Z(f,x)= | flox(@da= [  flax@da+ [  fla)x(a)da.
A /IaA<1 /Ifl>1

The second integral is no problem. It converges for all y and defines an entire function. We have to
examine the first integral. We write

[, foxada= [ 3 e

lal<1 lal<1 E€FX
— [ S SO F0) [ x(a)Ta
la|]<1 €€F la|<1

We consider these two pieces separately. For the first we can apply Corollary to get

> flag) = 1 3 Fle/a),

¢eF ¢eF
SO

[ X @@= [ S fig/anata

la|]<1 E€F la|<1 geF

~ oo 32 Flax@) ol

la|>1 §€F

~ [ X FaO¥@ @0t FO) [ . W)t

la|>1 E€FX la]>1

= [, Fax@da+ 7o [ . toda

la|>1 la|>1

We now compute the second integral. We pick a splitting, which we just denote by ¢ — ¢, of |-| : A —

R<g. Note the splitting then gives Ry the measure %, regardless if we choose a real or complex place
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(in which case t — v/t € C*). Then we have

dt Lo dt 5
/Wxx o= [ oozl = [0 G

la]< la]=1

If y is nontrivial on AX'!| the second integral vanishes. Otherwise x = |-|°, and we have
K
AX/FX x(a)da = 5
la|<1

The same calculation shows

K

- ifx= |-°.

- 0 if x is nontrivial on AX:1,
AX JFX X(a)da = {

la|>1

Hence putting things together:

2(fix) = / Fla)X(a)da + / f<a>x<a>dxa+{—f<o>’j+f<o>s“1}

la|>1 la|>1

where the {} term is only there in the case x = |-|°. The integrals both converge for all x, hence we
get the analytic continuation of Z. The right side is evidently invariant under (f,x) — (f, X), hence
we get the functional equation. The residue at x =1 is —xf(0) and at x = |-| is £ f(0). O

Proposition 3.6. The volume of Ay /F* is
_ 9m(2m)"hR

i

where 11,79 are the number of real and complex places of F, h is the class number, R is the
requlator, and w is the number of roots of unity in F. In particular, k =1 if F = Q.

Proof. This is the proof in [RV99] which I found a little more intuitive to follow than the one in
Tat67a]. Recall the discussion after Theorem [2.3] We have a short exact sequence

0— AL/OF — Ax’l/FX — Clp — 0.
Hence, volgx, (A1 /F*) = hvolg, (A% /OF). Now consider the logarithmic map
1: A% — R,
(@0)o — (log |zu],)ve s, -

Then [ surjects onto the trace 0 hyperplane H, and has kernel B = {z € A*, |z, |, = 1Vv}. The subset
F>* N A% maps onto a complete lattice A in H, so we get an exact sequence

0 — BOJ/OF — ALY /OF — H/A — 0.
Now note that BO:/Ox N B/(BNOJ) = B/up. Hence we get
volgep (AS/OF) = vol(B/pp) vol(H/A).
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We have B = [[, F,*', where F,**! denotes the subset of elements of F,, of absolute value 1. Then
2 v real,
vol It = { 27 v complex,
_1
Nv, *> v finite.

Therefore
271 (27"

N

volgee (A5 /OF) = vol(B/up) vol(H/A) = R.

The result follows.

Note: need to check that the different Haar measures on the sub- and quotient groups are compatible
for this to hold U

3.4. L-Functions

Let x : A*/F* — C* be a quasi-character. Write x, for the induced local quasi-character of F* for
places v of F. Then x = @), Xo-

Definition. Define

L(X) = H Lv (Xv)

where Ly,(xy) is the local L-factor defined before Theorem .

As usual we set L(x,s) = L(x|).

Also recall that we defined certain epsilon factors. We define

E(X) = H Ev (X’U7 wv)

Again we set €(x,s) = e(x|-|*). Note that for almost all nonarchimedean places v, v, has conductor
O, and X, is unramified, so that for those v we have €, (x4, %,) = 1, hence the product is finite.

Furthermore we note that the product is independent of the choice of ¢ (hence we omitted it from the
notation). Indeed, for a € F'* we have

HEU(Xva (Ya)v) = H(X(a) |a"_1/2 €o(Xovr Pu)) = va(Xv; (OB

by the product formula and using x(a) =1 for a € F*.

Theorem 3.7. L(x,s) admits a meromorphic continuation to the whole complex plane. Poles

only occur if x = |-|)‘, in which case the poles are simple and at s = \,1 — \. L satisfies the
functional equation

L(Xv 8) = €(X7 S)L(Xila 1- S)‘

Proof. Let S D Sy be a finite set of places such that for all v ¢ S, y, is unramified and the conductor
of ¥, is O, (so 0, = O,). Define

LS(X? 8) = H Lv(Xm s)

vgS
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Pick a Bruhat Schwatz function f € S(A ) of the form f = @), fu with f, € S(F,) such that f, = 1o,

for all v ¢ S. For those v we then have fv = f, since ¥, has conductor O,. At the remaining v € S
we just require that f, is a function such that its zeta integral and that of its Fourier transform is
non-zero. Then we have

Zv(fvauas) = (1 - Xv(wv)q;s)_l = LU(XU>S)7
Zv(fvanjla I—s)=(1- Xv(wv)il%%is)il = Lv(X;17 1—s).

Therefore

S): HLU(XU, = vaa HZ fU7Xv7

vgS veS
This shows that Lg(x,s) admits a meromorphic continuation to all of C, since Z(f, x, s) does. Given
a point 5o which is not A\,1 — X if x = |-|/\7 then Lg(x,s) has no pole at sg since Z(f,x,s) does not
and we can choose f, so that Z,(f,, X, s) has no zero there.

By the global functional equation Theorem [3.5] we have
Ls(x,8) =Z(f,x "1 =9) [] Zo(for X0, 8) 7"

veS
= LS(X_la 1 - S) H ZU(leX’LHS)_lZU(fTHXu 71 - 8)
veS
= LS(X_17 1- S) H Pyv(stvz/JU)
veS

Now multiply this by the remaining L-factors:
L(x,s) = Ls(x.s) [ Lo(x s

veS
= LS(X_17 1- S) H ’Yv(va vav)Lv(Xa 3)
veS
=Ls(x " 1= 5) [[ ev(xws 5, 00) Lo (xy ' 1 = 5, ¢00)
veES
= L(X_lﬂ 1- S) H E'U(XU7S7¢’U)
veS

It remains to notice that [], . g v (X0, 5, ¥v) = €(Xv, 5) since g,(xv, s) = 1 for v ¢ S by Proposition
Finally we have

Ly(Xv, 5)
L(x,s) = Z(f,x, Zo(FoXu.8)
(X S) (f X S)l)l;ls,zwz(f1J7XU75)

Since we can choose the f, such that the local zeta integral is the L function, we get the statement
about the poles of L from the corresponding result on the poles of Z. O

3.5. Examples

Let F be a number field and (g its Dedekind zeta function defined by

1 1 s

ag(’)p
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We complete it to have nicer functional equations:
L") = ¢o(s) [T Lo(11%) = Cr(s)Tr(s) " Te(s5)™,
v|oo
where of course r1, 79 are the number of real resp. pairs of complex places, and
Ir(s) = 77%/?T(s/2), Tc(s) =Tr(s)Tr(s+ 1) =2(2r)"°T'(s).
Note from the list in Sectionthat e(1|*) = Noz—5. Hence Theorem gives the functional equation
L(|") = Noz = L(||'™).
If we let Ap(s) = No*/2L(|-|*), then we have the more symmetrical form

Theorem 3.8 (Analytic Class Number Formula). {r has a meromorphic continuation to C with
only a simple pole at s = 1 with residue

o 2" (2m)"2hR
Vidw
Cr has a zero at s =0 of order r1 + 12 — 1 and leading coefficient
hR
—

Proof. For each place v of F let f, € S(F,) be the function as in the proof of Theorem so that
Zy(fo I'1°) = Lu(]|"). Then let f = &, fu, so that L(|[*) = Z(f,||"). By Theorem 3.7, Z(f,||°) has

~ -~

simple poles at s = 0 and s = 1 with residues —kf(0) and xf(0). We have f(0) = 7~"2. Since
Cr(s) = Z(f 1) TT ZoChos DT = ZCA 1) TT Lo ™ = Z(f 1) Tr(s) " Te(s) 7,

v|oo v|oo

and I'g(1) = 1, T'c(1) = 71, the residue of (z(s) at s = 1 is indeed x. I'r,'c both have simple poles
at s = 0, hence (r(s) has a zero of order r; + 73 — 1 at s = 0. To compute the leading coefficient note
that f(0) = 7~"2N0'/2, and the residues of T'r(s) and T'c(s) at s = 0 are both 2. Hence the leading

coefficient is

h
—kf(0)27 72 = ——R.
w

O

Next consider the more general situation where we have a cycle m of F and a character x,. : 15(™ /P, —
C* of the ray class group. We define the L-function of x,. by

Xr(a) 1
Lm(Xms) = s H—_é
acIS(m) Na ptm l_Xr(p)Np

Let x : A*/F* be the idelic lift of x, as described in Section Let S = S(m)U So. Then

Lm(ers) = H Lv(XmS)'
vgS
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The completed L-function is

L(X7 5) = Lm(Xr,s) H Lv(Xva s)
veS
as in the last section. Note that for finite note that if a finite prime v divides the conductor of y,, i.e.
if x, is ramified, then L,(x,,s) = 1. At the infinite places L,(x.,s) is again some kind of Gamma
function, see Section [1.2

By Theorem [3.7] we have the functional equation
L(x,s) = e(x,s)L(x" "1 — ).
From the list in Section [[.2] we see that

e(x,s) = H ev(Xw,8) = ..7..

veES

If x, is trivial we more or less get the Dedekind zeta function above, if x, is non-trivial, then L;(x., $)
extends to an entire function. Indeed, by Theorem L(x, s) is entire,

Ln(xr>5) = L0t 8) [ Zo(xwr )™,
veES

and the local L functions L, (x4, s) have no zeros.
4. CrAss FIELD THEORY

4.1. Local Class Field Theory

Let K be a local field. If K is nonarchimedean and L/K is a finite unramified extension, the Frobenius
automorphism Froby/x of L/K is the unique element in Gal(L/K) such that
Frobyx (z) = %% mod O;

for all z € Op. If L/K is a finite extension, let N = N,k (L*) be its norm group.

Theorem 4.1 (Local Reciprocity Law, [Mil20}, Theorem I 1.1]). There is a unique homomorphism
br : KX — Gal(K**/K)
such that

(1) If K is nonarchimedean, then for every uniformizer @ of K and every finite unramified
extension L/ K, ¢ (w) is the Frobenius automorphism Frobyp .

(2) For every finite abelian extension L/K, ¢x(a)|r is trivial for a € N, and ¢k induces an
isomorphism
¢k : KX /Ny — Gal(L/K).

The image ¢,k (a) € Gal(L/K) of a € K* under the reciprocity homomorphism is also denoted
(a,L/K) = ¢p/K(a),

and called the norm residue symbol.

Abbreviate Gal(K*8/K) = G .
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Theorem 4.2 ( 2.4]). Let K'/K be a finite separable extension. The follwing diagrams
commute:

K* %, g K™ 2K, G
\I:incl‘ J{V J{NK//K J{
K™ 2K, g Res S5 e

Here the map V is the Verschiebung (or transfer).

Theorem 4.3 (Existence Theorem, [Neu99), Theorem V 1.4]). The assignment
L— NL

gives a one-to-one correspondence between the finite abelian extensions of K and the open sub-
groups N of finite index in K*. It satisfies

Ly C Ly <= N, D Np,, Niip, =N, NN, Niiap, = No, Ni,.

The field corresponding to an open finite index subgroup N, is called its class field.

Proof. Most of the assertions follow easily from the Reciprocity Law and Galois theory. The only
nontrivial part is the fact that every open finite index subgroup N of K* is the norm group of some
finite abelian extension. d

The following theorem shows that the norm groups can “see” only abelian extensions:

Theorem 4.4 (Norm Limitation Theorem, [Mil20] Theorem III 3.5], [Ser67] Proposition 4]). Let
L/K be a finite extension of K and E = K* N L the largest abelian extension of K in L. Then

Np/x(L*) = Ng/x(E™)

Assume K nonarchimedean.

Recall that we have a filtration of the unit group Uk by the subgroups UI((" )
U = Ux = O
kK — VYK — VK-

1+p% forn > 1 and

Theorem 4.5. Let L/K be a finite abelian extension. Then for any n > 0, ¢p/x + K* —
Gal(L/K) maps UI(?) to G"(L/K), the n-th higher ramification group in in the upper numbering.

Corollary 4.6. Let L/K be a finite abelian extension. Then er/x = [Ux : N/ (UL)].

Proof. This follows from the reciprocity law and the short exact sequence

0= Uk /Npx(UL) = K* /Ny (L) =5 Z) fr )k Z — 0.
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Definition. Let L/K be a finite abelian extension. Let n be the smallest integer such that ¢r,/x
is trivial on Ul((n), The conductor of L/K, denoted fr,/k, is the ideal p .

Can also define this in the archimedean case.

Corollary 4.7. L/K is unramified if and only if f1/x = Ok .

Proof. The unramified part is immediate from the corollary. O

Proposition 4.8. The class field corresponding to N' = (wf) x Uk is the unique unramified
extension of K of degree f.

Proof. Let L be the class field. Since Ux C N, the L/K is unramified. The degree is [L : K| =
#(K*/N) = [. O

Recall that the unramified extension of K of degree f is K((yr_1).
Proposition 4.9. Let L/K be ramified. The following are equivalent:
(1) L/K is tamely ramified,
(2) vp(0r/kx) =er/x — L.
If L/K is Galois, they are in addition equivalent to
(3) Gi(L/K) =1,
And if L/K is abelian, they are in addition equivalent to
(3) fr/x =¥k

Proof. O
4.1.1. Example K = Q,.

Theorem 4.10. Let L = Q,(¢) where ¢ = (, is a primitive m-th root of unity.
o If (m,p) =1, then

(a, L/Qp)(Q) = ¢
o If m=p", then )

(a,L/Qp)(¢) = ¢*

where u is the “angular component” of a, i.e. a = up?’»(®)

Proof. The first case is clear since then L/Q, is unramified. The second case requires more work, see

e.g. [Neu99| Theorem V 2.4]. O
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Proposition 4.11 ( Proposition V 1.8]). The norm group of Qp(¢pn)/Qp is (p) X U&)

Corollary 4.12 (Local Kronecker-Weber). Every finite abelian extension L of Q, is contained in
a cyclotomic extension of Q.

Proof. Since the sets Ug;) form a basis of neighborhoods at the identity in Ur, N7 must contain a set
of the form (p/) x US". We have

() < USY = (o) x Ug,) x ({p) x US)
The class field of (p/) x Ug, is Q(¢,s_1) by Proposition , and the class field of (p) x U&i) is Qp(Cpn)
by Proposition hence L is contained in Qp(Cyn (7 —1))- O

4.2. Global Class Field Theory

Let K be a number field. We first give the ideal theoretic version of global class field theory.

Let L/K be a finite abelian extension. Let S be the set containg the infinite places, and the finite
places of K that ramify in L. Then we have a well-defined map Fy,x : I® — Gal(L/K) such that
Fr i (p) = Froby /k(p) = (p, L/K), the Frobenius at p.

If K C EC L, then the diagrams

15 2 Gal(L/E) 18 T Gal(E/K)
J/NE/K \[ = l
13 T Gal(L)/K) 15 T Gal(L/K)

commute. This is immediate from (Ng, B, L/K) = (p™/»,L/K) = (p,L/K)%/» = (B,L/E) for
primes B in E coprime to S that with p the prime of K lying below. Note even though S is a set of
primes in K, we use the notation I f in the obvious way to denote the set of primes of L coprime to
the primes of L lying above the primes in S.

In particular taking £/ = L gives that Ny /g (I7) C ker Fr k.

Theorem 4.13 (Reciprocity Law, [Mil20| Theorem V 3.5]). The map Fy, /i : I° — Gal(L/K) is
admissible, i.e. it admits a cycle m with S(m) = S and Py, C ker Fy/i. It defines an isomorphism

IZ/(PuNp 1) — Gal(L/K).

The group T'(L/K,m) = PNk (IT') is also called the Takagi group of L/K.

Definition. The conductor of L/K, denoted pr,/k, is the smallest possible cycle for Fr, k.

If m is a cycle for K, a subgroup of H C I™ := I5(™) s called a congruence subgroup mod m if
P, CH.
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Theorem 4.14 (Existence Theorem, [Mil20] Theorem V 3.6]). For every congruence subgroup H
modulo m, there is a unique abelian extension L/ K, unramified at the primes not dividing m, such
that H = PNk (IT'). In particular, Fr, i gives an isomorphism

It /H = Gal(L/K)

Note we can in particular take H = P,,. This gives the ray class field modulo m. We denote it by K™.

By Galois theory we then get an inclusion reversing bijection between abelian extensions E/K con-
tained in K™ and subgroups H C I}/ Py, = Cl,, via

It is kind of awkard to have to fix a cycle and then work in Cly,. This is where the idelic formulation
comes into play and simplify things!

Recall the notation from Section We have an isomorphism

AY | KoyWe & IR/ Py,
under which the class of an idele a = (a,), € Af(vm, i.e. an idele satisfying a = 1 mod m, corresponds
to the ideal Ida =], pulaw).

Proposition 4.15 ([Mil20} Proposition V 5.2]). There is a unique homomorphism ¢ : Aj —
G3> = Gal(K?"/K) such that for every finite abelian extension L/K and any prime w of L lymg
over a prime v of K, the diagram

KX —2 Gal(Ly/Ky)

!

AL @rGay (LK)

commutes.

Here ¢, denotes the local norm residue symbol defined as in Section Since the extension is abelian,
the map Gal(L,/K,) — Gal(L/K) does not depend on w. We let ¢,k be the composition of ¢x
with the restriction Gal(K*"/K) — Gal(L/K). The map ¢,/ is also denoted (—, L/K).

Proof. This is relatively easy. Define ¢r/x : Ax — Gal(L/K) as the ¢r/x(a) = [], ¢v(a,) where
oy(ay) € Gal(L,,/K,) < Gal(L/K). Then patch all these maps for different L together. O

For abelian extensions L'/L/K we have a commuting diagram:

dL /K

AL 25 Gal(L/K)

I

Gal(L/K)

Let L/K be a finite abelian extension. Let f,x =[], fr, /k, be the product of the local conductors,
possibly including real places, so that fi,k is really a cycle. By Corollary @f is precisely divisible
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by the ramified places. Then the following diagram commutes

A%, 25 Gal(L/K)
lm/
Fr,x

Indeed, ¢, k(a) =[], ¢v(an). If a € A[X(f, then ¢, (a,) =1, so
dr/K(a H¢v (av) HF‘r oby, a;l)K
vtf vtf

= [ I Froby () = Fryx(ida).
off

So by Proposition @ the existence of a cycle for Fy i is essentially equivalent to ¢ being trivial on
K*:

Theorem 4.16 (Reciprocity Law, [Mil20] Theorem V 5.3]). ¢x : A} — Gal(K®*/K) is trivial
on K* and for every finite abelian extension L/K, ¢ induces an isomorphism

b1k AR /(KX Np(A)) = Gal(L/K).

We can also relate the second part of the statement to the ideal theoretic version: Let L/K be a
finite Galois extension. An admissible cycle m is one such that Wy (v) € N/, (Ly). Equivalently,
Wa € Np k(A7) In the abelian case this is the case iff f | m. Note we could also define the local
conductor for nonabelian Galois extensions and this would still be true. However, the local conductor
would only depend on the maximal abelian subextension by Theorem [£.4]

Proposition 4.17 ([Lan94] Theorem VII 7]). Let L/K be a finite Galois extension. Let n | m be
admissible cycles for L/K. Then the inclusion I™ < I™ induces an isomorphism

I"/(PuNp/x(IT)) — I"/(PaNp/k (I1))-
If n,m are divisible by the same primes, then PaNp /i (I]) = PaNp/x(I7).

Proposition 4.18. Let L/K be a finite Galois extension and m an admissible cycle for L/K.
Then there is an isomorphism

AR /(K*Npyw(AL)) = IR/ (PuNp/(IF)).

This isomorphism takes any a € Alxgm to the class of Id a.

Proof. We proceed in two steps. First we show that v : Alx(’m — IR, a — Id(a) induces an isomorphism
Ao/ (KW N i (AL 5™)) 5 T (PuNLyic (IF),

where AZ’S(m) is the group of ideles in A whose components at places lying over places in S(m) are
1. That this is an isomorphism is equivalent to

KaWalNp (A5 ™) = =1 (Pu Ny i (IT)).
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The inclusion “C” is obvious. For the reverse, let a € Ag = such that Ida = ¥(a) = (@)Np/xa

with oo € Ky, a € I7'. First note that there is A € Az’s(m) such that Ny, (Id A) = Np/ka. Then
Ida = Id(aNp/k A), hence a(aNL/KA)_l € ker ¢ = Wy,. This establishes the isomorphism. Next we
need to verify that inclusion ¢ : A% =~ — A% induces an isomorphism

A o/ (KaWaNp i (A5 ™)) =5 A% /(K Np e (AY)).

It is surjective since Ay =~ — Ak /K™ is already surjective (approximation theorem). So we need to
establish

KaWaNp (AP 5™) =i H (KX Ny (AF)) = A% 0 (KX Ny (A)).

The inclusion “C” holds because Wy, C Np, /i (AT) as m is admissible. For the other inclusion Let
a € Ag o N (K*Np/k(Af)). For every v € S(m) fix one place wy of L lying above v. There is
Ywo € Luw, such that Ny /r, (Ywo) = Gy since a,, € Wiy (v). Choose v € L* such that « is very close
to Yu, at wo and very close to 1 at the other w | v, for all v € S(m). Then Ny g~y will be very close

to z at all v € S(m). Write a = aNp /g A with o € K*, A€ A}. Let 6 € L* such that ¢ is very close
to A. Then

. (aNL/K5> (NL/KA)> (NL/KA)S

Nr v Npjxd /sS\Npjgd/ =
By the subscript g we mean only that part of the idele with support in S and by z° with support
in the complement. Note that since Ny, is really close to Ny, g A at v € S, aNp,/kd will be very
close to a at v € S, hence the first term will in the above expression will be very close to 1 for v € S,
in other words it is in K. Similarly the second term is in Wy, and the last term in NL/KAE’S. U

We can also rephrase things in terms of the idelic class group. The map ¢ descends to a continuous
homomorphism

¢r : Cx = A% /K* — Gal(K*/K).
Let E/K be any finite extension. We have a commuting diagram:

Cp —225 Gab

JNE/K J{res

Cr —255 Gab

A less obvious compatibility property is:

Proposition 4.19 (|[Neu99| Proposition IV 5.9]). Let L/K be a finite Galois extension and K’
an intermediate field. The diagram

AL 2HE, Gal(L/K)™

| Jve

A%, P Gal(D/ K™

commutes, where the map on the left is the inclusion, and the map on the right is the Verlagerung
(or transfer) map.
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For a finite extension L/K we let
N = Np/kCr,
so that Cx /N = A /(K* Nk (A})).

Theorem 4.20 (Existence Theorem, [Mil20, Theorem V 5.5]). The association
L— N L

is a bijection between finite abelian extensions L of K, and open finite index subgroups of Ci .
Moreover,

Ly C Ly <= N, D Np,, Niip, =N, NN, Niion, = N, Ni,.

The field L corresponding to a given open finite index subgroup H C Ck is called the class field
belonging to H. For a cycle m let Cx(m) = (K*Wy)/K*, so that C/C(m) = I™ /Py = Cly. The ray
class field for m is the class field L corresponding to the subgroup C'(m) C Ck. The conductor f,/x
of L/K is a divisor of m, possibly proper, see the example after Proposition m

Corollary 4.21 ([Lan94] p. 211 Corollary]). If L is any finite extension of K, then N = Ng
where E = K®P N L is the maximal abelian subextension of L/K.

Proof. Let F be the class field to N. We wish to show that F' C L, or equivalently FL = L. If
a € A} then by the above commutative diagram we have ¢p /1 (a)|r = ¢p/x(Np/k(a)) = 1 since
Np/k(a) € N = Np. Hence ¢pp/p(a) = 1, so ¢pr/r, and therefore FL = L. Then F C E, and
therefore N C Nr = Ny, but E C L also gives the other inclusion N7, C Ng. O

Proposition 4.22. The Artin map ¢r : Cx — Gal(K?*/K) is surjective.

Proof. Since it is surjective on finite extensions, its image is dense. Choose a splitting Cx = R x C.
R+ ¢ is infinitely divisible, hence so is its image under ¢, but it is easy to see that in a profinite group
the only infinitely divisible element is the identity element, hence the restriction of ¢k \C}( is surjective.

Since C}; is compact, the range of ¢ is closed, implying the assertion. O

Let Dg =, /K N be the intersection of all N, where L ranges over all the finite extensions of K.
It is called the group of universal norms. Then by the proposition

éx : Cx /Dy — Gal(K**/K)

is an isomorphism.

Theorem 4.23 ([Lan94] Theorem XI 6], [AT59] Theorem 7]). Dg C Ck is infinitely divisible.

‘ Theorem 4.24 ([AT59] pp. 69, 70]). Dk is the connected component of the identity in Ck.
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4.2.1. The Hilbert Class Field. Let K be a number field. The Hilbert class field of K is the ray class
field for the trivial cycle, in other words it is the unique abelian extension L/K such that
Nij(AY) = KXA%, = K*AY g = K*(Ks x Og).

Note that C'x/Ck (1) is just the class group, hence Clg = Gal(L/K) via the Artin map and [L : K| =
hi is the class number.

Recall by Corollary [4.7|that a finite abelian extension E/K is unramified at a place v (possibly infinite),
if and only if i, (U,) € N1k A] , where 4, is the inclusion at the place v, and U, the local units (= K*
if K is archimedean). This easily implies the following characterization of the Hilbert class field:

Theorem 4.25. The Hilbert class field of K is the largest abelian unramified extension of K.

Here “unramified” includes the infinite places.

Theorem 4.26 (Principal Ideal Theorem). Let L be the Hilbert class field of K. The natural map
Clg — Cly, is trivial, in other words, every ideal in K becomes principal in L.

Proof. Let Ly be the Hilbert class field of L. Then L; is Galois over L. Indeed, if ¢ : L; — K?P
is an embedding over K, then o(Lq) will be class field to o(1) of o(L). But o(L) = L, (1) = 1,
whence o(Ly) = L;. Let Gy = Gal(L;/K). Since L;/K is unramified, L must be the maximal
abelian subextension of K in Ly, so G = Gal(L/K) = G%. Under the Artin isomorphism the map
Clg — Cly, corresponds to a certain map G — G, where G is the commutator subgroup. It follows
from Proposition [f.19] that this is the Verlagerung. Then the problem reduces to the following problem
in group theory (in our case Gy = H,G = H/H',H' = Gal(L,/L), H" = 1):

Theorem. Let H be a finitely generated group such that H' is of finite index in H. Then the map
Ver: H/H' — H'/H"

is the trivial map.

See e.g. [AT59] p. 140] or [Neu99} Theorem VI 7.6]. O
4.2.2. Ezxample K = Q.

Proposition 4.27 (Quadratic Reciprocity). Let p,q be distinct odd primes. Then

GREES

Here (E) 1s the Legendre symbol.

Proof. Let L = Q(y/g) where ¢* = (—1)9~1/2¢q. We compute ¢,/g(p). Of course we know that

#q(p) = 1 since p € Q*. On the other hand we can write ¢r,0(p) = ¢1/0,00(P) [I, ¢1/0,¢(p). Since
p >0, we have ¢, /q,o0(p). Likewise for all £ # p,q we have ¢r,q,¢(p) = 1. For £ = p, we have

br/0.p(P) = (f) ,
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since L is unramified at p, so that the Artin symbol is just the power of the Frobenius corresponding
to the valuation of p at p which is 1. Here the identity means that the left side is the identity (resp.
nonidentity) element in the group if the right side is. It remains to compute ¢y, /g q(p). We know that
the local Artin map is an isomorphism

Pr/Qq Q; /NLq/Qq (qu) = Gal(Lgy/Qp).

Here L, is the completion of L at the unique prime lying above q. N, = Nr,/0, (qu) is an index 2
subgroup of Q which does not contain Z; since the extension is ramified. Hence N, NZ; is an open
index 2 subgroup. The unique such subgroup is the preimage of the index two subgroup, the group of
squares, in (Z/qZ)*. Hence the image of p in Gal(L,/Q,) trivial iff (%). We get

e (£) () (2)(2)

Proposition 4.28. Let n > be an integer. The ray class field corresponding to the cycle m = oco(n)
of Q is given by Q((,). The ray class field for (n) is Q(¢n + ¢7Y).

Proof. Let L = Q(¢y). It suffices to prove that Fp,q : I™/Py — Gal(L/Q) is an isomorphism. It is
easily seen that (Z/nZ)* = I™ /Py, where a prime p { n corresponds to the ideal (p) € I™. Finally the

Frobenius above p is the Galois automorphism taking ¢, to (¥, hence under the usual identification
Gal(L/Q) = (Z/nZ)*, we see that the map (Z/nZ)* = I™/P,, Gal(L/Q) = (Z/nZ)* is the identity.

The second part follows easily from the first. O

This shows that the ray class field does not determine the cycle. Indeed, if n = 2, then Q(°2)(2) =
Q® = QW = Q (because (Z/27)* is trivial).

Corollary 4.29 (Kronecker-Weber). Every finite abelian extension of Q is contained in a cyclo-
tomic field.

Proposition 4.30. Let L/Q be a finite abelian extension. Let n be the minimal integer such that
L C Q(¢n). Then the conductor fr, /g of L/Q is (n) if L is purely real, and oo(n), otherwise.

Proposition 4.31. The conductor f = 0y q is the smallest cycle m such that Wiy C Nk (A7)
or equivalently, that N D C(m). This is the case iff L C Q™, hence the claim follows from

Proposition [{.28

Thanks to unique factorization we have a (direct product) decomposition

Aé% XXR>OXHZ;.
p

We can use this to describe the Artin map

dg : A — Gal(Q*/Q).
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Note first by Kronecker-Weber, Q2" is the composite of all the cyclotomic extensions, hence it suffices
to say what ¢g(a) does to each (.

Proposition 4.32. The Artin map ¢g : Aa — Gal(Q**/Q) has the following description: Let

a € A@ and write a = ypu with v € Q*,p € Ryg and u € 7%. Then for any root of unity ¢, we
have

do(a)C ="

Note that power (“_1 is (for example) defined as follows: Assume ("™ = 1. Let x be the projection of
w='in (Z/nZ)* = (Z/nZ)*. Then ¢* ' := (°.

Proof. Tt follows from Theorem Alternatively here is a direct way:Fix a root of unity ¢ = ¢, and
let L = Q(C). Let ¢ : A — Gal(L/Q) be map as indicated, i.e. d(a)¢ = ¢* " where a = ypu. We have
to show 5 = ¢r/0- Since ¢ is trivial on Q* and continuous, by the uniqueness part in Proposition
it suffices to prove ¢(a) = FL/Q(IdS a) for all a € A(S’S, where S = {oco} U{p | n}. So let p be a finite
prime not dividing n. Let a = i,(p) be the idele with p in the p-component, and 1 every else. Then
the decomposition a = ypu is

a=p-1-(p~'...p7LLp..0).

=u

Note the projection of u~! in Z/nZ is p, hence

-1
¢ = () = (0 = By g((9) = Fijo(1d ).
g

Example. ﬂ There is no S extension of Q that is unramified outside {7,c0}. Indeed, suppose
there is such an extension L. It has a quadratic subfield K. Since K is unramified outside {7, oo},
we must have K = Q(v/—7). It is easily seen that K has class number 1. Hence,
Af = (K xC* x J[TOy)/+1.
p
L is a degree 3 abelian extension of K, therefore corresponds to an open index 3 subgroup of

ALH(EXCX) = (Ho;)/ﬂ.
p

Note that C* doesn’t have any finite index subgroups, hence it corresponds to an index 3 subgroup
of Hp O,’. Moreover, since L/K is unramified at all primes not lying above 7, the subgroup must

contain Hp r7 O,’. Let q be the prime of K lying above 7. Then we conclude that L must correspond

to an index 3 subgroup of O, . We have isomorphisms

Ox 2F) x UY) 2 F% x O,
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Since 3 | 7 — 1, we see that there is precisely one index 3 subgroup of O, Consequently, K has
exactly one degree 3 extension that is unramified outside p. Clearly Q(¢7) is one such extension.
But Q(¢7)/Q has Galois group Cg % S3, and the result follows.

%This question is from the exam

4.2.3. Applications of L-series to Class Field Theory. Let K be a number field. Let Pg denote the
set of finite places of K, and P} the subset of those primes having absolute inertia degree 1. In the
following, density refers to Dirichlet density. For a set of primes S, we write §(.5) for its density (if it
exists). It is defined by

N —S
§(S) = lim Zopes NP7 -.
s=1t Y ep, NP™°

Zpng Np~—*

—log(s—1) =1

Proposition 4.33. lim,_,;+

Hence we may also compute the Dirichlet density as
N —S8
§5(S) = lim M.
s—1+ —log(s — 1)
In the following we write f ~ g if f(s) — g(s) stays bounded as s — 1+. Similarly write f = g if
f(s) — g(s) stays bounded from below as s — 1+.
Proof. Recall from Section the Dedekind zeta function (i has a simple pole at s = 1. Hence
—log(s — 1) ~log (x (s)
= Z —log(l — Np™?)

PEPK

~ D Np

pEPK
and the result follows. O

Proposition 4.34. 6(P%) = 1.

Proof.
—log(s —1) ~ Z Np~*
PEPK
— Z prs_|_ Z prs
peEPK PP

Above every prime p € Z there are at most [K : Q] primes p in K, hence we can bound the second

some as
> Np < [L:K]) p > <[L:K|¢(2s)
pEPL P

This stays bounded as s — 17, and the result follows. 0


https://www.maths.cam.ac.uk/postgrad/part-iii/files/pastpapers/2021/paper_123.pdf
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For a finite extension L /K denote by Sy, k the set of primes of K that split completely in L.

Proposition 4.35. Let L/K be a finite Galois extension. Then 0(Sp k) = 75 -

Proof. Over every prime in Sy, there are exactly n := [L : K] primes in L. For prime P € P,
p=PNK € Pk lies in Sp,/ if and only if fy,, = 1. In this case Np = N'B. Hence,

—log(s—1) ~ Z NgB—*

PBePL

=n Y Np 4+ ) NP

PESL /K P:fyp/pnrx>1

The second sum is bounded as in the previous proposition, hence the result. O

Recall that if E/K is the Galois closure of L/K, then Sp,x = Sg/k-

Corollary 4.36. Let L/K be a finite extension, and E its Galois closure. Then §(Sg/x) = [E}K],

Corollary 4.37. Let L/K be a finite extension. Almost every prime of K splits completely in L
if and only if L = K.

Corollary 4.38. Let L/K be an abelian extension and S a finite set of primes of K containing
the ramified ones. Then the Artin map Fr i — Gal(L/K) is surjective.

Proof. Let H be the image of F, /. Let E = LH its fixed field. If p is a prime of K, not contained
in S, then Fg i (p) = Fr/x(p)|e = idg, so p splits completely in £. Hence E = K be the corollary,
and therefore H = Gal(L/K). O

For two sets S, T of primes write S < T if S\ T has density 0. Write S ~ T if S X T, T <, i.e. if they
differ by a set of density 0.

Theorem 4.39. Let Ly, Ly/K be finite extensions with Li/K Galois. Then Sp,/x = Sp,/x if
and only if Ly C L.

Proof. If Ly C Ly, then obviously Sy, /x € Si,/k, so assume Sp, /g = Sr,,x. We may assume Ly /K
is also Galois. Let L = L1Ly. Let S = Sy, /k N Sr, k. Then S = S, /k, hence §(S) = [L : K]7t. On
the other hand since S;, /g = Sr,/k, we have §(S) = (S, k) = [L1 : K]7!, hence L; = L. O

Corollary 4.40. Let Ly, Lo/ K be finite Galois extensions. Then Ly = Lo if and only if St jx =~
Sty/K-
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Theorem 4.41 (Universal Norm Index Inequality, Second Fundamental Inequality). Let L/K be
a finite extension, m a cycle of K divisible by all the primes ramifying in L. Then

IR : PuNp/x(If)] < [L: K].

Furthermore, if x is a non-trivial character of I /(PuNrp/k(I}')), the L-series L (X, s) is non-
vanishing at s = 1.

Proof. For every character x of If/(PnwNr k(') let m(x) be the order of the zero of Lin(x,s) at
s =1. We have

log Lm(x,8) = »_ —log(1— x(p)Np~)

pelp

~ > x(p)Np~

pelp

= > X@) > Np~

A€l /(PuNL/k(I}])) peA

On the other hand, we know log Ly (x, s) ~ m(x)log(1 — s). Therefore summing over all x and using
the orthogonality relations we get

Zm Ylog(1 —s) ~ Z Z X(Q()ZNFFS

XE(IR/PuNp/xk(IF))” AEIR/(PmNr/x(I})) pe2l
=[I%: PuNpyx(IP)] > Np~*
PEPnNL k(IT)

Now note that all the primes PNy, /x contains all the primes that split completeley in L, hence by
similar arguments as in the proof of Proposition

Zm )log(1 —s) = [If: PuNp/x(I7)] > Np~*
PESL /K
R : PoNpyk(I7)] s
= L K] > NP
PP}
_ % : PuNp/x(IF)]
[L: K]

log(s — 1)
Next note that if ¢ is the trivial character, then m(xo) = —1. So
Zm )log(s — 1) = —log(l —s) + Z m(x)log(s — 1).
X#Xo
[IIW(I:PH\NL/K(IZ‘)]

Since we also know that m(x) > 0 for x # X0, this forces m(x) = 0 for all x # xo and T <
1. The claim follows. O

This and Corollary [£:38|show that if we can show that the Artin map admits an admissible cycle, then
the rest of the reciprocity law Theorem [£:13] follows.
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4.2.4. Applications of Class Field Theory to L-series and Primes. Let K be a number field.

Theorem 4.42. Let m be a cycle of K and x a non-trivial character of I} /Py. Then L(x, 1) # 0.

Proof. Apply Theorem [£.41] to the ray class field for m. O

Corollary 4.43 (Dirichlet’s Theorem on Primes in Arithmetic Progressions). Let m be a cycle,
A a class in I} /Pyn. Then the set of primes of K that lie in 2 has density ﬁ.
Km

Theorem 4.44 (Chebotarev density theorem). Let L/K be a finite Galois extension. Let C' C
Gal(L/K) be closed under conjugation. Let S be the set of primes in K that have Frobenius in C.

Then 6(S) = %

Proof. O
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Part 2. Archimedean Local Theory
Let G = GLy(R), K = O(2). g denotes the Lie algebra of G. We define the following elements of g

1 0 0 1 0 0 1 0
p=(oh) =) =00 260
In Bump’s notation H = H, X = R,Y = L, Z = Z. Note that the basis elements in IGH11| are a little
different. Let
1
A= —E(HQ +2XY 42V X).

Note that the products are being taken in U(g), the universal enveloping algebra of g. Then Z(U(g)) =
C[Zz, Al

They form a basis for g. We also let
cosf  sinf
ko = (— sin 0 cosﬁ) €K

Bl (1) € K. Tt is slightly annoying that K is not connected like SO(2), so for

its action we have to consider not only the kg, but also ¢;.

for § € R. Let §; =

5. (g, K)-MODULES
Let V be an irreducible admissible module for (g, K). A version of Schur’s lemma implies that Z(U/(g))
acts via scalars on V', hence there are u, A € C such that
Av = Nv, Zv = pv,

for allv e V.
5.1. K-types
For each m € Z we have a one-dimensional representation of K+ = SO(2), given by kg > ¢™™?.
Given an admissible (g, K)-module V| let V,,, the corresponding isotypic subspace, i.e.

Vin = {v € V| 7(ke) = ™0 V0 € R}.
The set of K-types of V is the set Xy of integers m such that V,, # 0.

Proposition 5.1 (|[GH11} Proposition 7.5.7]). Let V' be an irreducible admissible (g, K)-module.
Let ¥ = Xy be its set of K-types. Then Y is one of the following:

{k€Z| k=0 mod 2},
{k€Z|k=1mod 2},
{k€Z|k=mmod 2, |k|] <m} for some m > 0,
{ke€Z|k=mmod 2, k| >m} for some m > 0.
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6. PRINCIPAL SERIES REPRESENTATION

Let x1,x2 be quasi-characters of R*. We denote by B(x1,x2) the space of functions f : G — C
satisfying

(1) f <(1‘61 ;) 9> = X1(y1)x2(y2)

(2) fis K-finite on the right.

1/2
f(g) for y1,y2 e R*, 2 €R,g € G.

Y1
Y2

(In other words, it is the space of K-finite vectors in an induction of the quasi-character x; X x2 of B)

The elements in B(x1,x2) are determined by their restriction to K+ = SO(2) (by the Iwasawa de-
composition), and automatically smooth. V' = B(x1, x2) is a (g, K)-module, where K acts via right
translation, and g via differentiation.

¥ with & unitary, then in the notation of [GH11|, we have V.. ((s1 —

Note that if we write x; = & |-
%782 + %)a (51,62)) = B(X17X2>-

Every element g € G may be uniquely written as <(1) T) (yol ;) kg. For n € Z define the function
2

1/2

6”19.

In(9) = xa(y1)x2(y2) ‘z;

Write

Si
)

Xi = (sgn)™ |-
for i = 1,2, where m; € {0,1} and s; € C. Let s = s; — s and m = |m; — ma|. Note (=1)™ =
x1(=1)xa2(—1).

If n = m mod 2, we have
V., =Cf,
The functions f, for n = m mod 2 form a basis for V.
The action of various elements in K and g on V is given as follows:
m(ko)v; = e0uy,
m(61)v = x1(—=1)v—y,
Zv; = (81 + s2)up,
Avp = (83 + 85 — 51+ s2)v;.

TODO
Theorem 6.1 ([JL70, Lemma 5.7]).

(1) V = B(x1, x2) is irreducible as a g-module, except when s —m is an odd integer.

(2) If s —m is an odd integer and s > 0, then the proper nontrivial g-invariant subspaces are
by
Bi(x1, x2) = span{fest1, fot3, fots,--- },
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Bl(Xla X2) = Span{' B fsffn fsf?n fsfl}a
and Bs(x1, x2) = B1(x1, x2) + B2(x1, x2). The latter only when Bs # V.

(3) If s —m is an odd integer and s <, then the proper nontrivial g-invariant subspaces are
by
Bi(x1,x2) = span{fss1, fo+3, fots,-- -},
Bi(x1,x2) = span{..., f—s—5, f-s—3, f-s—1},
and By(x1,x2) = Bi(x1, x2) N B2(x1, X2)-

7. CLASSIFICATION OF IRREDUCIBLE (g, K)-MODULES
Theorem 7.1 ([Bum97, Theorem 2.5.5]). The following is a complete list of all the irreducible

admissible (g, K)-modules:

(1) The finite-dimensional representations are the twists of the symmetric powers of the stan-
dard representation.

(2) If x1, X2 are quasi-characters of R* such that x1x5 * # (sgn)® |~|k_1 for some e € {0,1}
and k € Z with k = & mod 2, then we have the principal series representation w(x1,X2)-

(8) For p € R and k € Z>1, we have the representations D, (k).

8. WHITTAKER MODELS
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Part 3. Nonarchimedean Local Theory

9. GENERALITIES ON REPRESENTATIONS OF TOTALLY DISCONNECTED LocALLYy COMPACT
GROUPS

We abbreviate “totally disconnected locally compact” by tdlc. Let G be a tdlc group.

9.1. Algebraic Representations

Definition. An algebraic representation (V W)ﬂ of G is a complex vector space V', together with
a group homomorphism m : G — Autc(V). If K C G is a subgroup, let VX be the set of K-fived
vectors. A wvector v € V is called smooth if it is fized by an open compact subgroup. The set of
smooth vectors in 'V is denoted V>° = J VE. (V,7) is called

e smooth if every vector is smooth, i.e. V. =V,

e admissible if it is smooth and VX is finite-dimensional for every open compact subgroup
K

J

e irreducible if V' has no proper G-invariant non-zero subspace.

9Tt seems in the literature the order (m, V') is prevalent, but I somehow got used to the opposite order. I also prefer
it since we need to define V first to be able to talk about the action 7 of G.

Of course we also have the usual definitions of homomorphisms of representations, subrepresentations,
quotients...

Note that V°° is always a smooth subreprepresentation of V.

A function on a totally disconnected space is called smooth if it is locally constant. Thus, a vector
v € V is smooth if and only if the map G — V, g — 7(g)v is smooth.

When talking about irreducible representations, we will always exclude the 0 representation.

Theorem 9.1. Let K be a compact tdlc group. Let (V, ) be a smooth representation of K. Then
m is semisimple, i.e. V is the direct sum of irreducible subrepresentations. Any irreducible smooth
representation of K is finite-dimensional.

Proposition 9.2 (Schur’s Lemma). Let G be a tdlc group and (V,m) a smooth irreducible repre-
sentation. Assume that one of the following holds:

(1) G/K is countable for some compact open subgroup K, or

(2) 7 is admissible.
Then Endg(V) = C, de. if T : V. — V is an intertwining operator, there is A\ € C such that
T = \idy .

Corollary 9.3. Assumptions as in the previous proposition. There is a quasi-character w :
Z(G) — C*, called the central quasi-character of 7, such that w(z)v = w(z)v for all z € Z(G),v €
V.
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Corollary 9.4. Assumptions as in the previous proposition. If G is abelian, then dimV = 1.

Remark. Unlike in the case of finite groups (or more generally unitarizable representations), the
converse of Schur’s lemma does not hold, i.e. Endg (V) = C does not imply that V is irreducible.
For example if F' is a local nonarchimedean field, x a quasi-character of F'*, then the princi-
pal series representation (V,m) = B(x, x ||) is reducible (Theorem [15.7), but dim¢ Endg V' = 1

(Theorem [15.11)).

Definition. Let G be a tdlc group, K a compact open subgroup. We denote by K the set of
equivalence classes of irreducible smooth representations of K. Let (V, ) be a smooth represen-

tation of G. If p € IA(, denote by VP the sum of all subspaces of V' which are isomorphic to p as
K -representations. We call it the p-isotypic component of (V, 7).

Theorem 9.5 ([Bum97] Proposition 4.2.2]). In the setup as in the definition we have

v=@v.
peR
V' is admissible if and only if each VP is finite-dimensional.

Definition. Let G be tdlc and (V,7) a smooth representation. The contragredient representation

(‘7,%) is the representation of G where V is the space of smooth vectors in the algebraic dual of
(V,7), i.e

V = (Hom(V,C))™
={f:V = C linear: Acompact open subgroup K C G with f(kv) = f(v)Vk € K,v € V},
and T acts on this space by (7(g)f)(v) = f(r(g~)v).

We might also write V for V.
If f € V,v eV we also denote f(v) by (v, f). Then (m(g~ )v, f) = (v, 7(g) f).

Definition. Let (V,7) be a smooth representation of G. A matrix coefficient of m is a function
G — C of the form g — (n(g)v,v) withv e V.o € V.

Proposition 9.6. Let (V, ) be an admissible representation of G and K a compact open subgroup.
Then the pairing between V, V induces a non- degenerate pairing between VK and VK, S0 we can

naturally identify (VE)* = = VK.V is admissible and the natural map V — V is an isomorphism.

Let G be a tdic group and H C G a closed subgroup. Denote by g,y the modular quasi-characters
of G, H respectively (see Appendix . Let (U, o) be a smooth representation of H. This induces two
representations of G in the following way: Let V' the vector space of functions f : G — U satisfying

(i) f(hg) = 6c(h)~Y/265(R)/2f(g) for h€ H,g € G.
(ii) There is a compact open subgroup K C G such that f(gk) = f(g) for g € G,k € K.
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Let V. be the subspace of V' of functions f additionally satisfying
(iii) f has compact support modulo H, i.e. the image of the support of f is compact in G/H.

Letting G act on V (resp. V.) gives us a representation, denoted Ind% o (resp. c—Indg o) and called the
induced representation (resp. induced representation with compact support). Both Indf[ o and c-Indg o
are smooth representations of G. Note that if G/H is compact, then they coincide.

Remark. In [BHO6| the notation is slightly different, there this would be denoted

Lga = Ind%(éél/zm 039 6}{/2 29 0').

The inclusion of the modular quasi-characters has the advantage that c—Inde o will be unitarizable
if o, see Theorem [9.15] and it behaves nicely under taking the contragredient, see Theorem

Proposition 9.7. Assume H\G is compact. If (U, o) is an admissible representation of H, then
md% o = ¢-Ind$ o is an admissible representation of G.

Proof. Let K be a compact open subgroup of G. Then any element f € (Indg o) K satisfies

Flhgk) = (65"%61{%0)(h) f(9)

for h € H,g € G,k € K. In particular it is determined by its values on a set of coset representatives
for H\G/K. Since H\G is compact, H\G/K is finite and the result follows. O

Theorem 9.8 (Frobenius reciprocity, [BHO6L 2.4, 2.5], |[BZ76} 2.29]). Let (V, ), (U,0) be smooth
representations of G, H respectively. Then there is are canonical isomorphisms

Homg (7, Ind$, o) = Homp (7|g, 0 ® 551/2(5}{/2)7

Homg (¢-Ind$ o, 7) 2 HomH((Sal/zéllq/2 ® o, (/7r|\H/))

If H is also open in G, there also is a canonical isomorphism:

Homg (¢-Ind$, o, 7) = Homp (0 ® 551/25}1/2, | H).

Theorem 9.9 (|[BHO6| 3.5], [BZ76} 2.25 (c)]). Let (U, o) be a smooth representation of H. Then
there is an isomorphism

o —

c-Ind$ o = Ind% 5.

Proof. Let f € ¢-Ind$ 0,¢ € Ind$% 5. Then (f(hg), p(hg)) = (65 0m)(h){(f(g),#(g)). Therefore the
function g — (f(g), #(g)) is in C.(H\G,dc|5; 0x) and so we can define

(f.6) = /H @) 60 clo)

by Theorem [A.6] This satisfies (w(g)f, 7' (g)¢) = (f,¢) for g € G, where 7, 7" are the actions of G on

¢-Ind$ o, Ind%  respectively. That way we get a map Ind$ & — ¢-Ind$ o given by ¢ — (—, ¢).
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To show it is an isomorphism one explicitly describes (c—Indg o)¥ for open compact subgroups K C
G. O

Let G be a locally profinite unimodular group and fix a Haar measure dg = pu.

Definition. The Hecke algebra of G is H = H(G) = C(G) the space of compactly supported
locally constant functions on G. The algebra operation is given by convolution: If f1, fo € H,
define the convolution f1 x fo by

(1% 12)(9) Z.Z;flUUfé(h’lg)dh.

If (V,7) is a smooth representation of G, then V' becomes a module over H via

ﬂnw:[y@wwww

where f € H(G),v € V. To make sense of the integral one can note that that it is really a finite sum,
since f is locally constant of compact support and v is fixed by an open compact subgroup of G. If K
is a compact open subgroup, let Hx = H(G, K) be the subalgebra of H consisting of those functions
that are biinvariant under K. Given p € K, define a function e, € H by ey(k) = ii(r;‘{g Tr p(k~1) when
k € K and e,(k) = 0 otherwise. If p is the trivial representation we also denote e, by ex. It is ﬁ
times the characteristic function of K. We then have Hx = ex * H *x e and Hp is a unital algebra
with unit egx.

Theorem 9.10 ([BHO6} Proposition 4.4]). Let (V, ) be a smooth representation of G. Then m(e,)
is the projection V = Gap’ef( Ve s ve.

For the next definition, note that if 7' : V' — V is an endomorphism of a vector space V with finite-
dimensional image W, then we may define the trace of T by Tr T := Tr T'|+—w+ where W’ C V is any
finite-dimensional subspace containing W. A distribution on a locally compact totally disconnected
space X is a linear functional C°(X) — (CE|

Definition. Let (V,n) be an admissible representation of G. The character of 7 is the distribution
Trrm: C°(G) — C, defined by
Tra(f) =Te(x(f): V= V).

Note that if f € C(G), then 7(f) has finite rank, so the trace is well-defined by the remark before
the definition.

Theorem 9.11 ([JL70) Lemma 7.1]). Let (Vi,71),..., (Va, ™) be pairwise non-isomorphic irre-
ducible admissible representation of G. Then their characters Trmy, ..., Trm, are linearly inde-
pendent.

Note that if 0 — n/ — m — 7 — 0 is a short exact sequence of admissible representations, then
Trm = Trn’ + Tra”. Together with the theorem this easily implies

5Note that unlike in the analytic case no continuity restriction is placed on such functionals.
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Corollary 9.12 ([Cas+08| Corollary 2.3.3]). Let (V,7), (V',n') be admissible representations of G
of finite length. Then the irreducible composition factors and their multiplicities of w, 7' coincide
(i.e. w, @ have isomorphic semisimplifications) if and only if Trw = Trr’.

Definition. A representation (V,m) is unitary if it is equipped with a G-invariant inner product

(_’_)'

Note in the next section we might call these representations preunitary to distinguish them from those
acting on a Hilbert space.

Proposition 9.13. Let (V,7) be a unitary admissible representation. Then the map v — (—,v),V
V is an anti-linear isomorphism.

Proof. First it is easy to see that (—,v) is indeed smooth. Let f € V. We want to show that
f = (—,v) for some vector v € V. If f =0, take v = 0. Let K be a compact open subgroup such
that f € VK = (VX)*. Then there is a vector v € VX such that f(w) = (w,v) for all w € VX since
VE is finite-dimensional. Then for arbitrary w € V we have f(w) = f(n(ex)w) = (7(ex)w,v) =
(w, 7(ex)v) = (w,v).

This could also be proven by passing to the completion, using the Riesz representation theorem, and
then show that the representing vector is smooth.

Proposition 9.14. Let (V,7) be a unitarizable admissible representation. Then its matriz coeffi-
cients are bounded.

Proof. Let (—,—) be an invariant inner product. Then via the inner product we can identify V' with

V', see Proposition so a matrix coefficient ¢ is given by ¢(g) = (7(g)v,w) with v,w € V. Then
by Cauchy Schwarz:

[(m(g)v, w)| < [lw(g)vll [[w]l = J[o]l lw]-
O

Theorem 9.15. Let G be tdlc and H a closed subgroup. If (U,o) is a unitary representation of
H, then ¢-Ind$ o is unitarizable.

Proof. Let (—,—) be an H-invariant inner product on U. Let f1, fo € c—Indg 0. Then the function
g (f1(9), f2(g)) is in C.(H\G,dc|;' 0x) and we can define

(s fo) = /H ) B0 lo)

This is a G-invariant inner product. It is positive by the last remark after Theorem [A6] O
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9.2. Unitary Hilbert Space Representations
The following definition is completely general for an arbitrary topological group G.

Definition. A unitary Hilbert space representation of a topological group G is a Hilbert space V/
with a homomorphism 7 : G — Aut(V) such that w(g) is unitary and for every v € V, the map
g — 7(g)v is continuous (i.e. w is continuous for the strong operator topology on B(H)). V is
irreducible if there are no closed proper nontrivial invariant subspaces.

Definition. A unitary Hilbert space representation (V,7) of a locally compact group G is ad-
missible if for some compact subgroup K every irreducible representation of K occurs with finite
multiplicity in V.

If the condition holds for some K, it holds for all compact K’ O K, see Lemma 7.5.22).
We will just say Hilbert space representation or unitary representation.

A lot of the results from the previous section carry over to this setting. Notably, let H = (C°(G), )
be the Hecke algebra of G. It carries an involution f — f* where f*(g) = f(¢~!), in this way it
becomes a x-algebra. By a unitary representation (or x-representation) of H we mean a Hilbert space
V together with a #-homomorphism 7 : H — B(V') such that V is non-degenerate, meaning m(H)V is
dense in V.

Given a unitary representation (V,7) of G, we get a unitary (i.e. x-) representation of H via

w(hp = [ feyma .

Conversely, given a x-representation (V,7) of H, we get a unitary representation (requires a little bit
of explanation) of G via m(g)v = limg 7(d4 * ex )v where the limit runs through a neighbhorhood basis
filter of compact open subgroups. That way as before we get a bijection between unitary representations
of G and of the Hecke algebra.

We now describe the relationship between smooth and Hilbert space representations for tdic groups.
Let G be a tdlc group and suppose (V,7) is a Hilbert space representation of G. Let V™ be the
subspace of smooth vectors, i.e. the set of vectors fixed by an open subgroup of G.

Proposition 9.16. If (V,7) is a Hilbert space representation, the subspace V° is dense and
G-invariant.

The density part is actually the statement that V' is non-degenerate as a H-module as asserted above.

Hence from a Hilbert space representation we get a smooth algebraic representation of G. Conversely,
if we have a smooth algebraic representation (V,7) of G that is preunitarizable, i.e. there exists a
G-invariant inner product on V, then we can consider the completion V with respect to this inner
product, and obtain in this way a unitary Hilbert space representation of G.

Question: Are these operators inverse to each other? One way is the proposition, but conversely, if

V is an algebraic smooth representation with G-invariant inner product, is (V) = V?
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I thought of the following argument in case V is admissible: Fix an open compact subgroup K. Then
V= @;)E » VP. If V is admissible, each V? is finite-dimensional, hence

V-V

peR

Now if v = (v,), € V is smooth, then there is a compact open subgroup Ky, wich we may take to be
normal of finite index in K, such that v is fixed by Ko. If v, # 0, then 7(K)v, = p(K)v, = V¥ by
irreducibility of V”. Hence Kj acts trivially on V*. But then p must come from one of the finitely
many representations of K /Ky (a finite group), hence v is only non-zero in finitely many components
and we get
ve@Pvr=vcv.
pef(

So (V)>* =V.

In 2.8] however this is deduced in the case of reductive groups using a nontrivial fact (the
multiplicity of K-representations in an admissible representation is uniformly bounded). Not sure if I
missed something.

10. GENERAL RESULTS

Notation: F nonarchimedean local field. G = GLo(F), B the upper triangular matrices, T the

diagonal matrices, N the upper triangular unipotent matrices, M the matrices of the form (a b),

0 1
K = GLy(Op).
(0 1
“=\1 0)
0 —1
1 0)°
0 1
w1:(1 0>

Theorem 10.1. If (V, ) is an irreducible smooth representation of G, then V is admissible.

We define the matrices

Wo

Proof. Either V is one-dimensional, a subrepresentation of a principal series representation, or a su-
percuspidal representation, see Theorem [23.1] In the first two cases the result is clear. In the last case,
the result follows from Proposition 22.1] O

Theorem 10.2. Let (V,7) be an irreducible smooth representation of G. Then its contragredient
(V,7) is isomorphic to the following two representations on V :

(1) (V,m1) where w1 (g) = w(g7) 1.
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‘ (2) (V,73) where o = w™! @ m where w is the central quasi-character of G.

Proof. (Proof from [Bum97]). The second statement can be easily deduced from the first using the

identity
-1
det 0 _
-T _ g 1
g = ( 0 det g) Wo g®o

0 _01> As for the first, it suffices to show that 7 and m; have the same character. If

1
¢ € C=(G), we let ¢, ¢T be defined by the formulas ¢(g) = ¢(g~1), ¢7 (g) = ¢(g7). For ¢ € C=(G) we
have Trmi(¢) = Tr W(QZT). A straightforward computation shows that %(5) .V — V is the adjoint of
(), hence Tr 7(¢) = Tr(¢). To show that Trmr; = Tr7, it suffices to show that Tr 7 (¢7) = Tr 7 (¢)
for all ¢ € C°(G), i.e. that Trm is transpose-invariant. If Trm; was a function on G, this would be
easy since it is conjugation-invariant and any matrix is similar to its transpose. But a priori Trmy is
only defined as a distribution, so we need to be more careful. It can be proved that any distribution
on G that is conjugation-invariant is transpose-invariant. This uses the involution method, see [BZ76]

and [Bum97).

Alternatively one can show that Tr is actually (or rather represented by) a continuous function, see
JL70} Theorem 7.7] for a proof. O

where wg = <

Lemma (|[Bum97 Exercise 4.4.2]). If v € SLo(F') — B, then v and N together generate SLa(F).

Proof. Let H be the subgroup generated by N and g. Write g = <Z b> with ¢ # 0. Then

d

6 E D6 )0 ) en
oo D)= (d ),

hence —NT C H. Since w?> = —I, we have N7 C H. This means we can apply the following row
operations to matrices: Add a multiple of one of the rows to the other (same with columns). It is
easily seen that we can reduce any matrix in SLy(F') with such operations to a matrix of the form

We have

(m x(_)1>’ so it suffices to show these are in H. We apply the row operations:

0
x 0 Ro+(z—1)Ry x 0 - 1 —z ! - 1 —zt cH
0 z7t z—1 g7t r—1 z71t 0 1 ’

Proposition 10.3. Suppose (V,7) is a finite-dimensional irreducible smooth representation of G.
Then V is one-dimensional and m = x o det for some quasi-character x of F*.
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Proof. Since V is finite-dimensional and smooth, the kernel of 7 is an open normal subgroup. We show

that this implies SLy(F') C ker 7. Indeed, we have ((1) 317

(L) =00 O (D) 0 enen

for all t € F*. But then N C kerw. Again since ker7 is open, it must also contain a matrix
that is not upper triangular, hence SLo(F) C kernm by the lemma aboveﬂ So 7 factors through
det : GLy(F) — F*. Then V is one-dimensional since F'* is abelian and we have 7 = x o det for some
quasi-character x of F'*. O

> € ker 7 for |z| small enough. Since ker 7 is

normal we have

Proposition 10.4. Suppose (V,7) is an irreducible smooth representation of G. If V contains a
nonzero vector fized by N, then V is one-dimensional.

Proof. Suppose 0 # v € V is fixed by N. Its stabilizer then contains both N and an open subgroup
of G. By the lemma it contains SLo(F'). Let W be the one-dimensional subspace spanned by v. Then
W is invariant under SLy(F) and Z. Note that GLy(F)/(Z SLa(F)) = F*/(F*)? is finite (F is a
local nonarchimedean field of characteristic qZI) Hence the the subrepresentation spanned by W is
finite-dimensional. As V is irreducible, we must have V' = W and the result follows follows from the
previous proposition. O

11. JACQUET MODULES

Definition. Let (V,7) be a smooth representation of N. The Jacquet module of V, denoted Vy
is Vn = V/V(N). V(N) is invariant under B, hence Vy is a B-module.

If ¢ is a character of N, the -twisted Jacquet module of V' is Vi, = V/V (¢).

Proposition 11.1. Let (V, ) be a smooth representation of N andv € V.. Thenv € V(¢) if and
only if
Y(n)r(n)vdn =0
No
some compact open subgroup Ny C N.

Note that if the condition holds for some compact open Ny C N, then it holds for all N7 containing
Ny.

Proposition 11.2. The functor V — Vy is exact.

Proof. Right exactness is obvious and left exactness follows from the previous proposition. O

6In this case the proof can be made a liittle simpler than in the lemma, since we could directly show N7 C kerw
Tt also works in characteristic # 2. In characteristic 2 the proposition still holds, but this part in the proof requires
modification.
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Lemma 11.3 (|[BHO6| Restriction-Induction Lemma 9.3]). Let (U, o) be a smooth representation
of T which we view as a representation of B via inflation. Let (V,7) = Indg o. Then we have a
short exact sequence of representations of T':

0—>a“’®63|%/2 —>7rN—>a®6B|%/2 —>0,H

0 1

where o¥(t) = o(wtw™1) with w = (1 0

). The right map is given by f — f(1).

Note that in [BHO06| they use another convention for the modular quasi-character, our dg is their 6;1.

Proof. (From [BHO6])

There is a canonical map o : V. — U given by a(f) = f(1). It is surjectiveﬂ and a map of B-
representations. Let W = ker a. Since Uy = U, taking the Jacquet module gives the exact sequence
0Wn—=Vy U0
Since G = BUBwN, f € V isin W if and only iff supp f C BwN. Suppose this is the case. There is
a compact subgroup N} C N’/ = {(i (1))} such that f is invariant under N{j. So if zero on B, then

f is also 0 on BN{,. The identity

1 0\ [1 x7! -zt 0 1 7!

z 1)7\0 1 o z)%\o 1
for z # 0 then shows that supp f C BwNy for some compact subgroup Ny C N.
So for f € W we can define fy : T — U by

:/ f(an)dn=5B($)1/20(33)fN(1)~
N

The map U : W — U, f — fn(1) is surjectivem We claim that the kernel of this map is W(N).
Indeed, first note that fy(1) = 0 iff fy = 0. If fx(1) = 0, then since supp f C BwNy for some
compact open Ny, we may restrict the integral to Ny and see that f € W(N) by Proposition m
Conversely, if f € W(N), then le f(gn)dn = 0 for some compact open N; C N and all g € G. We
may assume N7 C Ny. Then

:/ flzwn)dn = f(zwn)dn
No
Z / f(zwyn)dn = Z f(xy®“wn)dn

yENo /N1 yENy /N1 N
=0.

Or directly by the comment after the proof of Proposition [11.1

8Note here and in the following my notation is slightly different than in |[BHO6|. The meaning of V, W is different.
91 think this deserves a brief justiﬁcation which I have not seen in |BH06|. To show surject1v1ty, let w € U and
sD € COO(G) We define f : G — U by f(g) = [ f(b7! 9)61/ 25 (b)udb. It is easy to see that f € Ind§ (o). If we choose

&B(BQH) 1y where H C G is a compact open subgroup such that v € UBTH  then we have f(1) =u.

I suppose one could argue that ® : W — C2°(N,U) given by ®(f)(n) = f(wn) is an isomorphism. Then ¥ is the
composition of ® with the integration map CS°(N,U) — U and the latter is clearly surjective.
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Therefore ¥ maps Wy isomorphically onto U. It remains to show that the induced action is the one
claimed. For t € T and v € W we have:

\If(tf):/Nf(umt)dn:53(75)/Nf(wtn)dn:5B(t)/Nf(twwn)dn:5B(t)1/20(tw)\11(f).

Hence Wy X o% ® 5]13/ % as claimed.

0

Theorem 11.4. Let (V, ) be an admissible representation of G. Then Vi is admissible as a T -
representation.

Proof. The proof is taken from [BZ76[, but it is basically the same as in [Bum97]. Let A be the set of
w0

0 om with m > n where w is a uniformizer. Set t(§) = m — n.

matrices of the form § = (

For n > 1let K,, = [ +p"Max2(OFp) and K, = K, NNT, K? = K,, N T, K, = K,, N N. Note that
the K, form a basis of open compact subgroups around the identity.

Lemma. We have K,, = K,;' KK, .
Denote the p : V — Vi the quotient map.

Lemma. We have T(VE~) C (Vy)En. Forn € VAI,(?‘, there is a t € Z such that mx(6~1)n €
p(VER) for all 6 € A satisfying t(8) > t.

0

Proof. The inclusion is obvious, p is a map of T-representations. For the second part let n € Vf,{ "
0

and ¢ € V with p(¢) = 1. Then also 7x(6~1)n € fo” for any 6 € A. We have ny(671)n =

P(T(€ gt o )m(671)E) since K C N acts trivially on V. Let k = (i O) € K, and ¢ = (w ;b) €

1 0
A. Then
-1 1 0
o (L 9).

So for t(§) = b — a large enough, 6kd~! will be in the stabilizer of ¢ for all k € K, , so that 7(§~1)¢ =
(e -1)m(67")e. Then for such § we have

7TN(5_1)77 = p(”@;{j}(g)ﬂ((s_l)g) = p(”@}(jkg)ﬂ(g}(;)77(5_1>€) =p(y)
with y = W(SKiKgKg yr(671)E € VEn, O

We now prove that T(VEr) = (VN)KS. It then follows that Vx is admissible. Since we know that
T(VEn) C (V)K" it suffices to show that dim(Vy)X» < dim VE». If ny,..., 7 are linearly indepen-
dent vectors in (Vy)®~, then by the lemma there is a ¢ such that 7 (6~ 1)n; € p(VEn) for all 6 € A
with ¢(8) > t. 7 (8 )1, ..., 7 (871 are still linearly independent, so I < dim p(VE») < dim VEn,
hence the claim. O
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Proposition 11.5. If (V,7) is an irreducible smooth representation of G, then Vy is at most
two-dimensional.

Proof. If Viy = 0, there is nothing to show. Otherwise by Theorem V' embeds into a principal
series representation and the result follows from Proposition 0

Proposition 11.6. If (V,7) is one-dimensional, of the form x o det for some quasi-character x
of F*, then Vi = yodet = x X .

Note the equality x o det = x X x of course only makes sense as T-representations.

Proof. Tmmediate. U

12. REPRESENTATIONS OF M, N

Let v be a nontrivial character of F'. Then M acts on C*°(F*) and C°(F*) by

#((5 1)) ot = otao) ()
7((5 1))@ =vinrote) (34

Denote by V the subspace of C°°(F*) consisting of functions ¢ satisfying ¢(z) = 0 for |z| > ¢ where
¢ is a constant depending on ¢. V is an M-subrepresentation of C*°(F*) containing C°(F*).

Proposition 12.1 (|BHO6 §8.2 Gloss.]). There are isomorphisms of M -representations V =
Idy o and C°(F*) 2 c-Ind) 1.

Proof. This basically follows from the fact that a — (8 ?) is a bijection F’* — M/N. If f € Ind% Y,
we define the function ¢y : F* — C by

o=s((3 9)

Then f — ¢¢ is an isomorphism of M-representations Ind% ¥ 2 V. The same argument works for
the compact induction.

O

12.1. Irreducibility of C°(F*) as an M-representation

Proposition 12.2. The representation of M on C°(F*) is irreducible.
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¢ € U be nonzero. By [(x)| we may assume ¢(a) # 0. For any f € C°(F), we define

fbl/lwf(sc)ﬂ(((l) af))gbdx.

o1(y) = /F F@)b(an)o(y) dz = Fy)ow).

12.1.1. Proof in Let U be a nontrivial invariant subspace of C°(F*). Fix a € F*. Let

We have ¢; € U and

Now if V' is a small neighboorhood of a such that ¢ is constant on V', then we chooose f so that fis
the characteristic function of V. This implies that U contains all characteristic functions of arbitrarily
small neighborhoods of a. Letting a vary, these functions span C°(F*), so U = C°(F*) as desired.

12.2. Twisted Jacquet modules determine elements

Proposition 12.3. Let (V,m) be a smooth representation of N. We have (), V(¢) = 0 where the
intersection is taken over all characters ¢ of F.
Proposition 12.4. If (V,x) is a smooth representation of M, we have Vi, = Vi as vector spaces
for all nontrivial characters 1,1’ of F.

Proof. Indeed, let 1,1’ be nontrivial characters of F'. Then there is a € F* such that ¢'(x) = ¢ (ax)

for all z. Then the map V(¢') — V(¢) given by v — 7 ((8 ?)) v is an isomorphism. O

So if 9 is a nontrivial character of F' and (V, ) a smooth representation of M, we get Vy» = 0 for all
nontrivial characters ¥’ of F. By Proposition we then must have V(N) = 0, in other words N
acts trivially on V. Now if V is actually a representation of G, then also SLy(F) acts trivially on V/
since it is generated by N and its conjugates. So we have shown:

Corollary 12.5 ([Bum97 Theorem 4.4.3]). If (V, =) is a smooth representation of G such that
Vi = 0 for some nontrivial character ¢ of F, then the action of G factors through GLg(F)/ SLo(F) =
F*. In particular, if 7 is admissible and irreducible, then dimV =1 and we have m = x o det for
some quasi-character x of F*.

12.2.1. Proof in [BHO6. Let v # 0 be in V. We show that there is a character ¢ such that v ¢ V(¢).
Let Ny C N be a compact open subgroup such that v € VNo. Let Ny € N; € Ny C ... be a filtration

1 pk=i
01 ) for some fixed k). For

each j > 1 we may view VN as a representation of the finite group N;/Ny. Since v € VNo is nonzero,
there is a character 1; of N; /Ny such that the projection of v onto the v;-isotypic component of VNo
is nonzero, i.e. v ¢ Vo (3p;). This means hat fNj ¥;(n) " tr(n)vdn # 0. In fact we may choose the v;
inductively in a compatible way so that ;1 extends ¢);. Then let ¢ = J z 1; be the corresponding
character of N. Since for all j > 1 we have fNj P(n)"tr(n)vdn # 0, we have v ¢ V(¢).

of compact subgroups such that N = Uj N; (e.g. explicitly N; = <
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12.2.2. Proof in . This is quite a different view on the matter. Fix a nontrivial character i of
F. Then the map F' — F, a — v, : © — 9 (ax) is an isomorphism. We equip F' with the self-dual Haar
measure so that the Fourier transform gives an isomorphism of rings (C2°, %) = (C2°,-). We define an
1 —z
0 1
of a smooth (or cosmooth in the terminology of [Bum97]) module of (CS°(F'),-). This smooth module
corresponds to a sheaf F on F such that V = F..

action p of C°(F) on V by p(z) =7 (< . Then the Fourier transform gives V the structure

Lemma 12.6 ([Bum97, Proposition 4.4.5]). Let a € F. The stalk of F at a € F satisfies
Fo =2 Vy,.

Note for a = 0 we have V,;, = V. Then Proposition follows immediately from the sheaf properties.

Proof of Lemma[12.6. We have F, = V/V(a) where V(a) is the subspace of all v € V such that
1y - v = 0 for some open neighborhood U of a. It remains to show have V(a) = V(1,). We have
v € V(1b,) if and only if for some compact open subgroup Fy = p* C F we have

p(tbalry ) = FO%(—x)w((é 7)) vae o

Now we have ]].;pn\—k = Vol(p"*k)z/)a]lpk, where n is the exponent of the conductor of v, and the result
follows. O

13. WHITTAKER MODELS

Let ¢ be a nontrivial character of F. We denote the corresponding character on N again by 1. Let
W(1) the space of smooth functions W : G — C such that W(ng) = ¥(n)W(g) for all n € N and
g € G. Then G acts on W(v) via right translation. Note that W(¢)) = Ind$ ¢.

Definition. A Whittaker model of a representation (V,m) is an injective G-homomorphism V —
W(p). A Whittaker functional on (V,m) is a nonzero linear map A : V. — C such that A(nv) =
Y(n)A(v) for alln e N,v e V.

By Frobenius reciprocity, we have
Homp (7|n, %) = Home(m, W(¥)).
So if 7 is irreducible, giving a Whittaker model is equivalent to giving a Whittaker functional.

Theorem 13.1. If (V, ) is an irreducible smooth representation of G, then dimVy, < 1. If V is
infinite-dimensional, then dimVy, = 1.

Suppose (V,7) is irreducible and smooth. The space of the Whittaker model is denoted W(w,).
Explicitly, if A is a Whittaker functional on V', then W (w, ) is the space of functions W, for v € V
where

Wy(g) = Alr(g)v).
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Proof. The proof in Bump uses some the geometric theory and the involution method to show that
certain Bessel distributions are invariant under a suitable involution. If we assume the existence of a
Kirillov model, we can give a short proof (see next section).

It follows from Theorem that if V' admits a Whittaker functional, then so does V. Let A be a
Whittaker functional for V. Then there is also a Whittaker functional A for V. We show that A and
A determine each other up to scalar multiple.

13.0.1. Proof adapted from . Note that A is functional on V, but it is not smooth. However, we
can convolve it with smooth functions, to get a smooth functional. Define:

Dy H(G) —V

@%A*gp::/
G

o(g) (A o 7(g))dg = (UH /| so(g)A(w(g)v)dg:A(w(so)v)).

Similarly define

It is easily seen that these satisfy

PA(A(n)p) = P(n)Pa(ep),
Px(A(n)p) = ¥(n)Pz(,),
Pa(p(9)p) = m(9)Pa(p),
x(p(9)p) = m(9) @5 (0),

forn e N,geG. Let ®: H(G)@H(G) = V& ¥ be the tensor product of the maps @5, Px. Let
B : H(G) ® H(G) — C be the composition of ® with the natural pairing V @ V — C. Then

B(p1 ® ¢2) = (@a(p1), Px(p2))-
It satisfies
B(A(n)p1 @ A(n)p2) = 1(n)(n')B(p1 @ ¢2),
B(p(g)e1 @ p(g)p2) = B(p1 @ ¢2),

for n € N,g € G. There is an isomorphism H(G) ® H(G) — H(G x G), induced by the map
©1 ® Y2 — 1 ® pa, where the tensor product on the right means (o1 ® v2)(g, h) = p1(g)p2(h). Hence
we get a map H(G x G) — C, still denoted B, such that

B(A1(n)Aa(n')y) = (n)yp(n')B(4),
B(p1(g9)p2(9)y) = B(¥),

where n,n’ € N,g € G. By A\, A2 we mean left translation in the first or second component, similarly
for p1, pa.

Consider the action of G on the space X = G x G via g- (g1,92) = (91971, 929~ "). Then we get an
induced map

P:C®(X) — C®(G\X)
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¢ — (P¢:Gxn—>/c¢(g~x)dg).

Lemma 13.2. P is surjective. If B : C°(X) — C satisfies B(p(g)¢) = B(¢) for all g € G, then
B factors through P.

Proof. The surjectivity of P is basically Proposition O

Note that the map G — G\ X, g — (1, g) is a bijection, and hence we get an isomorphism C°(G\X) —
CP(G), v (g (1,g)). Then the map P becomes

P:0%(X) — C°(G)

¢r— <hH/G¢(9‘1,hg_1)dg=/G¢(g, hg)dg>

Apply this to our B. We get a distribution A : H(G) — C satisfying A(P¢$) = B¢ for ¢ € H(G x G).
Tt is easily seen that A(n)P(¢) = P(A2(n)¢), and p(n)P(¢) = P(A1(n)¢). Hence,

A(An)p(n)p) = ()P (n')Alp),
for n,n’ € N, i.e. A(n)"'A = ¢(n)A and p(n)A (n)A for n € N. By Theorem this gives
that A is invariant under ¢, where ¢ : G — G, g — wgTw. Let @1, 2 € H(G). Then

(Po1 ® @2)(h) = /Gwl(gm(hg)dg
and
(1(Pr ® 2))(h) = /G 1(9)p2(whTuwg)dg.

It is easily seen that ¢(Pp; ® p2) = P(t@1 ® tp2). Then B(p1,¢2) = B(tps, tp1). Now if p1 € ker §y,
then B(t@2,191) = B(p1,p2) = 0 for all o € H(G). This implies that @5 (cp1) = 0.

This shows that ker ® determines ker 3. Of course, we could swap the roles and get the reverse.
Hence, if A’ is another Whittaker functional for V', then ker ®y = ker ®5, =: U. Then ®,, ®,, both
induces G-equivariant isomorphisms H(G)/U — V. Since V is irreducible, they are differ by a scalar.
It is then easy to see that A, A’ differ by the same scalar.

13.0.2. Proof adapted from . Here is a slightly different version in the spirit of Bump’s proof.
Define the map ®, as before. Define A : H(G) — C by

A(p) = A(@A(9))-
Then
Am)A)(p) = AT e) = A@a(AnT1)g) = ¥(n) " A(@4(p)) = 1(n) T Aly),
(p(n)A) (@) = Alp(n™1)p) = A(@a(p(n™)p)) = A(m(n)@a(p)) = ¥(n) " A(@4lp)) = () Aly),
for n € N. This is not quite the condition in Theorem [26.1] but its proof shows that still t(A) = A.
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Lemma 13.3. If ¢ € H(G) is such that ®x(p) = 0, then ®5(cp) = 0.
Here f(g) = f(g7")-

Proof. First note that ®A(p(g)p) = 7(g9)Pa(¢) = 0 for all g € G. Next we have

0=A®@ap(9)p) = Alp(9)p) = Alulp(9)9) = AA((9))e(9)-
Hence also @, (A(g)t(¢)) =0 for all g € G. Let ¢ € H(G). Then

(6 @) (h) = /G 6(9)(\(9)()) () dg.

Then we get A(®a (¢ #1(¢))) = 0. We have ®x(¢* 1(p))(v) = A(m(¢)m(1p)v) = (7(i) Pa())(v). Now
it is easy to see that the functions ®4(¢), ¢ € H(G), span V' (since they generate an invariant non-zero
subspace, and V is irreducible). This show that A(7(i%)3) = 0 for every v € V, hence ®5(ip) = 0. O

We can switch the roles of A, A (using V= V) and obtain that the kernels of @5, &% determine each
other. As in the previous proof we see that this suffices to establish the claim.

O

14. KIRILLOV MODELS

Let (V,m) be an infinite-dimensional irreducible smooth representation. In the previous section we
used the isomorphism Homy (7|, %) = Homg(w, W()) to realize 7 in W () C C*°(G). We also
have

Homy (| n, 1) = Homyy (7, Indy ¥).

Explicitly, if A is a Whittaker functional on V', then f : v — (m — A(w(m)v)) is the unique (up to
scalar) nonzero M-homomorphism 7 — Ind}! .

Proposition 14.1. f is injective, so V embeds into Ind%f .

Proof. This is the argument in p. 227], but it is basically the same as in . The
composition of V' — Ind%[@[} — 1, where the second map is given by g — ¢(1) is just A, and thus
induces an isomorphism V, = 1). So by exactness of the twisted Jacquet functor, (ker f), = 0, hence
(ker f)(N) = 0 by Proposition and Proposition in other words, N acts trivially on ker f.
This forces ker f = 0 by Proposition [10.4] a

Note that by Proposition we have IndAN4 1 =2 W as M-representations where W is the subspace
of C*°(F*) of bounded support. Hence we get an embedding

V s Ind¥ o = W — C®(F>).

as M-representations.
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Definition. This (or also the image in Ind ) is the Kirillov model of (V, ).

So there is a space of functions of bounded support in C*°(F*) with a G-action (extending the natural
M-action) that is isomorphic to V. This space and the action is unique, essentially by uniqueness of
the Whittaker model, of which we can now give a (second) proof (though this is not particular useful
in our treatment, since our proof of existence of the Kirillov model relied on dim V;, = 1. But there

are other ways to prove it, e.g. [JL70].):

Proof of Theorem[13.1 (Assuming the existence of a Kirillov model). Let i : V — C°(F*) be a
Kirillov model. Define A : V' — C by A(v) = i(v)(1). Then A is a Whittaker functional. It suffices to
show that V(1) = ker A. Clearly V(¢) C ker A. Conversely, if v € ker A, then i(v)(t) = 0 for t € F*

close to 1. Let w= [ _, ¢¥(—x)7w <(1) T) vdz. We have

1 =z

w0 = [ v (g 7)ode= [ oo

If |t — 1] is bounded away from zero we can choose n large enough such that fp,n Pzt —1))dz =0

for all such ¢. Since also i(v)(t) = 0 in a neighborhood of 1, we see that we can choose n such that
i(w)(t) = 0 for all ¢, hence i(w) =0, so w =0, i.e. v € V(). O

In fact we can describe the space explicitly:

Theorem 14.2. Suppose V is equal to its Kirillov model, so that V.C C*°(F*). Then V(N) =
C(F*). Moreover:

(1) If V is isomorphic to a principal series representation m(x1,x2), define ¢; : F* — C by
¢ = [1"? xjlop\joy- Then
V= C¢1 +C¢2 "‘CEO(FX)’

if x1 # x2 and
V = C¢1 + Cvgg + CZ(F™),

if x1 = x2 where v : F* — C is the valuation.
(2) If V is isomorphic to a special representation o(x1, x2) with x1x5 " = H*l, then
V =C¢y + C(F*),

where ¢ 1S as in the previous case.

(3) If V is a supercuspidal representation, then V.= C°(F*).

Proof. Iftn = (1) T) € Nand f € V, then (7(n)f—f)(y) = (¥(yx)—1)f(y). For |y| small, this is 0, so
V(N) C C(F™). Since V(N) is nonzero (e.g. as V is infinite dimensional and Vi finite dimensional)
and C°(F™) is irreducible as an M-representation, Proposition we get C°(F*) = V(N). We
now use the explicit description of Viy for the different types of representations, see Theorem [15.10
Proposition and Theorem In the supercuspidal case there is nothing to do. Assume we are

in the case of the principal series representation. Let f € V is such that mn(¢)f = n(t) f where f is the
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image of fin Vi, t € T and n = §'/?y,. Fix ty € wO*. Let t = (t(;) ?) Then 7 (t)f—n(t)f € V(N),

so by the first part it is in C°(F*) and there is € = £(tp) > 0 such that
0= (r(t)f = n(t)f)(@) = f(tox) — Itol"* x1(t0) £ ()

for |z| < e. By local constancy, this also holds in a neighborhood of t3. Since wO* is compact,
there is a £ > 0 such that this holds for all ty € wO*. It then holds for all ¢tz € F* with |to] < 1
since any such element can be written as a finite product of elements in wO*. In other words,
f(tox) = |to|1/2 x1(to) f(z) for all tg,z € F* with |tg| < 1,|x| < . Therefore f differes from ¢; by
a function in C°(F*) and we get ¢1 € V. If x1 # x2, we get similarly ¢o € V. Since dim Vy = 2,
¢1,¢2 must span V modulo V(N) = C*(F*). If x1 = x2 adjust this slightly, and for the special
representation it works the same. O

15. PRINCIPAL SERIES REPRESENTATIONS

Definition. Let x1, x2 : F* — C* be quasi-characters. Let x = x1 K x2 and (V,7) = Ind$(x) be
the principal series representation. We will also denote V- = m(x1, x2) or B(x1, x2)-

Note that Ind(x) = ¢-Ind$ () is admissible by Proposition since G/B is compact.

Proposition 15.1. The central quasi-character of V is x1 ® x2. If u is any quasi-character of
FX, then 11 ® B(x1, X2) = B(px1, px2)-

Proof. Immediate. O
Proposition 15.2. B(;;Q) >~ B(x;Hxs b

Proof. By general properties of induction, Theorem and using Indg (x) = c—Indg(X). O

Proposition 15.3. There is a short exact sequence of representations of T':

1/2
T

0—>xw®63|1T/2—>VN—>X®6B| — 0.

Proof. Immediate from Lemma [11.3 d

Note in particular that if x; # x2, then x* # x and the above sequence splits.

We might not use it, but we note:

Proposition 15.4. There is a surjective map P : C*(G) — B(xi,x2) of G-representations,
defined by

(P)(g) = /B B(b™1g) (52x) (b)db.
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Proof. In the notation of Appendix [A| we have B(x1, x2) = C°(B\G,/?x) and P = P9'*X. The
result follows from Proposition or rather its smooth analogue, see e.g. [Bum97 Proposition 4.5.3]
or [BHO6| 3.4]. O

15.1. Irreducibility of Principal Series Representations
Let 1) be a nontrivial character of F. Let (V,7) = Ind$(y).

Proposition 15.5. The principal series representation (V, ) has a unique Whittaker functional,
i.e. dim Vi, = 1.

Proposition 15.6. The principal series representation has an invariant one-dimensional (resp.
codimension one) subspace if and only if x1x3+ = |-|7" (resp. xax3' = ). In this case the
invariant one-dimensional (resp. codimension one) subspace is unique.

Proof. TODO (not difficult). The case x1x5 = = |-| follows by dualizing using Proposition m O

In the case x1x5 = = |-|71, the invariant one-dimensional subspace is spanned by f(g) = X(det g) where
X=x1 |~|1/2 = X2 \-|71/2. G acts on it via X (viewed as usual as a character of G via det). By dualizing
. -1 _ —1 . . . . —-1/2 1/2
in the case x1x5° = ||, the one-dimensional quotient is x1 || =x2||7".

Theorem 15.7. The principal series representation (V,x) is irreducible if and only if Xle_l #*
|-='. In the case X1X3 ' = |-=Y, (V,7) has length 2.

Definition. In the case X1X2—1 = |~|i1, the unique infinite-dimensional irreducible quotient or

submodule of B(x1,x2) is denoted o(x1,x2). It is called a special representation.

If x1x5 ' = || " it fits into the exact sequence

0—x1 |'|1/2 = X2 |'|71/2 — B(x1,x2) = o(x1,x2) = 0

Similarly in the case y1x5 ' = |-| we have

0= o x2) = Blu.x2) = xa |77 =xz [ = 0
By uniqueness of the quotient/submodule we also get that 0@2) ~o(x;hxat).
15.1.1. Proof in . We have a short exact sequence of B-representations

O—>W—>V—>x®5}9/2—>0
where the map on the right is given by f — f(1). Part of the proof of Lemma shows that the
map ® : W — C°(N), given by ®(f) : n — f(wn) with f € W is an isomorphism. Note that it is
an isomorphism of N-modules when N acts in the usual way via (right) translation on C2°(N). It is

clear that dim C°(N), = 1 (twisted Haar measure on N). Note also that x ® 5113/ ? is trivial as an
N-module. Hence applying the y-twisted Jacquet functor to the above sequence gives

0—=Wy—Vy—=0
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which shows Proposition [15.5

Let U = W(N). From the proof of Lemma - we know that the map W — x% ® 5113/2, =
I f n f(wn)dn is surjective with kernel U. So we have a short exact sequence

05U =W X"~

which gives Uy, = Wy,

The following lemma isn’t verbatim in [BHOG|, but we use some ideas from there (I didn’t fully
understand all of their proofs first and rewrote it myself in a different way, and this came out of it).
It is also related to some calculations around the Kirillov model, see [Bum97 Proposition 4.7.2].

Lemma 15.8. U = C°(F*) as M -representations.

Proof. Define ® : U — C°(F*) via

0= Jorr e (r(§ 1)7)van= [mtor (on (5 1))

Idea: Corresponding to the canonical projection U — Uy in Hompy (U, U,) we have an element in
Hom (U, Ind% Uy). That element has in fact image in c—IndAN/[ Uy. Then we compose this with
Uy = Wy = ) where the last map is given by f — fN ¥~ 1(n)f(n)dn, and finally identify C°(F>)

with ¢-Ind¥ o via ¢ — (a— ¢ (<3 ?)))

First we check that ® is well-defined, i.e. that indeed ®(f) € C°(F*). Clearly ®(f) is smooth, so we
only need to check that its support is compact, i.e. bounded away from 0 and bounded. If we write

1 =z
n= (0 1>, then we have

(o5 5) = (6 ()= (0 ) s (o6 1))

Since the support of f is contained in BwNj for some compact open Ny C N, we have

o 1) =

1 z/a

unless |z| is small enough (i.e. so that (0 1

) € Np). Pick a sufficiently small compact open

pJ
0 1

small, we have f (wn ( >) 0 unless n € Ny. Then (write n = (é T))

(5 2)) e [ (o5 7))
(o) o (o 1) o

subgroup N; of N so that ¥(n) = 1 for n € Ny, say Ny = for some j € Z. If |a] is sufficiently

| |
/\
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= la| 65 ((3 2))1/2><2(a)/(1_1pjf <“’ ((1) 31;>) dn

=0.

If |a] is sufficiently small, the last integral is 0 since f € W(N), see Proposition So the support of

®(f) is bounded away from 0. Next it is easy to see that ® <7r <(1) 3{) > (a) = Y (ay)P(f)(a). If |y is

small enough, but nonzero, we have 7 <(1) 11/> f=f, 50 ®(f)(a) = ¥(ay)®(f)(a). Then if |a| is large

enough, ¥(ay) # 1, so 5(f)(a) = (0. This shows that the support of <T>(f) is bounded and therefore

compact. This shows that ® is well-defined. It is also clear that it is a map of M-representations.
Suppose f € U is in the kernel of ®. Let fy = ®(f). Then by the above computation we have

0= (7)) =3 (5 2))1/2><2<a> [otor (w(y 710)) an
< (6 ) e [ () (o6 )

This shows that the function fy satisfies f;(a) = 0 (Fourier transform) for all a # 0. But this is
also true at 0, since f is in the kernel of the map W — x" ® 612, So fx = 0, and then f = 0.
Therefore ® is injective. It is also surjective since C°(F™) is irreducible as an M-representation by

Proposition [12:2] O

We could extend this to an isomorphism of B-representations if we defined an action of B on C2°(F*)
by letting the center act via the central character.

We note that it is easy to see that V(N) C U, so that V(N) ="U.

Corollary 15.9. As an M-module (or B-module) a composition series of V is given by
OCUCwcv
with quotients V/W =2 x ® (5]13/2, WU =x¥® (5}3/2 and U =2 C(F*). So V| has length 3.

TODO: finish up proof (should be quick, basically given what we have done, it is like the one given
next)

15.1.2. Proof in [Bum97. First prove Proposition using the sheaf and involution method (todo).
Suppose V' C V is a nontrivial proper subspace. Let V" = V/V’ so that we have a short exact
sequence
0=V 2V -V">0.

By Proposition we have dimVy = 1. So by exactness of the twisted Jacquet functor we have
either V, =0 or V = 0. Suppose V/, = 0. By replacing V' by V' (which replaces X1X3 ' by x2x1 ') we
may assume V;; = 0. Then by Corollary m the action of w on V' factors through F*. Then V' has
a one-dimensional invariant subspace, so that x1x5 " = |1~" by Proposition m
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It remains to show that in the case Xlxgl #* |-|717 V has length 2. Bump leaves this as an exercise,
I am not sure what he intended. I will make use of Proposition [15.3] see also jmy question on Math|
StackExchangel Denote by X_ the quotient by the invariant one-dimensional subspace of V' if x1 x5 1

||~" and X, the invariant codimension one subspace if x1x; ' = |-|. We have to show that X. is

irreducible. We know that X = X_. First note that dim(X4 )y = 1. Assume U is a proper invariant
subspace of X_. Then we have a short exact sequence

0-U—-X_—-X_J/U—0.

Hence either Uy, = 0 or (X_/U)y = 0. If Uy = 0, then by the same logic as before U has a one-
dimensional invariant subspace. We can pull this back to to V under the quotient map V' — X _ which
has one-dimensional kernel. Hence V has a two-dimensional invariant subspace W. We show that this is
impossible. Indeed, by Proposition (which is proven later in Bump), we have Viy 2 y6/2 @y 61/2
as F'*-modules. Since W is finite-dimensional, N must act trivially on it, so that W embeds into Vy.
But then W has two distinct invariant one-dimensional subspaces. This is a contradiction since we
showed in Proposition that one-dimensional invariant subspace in V (in the case x1x5 ' = ||7")
is unique. So Uy = 0 is impossible. If (X_/U)y, = 0, then dualize and we see that X, contains
an invariant nonzero subspace W with Wy, = 0. Then again W contains a one-dimensional invariant
subspace, but W C X, C V does not have any invariant one-dimensional subspace by Proposition|15.6

for x1x5* = ||-
15.2. Jacquet Modules of Principal Series Representations

Theorem 15.10. The Jacquet module of V- = B(x1, x2) is two-dimensional and T acts as
X51/2 o Xw51/2

a2 (5 ")

if x1 = X2, where v: F* — C is the valuation.

if X1 # x2 and as

Proof. The comment after Proposition [15.3] shows assertion in the case x1 # x2. If x1 = x2, we have
the exact sequence

0= x®6> = Vy = x®6d% =0,
and we need to work a little more. Abbreviate £ = x ® 5113/ % Let v1 be a non-zero vector in V coming

from the inclusion £ — V and v a vector that maps to a non-zero vector under Vy — £. Then for
t € T we have we have

TN ()1 = E(t)vr,
TN (t)v2 = (t)ve + n(t)v1,

for some scalar 7(t) € C. Note that t — n(t) € C is continuous. Computing 7y (t1t2) gives n(t1ta) =

E(ta)n(t1) + £(t1)n(t2) which shows that A(t) = % defines a continuous homomorphism 7" — C.

Consider the composition ¢ : F* — T — C where the inclusion is on the first component, i.e.

ty — ( 01 (1)> Then ¢ : F’* — C is a continuous homomorphism, which is necessarily trivial on the


https://math.stackexchange.com/questions/5046875/irreducibility-of-special-representation-of-operatornamegl-2f-where-f-i/5046907#5046907
https://math.stackexchange.com/questions/5046875/irreducibility-of-special-representation-of-operatornamegl-2f-where-f-i/5046907#5046907
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t7 O

0 t2> € T we have

compact subgroup O, hence ¢ = cv for some ¢ € C. Then for ¢ = (

At) = A <t21 (tlétQ ?)) = Aty ' I2) + cv(ty/t2).

Clearly A is trivial on the center, so A\(t) = cv(t1/t2). If ¢ # 0 we are done, the representation will be
in the desired matrix from when replacing v; by ¢ !'v;. We need to argue why ¢ = 0 is not possible.
Indeed, if ¢ =0, then Vy = £ & &, hence, by Schur’s lemma and Frobenius duality,

C = Homg(V, V) 2 Homp(V|p, x ® 5113/2)
= HOHIT(VN,&) = (CQa

a contradiction. O
15.3. Homomorphisms between Principal Series Representations
Suppose p1, o 1 F* — C* is another pair of quasi-characters. Let pu = p1 X po.

Theorem 15.11. We have

L difp=xorp’=x

dim Hom (Ind$ (x), Ind (1)) = .
0 otherwise

Corollary 15.12. B(x1, x2) = B(xz2, x1) whenever they are irreducible.

See Theorem for what happens when they are reducible.

15.3.1. Proof of Theorem|[15.11]in [BHOG]. We make use of Proposition[15.3] By Frobenius reciprocity
and the proposition, we have

Homg (Ind$ (x), Ind% (1)) = Homp (Ind$ (x)| 5, 1 @ 64 %)

= Homy (IndG (x) v, 1t ® 5 °)

Now we noted that if x # x*, then Ind§(x)y = (x* ® (53\1T/2) D (x® (5B|1T/2). The assertion follows

immediately in this case. Suppose that y = x*. If i # x, then clearly Homy (Ind$ (x)n, ,u®5113/2) =0,

and if ;1 = , then both Ind$(x) and Ind$(p) are irreducible, so dim Homg (Ind%(x), Ind% (1)) = 1 by
Schur’s lemma.

15.3.2. Proof in , Bump first proves Homeg(Ind$ (), Ind$ (1)) = 0 if 4 # x and u® # x using
distributions. In the remaining cases a nonzero homomorphism is constructed explicitly as an integral

and analytic continuation. In the case when Ind%(y) and Ind$(u) are both irreducible the result
dim Homg (Ind$ (x), Ind% (1)) = 1 can then be deduced from Schur’s lemma, but he doesn’t prove that
the dimension is 1 in the remaining cases.

We define the intertwining integral. First we introduce some notation. Write x; = & |-|* with &;
unitary. We will eventually want to vary the s;. We will then write Vj, 5, for V' = B(x1,x2). Let Vo
be the space of functions fy : K = GL2(Op) — C satisfying

P o) k) =atatesm (1
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for y1,y2 € O, x € Op,k € K. Then it is not difficult to see that the restriction Vs, 5, — Vo, f — flk
is an isomorphism. So for any si, sy there is a unique fs, s, € Vi, s, such that fs, o, |k = fo. We call
this a flat section.

We forget about this for the moment and come back to it later.

For f € V define M f : G — C by
0 -1

i) = [ 1 (w5 7)o)an
1 0
s $)o)=r((0 )05 D)) =l oateer (1))

Since f is locally constant, we have f ((xll (1)> g) = f(g) for all = with |z| > ¢ for some constant ¢

(depending on g, but if g varies in a small neigbhorhood we can choose ¢ uniformly). Hence we have

/|x|>c f<w° ((1) T) 9) dz = |f(g)| | 2|7 X x| (@)de = | £(9)| 2|7 T 4, (x)

z|>c |z|>c
By writing it out as a geometric series, it is easy to see that this integral converges if and only if
Re(s; —s2) > 0, which we will then assume for the moment. Hence the integral defining M f converges
absolutely in this region.

where wy = ( ) We have

Clearly M commutes with right translation, so since f is invariant on the right by some open compact,
sois M f. Tt is not too difficult to see that (M f)(bg) = (6'/2x)(b)(M f)(g). Indeed, for b € N this is
y1 0

Y

0 it follows from writing

1 =z _{y2 O 1 ygyflx
w0<0 1)b<0 y1>“’0<0 1)

Hence Mf € V' = B(x2,x1), and M defines a G-equivariant homomorphism V' — V’. We have to
show that this is non-zero. To that end we compute it for a concrete f. We define f on Bwy(K N N)
by

immediate, and for b = (

f(bwon) = (62x)(b)
and 0 everywhere else. One can check that f € V. We have

(MF)(1) = /O dw £ 0,

Hence M is non-zero.

We have thus constructed a non-zero intertwining operator, hence isomorphism by irreducibility, M :
V — V' if Re(s1 — s2) > 0. We now indicate how to analytically continue this to a homomorphism
V — V' for all s1, 52 (except to x1 = x2 where we get a pole). To show the analytic continuation we
make a more precise computation in Fix fo € Vo. For Re(s1 — s2) > 0 we consider fs, 5,. Fix
g € G. For N large enough we have

1 =z ~ -
/|x>qN fSI’Sz <’UJO (O 1) g) dz = f81,82 (g) /x|>qN ‘l’l ! (Xl 1X2)($)d$
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= o) [T ()
|z|>qN

oo

L) Y a0 [ ()@
k=N+1 |z|=g*
Now we have
—1 .ﬁd
[ @reman=q] SR e
|z|=q* volgx, (Op)a® & & unramified.

Here in the unramified case a is the complex number such that (£,&,1)(x) = a™® for all z € F*. In
this case we get

1z - —s1+s
/ | ~ fsl,SQ <'UJO <0 1> g) dx = VOlde(O;‘)fsl,sg (g) Z aqu( 14s2)
x|>q

k=N+1
= volgey (OF ) for 52 (9) (aq) TV 711 — g™ %2) 7,

Note that ag %1752 = 1 precisely when x; = x2. This shows that (s1,s2) — Mfs, s,(g) can be
analytically continued to the domain of (s1,s2) where x1 # x2. By the identity principle, M f, s,
is still contained in VY, . and M defines an intertwining operator Vi, 5, — Vi, . . Let fo be the
restriction of the f we used before to show that M is non-zero, and let f5, 5, be its flat section. Then
for Re(s1 — s2) > 0 computed (M fs, 5,)(1) = vol(Op). This is independent of s, s2, hence by the

identity principle, M fs, 5,(1) = vol(Op) for all s1, so. This shows that M is non-zero for all sq, sa.
We note:

Theorem 15.13 ([Bum97, Proposition 4.5.10]). Fiz a non-trivial character ¢ : F — C*. Let M :
B(x1,x2) = B(xz2,x1) and M’ : B(x2,x1) — B(x1, x2) be the intertwining operators constructed
above. Assume that the Haar measure on F used to construct these operators is normalized so
that it is self-dual with respect to the character 1. Them M' o M : B(x1,x2) — B(x1,Xx2) is the
operator given by multiplication by

V(1 — 51+ 52,67 o, )Y (1 + 51 — 52,6651, ).

Here the v terms are the y-factors from Theorem
15.4. Unitarizable Principal Series Representations

Theorem 15.14 ([Bum97, Theorem 4.6.7]). If V. = B(x1, x2) is an irreducible principal series

representation, then V is unitarizable if and only if either x1,x2 are unitary, or x1 = xo ||*, x2 =
—1 |—s . - 1 1

Xo || with xo unitary and —5 < s < 3.

Proof. If x1, x2 are both unitary, then V' is unitary by Theorem Suppose V' is unitary. Then the
inner product gives an isomorphism V =V where V is the complex conjugate of V' which is easily seen
to be identifiable with B(XT,X2). Hence B(X1,%2) = B(x; ', x5 ). Therefore either x7' = X1, x5 * =
X2, in which case x1, x2 are unitary, or X2_1 =X1,X; = X2- Assume the latter. Then we can write
X1 = Xol|7sx2 = xo0|-|”* for some unitary character xo and a real number s. So it remains to show
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that in this case V' is unitarizable if and only if —% <s< % Note that we are assuming s # :I:%, since
V is irreducible. We may also assume s # 0.

Since B(x1,x2) = xo ® B(|-|*,|:| %), we may assume xo = 1. Denote x, = |-|*. Since B(xs, x5 !) is
irreducible, Schur’s lemma implies that an invariant non-degenerate sesquilinear form is unique up to
scalar multiple, if it exists. The strategy is then to exhibit somewhat explicitly such a form and inspect
when it is hermitian and positive definite (up to scalar multiple).

Let M, : B(xs, x3!) — B(xs',xs) be the isomorphism constructed in Section [15.3.2l The proof of
Theorem and Proposition shows that the duality pairing between B(u1, pg) and B(uit, uy )

is, up to scalar, given by

(fl,f2):/Kf1(k)f2(k)dk.

By composing this with B(xs, x5 ") ELEN B(x3;*', xs) and complex conjugation we get an invariant
non-degenerate sesquilinear form on B(xs, x5 ') given by

(of2) = [ OLF) 0Tl
K
Note that the formula (f1, f2) = (f1, f2) also defines an invariant non-degenerate sesquilinear form,
hence it differs from (—, —) by a scalar. Thus to show that it is Hermitian it suffices to show this scalar
is one for a single pair of functions.

Let fo (my notation here differs slightly from Bump’s) be the indicator function of Ky(p) on K. Then
fo satisfies m and hence we get a flat section fs := fs _s € B(xs, x5 ') defined by fs(g) = 5”%(17) if
g = bk with b € B,k € Ky(p) and fs(g) = 0 otherwise. Assume first that s > 0 so that we can use
the integral definition of M. The other case then follows from analytic continuation. We will compute
(fs, fs)- First note that

<fsafs> = /}((beb)(k)fs(k)dk = (Mé.fs(k)fb(k)dk = VOI(KO(p))(beb)(l)

Ko(p)

()0 = [ 1. (wo (3 f))m

From the disjoint Iwahori decomposition G = BK(p) U BwoKo(p) we see that wg <(1) 1) € BKy(p)

Next we have

if and only if z ¢ Op, in which case we have

wl(o )= 205 1)
<Msf1)(1)=/|x|>1fs ((mol ;1> (;1 ?))dxz/lxl>l|m|_28_ldx

> g7 volge, (OF)
n=1

olas (OF)g~#(1 —¢7>*) 7"

Hence

Il
<
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If we normalize the Haar measures so that O and K have volume 1, then O and Ky (p) have volume
1—q¢H(1+¢7t respectwelyﬂ Though these normalizations aren’t really relevant in determining
whether the form is Hermitian or positive definite of course. Hence we have

-1 —2s

l—gq q
<f57 fs) = ﬂlfiq*%
By analytic continuation this expression is also valid for s < OH Note in particular that (fs, fs) is
real, hence (fs, fs) = (fs, fs) and (—, —) is Hermitian for all s. To figure out if it can be made positive
definite we will need to compute (f, f) for another function f. We will take the standard spherical
function ¢k s from Section By Proposition we have

1 Lo
M¢K,s = ¥¢K -5
1—aja,
Therefore
-1 -1 -1

(Brc.0r bics) = — L2102 /¢>K_5 VoraRdk = L9 10y 124

1-ajay’ 1—ajayt 1—g 2

—1-2s

where in the last equality we used that a; = xs(w) = ¢~ ° and similarly ae = ¢°. Assume s > 0 (the

other case can be handled similarly or deduced from this one through symmetry). Then (fs, fs) > 0,
but (¢x.s, Px,s) > 0if and only if s < % Hence a necessary condition for (—, —) to be positive definite
iss < % It remains to show that this is also sufficient.

The trick is to start at s = 0 where we already know that B(xs, x5 ') is unitarizable. Then we will
deform this and show that it remains unitary up to s < % Since M, has a pole at s = 0, we modify
it as follows:

M; = (1-q )M,
The proof in Section [15.3.2] shows that M} extends also to s = 0. Similarly we extend the inner
product (—, —) to s =0 by
(fi, ) = A= q ) (1, fa)-

By Proposition and Schur’s lemma, M is the scalar 1 —q~!. Hence (fi, f2)* at s = 0 is the usual
inner product on 5(1,1) from Theorem and Proposition therefore positive definite. We have
to show that (—, —)* is positive definite for s < 1.

The idea is the following: Restrict to the isotypic subspaces V(p) for p € K which are finite-

dimensional. If the restriction of (—, —)* to V(p) was not positive-definite for some s € (0, 3), by con-
tinuity it would be degenerate at some s contradicting that (—, —)* is non-degenerate for all s € (0, 2)
at s =0. g

16. STEINBERG AND SPECIAL REPRESENTATIONS

L1
We know from the preceeding section that B(|-|2 ,|-|” 2) has a unique irreducible subrepresentation:

HNote for the latter it is the reciprocal of the index of Ko(p) in K which is the same as the index of the upper
triangular matrices over GLa(Fq) in GL2(F)), which is easily seen to be 1+ gq.
12Note for this argument to work we would also need to allow complex s as there is a pole at s = 0.
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Definition. This is called the Steinberg representation, denoted St.

It fits into the short exact sequence:

0= St — B(%,]]7%) = 1g — 0.
Here 1¢ denotes the trivial representation. We have St = O(H% ) |-|_%).
AL

Theorem 16.1. o(x1,X2) = o(x2, X1) whenever x1x; " = |-
isomorphisms among special representations.

These are the only non-trivial

Proof. We may assume yx5 ' = |~|_1. Consider the unique (up to scalar) non-zero intertwining map
M : B(x1,x2) = B(xz,x1) from Theorem B(x1,x2) has a one-dimensional invariant subspace
Vo. Its image under M is again an invariant subspace, of dimension at most 1. But B(x2, x1) does
not have a one-dimensional invariant subspace, hence M maps Vj to 0. We know that B(x1, x2)/Vo =
o(x1, x2) is irreducible, hence its image in B(x1, x2) must be the unique irreducible subrepresentation
o(x2, x1) and the first part follows.

For the second part assume that o(x1, x2) = (1, t12). By the first part we may assume that x; x5 * =
|{7" and gyp5t = |-|. Then consider the composition

B(x1,x2) = o(x1,x2) = o(p, p2) <= B, p2).-
We get a non-zero intertwining map B(x1, x2) — B(u1, p2), hence x1 = pa, x2 = p1 by Theorem [15.11

O
Therefore
St = o (|72 1) = o (12, 117H7) = s6.
If x is an arbitrary quasi-character of F'*, then
1/2 —1/2
x @8t =ol(x|[|"*, x 7%,

and every special representation is of this form for some Y.

Proposition 16.2. Assume x1x2 = |~|71. Then the Jacquet module of o(x1,x2) is 6*/2 @ x*

where x = x1 X x2.
Need to fix the notation, sometimes x is quasi-character of F'*, sometimes of T',...

H1/2 |—1/2_

Proof. B(x1,x2) has a one-dimensional invariant subspace V; with quasi-character x1 =x2|
Note that (Vo)n = x1 |~|1/2 X v \-\71/2 = 62 ® x by Proposition Then taking Jacquet modules
in the exact sequence 0 — Vo — B(x1, x2) — o(x1, x2) — 0 gives (using Theorem [15.10))

0%51/2®X%51/2®(X€wa) — o(x1,x2)ny — 0.
The result follows. O

Hence if i) is a quasi-character of F'*, the Jacquet module of n ® St is 6 ® (n X n) =0 @ (n o det).
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17. MATRIX COEFFICIENTS

Let (V, ) be a smooth representation of G. Recall that a matriz coefficient of 7 is a function G — C
of the form

(bv,ﬁ(g) = <7T(g)v,5>
where v € V,v € V. Clearly ¢35, € C*(G). We denote the vector space spanned by these functions
by C(n).

Definition. (V,7) is quasi-cuspidal if its matriz coefficients are compactly supported modulo Z.
If its central quasi-character is unitarzﬂ then V is called square integrable (resp. tempered) if its
matriz coefficients are in L*>(G/Z) (resp. L**¢(G/Z) for alle > 0).

@This guaranties that |¢U75|2 is well-defined modulo Z, so that fG/Z }¢v,;|2 dg makes sense.

A quasi-cuspidal representation that is admissible is called supercuspidal. Note that what we call
square integrable is sometimes called square integrable modulo the center in the literature.

Square integrable representations are also called discrete series. This terminology is justified since in
the unitary dual, square integrable representations have positive Plancherel measure (TODO: refer-
ence?).

Definition. Let (V,7) be a smooth representation. V is essentially square integrable (resp. essen-
tially tempered) if there is a quasi-character x of F* such that x ® 7 is square integrable (resp.
tempered).

In |[GH24] a slightly different definition is given, they are equivalent by the following:

Proposition 17.1. Let (V, ) be a smooth representation. V is essentially square integrable (resp.
tempered) if and only if the restriction of any matriz coefficient to G* lies in L?(G') (resp. L**¢(G)
for alle > 0).

Here G' = {g € G | detg € O }.

Proof. “Only if” is immediate from the fact that the restriction of a quasi-character to G! is unitary.
“If” follows since G N Z is compact and G /(G N Z) is of index 2 in G/Z. O

Proposition 17.2. Suppose (V,m) is an irreducible admissible representation of G. If one non-
zero matriz coefficient of G is compactly supported (resp. square integrable, L*>¢ for all &) modulo
Z, then V is quasi-cuspidal (resp. square integrable, tempered).

In the case of square integrable, tempered, we assume that the central quasi-character is unitary.

Proof. One can show, see [BHO6, Proposition 10.1] that V' X V is an irreducible representation for
G x G, hence the map VRV — C(7),v ® U +— ¢, 5 is an isomorphism. Therefore if ¢ € C(m) is

any fixed non-zero matrix coefficient, then any other ¢’ € C(r) is a finite sum of terms of the form
(m X7 (g, h)p with (g,h) € G x G, and the result is immediate. O
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18. SQUARE INTEGRABLE REPRESENTATIONS

Proposition 18.1. Let (V,m) be a square integrable irreducible smooth representation of G. Then
V' is unitarizable.

Proof. For fixed 0 #£ v € V define an inner product by

<an> = ¢v,5(g)¢w,5(g)dg'
G/Z

Since 7 is square integrable, this is defined. It is straightforward to check that this gives an invariant
inner product on V. For positive definite if (v, v) = 0, then ¢, 7 = 0 and since V is irreducible, if v was
non-zero, then its orbit under G would span V, hence ¢, 3 = 0 would imply v = 0, contradiction. [

Corollary 18.2. If (V,m) is square integrable irreducible admissible representation, then it is
tempered.

Proof. By the previous result, V is unitarizable. By Proposition [0.14] the matrix coefficients are
bounded. Bounded L? functions are in L?*¢ for all € > 0. O

Theorem 18.3 (Schur Orthogonality Relations). Let (Vi, 1), (Va,m2) be admissible irreducible
square integrable representations of G with the same central character. Then for any v; € V;, v; €
Vi we have

d(ﬂ)71<02,61><’l}1,7[}12> ’Lf’l’(’:z T = T2,

0 if m 2 .

Here d(m) is a positive constant only depending on w and the choice of Haar measure on G/Z.

¢U1,51 (g)¢vz,ﬂ2 (gil)dg = {

G/z

Proof. Fix 17 € Vi and vy € V. Consider the operator T' = Ty, ,, : Vi — Vs, given by v — (v,v1)va.
We can symmetrize this to get an intertwining operator S = S3, 4, : Vi — V2, defined by

sv= [ mly rmlgdg = [ (mg)diimalyeady.
G/Z G/Z
This integral is supposed to be understood in a weak sense: For v, € 172, the integral

/ (m1(g)0, 51 (ma(g ™ )on, Ta)dg
Gz

converges since the matrix coefﬁcientsgmre L?, thus we may view Sv as a functional on ‘72 which is
smooth, hence defines an element in Y~/2 which is canonically identified with V5. Now if m; 2% 79,
we must have S = 0, hence the claim follows in this case. Thus, assume for the remainder that
m = 71 = m2. Then by Schur’s lemma, S is a multiple of the identity, say S = cg, ., idy. Next varying
V1, v gives a smooth bilinear pairing VxV— C, (01,v2) ¥ €5, vy, hence ¢z, », = cx(V1,v2) for some
constant ¢,. Then

/ Buy 751 (9)Puy 5, (971 )dg = (Sv1,T2) = 5, 1, (V1, D2) = 5 (D1, v2) (1, Ta).
G/z
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So if we can show ¢, > 0, the theorem will follow with d(r) = ¢;*. By Proposition there is an
invariant inner prudet (—,—) on V. Let 0 # ¥ € V. Then by Proposition there is v € V such
that (u,v) = (u,v) for all w € V. Then

C7r<v75>2 = ¢U,§(g)¢v,5(g_1)dg :/

(r(g)v.0)(nlg Y. 0)dg = [ |(n(g)v.e)*dg >0,
G/z G/z

G/Z

Since (v,v) = (v,v) > 0, the result follows. O

The theorem also holds for essentially square integrable representations. Indeed, we can reduce to the
case of unitary central quasi-character by twisting by |-|° for an appropriate s.

Theorem 18.4. [BH06, Theorem 17.5] Let (V,m) be an irreducible admissible representation of
G. V 1is square integrable if and only if either V is supercuspidal with unitary central character,
or if V.2 xSt with x a unitary character of F*, and St the Steinberg representation.

Proof. We have to show that the representations in question are square integrable and that all others are
not. By Theorem the other admissible irreducible representations with unitary central character
are either one dimensional or principal series representations. One dimensional representations are
obviously not square integrable. So let x1, x2 be quasi-characters of F'* such that x;x2 is unitary. We
have to show that (V,7) = B(x1, x2) is not square integrable. Let x = x1 X x2 be the quasi-character
on T'. Let r be large enought so that x is trivial on TN K,. where K,. = K(p") = Io + Maoyx2(p"). Define
f eV by f(bk) = (6Y/2x)(b) for b € B,k € K, and f(z) = 0 for z ¢ BK,. Define f € B(x;*,x3") in
the same way (with x~! in place of x). Consider the matrix coefficient

6= 07.10) = (e F) = [ Fr)F0R)a
Then follow [BHO6| to show this is not square integrable mod Z.

Then one has to show that the representations in the statement are indeed square integrable. For the
supercuspidals that is clear. For the Steinberg twists this requires some work. O

Theorem 18.5 (|[GH11| Proposition 9.2.8]). Let (V, ) be an irreducible admissible representation
of G. V is tempered if and only if V is one if the representations in the previous theorem (i.e. if
V' is square integrable), or if V' is a principal series representation B(x1,x2) with x1, X2 unitary.

19. UNITARY REPRESENTATIONS

Let (V, ) be an irreducible admissible representation of G, w its central character. We will determine
when V' is unitarizable.

Proposition 19.1. If V is one-dimensional, of the form x o det, then V is unitarizable if and
only if x is unitary

Proof. Obvious. O
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Theorem 19.2. If V. = B(x1, x2) s an irreducible principal series representation, then V is
unitarizable if and only if either x1, x2 are unitary, or x1 = xo |-|*, x2 = Xal |-|7% with xo unitary
and —% <s< é

Proof. See Section [15.4] d

Theorem 19.3 (|[GH11| Proposition 9.3.1]). If V is either supercuspidal or special, then V is
unitarizable if and only if w is unitary.

Proof. Necessity of the condition is clear. For sufficiency, note that if w is unitary, then by Theo-
rem (V, ) is square integrable, hence unitarizable by Proposition m 0

20. SPHERICAL REPRESENTATIONS

Let (V,7) be an irreducible admissible representation of G. Recall that K = GLy(OF) is the standard
maximal compact subgroup of G.

Definition. 7 is called spherical if there is a non-zero K-fized vector, i.e. if VX # 0. Such a
vector s called spherical.

Proposition 20.1. If 7 is spherical, so is 7.

Proof. This follows from Theorem [10.2 d

Recall that Hy is the space of locally constant compactly supported K-biinvariant functions G —
C. It is an algebra under convolution. Matrix involution induces an involution on Hx and the
Cartan decomposition G = BK implies that it must be the identity, so Hx is commutative. As a

C-algebra, H is generated by T, R, R~! where T, R are the characteristic functions of K (YOD (1)> K

and K <?§ g) K respectively. More generally let T'(p*) be the characteristic function of the set of

matrices A in Myy2(Op) such that ord(det A) = k. Then T' = T'(p).

Theorem 20.2 (Hecke relations, [Bum97] Proposition 4.6.4]). For k > 1 we have
T(p)T(p") = T(**") + ¢RT (p" ).

‘ Theorem 20.3. If 7 is spherical, dim VX = 1, so a spherical vector is unique up to scalars.

Proof. VX is a finite dimensional simple module for the commutative ring H . 0
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Denote by vy any spherical vector in V' (unique up to scalars by the theorem). Then there is a
homomorphism £ : Hxg — C such that w(¢)vg = &(p)vk for ¢ € Hi. This is the character of H
associated to .

Theorem 20.4. Two irreducible admissible spherical representations are isomorphic if and only
if the corresponding characters of Hyi coincide.

Example. A finite-dimensional irreducible admissible representation of G is one-dimensional and
of the form x odet for a quasi-character y of F'*. It is spherical if and only if x is unramified, i.e.
trivial on OF.

Example. Let x1, x2 be unitary unramified quasi-characters of F* (hence of the form |-|*). As-
sume that y1x5 ' # |-£1, so that (V,7) = B(x1,x2) is irreducible. Write x for the character of
B. Consider the function ¢ : G — C defined by

¢x(9) = (8'%x)(b)
where we write g = bk with b € B,k € K. This is independent of the choice of b, k. Then ¢ is a
spherical vector in V.

Let an = x1(w), a2 = x2(w). Since x1, x2 are unramified, these numbers determine the quasi-
characters uniquely. To find the character £ of H g for this spherical representation, it suffices to
know &(T),&(R) which are given by:
Proposition 20.5. Notation as above, we have 7(T)px = Apx and m(R) = popx where
A= q1/2(a1 + 042),

Hn = 1.

Proof. Evaluate both sides of m(T)¢x = Apx at I € G to get

A= @) = [ 1 o\ oxle)ds
K K
(@ %)
Then split it up into left cosets mod K and use explicit Hermite normal form coset representatives
to compute this. Same for 7(R)¢xk. O

In fact the above two examples are exhaustive:

Theorem 20.6. Let (V,7) be an irreducible admissible spherical representation of G. Then 7 is
isomorphic to one of the two examples above.

Proof. We make use of Theorem[20.4] Let ¢ be the character of H. Let A = {(T), 1 = £(R). Let aq, as
be the roots of X2 —¢'/2AX 4+ = 0 and x1, x2 the unramified quasi-characters of F* with Xj(w) = a;.
If B(x1, x2) is irreducible, it is spherical and the corresponding character of Hg is £ by construction of
a1, oz, the proposition and since H is generated by T, R, R~1. Hence (V,7) = B(x1, x2)- If B(x1, x2)
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is not irreducible, one argues similarly that 7 is isomorphic to the one-dimensional subrepresentation
or quotient of B(x1,Xx2)- O

The following calculation is needed in the proof of Theorem

Proposition 20.7 ([Bum97, Proposition 4.6.7]). Let x1, x2 be unramified quasi-characters of F*
and o = x;(w). Let ¢k, PK,¢ denote the spherical vectors as defined above in B(x1,x2) and
B(x2,x1)- Let M : B(x1, x2) = B(x2,x1) be the intertwining operator defined in Section [15.3.2
Then

Proof. M is a spherical vector in B(xz, x1), hence it is a multiple of ¢x,/. To compute the
constant, we evaluate both sides at 1. For that we may assume |a;| < |asa|, so that the integral defining
M converges. It is then a simple calculation using the geometric series to compute (Mo, )(1). O

20.1. Spherical Whittaker Function

Let x1,x2 be unramified quasi-characters of F* and a; = x;(w). We consider the principal series
representation (V,7) = B(x1,x2). It is spherical with spherical vector ¢x defined by ¢x(kb) =
(61/2x)(k). We want to compute the spherical Whittaker function. First we define the Whittaker

functional. For f € V, let
= f<wo (é f))w(—@dx.

-1 . . . .
0 . This converges absolutely if |a1/az2| < 1 by the same computation as in |(x)

1 0
For general x this can by analytically continued by

. 1 =z
M= gim [p (g 7)) wtman
again using the same kind of argument as in

Here wg =

Let Wo(g) = A(n(9)¢x). Then Wy is the unique up to scaling spherical function in the Whittaker
model of V.
w™ 0

We wish to compute Wy(a,,) for a,, = ( 0 1

W = Wh.

). We will assume that v has conductor p¥. Let

Note that knowing Wy(a,,) is essentially the same as knowing Wy because the matrices a,, form a set
of representatives for ZN\G/K.

Proposition 20.8. W (a,,) =0 for m < 0.

Proof. For x € O we have

W(am) = W <am (é "”f)) W (((1) wrf”’) am) — ()W (an).
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The first equality is because W is spherical. Now if m < 0 choose € Op such that ¥ (w™z) # 1 and
we are done. O

Proposition 20.9. W(ag) =1 — ¢ 'ajay’.

Proof.
Wiao) = Aor) = Jim [ one (an (5 7)) vl
o0 p—k
We have
/ 1 =z B B
OK (wo (0 1)) P(—z)dr = dr =1.
OF OF

Next:

o (w0 (5 5))=en (%5 2) (5 0)) =t catwion (L1 9)

Therefore for &k > 1:

/pk_pk+1 PK (wo (é 11:)) Y(—x)dr = ¢ Fakazk /pk_pk+1 (—x)dz.

For k = 1, this last integral is —1 and for k£ > 1 it is 0, hence the claim. O

Let wy, = W(ayn,). We will relate this to (7(T")W)(an,) where T' = T'(p). First recall that

K<Yg ?)K(é g>K|_| 11 <7§ ?)K

So for m > 0: o
(R(TYW)(am) = W (am ((1) g)) > w (am (75 i))
o5 D) (6 e
= x1(@)x2(@)W (am-1) + b Z;j b(bw™ )W (am-+1)
ot b

= 010 Wim—1 T Wm+1

On the other hand from Proposition we know that (7(T)W)(an) = ¢"/%(a1 + ag)w,,. Hence for
m > 0 we get the recurrence relation

1/2
(o + ap)wy, = 1wy, 1 + qWmi1

1

and w_1 =0,wg=1—¢q~ alagl. This is easily seen to have solution

1 1
W — qu/QCulnJr _a72n+ wo
m = ——wp.
ap — Q2

We obtain:



AUTOMORPHIC NOTES 7

Theorem 20.10. The values of the spherical Whittaker function are given by

T = {0 ifm <0,

m+1_  m+1
—m/2% % wo ifm >0

q ] — Q2

where wo = W(I) =1—q tajo; b

20.2. Satake Isomorphism
Define the Satake map (or constant term map)
S:Hg — C(T),
fr— (a — 5((1)1/2/ f(an)dn)
N

Let K7 = K NT. Given an unramified quasi-character x of T', obtain a character ¢, of H(T, Kr)
by integration against it. Then by pulling back via S, we get a character &, for the spherical Hecke
algebra, defined by

Ex(f) = ox(Sf) = /T SF(t)x(t)dt.

Proposition 20.11. Assume x is such that the principal series representation B(x1,x2) is irre-
ducible. Then &, (f) is exactly the character of Hy corresponding to the spherical representation

B(x1,x2)-

Proof. Let ¢k the standard spherical vector in B(x1, x2) defined as before. We have to show that
m(flex = &(f)ek for f € Hi. It suffices to evaluate both sides at one, and show the results are
equal. We compute

(r(or)(1) = /G o(0)f()dg
- / #(9)/(9)dg
B
z// o(tn) f(tn)dt dn
T JN
= 12y(n n n
= [ 50" [ rumara

- /T S(F)(t)x (Bt
= gx(f)

Theorem 20.12 (|Deil2] Theorem 8.2.3]). The map S induces an isomorphism
Hx — C[T/K1]"
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Here W is the Weyl group. Note that C[T/K7]" = C[X*! Y*!]%2 the ring of symmetric Laurent
polynomials in two variables.

21. THE CONDUCTOR OF A REPRESENTATION

For a an ideal of O let Ky(a) be the group of matrices in K that are upper triangular modulo a. If
g is a 2 x 2-matrix, denote by d(g) its bottom right entry.

Theorem 21.1 ([Cas73] Theorem 1]). Let (V,7) be an irreducible admissible representation of G
with central quasi-character w. There exists a largest ideal f = §(m), called the conductor of m,
such that

W={veV|r(gv=uw(dg)v Vge Kof)}
is non-zero. Moreover, dimW = 1.

Note that if w is trivial, then f = Op if and only if 7 is unramified.
Proof sketch. O
TODO: What is difference with fixed vector for K;(a)?

22. SUPERCUSPIDAL REPRESENTATIONS

Let (V,7) be a smooth representation. Recall that V is quasi-cuspidal if the matrix coefficients are
compactly supported modulo Z, and supercuspidal if it is quasi-cuspidal and admissible.

Proposition 22.1. If 7 is quasi-cuspidal and irreducible, then m is admissible, i.e. supercuspidal.

Proof. (Proofin Proposition 8.3.4] and ) Let K be an open compact subgroup of G. Fix a
non-zero v € VX. Since V is irreducible, V¥ is spanned by the elements 7(ex )7 (g)v, g € G. Let (g;)icr
be a collection in G such that the v; := m(eg g;)v form a basis for VE. Let f : V — C be the composition
V — VE — C where the last map sends every v; to 1. Consider the matrix coefficient ¢ = ¢, ;. Then
¢(g;) = 1. Since ¢ is compactly supported modulo Z there are finitely many hq,...,h, € G such
that supp¢ = ., hiZK. Since ¢(g;) # 0, we must have g; = hjkz for some j = 1,...,n and
k€ K,z € Z. Then v; = m(exg:)v = w(z)m(exh;)v. So span{v;} = span{m(exh;)v}j=1 . n, hence VE
is finite-dimensional. O

Theorem 22.2 ([Cas+08] Proposition 5.4.2]). Any supercuspidal representation of G is a count-
able direct sum of irreducible supercuspidal representations.

Theorem 22.3. Let (V,m) be an irreducible smooth representation. The following are equivalent:
(1) There is a nonzero matriz coefficient in w that is compactly supported modulo the center.
(2) 7 is quasicuspidal.

(3) The space of the Kirillov model of 7 is CS°(F*).
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(4) Vv =0.
(5) V is not isomorphic to a subreprepresentation of a principal series representation.
(6) The restriction of V to G* has compactly supported matriz coefficients.

In this case m is admissible, hence supercuspidal.

Proof.
“(2) = (1)” is trivial (recall we assume that irreducible representations are non-zero).

“(1) = (2)” follows from Proposition once we have shown that V' is admissible. Indeed, this will
be proven, and its proof only involves showing that (4) implies (2), and Proposition m

For “(4) < (5)” use Frobenius reciprocity: We have Homg (7, B(x1, x2)) = Homp(n|g, x ® 6'/2) =
Homy(7x, x ®6'/2). This immediately gives “(4) = (5)”, for the other direction, one has to show that
if mx # 0, there is some quasi-character x of T' such that Homyz(7y, x ® 6'/2) # 0. This can be seen
quickly as follows. mx is admissible, hence so is its contragredient. Any admissible representation of
(F*)* has a one-dimensional invariant subspace (see Proposition 4.2.9]), hence there exists
0#Le Vy such that L(nn(t)v) = (6Y2x)(t)v for some quasi-character y of T = F* @ F*. Then
L € Homyp(my,x ® 6Y/2). A different argument given in Proposition 9.1] is to argue that V
is finitely generated as a representation of G, hence Vi is finitely generated over T, and any finitely
generated representation admits an irreducible quotient.

We have “(3) < (4)” since by Theorem in the Kirillov model the kernel of V' — Vi is C°(F™).

“(2) & (6)” holds since the matrix coefficients of V|g1 are the restrictions of matrix coefficients of V/
to G, G1/(Z N G?Y) is of finite index in G/Z, and Z N G! is compact.

It remains to show “(4) < (2)7. Let t = <z(r)} (1)) Let T be the set of all nonnegative powers of

t. Then by the Cartan decomposition Tt — ZK\G/K is a bijection, i.e. T" is a set of double coset
representatives.

“4) = (2)” Let v € V,0 € V. Since T is a set of representatives for ZK\G/K, we essentially
have to show that ¢, 7 is nonzero at only finitely many elements in 7F. Let Ny, Ny C N be compact
subgroups such that 7 € VN and m(ey,)v = 0. The latter exists since by assumption v € V(N). For
large enough n we have t"" Not~™ C Ny, hence for such n we have

Gui(t") = (w(t")v,v) = (w(t")v, w(en, )v) = (w(en, )7 (t")v,0) = (T(e4—n Ny en Jv, w(E7")0) =0,
since m(es—n ny¢n)v = 0 for t7"Nit™ D Noa.

“(2) = (4)” Let K,, = 1+ p"Max2(0O). Let v € V and choose n such that v € V&~ For any v € VEn,
¢35 i1s compactly supported modulo Z. Then ¢, 5(t*) = 0 for all a € Z large enough. Since VEn g
finite dimensional, there is a ¢ such that ¢, 5(t*) = 0 for all > ¢ and & € VK=, Since VEr = (VEn)*,
we get m(ek, ) (t“)v =0 for all @ > c. Recall the notation from the proof of Theorem [[1.4] We have
Kt = K+_ KJK, .. Therefore,

0=m(er,)m(t")v = m(t")m(et-ak,a)v = 7(t")m(ef+ )m(ego)m(ex— Jv=m(t")m(ex+ )v.

n—a n+a n—a
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Hence 0 = m(ep+ Jv = fzepn—a ™ <(1) :10> vdz, and we get v € V(N), which shows V = V(N), so
Vn =0.
0

Proposition 22.4 (|[JL70} Proposition 2.20]). Let (V,7) be a supercuspidal. If the central quasi-
character w is unitary, then w is unitarizable. In particular, every supercuspidal representation is
essentially square integrable.

Proof. Immediate from Proposition The last statement follows since any quasi-character can be
twisted into a unitary character. O

22.1. Construction of Supercuspidals

One possible construction of supercuspidals is given in Section 25 using the Weil representation. This
mimics the construction of cuspidal representations in the finite field case done in [Bum97]. In this
section we construct supercuspidals by inflating cuspidal representations over the residue field.

Let k be the residue field O /p. Let (Vo, mp) be a cuspidal representation of GLa(k). For the definition,
see Section 27 Via the quotient map K = GL2(O) — GL3(k) we lift 7y to a representation of K. We
also lift the central character of my to O, and extend it to a unitary character wy of F'*. We then
denote by (Vp, 7o) again the representation of KZ on Vy, where K acts via K — GLa(k) and Z acts
via wo. Let (V,7) = ¢-Ind$ , mo.

Theorem 22.5 ([Bum97, Theorem 4.8.1]). (V,x) is an irreducible unitarizable supercuspidal rep-
resentation of G.

Proof. We proceed a little differently than Bump who does this essentially whith a bunch of Mackey
theory. This proof takes the main ideas from [BHO06| 11.4 Theorem].

Clearly 7 is unitarizable as a representation over K Z, since V} is finite-dimensional and K Z is compact
modulo Z. Hence V is also unitarizable by Theorem [9.15

Let K’ = KZ. Let v € V. Then v gives rise to an element f, € c—Ind% Vo, by letting f, (k) = mo(k)v
for k € K’, and 0 otherwise. Similarly v € V{ gives rise to an element f; € Ind?{, Vo. By Theorem

we have Ind% ?0 ~ c—Ind% Vo. Inspecting the proof shows that the matrix element corresponding to
the pair v, v is given by

G105 (9) = (m(9) fo, f5) = / ((m(g)fo)(h), fo(h))dpgna(h) = / <fv(h9)7f«7(h)>dm</\c(h)
KN\G KN\G
Now f5(h) = 0if h ¢ K’, and f,(hg) = 0 for h ¢ K'g~'. Hence ¢y, 1.(9) = 0if K'NK'g~! =0,
which happens iff g ¢ K'. Hence supp ¢y, 5, € K’ = KZ is compact mod Z. If we choose v, v such
that (v) # 0, then ¢y, ;. (1) # 0. So we have constructed a matrix coefficient which is compactly
supported modulo the center. It remains to show V is irreducible.

3K’ and G are unimodular, and the quotient K’\G is discrete (since K’ is open in G), hence these integrals are
really sums over K'\G.



AUTOMORPHIC NOTES 81

Let T : Vy — V|g+ be an intertwining operator of K’ representations. We show that 7" must have
image contained in the image of Vg in V|g+ in the above described way. So let f € T(Vp). We have
to show that f is supported in K’. Suppose f(g) # 0 for some g € G — K'. We have n(gk) =
(w(k)f)(g) = T(mo(k)v)(g) for k € K’, so we may replace g by gk by replacing f by w(k)f. Therefore

a

0 . . .
we may assume that g = Z% 1 for some a > 1 (as these form representatives of the nonidentity

cosets in ZK\G/K). Letne NNK = K = ((1) ?) be arbitrary. Then we may write n = g~ lmg

for some m € Kjt = <(1) ?) Then

(T(mo(n)v))(g) = (w(n)f)(g) = (x(g~'mg) f)(g) = f(mg) = mo(m)(f(g))-

Since m = Iy mod p, we have mo(m)(f(g)) = f(g). Now somehow use that 7 is a cuspidal represen-
tation of GLa(k) (so can choose n such that mo(n)v # v), but not sure how to continue. TODO

Assume we showed this, so that the range of T is in V. Then we get from (a version of) Frobenius
reciprocity:
Homg(V, V) = Homg (Vo, V) = Homg (Vo, Vo) = C.

The last equality is by Schur’s lemma since Vj is irreducible. Since V' is unitarizable it the follows that
V irreducible.

O

23. CLASSIFICATION OF REPRESENTATIONS

Theorem 23.1. Let (V, ) be a smooth irreducible representation of G = GLa(F). Then 7 is
admissible and it is isomorphic to exactly one of the following:

e a one dimensional representation of the form x o det for some quasi-character x of F*;

e a principal series representation B(x1,x2) for quasi-characters xi,x2 of Xlxgl #* |-|71
(which are uniquely determined up to order);

e a special representation x ® St for a quasi-character x of F*

e a supercuspidal representation.

Proof. If Vy = 0, then V is quasi-cuspidal and therefore admissible, hence supercuspidal by Theo-
rem and Proposition Otherwise, again by Theorem V is isomorphic to a subreprep-
resentation of a principal series representation B(x1, Xx2) for some x1, x2, and the result follows again
(principal series representations are admissible). O

See Section [19| for which of these representations are unitary.
24. L-FUNCTIONS

Let (V,7) be an irreducible infinite-dimensional admissible representation of G with central quasi-
character w. [Bum97] and [JL70] define the zeta integrals in terms of the Kirillov model, while [BHO6]
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and |GH11| define it in terms of matrix coefficients. We give both definitions and give proofs in both
cases. (How to show directly they are equivalent??)

Definition (via matrix elements). Let A = My(F') the space of 2 X 2 matrices over F. If ® €
C(A), f € C(nm), then

2(®,f,5) = /G B(g)f(g) |det g|™** dg

Definition (via the Kirillov model). Let K C C°°(F*) be the Kirillov model of V.. For ¢ € K,
define

Ze(ov) = [ (o) ldetg' dg

Proposition 24.1. There exists so € R such that the integral defining Z(®, f,s) (resp. Zx (¢, s))
converges absolutely for Res > sq.

Proposition 24.2. Z(®, f,s) (resp. Zx(d,s)) is a rational function in q—° where q is the cardi-
nality of the residue field of F.

Theorem 24.3. The functions Z have a “common denominator”: There is a unique (up to scalar)
function L(w,s) such that

Z((I)7f75) Z)C(¢a 3)

Lirs) (P Tirs)
is an entire function which is constant 1 for some choice of ®, f. The function L(r,s) can be
given as follows:

o Ifm = 7(x1,x2), then L(m,s) = L(x1,s)L(xa,s) where L(x, s) is the L-function of x as
in Section[], i.e.

L(m,s) = (1 —a1g”*) " (1 —agq™*) 7,
where a; = x;(w) for some uniformizer w if x; is unramified, and «; = 0 otherwise.

o If m = 0o(x1,X2) with X1X2—1 = H_l, then L(m,s) = L(x2, s).

o [f 7 is supercuspidal, then L(m,s) = 1.

Fix a nontrivial character 1 of F. Then there is an isomorphism A = A given by « — (y — ¥(Tr(zy))).
The Fourier transform ® of ® € C2°(A) is then defined using the self-dual Haar measure on A with
respect to this isomorphism. For a function f on G, f denotes the function g — f(g~1). The map
f+ f is an isomorphism of vector spaces C(m) — C(m).

Theorem 24.4 (Functional Equation). There is a function (1, s) such that Z(®, f, s) satisfies
the functional equation

Z(®, f,1—5) = y(m,1,5)Z(@, f, s)
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If we define

E(ﬂ-v 1/)7 3) = FY(Trv 1/1» S)L(L%(’/;’i)g)7

then we have
e(m 1, s)e(m, 1,1 —s) = w(—1),
Z(&))fvl_s) Z(q)vf?s)
L(m,1—5s) L(r,s)

Moreover, £(m,1, s) is of the form aq®® for some constants a € C*,b € 7Z.

=e(m, 1, s)

In the theorem ® is the Fourier transform using the self-dual Haar measure (w.r.t. to a given nontrivial
character ¢ of F') of A.

24.1. Whittaker Model Approach

Let (V,m) be an irreducible admissible representation of G, admitting a Whittaker model W =
W(m, ).

Definition. For W € W define the Zeta integral
2wy = [ w(y ] bt
o 0 1

Note that the functions of the form y — W (g ?) are precisely the functions in the Kirillov model

of 7, so if ¢ is in the Kirillov model of 7, we may also write

209 = [ o)l

We can also generalize this (to GLy x GL; Zeta-functions) as follows: If y is a quasi-character of F*,
then let

0) | 1s—%
Z(W,x; s) =/ w (‘g 1) ™ x(y)d'y.
FX

Note however this doesn’t really give something new, since the Whittaker model of x ® 7 consists of
functions of the form W (h) = x(h)W (h) (here x(h) = x(det h)) where W € W.

Theorem 24.5 ([Bum97] Proposition 4.7.5]). The integral defining Z(W,s) converges absolutely
for Res > 0 and has a meromorphic continuation to all s. There is a polynomial p such that
Z(W,s) =p(q *°)L(m,s). W can be chosen such that p = 1.

For the definition of L(m, s) see Theorem [24.3]

Proof. Directly using the concrete description of the Kirillov model in Theorem [I4.2] O

Proposition 24.6. If 7 is unitarizable, the integral defining Z(W,s) converges absolutely for
Res > 1.
2
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Proof. If m = B(x1, x2), then we know from Theorem [15.14| |x1| = ||7, |x2| = || for some o with
—3 < 0 < % (the case where both x1,x2 are unitary is ¢ = 0). If x1 # x2, by Theorem near
0 the integrand has the form |-|* (C1x1 + Cax2). By the bound for o this is easily seen to converge
absolutely for Res > 1. Similarly for the case x1 = X2 and the case 7 & o(x1, x2). Note that if 7 is
supercuspidal, the integral converges for all s € C. O

Theorem 24.7 (Local Functional Equation, Theorem 4.7.5]). Let (V,m) be an admissible
irreducible representation of G with Whittaker model W and central character w. Let x be a quasi-
character of F*. There is a meromorphic function y(m, x, s,v) such that

Z(ﬂ-<wl)VV7w_1X_17 1- S) = ,Y(ﬂ-vXa SJP)Z(VV, X5 5)

for all W € W, where wy = (_01 (1))

We need a lemma:

Lemma 24.8. There are at most two values s € C modulo 2mi/log q such that Homp, (V |1y, x |]*)
has dimension > 1.

Proof. Explicitly, Homy, (V|r,, x |-|?) consists of functionals A : V' — C satisfying L <7r (g (1)> v> =

x() lyl”A(v) for all y € F*,v € V. Let Aj;,Ay be two such functionals. Their restrictions to
V(N) = C°(F*) are linearly dependent by uniqueness of the twisted Haar measure. Hence, there
are a,b € F, not both 0, such that A = aA; + bAs factor through V — Vy = V/V(N). At most two
characters of F* = T occur in Vi, hence A = 0, unless s is one of the at most two values that makes
X |-|? occur in Vy. O

Proof of Theorem[24.7 Fix s with 0 < Res < 1. Consider the two functionals
A, Ae: W — C,|
A (W) = Z(W,x, s),
Ao(W) = Z(m(w))W,w™ 71,1 —s).

y 0
(60

y 0
s (0 0)
Therefore, for almost all s, by the lemma these functionals differ by a scalar, which we call v(m, x, s, ).
g

Then these functionals satisfy

X))yl A (),
(v)

_ 1
X))yl 7R As(v).

’)
’)

Proposition 24.9. Some properties of the local gamma factor.

(1) y(m, x,8,%) =v(x ®,1,5,9).
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(2) (7, x, 5, )y(Tx 71 1= 5,9) = w(=1).
(3) (T, X0 5,) = x(@)%w(a) [a2"~* 7(m, X, 5,) where Yo() = Y(az) for a € F.
Proof.

(1) If W € W(r, ), then W = (x odet)W € W(x @, X). The central character of x @  is wx?.
Therefore

Z(r(w))W,w Iy 2,1 —s) =y(x®n,1,5¢)Z(W,1,s).
But we also have

Z(r(w))W,w x 72,1 —5) = Z(r(w)W,w x" 11 —5),

Z(W,1,s) = Z(W, x, s).
So the result follows.
(2) We have
Z(r(w)W,w™ "1 =) = y(m,x, 5,9) Z(W, x, 5)
Now apply the functional equation with the two sides reversed. Then
Z(W,x,s) =y(mw x 11 —s,¢)Z(r(w) " W,w x 71,1 —5).

Note that 7(w;)~! = m(—w;) = w(—1)7(w;). Hence, substituting the first equation into the
second we get

The result then follows from w™! ® 7 = 7, part (1) and w(—1)% = 1.

(3) If we replace 1) by 9, then W € W(r,¢), will be replaced by W' € W(r,1,) where W'(g) =
w (<g ?) g). Then

Z(W',x,8) = lal*~* x(a) " Z(W, x, 5),
Z(m(w)) W wx 11 —5) = |a|s_% w(a)x(a)Z(m(w))W,w x™ 11— s).

Hence,

2s5—1 2

(T, X5 8, %a) = lal™ " x(a)w(a)y(m, X, s,9).

~

Theorem 24.10. Assume 7 is unramified, so m = B(x1, x2) with unramified x1, x2. Let a; =
xi(w). Also assume that the conductor of v is Op. If W is the spherical Whittaker function with
W(1) =1, then

Z(W,s) = L(m,8) = (1 — a1¢7°) (1 — apg™*) L.

Proof. In the notation of Section we have W = Wy(1)"*Wy. By Theorem [20.10, W (a,,) =

m/2al ™ =t S 0 and Wi(a,) = 0 f 0, wh — (" N g has conduct
q a—or— form>0an (am) = 0 for m < 0, where a,, = 0 1) ince 1 has conductor
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Op, that fop dz =1 for the self-dual Haar measure, and so the multiplicative volume of Oy is 1 by
the standard normalization of multiplicative Haar measure. Now we calculate

nez F
n O

=D gt / w (7”0 1) &y

nez O;(‘

+1 _ n+l

_ Z qfn(s 5)(fn/z a; )

>0 a1 — Q2
_ (al _ ag)_l Z q—ns<a?+1 _ O[;L+1)

n>0
= (a1 —a2) Har(l —a1g7 )" —aa(l —ag™*)™")

This is L(, s). O
We set L(m, x,s) = L(x @, s).

Corollary 24.11. Assumptions as in the theorem. If x is an unramified quasi-character of F*,
then
Z(W,x, s) = L(m, X, s)

Proof. Indeed, W(g) = x(degg)W(g) defines the spherical Whittaker function with W (1) = 1 for
X ® 7, SO .
Z(W,x,s) = Z(W,s) = L(x®m,s) = L(m, X, 5).

Define the local Epsilon factor by
L(m, x, s)

E(W,X,S,l/}) = 7(W3X’s,w)m'

Proposition 24.12. Some properties of the local epsilon factor.
(1) e(m,x,s,¢) =e(x®@m,1,s,7).
(2) e(m, x,s,9)e(@x 1,1 = 5,9) = w(-1).
(3) e(m, X, 5, %) = X(a)?w(a) |a]* " e(m, X, 5,9) where Yo (z) = P(ax) for a € F*.
(4) e(m, x,s,%) is of the form ab® for some constants a,b.
(5) If m and x are unramified, and the conductor of ¢ is Op, then e(m, x, s,¥) = 1.

(6) If x ® 7 is not a ramified principal series or special representation, then e(m,x,s,¥) =
V(X 8, ).
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Proof.
(1) Immediate from corresponding fact for the v factors, see Proposition m

(2) Immediate from corresponding fact for the -y factors, see Proposition The L-factors cancel
out.

(3) Immediate from the way the y-factors change, see Proposition m
(4) TODO.

(5) Let W be the spherical Whittaker function with W (1) = 1 for 7. We know that 7 2w ! @,
hence W = (w o det) "W is the corresponding function for 7. Since W is spherical we have
(w1 )W = W. Then by the corollary:

L(%vx_lv 1- S) = Z(va_lvl - 8) = Z(va_lx_la 1- S) = Z(ﬂ'(wl)W,w_lx_l’ 1- S)

Hence

_ L(W,X,S) _ 7(777Xa87w)Z(VV7 X78) —
E(W,X,S,’(/J) - ’Y(ﬂ-aXvsﬂ/})L(%’Xfl’ 1— S) - Z(W(wl)W,wflel, 1— S) =1

(6) Immediate, since in this case the L-factors are 1.

The v factors determine the representation in the following sense.
Theorem 24.13 ([Bum97} Proposition 4.7.6]). Let (Vi,m1), (Va,m2) be two irreducible admissible
representations of G. Assume that w1, 7o have the same central quasi-character w, and that

W(Wla X5 S, ¢) = 7(772’ X5 S, ¢)
for all quasi—chamcterﬂ x of F*. Then 7 = ms.

9Really we need to assume this for a class of quasi-characters x such that we obtain every character of O* after
restriction x|px -

Proof. Assume that V7, V5 are in Kirillov form. Let Vj = V4 N V5. Note that C*(F*) C V, and
m1(9)lv, = m2(9)|v, for g € M. Since 1,72 have the same central character, this holds for all g € B.
We show that if ¢ € Vj, then 7 (w1)d = ¢2(w1)p. Then Vi N4 is stable under wy, hence stable under
G which is generated by w; and B, and therefore V; =V = V; and the actions of w1, 7o are the same.
The idea to show 71 (w1)d = P2 (w1)¢ is that we can “see” the action of w; using the local functional
equation in the gamme factors. Let ¢; = m;(w1)¢. It suffices to show ¢1(1) = ¢2(1): By applying this

1 0 1 0
to ¢ =m (O a) ¢ =y (O a) ¢, we get:
a 0

o) =m (5 9) ) o) =m0 =mawng' V) = ( (5 7)) o0 = én(@.
For a character x of FX and n € Z we let

Bw=[ @@= ewn@e



88 LEONARD TOMCZAK

-~

Let f = (¢1 — ¢2)|ox. Note that F,(0) is the Fourier transform f(x|ox) on O*. Since f is locally

~

constant the compact space O, we have f(£) = 0 for all but a finite number of characters £ of O*
Therefore, the Fourier inversion formula on the compact group O* gives

fmy=>" f©.
£cOX

We will show f(£) = 0. Fix € € OX. Let X be any extension of £ to . Then since y(my,w™ 1y 11—
5,9) = y(ma,w x71, 1 — s,7), the functional equation gives

Z(¢17X75) = Z(¢2aX7S)'

5. we have

But now note that, letting ¢t = ¢~

S ()i = / (61(2) — d2(2))x(@) 2l T = Z(d1, x5 + =) — Z(2, x5+ 2),

= Fx 2 2

for all s with Res > 0 (so that the integral converges absolutely), i.e. for all ¢ with |¢| sufficiently

small. This implies F) (n) = 0 for all n, in particular for n = 0, we obtain f(£) = F,(0) = 0 which is
what we wanted to show. O

Theorem 24.14. Let x1,x2 be quasi-characters of F* such that m1 = B(x1,Xx2) s irreducible.
Then for any quasi-character n of F*, we have

’Y(ﬂ-v m,s, ¢) = /Y(/rlé-l? S, 77[1)’)’(775% S, Qp)

Here the gamma factors on the right are those from the GL; theory, Section [I] We give the proof at
the end of 25

25. WEIL REPRESENTATION

In this section we may for some parts allow F' to be any local field of characteristic # 2, in particular
it may be archimedean. As usual fix a non-trivial additive character ¢ of F'. Let (V, 8) be a quadratic
space over F', i.e. V is a finite-dimensional F-vector space and 3 : V — F is a non-degenerate quadratic
form, which means the associated function B : V x V — F, defined by

Blu,) = 5(Bu+v) = 5la) - B))

is a symmetric non-degenerate bilinear form. If a € F*, then af is the quadratic form (a8)(v) = af(v).
If (V1,B1), (Va, B2) are quadratic spaces, we can consider their direct sum (V1,51) @ (Va, 52) = (V1 @
Vo, 51 @ 62) where 31 ® 52(’01, 1}2) = 51(’01) + 62(’02). If ay,...,a, € F*, we define QF(al, . ,an) =
(F™, ) where B(z1,...,x,) = > i, a;x7. Note that QF(a1,...,a,) = @, QF(a;). Every quadratic
space is isomorphic to one of the form QF(ay,...,a,). A quadratic space is split if it isomorphic to a

direct sum of copies of hyperbolic planes QF(1, —1).

Of most importance to us will be the following cases:

41r g C OX is a finite index open subgroup such that f is constant on cosets of H, then f({) = 0 for any &£ that is
non-trivial on H.
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(i) V = L is a quadratic separable algebra over F, i.e. either L is a quadratic separable extension
of F,or L=F @ F, and f is the norm form, given by 3(z) = xo(z) where o : L — L is the
unique non-trivial F-automorphism.

(ii) If L # C, V is the unique quaternion division algebra over F', and 8 the reduced norm form.

We would like to compute the Fourier transform of Fjg := ¢ o 3 : V — C. The problem is that this
function is not integrable, the Fourier integral would be a kind of Fresnel integral. But we can make
sense of this in a distributional sense.

S(V) is the Schwartz space of V. The pairing (u, v) — 1h(—2B(u, v)) identifies V with V, its Pontryagin
dual, hence if f € S(V), we define its Fourier transform f by

f(f):/vf(v)w(w(g,v))dv.

We normalize the Haar measure so that it becomes self-dual, i.e. the Fourier inversion formula

7 (@) = f(-a)
holds. Note that the self-dual Haar measure depends on both ¢ and 5. We will denote the Fourier
transform f also by Ff. We now follow Bump (who follows ), to define the Fourier transform
of Fjg by convolution with test functions. Note that another approach might be to instead view Fg as
a distribution on V' and thereby interpret and define its Fourier transform, which is done in .

Let d =dim V.
Proposition 25.1 ([Bum97, Proposition 4.8.3]). If ® € S(V), then ® x Fg € S(V). There is a
number v(8) € C with |y(8)| =1 such that
F(® * Fg) =v(B)F® - F_p.
If a € F*, then

F(® * Fag) = |a|* (aB)F® - F_y-15.

In other words, the first equation tells us that FFg = v(8)F_p assuming we had defined FFj (e.g. as
a distribution). See also Theorem 2.2].

Some properties of v(3):

Proposition 25.2.
(i) v(Br @ B2) = v(B1)v(B2)
(ii) v(—=B) = ~(B)~".
(iii) If B is split, then v(B) = 1.
(iv) v(B8)* = 1.

Proof. (i), (i), (#it) are easy. For (iv) see [Cas]. O
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Proposition 25.3 ([Bum97, Proposition 4.8.5]). If F is nonarchimedean, then for every suffi-
ciently large lattice L C V [] we have

18) = [ Fatoyo

%.e. compact open subgroup of V

Recall that the Hilbert symbol is a certain symmetric bilinear map F*/(F>*)% x F*/(F*)? — {+1}.
It can be defined in various equivalent ways:

(1) (a,b) = 1if and only if 22 — ay? — bz + abw? = 0 has a solution z,y, 2, w € F, not all zero.
(2) (a,b) =1 if and only if Quat(a,d) is split over F, i.e. Quat(a,b) = Maxo(F).
(3) ¢dx(a)b'/? = (a,b)b'/?, where ¢x is the reciprocity map, see Theorem

Theorem 25.4 (|[Bum97, Theorem 4.8.4]). Let a,b € F*. Then
(a,b) = v(Quat(a, b)) = v(QF(1, —a, =b, ab)).

Corollary 25.5. Let (V,8) = QF(r1,...,7q4) be a quadratic space with d even. If we let A =
(=1)%2ryry - - 14, then for any a € F*, we have y(aB) = (A, a)y(B).

Theorem 25.6. Let (V, 8) be a quadratic space. There is a projective representation r of SLo(F')
on L*(V) such that

(r(5 7)2) @ =veserew

(7" (g agl) <1>> (v) = |a|? B(av)

o~

r(wy)® = P,

0
-1 0
The Schwartz space S(V') is invariant.

where v € F,a € F* and wi; = ) This projective representation is unique up to scalar.

Proof. See [Bum97] theorem 4.8.3]. The uniqueness holds because elements of the form indicated
generate SLy(F). O

Theorem 25.7 ([Bum97] theorem 4.8.3]). Let (V, ) be a quadratic space of even dimension d.
Then a scalar multiple r of the projective representation of SLa(F') above is a genuine represen-
tation. The scalar is given as follows: Let x : F* — {£1} be the quadratic character given by

x(a) = 7,7(('1;)) = (A, a) (with the A from C’orollary. Then the following defines a (continuous)
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representation v of SLa(F) on L*(V), with S(V) as an invariant subspace:
(r(5 7)2) @ =veseec)
(5 2)e) =l x@sta),

~

r(w)® = ~(8)®.

We now want to extend these representations to G = GLa(F).

We now assume the case dim V' = 2. Up to rescaling (V, ) comes from an algebra F over F as above,
so either F/F is a separable field extension, ' = F'@ F', or E is a nonsplit quaternion division algebra
over F. In all the cases E is an algebra, and § : F — F' is multiplicative. Hence, F} := B(E*) is
a subgroup of F*, and G, the subset of matrices g € GLo(F) with determinant detg € Fy, is a
subgroup of GLy(F). We have the following description of F:

e If E=F@F, then Fy = FX.

e If E/F is a quadratic separable extension, then Fy = Ng,p(E*) is the norm group of L in
the sense of local class field theory.

e If E/F is a quaternion algebra, then F, = F* if F is nonarchimedean, and F} = Ry if

F =R, [Voi21] Lemma 13.4.9]

Note in every case G4 has index at most 2 in G, and it contains the center.

Let a € F*. How does the representation change if we replace ¥ by 9,7 Let ry, denote the
represntation constructed with the character ¢,. For ® € S(FE) and b € E*, we define A\(b)®(z) =
O(b~1z), p(b)®(x) = ®(xb).

Proposition 25.8 ([JL70, Lemma 1.4]). We have
a 0 a”t 0
T (9) = Ty 0 1 ) 0 1 .
If a = B(b) with b € E*, then

T4, (DAL = A0~ Hry(g),
Ty, (9)p(b) = p(b)7y (9).

Note that if 5(b) = 1, then A(b) and p(b) commute with r = ry.

We will first consider the case where E is a quadratic separable field extension of F. Let E! :=ker 8 =
ker N/ be the norm 1 hyperplane. It is a compact subset of E*.

The character x from before is now the nontrivial character of F*/Ng,p(E*). Indeed, if a = 5(b)
Ng/p(E£*), then (E,aff) and (E, 3) are via v — bv isomorphic quadratic spaces, hence v(af3) = (8
and therefore x(a) = 1. Alternatively, we have E = K(y/a) for some a € F*, and then (F,f)
QF(1,—a), so x(b) = (a,b) = (b, E/K), by Corollary

Let 6 be a quasi-character of E*. Let S(FE,0) be the space of functions ® € S(F) satisfying
®(xh) = 07 (h)®(z)

m

~—

)

1%
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forallz € E, h € E'.

Theorem 25.9.
(1) S(E,0) is an invariant subspace for .

(2) The representation r of SLa(F) on S(E,0) can be extended to a representation rg of G4,

via
(o (5 9)2) @ = 2 ommcan)
where a = B(h),h € E*,z € E.
(38) The central quasi-character of rg is X0 on Z(G4) = F*.

Proof.
(1) By Proposition [25.8] 7 and p(h) commute for h € E*.

(2) Let H C G, be the subgroup of matrices of the form with a € F;. The formula

a 0
0 1
clearly defines a continuous representation of H on S(FE). Note that G+ = SLy(F') x H, so to

show that this is compatible with the representation of SLy(F'), we need to check

a 0 at 0)\ _ (a 0 () a0
"o 1) o0 1))7"\0 1) 0 1)
this follows again from Proposition 25.8]
(3) Using Ng/pa = a?, we have

o3 Deo=n((§ Y D)oo

We now get to G = GLy(F'). We let
m=7(0,¢):= Inngr 0.4

be the induction of ry to G. We finally got a representation of G! Note that both G, G are unimodular,
so we don’t need to worry about modular quasi-characters in the induction. If 7/’ is another non-trivial
character of F, then 7(0,v) = 7(6,v¢").

We say that ¢ is regular if it does not factor through Ng,p : E* — F.
Now assume that F' is nonarchimedean.
Theorem 25.10 ([JL70] Theorem 4.6)). [7]
(1) 7o,y is an irreducible admissible representation of G .

(2) m=m(0,v) is an irreducible admissible representation of G.
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(3) If 6 is regular, then w(0,1)) is supercuspidal.
(4) If 0 = xo o Ng/r for some quasi-character xo of F*, then m(60,v) = B(xo, XoX)-

“Note in [JL70|, w(6,1) denotes the representation rg y of G .

In the last statement, y is the character of F'* corresponding to E/F'.
Proof. For admissibility, see [JL70] or [Bum97], I am too lazy for that right now. Consider the map
A:S(E,0) — C>®(Fy), given by A: ® — g, where

pa(a) = 0(h)|n|> @(h)

where a = Ng,p(h). Aisinjective. Conversely, define the map B : CZ°(Fy) — S(E,0) by B : ¢ — &,
where

O, (h) = 0(h) "1 R[5 o (h).

Then Ao B = idcs(p, ), so Vi = Ran A O C°(F'). If 6 is nontrivial on E' (i.e. is regular), then every
® € S(F,0) vanishes at 0, and therefore A maps into C°(F). Let My = G4 N M, i.e. it is the group

of matrices (a b) with a € Fy,b € F. If y = Ng/p(z) and a = Ng,p(h), we have

0 1
(o )o)er-momi (- (s o)

= |2|{* 6(2)8(h) |h|}{* ®(h2)
= A(®)(ay).

(o)) s (- )

= (aNg/p(h)0(h) k] B (h)
= P(za) A(®)(a).

Assume 6 is nontrivial on E!, i.e. 6 is regular. Hence if we define a representation E;[ of M, on
Ceo(Fy) by

Similarly

w((5 1)) et = vt

then A : S(E,0) — C*°(Fy) is a map of M, representations. Let &, denote the representation of M
on C°(F™).

Lemma. & is the induction of EJ. In particular, @r is 1rreducible.
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Proof. For the first part if ¢ € Ind%+ f;r, then associate to it the function ¢ € C°(F*) given by

pla) = <& (g (1) (1). This gives an isomorphism Ind%+ 5:5 — &y. The second part follows since
by Proposition &y is irreducible. O

This shows that rg 4 is irreducible. Since M} \M — G \G is a bijection, we also havﬂ

m(0,9)|m = (Indg, ro.y)|ar = Ind}f, ro.yar, = Indjf, &F =&y

Therefore m(6,1) is irreducible. The isomorphism 7 (6, ) = &, then shows that the Kirillov model of
7(6,1) has space C°(F*), hence 7(0,1)) is supercuspidal by Theorem m

The only thing left to do is consider the case when 6 is not regular, so assume ¢ = xo o Ng,p for some
quasi-character o of F'*. Note that then S(E, ) simply consists of the functions ® € S(F) that are
invariant under translation by elements in E'. Note under the map A, the elements in in C2°(F")
corresponds exactly to the elements in S(E,#) vanishing at 0, hence C¢°(F}) is of codimension 1 in
Vi = Ran A. Since C¢°(F}) is irreducible as an M, -representation, to show irreducibility of rg . it
suffices to show that A=1(C°(Fy)) is not G-invariant (why? TODO why every nontrival invariant
subspace contains C°(F4)...). Let 0 # ® € S(E, 0) be nonnegative, and ®(0) = 0. Then

(10 (1) )(0) = (N )B(0) = 7(Nee) [ D)o £
so AD € CX(Fy), but A(rg,y(w1)®) ¢ C°(F,). This shows that rg 4 is irreducible. As above, we get
m(0,4)|p = IdG, ro5)|n = Indyy, ro.plar, = Indyy, V.

In the same way as in the lemma, we may view Ind%+ V., as a space of functions in C*°(F*), concretely

if o e Ind%+ Vi, we associate to it the function ¢ € C*°(F*), given by ¢(a) = (@ (8 ?)) (1). Let
V C C(F*) be the space of these functions, so that w(6,)|y = V. 5;” = C°(F,) is of codimension

one in V,, and so IndJ]\V/f+ {;r = ¢, is of codimension two in V. Since G is open in G, the space V
embeds into V' as a G -representation, and it is easily seen that V generates V as a G-representation.
Then says that any nontrivial G-invariant subspace U of V must contain C°(F*) (why?
TODO). Since rg,y is irreducible, U must contain V4, hence U = V since V, generates V over G.

Note that V is the Kirillov model of 7 (0, 1) and C°(F*) is of codimension 2 in V', hence 7(6,) is a
principal series representation. We only need to figure out which one. Let L : S(F,0) — C be the
map given by L, (®) = ®(0). Then it is easily checked that L is a map rg¢|n, — 5172 (xo0 B x0X)
of BN G representations. Fix e € F* \ Fly. Then we have a direct sum decomposition 7(0,v) =

S(E,0) ®n(0,v) (5 (1)> S(E,0), and we may define L : w(6,1) — C by

L(®) = Ly (@1) + e[ /* xo(€) Ly (85)1]

15The modular functions of M, My are not trivial, but they coincide, so again we don’t worry about them in the
induction.

161 believe |JL70] forgot the |¢|'/? here.
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where ® = &, + 7 (8 ?) by, e S(E, ) (6 (1)> S(E,0). Then, after identification with V, L is

trivial on C°(F>), and

(5 0)2) =[5 w@xerme),

a O

Indeed, this holds for <0 b

) € T NGy since it holds for L then, and can be checked for (8 0> _

(8 (1)>, and these together generate T. Hence one of the characters of T occuring in the Jacquet

module 7(6,1) x is §/2(xo 8 x0x). This implies the claim by Theorem [15.10 O

Next we consider the case £ = F' @ F. Note that now Ng,p(E*) = F*, so x is trivial. Let 6 be a
quasi-character of E*, so of the form 61 K 65 with 67, 6> quasi-characters of F'*. The reason this case

is different than the previous one is that now the norm 1 hyperplane is not compact, so there are no
non-zero functions in S(E) that satisfy ®(zh) = 071 (h)®(z) for all x € E, h € EL.

Note that in this case there already is another natural action p of SLy(F) on L?(E), given by
(r(9)®)(v) = @(vg),

where we view v as a row vector, and vg is the vector matrix product.

Proposition 25.11. The two action r and p of SLo(F) on E = F & F are isomorphic. More
precisely, if ® € S(E), define the partial Fourier transform Fo® € S(E) by

(]-"gfl))(vl,vQ):/ O (vy, u)h(uve)du,

F
in other words Fo® is simply the one-dimensional Fourier transform with respect to the second
variable, while keeping the first fixzed. Then Fo : S(E) — S(E) is an isomorphism which extends
to an isometry L?(E) — L?(E), and intertwines r, p:

Faor(g) = p(g) o Fa.

0 at 0 1
Fourier inversion formula in the first component. O

Proof. Check F3 or(g) = p(g) o Fa for the elements g = <a 0 ), <1 x>’ and wy. For wy use the

Now consider our quasi-character § of EX. The action R of SLy(F) on L?(E) is extended to an action
of GLy(F) via

(p(9)®)(v) = |det g|'"* 6 (det g) 2 (vg).
We may then extend the action r of SLy(F) on L?(E) similarly to GLo(F), so that F, remains an
intertwining operator:

(7“ <g ?) ‘I’> (v1,v2) = Y| 61 () @ (yu1, va).

Write 6; = |-]*" ¢ where s, s € C and &; are unitary characters of F*.
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We will exhibit the principal series representation Vp, g, = B(61,62) as a quotient of the representation
R on S(E). Define a map 7g, 9, : S(E) — C via

T, 0, = / B(0,4) (0265 1)(w) ly] .
FX

Let x = 91951 and £ = flfgl. This integral converges absolutely if Re(s; — so + 1) > 0. It can be
analytically continued to all s1, s3 except for the values where ¢ is unramified and &(w)g 5175271 = 1.

One can check that
1/2

1
=  To,,6,9P,

Yy T _ )
701,02 (R (O y2> ‘I’) = 01(y1)02(y2) ”
hence the map Ty, g, : S(E) — Vp, o, defined by

(T91,92 (I)) (g) = T6,,02 (R(g)@)

is well-defined, and an intertwining operator. The poles of 7y, 5, correspond precisely to the case where

Va, .6, is reducible. Clearly, T, g, is non-zero, so away from 6,605 = | 7", this shows that B(6;,0s) is
a quotient of the representation R on S(E).

To ® € S(F) associate the function Wg : G — C, defined by

Walg) = [ 0100207 (@)@t 07)a%

The integral is absolutely convergent without any restriction since the integrand has compact support.

Clearly,
wa (5 7)9) =v@malo

Hence, we get a map S(E) — W(¢),® — We. Also W, (nya(9) = Wa(gh), so this is an intertwining
map. Let W be the space of functions Wg with ® € S(E).

Theorem 25.12. Let 01,605 be quasi-characters of F* such that 919;1 =+ |-|71. Assume Re(sy —

so+1) > 0. Then the map S(E) — W, ® — Wy, induces an isomorphism Vg, 9, = W, hence W
is the Whittaker model of B(61,602).

Proof. TODO. O

Proof of Theorem[2{.1]. By analytic continuation, there is no loss in assuming that Re(s; —s2+1) > 0.
Let n be a quasi-character of F*. Let ® € S(E) be of the form & = ®; ® &5 with &1, Py € S(F). Let
W = We. Then

2w = [ w (b Q) nwl ey
= [ oo (+ (5 9)#) wetambl oy
= [ oo ettt en(o) oy

- / / 61(t) " 102(1) [y)? 61 () @(yt ", O)n(y) [y~ 2 Ty &t
F>< F><



AUTOMORPHIC NOTES o7
tu:y/ 91( )—192( )|tu\1/2 91(tu) (u t)n(tu) |tu|57% Tudt

/ 0(u)n(u) |ul® @1 (u)du / O (O)n(t) |t]° ()t
= Zgr, (®1,01n,5) ZaL, (P2, 027, 5)

Here the index GL; refers to the local zeta integrals from Section Next note that m(wy)W =
Wiw)e = Wg, and @ = &5 ® ;. The central quasi-character w of B(x1, x2) is w = 61602. The same
calculation applied to ® and the quasi-character w™'n~"! gives

Z(ﬂ(wl)m nilwila 5) = ZGLl (21\)23 02_17771a S)ZGLl ((/I\)la 91—17]71’ S)'

26. INVOLUTION METHOD

Let G be a tdlc group. For g € G we define left and right translation by \(g)x = g, p(g)z = 2g~! for
7,9 € G. For f € C(GQ), welet A(g)f = fol(g)~tand p(9)f = fop(g)~t. For T € D(G) = (C=(G))
we let M(g)T =T o X(g)~! and p(g)T =T o p(g)~* .

Now let G = GLy(F).

Let w = (? é) Define + : G — G by 1(g) = wgTw. It is an involution and induces involutions of

C(G) and D(Q).

Let 1 be a nontrival character of F', viewed as a character of N.

Theorem 26.1 ([Bum97, Theorem 4.4.2]). Suppose A € D(G) satisfies A\(u)A = (u) LA and
p(u)A = (u)A for allu € N. Then A is stable under ¢.

Proof. Tt suffices to prove the following: If A € D(G) satisfies A\(u)A = ¥ (u)A and p(u)A = (u)~?
and ¢(A) = —A, then A = 0. We call a distribution with these properties invariant for this proof.

Let X = BwB be the open cell in the Bruhat decomposition. There is an exact sequence
0—D(B)—DG)—DX)—0

We first show the image of A in D(X) is 0. So let A € D(X) be invariant, i.e. satisfy the above
conditions. X is fibered over Y = F* x F* viap: X — Y, where

a b\ [ ad-bc
Pcd—Qc .

The fibers of p are the double cosets
0 b
N <CO O) N

and are invariant under the action of N x N (left and right translation) and ¢. It suffices to show that
there are no non-zero invariant distributions on each fiber. There is a homeomorphism

N><N—>N<O bO)N,
Co 0
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0 bo\ _
(u,v) —> u 0yt
Co 0

This is NV x N-equivariant, where we let N x N on itself by left translations. Hence if we have an
0 b
Co 0
uniqueness of the twisted Haar measure there is a scalar ¢ such that

D(p) = C/NXNw(u)w(v)_lgo(u,v)dudv,

Alp) = C/NXNz/;(u)qp(v)@ <u (C(l %) v> du dv.

invariant distribution A on N ) N, we get an invariant distribution D on N x N. But by

or

Now note that

Hence A = 0.

It remains to show that D(B) has no non-zero invariant distributions. This time we fiber over Y =
F* x F* and the map p: B — Y is given by

p (8 Z) (a,d)

Again the fibres of this map are stable under N x N and ¢. There is a homeomorphism
L:N — pa,d),
u — ud,

where § = 0). Note that this map preserves left multiplication, and L(p(g)v) = p(6gd~1)L(v) =

a
0 d
(596~ L(v) for g € N. Hence, again by uniqueness of twisted Haar measure, there are cj,cy such
that

Ap = cl/Nw(n)go(m?)dn,

Ap = 62/ P(67nd)p(nd)dn.
N

If a # b, these two alone already imply ¢; = ¢o = 0. Otherrwise, if a = d, one can check that these
formulas define ¢-invariant distributions, hence A = 0 in all cases. d

Theorem 26.2 ([Bum97, Theorem 4.2.3]). If a distribution A € D(Q) is invariant under conju-
gation, it is invariant under transposition.
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27. GLy OVER A FINITE FIELD

In this section F' will be a finite field with ¢ elements. Let G = GLo(F). Similarly, define w, N, T, B
etc. as in the local field case. G has ¢> — 1 conjugacy classes, so we expect this many irreducible
representations.

Definition. Let (V,7) be an irreducible representation of G. = is called cuspidal if the restriction
to N does not contain the trivial character.

Since V = V¥ @ V(N), this is equivalent to V(IN) = V, which corresponds to the characterization of
supercuspidals in the local field case.

Let x1, x2 be characters of F*. As usual they induce a character of T, and by inflation one of B. We

have the principal series representation B(x1, x2) := Indg (x1, x2)-

Theorem 27.1 ([BHO6| 6.3 Proposition, Corollary 1]). We have

2 if x1 = x2 = p1 = pe,
Home (B(x1, x2), B(p1, p2)) = 1 if x = p or x = p*, but x1 # Xz,
0 otherwise.

Therefore B(x1, x2) is irreducible if and only if x1 # x2. If x1 = X2, then B(x1,x2) has length 2
with distinct composition factors.

Proposition 27.2. An irreducible representation (V, ) is cuspidal if and only if it is not isomor-
phic to a subrepresentation of B(x1,Xx2) for some characters x1,x2 of F*.

Proof. Frobenius reciprocity. O

Corollary 27.3. There are %(q2 + q) — 1 many irreducible noncuspidal representations of G up
to isomorphism.

Let E be a quadratic field extension of F. Let 6 be a character of E*. As when discussing the Weil
representation, we call ¢ regular if does not factor through Ng, . Equivalently, 6 # 6. By choosing
a basis of E/F, we may identify E* with a subgroup Hg of G. Let ¥ be a non-trival character of N.
We define 6, on ZN by

a 0
<O a> n— 0(a)(n)
where a € F*,n € N.

Theorem 27.4 (|BHO6 6.4 Theorem]). Let 6 be a regular character of E*, and v a non-trivial
character of N. Then there is a cuspidal irreducible representation mg of G with character

o = Indgy 64 — Ind§_ 6.

Moreover, dimmg = q — 1. If 61,05 are both regular characters of E*, then mg, = mg, if and only
Zf01 = 92 0’1"91 = 9%
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Finally, every irreducible cupsidal representation G is obtained in this way.
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Part 4. Global Theory

28. CLASSICAL MODULAR FORMS

h denotes the upper half plane. For a function f : h — C and v = (Z Z

define flu[y] by

b)) = det) (e + g () — et i) 0]

) € GLy(R)", k € Z we

Here j(v,z) = cz + d.
Let T' be a congruence subgroup of SLy(Z).

Definition. A modular form of weight k for I' is a holomorphic function f : b — C such that

o fle[y] = f for v € T, or explicitly f(vz) = (cz + d)*f(2) for all v = (Z Z) el and

z€b,
e f is holomorphic at the cusps of I.
If in addition f vanishes at every cups, f is called cuspidal or a cusp form. The space of modular
forms (resp. cuspidal modular forms) of weight k for T' is denoted My (T') (resp. Si(T)).
A function f satisfying the first condition is holomorphic (resp. vanishes) at the cusps of T" if f|[v](2)
is bounded (resp. goes to 0) as Im z — oo for all v € GLy(R)*.

Since I'1 (V) is a normal subgroup of I'g(N), I'g(N) acts on My (I'1(N)), and Si(I'1(V)) is preserved
under the action. Since by definition the action of T'1(N) C T'o(N) is trivial on these spaces, the

quotient T'o(N)/I'1 (V) acts on them. We have I'o(N)/T1(N) & (Z/NZ)* via <Z 2

character of (Z/NZ)*, then My (N, x) := M (To(N),x) (resp. Sk(N,x) := Sk (To(N), x)) denotes the
subspace of My (T'1(N)) (resp. Si(T'1(N))) on which (Z/NZ)* acts via y, explicitly it consists of those
functions f satisfying f|x[y] = x(v)f for all v € Tx(N), or

f ( ’ b) — x(d)(cz + )£ (2)

—d. If yisa

cz+d

for v = (Z b) € I'y(N). We have

d
M,(T1(N)) = P MNx), SkTi(N) = P S
XE(To(N)/T1(N)) XE(To(N)/T1(N))

Notice that M (N,x) = 0, unless x(—1) = (=1)k. Also My(N,x0) = M(T1(N)) for the trivial
character xp.
Fix k. Let f,g: h — C be meromorphic functions. We define the differential form

w(frg) = F)a* L y@dy

17In [DS05| and some other sources the exponent of det is k — 1 instead of k/2.
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Proposition 28.1. For o € GLy(R)*, we have
a*w(f,9) = w(flklal, glklal).

Proof. Straightforward computation. O

No suppose that f,g are weight k& modular forms for some (not necessarily the same) congruence
subgroups such that at least one of them is a cusp form. Then f, g are modular forms for I'(N) for
some N. By the proposition we have v*w(f,g9) = w(flx[V],9lx[¥]) = w(f,g)) for v € T'(IN), hence
w(f,g) descends to I'(N)\h. We define the Petersson inner product of f,g by
1 1 —— pdr Ady
1:9) = rromen Lo @9 = o Lo f@eEr R
[T(1) : T(N)] Jrve [T(1) : T(N)] Jrvne y?

This value is independent of the choice of N. It gives an inner product on Si(T).

Proposition 28.2. Let f,g € My(T") such that at least one of f,qg is cuspidal. Then for a €
GL2(Q), the slash operator is unitary in the following sense:

(f,9) = (flkled, glelal)-

Proof. fli[a], glx[a] are modular for a1 Ta N T, so
1
(ol 90D = [T T T] S, gy “C 0D 14l
1 *
o [F(l) . oz_lf‘a ﬂr] /(1_1Faﬁr\h @ W(f’ g)
The last equality is by Proposition Now z — az gives a diffeomorphism o 'Ta NT\h —
I'Nnala~t\h. Hence

1 *
lelelglelel) = (1) : a1 TanT] /alraﬁl“\b a’w(f,g)
1
N 1) :aTanT] /1“mara—1\h w(f,9)
1
- [P@):Tnala] /mam_l\hw(f, 9)

=(f,9)-

Let f € My (T1(N)) with g-expansion f = >7" ja,q™. We define the L-series of f by
L(f,s) = Z anpn”*°.
n=1

If f € Sp(T'1(V)), this is absolutely convergent for s > 1+ &.
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28.1. Fourier Expansions
TODO

28.2. Abstract Hecke Operators

Let G be a group, I';,T's commensurable subgroups such that I'; N gT';g~' is of finite index in I'; for

i=1,2and all g € G. Let us call (G,T'1,T'3) a Hecke triplﬁ I's acts via right translation on the right
cosets I'1g. The stabilizer of I'1g is 'y N g7 1T g. The assumption implies that this has finite index in
I's. Hence the orbit of I'y g, i.e. the double coset I'1gI'5 is a finite union of right cosets I'yg;.

If R is a commutative ring, let Hr(G,T'1,T'3) denote the free R-module group with basis given by the
double cosets T'1gT's, g € G. Alternatively, Hr(G,T'1,T'2) is the set of functions f : G — R such that
f(g1992) = f(g) for g1 € T'1,92 € Ty and f(g) # 0 only on finitely many double cosets. Note that
Hr(G,T1,T2) = Hz (G, T'1,T2) ®z R.

Let M be a right G-module and denote by M" the set of elements fixed by I'. Then for ¢ € G we
define the operator [[';gl's] on Mt by

m|[F1gF2] = Z m”
’YEFI\FlgFQ

where the sum is over a set of representatives of the cosets. This is well-defined since the sum is finite
and does not on the choice of representatives. We extend this to all of H(G,I'1,T's) by linearity. Note
that [['1gl'2] maps M1 to M2,

In the following we assume that I'y = T'y =: T (though it can also be generalized to the two subgroups
case). We equip H(G,T) := Hz(G,T,T) that turns the action on M into an actual ring action.
To do that we choose a “universal” M. Namely, let M = Z[I'\G]. Then we have an isomorphism
H(G,T) = M" and the right action of #(G,T') on M' defines a product on H(G,T'). Explicitly, it is
given as follows: If g, h € G, write I'gI' = [ [, T'g;, ThI' = [ [ h;. Then let

Dyl -ThT' = Y kD
kel\G/T

where ¢, = #{(i,j) | T'gih; = Tk}. This definition is so that the action on M" becomes an action as a
ring, i.e. m|[['gl’ - Thl'] = m|[['gT]|[TAT]. If we view elements of H(G,T") as functions on G, then this
product is the convolution product:

(fi* f2)(g) = Z filgh™) fa(h) = Z fi(h) f2(k).

heT\G h,k€T\G, Tg=Thk

The identity element is the identity coset I, or its indicator function 1. In the function interpretation
the action of f € H(G,T) on an element m € M' is given by

m-f= Y flgm’.

gelr\G

18Not sure if this a real term. If 'y =Ty =: T, then in the literature (G, T") is called a Hecke pair.



104 LEONARD TOMCZAK
28.3. Application to Modular Forms
We take G = GLy(Q)™".

Proposition 28.3. If T is a finite index subgroup of I'(1) = SLo(Z), then (G,T) is a Hecke pair.

We will only apply this to congruence subgroups. Fix k and let
M= |J M@, S= | S@
I'CSLy(Z) I'CSL2(2)

where the unions are taken over all congruence subgroups I'. Then G acts on both these spaces on
the right by f — flg[y] = f for v € G. Note that M(T') = M} and S(T') = S.. Therefore we
get an induced action of the Hecke algebra H(G,T') on My (T') and S (T"), denoted f +— f|i[TgT] for
f € Mp(T) or Sg(I'), and g € G.

If g € G, we write T, for the operator f — f|¢[I'g']. We write T, on the right, i.e. f|¢[I'gl'] = f|Ty =
fITy.

28.3.1. Level 1 Case. In this section fix I'(1) = T'(1) = SLy(Z). The first step is to find representatives
for the double cosets I'(1)gl'(1) for g € G = GLo(Q)*:

Proposition 28.4. If g € G, then there are unique di,dy € Qs such that do/dy is a positive
integer and

I(1)gT'(1) =I'(1) (Cg £2> r'(1).

Corollary 28.5. H(G,T'(1)) is commutative.

Because of this we will also write Ty f in place of f|Tj.

Corollary 28.6. Any double coset T'(1)gI'(1) has a common set of left and right coset represen-
tatives, i.e. there exist gi,...,gn such that T(1)gl'(1) =[1;—, T(1)g; = 1/, ¢:I'(1).

Theorem 28.7. Let a € G. Then the double coset operator Ty, is self-adjoint on Si(T'(1)), i.e.
(Tof,9) = (£, Tag)

for all f,g € Sk(I'(1)).

Proof. We may assume that o = (dl 0

0 do
lary[28.6f Then o=t = D! <%2 ;) = D lwaw where D = dyds1I5, so T'(1)a™'T(1) = T'(1)Dal'(1).
1
By Corollary [28.6| there are av, ..., o, such that T'(1)al(1) = [[I, T(1)ey = [], auT'(1). Taking
inverses gives

) with dy,ds positive rationals and dy/d; € Z, see Corol-

DT (1)al'(1) = T'()a 'T(1) = ﬁr(gaﬂ

%
i=1
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Then by Proposition we have

n n

(Tofo9) = Y (flelal.g) = Y (f.glklai']) = (f. To-1Tag) = (f. Tag)-

i=1 i=1

0
Corollary 28.8. Si.(T'(1)) decomposes into a direct sum of irreducible submodules under the action
of H(G,T'(1)). On each such submodule the elements of H(G,T'(1)) act as scalars.
Proof. Combine Theorem with the fact that H(G,T'(1)) is commutative. O

Remark. One can also show that the Eisenstein series is an eigenfunction H(G,T'(1)), so the
corollary also applies to My (T'(1)).

We now single out a particular family of Hecke operators.
For n > 1, let A,, be the set of integer 2 x 2 matrices of determinant n.
We denote by T;, the operator on M (I'(1)) or Si(I'(1)) given by f +— f|x[A,]. Note that
_ di 0
a= I o )T,
dl ‘dg, dldg:n

so this makes sense. To compute T,, we would like to find a set of representatives for the right cosets
in A,.

Proposition 28.9. We have
a b
A= JI T (o d) .
a,b,d€Z>¢
ad=n, 0<b<d
For n > 1 let R,, be the element of H(G,I'(1)) corresponding to the double coset I'(1) (g 2) T(1).
Note that R,, acts trivially on M(I'(1)) and Sx(I'(1)).

Theorem 28.10. In H(G,T'(1)) we have the relations
(1) RyRyy = Ry for allm,m > 1,

(#1) TonTn = Ty for all coprime m,n > 1,

(i1i) TpTyr = Tyr+r + pRyTyr—1 for all primes p and r > 1.

Proof. (i) is obvious. For (ii), we have

T, = Z I]-F(l)gv

ger(M\A,
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S0
TnT, = Z HF(l)hg
hel(1)\Am,gel(1)\A,
Note that as g runs through a set of representatives for I'(1)\A,,, gZ? runs through precisely the index

n lattices in Z2. Since n,m are coprime any lattice of index nm has a unique sublattice of index n
from which the equality T.,T,, = Ty, follows.

The idea for (4i7) is similar. We have

TpyTyr = Z Ip(1)ng-
hED(D\A,,g€T(1)\A r

Basically this corresponds to attaching to an index p"t! subgroup A of Z? an order p subgroup of
7Z2/A. We count how many there are depending on A. Suppose A is an index p"*! subgroup of Z2.
Then there are unique 0 < a < b with a +b = r + 1 and Z?/A = Z/p® & Z/p®. If a = 0, there is
exactly one order p subgroup, otherwise there are p + 1 of them. Note that we have a > 0 if and only
if A C pZ2. If A = kZ2, this is the case precisely when k = pg for some g € Apr-1. Hence

T, Ty = Z Ir()ng
heT(\Ap,g€l(1)\Apr
= Z Irae +(p+1) 1 » 0
EeD(D\(A,r+1—PA r-1) keT(D\A -1 Nl)(() p>k
- Y hatr Y1
KET(\A i1 KET(D\A r 1 F(l)(o p)k

= Tpr+1 + pRprrfl.

Alternatively this could be done using the explicit coset representatives in Proposition [28.9] as is done
in [Bum97, Proposition 4.6.4]. O

Corollary 28.11. H(G,I'(1)) as a ring is generated by the operators Tp,, R, R;l for primes p.

Proof. Tt is not difficult to see that it is generated by all the T,,, R, R,;*. Using (i) and (ii) in the
theorem we can reduce to the case of prime powers, and then to primes using (7). O

We can describe the action of T},, on the Fourier coefficients of a modular form explicitly:

Theorem 28.12. Let f € Mp(I'(1)) and let f =), -, anq"™ its Fourier expansion. Then T, f =
ano b,q" where
bn, :TrLlig Z anm/lzlkil

U (n,m)

Proof. Straightforward computation using Proposition [28.9 g
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Corollary 28.13. If f € M(T'(1)), then
(1) ao(Tof) = m' =5 ox_1a0(f),
(2) al(Tmf) = mligam(f)'
Corollary 28.14. Suppose k > 0 and 0 # f € Mi(T'(1)) is a simultaneous eigenfunction for all

T, forn > 0. Normalize the eigenvalues so that T,, f = ml_g)\mf forallm > 1. Let ap, = an(f).
Then a; # 0. If ay = 1, we call f normalized. In this case A\, = ay, for all m > 1 and moreover,

(1) apm = anay, for all coprime n,m > 1.
k-1

(2) apayr = ayr+r + p " taye-1 for all primes p and r > 1.

Proof. Suppose a; = 0. Then nl_gan(f) = a1 (Tnf) = nl=3\,a; = 0, s0 a, = 0 for all n > 1,
hence 0 # f is constant which is impossible since & > 0. Suppose f is normalized. Then the same
computation shows that A, = a, for all n > 1. The other statements follow from Theorem 2810 [

Corollary 28.15. Si(I'(1)) s multiplicity free as a H(G,T'(1))-module, i.e. if two eigenforms
have the same eigenvalues, they are scalar multiples of each other. Therefore, Sk(I'(1)) has a
unique (up to reordering) basis of normalized eigenforms.

Proof. Suppose f,g € Sk(I'(1)) are two eigenforms with the same eigenvalues. We may assume they
are normalized. Then by the previous corollary we have a,(f) = a,(g) for all n > 1, hence f = g as

ao(f) = ao(g) = 0. O

28.3.2. Higher Level Case. Fix an integer N > 1. The notation here is a bit different from the previous
section as I used different sources.

We introduce the diamond operator (dy) for integers dy coprime to N. Let

X:{(i Z) eFO(N)\dzdomodN}

Let v € X. It is easy to see that we have
X =T1(N)y =T1(N)AT1(N).
Hence X defines an element of H(G,T'1(N)) and we have

FIIX] = fle[],

for f € Mp(T1(N)). We define (do)f = f|x[X]. Note that this isn’t really anything new, it is the
action of (Z/NZ)* 2 To(N)/T1(N) on Mp(T'1(N)).

Z) € Msy2(Z) such that detg > 0, ¢ = 0 mod N
and (a, N) = 1. Note that Ag(N) is a subsemigroup of GLy(Q)". Even though it is not a group, we
can still define H(Ag(N),To(N)) with the same definition as before. Then it is simple to check that

this is a subring of H(GL2(Q)*,T(N)).

Let Ag(N) be the set of integer matrices g = (CCL
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Proposition 28.16 ([Miy06, Lemma 4.5.2]). For a € Ag(N) there exist unique positive integers
I,m such thatl|m, (I, N) =1 and

Lo(N)al'o(N) =To(N) ((l) ;) Lo (NV).

Corollary 28.17. H(Ag(N),To(N)) is commutative.

Corollary 28.18. Any double coset To(N)gTo(N) has a common set of left and right coset rep-
resentatives, i.e. there exist g, ..., gn such that To(N)glo(N) =17, To(N)g; = [T, g:Lo(N).

As before if g € Ag(N), we write T, for the operator corresponding to the element I'g(N)gl'o(N) of
H(Ag(N),To(N)). A priori this is only defined on My (Tg(N)), but we can extend it to My (N, x), where
X is a character of (Z/NZ)* = T'o(N)/T'1(N), as follows. First extend the character x to Ag(N) 2

Lo(NV) by x <Z Z
[o(N) in T'o(N)gLo(N). Then:

= x(a). Let f € My(N,x) and g1, ..., g, a set of right coset representatives for

Tyf = x(9:) flxlgi]
i=1
It is easy to see that this is well defined, and this defines an action of H(Ag(N),T'o(N)) on My(N, x).
As before we are interested in a particular class of operators. For [ | m and (I, N) =1 let
[0
T(t.m) =To(V) () To()
and set

T, =T(n) = > Toglo = > T(,m)
9ETG(N)\Ao(N)/To(N) |m,lm=n
det g=n (I,N)=1

The second equality holds by Proposition [28.16)

In the notation of the previous chapter we have T'(n,n) = R,,.

Theorem 28.19. We have:
(1) T, T, = Ty, for all coprime m,n > 1.

Tpe+1 +pT(pap)TpE*1 pr 1/ N7

Tpet1 ’pr|N

(2) If p is a prime and e > 1, then T,Tpe = {
P

Note that T'(p, p) acts by multiplication by x(p) on Sk (N, x). Therefore as operators acting on Si(N, x)
we can also write

TpTpe = Thetr + px(p)Tpe—1.
Since we set x(m) = 0 for (m, N) > 1, this also holds for p | N.

Proof. See |Miy06] Lemma 4.5.7] and [Miy06], Lemma 4.5.8]. O
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Corollary 28.20. H(A¢(N),To(N)) as a ring is generated by the operators T,,T(p,p),T, for
primes pt N,q | N.

Note we don’t need to include inverses here as opposed to the level 1 case here we only consider integral
matrices (though one could extend everything suitably).

Theorem 28.21 ([Miy06] Theorem 4.5.4]). Ifl | m and (Im,N) = 1, the adjoint of T(I,m) on
Sk(N, x) with respect to the Petersson inner product is given by x(Im)T(m,l). For (n,N) =1,
the adjoint of T, is x(n)T,.

Proof. Exactly like Theorem [28.7] O

Corollary 28.22. Si(N, x) has a basis of common eigenfunctions for all the operators T,,,T(l,m)
where (n,N) = (Im,N) =1 and l | m.

Proof. By Theorem [28.19] and Theorem [28.21] these operators generate a commutative algebra of
normal operators on S (N, x) and are hence simultaneously (unitarily) diagonalizable. O

Proposition 28.23 ([Miy06}, 4.5.25]). We have
a b
o= I (5 )

ad=Ilm,0<b<d
(a,b,d)=1,(a,N)=1

a b
ad=n,0<b<d
(a,N)=1

Hence

YR SRV ”)1=2x<a>§f|k[(g 7)

ad=n,0<b<d ad=n
(a,N)=1
L laz+b
T./)(z) = nk/? a)d™* ( )
(B0 = 3 35 (%5

We dropped the condition (a, N) = 1 in the sum since by convention x(a) = 0 if (¢, N) > 1. Note that
if all prime divisors of n also divide N, then

(1)) = n”bz::f (=)

From this explicit description we see that under suitable conditions the Hecke operators are compatible
for different N:
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Proposition 28.24 ([Miy06] 4.5.10]). Suppose M is a multiple of N. Then we get an induced
character x on (Z/MZ)*. Suppose that either (n, M) = 1 or that all primes dividing n also
divide N. Then the Hecke operator TM on M (M, x) restricts to the Hecke operator TN on
My (N, x) € Mg (N, x).

As before we describe the action of T}, on the Fourier coefficients.
Theorem 28.25. Let f € My(N,x) and write f =3, ~qanq". Then T f =3, 5o bng" where

by, =m!'~3 Z Ay X (DIFL
l|(n,m)

Proof. Straightforward computation using Proposition [28.23] d

Corollary 28.26. If f € My(N,x), then
(1) ao(Tnf) = M=% (410 XOPL) o),
(2) a1(Tnf) = m'~Eam(f).
Proposition 28.27. Suppose f € My(N,x) is an eigenfunction of T, for primes p in a set M.

Normalize the eigenvalues such that T,f = pl_g)\pf. Suppose m is an integer only divisible

by primes in M. Then f is an eigenfunction of T,, and if we write T,,f = mlfg)\mf, then
am(f) = Amai(f) and

L(f,s)= [T A =A™ +x()p" )7 an(f)n°

peEM n

where the sum runs over all integers n not divisible by any prime in M.

Proof. If m only has prime factors in M, then 7}, is a polynomial in the 7}, with p € M by Theo-
rem [28.19] so f is an eigenfunction of T,,,. By the corollary we have

m' A1 (f) = ar(m' "3 f) = a1 (T f) = m' 2 am(f),
hence a,,(f) = Ama1(f). More generally, Theorem [28.25 shows that for coprime n, m we have
)\man(f) = anm(f)v

L(f,s) = (Z ”Amm—5> (Z’an<f>n—5> :

m n

and therefore

where Y " is taken over all integers m only divisible by primes in M. Now Theorem [28.19|implies that
Anm = ApAm for coprimes n, m that are only divisible by primes in M. Hence

Z///\mm—s — H i}\pjp—js

m peM \ j=0
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By the same theorem we also have
ApApe = )\pe+1 +p1_kx(p))\pe71,

which implies

> App = (1= Xp ™+ x(p)pF )T
=0

d 0
0 1

a 'Ty(N)a D Ty(dN)
a T (N)a DT (dN)

Therefore, if f € M (T'1(N)), then f|x[a] € Mi(T1(dN)), so f(dz) = d=*/2f|s[a](z) € My(T1(dN)).
Also x(aga~t) = x(g) for g € To(dN), hence if f € My(N,x), then f|i[a] € My(dN,x). Of course
this also preserves the cuspidal subspace. If M is a divisor of IV, define the map

in 2 My(T1(N/M))? — My(T1(N))
(f,9) — f + glrlon]

The space M;,(T1(N))° of oldforms at level N is the subspace of M (T'1(N)) spanned by all the
images of the iy for M > 1, M | N, i.e.

M(Dy(N)M = 37 i (Mg (D1 (N/M))?)
M>1,M|N

We now define old- and newforms. Let o = ag = ( ) Note first that

We also set
My (N, x)* = My(N, x) 0 My (T'1(N))°
M;,(T1(N))* = S(T1(N)) N My (T (V)
Sk(N, Xx)? = S(N, x) N Mg(T1(N))*

28.4. Some Examples

We consider the level N =1 case here. Let S = (? 01> T = (é

and say that w, z are I'(1)-equivalent, if w = gz for some g € T'(1).

1 .
1). For w, z € h we write w ~ z,

Proposition 28.28. SLy(Z) is generated by S, T.

Let
11
f:{z€b|ReT€[—575),|z\217(|z\:1 = Re <0)}.

Proposition 28.29. Fvery 7 € b is I'(1)-equivalent to a unique element in F, i.e. the map
F = T(1)\b is bijective.
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Corollary 28.30. I'(1)\b has volume %.

Proof. We have
vol(T'(1)\h) = vol(F)

dx dy

- y2

/ / —dde
y=vi-z2 Y

/ / —dydx
y=v1-z2 Y

1
2

N

1
2

1
2

—1 V11— x2
= 2arcsin(1/2) = -
O

For 7 € b let

1 if 7 o p,i,

er = #StabSL2(Z)/{i1}7’ =92 if7~i,

3 ifrt~p.

Here p = 27/3,

Proposition 28.31 (Valence Formula). Let f : h — C be a meromorphic function such that
flelg] = f for g € SLa(Z) assume f is meromorphic at co. Then

N+ S e ==

er 12

T€SL2(Z)\h

For k > 3 let
G(r)= Y (mr+n)F= > AR
(m,n)€Z?\{0} ANEZDTL
This converges absolutely and defines a modular form in M (T'(1)). Normalize Gy, by
1
Ek = 7Gk
2¢(k)

It follows easily from the valence formula that G4 (resp. Gg) has no zeros, except a simple one at 7 = p
(resp. 7 =1).
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Proposition 28.32. The Fourier expansion of Gy is
2m
Gi(r) = 2((k ,Zak 1

The Ej have rational Fourier coefficients, F4, Fg in fact integral ones. More precisely, for even k:

(2mi)F & . 2k
E, =1+ mgak_l(n)q =1+ B, ;Uk_l(n)q

For k = 4,6 in particular:

Ey=1+240) o3(n)q"

n=1

Eg=1-504) o5(n)q

n=1

Let
B} — E2

1728
Note A € S12(T'(1)). It is not too difficult to see from the above formulas for Ey, Eg that A € ¢+¢?Z][q].
A has a zero at co and is holomorphic in h, hence by Proposition the order of the zero at oo is
1 and A is non-vanishing on . We immediately get from this:

A =

Proposition 28.33. Multiplication by A induces an isomorphism My(T'(1)) =2 Sk112(I'(1)).

Similar considerations with the valence formula give that My (I'(1)) = CE}, for 4 < k < 10, Mp(T'(1)) =
C and M(T'(1)) =0for k<0 or k=2.

Corollary 28.34. Let k > 0 be even. Then

k e
< k=2 d 12
dim M(C(1)) = 4 bi2! (mod 12),
5] +1 ifk#2 (mod 12),
Corollary 28.35. We have the following relations:
E2 = E3, E.E¢= FE.

Proposition 28.36. The algebra homomorphism ® : Clz,y] — M(T(1)) = @po Mr(T(1)),
sending Ey, E5 to x,y respectively, is an isomorphism. If f € M(T(1)) has integral Fourier
coefficients, then f = p(My, Mg) for some polynomial p € Z[z,y].

Proof. Suppose by induction EBkK:o M (T'(1)) € Im®. By the preceeding corollary we may assume
K > 10. If f € Mg42(T'(1)), then either K + 2 = 4k + 2 or K + 2 = 4k for some k, accordingly
consider g = f — cEy 'Eg or g = f — cEf where ¢ = f(c0). Then £ € Sx_10(I'(1)) € Im®,
hence g and therefore also f € Im ®. To see that ® is injective, assume that F,, Fg are algebraically

dependent. By homogeneity considerations, a non-trivial algebraic dependence relation can be chosen
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to be homogeneous. If in such a relation we have a term E}, then we may write E} + Egp(Ey, Eg) =0
for some polynomial p. But then evaluation at 7 = ¢ to get F4(i) = 0, a contradiction. Hence no pure
power of E4 occurs and we can cancel a factor of Eg to get an equation of smaller degree. Similarly if
a pure power of Fg occurs.

The last statement follows basically by inspecting the way we proved the surjectivity of ®, noting that
A~ e g7 Z][q]. O

We also introduce the j-function:
. E}
A
j is a modular function of weight 0, with a simple pole at co.

Proposition 28.37. j induces a bijection T'(1)\h — C. The field of modular functions of weight
0, level 1, is the function field C(j).

The first part follows essentially from
-1+ Z et (j—2) =0,

7€l (1)\b
for z € C, which shows that v,(j — z) > 0 for exactly one 7 € § up to I'(1)-equivalence (using
er € {1,2,3}). Note that in particular if v-(j — z) > 1, then e; > 1. Indeed, for 7 = p we have
j(p) = 0 and v,(j) = v,(E}) = 3. For 7 = i we have j(i) = 1728 and v;(p — 1728) = v;(E2) = 2. In
particular we see that j induces a covering map

h\ (T(1)iuT(1)p) =h\ i~ ({i,p}) — C\ {0,1728}.

This easily implies Picard’s theorem:

Theorem 28.38 (|Apo90, Theorem 2.10]). If f is an entire function omitting at least 2 values,
then f is constant.

Proof. After rescaling we may assume that f omits the values 0 and 1728. Since C is simply connected
(and pathwise connected, locally pathwise connected, whatever we need), there is a lifting f : C —

b\ j'({i,p}), i.e. a map f such that
C

f -
T
o

b\ ({i,p}) —= C\ {0,1728}

commutes. But any map C — b is constant by Liouville’s theorem (compose it with a Mobius
transformation to get h = D). O

Note that even though the series defining Fs doesn’t converge absoluteley, we may still consider the
g-expansion

4 oo o0
E,=1+ 5, Z o1(n)¢" =1-— 24201(71)11”.
n=1 n=1
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This defines a holomorphic function in the upper half plane, and clearly Es|s[T] = Eo. But FEsl3[S)]
cannot be FEs, since otherwise Ea € My(T'(1)) = 0. It turns out that Fs satisfies the following
transformation law under S:

Theorem 28.39. E5 satisfies:

or equivalently

We introduce the Dirichlet n-function by

77(7_> — q1/24 H(l _ qn) — e27r1'7'/24 H(l _ 627r1'n7').
n=1 n=1
Theorem 28.40. 1 satisfies

for all z €.

Note that z/i only takes on values in the right half plane, so we have a well-defined branch of the
squareroot function determined by /1 = 1.

Theorem [28.39|and Theorem |28.40|are essentially equivalent. Indeed, it is easy to see that d% logn(z) =
n(z) ZLF5(z). Hence assuming Theorem [28.39

n(z)
d 1 d 1
iy | ) =22 _Z

m 1 i 1
12 2( z) e+

d 1d
=(—1 ——logz.
(dz ogn) (2) + 5 5 log 2
We get logn (—1) = logn(z) + 3 log z + C for some constant C, or

1(-1) = ntre

for come constant c. Evaluating at 7 = i gives ¢ = i~ /2. Conversely, assuming Theorem [28.40
Theorem [28.39 follows by taking logarithmic derivatives.

Corollary 28.41. We have n** = A.

Proof. Let f = n?%. Clearly, f|12[T] = f. It follows from Theorem [28.40| that also f|12[S] = f.
From the definition it is clear that f vanishes at oo, so this shows f € S12(I'(1)). Since this space is
one-dimensional, we must have f = A by examining their leading term. 0
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It remains to show Theorem 830

Proof 1 of Theorem |28.39. Proof adapted from |[Miy06[. Let f = %. Let
A(f,s) =/ fly)y*dy
0

be the Mellin transform of f(i-). Explicitly,

M) =S oi(m) / ety = T(s)(2m) 0 3 o (m)n® = T(s) (2m)C()C(s — 1)

Let A(s) = 7%/?T'(5/2)¢(s). Then
s—1

M) =

A(s)A(s — 1),

and from the functional equatino A(s) = A(1 — s) for the Zeta function we get

A(fv 5) = —A(f,2 - S)'
Now use the Mellin inversion formula.

Proof 2 of Theorem[28.39 Proof from [Ser73]. TODO

Proof 3 of Theorem[28.39 Proof using the first Kronecker limit formula. Let
s 1 (Im z)*®
E(z,s)=m F(s)§ Z _

2s
(m,n)€Z2—{(0,0)} Imz + n|

be the non-holomorphic Fisenstein series. (TODO do some more about this, convergence etc. in a

separate section) Note that

E(z,s) =7 °T(s)¢(2s) > (Imyz)*.

V€T \I'(1)

Clearly, E(gz,s) = E(z,s) for g € T'(1). Let &(s) = m~*/?T () ¢(s) be the completed Zeta function

(= L(]|") in the notation of Section [3.5)).

oo

x + iy and

Here K denotes the K-Bessel function, defined by

1 [ - dt
K,(y) =5 / ever a3t
0

Theorem 28.42. F(z,s) has the Fourier expansion E(z,s) =Y " an(y,s

aly.s) = € +ECA =)yt ifn=0,
o 2,7 1n|""% o1 as(In))K,_1 (27 In]y) if n#0.

Proof. This is a relatively simple computation using the definition of F(z, s) and the functional equa-

tion of &.

O
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Theorem 28.43. F(z,s) satisfies the functional equation E(z,s) = E(z,1 — s).

Proof. This can be proven either directly using two-dimensional theta functions, or by proving that
the Fourier coefficients satisty a,(y, s) = a,(y,1 — s). O
E(z, s) has a simple pole at s = 1 coming from the corresponding pole of ag there.

Proposition 28.44. For z = x + iy we have

~ - _ _m
lim(E(z,5) = ao(y, 5)) = —2log n(2)| - 7.

Proof. One can prove that Ky ,5(y) = , /;—ye_y. We have
1 .
. - 1 s—3 ) 2minx
lim (E(z, 5) — ao(y, 5)) = lim ;2\/@”\ o1-2s(|n|) K, 1 (27 n|y)e
n

Due to the locally uniform exponential decay of K

s—1(2m|n|y) (in k), we may interchange limit and
sum to get

hm(E(Zv 5) - aO(y7 8)) - Z 2\/@ |n|% 0'71(‘77,|)K% (27T |n| y)e2ﬂ'i7m,

s—1
n#0

One can prove that K /5(y) = , /Q’T—ye_y, hence we get

. B _ 2 T 727r|n\y 2mine
lim (B(z,5) — ao(y, 5)) = 215 n;o 1(nl) [nf® 47r|n\y ‘

_ Z 0_71(‘n|)6727r|n\y627rinw
n#0

() (g™ +7")
i a
= —2log H 11— q"|
n(s)

qt/24

HM8 ﬁM8

Ty
= —2log|n(s)| — —.

=21
og 5

0

We can now finish the proof. We examine how the left and the right hand side in Proposition

change under z — —1. Note that under z — —1, y becomes # Letting f(z) denote the left side,
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s -1(-1) = (E(m) ~ s = B (1) 4 (ﬁ))

s

For the first term use ((2) = 72 and for the second that £ has a simple pole with residue —1 at 0, to
get

72~ £ (=2) = o172 = 1)+ log .

Now if g denotes the right hand side in Proposition [28.44] we have

1 n(=3)| _my  my
g(z)—g|——)2log 2Ll — —
) < z) () 6 6]z
Hence, using g = f, we obtain
n(=2)| _ ECh
n(z)
This easily implies n (—1) = ¢z!/?1(z) for some ¢ with |¢| = 1, and evaluating at z = i gives ¢ = i~1/2,
which shows Theorem [28.40) 0

Proof 4 of Theorem[28.39. Here we prove Theorem [28.40|directly instead. This is the proof in [Bum97|.

We assume Euler’s pentagonal number theorem:

[Ta-am=> (1rg™ s,
n=1 neZ

which follows from the Jacobi triple product formula. Then we may write

7)(7') — Z(_l)nq(6n+1)2/24 _ ZX(”)Q"2/24a
n=1

neEZ

where x is the unique primitive quadratic Dirichlet character mod 12. This is a kind of twisted Theta
function and a twisted version of the Poisson summation formula can then be used to show

n(=1/7) = (v/i)'*n(r).

29. CLASSICAL AUTOMORPHIC FORMS

Let G = GLy(R)*.
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29.1. Some Differential Operators

Let k € Z. If z € b, we write z = z + iy with x,y € R. On smooth functions on the upper half plane
we define the following operators

0? 0? 0 0
— 224 2 il —— — a2 ik —
Ap=—y <8x2+3y2>+2ky8x yAe—HIfyax,
.0 o k .0 k
Rk—zy%+y8fy+§—(2—z)7+§,
.0 d k o k
Ly _yaix+y67y_§__(z_z)7z_§'

Ay is the weight k Laplacian. Ry (resp. L) is the Maass raising (resp. lowering) operator.
Let G = GLo(R)™. For g € G, there are unique z € Z(R),b € SLo(R) N B(R), k € SO(2) such that

g = zbk. Write
I 0
“\0 wu)/’
. Y2 py—1/?
- 0 y—1/2 )
cosf) sinf
b=k = (—Sin9 cos@) '

Here u,y € Ryg,2 € R,0 € R/27Z are uniquely determined.

We take u, x,y, 6 as coordinates on G. Then Haar measure is (up to scaling) given by

B d7u dzdy

dé
u  y?

dg

We define differential operators on G by

2 o o2
_ _.2 2 -~
A==y <6$2 * ay2> 206"
o 9 10
_ 240 - -~ -
f=e (y8m+y8y+2i80>’
4 o 9 10
R 1 - - =
L=e ( Waz TV 2i89>'

30. GENERALITIES ON ADELE GROUPS

From now on write G = GL5 for convenience.

Let F' be a number field. A denotes its Adele ring. Recall some notation from Section[2] If v is a place
of F, we let K, = O(2), U(2) or GL2(O,) depending on whether v is real, complex or p-adic. We set
K =1]][, K, and Ko, = Hv|oo K, K* = vaoo K, = GLQ(@F). We also let go, be the Lie algebra of
GL2(Fx), equivalently gl,, = [, o 8lo(F7). We view A* embedded as the diagonal in GL2(A), under
this identification, it is the center of GL2(A).
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We let C2°(GL2(A)) denote the space spanned by functions of the form ¢ = @, ¢, where ¢, €
Ce°(GLy(F,)) and ¢, = lar,(0,) for almost all v.

Let Ry be embedded diagonally in F,,. Let Zg_, be the subgroup of G(A) of matrices of the form
cl; with ¢ € R-g. Let G(A)! be the subgroup of matrices g with |det g| = 1. We have

Zp.,G(F)\G(A) = G(F)\G(A)".

In [GH24], Zr_,G(F)\G(A) is called the adelic quotient of G, and denoted [G]. Note since —I, € G(F)
we have ZrG(F) = Zp_,G(F). We also denote by G(R)" the subgroup of matrices in G(R) with
positive determinant.

In the case F' = Q we define the following groups.

Let N > 1 be an integer. We define compact subgroups
Ko(N) = {(‘2 Z) € GLy(Z)|e = 0 mod N} ,
Ki(N) = {(i Z) € GLg(z)‘cz 0 mod N,d =1 mod N} ,

K(N) = {(CCL Z) € GLQ(z)|b,CEO mod N,a,d =1 mod N}.
We can write Ko(N) (resp. K1(NV), K(N)) as the product of the subgroup of matrices in GLy(Z,)
that are upper triangular (resp. upper triangular unimodular, the identity) mod N over all primes p.
We have

Ko(N)NGL2(Q)+ = To(N),
Ki(N)NGL2(Q)+ = T'1(N),
K(N)NGL2(Q)4 = T(N).

Let m be the cycle m = (0c0)(V) of Q. Let

U(N) =W =RY x [[ Wp(m) =RY x {z € Z* | 2 =1 mod N}

p<oo

Then by Section 2.1] we have
A JQXU(N) 2 Co = (2/NZ)"

If  is a character of (Z/NZ)*, we get an induced character w of A* trivial on Q* via this isomorphism,
see also Proposition We have w(p,) = x(p) for any prime p t N where p, denotes the idele that is
p in the p-adic place and 1 at all other places. We then define a character A of Ko(N) via

a b
A (8 7) =etd) = [Tenta).
pIN
where dy denotes the projection of d € A* onto HP‘N Qp.

30.1. Strong Approximation and Finiteness

Let F' be a number field.
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‘ Theorem 30.1. [G] = ZgG(F)\G(A) =2 G(F)\G(A)! has finite measure.
TODO reference.

‘ Theorem 30.2. SLy(F) SLy(F) is dense in SLa(A).

Proof. The idea is to apply strong approximation to the additive group A and then use that the
nilpotent radicals in SLa(A) (which are isomorphic to A) generate SLa(A), see 14.3]. O

Corollary 30.3. SLa(F) is dense in SLa(Ag).

Theorem 30.4. Let Ky be an open compact subgroup of G(Ag). Assume that the image of Kq in
oo OF. Then the cardinality of

G(F)G(Fo)\G(A)/ Ko

—X
Afx under the determinant map is Op =1]]

is the the class number of F'.

Proof. First note that we have a bijection
G(F)\G(Af)/Ko — G(F)G(Fx)\G(A)/ Ko,
induced by the inclusion G(Af) — G(A). Then consider the map
G(P)\G(Ar)/ Ko =5 F*\As/Or .
It is clearly surjective, and the assumption on Ky together with Corollary [30.3|shows it is injective. [
Let F =Q.

Theorem 30.5 ([Bum97, Proposition 3.3.1]). We have G(A) = G(Q)G(R)* Ko(N) and the in-
clusion SLa(R) — GL2(A) induces a bijection

Lo(N)\SL(R) = A*G(Q)\G(A)/Ko(N).

Proof. TODO g
31. SIEGEL SETS AND REDUCTION THEORY

There are slightly different conventions for the definition of a Siegel set. We choose the following. Let
w C A be a compact subset. For a scalar ¢ > 0 we define the Siegel set S(w,t) C G(A) to be the set

consisting of the matrices of the form
1 «x m; O k
0 1 0 mo

where & € w, my, my € A* such that |my/me| >t, and k € K = KOOG(a).
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Theorem 31.1 (|Garlg§] Corollary 2.2.8]). Let w C A be compact such that A = F + w. Then
there is a t > 0 such that
G(F)6(w,t) = G(A).

Bump defines in the case of F' = Q the following Siegel sets: For c,d > 0 define G, 4 to be the set of
adeles of the form (g, ), where g, is of the form

z 0\ [y =z
(0 z) (0 1) oo
where z € R*,¢ < y,0 < 2 < d, koo Koo, and the finite places are in K,. Let w = [0,d] X 7 C Ag.
Then by Theorem it is easy to see that G(Q)S(w, ¢) = G(Q)Gc. 4, so this isn’t that different.

Proposition 31.2. Ford > 1 and ¢ < ? we have
G(@)gc,d = G(AQ)

Proof. Let G(Q)g € G(Q)\G(Ag). By Theorem we may assume that g € G(R) x G(i) We may
also assume that det goo > 0. Let 7 = g - @ € h. By Proposition [28.29| there is a (unique) z € F + %

such that w = y7 for some v € SLy(Z) € G(Q)NG(Z). Then writing w = z+iy, we have 0 < 2 < 1 < d
V3 Ay x\. y T\. . y T\ _ z 0

and y > 5> > ¢. Then note w = (0 1) i, SO (0 1) i = Y¢sol, hence (0 1) = V9o (0 z) koo

for some z > 0, and ko, € SO(2) C K. We get that

—1
_ 1z 0 y T\,
Goo =7 < 0 Z—l) <0 1> koo )

is of the desired form. O
32. DEFINITION OF AUTOMORPHIC FORMS AND REPRESENTATIONS

For g € G(A) we define ||g|| =[], llgv||, where v runs over all places of F' and

lgoll, = max{|(g.)l,} U {Idet gu], "}

Definition. Let ¢ : G(A) — C be a function. ¢ is called

e smooth if for any g € G(A) there is a neighborhood U of g and a smooth function f on
G(F) such that o(h) = f(heo) for h € U (so basically ¢ is locally constant on the finite
places and smooth in the usual sense on the infinite places);

o K-finite if the right translates of ¢ under K generate a finite-dimensional subspace;

e Z-finite if it is smooth and {Dy : D € Z(U(gly(Fy)))} generates a finite dimensional
vector space for every infinite place v.

e of moderate growth if there are constants C, N such that |p(g)| < C|lg||™ for all g €
G(A).
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Definition. An automorphic form is a function ¢ : G(A) — C such that
¢(v9) = ¢(g) for v € G(F),g € G(A),

e © is smooth,

e ¢ is K-finite,
® © is Z-finite,
e © is of moderate growth.

Let w by a quasi-character of A*/F*. If ¢ additionally satisfies p(zg) = w(z)p(g) for z €
A*, g € G(A), then ¢ is called an automorphic form with central quasi-character w. The space of
automorphic forms (resp. automorphic forms with quasi-character w) is denoted A(G(F)\G(A))
(resp. A(G(F)\G(A),w)).

Definition. By an algebraic representation of G(A) we mean a vector space V equipped with
compatible structures of a (goo, Koo )-module and a G(Ag)-representation (in the usual sense).

Definition. Let V' be a representation of G(A) in this sense. V is called

e smooth, if it is smooth as a G(A¢)-representation, i.e. any v € V is fixed by some open
compact subgroup of G(Ag);

e admissible, if it is smooth, every vector is K -finite and for any irreducible representation
p of K, the p-isotypic component V(p) of V is finite-dimensional.

A(G(F)\G(A),w) becomes a smooth (but not admissible) representation in this sense where G/(Ay)
and K act via right translation, and g, via differentiation.

Definition. An irreducible representation © of G(A) is called a constituent of a representation
W, if there are invariant subspaces U CV of W such that m 2 V/U, i.e. if w is a subquotient of
w.

An representation of G(A) is automorphic if it is a constituent of A(G(F)\G(A),w) for some w,
i.e. if it is isomorphic to an irreducible subquotient of A(G(F)\G(A),w).

We can also define L?-automorphic forms and representations:

Definition. A unitary Hilbert space representation of a topological group G is a Hilbert space V/
with a homomorphism 7 : G — Aut(V) such that ©(g) is unitary and for every v € V', the map
g +— w(g)v is continuous (i.e. m is continuous for the strong operator topology on B(H)).

Definition. A unitary Hilbert space representation (V,7) of a locally compact group G is ad-
missible if for some compact subgroup K every irreducible representation of K occurs with finite
multiplicity in V.

If the condition holds for some K, it holds for all compact K’ DO K, see Lemma 7.5.22).
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Definition. Assume that w is unitary. We let L?*(G(F)\G(A),w) denote the space of measurable
functions ¢ : G(A) — C such that

o o(zg) = w(z)p(g) for z € A and a.e. g € G(A),
* 9(vg) = ¢(g) for v € G(F) and a.c. g € G(A),

o fZ(A)G(F)\G(A) lo(9)? dg < oo, i.e. @ is square integrable modulo the center-.

Note that unlike on A(G(F)\ G(A),w) the full group G(A) acts via right translation on L?(G(F)\
G(A),w). Also note that if w is the trivial character, then L*(G(F)\G(A),w) = L?(A*G(F)\G(A)).

Note that if ¢ € C°(G(A)) (or more generally L'(G(A)) should work), then ¢ acts on L?(G(F)\
G(A),w) via

() f = ¢(h)f(gh)dh

G(A)

By unfolding we can also write this as 7(¢)f = fZ(A)\G(A) ¢, (h) f(gh)dh, where

du(g) = d(z29)w(z)dz.

AX

These are the definitions in [Bum97] and [CKMO04]. In [GH24] and [Deil2], they instead look at
L*([G]) = L?*(ZgG(F)\G(A)). The relationship is as follows. If w is a character of G(F)\G(A). Then
w®(|+|* odet) is trivial on Zg for some s. Assume w is trivial on Zg. Then L*(G(F)\G(A),w) C L*([G]),
and in fact:

Proposition 32.1 ([GH24} Lemma D.2.1]). We have
L([G)) = P L*(G(F)\G(A),w)

where the sum is over the characters of ZrZ(F)\Z(A).

Proof. ZxZ(F)\Z(A) = RsoF*\A* is compact. O

Definition. Let ¢ € A(G(F)\G(A),w) (resp. ¢ € L*>(G(F)\G(A),w)). ¢ is called cuspidal if

fru? (6 7)) 0=

for every g € G(A) (resp. a.e. g € G(A)). The subspace of cuspidal forms is denoted by Ao(G(F)\
G(A),w) resp. L3(G(F)\G(A),w).

Definition. An automorphic cuspidal representation of G(A) is an irreducible subrepresentation

of Ag(G(F)\G(A),w).

Depending whether we want to condider functions (or representations) in A(G(F)\G(A),w) or L?(G(F)\
G(A),w) we might call them algebraic or L? (note this is made up, and not standard terminology).
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Given a unitary representation (V,7) of G, we let V4, be the space of K-finite vectors, i.e. the space
of vectors whose K-orbit spans a finite-dimensional subspace.

33. THE HECKE ALGEBRA
We define the global Hecke algebra H as the restricted tensor product
H= ® Hy
of certain local Hecke algebras H, which we have t(v) define next.

e v nonarchimedean. In this case the Hecke algebra H, is as defined in Section [9.1} We H,, =
C°(GL2(F,)) with convolution as the product. For any open compact subgroup K C GLo(F},)

there is a fundamental idempotent £x = ﬁl k- Of particular importance is the case

§o = EaLy(0,)-

e v archimedean. Let K = SO(2) or U(2), depending on v real or complex, be the standard
maximal connected compact subgroup of GLa(F,). H, is the algebra of compactly supported
distributions on GL2(F),) that have their support contained in K and are K-finite under left
and right translation. The operation is convolution. There are two important classes of such
distributions: First we have H , the space of smooth functions on K. Secondly any D € U(gc)
defines a differential operator f — Df(1) on C2°(GLg(F,)), supported at the identity. U (tc)
acts on Hy, hence we obtain a homomorphism H x @y (¢.) U(gc) — H, which turns out to be
an isomorphism ([KV16] Corollary 1.71]). For any irreducible representation o of K there is a
fundamental idempotent &, defined by &, = vol(K)~!dim(c)~! Tro(k™1).

In [JL70] the archimedean Hecke algebra is defined slightly different: TODO

Now the global Hecke algebra is the restricted tensor product of the local H, with respect to the
vectors & for nonarchimedean v, i.e. it is spanned by tensors of the form ®, f, with f, = ¢, for almost
all v. It is an idempotented algebra, with a collection of fundamental idempotents being given by ®,¢,
where &, is a fundamental idempotent of H, and &, = &, for almost all v.

A module M of H is admissible if £M is finite-dimensional for every fundamental idempotent £.

Proposition 33.1. There is a bijection between irreducible admissible algebraic representations
of GLa(A) and simple admissible modules for H.

34. TENSOR PRODUCT THEOREM

Algebraic Version:

Theorem 34.1 ([Bum97, Theorem 3.3.3]). Let (V,m) be an irreducible algebraic admissible rep-
resentation of GLg(A) (or equivalently a module for the global Hecke algebra). Then for every
place v of F there exists an irreducible admissible representation (V,,, m,) of HUE with a K, -fized
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vector & for almost places v, such that
= ® "o
v

where the dashed tensor product denotes restricted tensor product with respect to the chosen K, -
fized vectors.

%_.e. an admissible (gv, Kv)-module for archimedean places and an admissible GL2 (F)-module for nonarchimedean
places.

Hilbert space version:

Theorem 34.2 ([Deil2] Theorem 7.5.23]). Let m be an irreducible admissible unitary Hilbert
space representation of GLo(A). Then for every place v there is an irreducible admissible unitary
representation m, of GLa(F,), such that almost all m, are unramified (i.e. have GLy(O,)-fized
vectors) and ™ = @), 'm,. Here the restricted Tensor product is taken with respect to a fized choice
of normalized spherical vectors at the unramified places.

35. DISCRETENESS OF THE CUSPIDAL SPECTRUM

Lemma 35.1 ([DE0Y Lemma 9.2.7]). Let G be a locally compact group and (V,m) a unitary
Hilbert space representation of G. Suppose there is a Dirac net (f;); € LY(G) such that w(f;)
is self-adjoint and compact. Then V is a direct sum of irreducible representations with finite
multiplicities.

Note that if G is unimodular, then 7(f;) is self-adjoint if f; = f;(g~1).
Now consider G = GLj and the representation 7 of G(A) on L3(GLy(F)\GL2(A),w).

Theorem 35.2 ([Bum97, Proposition 3.3.3 (a)]). Let ¢ € C°(G(A)). Then there is a constant
C'> 0 such that [ 7(@) [l < C If]ly for all | € L(GENG(A), ).

Proof. 1f we let ¢u,(h) = [, #(zh)w(2)dz, we have

/N<F>Z<A)\G(A> N )

Since N(F') C G(F), we have f(yh) = f(h), hence this is

/ K (g, h)f(h)dh,
N(F)Z(A)\G(A)
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where
K(g7h) = Z ¢w(g_17h)'
YEN(F)
Defind™| X .
_ T T
ot = [on (7 (o 1))as= [ (o (5 1)n)es
Then

1 =z

/ Kao(g. 1) f(hydh = [ [ow(o(y 7)) aesman
N(F)Z(A\G(A) N(F)Z(A\G(A) JA/F

:/ K(g’lh)/ f(<1 _”“"> h) dz dh
N(F)Z(A\G(A) AJF 0 1

=0

since f is cuspidal. Hence we may write

(m(¢)f)(9) = K'(g.h) f(h)dh,

/N<F>Z<A)\G<A)

where
K/(g7 h) = K(ga h‘) - KO(g7 h)
Let @45 : A — C be the compactly supported continuous function defined by

B =ou (7 (5 7))

K(g.h) =Y @,1(6), Kolg.h) = T4(0).
EeF

Then by definition

Hence, the Poisson summation formula gives

K(g,h) =Y ®4n(9),

geF
SO

K'(g.h) = > ®gn(€),

EEFX

Now we want to bound &Dgﬁ(x). Assume F' = Q for simplicity. Let g € G, 4, so that

_(n 0\ [y =z
1=(5 W) (6 1)

127

where n € R*, and 0 <z < ¢,y > d and k, € K. We can write (e.g. Adelic Iwasawa decomposition)

(¢ 0\ (v u
=6 e

where (,v € A*,u € A and kj, € K.

19Bump takes the first integral over A/F, but this seems weird to me, and isn’t compatible with &39,;1(0) = Ko(g, h),

or the proof in the classical theory.
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Then we have

By(6) = [ Byuleyii—ea
(5 265 ) )
e (s 96 ) e
—wtc e —u) o, (5 (% 9) (6 1) (5 9)m)vi-ena

= (¢ (e — ) / Fo ooy 000 (—€0)dE
A o~
= w(CT MY (E(@ — W) [yl Fr, by -10(69),

Fkgvkh,y(t) = bu <kg1 <(1) i) <g (1)) kh) .

K (g, 1) = | 32 ®enl®)] < Il D2 [Pyt

EEFX teFx

where

Hence we get

Since K (supp ¢)K is compact, so is K (supp ¢)K N B(A), so there is a compact subset Q of A* such
that Fy, k,,(t) = 0 for y ¢ Q. So Fy, 1, y-10(y) is a Schwartz function, as a function of y which
vanishes, unless (kg, kn,y 'h) lies in the compact set K x K x . Hence its Fourier transform is
rapidly decreasing and we can get for any N > 0 an estimate of the form (TODO Fill in some details
here, see 7])

[K'(g,h)] < Cn [y

Hence,
(n(6)) £(9)] < / (K" (g, 1) £ (h)] dh
N(QZ(AN\G(4)
§0N|y|‘N/ / / ’f((g ﬁ‘) kh)‘dkhdxvdu
A/Q Jy-tven JK
_N _
<O Il @oneww < CV N Il conem

O

Proposition 35.3. m(¢) is a compact operator on LE(G(F)\G(A),w). In fact, it is Hilbert-
Schmidt.

Proof.

e Proof in . This only shows that 7(¢) is compact. By the proposition the image
D of the unit ball in L(G(F)\ G(A),w) under m(¢) is a bounded set (with respect to the
uniform norm) of continuous functions. If we can show that X is equicontinuous, then X is
precompact by Arzela-Ascoli, and hence it will also be precompact in L3(G(F)\G(A), w) (since
A*G(F)\G(A) has finite measure). For equicontinuity the idea is that at the finite places, we
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have ¢(gk) = ¢(g) for k in some open subgroup of G(A¢), while at the infinite places we apply
the bound from (a) to the derivatives X7 (¢)f for X € goo.

e Proof in |[GH24] Lemma 9.3.3] (adapted to work with central character). Let € G(A). Since
7m(¢) f is a continuous function, we we have a functional f — 7(¢)f(x) which is continuous by
the Proposition. Hence there exists Ky (4) . € V 1= L§(G(F)\G(A),w) such that

w(¢)f(x) = / K rs).0 (0) F (1) dy,
Z(A)G(F)\G(A)

for all f € V. Also HKﬂ(dﬂ,zHg is the norm of the functional which is bounded by C' as in the
lemma, which is independent of x. Let K(z,y) = Ky(¢)(y). Then

Ky dydo< | [ da
Z(A)G(F)\G(A)

< 02/ dx
Z(A)G(F)\G(A)

So K(z,y) is L? and is an integral kernel for m(¢), so 7(¢) is Hilbert-Schmidt.

/Z(A)G(F)\G(A) /Z(A)G(F)\G(A)

‘ Corollary 35.4. 7(¢) a trace class operator on L3(GLy(F)\GL2(A),w).

Proof. By the Dixmier-Malliavin lemma any ¢ € C°(GLy(A)) is a finite sum of convolutions ¢ =
> Pi1 * ¢ia where @41, 050 € C2°(GL2(A)). By the proposition m(¢i1), m(¢s2) are Hilbert-Schmidt,
hence their product and then the sum over 7 is trace class. O

Theorem 35.5 ([Bum97], Theorem 3.3.2]). LZ(GLa(F)\GL2(A),w) decomposes into a (Hilbert)
direct sum of irreducible subspaces for GLa(A) each occuring with finite multiplicities.

Proof. Combine Lemma with Theorem [35.2 O

36. GOING FROM UNITARY TO ALGEBRAIC REPRESENTATIONS

Theorem 36.1 ([GH24] 6.6.2]). Let (V, ) be an irreducible unitary representation of G(A). Then
Vian is admissible and irreducible. If V = Voo@)Voo where Voo, V° are irreducible unitary represen-
tations of G(Fs) and G(A™) respectivelﬁ, then Vin = Voorn®@VES. If (W, ) is another irreducible
unitary representation of G(A) such that Vi, & Whay, then V,W are unitarily equivalent.

%These always exist and are uniquely determined, see |GH24] Theorem 6.6.1]

Proof. TODO g
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Theorem 36.2 ([Bum97] Theorem 3.3.4], [GH24] Theorem 6.6.4]). Let (V, ) an irreducible uni-
tary subreprepresentation of L3(GLo(F)\ GL2(A),w). Then Vay is an admissible algebraic repre-
sentation of GLa(A).

Proof. Proof in |GH24] uses previous result. Here is proof in [Bum97]. TODO

Theorem 36.3 ([GH24] Theorem 6.5.3)). ] Ao(GL2(F) \ GL2(A),w) is a dense subspace of
L3(GLy(F)\GL2(A),w). We have

Ao(GL2(F)\GLy(A), w) = L§(GL2(F)\GL2(A), w)n

If (V,7) is an irreducible subrepresentation then Vg, is a cuspidal algebraic automorphic repre-
sentation. and

Ao(GL2(F)\GLa(A), w)(mlvy,) = Li(GL2(F)\GL2(A), w)(7)gin-
Vi, i Ag(GL2(F)\ GLa(A),w) is the same as that of © in LE(GLa(F)\

The multiplicity of
GL2(A),w). We have

Ao(GLy(F)\GLa(A),w) = @D Ao(GLy(F)\GLy(A), w)(r),

the sum ranging over isomorphism classes of cuspidal automorphic representations.

%n |GH24] everything is formulated on [G] without the w, but that doesn’t really change a lot, see their Appendix
D.

Proof. By Theorem [36.4] Ao(GLa(F)\GL2(A),w) C L3(GL2(F)\GL2(A),w). TODO

Theorem 36.4. Let ¢ € Ag(G(F)\G(A),w). Then ¢ is bounded.

37. ADELIZATION OF CLASSICAL MODULAR FORMS

In this section F' = Q. Let N > 1. Fix a character x of (Z/NZ*). We describe how to get adelic
automorphic forms from cusp forms in Sy (N, x). As in Section [30| we get an induced idelic character
w:AX/Q* — C* and a character A of Ko(IV).

We want to lift modular forms to automorphic forms on GLg(A). We first lift them to functions on
GL2(R) 4. It seems there are a lot of different conventions on how to do this. Let f : h — C, we define
a function F' = Fy : GLy(R)+ — C. Fix an integer k.

e [Bum97], [GH11]. We define a new action of GL2(R)™* on functions on b by
Nk - z+d\" az+b
() =02 it 100 = (229 £ (Bg)

|cz + d] bz+d

o ks k _(cxtd ez
=j5(7,2) 7% iy, )] f(WZ)—(M) f(bz+d)
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where v = (CCL 2) € GLo(R)™. If we write |? for the slash operator defined in Section

then we have

V() (2) = (2 ) (2).
Then we let

P = (e =
o [CKM04], [Gell6]. Define F by

F(g) = (det g)~*/%j(g,4)" f (g - 9).

We will go with the notation in [Bum97| for the moment. Let f € My(N,x) for some integer N > 1
and Dirichlet character x. Let F' = F,x/2;. Then for v € Io(N), g € GLa(R)* we have

F(vg) = (fI7lva) (@) = (x(0) fllg]) (@) = x(v) F(g)-

By Theorem we have GLy(A) = GLo(Q) GL2(R) T Ko(N). Write g € GLa(A) as g = vgooko with
S GLQ(Q),QOO S GLQ(R)J’_, ko € Ko(N) Then define

$7(9) = F(goo) Alko)-

—ci+d

k ‘ i
D) 100 = DRI

Here ) is as in Section B0l

We need to check that this is independent of the decomposition g = vgooko. This amounts to the
following: If g = vgooko with v € GL2(Q), goo, 95 € GLa(R)1, ko € Ko(N), then

F(gh) = F(g00)A(ko)-
Comparing infinite and finite part gives g., = Yoogoo and Ytk = 1. This shows that v, € T'o(N), so

F(gh) = F(g00)X(V00);
and we have to show x(7) = A(ko). For a matrix A denote by d(A) the bottom right entry. Then

Ako) = Alkg ')~
= A((la%%% s ))71
= [T wp(@()) ™

pIN
Since w(d(7y)) = 1, this is
= [T we(d()) = x(d(v)) = x(v).
Hence we get a well defined function ¢; : G(A) — C in this way.
Proposition 37.1. If f € Mi(N,x), then ¢5 € A(G(Q)\G(A),w). If f is cuspidal, then so is
b5

Proof. Denote ¢ = ¢y .
o o(vg) = ¢(g) for v € G(Q),g € G(A). This is by definition.
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e ¢ is smooth. Let g € G(A). Let K C K(NN) be a small enough open subgroup such that A
is trivial on K’. Let U = gG(R)" K. Then U is an open neighborhood of g. Let gh € U and
write g = Ygooko, h = hook With v € G(Q), goo, oo € G(R) ', kg € Ko(N), k € K’'. Then, using
that he, and kg commute since they are supported in different places, we have

P(gh) = ¢(Vgockohook) = G(Vgoohoos kok) = F(gochoo) Mkok) = F((gh)oo) A(Ko).-
As F is a smooth function on G(R)™", this shows that ¢ is smooth in the sense of Section

o ¢ is K-finite. Let K’ = SO(2)K((N). Since K’ is of finite index in K, it suffices to prove that
¢ is K'-finite. For k = ko ks € K’ we have

¢(gk) = ¢(7900kook0kf> = F(gook'oo))‘(kokf)

Now note that if we let f = y*/2f, then F(gockoo) = fli[gockoo] (i) = (koo ) ~* flr[goo] (i) since
kooi = i (note we use the letter k in two different ways). Hence ¢(gk) = j(koo, 1) " A(kt)b(g),
and ¢ is K'-finite.

e ¢ is Z-finite. TODO (basically Z generated by Z = <(1) (1)> and the Casimir element which

acts as the Laplacian. We have Dz = 0 and ¢ is an eigenfunction of the Laplacian.)

e ¢ is of moderate growth. Somehow need to relate the growth of f with the adlic norm. See

IGH11] p. 122] for details.

o ¥(z9) = w(2)p(g) for z € A*, g € GLa(A). Write z = 12002 with r € Q%, 200 € Rup, 21 €
Ko(N). Then

D(zg) = o((r7)(2009oc) (21k0)) = F(200900) Mzeko) = d(g)A(2s).
Now

Azt) = [ wnlz) = wlar) = wi(z)

p|N

Finally we show that if f is cuspidal, so is ¢. For simplicity assume N = 1. Let g € GLy(A). By
taking the Iwasawa decomposition at every place, we may write g = (é 1{) (g (1)> (6 2) ko with
u€ Ay, reA* and kg € K. Then

LofG o) Lo 16 9 Do) 6 2

In the last step we substituted z +— x — u and used automorphy of ¢. Let t € Q* be such that
(t7'y), € K, for all finite primes p. Then we have

y B t=t 0 Yy x
fuae @ D)o Lo (Co )6 )
. t~ly t7lz
Lo )
. t7ly w
Lo 1)
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foet (8 ) (07 )
Sy g

:/[01’11Xz¢((t & fo) &

:/ ¢((t_1oy)°° xi’o) A oo

= /Zl(tly)ﬁé2f((t1y)ooi+%o)d%o«

This last integral is 0 by cuspidality of f. d

Theorem 37.2. Let f € Sk(N, x) and assume that f is an eigenfunction for the Hecke operators
T, for pt N. Then ¢y lies in a unique irreducible constituent of Ao(G(Q)\G(A),w).

Proof. We will give the proof in the next section using the multiplicity one theorem. O

38. WHITTAKER MODELS, FOURIER EXPANSIONS AND MULTIPLICITY ONE
Fix a nontrivial character ¢ of A/F. Tt gives a character of N(A). As in the local case we denote by
W = W() the space of “nice” functions W : G(A) — C satisfying
W(ng) =¥ (n)W(g)

for all n € N(A),g € G(A). Here “nice” means:

o W is smooth.

o W is K-finite.

o W is Z-finite.

e IV is of moderate growth.
Then W is an algebraic representation of G(A).

Let (V,m) be an algebraic irreducible admissible representation of G(A).

Definition. A Whittaker model for V is a subspace W = W(m,¢) C W() closed under the
action of G(A), together with an isomorphism V.— W, v — W, of G(A)-representations.

Theorem 38.1 ([Bum97, Theorem 3.5.4]). © has a Whittaker model W if and only if each m,
has a Whittaker model W, . In this case W is unique and consists of finite linear combinations of
functions of the form @, W, where W,, € W,, and W,, = Wy for almost all v.

The proof in [Bum97| shows that:

Proposition 38.2. If © has a Whittaker model W, then any W € W is rapidly decreasing.
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Let ¢ € A(G(F)\G(A),w). For fixed g € G(A) consider f: A — C, defined by

o-+((, )9

Since ¢ is invariant under left translation by G(F'), f is periodic, i.e. f(z+a) = f(z) forx € A,a € F.
F is discrete in A and F' = A/F via & — ¢, see the beginning of Section Therefore f has a
Fourier expansion
f) = J©v(r)
{er

where

7 1 =z

o= [ swute= [ o((5 7)) v-co

AJF AJF

f is smooth since ¢ is. This implies that the Fourier series converges absolutely. Now assume that

~

f is a cusp form. Then by definition f(0) = 0, so we can assume £ # 0. In this case we can change
variables using |£] = 1 and get

If we let

then we see that

We may substitute x = 0 to get

A (D]

The important property of the functions W, is that they are Whittaker functions:

Theorem 38.3. Let (V, ) be an algebraic irreducible cuspidal representation of G(A). Then the
map V. — W(1) given by ¢ — W, is a Whittaker model of 7.

Proof. We have to prove that W = W, is indeed a Whittaker function, that ¢ — W, is injective and
equivariant for the action of G(A).
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W(ng) = ¥ (n)W(g) is immediate from a change of variables in the integral defining .

o W smooth follows from ¢ being smooth.

e W is K-finite because ¢ is.

o W is Z-finite because ¢ is.

e IV is of moderate growth because ¢ is.
Therefore W, € W(). That the map is equivariant for the action is easy. If W, = 0, then get ¢ =0
from the Fourier expansion ¢(g) = > ¢cpx Wy ((g (1)> g). O

As a consequence we get:

Theorem 38.4 (Multiplicity One). Let (V, ) be an irreducible admissible representation of G(A).
Then its multiplicity in Ao(G(F)\G(A),w) is at most one.

Proof. Suppose there are two subrepresentations Vi, Va C Ag(G(F)\G(A),w), both isomorphic to V.
By Theorem V1, Vo have the same Whittaker model W. But we can reconstruct a subrepresen-
tation of Ag from the Whittaker model via the Fourier expansion: If W € W, then the corresponding

. . &0
element in Ay 1sg+—>Z£€FXW<<O 1) 9] O

Theorem 38.5 (Strong Multiplicity One). Let 7,7’ be two algebraic cuspidal automorphic rep-
resentations with the same central character. If m, = 7! for all archimedean and all but finitely
many non-archimedean places v, then ™ = 7',

Proof. Consider their Whittaker models W = @, Wy, W = @, W,. The goal is to construct partic-
ular Whittaker functions W € W, W’ such that their corresponding cusp forms are the same. Then
VNV’ #£0, and the result follows. Let S be a finite set of finite places such that m, = 7 for allv ¢ S.
For all v ¢ S choose any W,, = W, € W,, = W, with the restriction that for almost all v, W,, = W] is
the spherical element with W, (1) = 1. For v € S we can at least choose non-zero W,, ¢ W,,, W, € W,

such that
y 0\ ., (y O
w5 1)=w (s )

for all y € F*. This is possible since the Kirillov models of m,, 7, contain C°(F,)), Theorem m
Then let W = Q, W,,, W = @, W). Let ¢ be the element of V corresponding to W € W, i.e. ¢ is

defined by
o= w((5 1))

geFx

Similarly define ¢’. There is some open compact subgroup Ko C G(Af) such that W, W' are right
invariant under Ky. Also being automorphic forms, ¢, ¢’ are left invariant under G(F'). Also since
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m, 7 have the same central character, they transform in the same way under Z(A). Hence, by the
choice of W, W’ it follows that ¢(g) = ¢’(g) whenever g is of the form

0

with z € Z(A),y € G(F),y € A*,goo € G(Fx), ko € Ko. The proof of Theorem shows that
every element in G(A) is of this form, hence ¢ = ¢’. (Do we really need the z here? Bump doesn’t
mention it, but is the result true without the assumption that they have the same central character?
TODO) O

Proof of Theorem[37.3 Ao(G(F)\G(A),w) decomposes into a direct sum of irreducible invariant sub-
spaces. Let (V,m) be an irreducible invariant subspace such that ¢ = ¢y has non-zero projection onto
it. Write V= @), V. By Theorem r all p 1 N, the eigenvalues of H, on V,, are determined
by f and x. In particular, by Theorem V, is independent of V. By the strong multiplicity one
theorem (what about the infinite places?? TODO, must show that V. is the weight k discrete series),
V' is uniqueley determined. Hence ¢ € V. d

38.1. Comparison with the Classical Fourier Expansion

Let f € Sk(N,x). As describe in Section [37 we get a corresponding form ¢ = ¢ € Ao(G(Q)\G(A),w)
where w is the adelic lift of y. We describe the relation of the g-expansion of f with the Fourier
expansion of ¢ in terms of Whittaker functions.

For simplicity first assume f € S (I'(1)). Write f = > | a,¢". Let us compute ng (g) for g = <g (1)>

with y € Rsg. We have

delg) = We ((3 (1)) 9) = /A . ((}) f) (g ?)) (—€x)da
() () e
= [ o (0 ) v

I1,Zp
1 .
= [t ie e [ ye(-go)da
0 I, Zp
Now note that x — 1(—€z) is trivial on [[, Z, if and only if when § € Z. Since the measure of [ [ Z,
is 1, this gives

3 (y O) Yy Pae2™  if € =neZ,
*\o 1 0 if ¢ ¢ Z.

Note the factor of y*/2 makes sense since in the definition of the adelic lift of f we technically built
this in.
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39. HECKE OPERATORS
Let v be a place of F. Suppose f € C°(G(F,)) and ¢ € A(G(F)\G(A),w), then f acts on ¢ via
w(£)o(0) = [ F)olghA (.
G(Fy)
Here we view h € G(F,) as an element of G(A) via the usual inclusion F,, — A.

Specialize to F' = Q. Take for f the characteristic function of K, (g (1)> K,. We denote it by T,.

Let ¢ = ¢ be the automorphic form corresponding to a modular form f € M(N,x). Assume pt N.
Then Ky(N), = K, = G(Z,). Then we have (note that X is actually trivial on K)

Ak, () K/ Ky

Recall from Section [20[ the explicit coset representatives for T}, (thought we won’t need them). Then:

st = (s [(3 $)])+ T oo [(5 1)

Here i), denotes the inclusion G(Qp) — G(A). Let A denote one of these coset representatives. Write
g = Ygooko. There is another coset representative B such that koA = Bk for some k{j, € Ko(N). Then

9ip(A) = 1950 Bkt = (vig(B))(ioo (B) ™" 9o ) (i (B) ~'ip(B) k)

and so

¢(gip(A)) = Flios(B) ™ goo)A(it(B) ™ ip(B)kg) = Flice(B) ™" goo)A(ir(B)) ™ Ako).
The last equality holds becaose A only depends on the places dividing N. Then@

(gip(A)) = (fI7lice(B) ™ goo]) (1) (B)A(ko)

Then by definition of the classical Hecke operators T}, we have

9) = elgip(A) =Y _(flRlisc(B) ™ goc]) (DX (B)A (ko)
A

B

(Zx )(f17lioo( )1])> |2 [900] (1) AM(Ko)

(T Pilgoe] (D) A(Ko)
= @Tpf(g)

20For a matrix v € To(IN) we have A(ko) = x () where ko = 'yf_l, see the computations before Proposition
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We also consider the action of the Hecke operator R, corresponding to the coset K, (g 2) The

same calculation as above shows that

This whole discussion gives:

Theorem 39.1. If f € My (N, ¢) is an eigenfunction of T, withp{ N, then ¢ is an eigenfunction
for the local Hecke algebra H,. The eigenvalues are determined by x and the eigenvalue of T}, on

3

40. L-FUNCTIONS AND FUNCTIONAL EQUATION
As in the local case there are different approaches: Either via Whittaker models or via matrix coeffi-
cients.
We go the route with Whittaker models.

Let 7 be an irreducible algebraic admissible representation of G(A), admitting a Whittaker model.
Factor m = @), m, and let W, be the local Whittaker model of =,, so that W = @, W, is the
Whittaker model of .

Definition. For W € W and x a quasi-character of A*/F*, we define the global Zeta integral
by

0 g=2
2w = [ w (Y 9) i xdy
AX
The L-function of 7 is defined as
L(?T,X,S) = HLU(TrTHX’UaS)a
where Ly (7y, Xv, 8) 18 the local L-factor at v, defined in Sectionfor nonarchimedean v, and in
TODO for archimedean v.
Lastly, we define the global Epsilon factor by

5(71—7Xa 5) = Hsv(ﬂ—va Xwvs S, 1/}11)

We set Z(W,s) = Z(W,1,s), L(w,s) = L(m,1,s) and e(m, s) = e(m, 1, s).
Note that there is no reason why the product defining the L-function should converge.

Since almost all 7, and X, are unramified, and the conductor of v, is O, for almost all v, we have
€ (T, Xus 8, %y) = 1 for almost all v, see Proposition [24.12] Also the same proposition implies that e
is independent of the choice of ¥, hence we dropped it from the notation.

Theorem 40.1 (|[JL70, Theorem 11.1]). Suppose m is a constituent of A(G(F)\G(A),w). The
products defining L(m,s) and L(T,s) converge absolutely for Re(s) large enough. They can be
meromorphically continued to the whole complex plane with only finitely many poles, and are
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entire if w is cuspidal. They satisfy the functional equation
L(m,s) = e(m,s)L(7,1 — s).

The L function is bounded in vertical strips.

We will prove this in the next section case if 7 is cuspidal.

40.1. L-Functions of Automorphic Forms

Let (V,7) be an algebraic automorphic cuspidal representation of G(A). Let ¢ € V.

Lemma 40.2. ¢ (g (1)) is rapidly decreasing as |y| — oo or |y| — 0.

Proof. |GH11] Proposition 8.9.2]. O

Because of this the integral
0 _1
Z(p:9) =/ ¢ (g 1) ly[*" > dy
AXJFX
More generally if x is a character of A*/F*  then we can consider the twisted Zeta function (or

GLy x GL; L-function)
0 s—1
Z(psx;8) = / ¢ (g 1) ™ x(y)d'y.
AX JFX

Theorem 40.3 (Functional Equation). For all ¢ € V,s € C, Hecke characters x we have

converges for all s.

Z(% X5 S) = Z(W(wl)@7w_1x_1ﬂ 1- S)

where w is the central character of V' and wi = <_01 é)

Proof.
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:/Ax/Fx m(wn)e (0 1) [y 7 D )y

= Z(ﬂ—(wl)(pvwi Xﬁl, 1- S)
O

These Zeta integrals are related to those defined in terms of the Whittaker model defined previously
Wi Y £ 0\ (y 0 :
as follows: Write ¢ <0 > Y cerx W, <(0 1) (0 1) > Then by unfolding we have

0 s—1
Z(p,3) :/ W (‘g 1> lyl™ 2 &y,
AX

which is the Zeta integral as defined before. This is valid as long as this is absolutely convergent.
Let m =2 @, ™y, and assume that ¢ corresponds to ®,¢,. Let W, be the local Whittaker function
corresponding to ¢,. Then we have W(g) = [[, Ws(gv). Then we have

y O\ | st o v 0 =% Py =
/AX W (O )|y| dy = H/ ( 1) Y] dxyfl;[ZU(anS)

We can use this to determine when the integral above is absolutely convergent. By Proposition and

Yo

its archimedean analog TODO, the local integral | wx Wy (0

By Theorem [24.10} for almost all v we have

OY |y, % o for Re > 1
1 |y y converges for Re > 3.

1
(1—01¢5°)(1 — aaqy®)’

where o; = x;(w,) where 7, = B(x1,x2). Then by Theorem [15.14] we have |a;| < qu 12 This easily
implies that the products [, Z,(Wy, s) and [], L,(W,, s) converge for Res > 3.

Zy(Wy, 8) =

If x is a quasi-character of A* /F* then
- y 0 5—7 X Yy 0 5—* —
Z(p x5 8) = /M/FX @ (0 ) "2 x(y)dy = /A W, (0 ) | d'y = HZ s Xos §

Let S be a finite set of primes, containing the infinite places, the places where 7 or x is ramified and
those where 1, has conductor # Op. Then for v ¢ S we have L,(m,, X, s) = Z,(Wy, X, s). Then where
the infinite product converges we have

Zy(Wy, X, 8)
Z(%D7X7S) = L(/]T7X7S) H L (ﬂ' S) *
veS v U7X7

At the finitely many places v € S we may choose W,, such that % is 1, hence L(w, x, s) admits

an analytic continuation to an entire function. For Re s < 0, and hence for all by analytic continuation,
we have
Zv(ﬂ'v(wl)an Wﬁlxila 1- 5)

~1. -1 _ -1, -1
Z(TF(UH)W,W X 51_5)—L(7T7w X 71_8)1_[ LU(M7W_SX_171—5)

veSs
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Then by Theorem we get
L(m,w™'x7 11 —5) H

veS

Zv(ﬂv(w1>m17W71X71a 1—5s)
Ly(my,w=sx~ 11 —5s)

Zy(Wo, X, 8)
= L(mxs) [ [ ===
L Ay

or after reordering terms

L(mw x ™ 1-5) H

veS

Zv(ﬂv(wl)Wv;wilxila 1- 5) Lv(ﬂ—va X S)
Lv('n-vyw_lx_lvl - S) Z'U(W'UaXaS)

= L(ﬂ-7 X7 8)7

The term in the product is &, (my, Xv, S, ¥y). Since g, =1 for all v ¢ S, we get
L(m,w™ X" 1 = s)e(m, x, 8) = L(m, x, 9).
This proves Theorem noting 7 = w™ .
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APPENDIX A. HAAR MEASURES AND MODULAR QUASI-CHARACTERS

In the following G is a locally compact group. Let p denote a left Haar measure on G.

Definition. The modular function, or modular quasi-character, of G is the function g : G —
R<o such that

| tamante) =50 | r@anto ¥
for any f € LY(G) (or C.(G) is sufficient).
We might also write this as d(gh) = §(h)~'dg. Equivalently, for any measurable set A C G and h € G
we have

W(AR) = 6(1) " Lp(A).
We will usually just write dg = du(g).

Proposition A.1. ¢ — R~ is a continuous homomorphism.

Proof. The homomorphism property is immediate from the definition. For continuity fix a function
f € LYG) with [ f # 0. The map G — L*(G), h +— Ry, f where R.f(g) = f(gh), is continuous. Hence

6= ([ f(g)dg)~" [o(R_[)(g)dg is continuous. O

Proposition A.2. A right Haar measure on G is given by d,.g = 6(g)dg, i.e. a right Haar integral
18

fH/Gf(g)5(g)dg~

Proof. Immediate from O

Proposition A.3. We have [, f(g~*)dg = [, f(9)5(g)dg.

Proof. [+ [, f(g7")dg is a right invariant Haar integral, hence it coincides with [, f(g)d(g)dg up
to a scalar by the previous proposition. To see that the constant is 1, test with the characteristic
functions of a symmetric neighborhoods of e of finite positive measure such that § is close to 1 on
them. g

Remark. In various books there are different conventions:

e In [BHO6|, [Foll5], [DE0Y|, [BZ76], their §, A, A is our 6~ 1.

e In [GH24], [Bum97], [Car79], their § agrees with our 6.
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Example. Let F' be alocally compact field. GLo(F') is unimodular. The standard Borel subgroup
B is not. Its modular function is given by

y
6 =S
N (0 y2>

Theorem A.4 ([Bum97 Proposition 2.1.5]). Let G be unimodular, P, K closed subgroups with
PN K compact and G = PK. Then a Haar measure on G is given by

/G f(g)dg = /P /K F (k) dipd, k.

For the next part we follow [Bou04} VII § 2] (note Bourbaki does the things on the right).

Y1
yz.

Let G be locally compact and H a closed subgroup. Let x : H — C* be a quasi-character. We
denote by C(H\G, x) the space of continuous functions f : G — C such that f(hg) = x(h)f(g) for all
he H, g€ G. C.(H\G, x) denotes the subspace of functions that are compactly supported mod H.
If G is tdlc we also consider C°(H\ G, x), the subspace of C.(H\G, x) consisting of locally constant
functions.

Given f € C.(G), let PX(f): G — C be defined by
(PS)@) = [ () sn©)dut.

where dy¢ is a fixed left Haar measure on H, so that g (£)dg€ is a right Haar measure.
For f: G - Cand g € G let Ryf and L,f denote the functions (R, f)(h) = f(hg), (Lgf)(h) =
f(gh).

Proposition A.5. PX maps C.(G) to C.(H\G,x). We have PX(Ly,f) = x(y)du(y) " PX(f) for
y € H, and PX(R,f) = Ry(PXf) for g € G. The map PX : C.(G) — C.(H\G, x) is surjective.

Proof. Clear except for the surjectivity. For the latter let g € C.(H\G, x). Fix a compact set K C G
such that suppg C HK. Let ¢ € C.(G) be a function only taking on nonnegative real values and such
that ¢ =1 on K. Define f : G — C by f = g¢/P(¢) (here P! is the map PX for the trivial character)
on HK and f = 0 elsewhere. Then f € C.(G) and PX(f) = g. O

If x only takes on values in Rsq the proof shows that PX : C.(G)T — C.(H\G, )" is surjective,
where the superscript + indicates the subspace of functions that only take on nonnegative real values.

If G is tdlc, then PX restricts to a surjective map C°(G) — C°(H\G, x) [BHO6] 3.4].

Theorem A.6. Let i be a regular Borel measure on G (not necessarily Haar). Let x : H — C*
be a quasi-character. The following are equivalent:

(1) There is a relatively boundeﬂ functional I : C.(H\G, x) — C such that I(PXf) = [ fdu
for every f € C.(G).

(2) du(€g) = x (€)' om(&)du(g) for & € H.
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%This means that for every f € C.(H\G,x)%, I is bounded on the set of g € C.(H\G, x) satisfying |g| < f.
Proof. “(1) = (2)” For f € C.(G) we have
/G F(9)du(€g) = I(PX(Le-1 f)) = x (&) 0u(E)I(PX(f)) = x(€)~ou(€) /G f(g)du(g)

For “(2) = (1)” one has to show that if PXf = 0, then fG fdp=0. Then f — fG fdu factors through
PX and the claim follows. This isn’t difficult, but see Bourbaki... O

In partlcular if 1 is a left Haar measure, a y-twisted invariant measure on H\G exists if and only if
(5(;\H dg = x. In the following assume this. Then we use the notation (from BHO , m :

I(f) = f(@)dmelg)

H\G
where f € C.(H\G,dc|; 0m).
Note that if f € C.(H\G,dc|5'6m) and f = PXf’, then
I(Ryf) = I(RyPXf") = I(PX(Ryf")) /f (hg)dh = /f )dh = I(f).

(Recall we are using a right Haar measure on G here.) Note that if C.(H\G,dg|5;'dz)", then by the
remark after the proof of Proposition there is a f’ € C.(G)" such that PXf’ = f. Then

10 =17 = [ Flaanta) =0
So I is positive. We also see that if additionally I(f) = 0, then f = 0.

Proposition A.7. If J : C.(H\G,dc|;'6u) — C is another positive functional invariant under
right G-translations, then J = cI for some (nonnegative) constant c.

Proof. Pull back via PX to C.(G) and use uniqueness of Haar measure. O

This allows for a concrete way of computing I(f). Assume that G is unimodular (not sure if this is
really necessary, maybe can go without by inserting modular function?). Suppose G = HK for some
subgroup K such that H N K is compact. Define J : C.(H\G,d¢|; dr) — C by

=AﬂWw

Proposition A.8. After rescaling we have J = I.

fH/H/Kf(hk)dlhdrk

Proof. By Theorem
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is a (both left and right) Haar integral on G, hence coincides with p after rescaling. Then note that

| [ samamak= [ 2 pak =1,
HJK K

Since P%f : C.(G) — C.(H\G,dg) is surjective, this shows that J is right G-invariant and we are
done by the previous proposition. O

For example, if F' is a nonarchimedean local field we might apply this in the situation G = GLy(F),
H = B(F), K = GLy(Op).
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