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1 Introduction

1.1 Motivation

• Representation theory of finite groups: active area of research

• Many open problems, e.g. Local-Global Conjectures

Definition. Let G be a finite group, p a prime. Then we let

• Irr(G) := {irreducible characters of G},

• Irrp′(G) := {χ ∈ Irr(G) | p ∤ χ(1)}.

Conjecture (McKay 1972). Let G be a finite group, p a prime, P a Sylow p-subgroup of
G. Then

| Irrp′(G)| = | Irrp′(NG(P ))|.

The case p = 2 has been proved in 2016.

Theorem 1.1 (Olsson 1976). The McKay Conjecture holds for all symmetric groups Sn
and all primes p.

Outline of the course:

• Chapter 1: Introduction and background

• Chapter 2: Specht modules ([Jam78])

• Chapter 3: Character theory ([JK84])

• Chapter 4: McKay numbers ([Ols94])

1.2 Background

Notation.

• N = {1, 2, 3, . . . }, N0 = {0, 1, 2, . . . }.

• If n ∈ N, let [n] := {1, 2, . . . , n}.

• Irr(G) (or IrrF(G) to specify the field F) is a complete set of irreducible representa-
tions of G over F.
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1.2.1 Representations & modules

F will denote an arbitrary field and G a finite group. All modules considered in this course
will be finite-dimensional left modules.

A (finite-dimensional) representation of G over F is a group homomorphism ρ : G →
GL(V ), where V is a (finite-dimensional) vector space over F. We write g · v for ρ(g)(v).
Equivalently a representation is an FG-module. The degree or dimension of a representa-
tion is the dimension of the underlying vector space.

Example. The (one-dimensional) trivial representation of G is a one-dimensional vector
space with trivial G-action. It will be denoted by 1G.

Other concepts.

• Subprepresentations W of V , written W ≤ V

• Simple or irreducible modules, i.e. those with no proper non-zero submodules.

• Semisimple or completely reducible modules, i.e. direct sums of simple modules.

• Decomposable modules, i.e. modules decomposing into a direct sum of proper sub-
modules; opposite: indecomposable.

• G-homomorphisms: If V,W are G-modules, then an F-linear map θ : V → W is a
G-homomorphism if g · θ(v) = θ(g · v) for all g ∈ G, v ∈ V .

Useful results.

Lemma 1.2 (Schur’s Lemma). Let V,W be simple G-modules, θ : V →W a G-homomorphism.
Then θ = 0 or θ is an isomorphism. If F = Falg and V = W , then θ = c idV for some
c ∈ F, i.e. EndFG(V ) ∼= F.

Example. The (left) regular module of G is FG viewed as a left module over itself. If
IrrF(G) = {Si | i ∈ I} and charF = 0, then

FG ∼=
⊕
i∈I

S⊕ dimF Si
i

as G-modules.

Theorem 1.3 (Maschke’s Theorem). Suppose charF ∤ |G|. If U ≤ V are G-modules, then
there is a G-submodule W ≤ V such that V = U ⊕W .

Corollary 1.4. Every finite-dimensional representation of a finite group G over F where
charF ∤ |G| is semisimple.

Common constructions.

• Tensor products: If V,W are G-modules, then V ⊗F W becomes a G-module via
g · (v ⊗ w) = (gv)⊗ (gw) for all g ∈ G, v ∈ V,w ∈W .
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• Restriction: If H ≤ G, V is a G-module, then we can also view V as an H-module,

written V
yG

H
, V
y
H
, VH or ResGH(V ).

• Induction: If H ≤ G, U is an H-module, we can get a G-module out of it. Let
{ti | i ∈ I} be a set of left coset representatives of H in G. Then the induction of U
from H to G is the vector space direct sum⊕

i∈I
(ti ⊗ U) =: U

xG

H
, U
xG

or UG,

where ti ⊗ U = {ti ⊗ u | u ∈ U}, and the G-action is as follows: g · (ti ⊗ u) :=
tj ⊗ (t−1

j gti)u where given g ∈ G, i ∈ I, then j ∈ I is the unique index such that

gti ∈ tjH. Equivalently, we can define the induction as U
xG

H
= FG ⊗FH U , see

Example Sheet 1, Question 1.

• Permutation modules: A G-module with a permutation basis B, i.e. g · b ∈ B for all
g ∈ G, b ∈ B. E.g. the left regular module FG is a permutation module with basis
B = G.

Lemma 1.5. Suppose G acts transitively on a set Ω. Let M be the corresponding permu-

tation module. Then M ∼= 1H

xG
, where H = StabG(ω) for any ω ∈ Ω.

Proof. Special case of Example Sheet 1, Question 2.

1.2.2 Some Linear Algebra

• Recall that ifM is a (finite-dimensional) F-vector space,M∗ = HomF(M,F) is again
an F-vector space. If e1, . . . , ek is a basis of M , then the dual basis ε1, . . . , εk ∈M∗

is defined by εi(ej) = δij .

• Let M be a G-module, the dual M∗ of M carries the G action (g ·ϕ)(v) = ϕ(g−1 ·v).

• Suppose we have a symmetric bilinear form ⟨·, ·⟩ on some finite-dimensional F-vector
space M . For a vector subspace V of M define

V ⊥ = {m ∈M | ⟨v,m⟩ = 0∀v ∈ V }.

Consider the linear map ϕ :M →M∗,m 7→ ⟨·,m⟩. Note even if ⟨·, ·⟩ is non-singular,
i.e. kerϕ =M⊥ = 0, we could have V ⊥ ∩ V ̸= 0.

We can describe how large this is using a basis of V . Let e1, . . . , ek of V . The Gram
matrix of V w.r.t. this basis be the matrix A with Aij = ⟨ei, ej⟩.

Lemma 1.6. We have that dimF V/(V ∩ V ⊥) = rankA.

Proof. Consider φ : V → V ∗, v 7→ ⟨·, v⟩. Let ε1, . . . , εk be the basis of V ∗ dual to
e1, . . . , ek. Then φ(ei) =

∑k
j=1⟨ej , ei⟩εj . So the Gram matrix A is the matrix of φ

with repsect to the basis e1, . . . , ek and ε1, . . . , εk. Clearly kerφ = V ∩ V ⊥, and so
dimV/(V ∩ V ⊥) = dimV − dimkerφ = rankA.

4



1.2.3 Character Theory

In this subsection, F = C. Let ρ : G → GL(V ) be a representation of the finite group G
over some finite-dimensional C-vector space V . Recall that this representation affords the
character χV : G→ C, g 7→ tr ρ(g).

Theorem 1.7. CG-modules U, V are isomorphic iff χU = χV .

Useful facts.

• There is an inner product on class functions on G given by

⟨χ, ϕ⟩ = 1

|G|
∑
g∈G

χ(g−1)ϕ(g) =
1

|G|
∑
g∈G

χ(g)ϕ(g).

• Irr(G) is an orthonormal basis for the space of class functions w.r.t. ⟨·, ·⟩, in particular
| Irr(G)| is the number of conjugacy classes of G.

• Characters of the usual constructions:

– Direct sum: χU⊕V = χU + χV .

– Tensor product: χU⊗V = χUχV .

– Permutation modules: If V is a permutation module with permutation basis
B, then χ(g) = |{b ∈ B | gb = b}| is the number of fixed points of g.

– Restriction: IfH ≤ G is a subgroup and V a representation of G, then χV

y
H

:=
χV ↓H = χV |H .

• Frobenius reciprocity: If χ is a character of G, θ a character of H, then

⟨χ
y
H
, θ⟩ = ⟨χ, θ

xG⟩.

• Mackey’s theorem: For H,K ≤ G, ϕ a character of H, we can compute (ϕ
xG

H
)
y
K

by
decomposing it as a sum of characters indexed by a set of double coset representations
of K,H in G. (See handout for details)
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2 Specht Modules

Let F be an arbitrary field.

2.1 The Symmetric Group

Let Ω be a finite set. Call the symmetric group on Ω, Sym(Ω). When Ω = [n], write Sn
for Sym(Ω).

Conventions:

• (123)(12) = (13) (i.e. composition from right to left)

• S0 = Sym(∅) = trivial group

Some representations of Sn:

• Trivial representation of Sn, 1Sn .

• Sign representation of Sn, sgnSn
: ρ : Sn → F∗, g 7→ sgn(g).

• Natural permutation module Vn with permutation basis [n].

Note Vn ∼= 1Sn−1

xSn , because Stab(n) = Sn−1.

Also Vn
y
Sn−1

∼= Vn−1 ⊕ 1Sn−1 .

Definition. A partition λ of n, written λ ⊢ n, is a non-increasing sequence of positive
integers which sum to n, i.e. λ = (λ1, . . . , λk) with λi ∈ N, λ1 ≥ λ2 ≥ · · · ≥ λk and∑k

i=1 λi = n. We call

• λi the parts of the partition,

• n the size of λ (also denoted |λ|),

• k the length of λ (also denoted ℓ(λ)).

The set {λ | λ ⊢ n} of all partitions of n will be denoted by ℘(n).

We can extend this notion to 0 by convention: the only partition of 0 is the empty sequence,
i.e. ℘(0) = {∅}.

Short notation: λ = (4, 3, 3, 1) = (4, 32, 1) ⊢ 11.
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Definition. Let λ = (λ1, . . . , λk) be a partition. The Young diagram of λ is

Y (λ) = {(i, j) ∈ N× N | 1 ≤ i ≤ k, 1 ≤ j ≤ λi}.

Typically, Young diagrams are drawn using boxes rather than points, e.g.:

℘(4) =


(4)

,

(3, 1)

,

(2, 2)

,

(2, 12)

,

(14)
 .

The rows and columns are numbered as in a matrix.

Definition. Let λ = (λ1, . . . , λk) be a partition. The conjugate partition of λ is the
partition λ′ such that Y (λ′) is the transpose of Y (λ). Explicitly, λ′ = (µ1, . . . , µλ1) where
µj = #{i ∈ [k] | λi ≥ j}. Note |λ′| = |λ| and (λ′)′ = λ.

Example. Consider λ = (4, 3, 1) ⊢ 8. Then

Y (λ) = ,

and so

Y (λ′) = ,

i.e. λ′ = (3, 2, 2, 1).

Definition. Let λ = (λ1, . . . , λk) and µ = (µ1, . . . , µs) be two partitions of n ∈ N. Then
we say that λ dominates µ, written λ ⊵ µ or µ ⊴ λ, if

∑l
i=1 λi ≥

∑l
i=1 µi for all

l ∈ {1, 2, . . . ,min(k, s)}.

Example. Take n = 4. Then (4) ⊵ (3, 1) ⊵ (2, 2) ⊵ (2, 12) ⊵ (14).

However, in general, dominance is only a partial order, for example (4, 3, 1) ̸⊵ (5, 13) and
(5, 13) ̸⊵ (4, 3, 1).

Dominance can be extended to a total ordering on ℘(n), e.g. the lexicographic ordering:
If λ ̸= µ, we say λ > µ if λi > µi where i = min{j ∈ N | λj ̸= µj}.

Definition. Let λ be a partition of n. A λ-tableau, or Young tableau of shape λ, is a
bijection t : Y (λ)→ [n]. The set of all λ-tableaux will be denoted by ∆λ.

We usually write the values of a Young tableau t in the boxes of the Young diagram Y (λ).

Example. Take λ = (3, 1) ⊢ 4, so Y (λ) = . Consider the tableau t : Y (λ) →
[4], (1, 1) 7→ 2, (1, 2) 7→ 3, (1, 3) 7→ 4, (2, 1) 7→ 1. Then we write this as a labelled Young
diagram, namely

t =
2 3 4
1

.
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The natural permutation action of Sn on [n] extends to a permutation action on ∆λ:

(g · t)(i, j) = g(t(i, j)) for (i, j) ∈ Y (λ), t ∈ ∆λ,

i.e. we just apply g to each entry of t.

To continue the example above, take g = (123) ∈ S4. Then

g · t = g · 2 3 4
1

=
3 1 4
2

.

Definition. Let λ = (λ1, . . . , λk) be a partition and t ∈ ∆λ. For each 1 ≤ i ≤ k, define

Ri(t) := {t(i, j) | 1 ≤ j ≤ λi}

and for each 1 ≤ j ≤ λ1, define

Cj(t) = {t(i, j) | 1 ≤ i ≤ (λ′)j},

i.e. Ri(t), Cj(t) are the sets of entries in the i-th row, resp. j-th column of t.

Definition. Let λ ⊢ n and t, s ∈ ∆λ. We say that t and s are row-equivalent, written
t ∼R s, if Ri(t) = Ri(s) for all i. Note that ∼R is an equivalence relation on ∆λ, we
will denote the equivalence classes by Ωλ := ∆λ/∼R. Each element of Ωλ (i.e. equivalence
class) will be called a λ-tabloid. We write {t} for the equivalence class containing t ∈ ∆λ.

Example. Consider λ = (3, 2) ⊢ 5 and t =
1 2 3
4 5

, s =
2 3 1
5 4

. Clearly {t} = {s}.

To denote tabloids, we omit the vertical bars, i.e. we write

{t} = 1 2 3
4 5

=
2 3 1
5 4

= {s}.

The natural permutation of Sn on ∆λ descends to a well-defined action on Ωλ.

Definition. Let λ ⊢ n. The λ-Young permutation module Mλ is the Sn-module with
permutation basis Ωλ.

Lemma 2.1. Let λ = (λ1, . . . , λk) ⊢ n. Then Mλ ∼= 1Sλ

xSn where Sλ ∼= Sλ1 × · · · × Sλk
.

Proof. Sn acts transitively on [n] and so acts transitively on Ωλ. For t ∈ ∆λ,

Sλ := StabSn({t}) = {g ∈ Sn | gRi(t) = Ri(t) ∀i} = Sym(R1(t))× · · · × Sym(Rk(t))
∼= Sλ1 × . . . Sλk

.

The claim then follows from Lemma 1.5.

Remark. The subgroup Sλ of Sn above is called a Young subgroup of type λ. There is a
Young subgroup of type λ for each set partitions of [n] into subsets of sizes λ1, . . . , λk and
for fixed λ they are all conjugate to each other in Sn, and all isomorphic to Sλ1×· · ·×Sλk

.
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Example. Take n = 9, λ = (4, 3, 2). There are
(
9
4

)(
5
3

)(
2
2

)
= 1260 many Young subgroups

of type λ.

Examples.

(a) Let λ = (n). Then
Ωλ = { 1 2 ··· n },

and Sn acts trivially on this single λ-tabloid. Then Sλ = Sn and M (n) ∼= 1Sn .

(b) Let λ = (n− 1, 1) ⊢ n, for n ≥ 2. Then

Ωλ =
{

1 2 ··· i−1 i+1 ··· n
j

∣∣∣1 ≤ i ≤ n}.
Then Sλ ∼= Sn−1 × S1 ∼= Sn−1, hence M (n−1,1) ∼= 1Sn−1

xSn ∼= Vn, the natural
permutation representation.

(c) Let λ = (1n) ⊢ n. Then {t} = {s} iff t = s for t, s ∈ ∆λ. So Sλ is trivial and so

M (1n) ∼= 11

xSn is the regular module FSn.

Definition. Let λ = (λ1, . . . , λk) ⊢ n and t ∈ ∆λ.

(i) The row stabiliser of t is

R(t) := {g ∈ Sn | gRi(t) = Ri(t)∀i},

and similarly define the column stabiliser C(t).

(ii) The column symmetriser of t is

bt :=
∑

g∈C(t)

sgn(g)g ∈ FSn.

(iii) The polytabloid corresponding to t, or t-polytabloid, is

e(t) := bt · {t} =
∑

g∈C(t)

sgn(g)g · {t} ∈Mλ.

Note that e(t) depends on the tableau t, not just the tabloid {t}.

Example. Let λ = (2, 1) ⊢ 3. Then

e
(

1 2
3

)
=

1 2
3
− 3 2

1
̸= 2 1

3
− 3 1

2
= e
(

2 1
3

)
.

Definition. Let λ ⊢ n. The λ-Specht module is defined as

Sλ := ⟨e(t) | t ∈ ∆λ⟩F ⊆Mλ,

i.e. Sλ is the F-vector space spanned by polytabloids corresponding to tableaux of shape λ.
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The next lemma shows that Sλ is indeed a module over Sn.

Lemma 2.2. Let λ ⊢ n and t ∈ ∆λ.

(1) e(t) ̸= 0

(2) ∀g ∈ Sn, g · e(t) = e(g · t)

(3) ∀g ∈ C(t), g · e(t) = sgn(g)e(t)

(4) Sλ is a cyclic submodule of Mλ, in particular Sλ = FSn · e(u) for any u ∈ ∆λ.

Proof.

(1) Observe that R(t) ∩ C(t) = 1, and so if g ∈ C(t) and g · {t} = {t}, then g = 1.

It follows that the coefficient of {t} in e(t) is sgn(1) = 1 ̸= 0, hence e(t) ̸= 0.

[In fact, R(t)∩C(t) = 1 implies that e(t) is a signed sum of |C(t)| distinct λ-tabloids]

(2) Observe that C(g · t) = gC(t)g−1, and so

g · e(t) = g
∑

h∈C(t)

sgn(h)h · {t}

=
∑

h∈C(t)

sgn(h){gh · t}

=
∑

h∈C(t)

sgn(ghg−1)ghg−1 · {g · t}

=
∑

x∈C(g·t)

sgn(x)x · {g · t} = e(g · t).

(3) If g ∈ C(t), then

g · e(t) =
∑

h∈C(t)

sgn(h){gh · t} =
∑

y∈C(t)

sgn(g−1y){y · t} = sgn(g)e(t).

(4) That Sλ is an Sn-submodule of Mλ follows from (2)

That Sλ can be generated as an FSn-module by e(u) for any u ∈ ∆λ also follows
from (2) and the fact that Sn acts transitively on ∆λ.

Examples.

(a) Let λ = (n). We have by (1) and (4) of the lemma that 0 ̸= Sλ ≤ Mλ. But in a
previous example we showed that M (n) ∼= 1Sn . Hence S(n) ∼= 1Sn also.
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(b) Let λ = (1n) ⊢ n. Then C(t) = Sn and thus by the lemma, g · e(t) = sgn(g)e(t) for
all g ∈ Sn, for any t ∈ ∆λ. Thus, dimF(S(1

n)) = 1 and S(1n) = FSn · e(t) ∼= sgnSn
.

(c) Let λ = (2, 1) ⊢ 3. Then

Sλ =
〈
e
(

1 2
3

)
, e
(

2 1
3

)
, e
(

1 3
2

)
, e
(

3 1
2

)
, e
(

2 3
1

)
, e
(

3 2
1

)〉
F
.

By (iii) of the lemma,

Sλ =
〈
α := e

(
2 1
3

)
, β := e

(
1 2
3

)
, γ := e

(
1 3
2

)〉
F
,

since e.g. e
(

3 2
1

)
= −α. Moreover,

α =
1 2
3
− 3 2

1
,

β =
2 1
3
− 3 1

2
,

γ =
1 3
2
− 2 3

1
,

so α = β + γ. Since β, γ are linearly independent, dimSλ = 2 for all fields F. See
Exercise Sheet 1, Question 4 for more.

2.2 Irreducible modules

Goal: If charF = 0, then {Sλ | λ ⊢ n} is a full set of irreducible FSn-modules.

Definition. Let λ ⊢ n. Define a symmetric bilinear form ⟨·, ·⟩ on Mλ via

⟨{t}, {s}⟩ =

{
1 if {t} = {s},
0 otherwise,

for t, s ∈ ∆λ and then extend linearly, i.e. we take the tabloids to be an “orthonormal
basis”.

We will always take the orthogonal complement U⊥ of a subspace U with respect to this
bilinear form.

Lemma 2.3. Let λ ⊢ n.

(1) The form ⟨·, ·⟩ is Sn-invariant, i.e. ⟨gx, gy⟩ = ⟨x, y⟩ for all x, y,∈Mλ, g ∈ Sn.

(2) If U is an Sn-submodule of Mλ, then so is U⊥.

Proof.

(1) This is clearly true for x = {t}, y = {s}, where t, s ∈ ∆λ, then follows by bilinearity.
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(2) This follows from (1): For x ∈ U⊥, g ∈ Sn we have ⟨gx, u⟩ = ⟨x, g−1u⟩ = 0 for all
u ∈ U , so gx ∈ U⊥.

Plan:

• James’s Submodule Theorem: If U ≤Mλ, then U ≥ Sλ or U ≤ (Sλ)⊥.

• JST =⇒ certain quotients of Sλ are irreducible.

This will give us the first part of our goal: Sλ is irreducible when charF = 0.

Then the second part will be to show that they are pairwise non-isomorphic.

Proposition 2.4. Let λ = (λ1, . . . , λk) ⊢ n. Suppose t, u ∈ ∆λ satisfy bt · {u} ≠ 0. Then

(1) ∃h ∈ C(t) such that h · {t} = {u},

(2) bt · {u} = ±e(t),

(3) bt ·Mλ = Fe(t).

Proof.

(1) We want to construct h ∈ C(t) such that Ri(h · t) = Ri(u) for all i.

Claim: bt · {u} ≠ 0 =⇒ if x ̸= y are the numbers appearing in the same row of u,
then they appear in different columns of t.

Proof of claim: Suppose not, so (xy) ∈ C(t). Take Z to be a set of left coset
representatives of ⟨(xy)⟩ in C(t), i.e. C(t) = Z∪̇Z(xy).

Then bt =
∑

g∈C(t) sgn(g)g =
∑

z∈Z sgn(z)z(1− (xy)). But then

bt · {u} =
∑
z∈Z

sgn(z)z({u} − (xy) · {u}) = 0,

since (xy) ∈ R(u) as x, y belong to the same row in u. This concludes the proof of
the claim.

Returning to the proof of (1), let R1(u) = {x1, x2, . . . , xλ1}. Suppose xr belongs to
column jr of t, for each r ∈ [λ1]. By the claim the jr are pairwise distinct. Let
yr = t((1, jr)).

Define h1 =
∏

r∈[λ1]
xr ̸=yr

(xryr) ∈ C(t). Then

R1(h1 · t) = {h1(y1), . . . , h1(yλ1)} = {x1, . . . , xλ1} = R1(u).

Since h1 ∈ C(t), then C(h1 · t) = h1C(t)h
−1
1 = C(t). Thus bt = bh1t, and so

bh1t · {u} ≠ 0.

12



Let R2(u) = {x′1, . . . , x′λ2
}. Suppose x′r belongs to column j′r of t′ = h1 · t. By the

claim, the j′r are pairwise distinct. Let y′r = t′((2, j′r)). Define h2 =
∏

r∈[λ2]
x′
r ̸=y′r

(x′ry
′
r) ∈

C(t′) = C(t). Observe R2(h2 · t′) = R2(u) and R1(h2 · t′) = R1(t
′) = R1(u). That is:

Ri(h2h1 · t) = Ri(u) for all i ∈ {1, 2}.

Iteratively, we construct for each m ∈ {3, 4, . . . , k} an element hm ∈ C(t) such that
Ri(hmhm−1 · · ·h1 · t) = Ri(u) for all i ∈ [m]. For m = k we get what we want by
taking h = hk · · ·h2h1.

(2) Let h be as in (1). Then bt · {u} = bth · {t} = sgn(h)bt · {t} = sgn(h)e(t).

(3) For all {u} ∈ Mλ we have either bt · {u} = 0 or bt · {u} = ±{u} by (2), hence
bt ·Mλ ⊆ Fe(t) and equality holds as bt{t} = e(t).

Theorem 2.5 (James’s Submodule Theorem). Let λ ⊢ n, U ≤Mλ. Then either U ≥ Sλ
or U ≤ (Sλ)⊥.

Proof. Suppose U ̸≤ (Sλ)⊥, then there exists x ∈ U and t ∈ ∆λ such that ⟨x, e(t)⟩ ≠ 0.
Then

0 ̸= ⟨x, e(t)⟩ =
∑

g∈C(t)

sgn(g)⟨g−1x, {t}⟩ = ⟨bt · x, {t}⟩,

so in particular bt · x ̸= 0. By the proposition we have bt · x = ce(t) for some c ∈ F∗. So
from bt · x ∈ U we get e(t) ∈ U and thus Sλ = FSne(t) ⊆ U .

Remark. By JST, if we decompose Mλ into a direct sum of indecomposable modules,
then there is a unique summand that contains Sλ. This module is denoted Y λ, and called
the Young module corresponding to λ (more later).

Corollary 2.6. Let λ ⊢ n. Then Sλ/(Sλ ∩ (Sλ)⊥) is either 0 or irreducible.

Proof. If Sλ ≤ (Sλ)⊥, then the quotient is zero, so now suppose Sλ ∩ (Sλ)⊥ is a proper
submodule of Sλ. Let U ≤ Sλ. Then U ≤ Mλ, so by JST we have U = Sλ or U ≤
Sλ ∩ (Sλ)⊥. This tells us that Sλ/(Sλ ∩ (Sλ)⊥) is irreducible.

Definition. A representation ρ : G → GLn(F) is absolutely irreducible if for any field
extension K of F, the corresponding representation ρ̄ : G→ GLn(K) is irreducible.

Example. Let G = C4 = ⟨g⟩. The representation

ρ : G→ GL2(Q), ρ(g) =

(
0 1
−1 0

)
is irreducible, since it has no 1-dimensional submodules (i.e. eigenspaces of ρ(g)) when we
work over Q. However, it is not absolutely irreducible: ρ̄ : G→ GL2(Q(i)) is a direct sum
of two 1-dimensional submodules (because the eigenvalues of ρ̄(g) are ±i).
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Theorem 2.7. Let λ ⊢ n. Then Sλ/(Sλ ∩ (Sλ)⊥) is either 0 or absolutely irreducible.

Proof. We can extract a basis e1, . . . , ek of Sλ consisting of polytabloids. By Lemma 1.6,

dimF Sλ/(Sλ ∩ (Sλ)⊥) = rankA

where A is the Gram matrix corresponding to e1, . . . , ek. But Aij = ⟨ei, ej⟩ belongs to the
prime subfield of F (i.e. Q or Fp) and so the dimension of Sλ/(Sλ ∩ (Sλ)⊥) doesn’t change
when we extend F. Since over any field Sλ/(Sλ ∩ (Sλ)⊥) is either 0 or irreducible by our
previous result, it is either 0 or absolutely irreducible.

Corollary 2.8. If charF = 0, then Sλ is irreducible for all partitions λ.

Proof. Over Q the form ⟨·, ·⟩ satisfies ⟨u, u⟩ ≥ 0 for all u ∈ Mλ
Q, with equality iff u = 0.

Hence SλQ ∩ (SλQ)⊥ = 0. Thus SλQ is absolutely irreducible by the theorem. Hence SλF is
irreducible since F extends Q.

Proposition 2.9. Let λ = (λ1, . . . , λk) and µ = (µ1, . . . , µs) be two partitions of n.
Suppose t ∈ ∆λ and u ∈ ∆µ with bt · {u} ≠ 0. Then

(1) ∃h ∈ C(t) such that for all l ∈ {1, 2, . . . ,min(k, s)} we have

l⊔
i=1

Ri(u) ⊆
l⊔

i=1

Ri(h · t).

(2) λ ⊵ µ.

Proof.

(1) Arguing as in the claim in the proof of Proposition 2.4 we have that if x ̸= y appear
in the same row of u, then they appear different columns of t.

Let R1(u) = {x1, x2, . . . , xµ1}. Suppose xr lies in column jr of t, so the jr are
pairwise distinct. Let yr = t((1, jr)).

Define h1 =
∏

r∈[µ1]
xr ̸=yr

(xryr) ∈ C(t). Then

R1(u) = {x1, . . . , xµ1} = {h1(y1), . . . , h1(yµ1)} ⊆ R1(h1 · t).

Since C(h1 · t) = h1C(t)h
−1
1 = C(t), so bh1·t = bt, so bh1·t · {u} ≠ 0.

Let R2(u) = {x′1, x′2, . . . , x′µ2
} and t′ = h1 · t. Suppose t′((i′r, j

′
r)) = x′r. If i′r ≥ 2,

then let y′r = t′((2, j′r)). Define h2 =
∏

r∈[µ2]
i′r≥2
x′
r ̸=y′r

(x′ry
′
r) ∈ C(t′) = C(t). Then

R2(u) = {x′1, . . . , x′µ2
} = {x′r | i′r ≥ 2} ⊔ {x′r | i′r = 1}
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= {h2(y′r)} ⊔ {x′r | i′r = 1}
⊆ R2(h2 · t′) ⊔R1(h1 · t′)

Also R1(u) ⊆ R1(t
′) = R1(h2 · t′). Therefore

⊔l
i=1Ri(u) ⊆

⊔l
i=1Ri(h2h1 · t) for all

l ∈ {1, 2}. Now induct.

(2) By (1),
l∑

i=1

µi =
l∑

i=1

|Ri(u)| ≤
l∑

i=1

|Ri(h · t)| =
l∑

i=1

λi,

for all l = 1, . . . ,min(k, s).

Theorem 2.10. Let λ, µ ⊢ n. Suppose 0 ̸= ϕ ∈ HomFSn(Sλ,Mµ). If there exists ϕ̃ ∈
HomFSn(M

λ,Mµ) extending ϕ, then λ ⊵ µ.

Proof. Since Sλ = FSn · e(t) for any t ∈ ∆λ, then ϕ(e(t)) ̸= 0 as ϕ ̸= 0. Fix any t ∈ ∆λ.
Then 0 ̸= ϕ(e(t)) = ϕ̃(e(t)) = ϕ̃(bt·{t}) = bt·ϕ̃({t}). Writing ϕ({t}) as a sum of µ-tabloids,
we see that there is u ∈ ∆µ such that bt · {u} ≠ 0, so we are done by the proposition.

Example. Let charF = 2, n = 2, λ = (12), µ = (2). Then S(12) ∼= sgnS2
∼= 1S2

∼= M (2),
and so HomFS2(Sλ,Mµ) ̸= 0, in particular, it contains isomorphisms.

On the other hand, Mλ =
〈

1
2
,
2
1

〉
and if θ : Mλ → Mµ is FS2 linear, then θ(

1
2
) =

(12)θ(
2
1
) = θ(

2
1
). In particular θ(e(

1
2
)) = θ(

1
2
)−θ( 2

1
) = 0. So for any θ ∈ HomFS2(M

λ,Mµ)

we have θ|Sλ = 0, in particular not all ϕ ∈ HomFS2(Sλ,Mµ) have extensions to Mλ.

Corollary 2.11. If charF = 0, λ, µ ⊢ n, then Sλ ∼= Sµ iff λ = µ.

Proof. Suppose Sλ ∼= Sµ, take an isomorphism Sλ → Sµ and compose this with the natural
inclusion Sµ →Mµ to get 0 ̸= ϕ ∈ HomFSn(Sλ,Mµ). By Maschke’s Theorem there exists
V ≤ Mλ such that Mλ = Sλ ⊕ V . And so we can extend ϕ to ϕ̃ ∈ HomFSn(M

λ,Mµ) by
setting ϕ̃|V = 0, so λ ⊵ µ by the theorem. By symmetry we also have µ ⊵ λ, so λ = µ.

So far we showed: If charF = 0, then

• each Sλ is irreducible,

• the Sλ are pairwise non-isomorphic.

If F = C, then | IrrC(Sn)| = #conjugacy classes of Sn = |℘(n)|, so

IrrC(Sn) = {SλC | λ ⊢ n}.

We now extend this to arbitrary fields of characteristic 0.
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Theorem 2.12. If charF = 0, then IrrF(Sn) = {SλF | λ ⊢ n}.

We already know that | IrrF(Sn)| ≥ |℘(n)|. We now want to prove the reverse inequality.

Definition. F is a splitting field for the finite group G if every irreducible FG-representation
is absolutely irreducible.

Fact. If F = Falg, then F is a splitting field. See [Isa76, Corollary 9.4]

Theorem 2.13. If F is a splitting field for G, and K a field extension of F, then K is
also a splitting field for G, and | IrrK(G)| = | IrrF(G)|.

Proof. See [Isa76, Corollary 9.8].

Fact. Every field is a splitting field for Sn. See [JK84, Theorem 2.1.12] and [CR62].

So in particular, Q is a splitting field for Sn. Hence | IrrF(Sn)| = | IrrQ(Sn)| = | IrrC(Sn)| =
|℘(n)|.

Alternatively, one can use the following:

Theorem 2.14. Let K be a field with charK ∤ |G|. Then | IrrK(G)| ≤ #conjugacy classes
of G. If K = Kalg, then equality holds.

Proof. See Moodle for a sketch using the Artin-Wedderburn theorem.

Proof of Theorem 2.12. Corollary 2.8 and Corollary 2.11 show that the Sλ are pairwise
distinct and irreducible. Then the claim follows either from Theorem 2.13 and the fact or
from Theorem 2.14.

Remarks.

• Modular representation theory: char = p > 0, ordinary representation theory:
char = 0.

• If char = p > 0, but p ∤ |G|, then the situation is similar to char = 0.

• If char = p | |G|, the situation is very different.

• For char(F) = p > 0:

IrrF(Sn) =

{
Sλ

Sλ ∩ (Sλ)⊥
∣∣∣λ ⊢ n is “p-regular”

}
.

Theorem 2.15 (Brauer). Suppose charF = p > 0. Then the number of isomorphism
classes of absolutely irreducible FG-modules is at most the number of p-regular conjugacy
classes of G. If F is a splitting field for G, then equality holds.

Proof. See [CR62, pp. 82.6, 83.6]
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Definition. Let p be a prime.

(i) A partition λ = (λ1, . . . , λk) is p-singular if it has at least p equal parts, i.e. there
exists i ∈ [k − p + 1] such that λi = λi+1 = · · · = λi+p−1. Otherwise, λ is called
p-regular.

(ii) An element g ∈ G is p-regular if p ∤ ord g. A conjugacy class of G is p-regular if its
elements are p-regular.

If g ∈ Sn, then g is p-regular iff in its disjoint cycle decomposition, no cycle has length
divisible by p.

Proposition 2.16. Let p be a prime, n ∈ N. Then

#{p-regular λ ⊢ n} = #{λ ⊢ n | p ∤ λi ∀i}.

Proof. Proof 1. The generating function for all partitions is

G(x) =
∑
n≥0

|℘(n)|xn =
∏
i∈N

(1 + xi + x2i + . . . ) =
∏
i∈N

1

1− xi

where a partition with ai many parts of size i corresponds to choosing the xiai term from
the i-th bracket when we multiply out. The generating function for p-regular partitions is

F (x) =
∑
n≥0

#{p-regular λ ⊢ n}xn =
∏
i∈N

(1 + xi + · · ·+ x(p−1)i)

=
∏
i∈N

1− xpi

1− xi

=
∏

i∈N, p∤i

1

1− xi

=
∑
n≥0

#{λ ⊢ n | p ∤ λi ∀i}.

Proof 2. Consider

{p-regular λ ⊢ n}
θ
⇄
φ
{λ ⊢ n | p ∤ λi ∀i}

where θ, φ are as follows:

• θ: If λ has a part of size divisibly by p, break it into p equal parts; repeat until there
are no more parts of size divisible by p.

• φ: For each s, suppose λ has
∑

i≥0 aip
i parts of size s where 0 ≤ ai ≤ p − 1. Glue

them together to form ai many parts of size spi for each i.

Then check that θ, φ are inverses.

In fact, the proposition and both proofs hold for all p ∈ N (not necessarily prime), provided
we extend the definition accordingly.
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2.3 Standard Basis Theorem

We have Sλ = ⟨e(t) | t ∈ ∆λ⟩F. Our goal for this section is to extract a basis of polytabloids
for Sλ, uniform over all F, thereby computing dimSλ (independently of F).

Definition. Let λ ⊢ n, t ∈ ∆λ. Then we say

• t is row-standard if the entries of t increase along rows from left to right, i.e.
t((i, j)) < t((i, j + 1)) for all i ∈ [ℓ(λ)], j ∈ [λi − 1],

• t is column-standard if the entries of t increase along columns from top to bottom,
i.e. t((i, j)) < t((i+ 1, j)) for all j ∈ [λ1], i ∈ [(λ′)j − 1],

• t is standard if it is both row- and column-standard.

Define std(λ) = {t ∈ ∆λ | t is standard}. We say a polytabloid e(t) is standard if t is.

Examples.

• Let λ = (n), so dimSλ = 1 and std(λ) = { 1 2 ··· n }.

• Let λ = (1n) ⊢ n, so dimSλ = 1 and std(λ) = {
1
2
···
n

}.

• Let λ = (2, 1). We have seen earlier that then dimSλ = 2. Then

std(λ) =
{

1 2
3

,
1 3
2

}
.

• More generally, let λ = (n − 1, 1) with n ≥ 2. Then dimSλ = n − 1 by Example
Sheet 1, Question 5, and

std(λ) =
{

1 2 ··· ĵ ··· n
j

∣∣∣ 2 ≤ j ≤ n}
Our aim will be to show that {e(t) | t ∈ std(λ)} is an F-basis for Sλ.

For linear independence, we begin by putting a total order on Ωλ, the set of all tableaux
of shape λ.

Definition. Let λ ⊢ n, t, u ∈ ∆λ. Let

A = {numbers that don’t appear in the same row of t and u}

= [n] \
ℓ(λ)⋃
i=1

Ri(t) ∩Ri(u).

If {t} ≠ {u}, equivalently A ̸= ∅, then let y = max(A). We say {t} > {u} if y ∈
Ri(t) ∩Rj(u) where i > j.
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Remark. Note that > is a total order on Ωλ; it is equivalent to a total order on the set
of all row-standard λ-tableaux. The maximal element w.r.t. > is

1 2 3 ···λ1

λ1+1 ··· λ1+λ2

...
··· n

Small example: Take λ = (3, 2), t =
1 2 3
4 5

, u =
1 2 4
3 5

. Then A = {3, 4}, so y = 4 and

{t} > {u}.

Lemma 2.17. Let λ ⊢ n, t ∈ ∆λ column-standard. Let h ∈ C(t)\{1}. Then {h ·t} < {t}.

Proof. Since h ̸= 1 and R(t) ∩ C(t) = {1}, then {h · t} ≠ {t}. Then

y := max
(
[n] \

ℓ(λ)⋃
i=1

Ri(t) ∩Ri(h · h)
)

exists. Suppose y = t((i, j)). Where is y in h · t? Since h ∈ C(t), then y ∈ Cj(h · t), say
y ∈ Ri′(h · t). First, i′ ̸= i by definition of y. But also, i′ ̸> i since the entries in column j
below row i must match exactly in t and h · t by maximality of y and column-standardness
of t. Hence i′ < i, so {h · t} < {t}.

Proposition 2.18. Let λ ⊢ n. Then the e(t) with t ∈ std(λ) are linearly independent.

Proof. Suppose not. Then there exists ∅ ̸= ∆ ⊆ std(λ) such that
∑

t∈∆ αte(t) = 0 where
αt ∈ F×. For t, u ∈ std(λ), we have {t} = {u} iff t = u. So there is a unique m ∈ ∆ such
that {m} > {t} for all t ∈ ∆, t ̸= m. For t ∈ ∆λ, recall e(t) =

∑
g∈C(t) sgn(g)g · {t}, so by

the lemma,
e(t) = {t}+ (a signed sum of tabloids < {t}).

Therefore,

0 = αme(m) +
∑
t∈∆
t̸=m

αte(t) = αm{m}+X ∈Mλ,

where X is a linear combination of tabloids < {m}. Hence αm = 0, a contradiction.

To show that the e(t) for t ∈ std(λ) span Sλ, we want to find elements of FSn that
annihilate a given e(t).

Definition. Let λ ⊢ n, t ∈ ∆λ. Let X ⊆ Cj(t) and Y ⊆ Cj+1(t) for some j ∈ [λ1 − 1].
Then choose T a set of left coset representatives for SX×SY in SX⊔Y where we abbreviate
Sym(X) =: SX , etc. Define the Garnir element GX,Y :=

∑
g∈T sgn(g)g ∈ FSn.
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Example. Let λ = (2, 1), t =
1 2
3

, j = 1, X = {1, 3}, Y = {2}. Then choose T =

{1, (12), (23)} for SX × SY = ⟨(13)⟩ × 1 in S3. Then GX,Y = 1− (12)− (23). Observe

GX,Y e(t) = (1− (12)− (23))
(

1 2
3
− 3 2

1

)
=
(

1 2
3
− 3 2

1

)
−
(

2 1
3
− 3 1

2

)
−
(

1 3
2
− 2 3

1

)
= 0.

Proposition 2.19. Let λ ⊢ n, t ∈ ∆λ, j ∈ [λ1 − 1], X ⊆ Cj(t), Y ⊆ Cj+1(t). Choose a
set T of left coset representatives for SX × SY in SX⊔Y . Then if |X| + |Y | > (λ′)j, the
length of the j-th column of Y (λ), then GX,Y · e(t) = 0

Proof. Consider GX⊔Y :=
∑

ρ∈SX⊔Y
sgn(ρ)ρ ∈ FSn. Then

GX⊔Y =
∑
g∈T

∑
h∈SX

∑
k∈SY

sgn(ghk)ghk =
(∑

g∈T
sgn(g)g

︸ ︷︷ ︸
=GX,Y

)( ∑
h∈SX

sgn(h)h
)( ∑

k∈SY

sgn(k)k
)
.

Recall from Lemma 2.2: For σ ∈ C(t), σ · e(t) = sgn(σ)e(t), and note SX , SY ⊆ C(t), so

GX⊔Y · e(t) = GX,Y |SX ||SY |e(t) = |X|!|Y |!(GX,Y · e(t)).

We will show GX⊔Y · e(t) = 0. If charF = 0, then we immediately deduce GX,Y · e(t) =
0, but in positive characteristic we could have |X|!|Y |! = 0. But once we have that
GX,Y ·e(t) = 0 holds in characteristic 0, thenGX,Y ·e(t) is just an integer linear combination
of tabloids, so we can reduce the coefficients mod p to obtain GX,Y · e(t) = 0, viewed as
an Fp-linear combination. Hence we have GX,Y · e(t) = 0 for all fields.

It remains to show GX⊔Y · e(t) = 0. For σ ∈ C(t), since |X| + |Y | > (λ′)j , there exist
xσ ∈ X, yσ ∈ Y such that xσ, yσ lie in the same row of σ · t, i.e. (xσyσ) · {σ · t} = {σ · t}.
Let Z be a set of left coset representatives for ⟨(xσyσ)⟩ in SX⊔Y , i.e. SX⊔Y = Z⊔Z(xσyσ).
Then

GX⊔Y · {σ · t} =
∑
z∈Z

sgn(z)z(1− (xσyσ)) · {σ · t} = 0.

Thus
GX⊔Y · e(t) =

∑
σ∈C(t)

sgn(σ)GX⊔Y · {σ · t} = 0.

Definition. Let λ ⊢ n, t, u ∈ ∆λ column-standard. Let

B = {numbers not in the same column of t and u}

20



= [n] \
λ1⋃
j=1

Cj(t) ∩ Cj(u).

If for all σ ∈ C(t), σ · t ̸= u, then B ̸= ∅, so maxB =: x exists. In this case, we say t≫ u
if x ∈ Ci(t) ∩ Cj(u) where i > j.

Remark. This is the column analogue of the ordering > defined earlier, except we defined
it on tabloids earlier. The maximal column standard tableau w.r.t. ≫ is

1 λ′
1+1 . . .

2 λ′
1+2 . . . n

...
...

λ′1

Note that this tableau is standard.

Proposition 2.20. Let λ ⊢ n, v ∈ ∆λ column-standard. Then e(v) ∈ ⟨e(t) | t ∈ std(λ)⟩F.

Proof. Let W = ⟨e(t) | t ∈ std(λ)⟩F. Let the column-standard λ-tableaux be t1 ≫ t2 ≫
t3 ≫ . . . . We prove by induction on r that e(tr) ∈W .

Base case r = 1: t1 is standard, see the remark above, so e(t1) ∈W .

Inductive step: Suppose t = tr where we have already shown that e(ts) ∈ W for all
s < r, i.e. whenever u is column-standard and u ≫ t, then e(u) ∈ W . Then we want
to show e(t) ∈ W . If t is row-standard, then t is standard and so e(t) ∈ W . Otherwise,
t((i, j)) > t((i, j+1)) for some i ∈ [ℓ(λ)], j ∈ [λi−1]. Define X = {t((l, j)) | i ≤ j ≤ (λ′)j}
and Y = {t((l, j + 1)) | 1 ≤ l ≤ i}. Then GX,Y · e(t) = 0 by Proposition 2.19, where GX,Y

is defined w.r.t. any set T of coset representatives of SX × SY in SX⊔Y . Choose 1 ∈ T .
Then

0 = GX,Y · e(t) = e(t) +
∑

g∈T\{1}

sgn(g)g · e(t).

We will prove that e(g · t) ∈ W for all g ∈ T \ {1}. Then we also get e(t) ∈ W from this
relation. Fix g ∈ T \{1}. Since g /∈ SX×SY , we must have some y ∈ Y such that g(y) ∈ X.
Hence A := {g(y) | y ∈ Y, g(y) ∈ X} ≠ ∅. It is easy to see that A = X ∩ Cj+1(g · t).

Consider B := [n] \
⋃λ1

l=1Cl(t) ∩ Cl(g · t) ⊆ X ⊔ Y . Moreover,

B = {x ∈ X | x ∈ Cj+1(g · t)} ⊔ {y ∈ Y | y ∈ Cj(g · t)}
= (X ∩ Cj+1(g · t)︸ ︷︷ ︸

=A ̸=∅

) ⊔ (Y ∩ Cj(g · t))

Therefore max(B) = max(A) ∈ X ∩ Cj+1(g · t) (using that t is column-standard and
t((i, j)) > t((i, j+1))). Let u be the unique column-standard λ-tableau such that Cl(u) =
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Cl(g · t) for all l. Then B = [n] \
⋃λ1

l=1Cl(t) ∩ Cl(u). We have shown that max(B) ∈
X ∩ Cj+1(g · t) ⊆ Cj(t) ∩ Cj+1(u), hence u ≫ t, so e(u) ∈ W by inductive hypothesis.
There exists σ ∈ C(u) such that σ · u = g · t, and so e(g · t) = e(σ · u) = σ · e(u) = ±e(u).
Therefore, e(g · t) ∈W as desired.

Theorem 2.21 (Standard Basis Theorem). Let λ ⊢ n, F any field. Then {e(t) | t ∈
std(λ)} is a basis for Sλ, called the standard basis.

Proof. Linear independence holds by Proposition 2.18. For span, let v ∈ ∆λ. Then
there is a g ∈ C(v) such that u := g · v is column standard. By Proposition 2.20,
e(u) ∈ ⟨e(t) | t ∈ std(λ)⟩F. But e(u) = ±e(v), so we are done.

Note that the standard basis is not a permutation basis in general: g · e(t) = e(g · t) for
all g ∈ Sn, t ∈ ∆λ. But there are many g, t such that t ∈ std(λ), but g · t is not.

Corollary 2.22. For λ ⊢ n, any field F,

dimF Sλ = #standard λ-tableaux.

22



3 Character Theory

From now on, F = C, unless otherwise stated.

Notation. Let λ ⊢ n. We will let χλ denote the character of the irreducible λ-Specht
module.

3.1 Hook Length Formula

Goal. Prove the hook length formula, a closed formula for calculating dimSλ = χλ(1).

Definition. Let λ = (λ1, . . . , λk) ⊢ n. Write λ′ = (µ1, . . . , µλ1).

(i) For a box (i, j) ∈ Y (λ), the (i, j)-hook of λ is

Hi,j(λ) := {(i, j)} ⊔ {(i, y) | j < y ≤ λi}︸ ︷︷ ︸
arm

⊔{(x, j) | i < x ≤ µj}︸ ︷︷ ︸
leg

.

(ii) The arm of Hi,j(λ) is {(i, j) | j < y ≤ λi}, the leg is {(x, j) | i < x ≤ µj}.

(iii) The hand of Hi,j(λ) is the box (i, λi), the foot is (µi, j).

(iv) The hook length corresponding to (i, j) is |Hi,j(λ)| =: hi,j(λ).

(v) Let H(λ) = {hi,j(λ) | (i, j) ∈ Y (λ)} be the multiset of hook lengths of λ (i.e. we also
count repetitions of the same hook length).

Example. Take λ = (8, 6, 5, 4, 2, 1) ⊢ 26, (i, j) = (2, 3). Then the hook is {•} ⊔ arm ⊔ leg
as indicated in the diagram.

•

Theorem 3.1 (Hook Length Formula). Let λ ⊢ n. Then

χλ(1) =
n!∏

h∈H(λ) h
.

Examples.
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(a) Let λ = (n). List the hook lengths in Y (λ): n ··· 2 1 . So χλ(1) = n!
n! = 1. This is

not unexpected as we already knew that Sλ ∼= 1Sn .

(b) Let λ = (3, 2) ⊢ 5. Then

std(λ) =
{

1 2 3
4 5

,
1 2 4
3 5

,
1 2 5
3 4

,
1 3 4
2 5

,
1 3 5
2 4

}
,

so χλ(1) = 5 by the standard basis theorem. This is consistent with the hook length

formula. Indeed, the hook lengths are
4 3 1
2 1

, so χλ(1) = 5!
4·3·2 = 5.

(c) Let λ = (6, 4, 4, 3, 2, 1, 1) ⊢ 21. Then the hook lengths are

12 9 7 5 2 1
9 6 4 2
8 5 3 1
6 3 1
4 1
2
1

Therefore

χλ(1) =
21!∏

h∈H(λ) h
= 905304400.

We give a probabilistic proof of the hook length formula due to Greene, Nijenhuis and
Wilf (1979). Another proof will be on the example sheets. The proof will be by induction
on n.

Definition. By a composition of n, we mean a sequence of non-negative integers which
sum to n, written λ |= n.

Define a function F on {λ | λ |= n} as follows:

F (λ) =

{
n!∏

h∈H(λ) h
if λ ⊢ n,

0 otherwise.

If λ = (λ1, . . . , λk) |= n, we want the inductive step to look like

F (λ) =

k∑
i=1

F ((λ1, . . . , λi−1, λi − 1, λi+1, . . . , λk)︸ ︷︷ ︸
|=n−1 if λi ≥ 1

).

Definition. Let λ = (λ1, . . . , λk) ⊢ n. Define

λ− : = {µ ⊢ n− 1 | Y (µ) can be obtained from Y (λ) by removing one box}
= {(λ1, . . . , λi−1, λi − 1, λi+1, . . . , λk) | i ∈ [k] such that λi − 1 ≥ λi+1}.

(Here we treat λk+1 = 0.)

We say the box (i, j) of Y (λ) is removable if Y (λ) \ {(i, j)} = Y (µ) for some µ ∈ λ−.
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Example. Let λ = (3, 3, 1) ⊢ 7, so Y (λ) = . Then

λ− =


(3, 3)

,

(3, 2, 1)
 .

Observe that χλ(1) =
∑

µ∈λ− χµ(1). This follows from the Standard Basis Theorem.

Indeed, χλ(1) = | std(λ)| and in a standard λ-tableau, λ ⊢ n, the number n must appear
in a removable box, which when removed, leaves a standard µ-tableau for some µ ∈ λ−.

We would be able to prove Theorem 3.1 by induction on n if we can show

F (λ) =
∑
µ∈λ−

F (µ),

because we would have
∑

µ∈λ− F (µ) =
∑

µ∈λ− χµ(1) by the inductive hypothesis.

We will in fact show that 1 =
∑

µ∈λ−
F (µ)
F (λ) by interpreting F (µ)

F (λ) as probabilities. For the

rest of this section, fix λ ⊢ n, and abbreviate Hi,j(λ) = Hi,j and hi,j(λ) = hi,j .

Consider the following probabilistic process on Y (λ):

• Step 1. Pick a box of Y (λ) uniformly at random (probability = 1
n).

• Step 2. Suppose that (i, j) is the currently chosen box. If (i, j) is removable,
equivalently hi,j = 1, then terminate the process. Otherwise, choose (i′, j′) ∈ Hi,j \
{(i, j)} (probability = 1

hi,j−1).

• Step 3. Repeat Step 2 until we terminate.

We will call each run of the process a trial.

Definition. For (α, β) ∈ Y (λ), let P(α, β) be the probability that a trial terminates at
(α, β).

Our aim is to show that P(α, β) = F (µ)
F (λ) where µ ∈ λ− and Y (µ) = Y (λ) \ {(α, β)} (note

that if a trial terminates at (α, β), then this is necessarily a removable box, so this makes
sense).

Definition. Let π : (a1, b1) → (a2, b2) → · · · → (am, bm) be a trial of the process. De-
fine Aπ = {a1, . . . , am}, the set of horizontal projections of π. Analogously, let Bπ =
{b1, . . . , bm}, the set of vertical projections of π.

Example. Let λ = (4, 4, 3, 3, 2). We could have the trial

1 2

3 4
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where we indicate the box we are in at time t by t. So π : (2, 1)→ (2, 2)→ (4, 2)→ (4, 3).
Then

Aπ = {2, 4}, Bπ = {1, 2, 3}.

Observe that for π : (a1, b1)→ · · · → (am, bm),

• the starting box (a1, b1) must equal (minAπ,minBπ).

• the last box (am, bm) must equal (maxAπ,maxBπ).

• for each i ∈ [n − 1], either ai < ai+1 and bi = bi+1 (step down), or ai = ai+1 and
bi < bi+1 (step right). So m = |Aπ|+ |Bπ| − 1.

Definition. Given (a, b) ∈ Y (λ), A,B ⊆ N, define P(A,B | a, b) to be the probability that
a trial π starting at box (a, b) has Aπ = A,Bπ = B.

Outline of proof of the hook length formula:

• We will calculate P(A,B | a, b) in terms of 1
hij−1 for various i, j.

• For µ ∈ λ−, we will calculate F (µ)
F (λ) as a product of terms of the form 1

hi,j−1 , and

interpret the terms in the expansion as probabilities of the form P(A,B | a, b).

• We will show P(α, β), the probability that a trial terminates at (α, β), is∑
possible projections

A,B

∑
starting box

(a,b)

P(A,B | a, b)

to conclude P(α, β) = F (µ)
F (λ) , where µ ∈ λ

− satisfies Y (µ) = Y (λ) \ {(α, β)}.

Lemma 3.2. Let (α, β) ∈ Y (λ) be removable. Let A = {a1, . . . , at}, B = {b1, . . . , bu} ⊆ N,
where a1 < a2 < · · · < at = α, b1 < b2 < · · · < bu = β. Then

P(A,B | a1, b1) =
∏

x∈A\{α}

1

hx,β − 1

∏
y∈B\{β}

1

hα,y − 1
.

Proof. Induct on t + u = |A| + |B|. Base case t + u = 2, then A = {a1 = α} and
B = {b1 = β}. Then P(A,B | a, b) = 1 which is also the value of the RHS which is an
empty product. For the inductive step now suppose t + u > 2, and so (a1, b1) ̸= (α, β).
Condition on the second box in the trial:

P(A,B | a1, b1) =
∑
(a′,b′)

∈Ha1,b1
\{(a1,b1)}

[
P
( proj. sets

= A,B

∣∣∣ first box is (a1, b1) and
second box is (a′, b′)

)

· P(second box is (a′, b′) | first box is (a1, b1))

]
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=
∑

(a′,b′)∈ arm of Ha1,b1

+
∑

(a′,b′)∈ leg of Ha1,b1

=
∑

b1<b′≤λa1

P(A,B \ {b1} | a1, b′)P
( second box

= (a1, b
′)

∣∣∣ first box
= (a1, b1)

)
+

∑
a1<a′≤(λ′)b1

P(A \ {a1}, B | a′, b1)P
( second box

= (a′, b1)

∣∣∣ first box
= (a1, b1)

)

=
1

ha1,b1 − 1

( ∑
b1<b′≤λa1

P(A,B \ {b1} | a1, b′)

+
∑

a1<a′≤(λ′)b1

P(A \ {a1}, B | a′, b1)

)

Note that P(A,B \ {b1} | a1, b′) = 0 unless b′ = b2. Indeed, if b
′ ̸= b2 in a trial, then

• either b1 < b′ < b2: b
′ is in the vertical projection set, but b′ /∈ B \ {b1}.

• or b′ > b2: b
′ is in the vertical projection set, but b2 is not in the vertical projection

set.

Similarly, P(A \ {a1}, B | a′, b1) = 0 unless a′ = a2. Therefore,

P(A,B | a1, b1) =
1

ha1,b1 − 1

(
P(A,B \ {b1} | a1, b2) + P(A \ {a1}, B | a2, b1)

)
.

If one of u, t is 1, we simply omit the corresponding term. By the induction hypothesis,
this is

1

ha1,b1 − 1

( ∏
x∈A\{α}

1

hx,β − 1

∏
y∈B\{β,b1}

1

hα,y − 1
+

∏
x∈A\{α,a1}

1

hx,β − 1

∏
y∈B\{β}

1

hα,y − 1

)
=

(hα,b1 − 1) + (ha1,β − 1)

ha1,b1 − 1

∏
x∈A\{α}

1

hx,β − 1

∏
y∈B\{β}

1

hα,y − 1

Now draw a picture to see why (hα,b1 − 1) + (ha1,β − 1) = ha1,b1 − 1, so the first term
disappears and we are done.

Proposition 3.3. Let (α, β) ∈ Y (λ) be a removable box. Suppose µ ∈ λ− is such that
Y (µ) = Y (λ) \ {(α, β)}. Then

P(α, β) =
F (µ)

F (λ)
.

Proof. Observe that

• hx,y(µ) = hx,y(λ) if x ̸= α and y ̸= β,
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• hα,y(µ) = hα,y(λ)− 1 if y ̸= β,

• hx,β(µ) = hx,β(λ)− 1 if x ̸= α.

Thus,

F (µ)

F (λ)
=

∏
h∈H(λ) h

n!

(n− 1)!∏
h∈H(µ) h

=
1

n

∏
1≤x<α

hx,β
hx,β − 1

∏
1≤y<β

hα,y
hα,y − 1

=
1

n

∏
1≤x<α

(
1 +

1

hx,β − 1

) ∏
1≤y<β

(
1 +

1

hα,y − 1

)
We want to interpret the terms in the expansion as the probabilities that a trial terminating
at (α, β) has certain horizontal and vertical projections. We have∏

1≤x<α

(
1 +

1

hx,β − 1

)
=
(
1 +

1

h1,β − 1

)(
1 +

1

h2,β − 1

)
· · ·
(
1 +

1

hα−1,β − 1

)
=
∑
A⊆[α]
α∈A

∏
x∈A\{α}

1

hx,β − 1

and similarly ∏
1≤y<β

(
1 +

1

hα,y − 1

)
=
∑
B⊆[β]
β∈B

∏
y∈B\{β}

1

hα,y − 1
.

Then

F (µ)

F (λ)
=

1

n

∑
A⊆[α],α∈A
B⊆[β],β∈B

∏
x∈A\{α}

1

hx,β − 1

∏
y∈B\{β}

1

hα,y − 1

=
1

n

∑
A⊆[α],α∈A
B⊆[β],β∈B

P(A,B | min(A),min(B)).

Also, P(α, β), the probability of terminating at (α, β), is∑
(a,b)∈Y (λ)

P
( terminate at

(α, β)

∣∣∣ start at
(a, b)

)
· P(start at (a, b))

=
1

n

∑
(a,b)∈Y (λ)

P
( terminate at

(α, β)

∣∣∣ start at
(a, b)

)
=

1

n

∑
(a,b)∈Y (λ)

∑
A′,B′

P(A′, B′ | a, b)
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where the second sum runs over A′ ⊆ [α], B′ ⊆ [β] such that α = maxA′, a = minA′,

β = maxB′, b = minB′. We conclude P(α, β) = F (µ)
F (λ) .

Proof of Theorem 3.1. Since a trial must terminate at a removable box,

1 =
∑

(α, β) removable

P(α, β) =
∑
µ∈λ−

F (µ)

F (λ)
.

So we are done by induction on n, as previously described.

3.2 The Determinantal Form

Applications.

• Recall the permutation module Mλ ∼= 1Sλ

xSn , see Lemma 2.1. In a direct sum
decomposition of Mλ into irreducibles, how many times do we get Sµ? ⇝ Young’s
Rule, Theorem 3.11 and Corollary 3.19.

• We have a nested structure: S1 < S2 < · · · < Sn−1 < Sn < . . . . How do Sn-modules
relate to Sn−1-modules?

E.g. Vn
ySn

Sn−1

∼= Vn−1 ⊕ 1Sn−1 where Vn is the natural permutation module of Sn.

What is Sλ
ySn

Sn−1
? ⇝ Branching Rule, Theorem 3.22.

• What is χλ(g) for all g ∈ Sn? ⇝ Murnaghan-Nakayama Rule, Theorem 3.25.

• And more:

– e.g. Branching Rule describes Sλ
ySn

Sn−1×S1
. What about Sλ

ySn

Sn−m×Sm
? ⇝

Littlewood-Richardson Rule.

– e.g. another proof of the hook length formula, see Example Sheet 2.

Notation.

• Sn is the symmetric group, Sλ Young subroups

• Before: Sµ were Specht modules. For the rest of this chapter we use [µ] to replace
Sµ to denote the µ-Specht module. When it is clear from context, for µ = (m), we
abbreviate [µ] = [(m)] to [m].

• Let ξλ be the character of Mλ.

Definition.

• Let G,H be finite groups, V a G-module, W an H-module. Then V ⊗W can be into
a (G×H)-module via

(g, h) · (v ⊗ w) = (gv)⊗ (hw)
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for all g ∈ G, h ∈ H, v ∈ V,w ∈ W . The resulting (G × H)-module is the (outer)
tensor product of V and W , which we will denote by V#W . If V affords χ, and W
affords ϕ, then V#W affords χ#ϕ where

(χ#ϕ)((g, h)) = χ(g)ϕ(h)

for all g ∈ G, h ∈ H.

• Let m,n ∈ N, α ⊢ m,β ⊢ n. Then χα#χβ ∈ Irr(Sm × Sn) since χα ∈ Irr(Sm), χβ ∈
Irr(Sn). Note that Sm × Sn naturally embeds inside Sm+n as Sym{1, 2, . . . ,m} ×
Sym{m+ 1, . . . ,m+ n}. Then the outer product of [α] and [β] is defined as

[α][β] = [α]#[β]
xSm+n

Sm×Sn
.

Remarks.

(i) The outer product is associative and commutative.

(ii) Let H ≤ G, x ∈ G. Then 1H

xG ∼= 1xHx−1

xG. Suppose that λ = (λ1, . . . , λk) ⊢ n.
Recall Sλ ∼= Sλ1×· · ·×Sλk

. We may fix Sλ = Sym{1, . . . , λ1}×Sym{λ1+1, . . . , λ1+

λ2}×· · ·×Sym{
∑k−1

i=1 λi+1, . . . , n} when we considerMλ ∼= 1Sλ

xSn , since all Young
subgroups of type λ are conjugate to this one.

Also,

Mλ ∼= 1Sλ

xSn = 1Sλ1
#1Sλ2

# . . .#1Sλk

xSn = [λ1][λ2] . . . [λk],

and so [λ1][λ2] . . . [λk] has character ξ
λ.

Example. For λ = (λ1, . . . , λk) ⊢ n, consider the k × k-matrix Dλ whose (i, j)-entry is
the module [λi − i+ j] where we interpret [l] as the zero module when l < 0.

(a) Let λ = (n− 1, 1). Then, using the outer product to multiply modules,

detDλ = det

(
[n− 1] [n]
[0] [1]

)
= [n− 1][n]− [n][0].

This (virtual) representation has (virtual) character

ξ(n−1,1) − ξ(n) = ξ(n−1,1) − χ(n) = χ(n−1,1) = χλ

by Example Sheet 1, Question 5.

(b) Let λ = (3, 12) ⊢ 5. Then

detDλ = det

[3] [4] [5]
[0] [1] [2]
0 [0] [1]

 = [3] det

(
[1] [2]
[0] [1]

)
− [0] det

(
[4] [5]
[0] [1]

)
= [3][1][1]− [3][2][0]− [4][1][0] + [5][0][0]

which has (virtual) character

ξ(3,1
2) − ξ(3,2) − ξ(4,1) + ξ(5) = ξ(3,1

2) = ξλ.
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Definition. A virtual character of G is a Z-linear combination of irreducible characters
of G.

Definition. Let λ = (λ1, . . . , λk) ⊢ n. Let Dλ be the k×k matrix whose (i, j)-entry is the
module [λi − i+ j] (i.e. as in the example above).

We could in fact have defined Dλ = [λi − i + j]ij to be k′ × k′ for any k′ ≥ k, and the
determinant remains unchanged. E.g. for λ = (3, 1, 1),

det

[3] [4] [5]
[0] [1] [2]
0 [0] [1]

 = det


[3] [4] [5] [6]
[0] [1] [2] [3]
0 [0] [1] [2]
0 0 0 [0]

 ,

viewing (3, 1, 1) = (3, 1, 1, 0, 0, . . . ).

Goal. Prove that detDλ has character χλ for all λ ⊢ n.

For the rest of this chapter, we will work with ZN, the set of sequences with integer entries,
under pointwise addition.

Let n ∈ N. Summary:

Term Notation Def.: λ = (λ1, λ2, . . . ) ∈ ZN s.t.
∑

i λi = n and

partition of n λ ⊢ n λ1 ≥ λ2 ≥ . . . and λi ∈ N0 for all i
composition of n λ |= n λi ∈ N0 for all i

integer composition of n λ |≡ n only finitely many λi are non-zero

(a) Recall Sn = Sym{1, 2, . . . , n}. Define SN =
⋃

n∈N Sn.

• For π ∈ SN, we can view it as an element of ZN via π = (π−1(1), π−1(2), . . . ).
Note that π does not have finite support, but π−1(i) = i for all sufficiently large
i. In particular, the identity of SN is id = (1, 2, 3, . . . ).

• For π ∈ SN and λ ∈ ZN, we define π · λ := (λπ−1(1), λπ−1(2), . . . ). Then π · id =
id ·π = π, π · π−1 = π−1 · π = id, and τ · (π · λ) = (τπ) · λ.

• For π ∈ SN and λ |≡ n, observe that π · λ |≡ n. Also λ − id+π = (λ1 − 1 +
π−1(1), λ2 − 2 + π−1(2), . . . ) |≡ n.

(b) In the above, we let λj be the j-th entry of λ as usual. If λ has finite support,
we can define ℓ(λ) = max{i ∈ N | λi ̸= 0}. We may write (λ1, . . . , λℓ(λ)) and
(λ1, . . . , λℓ(λ), 0, 0, . . . ) interchangeably.

(c) We can extend Young subgroups to have type given by compositions, not just
partitions; these will be conjugate to Young subgroups of type given by parti-
tions. E.g. S(1,0,0,2,0,0,... ) = S(1,2) = Sym{1} × Sym{2, 3} is conjugate to S(2,1) =
Sym{1, 2} × Sym{3}.
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(d) We can extend ξλ to be defined for all integer compositions λ |≡ n by:

ξλ =

{
1Sλ

xSn if λ |= n,

0 otherwise.

So for all λ |≡ n, [λ1][λ2] . . . [λℓ(λ)] has character ξλ, since [r] = 0 if r < 0.

(e) We could e.g. dominance partial ordering to λ |= n, Young diagrams, Dλ, etc.

Definition. For λ |≡ n, define

ψλ =
∑
π∈SN

sgn(π)ξλ−id+π,

it is a virtual character of Sn.

Lemma 3.4. Let λ |≡ n.

(i) Only finitely many terms in the sum defining ψλ are non-zero.

(ii) The virtual character afforded by detDλ = det([λi − i+ j]ij) is ψ
λ.

Proof.

(i) Since λ has finite support, k = ℓ(λ) is defined. Let π ∈ SN \ Sk. We claim that
λ− id+π has a negative entry. Indeed, let m := max{i | π−1(i) ̸= i}. Since π /∈ Sk,
we must have m > k. By maximality of m, we must have π−1(m) < m. Then
(λ− id+π)m = λ−m+π−1(m) = π−1(m)−m < 0. So ξλ−id+π = 0 for such π, and
so ψλ =

∑
π∈Sk

sgn(π)ξλ−id+π is a finite sum.

(ii) Recall that the determinant of a k × k matrix D is given by

detD =
∑
π∈Sk

sgnπ
k∏

i=1

Di,π(i).

The claim follows since [α1][α2] . . . [αℓ(α)] has character ξ
α for all α |≡ n.

So our goal is to show ψλ = χλ for all λ ⊢ n.

Lemma 3.5. Let λ |≡ n. Let i ∈ N and suppose that µ |≡ n satisfies µ − id = (i i + 1) ·
(λ− id), i.e.

µ = (λ1, . . . , λi−1, λi+1 − 1, λi + 1, λi+2, . . . ).

Then ψµ = −ψλ. In particular, if λi − i = λi+1 − (i+ 1) for some i ∈ N, then ψλ = 0.
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Proof. Let τ = (i i+1). Then µ− id = τ · (λ− id), so µ− id+τπ = τ · (λ− id+π) for any
π ∈ SN. Hence

ψλ =
∑
π∈SN

sgn(π)ξλ−id+π =
∑
π∈SN

sgn(π)ξτ ·(λ−id+π)

=
∑
π∈SN

sgn(π)ξµ−id+τπ = −
∑
π∈Sn

sgn(τπ)ξµ−id+τπ = −ψµ.

If λi − i = λi+1 − (i+ 1), then µ = λ, and so ψλ = −ψλ, so ψλ = 0.

Next we look at ξλ
y
Sm×Sk

where λ |≡ n = m+ k. Note that ξλ
y
Sm×Sk

= 1Sλ

xSn
y
Sm×Sk

,
so we will use Mackey’s theorem. For this we will need to know the double cosets of Sλ,
Sm × Sk in Sn.

Proposition 3.6. Let λ, µ ⊢ n. There is a bijection between the set of double cosets of
Sλ and Sµ in Sn, and the set of ℓ(λ) × ℓ(µ)-matrices with entries in N0 whose row sums
are λ, and column sums are µ.

Proof. Write Sλ = SA1×SA1×· · ·×SAℓ(λ)
where A1 = [λ1], A2 = {λ1+1, . . . , λ1+λ2}, . . . ,

and Sµ = SB1 × SB2 × · · · × SBℓ(µ)
similarly.

For each σ ∈ Sn, define a matrix Z(σ) via Z(σ)ij := |Ai ∩ σ(Bj)| for all i, j. Note that
the i-th row sum is∑

j

|Ai ∩ σ(Bj)| = |Ai ∩
⋃
j

σ(Bj)| = |Ai ∩ [n]| = |Ai| = λi,

and similarly the j-th column sum is∑
i

|Ai ∩ σ(Bj)| = |σ(Bj)| = |Bj | = µj .

Conversely, any matrix in the set described in the proposition is Z(σ) for some σ ∈ Sn
(exercise).

Now we claim that for σ, τ ∈ Sn, we have Z(σ) = Z(τ) iff SλσSµ = SλτSµ. First, suppose
τ = hσk for some h ∈ Sλ, k ∈ Sµ. Then Z(τ)ij = |Ai ∩ τ(Bj)| = |Ai ∩ hσk(Bj)| =
|Ai ∩ hσ(Bj)| since k ∈ Sµ, so that k(Bj) = Bj for all j. Similarly, h−1(Ai) = Ai, so
Z(τ)ij = |h−1(Ai) ∩ σ(Bj)| = |Ai ∩ σ(Bj)| = Z(σ)ij . Conversely, suppose that |Ai ∩
σ(Bj)| = |Ai ∩ τ(Bj)| for all i, j. For each fixed i, {Ai ∩ σ(Bj)}j and {Ai ∩ τ(Bj)}j are
both partitions of the set Ai. But |Ai ∩ σ(Bj)| = |Ai ∩ τ(Bj)| for all j, so there exists
hi ∈ SAi such that hi(Ai ∩ σ(Bj)) = Ai ∩ τ(Bj) for all j. Then h := h1 · h2 · · ·hℓ(λ) ∈
SA1 × · · · × SAℓ(λ)

= Sλ satisfies h(σ(Bj)) = τ(Bj) for all j. Therefore τ−1hσ(Bj) = Bj

for all j, and so τ−1hσ ∈ Sµ. Say τ−1hσ = k−1, then τ = hσk where h ∈ Sλ, k ∈ Sµ.

Thus SλσSµ 7→ Z(σ) is a well-defined bijection between the two sets in the proposition.
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Lemma 3.7. Let λ |≡ n = m+ k, m, k ∈ N0. Then

(i) ξλ
y
Sm×Sk

=
∑

µ|=k ξ
λ−µ#ξµ,

(ii) ψλ
y
Sm×Sk

=
∑

µ|=k ψ
λ−µ#ξµ.

Proof.

(i) Both sides of (i) are equal to zero if λ ̸|= n. So we may now assume that λ |= n.
Also, note that the sum over µ |= k is finite since ξλ−µ = 0 unless λ − µ |= m,
meaning we need 0 ≤ µi ≤ λ− I for all i.

By Mackey:

ξλ
y
Sm×Sk

= 1Sλ

xSn
y
Sm×Sk

=
∑

σ∈Sm×Sk\Sn/Sλ

1

xSm×Sk

σSλσ−1∩(Sm×Sk)
.

By Proposition 3.6 there is a bijection between (Sm×Sk)−Sλ double cosets in Sn and
2 × ℓ(λ) matrices over N0 with row sums (m, k) and column sums λ. Specifically,
if A1 = [m], A2 = [m + 1, . . . ,m + k], B1 = [λ1], B2 = {λ1 + 1, . . . , λ1 + λ2},
etc., then the double coset (Sm × Sk)σSλ corresponds to Z(σ) where Z(σ)1j =
|Ai ∩ σ(Bj)| and Z(σ)2j = |A2 ∩ σ(Bj)|. Since Z(σ)1j + Z(σ)2j = λj for all j,
this matrix is in fact determined by just its second row, say, which we will call
µ := (|A2∩σ(B1)|, . . . , |A2∩σ(Bℓ(λ))|) |= k. In particular, the first row is then λ−µ
and note 0 ≤ µi ≤ λi for all i.

Observe

σSλσ
−1 = σ(SB1 × · · · × SBℓ(λ)

)σ−1 = Sσ(B1) × · · · × Sσ(Bℓ(λ))

and hence σSλσ
−1 ∩ (Sm × Sk) is conjugate to Sλ−µ × Sµ. Then

1

xSm×Sk

σSλσ−1∩(Sm×Sk)
= 1Sλ−µ

xSm×Sk

= 1Sλ−µ

xSm#1Sµ

xSk

= ξλ−µ#ξµ.

This finishes the proof of (i).

(ii) We have by (i),

ψλ
y
Sm×Sk

=
∑
π∈SN

sgn(π)ξλ−id+π
y
Sm×Sk

=
∑
π∈SN

sgn(π)
∑
µ|=k

ξλ−id+π−µ#ξµ
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=
∑
µ|=k

( ∑
π∈SN

sgn(π)ξ(λ−µ)−id+π
)
#ξµ

=
∑
µ|=k

ψλ−µ#ξµ.

Definition. Let 0 ≤ k ≤ n, λ |≡ n, µ |= k. Define

ψλ\µ :=
∑
π∈SN

sgn(π)ξλ−id−π·(µ−id),

it is a virtual character of Sn−k.

Note. If k = 0, then µ = (0, 0, . . . ); and ψλ\µ = ψλ.

We will informally call the ψλ\µ skew characters, one can also define skew diagrams, etc.

We have the following analogue of Lemma 3.4

Lemma 3.8. Let 0 ≤ k ≤ n, λ |≡ n, µ |= k.

(i) Only finitely many terms in the sum defining ψλ\µ are non-zero.

(ii) The virtual character afforded by the determinant det([λi − i− (µj − j)])ij is ψλ\µ.

Proof. Very similar as the proof of Lemma 3.4, see Example Sheet 2, Question 5.

Lemma 3.9. Let λ |≡ m+ k, m, k ∈ N0. Then

ψλ
y
Sm×Sk

=
∑
β⊢k

ψλ\β#ψβ.

Proof. All sums involved will be finite. First, from Lemma 3.7 we have

ψλ
y
Sm×Sk

=
∑
π∈SN

sgn(π)
∑
µ|=k

ξλ−id+π−µ#ξµ

=
∑
π∈SN

sgn(π)
∑
ν|=k

ξλ−id+π−π◦ν#ξπ◦ν ν = π−1 ◦ µ

=
∑
π∈SN

sgn(π)
∑
ν|=k

ξλ−id−π◦(ν−id)#ξν (∗)

On the other hand,∑
β⊢k

ψλ\β#ψβ =
∑
β⊢k

( ∑
π∈SN

sgn(π)ξλ−id−π◦(β−id)
)
#
( ∑

τ∈Sk

sgn(τ)ξβ−id+τ
)
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Note that if β ⊢ k, then ℓ(β) ≤ k, so in the last sum we can sum over τ ∈ Sk instead of
SN. Then∑

β⊢k
ψλ\β#ψβ =

∑
β⊢k

∑
π∈SN

∑
τ∈Sk

sgn(πτ)ξλ−id−π◦(β−id)#ξτ
−1◦(β−id+τ)

=
∑
β⊢k

∑
τ∈Sk

∑
ρ∈SN

sgn(ρ)ξλ−id−ρτ−1◦(β−id)#ξ

=:µ︷ ︸︸ ︷
τ−1◦(β−id)+id ρ = πτ

=
∑
ρ∈SN

∑
µ|≡k such that

µ=τ−1◦(β−id)+id
for some τ ∈ Sk, β ⊢ k

sgn(ρ)ξλ−id−ρ◦(µ−id)#ξµ

=
∑
ρ∈SN

∑
µ|=k such that

µ=τ−1◦(β−id)+id
for some τ ∈ Sk, β ⊢ k

sgn(ρ)ξλ−id−ρ◦(µ−id)#ξµ (∗∗)

Note that we may replace
∑

β

∑
τ by

∑
µ s.t.... because: if τ

−1 ◦ (β − id) + id = τ̃−1 ◦ (β̃ −
id) + id for some τ, τ̃ ∈ Sk, β, β̃ ⊢ k, then β − id = (τ ◦ τ̃−1) ◦ (β̃ − id). Since β ⊢ k,
βi ≥ βi+1 for all i. But then βi− i > βi+1− (i+1) for all i, i.e. β− id is strictly decreasing.
Similarly for β̃ − id. Therefore, τ ◦ τ̃−1 = 1, i.e. τ = τ̃ and then also β = β̃.

We want to show (∗) = (∗∗). For this we have to show that the restriction in (∗∗) can be
removed.

First, we claim that

{µ |= k | µ = τ−1 ◦ (β − id) + id for some τ ∈ Sk, β ⊢ k}
={µ |= k | µi = 0 for all i > k, µi − i are distinct for all i}

To see ⊆: Take τ, β, define µ = τ−1 ◦ (β − id) + id. Then

• |µ| = |β| = k,

• since β ⊢ k, then β − id is strictly increasing, and so the µi − i are distinct for all i.

• since τ ∈ Sk and βi = 0 for all i > k, then µi = 0 for all i > k.

To see ⊇: given µ |= k such that µi = 0 for all i > k, µi − i are distinct for all i, we will
construct τ ∈ Sk, β ⊢ k as follows:

Since µi = 0 for all i > k, µi− i = −i for all i > k. Since the µi− i are distinct, µi− i ≥ −k
for all i ≤ k. Moreover, we can order the µi− i and then define uniquely define τ ∈ Sk by

µτ−1(1) − τ−1(1) > µτ−1(2) − τ−1(2) > · · · > µτ−1(k) − τ−1(k) > −(k+ 1) > −(k+ 2) > . . .

Then define β := τ ◦ (µ− id) + id. Then we get µ = τ−1 ◦ (β − id) + id, so we only have
to check that β ⊢ k. We have |β| = |µ| = k. By construction, β − id is strictly decreasing,
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therefore βi ≥ βi+1 for all i. Since τ ∈ Sk, µi = 0 for all i > k, then βi = 0 for all i > k.
Hence β ⊢ k.

Second, we claim that

{µ |= k | µi = 0 for all i > k, the µi − i are distinct for all i}
={µ |= k | µi − i are distinct for all i}

See Example Sheet 2.

Hence (∗∗) becomes∑
β⊢k

ψλ\β#ψβ =
∑
ρ∈SN

∑
µ|=k such that
µi − i distinct ∀i

sgn(ρ)ξλ−id−ρ◦(µ−id)#ξµ

Finally, if µ |= k is such that µi − i = µj − j for some i ̸= j, then∑
ρ∈SN

sgn(ρ)ξλ−id−ρ(µ−id)#ξµ

=
1

2

∑
σ∈SN

[
sgn(σ)ξλ−id−σ◦(µ−id)#ξµ + sgn(σ ◦ (ij))ξλ−id−σ◦

µ−id︷ ︸︸ ︷
(ij)◦(µ−id)#ξµ

]
=

1

2

∑
σ∈SN

[
sgn(σ)ξλ−id−σ◦(µ−id)#ξµ − sgn(σ)ξλ−id−σ◦(µ−id)#ξµ

]
= 0

Then ∑
β⊢k

ψλ\β#ψβ =
∑
ρ∈SN

∑
µ|=k

sgn(ρ)ξλ−id−ρ◦(µ−id)#ξµ = (∗) = ψλ
y
Sm×Sk

.

Theorem 3.10. Let 0 ≤ k ≤ n, α ⊢ n, β ⊢ k.

(i) If ψα\β ̸= 0, then αi ≥ βi for all i,

(ii) ⟨ψα\β, ξ(n−k)⟩ =

{
1 if α1 ≥ β1 ≥ α2 ≥ β2 ≥ . . . ,
0 otherwise.

If α1 ≥ β1 ≥ α2 ≥ β2 ≥ . . . , we say that α and β intertwine.

Proof.

(i) Recall from Lemma 3.8 that ψα\β is the character of the determinant of the matrix
A where Aij = [αi − i− (βj − j)]. Note that since α, β are partitions, α− id, β − id
are strictly decreasing. If Aij is zero (in other words, αi − i− (βj − j) < 0), then all
entries to its left and below are zero. Thus the determinant vanishes if a diagonal
entry is zero. So if ψα\β ̸= 0, we must have αi− i− (βi− i) ≥ 0, i.e. αi ≥ βi for all i.
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(ii) For λ |≡ n− k, recall ξλ = 0 if λ ̸|= n− k. If λ |= n− k, then

⟨ξλ, ξ(n−k)⟩ = ⟨1Sλ

xSn−k ,1Sn−k
⟩ Frobenius reciprocity

= ⟨1Sλ
,1Sλ

⟩ = 1.

Thus

⟨ψα\β, ξ(n−k)⟩ =
∑
π∈SN

sgnπ⟨ξα−id−π◦(β−id), ξ(n−k)⟩ =
∑
π∈SN

(sgnπ)δ{α−id−π◦(β−id)|=n−k}

This is the determinant of M where Mij = δ{αi−i−(βj−j)≥0}. Note if Mij = 0, then
all entries to its left and below are also zero. Also, M only has 0 − 1 entries. If
α1 ≥ β1 ≥ α2 ≥ β2 ≥ . . . , then Mii = 1 and Mi+1 i = 0 for all i, and so detM = 1.
Otherwise, Mii = 0 for some i, or Mi+1 i = 1 for some i, but then M must have a
column of all 0’s, or have two equal columns; and therefore detM = 0.

Theorem 3.11 (Young’s Rule). Let λ |= n with ℓ(λ) ≤ n. Let α ⊢ n. Then ⟨ψα, ξλ⟩ is
equal to the number of tuples of partitions (β(1), β(2), . . . , β(n−1)) satisfying

(i) β(i) ⊢
∑i

j=1 λj for all i ∈ [n− 1],

(ii) 0 ≤ β(1)j ≤ β(2)j ≤ · · · ≤ β(n−1)
j ≤ αj for all j ∈ [n],

(iii) β
(i)
j ≤ β

(i−1)
j−1 for all j > 1, i ≥ 1, where we treat β(0) = (0, 0, . . . ) and β(n) = α.

Once we have proved ψα = χα, then Young’s Rule will tell us the multiplicity of the Spect
module [α] in a direct sum decomposition of Mλ into irreducibles.

Example. Let n = 5, α = (3, 2).

(i) Let λ = (2, 0, 1, 2) |= 5. Then

β(0) = ( 0, 0, 0, . . . )

β(1) = ( β
(1)
1 , β

(1)
2 , β

(1)
3 , . . . ) ⊢ 2

β(2) = ( β
(2)
1 , β

(2)
2 , β

(2)
3 , . . . ) ⊢ 2 + 0 = 2

β(3) = ( β
(3)
1 , β

(3)
2 , β

(3)
3 , . . . ) ⊢ 2 + 0 + 1 = 3

β(4) = ( β
(4)
1 , β

(4)
2 , β

(4)
3 , . . . ) ⊢ 2 + 0 + 1 + 2 = 5

α = β(5) = ( 3, 2, 0, . . . )
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where an arrow a → b indicates that a ≤ b. The yellow arrows are by (ii) and the
violet arrows by condition (iii). We see that most entries are uniquely determined
as follows:

β(0) = ( 0, 0, 0, . . . )

β(1) = ( 2, 0, 0, . . . ) ⊢ 2

β(2) = ( 2, 0, 0, . . . ) ⊢ 2 + 0 = 2

β(3) = ( β
(3)
1 , β

(3)
2 , 0, . . . ) ⊢ 2 + 0 + 1 = 3

β(4) = ( 3, 2, 0, . . . ) ⊢ 2 + 0 + 1 + 2 = 5

α = β(5) = ( 3, 2, 0, . . . )

We can have β(3) = (3, 0, . . . ) or (2, 1, 0, . . . ). Therefore ⟨ψα, ξλ⟩ = 2.

(ii) Let λ = (0, 2, 2, 0, 1) |= 5. [Since ξ(2,0,1,2) = ξ(0,2,2,0,1), we expect again two tuples]

β(0) = ( 0, 0, 0, . . . )

β(1) = ( β
(1)
1 , β

(1)
2 , β

(1)
3 , . . . ) ⊢ 0

β(2) = ( β
(2)
1 , β

(2)
2 , β

(2)
3 , . . . ) ⊢ 0 + 2 = 2

β(3) = ( β
(3)
1 , β

(3)
2 , β

(3)
3 , . . . ) ⊢ 0 + 2 + 2 = 4

β(4) = ( β
(4)
1 , β

(4)
2 , β

(4)
3 , . . . ) ⊢ 0 + 2 + 2 + 0 = 4

α = β(5) = ( 3, 2, 0, . . . )

Again we see that most entries are uniquely determined:
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β(0) = ( 0, 0, 0, . . . )

β(1) = ( 0, 0, 0, . . . ) ⊢ 0

β(2) = ( 2, 0, 0, . . . ) ⊢ 0 + 2 = 2

β(3) = ( 2/3, 2/1, 0, . . . ) ⊢ 0 + 2 + 2 = 4

β(4) = ( 2/3, 2/1, 0, . . . ) ⊢ 0 + 2 + 2 + 0 = 4

α = β(5) = ( 3, 2, 0, . . . )

So we can have either β(3) = β(4) = (2, 2, 0, . . . ) or β(3) = β(4) = (3, 1, 0, . . . ). So we again
get ⟨ψα, ξλ⟩ = 2.

Proof of Theorem 3.11. We have

⟨ψα, ξλ⟩ = ⟨ψα,1Sλ

xSn⟩ F.R.
= ⟨ψα

ySn

Sλ
,1Sλ

⟩

= ⟨
(
ψα
ySn

Sλn×Sλn−1+···+λ1

)y
Sλn×Sλn−1

×···×Sλ1

, ξ(λn)# . . .#ξ(λ1)⟩

Lemma 3.9
= ⟨

∑
β(n−1)⊢

∑n−1
j=1 λj

ψα\β(n−1)
#(ψβ(n−1)

)
ySλn−1+···+λ1

Sλn−1
×···×Sλ1

, ξ(λn)# . . .#ξ(λ1)⟩

=
∑

β(n−1)⊢
∑n−1

j=1 λj

⟨ψα\β(n−1)
, ξ(λn)⟩ · ⟨ψβ(n−1)ySλn−1+···+λ1

Sλn−1
×···×Sλ1

, ξ(λn−1)# . . .#ξ(λ1)⟩

Theorem 3.10
=

∑
β(n−1)

⟨ψβ(n−1)ySλn−1+···+λ1

Sλn−1
×···×Sλ1

, ξ(λn−1)# . . .#ξ(λ1)⟩

where we sum over β(n−1) ⊢
∑n−1

j=1 λj such that α and β(n−1) intertwine. Iteratively
applying Lemma 3.9 and Theorem 3.10, we get

⟨ψα, ξλ⟩ =
∑

β(n−1)

∑
β(n−2)

· · ·
∑
β(1)

⟨ψβ(1)ySλ1
Sλ1

, ξ(λ1)⟩

=
∑

β(n−1),β(n−2),...,β(1)

1

where we sum over β(i) ⊢
∑i

j=1 λj (this is condition (i)) such that β(i) and β(i−1) intertwine
for all i ∈ [n] (this gives conditions (ii) and (iii)).

Lemma 3.12. Let α, β ⊢ n. If ⟨ξα, χβ⟩ > 0, then β ⊵ α.
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Proof. Since ⟨ξα, χβ⟩ > 0, we have HomCSn([β],M
α) ̸= 0. Since charC = 0, Maschke’s

theorem gives a complement of [β] in Mβ, so we can extend any ϕ ∈ HomCSn([β],M
α) to

ϕ̃ ∈ HomCSn(M
β,Mα). Then β ⊵ α by Theorem 2.10.

Remarks.

• We can’t use Theorem 3.11 to prove the lemma, since we don’t have χβ = ψβ yet.

• The converse holds, see Lemma 3.20.

Theorem 3.13. Let α ⊢ n. Then ψα = χα. In particular, the irreducible representation
[α] has determinantal form det([αi − i+ j])ij.

Proof.

• Step 1. We first show that if λ |= n with ℓ(λ) ≤ n and ⟨ξλ, ψα⟩ > 0, then α⊵ λ.

Proof. Suppose ⟨ξλ, ψα⟩ > 0. Then there exists (β(1), . . . , β(n−1)) satisfying Theo-
rem 3.11 (i), (ii), (iii). By (iii),

0 = β
(0)
1 ≥ β(1)2 ≥ β(3)3 ≥ · · · ≥ 0,

so ℓ(β(i)) ≤ i for all i. Now β(i) = (β
(i)
1 , β

(i)
2 , . . . , β

(i)
i , 0, . . . ) ⊢

∑i
j=1 λj by (i), and

αj ≥ β(i)j for all j by (ii). So

α1 + α2 + · · ·+ αi ≥ β(i)1 + β
(i)
2 + · · ·+ β

(i)
i = λ1 + λ2 + · · ·+ λi,

for all i, in other words, α ⊵ λ.

• Step 2. We show ⟨ψα, ξα⟩ = 1.

Proof. Observe that (β(1), . . . , β(n−1)) with β(i) = (α1, α2, . . . , αi) satisfies the con-
ditions in Theorem 3.11, and so ⟨ψα, ξα⟩ ≥ 1. Conversely, suppose (β(1), . . . , β(n−1))
satisfies (i), (ii), (iii) in Theorem 3.11 with λ = α. Then, as in Step 1, we obtain

ℓ(β(i)) ≤ i, αj ≥ β(i)j for all j, and α1+· · ·+αi ≥ β(i)1 +· · ·+β(i)i = α1+· · ·+αi for all

i. Hence, we must have equality in αj ≥ β
(i)
j for j = 1, . . . , i, so β(i) = (α1, . . . , αi).

So there is only one such tuple (β(1), . . . , β(n−1)) and therefore ⟨ψα, ξα⟩ = 1.

• Step 3. We show ⟨ψα, ψα⟩ = 1.

Proof. First, for any π ∈ SN, α− id+π ⊵ α since for all i,

π−1(1) + π−1(2) + · · ·+ π−1(i) ≥ 1 + 2 + · · ·+ i,

so

(α1 − 1 + π−1(1)) + (α2 − 2 + π−1(2)) + · · ·+ (αi − i+ π−1(i)) ≥ α1 + α2 + · · ·+ αi.
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On the other hand, if π ∈ Sn and ⟨ξα−id+π, ψα⟩ > 0, then α ⊵ α − id+π by
Step 1 (because α − id+π |= n, else ξα−id+π = 0, and α ⊢ n, so ℓ(α) ≤ n, so
ℓ(α− id+π) ≤ n). Hence α ⊵ α− id+π ⊵ α, so π = id. Thus,

⟨ψα, ψα⟩ =
∑
π∈Sn

sgnπ⟨ξα−id+π, ψα⟩

= ⟨ξα, ψα⟩
= 1.

We can now prove ψα = χα. Since ⟨ψα, ψα⟩ = 1, we have ψα = ±ϕ for some ϕ ∈ Irr(Sn).
Since also χα ∈ Irr(Sn), it thus suffices to prove ⟨ψα, χα⟩ > 0. Next, if λ |= n such that
⟨ξλ, χα⟩ > 0, then ⟨ξβ, χα⟩ > 0 where β ⊢ n is obtained from λ permuting its parts.
By Lemma 3.12, α ⊵ β, but also clearly β ⊵ λ. Therefore α ⊵ λ. So if π ∈ Sn, and
⟨ξα−id+π, χα⟩ > 0, then α ⊵ α− id+π ⊵ α, i.e. π = id. Thus

⟨ψα, χα⟩ =
∑
π∈Sn

sgnπ⟨ξα−id+π, χα⟩ = ⟨ξα, χα⟩.

This is > 0, since [α] ≤Mα.

Therefore ⟨ψα, ψα⟩ = 1 and ⟨ψα, χα⟩ > 0. These imply ψα = χα.

3.3 Applications

3.3.1 Young’s Rule Revisited

Corollary 3.14. Let α ⊢ n. Then ⟨χα, ξα⟩ = 1.

Proof.

• Either from James Submodule Theorem and complete reducibility in char 0,

• or use Theorem 3.13 and Step 2 in its proof.

Corollary 3.15. The permutation characters {ξα | α ⊢ n} gives a basis of the C-vector
space of class functions of Sn. In particular, the change of basis matrix to Irr(Sn) = {χβ |
β ⊢ n} is Z-valued, and unitriangular if we order the partitions in a way that extends the
dominance partial ordering.

Proof. From the definition of ψβ and the fact that ψβ = χβ, it is clear that the χβ

are Z-linear combinations of the permutation characters. Conversely, it is clear that the
permutation characters are Z-linear combinations of the χα. From Lemma 3.12 it follows
that the matrix is triangular and Corollary 3.14 gives that the diagonal entries are 1.
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Remark. Young’s Rule tells us the multiplicity of [α]C in a direct sum decomposition
of Mλ

C into irreducibles. Over an arbitrary field F, Mλ
F decomposes as a direct sum

of indecomposables: We saw from James’ Submodule Theorem that there is a unique
summand containing [λ]F, which we called the Young module Y λ

F .

In general, Young modules for Sn are defined as the indecomposable summands of Mλ
F for

some λ ⊢ n. It turns out that isomorphism classes are indexed by ℘(n).

Fact. Mλ
F can be decomposed as a direct sum of Sn-modules each of which is isomorphic

to Y µ
F for some µ ⊵ λ, and Y λ

F appears exactly once.

If charF = 0, then indecomposable = irreducible, and ew havae proven this fact (then
Y λ
C = [λ]C).

In general, Y λ
F ̸∼= [λ]F, e.g. in Example Sheet, Question 5, we saw that [(n− 1, 1)]F was a

submodule, but not a direct summand of M
(n−1,1)
F in the case charF | n.

If charF > 2, then it is known that Specht modules are always indecomposable. In
charF = 2, this is still an open problem.

Next, we work towards another combinatorial way to interpret Young’s Rule.

Lemma 3.16. Let m, k ∈ N, let α ⊢ m+ k, β ⊢ k, γ ⊢ m. Then

⟨ψα\β, χγ⟩ = ⟨χα
y
Sm×Sk

, χγ#χβ⟩.

Moreover, ⟨ψα\β, χγ⟩ = ⟨ψα\γ , χβ⟩.

Letting γ vary, this shows that ψα\β is a genuine character.

Proof. We have

⟨χα
y
Sm×Sk

, χγ#χβ⟩ = ⟨ψα|Sm×Sk
, χγ#χβ⟩

=
∑
δ⊢k
⟨ψα\δ#ψδ, χγ#χβ⟩

=
∑
δ⊢k
⟨ψα\δ, χγ⟩ · ⟨ψδ, χβ⟩

=
∑
δ⊢k
⟨ψα\δ, χγ⟩ · ⟨χδ, χβ⟩

= ⟨ψα\β, χγ⟩.

The last part follows from ⟨χα
y
Sm×Sk

, χγ#χβ⟩ = ⟨χα
y
Sk×Sm

, χβ#χγ⟩.

Remark. Multiplicities of the form ⟨χα
y
Sm×Sk

, χγ#χβ⟩ are called Littlewood-Richardson
coefficients, also denoted cαγ,β, and they occur in many different contexts, e.g. symmetric
functions and algebraic combinatorics, representation theory of algebraic groups, etc.
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Lemma 3.17. Let m, k ∈ N, α ⊢ m. Then

χα#χ(k)
xSm+k

Sm×Sk
=
∑

χγ

where the sum runs over γ ⊢ m+ k such that αi ≤ γi ≤ αi−1 for all i, treating α0 =∞.

Proof. Let γ ⊢ m+ k. Then

⟨χγ , χα#χ(k)
xSm+k⟩ = ⟨χγ

y
Sm×Sk

, χα#χ(k)⟩

= ⟨ψγ\α, χ(k)⟩
= ⟨ψγ\α, ξ(k)⟩

Theorem 3.10
=

{
1 if γ1 ≥ α1 ≥ γ2 ≥ α2 ≥ . . . ,
0 otherwise.

Corollary 3.18. Notation as in Lemma 3.17. Then the Young diagrams Y (γ) can be
obtained from Y (α) by adding k many boxes in all possible ways such that no two of the
newly added boxes lie in the same column

Proof. Since γi ≥ αi for all i, we can certainly view Y (γ) as a superset of Y (α). The
condition γi ≤ αi−1 corresponds to the assertion that no two boxes in Y (γ) \ Y (α) lie in
the same column.

Example. Let α = (3, 2, 2) ⊢ 7, k = 2. Then Y (α) = . We have the following

possible Y (γ):

Therefore

[α][k] = [5, 22]⊕ [4, 3, 2]⊕ [4, 22, 1]⊕ [32, 2, 1]⊕ [3, 23]

ξ(α,k) = χ(5,22) + χ(4,3,2) + χ(4,22,1) + χ(32,2,1) + χ(3,23)1

We can use Corollary 3.18 repeatedly to decompose Mα ∼= [α1][α2] · · · [αℓ(α)] into irre-
ducibles.

1Remark by L.T.: I believe on the LHS it should not be ξ(α,k). Correct would be the character of
[α][k] and this module does not coincide with M (α,k) = [α1][α2][α3][k]. E.g. we have dimM (α,k) =

9!
3!2!2!2!

= 7560, but using the hook length formula we calculate dim[α][k] = [S9 : S7 × S2] dim[α]#[k] =
9!
7!2!

dim[α] dim[k] = 9!
7!2!

7!
5·4·3·2·2 · 1 = 756.
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Example. Let α = (3, 2, 1) ⊢ 6. First,

[3][2] = 2 21 1 1 ⊕ 2
2
1 1 1 ⊕

2 2
1 1 1

Here we label the original boxes with 1 and the new boxes with 2. Then,

[3][2][1] = 32 21 1 1 ⊕
3

2 21 1 1

⊕ 32
2
1 1 1 ⊕

3
2

2
1 1 1 ⊕

3

2
2
1 1 1

⊕ 3
2 2
1 1 1 ⊕

32 2
1 1 1 ⊕

3
2 2
1 1 1

So
ξ(3,2,1) = χ(6) + 2χ(5,1) + 2χ(4,2) + χ(4,1,1) + χ(3,3) + χ(3,2,1).

Definition.

(i) A generalised Young tableau of shape α ⊢ n and content (or weight, type) λ |= n is
a filling of Y (α) with positive integers such that i appears exactly λi many times for
all i.

(ii) A generalised Young tableau is semistandard if its entries weakly increase left to
right along rows, but strictly increase down columns.

We will abbreviate semistandard tableaux to SSYT.

Example.
2 1 1 4 2 2
4 1

has shape (6, 2), content (3, 3, 0, 2). The semistandard Young

tableaux of shape this shape and content are

1 1 1 2 2 2
4 4

1 1 1 2 2 4
2 4

1 1 1 2 4 4
2 2

Young tableaux from before are just generalised Young tableaux of content (1n).

Using SSYT we can generalise the above example, determining ξ(3,2,1), and reformulate
Young’s Rule.

Corollary 3.19. Let α ⊢ n, λ |= n. Then ⟨ξλ, χα⟩ is the number of SSYT of shape α and
content λ.

Note that unlike in Theorem 3.11 we don’t require ℓ(λ) ≤ n.

Proof. Apply Corollary 3.18 and note that Mλ ∼= [λ1][λ2] . . . [λℓ(λ)] has character ξ
λ.

Example 1. We revisit the example after Theorem 3.11 where we showed that ⟨χα, ξλ⟩ =
⟨ψα, ξλ⟩ = 2 for α = (3, 2) and λ = (2, 0, 1, 2) or λ = (0, 2, 2, 0, 1). The SSYT of shape α
and content λ are:

λ = (2, 0, 1, 2)
1 1 3
4 4

,
1 1 4
3 4
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λ = (0, 2, 2, 0, 1)
2 2 3
3 5

,
2 2 5
3 3

Recall Lemma 3.12: If α, β ⊢ n with ⟨ξα, χβ⟩ > 0, then α ⊴ β. The converse also holds.

Lemma 3.20. Suppose α, β ⊢ n with α ⊴ β. Then ⟨ξα, χβ⟩ > 0.

Proof. Example Sheet 3.

Remark. The number of SSYT of shape α and content λ is often denoted by Kα,λ. Such
quantities are known as Kostka numbers.

3.3.2 Branching Rule

We investigate restriction from Sn to Sn−1
∼= Sn−1 × S1. Note that this is a special case

of Sm × Sk.

Definition. Let λ |≡ n, i ∈ N. Define λi− |≡ n − 1 and λi+ |≡ n + 1 via λi− =
(λ1, . . . , λi−1, λi − 1, λi+1, . . . ) and λ

i+1 = (λ1, . . . , λi−1, λi + 1, λi+1, . . . ).

Lemma 3.21. Let λ |≡ n. Then ξλ
y
Sn−1

=
∑∞

i=1 ξ
λi−

.

Proof. First note that the RHS sum is finite since λi−1 ̸|= n − 1 for all i > ℓ(λ), whence
ξλ

i−1
= 0. Now, by Lemma 3.7,

ξλ
y
Sn−1

= ξλ
y
Sn−1×S1

=
∑
µ|=1

ξλ−µ#ξµ.

But ξµ = 1S1 and µ = (0, . . . , 0, 1, 0, . . . ) where the 1 is in the i-th position, so λ − µ =
λi−.

Recall we defined α−, where α ⊢ n, and removable boxes in Section 3.1. Observe

α− = {β ⊢ n− 1 | β = αi− for some i ∈ N} = {αi− | αi > αi+1}.

Definition. Let α ⊢ n. We define

α+ := {β ⊢ n+ 1 | β = αi+1 for some i ∈ N} = {αi+ | αi < αi+1},

where we treat α0 = ∞. In other words, α+ is the set of all partitions β such that Y (β)
can be obtained from Y (α) by adding a single box.

We will call (i, j) addable to α if (i, j) /∈ Y (α) and Y (α) ∪ {(i, j)} = Y (β) for some
β ∈ α+.
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Example. Let α = (4, 2, 2, 1) ⊢ 9. Then Y (α) =

−+
+

−
−+
+

where the removable resp.

addable boxes are marked with a − resp. +. So

α− = {(3, 22, 1), (4, 2, 11), (4, 22)},
α+ = {(5, 22, 1), (4, 3, 2, 1), (4, 23), (4, 22, 12)}.

Theorem 3.22 (Branching Rule - restriction). Let α ⊢ n. Then χα
y
Sn−1

=
∑

β∈α− χβ.

Proof. We have

χα
y
Sn−1

= ψα
y
Sn−1

=
∑
π

sgnπξα−id+π
y
Sn−1

=
∑
π

sgnπ
∑
i∈N

ξ(α−id+π)i−

=
∑
i∈N

∑
π

(sgnπ)ξα
i−−id+π

=
∑
i∈N

ψαi−

Now if ψαi− ̸= 0, then αi−
i − i ̸= αi−

i+1− (i+1) by Lemma 3.5, so αi−1− i ̸= αi+1− (i+1)
and so αi ̸= αi+1, then α

i− ∈ α−.

Corollary 3.23 (Branching Rule - induction). Let α ⊢ n. Then χα
xSn+1 =

∑
β∈α+ χβ.

Proof. This follows from Theorem 3.22 and Frobenius reciprocity noting that β ∈ α+ iff
α ∈ β−.

Example. Let α = (4, 22, 1) ⊢ 9. Then

χα
y
S8

= χ(3,22,1) + χ(4,2,12) + χ(4,22),

χα
xS10 = χ(5,22,1) + χ(4,3,2,1) + χ(4,23) + χ(4,22,12).

Definition. The Young (branching) graph Y is the graph with

• vertex set
⋃

n∈N0
℘(n),

• edge set {(λ, µ) | µ ∈ λ−}.

We will call ℘(n) th n-th layer or level of Y.
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Here are the first five layers of Y:

4

3

2

1

0 ∅

For each partition λ, there is a natural bijection between std(λ) and the set of upwards-
directed paths from ∅ to λ in Y. Indeed, given such a path, we construct the standard
λ-tableau by putting in the layer number in each newly added box in the path. E.g.
consider λ = (3, 1) and the path

∅ → → → → .

Then we get the sequence of tableaux

∅ → 1 → 1
2
→ 1 3

2
→ 1 3 4

2
.

Now
1 3 4
2

is the standard tableau corresponding to this path.

3.3.3 Murnaghan-Nakayama Rule

Definition. Let λ ⊢ n, (i, j) ∈ Y (λ).

(i) The rim of λ is R(λ) := {(x, y) ∈ Y (λ) | (x+ 1, y + 1) /∈ Y (λ)}.

(ii) The (i, j)-rim hook of λ is Ri,j(λ) = {(x, y) ∈ R(λ) | x ≥ i and y ≥ j}. Its hand is
(i, λi) and its foot is (λ′j , j), the same as for Hi,j(λ).

(iii) The leg length of Ri,j(λ) is λ
′
i − j, and arm length λi −−j, same as for Hi,j(λ).

Note that for both the hook and the rim hook the leg (resp. arm) length is the number of
rows (resp. columns) occupied by the hook, minus one.
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Example. Let λ = (7, 53, 3, 1) ⊢ 26. Then the boxes in the rim R(λ) are highlighted
green.

Take (i, j) = (2, 2). The rim hook is highlighted red.

•

Removing H2,2(λ) (resp. R2,2(λ)) leaves

(7, 15), (3, 3, 2) (7, 42, 2, 12)

Note that if we merge the two components obtained by removing H2,2(λ) get precisely
what is left after removing R2,2(λ).

Lemma 3.24. Let λ ⊢ n, (i, j) ∈ Y (λ).

(i) |Ri,j(λ)| = |Hi,j(λ)| = hi,j(λ),

(ii) Removing Hi,j(λ) from Y (λ), and then sliding the lower-right component (if the
result was disconnected) up and left one unit each, gives Y (λ) \Ri,j(λ).

Proof. Consider a walk along each hook, one box at a time traversing from the hand to
the foot. Then the claims follow since

• Hi,j(λ) and Ri,j(λ) have the same hands and feet,

• we only move left or down at each step,

• we use the same number of leftward steps (namely the common arm length λi − j),
and downward steps (by length λ′j − i).

Definition. Let λ ⊢ n, (i, j) ∈ Y (λ). Define λ \Hi,j(λ) to be the partition of |λ| −hi,j(λ)
such that Y (λ \Hi,j(λ)) = Y (λ) \Ri,j(λ). Explicitly, letting a = λi − j be the arm length,
and b = λ′j − i be the leg length, then

λ \Hi,j(λ) = (λ1, λ2, . . . , λi−1, λi+1 − 1, λi+2 − 1, . . . , λi+b − 1, j − 1, λi+b+1, λi+b+2, . . . ).
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Note that hi,j(λ) = 1 + a+ b, so j − 1 = λi − a− 1 = λi − hi,j(λ) + b.

• From now on, when we remove a hook from λ, we mean to get λ \Hi,j(λ) for some
(i, j) ∈ Y (λ).

• If µ is obtained from λ by removing a hook, then we let LL(λ \ µ) denote the leg
length of the removed hook. That is, µ = λ \ Hi,j(λ) for some (i, j) ∈ Y (λ), and
LL(λ \ µ) is the leg length of Hi,j(λ), equivalently of Ri,j(λ).

Theorem 3.25 (Murnaghan-Nakayama Rule). Let α ⊢ n, k ∈ [n]. Let π ∈ Sn, and
suppose that it has a k-cycle in its disjoint cycle decomposition. Let ρ ∈ Sn−k have the
same cycle type as π but with one fewer k-cycle. Then

χα(π) =
∑
β

(−1)LL(α\β)χβ(ρ),

where the sum runs over partitions β obtained from α by removing a hook of size k.

Example. Let α = (33) ⊢ 9, π = (1234)(56)(789). We take k = 3 and ρ = (1234)(56).
What are the possible hooks of size 3 we can remove?

×
×
×

LL = 2

×
× ×

LL = 1

× × ×

LL = 0

Then
χα(π) =

(
χ(23) − χ(3,2,1) + χ(32)

)
(µ)

We repeat this with n = 6, k = 2. So this is

=
(

×
×

LL = 1

−χ(2,12) +

× ×

LL = 0

χ(22) +

no removable
hooks of size 2
from (3, 2, 1)

0 −

×
×

LL = 1

χ(22) +

× ×

LL = 0

χ(3,1)
)
((1234))

= (−χ(2,12) + χ(3,1))((1234))

=
(

× ×
×
×

LL = 2

−χ∅ −

× × ×
×

LL = 2

χ∅ )
(e)

= −1− 1 = −2

Proof of Theorem 3.25. Since characters are class functions, we may assume that π =

ρσ for some k-cycle σ disjoint from ρ. For µ |= k, recall ξµ = 1Sµ

xSk , so ξµ(σ) =
1

|Sµ|
∑

x∈Sk

xσx−1∈Sµ

1. But since σ is a k-cycle, σ belongs to a conjugate of Sµ if and only if
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µ = (. . . , 0, k, 0, . . . ). So if µ is not of this form, then ξµ(σ) = 0. On the other hand, if

µ = (. . . , 0, k, 0, . . . ), then ξµ = 1S(k)

xSk = 1Sk
, and so ξµ(σ) = 1. Therefore

χα(π) = ψα(π) = ψα
y
Sn−k×Sk

(ρσ)

Lemma 3.7
=

∑
µ|=k

(
ψα−µ#ξµ

)
(ρσ)

=
∑
µ|=k

ψα−µ(ρ)ξµ(σ)

=
∞∑
i=1

ψ(α1,α2,...,αi−1,αi−k,αi+1,... )(ρ)

=
∑
i∈N

ψβi,0(ρ) (∗)

where we let βi,0 = (α1, α2, . . . , αi−1, αi − k, αi+1, . . . ) |≡ n− k.

Recall from Lemma 3.5 that if γ−id = (j j+1)◦(λ−id), then ψγ = −ψλ. Fix i ∈ N, define
βi,m |≡ n− k via βi,m− id = (i+m i+m− 1 . . . i+2 i+1 i) ◦ (βi,0− id), for each m ∈ N0.
Explicitly, βi,m = (α1, α2, . . . , αi−1, αi+1− 1, . . . , αi+m− 1, αi− k+m,αi+m+1, . . . ). Since
(i+m i+m− 1 . . . i+2 i+1 i) = (i+m i+m− 1) · · · (i+2 i+1)(i+1 i), we can apply
Lemma 3.5 repeatedly to get

ψβi,0 = (−1)mψβi,m .

We will see that

• if there exists m ∈ N0 such that βi,m is a partition, then m is unique, and we will
relate βi,m to α by removing an appropiate hook,

† while if there does not exist such an m, then we will show that ψi,m = 0.

For (i, j) ∈ Y (α), letting b be the leg length of Hi,j(α), we recall that α \ Hi,j(α) =
(α1, . . . , αi−1, αi+1−1, αi+2−1, . . . , αi+k−1, αi−hi,j(α)+b, αi+k+1, αi+k+2, . . . ). Compare
this with βi,m. For any given i, we see that the following are equivalent:

• the existence of an m ∈ N0 such that βi,m is a partition,

• the existence of a rim hook Ri,j(α) of size k, for some j ∈ [λi].

The highest row occupied by this hook is row i. In particular, i ≤ ℓ(α). A rim hook is
uniquely determined by its highest row and size. In particular, there is at most one m for
each i, and when this exists, m is uniquely determined as the leg length of the hook.

Notice if i > ℓ(α), then for all m ∈ N0, βi,m has a negative part:

βi,0 = (α1, α2, . . . , αℓ(α), 0, . . . , 0,−k, 0 . . . )
βi,1 = (α1, α2, . . . , αℓ(α), 0, . . . , 0,−1,−k + 1, 0 . . . )

βi,2 = (α1, α2, . . . , αℓ(α), 0, . . . , 0,−1,−1,−k + 2, 0 . . . )
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So we never talk about a hook length in row i unless i is a genuine row in Y (α).

Once we prove the claim †, then (∗) gives

χα(π) =
∑
i∈N

ψβi,0(ρ)

=
∑

i∈N such that
∃m ∈ N0: βi,m is a partition

(−1)mψβi,m(ρ)

=
∑

β⊢n−k
obtained from α

by removing a hook
of size k

(−1)LL(α\β)ψβ(ρ)

=
∑
β

χβ(ρ).

So it remains to prove †. Fix i ∈ N and suppose βi,m ̸⊢ n− k for all m ∈ N0. Observe

βi,m − id = (α1 − 1, α2 − 2, . . . , αi−1 − (i− 1), αi+1 − (i+ 1), . . . , αi+m − (i+m),

αi − i− k, αi+m+1 − (i+m+ 1), . . . )

Since α is a partition, α−id is strictly descreasing. Since αi−i ≥ αi−i−k ≥ αi+k−(i+k),
there exists a unique t ∈ N0 such that αi+t − (i+ t) ≥ αi − i− k > αi+t+1 − (i+ t+ 1). If
αi+t−(i+t) = αi−i−k, then βi,t− id has two adjacent terms equal. But then ψβi,t = 0 by
Lemma 3.5, hence ψβi,0 = (−1)tψβi,t = 0. Otherwise, αi+t− (i+ t) > αi− i− k. But that
means βi,t is weakly decreasing. Also (βi,t)j = αj for all j ≥ i + t + 1 and αj ≥ 0 for all
j ∈ N. Also α has finite support, hence so does βi,t, thus βi,t is a partition, contradicting
our assumption. This proves † and hence the proof of the theorem.
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4 McKay Numbers

In this chapter we go back to partitions, and continue with F = C.

Main goal. Describe Irrp′(Sn) and work towards understanding the techniques in Olsson’s
proof of the McKay Conjecture for symmetric groups.

4.1 James’s Abacus

Example. Let λ = (7, 53, 3, 1) ⊢ 26, and consider H2,2(λ), R2,2(λ). Write 1, 2, . . . , h2,2(λ)
into R2,2(λ) from hand to foot. For those numbers in boxes at the bottom of their column,
write them in H2,2(λ) in the same column. For the rest, write them in to H2,2(λ) in the
row below.

1
2

5 4 3
7 6

⇝
7 6 4 3
1
2
5

Observe

1 = 7− 6 = h2,2(λ)− h3,2(λ)
2 = 7− 5 = h2,2(λ)− h4,2(λ)
5 = 7− 2 = h2,2(λ)− h5,2(λ)

Lemma 4.1. Let λ ⊢ n, (i, j) ∈ Y (λ). Then

{1, 2, . . . , hi,j(λ)} = {hi,y(λ) | j ≤ y ≤ λi} ⊔ {hi,j(λ)− hx,j(λ) | i < x ≤ λ′j}

Proof. We omit (λ) from the notation. Let A = {(u, v) ∈ Ri,j | u = λ′v} = {(λ′y, y) | j ≤
y ≤ λi} and B = {(u, v) ∈ Ri,j | u ̸= λ′v} = {(x− 1, λx) | i < x ≤ λ′j}.

By Lemma 3.24, |Ri,j | = hi,j , so we may fill the numbers 1, 2, . . . , hi,j into Ri,j one number
in each box from hand to foot. We claim that A is filled with {hi,y | j ≤ y ≤ λi} and B
with {hi,j − hx,j | i < x ≤ λ′j}, whence the lemma follows. Consider (λ′y, y) in A. It is
filled with

1 + #left steps + #down steps

= 1 + arm length of Hi,y + leg length of Hi,y = hi,y
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Consider (x− 1, λx) ∈ B. It is filled with

1 + #left steps + #down steps

= 1 + (λi − λx) + (x− 1− i) = (1 + λi − j + λ′j − i)− (1 + λx − j + λ′j − x)
=hi,j − hx,j .

Definition. Let λ ⊢ n, m = ℓ(λ).

(i) Let Xλ = {h1,1(λ), h2,1(λ), . . . , hm,1(λ)} be the set of first column hook lengths of λ.

(ii) For each i ∈ [m], let Hi(λ) = {hi,j(λ) | j ∈ [λi]} be the set of row i hook lengths of
λ.

Note that Hi(λ) = {1, 2, . . . , hi,1(λ)} \ {h1,1(λ)− hx,1(λ) | i < x ≤ m} by Lemma 4.1.

Convention: If i > m, then Hi(λ) = ∅.

Notice that Xλ determines λ: If we know that {h1, h2, . . . , hm} where h1 > h2 > · · · > hm,
is the set of first column hook lengths for some partition λ, then λ must be λ = (h1 −
(m− 1), . . . , hm−1 − 1, hm − 0).

Idea. We represent partitions using beads on an abacus.

• Info about hook lengths is encoded into the bead positions

• given an arrangement of beads, we will be able to reconstruct the partition using
observations like the above.

• advantages: operations on partitions (e.g. hook removal) are easy to describe.

Definition. A β-set X is a finite subset {h1, . . . , hm} of N0. Convention: h1 > h2 >
· · · > hm.

For a β-set X = {h1, . . . , hm} and l ∈ N0, we define X+l, the l-shift of X, as follows:

• X+0 = X,

• if l > 0, then X+l = {h1 + l, h2 + l, . . . , hm + l} ∪ {l − 1, l − 2, . . . , 1, 0}.

We define the partition corresponding to X to be P(X) = (h1 − (m − 1), h2 − (m −
2), . . . , hm−1 − 1, hm − 0). This expression for P(X) may have trailing zeros, which can
be removed.

Example. Let X = {4, 2}. Then P(X) = (4 − 1, 2 − 0) = (3, 2). And X+2 = {6, 4, 1, 0}
and P(X+2) = (6− 3, 4− 2, 1− 1, 0− 0) = (3, 2).

Lemma 4.2. Let λ ⊢ n and X a β-set. Then X is a β-set for λ, meaning P(X) = λ, if
and only if X ∈ {X+l

λ | l ∈ N0}.
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Proof. Let X = {h1, h2, . . . , hm} and t = ℓ(λ). Then

P(X) = λ⇐⇒ (h1 − (m− 1), . . . , hm−1 − 1, hm − 0) = (λ1, λ2, . . . , λt)

⇐⇒ m ≥ t and

{
hj − (m− j) = λj if j ≤ t,
hj − (m− j) = 0 if j > t

⇐⇒ m ≥ t and hj =

{
λj + (t− j) + (m− t) if j ≤ t,
m− j if j > t

⇐⇒ m− t ∈ N0 and X = X
+(m−t)
λ

Definition. Let e ∈ N. James’s e-abacus consists of e runners (drawn as columns) labelled
0, 1, 2, . . . , e − 1 from left to right, with rows labelled by N0 increasing downards. The
positions are labelled by N0, with that in row a and runner i labelled by ae+ i.

Given a β-set X, the e-abacus configuration corresponding to X has beads precisely in
positions given by the elements of X. We call the configuration AX . Conversely, given an
e-abacus configuration A, i.e. a finite set of beads in the e-abacus, define the corresponding
β-set XA to be the set of position labels of the beads. We define the corresponding partition
to be P(A) := P(XA).

Also, if X = Xλ, then abbreviate AXλ
= Aλ.

Clearly,

{e-abacus configurations} 1−1←→ {β-sets}
AX ←− [ X
A 7−→ XA

bead positions←→ {h1, . . . , hm}

e-abacus:
0 1 2 · · · e− 1

0 0 1 2 · · · e− 1
1 e e+ 1 e+ 2 · · · 2e− 1
2 2e 2e+ 1 2e+ 2 · · · 3e− 1
...

...

Examples.
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(i) Let e ≥ 2, X = {2e, e+ 1, 2}. On an e-abacus we have

0 1 2 · · · e− 1

0 0 1 2 · · · e− 1

1 e e+ 1 e+ 2 · · · 2e− 1

2 2e 2e+ 1 2e+ 2 · · · 3e− 1
...

...

and P(X) = (2e− 2, e, 2).

(ii) Consider the 3-abacus configuration A given by

0 1 2

0 0 1 2
1 3 4 5
2 6 7 8

3 9 10 11

so XA = {11, 9, 5, 3, 2, 1} and P(A) = P(XA) = (6, 5, 2, 13) ⊢ 16.

Let X = {6, 4, 1, 0}, e = 3 or e = 4. Then

0 1 2

0 0 1 2
1 3 4 5
2 6 7 8

0 1 2 3

0 0 1 2 3
1 4 5 6 7

We have P(X) = (3, 2).

Lemma 4.3. Let e ∈ N. Given an e-abacus configuration A, with beads at h1 > h2 > · · · >
hm, then P(A) = (a1, a2, . . . , am) where aj is the number of gaps, i.e. empty positions, i
such that 0 ≤ i < hj.

Proof. By definition, P(A) = (h1− (m−1), . . . , hm−0). But there are hj positions before
hj , of which m− j have beads, namely hj+1, . . . , hm.

Definition. Let X = {h1, . . . , hm} be a β-set. For i ∈ [m], define Hi(X) = {1, 2, . . . , hi}\
{hi − hj | i < j ≤ m}.

Lemma 4.4. Let λ ⊢ n and X a β-set for λ. If X = {h1, . . . , hm}, then Hi(X) = Hi(λ)
for all i ∈ [m].

Proof. We have X = X
+(m−ℓ(λ))
λ from the proof of Lemma 4.2. If i > ℓ(λ), then |Hi(X)| =

hi − (m − i) = 0, so Hi(X) = Hi(λ) = ∅. If i ≤ ℓ(λ), then Hi(λ) = {1, 2, . . . , hi,1(λ)} \
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{h1,1(λ) − hj,1(λ) | i < j ≤ ℓ(λ)} and so clearly Hi(λ) = Hi(Xλ). So it remains to check
Hi(X) = Hi(X

+1). We have X+1 = {h1 + 1, h2 + 1, . . . , hm + 1, 0}, so

Hi(X
+1) = {1, 2, . . . , hi + 1} \ ({(hi + 1)− (hj + 1) | i < j ≤ m} ∪ {hi + 1)− 0})

= {1, 2, . . . , hi} \ {hi − hj | i < j ≤ m} = Hi(X).

Corollary 4.5. Let λ ⊢ n and X = {h1, . . . , hm} be a β-set for λ. Let h ∈ N0. Then
h ∈ Hi(λ) iff hi − h ≥ 0 and hi − h /∈ X, for any i ∈ [m].

Proof. The claim is clear if i > ℓ(λ) (since then Hi(λ) = ∅), or if h = 0. So we may assume
that i ≤ ℓ(λ) and h > 0. If h > hi, then h > maxHi(X) = maxHi(λ), so h ∈ Hi(λ).
Otherwise, h ≤ hi. Recall Hi(λ) = Hi(X) = {1, 2, . . . , hi} \ {hi − hj | i < j ≤ m}. So

h /∈ Hi(λ)⇐⇒ h = hi − hj for some i < j ≤ m
⇐⇒ hi − h ∈ X

Corollary 4.6. Let λ ⊢ n and suppose ef ∈ H(λ) for some e, f ∈ N. Then e ∈ H(λ).

Proof. Let X = Xλ = {h1, h2, . . . , hm}. Since ef ∈ H(λ), then ef ∈ Hi(λ) for some
i ∈ [m]. By Corollary 4.5, 0 ≤ hi−ef /∈ X. But hi ∈ X, so there exists l ∈ {0, 1, . . . , f−1}
such that 0 ≤ hi − e(l + 1) /∈ X, but hi − el ∈ X. This means hi − el = hk for some
i ≤ k ≤ m. But then 0 ≤ hk − e = hi − e(l + 1) /∈ X, hence by Corollary 4.5 again,
e ∈ Hk(λ).

Example. Let λ = (7, 52, 3, 1) ⊢ 21. So:

11
8 × × × ×
7 ×
4 ×
1

H2,2(λ)

Xλ = {11, 8, 7, 4, 1}

11
7 ×
4 × × ×
2 × ×
1

R2,2(λ)

Xλ\H2,2(λ) = {11, 7, 4, 2, 1}

Note that Xλ\H2,2(λ) = (Xλ \ {8}) ⊔ {8− h2,2(λ)} and 8 is the second element in Xλ.

Proposition 4.7. Let λ ⊢ n, X = {h1, h2, . . . , hm} be a β-set for λ. Let (i, j) ∈ Y (λ).
Then

(i) 0 ≤ hi − hi,j(λ) /∈ X,

(ii) Z := (X \ {hi}) ⊔ {hi − hi,j(λ)} is a β-set for λ \Hi,j(λ)

57



Proof.

(i) Immediate from Corollary 4.5.

(ii) Since β-sets are determined up to shift, and Z+l = (X+l\{hi+l})⊔{(hi+l)−hi,j(λ)},
then it is enough to prove (ii) for X = Xλ. So now assume X = Xλ, m = ℓ(λ),
hi = hi,j(λ). Let µ = λ \Hi,j(λ). Recall that if b is the leg length of Hi,j(λ), then
µ = (λ1, λ2, . . . , λi−1, λi+1 − 1, . . . , λi+b − 1, j − 1, λi+b+1, . . . ). Let Z ′ be the β-set
for µ such that |Z ′| = m. This does exist, since ℓ(µ) ≤ ℓ(λ) = m, so in particular,

Z ′ is just X
+(m−ℓ(µ))
µ . Let Z ′ = {k1, . . . , km}. We compute Z ′:

• For s < i, then ks = µs + (ℓ(µ)− s) + (m− ℓ(µ)) = λs +m− s = hs,1(λ) = hs.

• For s ∈ {0, 1, . . . , b− 1}, ki+s = µi+s+(ℓ(µ)− (i+ s))+ (m− ℓ(µ)) = (λi+s+1−
1) +m− (i+ s) = λi+s+1 +m− (i+ s+ 1) = hi+s+1.

• ki+b = µi+b + (ℓ(µ)− (i+ b)) + (m− ℓ(µ)) = j − 1 +m− i− b.

• For s ≥ i+ b+ 1, ks = µs +m− s = λs +m− s = hs.

So Z ′ = (X \ {hi}) ⊔ {j − 1 + m − i − b}. But hi − hi,j = hi,1(λ) − hi,j(λ) =
(λi +m− i)− (1 + λi − j + b) = j − 1 +m− i− b. So Z ′ = Z.

Corollary 4.8. Let e ∈ N, λ ⊢ n, X = {h1, . . . , hm} a β-set for λ, i ∈ [m]. Write
hi = ae+ j for a ∈ N0 and j ∈ {0, 1, . . . , e− 1}. Then the following are equivalent:

• There exists y ∈ [λi] such that hi,y(λ) = e.

• a ≥ 1 and (a− 1)e is an empty position in the e-abacus configuration AX .

When these hold, y is unique.

Moreover, the e-abacus configuration A′ obtained from AX by sliding the bead in position
hi to position hi − e has P(A′) = λ \Hi,y(λ).

In other words, removing a hook of size e is the same as sliding a bead up one row on an
e-abacus.

Proof. By Corollary 4.5,

e ∈ Hi(λ)⇐⇒ 0 ≤ hi − e /∈ X
⇐⇒ a ≥ 1, and (a− 1)e+ j /∈ X.

Hence the equivalence. For the second part, clearly XA′ = (X \ {hi}) ∪ {hi − e}, but this
is a β-set for λ \Hi,y(λ) by Proposition 4.7.

Remark. Recall the proof of Corollary 4.6 - we had 0 ≤ hi − ef /∈ X, hi ∈ X. The
existence of l in the proof is equivalent to there being a bead immediately below a gap
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somewhere on this runner between hi and hi − ef . By Corollary 4.8, this corresponds to
a hook of length e.

Just as we have the division algorithm for integers, giving quotients and remainders when
we divide by e, we can do something similar for partitions, giving “e-quotients”, and
“e-cores”.

Definition. Let e ∈ N, λ ⊢ n. We say that λ is an e-core partition if e /∈ H(λ). The
empty partition ∅ is always an e-core for any e.

Example.

(i) Suppose |λ| < e. Then λ is an e-core partition.

(ii)
× ×
×

× ×
We can see that (4, 3, 3) is not a 5 core, but (2, 2, 1) is.

(iii) Let e = 2. Hooks of size 2 are always “dominoes” (i.e. 2× 1 or 1× 2 rectangles). So
the 2-core partitions are precisely

∅, , , , . . .

i.e. ∅ and (t, t− 1, . . . , 2, 1) for t ∈ N.

Definition. Let e ∈ N, λ ⊢ n, X a β-set for λ.

(i) For i ∈ {0, 1, . . . , e − 1}, define X(e)
i = {a ∈ N0 | ae + i ∈ X}. That is, X

(e)
i is the

set of row labels of beads on runner i of the e-abacus configuration AX .

(ii) The e-quotient of λ is Qe(λ) := (λ(0), λ(1), . . . , λ(e−1)) where λ(i) = P(X(e)
i ). That

is, λ(i) is the partition corresponding to the runner i of AX viewed as a 1-abacus.

(iii) Define X(e) =
⊔e−1

i=0{ae+ i | 0 ≤ a ≤ |X(e)
i | − 1}.

(iv) The e-core of λ is Ce(λ) := P(X(e)).

The e-abacus configuration AX(e)
is obtained from AX by sliding beads up as high as

possible. The description of AX(e)
and Corollary 4.8 imply that Ce(λ) is indeed an e-core

partition.

Lemma 4.9. Let e ∈ N, λ ⊢ n, X a β-set for λ.

(i) For i ∈ {1, 2, . . . , e− 1}, (X+1)
(e)
i = X

(e)
i−1.

(ii) (X+1)
(e)
0 = (X

(e)
e−1)

+1.

(iii) For i ∈ {0, 1, . . . , e− 1}, P((X+1)
(e)
i ) = P(X(e)

i−1) where i− 1 is taken mod e

(iv) (X+1)(e) = (X(e))
+1

(v) P((X+1)(e)) = P(X(e))
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Proof. Example Sheet 3.

Remarks.

• Lemma 4.9 (iv), (v) and Lemma 4.2 show that Ce(λ) just depends only on e and λ,
but not the choice of β-set X for λ.

• Lemma 4.9 (i), (ii) and (iii) show that if we shift X to X+1, we induce a cyclic
shift of the components of Qe(λ) = (λ(0), λ(1), . . . , λ(e−1)). So far, Qe(λ) therefore
still depends on the choice of X. But X and X+e give the same cyclic shift of λ(i),
and |X+l| = |X| + l, so to fix an ordering of the components of Qe(λ) and thereby
specifying Qe(λ) uniquely from now on, we will always choose β-sets X such that
|X| is a multiple of e when calculating e-quotients.

Example. Let e = 3, λ = (6, 5, 2, 13) ⊢ 16. Then Xλ = {11, 9, 5, 3, 2, 1}. Note that
3 | |Xλ|. Let X = Xλ. Then

Aλ

0 1 2

0 0 1 2
1 3 4 5
2 6 7 8

3 9 10 11

AX(3)

0 1 2

0 0 1 2
1 3 4 5
2 6 7 8
3 9 10 11

So C3(λ) = (3, 1),

X
(3)
0 = {3, 1},

X
(3)
1 = {0},

X
(3)
2 = {3, 1, 0}

and Q3(λ) = ((2, 1), ∅, (1)).

Note that in total we moved four beads up when going from AX to AX(3)
. This could

correspond to removing rim hooks as follows (order indicated by number)

4
4 4
3
3
3

1 1
1

2
2 2

or

2 2 2

1
1
1

4
4 4

3 3 3

etc.

Definition. Let e ∈ N. An e-hook is a hook of size exactly e.

Theorem 4.10. Let e ∈ N, λ ⊢ n. Then Ce(λ) is the unique e-core partition we obtain
by successively removing e-hooks from λ until we cannot remove any more. In particular,
this is independent of the order in which we removed the hooks.
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Proof. Let X be a β-set for λ. Let γ be an e-core partition obtained from λ by removing
some e-hooks. By Corollary 4.8, there exists a β-set Z for γ such that the e-abacus
configuration AZ is obtained from AX by sliding all beads up as far as possible. But then
clearly Z = X(e), and so γ = P(Z) = P(X(e)) = Ce(λ).

Definition. Let e ∈ N, λ ⊢ n. Consider Q(λ) = (λ(0), λ(1), . . . , λ(e−1)). We say that H is

a hook of Qe(λ) if H = Hi,j(λ
(s)) for some s = 0, . . . , e−1 and (i, j) ∈ Y (λ(s)). Moreover,

we define Qe(λ) \H := (λ(0), . . . , λ(s−1), λ(s) \H,λ(s+1), . . . , λ(e−1)). When we refer to a
hook H of Qe(λ), it is considered to carry both the information of which component λ(s)

it came from, as well as the box (i, j).

Theorem 4.11. Let e ∈ N, λ ⊢ n. There is a bijection

f : {Hi,j(λ) s.t. e | hi,j(λ)} → {hooks of Qe(λ)}

such that if H = Hi,j(λ) with e | hi,j(λ), then |H| = e|f(H)| and Qe(λ\H) = Qe(λ)\f(H).

Proof. Let X = {h1, h2, . . . , hm} be a β-set for λ with e | m. Recall from Corollary 4.5
that for i ∈ [m] and h ∈ N0,

h ∈ Hi(λ)⇐⇒ 0 ≤ hi − h /∈ X.

So we get a bijection

{Hi,j(λ) s.t. (i, j) ∈ Y (λ)} → {(b, g) ∈ N2
0 | b > g, b ∈ X, g /∈ X},

i.e. pairs of positions (b, g) in the e-abacus configuration AX such that b is a bead, g is
a gap and b > g. If Hi,j(λ) 7→ (b, g), then hi = b and hi − hi,j(λ) = g. In particular,
hi,j(λ) = b− g. So this restricts to a bijection

F : {Hi,j(λ) s.t. e | hi,j(λ)} → {(b, g) ∈ N2
0 | b > g, b ∈ X, g /∈ X, b ≡ g mod e}

If b ≡ g mod e, then b = b′e + s and g = g′e + s for some s ∈ {0, 1, . . . , e − 1} and some

b′ > g′ ∈ N0. Again by Corollary 4.5, since Qe(λ) = (λ(0), . . . , λ(e−1)) has λ(s) = P(X(e)
s ),

and X
(e)
s = {a ∈ N0 | ae+ s ∈ X}, we have bijections

fs : {Hi,j(λ
(s)) s.t. (i, j) ∈ Y (λ(s))} → {(b′, g′) ∈ N2

0 | b′ > g′, b′ ∈ X(e)
s , g′ /∈ X(e)

s }

And as before, if Hi,j(λ
(s)) 7→ (b′, g′), then hi,j(λ

(s)) = b′ − g′. The bijection f that we
seek follows from composing F with the inverses of f0, f1, . . . , fe−1, noting that

{(b, g) | b > g, b ∈ X, g /∈ X, b ≡ g mod e} 1−1←→
e−1⊔
s=0

{(b′, g′) | b′ > g′, b′ ∈ X(e)
s , g′ /∈ X(e)

s }.

Moreover, b− g = e(b′ − g′) gives |H| = e|f(H)|.
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To see that Qe(λ \H) = Qe(λ) \ f(H) when H = Hi,j(λ) with e | hi,j(λ): from Proposi-
tion 4.7, we know that Z is a β-set for λ \H, where

Z = (X \ {hi}) ⊔ {hi − hi,j(λ)} = (X \ {b′e+ s}) ⊔ {g′e+ s}

Note e | |X| = |Z|, so we can use Z to calculate Qe(λ \ H): Z
(e)
t = X

(e)
t for all t ∈

{0, 1, . . . , e − 1} \ {s}, and Z(e)
s = (X

(e)
s \ {b′}) ⊔ {g′}. So Z

(e)
s is a β-set for λ(s) \ f(H),

hence Qe(λ \H) = (λ(0), . . . , λ(s−1), λ(s) \ f(H), λ(s+1), . . . , λ(e−1)) =: Qe(λ) \ f(H).

Example. Continue the example from before, so let e = 3, λ = (6, 5, 2, 13) ⊢ 16. Then
Xλ = {11, 9, 5, 3, 2, 1}.

hook lengths Aλ 3-quotient

11 7 5 4 3 1
9 5 3 2 1
5 1
3
2
1

0 1 2

0 0 1 2
1 3 4 5
2 6 7 8

3 9 10 11

Q3(λ) = ((2, 1), ∅, (1))
=
(

3 1
1

, ∅, 1

)

h1,5(λ) = 3 11 → 8 H1,2(λ)
f7−→ H1,1(λ

(2))

row 1 h1 → h1 − h1,5(λ) 11 ≡ 2 mod 3

h2,1(λ) = 9 9 → 0 H2,1(λ)
f7−→ H1,1(λ

(0))

h2,3(λ) = 3 9 → 6 H2,3(λ)
f7−→ H1,2(λ

(0))

h4,1(λ) = 3 3 → 0 H4,1(λ)
f7−→ H2,1(λ

(0))

To see that e.g. H2,3(λ)
f7−→ H1,2(λ

(0)) note that the runner 0 of the abacus goes from

0

0
3
6
9

to

0

0
3
6
9

which has partition (1, 1) = = λ(0) \H1,2(λ
(0)) by Lemma 4.3.

Definition. Let e ∈ N, λ ⊢ n. Then the e-weight of λ is we(λ) := |Qe(λ)| :=
∑e−1

i=0 |λ(i)|.

Proposition 4.12. Let e ∈ N, λ ⊢ n. Then

(i) we(λ) is the number of e-hooks we need to remove to get from λ to Ce(λ).

(ii) |λ| = |Ce(λ)|+ e|Qe(λ)|.
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(iii) we(λ) is the number of hooks of λ of size divisible by e.

Proof.

(i) Induct on we(λ). If we(λ) = |Qe(λ)| = 0, then by Theorem 4.11, λ has no e-hooks,
and so λ = Ce(λ). Now suppose we(λ) > 0. Then by the same theorem, λ has a
hook length divisible by e. So there also exists a hook H of λ of size exactly e, by
Corollary 4.6 or also Theorem 4.11. Recall Qe(λ\H) = Qe(λ)\f(H) and |f(H)| = 1,
so we(λ) = |Qe(λ)| = 1 + |Qe(λ) \ f(H)| = 1 + |Qe(λ \H)| = 1 + we(λ \H), so the
claim follows from the inductive hypothesis since we removed one e-hook to get from
λ to λ \H and Ce(λ) = Ce(λ \H).

(ii) Immediate from (i).

(iii) Follows from Theorem 4.11 as |Qe(λ)| is the number of hooks of Qe(λ).

Theorem 4.13. Let e ∈ N, n ∈ N0, and define

B(n) :=
{
(γ; ρ0, ρ1, . . . , ρe−1)

∣∣∣ γ is an e-core partition, ρi is a partition for all i

and |γ|+ e
∑e−1

i=0 |ρi| = n

}
.

Then

g : ℘(n) −→ B(n),

λ 7−→ (Ce(λ);Qe(λ))

is a bijection. In other words, a partition is uniquely determined by its e-core and e-
quotient.

Proof.

• By Proposition 4.12, n = |λ| = |Ce(λ)| + e|Qe(λ)|, so g(λ) ∈ B(n) and g is well-
defined.

• g is surjective: Let (γ; ρ) ∈ B(n), where ρ = (ρ0, ρ1, . . . , ρe−1). Let X be a β-set

for γ such that e | |X| and |X(e)
i | ≥ ℓ(ρi) for all i. Then define Zi to be the β-set

for ρi such that |Zi| = |X(e)
i | for all i, and set Z :=

⊔e−1
i=0{ae + i | a ∈ Zi}. Let

λ = P(Z). Since γ is an e-core, X = X(e) and so we have Z(e) = X(e) = X. Hence

Ce(λ) = P(Z(e)) = P(X) = γ. Next, e | |X| = |Z|, so Qe(λ) = (λ(0), . . . , λ(e−1)) with

λ(i) = P(Z(e)
i ) = P(Zi) = ρi. Finally, by Proposition 4.12, |λ| = |Ce(λ)|+e|Qe(λ)| =

n since (γ; ρ) ∈ B(n). So g(λ) = (γ; ρ) with λ ⊢ n.

• g is injective: notation as above, suppose g(µ) = (γ; ρ), for some µ ⊢ n. Since
Ce(µ) = γ, there exists a unique β-set W for µ such that |W | = |X|. Now |W(e)| =
|W | = |X|, and P(W(e)) = γ = P(X). Hence W(e) = X by Lemma 4.2. Also,
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|W (e)
i | = |(W(e))

(e)
i | = |X

(e)
i | = |Z

(e)
i |, and P(W

(e)
i ) = ρi since g(µ) = (γ; ρ) noting

that e | |X| = |W |. But also ρi = P(Z(e)
i ), hence W

(e)
i = Z

(e)
i for all i again from

Lemma 4.2.

Thus W(e) = X = Z(e) and W
(e)
i = Z

(e)
i for all i, so W = Z, so µ = P(W ) = P(Z) =

λ.

Example. How do we reconstruct λ, given Ce(λ) and Qe(λ)? Let e = 3 and (γ; ρ) =
((3, 1); (2, 1), ∅, (1)) ∈ B(16). We expect λ = (6, 5, 2, 13) ⊢ 16.

• Step 1. Start with Aγ ,

0 1 2

0 0 1 2
1 3 4 5
2 6 7 8

...

• Step 2. Shift to get e | |X|,
0 1 2

0 0 1 2
1 3 5
2 6 7 8

...

• Step 3. Add enough full rows of beads, i.e. shift enough by multiples of e, to get

|X(e)
i | ≥ ℓ(ρi) for all i,

0 1 2

0 0 1 2
...

...

# # # #

# # # #

# # # #

# # # #
...

...

64



• Step 4. Slide down to get ρi on runner i for all i.

0 1 2

0 0 1 2
...

...

# # # #

# # # #

# # # #

# # # #
...

...

Now this is an abacus configuration A for λ. We can now shift back and start
numbering after the green dashed line. So we get the β-set {11, 9, 5, 3, 2, 1}. So
λ = P(A) = (6, 5, 2, 13).

4.2 Towers

Just as the division algorithm for integers gives us base e expansion, we can use Theo-
rem 4.13 to give “e-adic expansion” for partitions.

Example. Let e = 3, λ = (6, 5, 2, 13) ⊢ 16. Then C3(λ) = (3, 1), Q3(λ) = ((2, 1), ∅, (1)).

λ(0) = (2, 1)
A(X

λ(0)
)+1 =

0 1 2

0 0 1 2
1 3 4 5
2 6 7 8

...

C3(λ
(0)) = ∅

Q3(λ
(0)) = (∅, (1), ∅)

λ(1) = ∅
AX

λ(1)
=

0 1 2

0 0 1 2
1 3 4 5
2 6 7 8

...

C3(λ
(1)) = ∅

Q3(λ
(1)) = (∅, ∅, ∅)

λ(1) = (1)
A(X

λ(1)
)+2 =

0 1 2

0 0 1 2
1 3 4 5
2 6 7 8

...

C3(λ
(2)) = (1)

Q3(λ
(2)) = (∅, ∅, ∅)

We get the sequence of quotients as follows:

λ = (6, 5, 2, 13)

λ(0) = (2, 1) λ(1) = ∅ λ(2) = (1)

λ(0)(0) = ∅ λ(0)(1) = (1) λ(0)(2) = ∅ λ(2)(0) = ∅ λ(2)(1) = ∅ λ(2)(2) = ∅
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The 3-cores are

C3(λ) = (3, 1)

C3(λ
(0)) = ∅ C3(λ

(1)) = ∅ C3(λ
(2)) = (1)

∅ (1) ∅ ∅ ∅ ∅

Definition. Let e ∈ N. An e-tower is an infinite sequence T = (T0, T1, T2, . . . ) such that
each Tj is a sequence of ej many partitions, Tj = (λj0, λ

j
1, . . . , λ

j
ej−1

).

• The Tj are the layers or rows of T , define |Tj | :=
∑ej−1

j=0 |λ
j
i |.

• The depth of T is depth(T ) = sup{k ∈ N0 | |Tk| ≠ ∅}. We will call the depth of the
empty tower −1.

• We say T is an e-core tower if depth(T ) < ∞ and λji is an e-core partition for all
i, j.

As we saw in the example above, we can visualise e-towers using graphs.

• vertices: λji ,

• edges: µ, ν are joined if µ = λji and ν = λj+1
ie+t for some j ∈ N0, i ∈ {0, 1, . . . , ej −

1}, t ∈ {0, 1, . . . , e− 1}.

e.g. for e = 2, λ00

λ10

λ20 λ21

λ11

λ22 λ23

These graphs are rooted, ordered, full e-ary trees. When we use graphs to describe e-
towers, we always mean trees like this.

Notation. Let e ∈ N

• [e] := {0, 1, . . . , e− 1} (residues mod e)

• For each x ∈ [e], writeQe(λ
(x)) = (λ(x,0), λ(x,1), . . . , λ(x,e−1)), instead of λ(x)(0), λ(x)(1),

etc.

• Similarly, for all r ∈ N, and for all i = (i1, i2, . . . , ir) ∈ [e]r, will write Qe(λ
i) =

(λ(i1,i2,...,ir,0), . . . , λ(i1,...,ir,e−1)).

Definition. Let e ∈ N, λ ⊢ n. The e-quotient tower of λ is the e-tower TQ(λ) with

• TQ(λ)0 = (λ)
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• TQ(λ)1 = Qe(λ) = (λ(0), λ(1), . . . , λ(e−1)).

• For all j ∈ N, TQ(λ)j = (λi)i∈[e]j , lexicographically ordered.

Lemma 4.14. Let e ∈ N, λ ⊢ n, TQ(λ) the e-quotient tower. Suppose e ≥ 2, then
depth(TQ(λ)) <∞.

Proof. From Proposition 4.12, |λ| = |Ce(λ)|+e|Qe(λ)| ≥ |Qe(λ)| with equality iff |Ce(λ)| =
|Qe(λ)| = 0, since e ≥ 2. By Theorem 4.13, equality holds iff λ = ∅. Hence |TQ(λ)j | >
|TQ(λ)j+1| unless TQ(λj) = (∅, . . . , ∅).

Remark. Q1(λ) = (λ(0)) = (λ), so the 1-quotient tower TQ(λ) has all layers equal to (λ).
So its depth is −1 if λ = ∅, and ∞ otherwise.

Definition. Let e ∈ N, λ ⊢ n. The e-core tower of λ is the e-tower TC(λ) obtain from
the e-quotient tower TQ(λ) by replacing every vertex with its e-core. That is, TC(λ)j =
(Ce(λ

i))i∈[e]j , lexicographically ordered.

When e ≥ 2, depth(TC(λ)) < ∞ since depth(TQ(λ)) < ∞. When e = 1, hen TC(λ) is
empty, so also depth(TC(λ)) <∞. So TC(λ) is indeed an e-core tower.

Lemma 4.15. Let e ∈ N, λ ⊢ n. For x ∈ [e], the subtree of TC(λ) rooted at Ce(λ
(x)) is

the e-core tower of λ(x), so the (j + 1)-th layer of TC(λ) is the concatenation of the j-th
layers of TC(λ(0)), TC(λ(1)), . . . , TC(λ(e−1)). That is, TC(λ(x))j = (Ce(λ

(x,i)))i∈[e]j and

TC(λ)j+1) = (TC(λ(0))j , T
C(λ(1))j , . . . , T

C(λ(e−1))j).

Proof. The subtree of TQ(λ) rooted at λ(x) is TQ(λ(x)).

Theorem 4.16. Let e ∈ N, e ≥ 2, let n ∈ N0. Define

θ(n) := {e-core towers T such that

∞∑
j=0

|Tj |ej = n}.

Then

h : ℘(n) −→ θ(n),

λ 7−→ e-core tower TC(λ)

is a bijection.

Proof. First, we check
∑∞

j=0 |TC(λ)j |ej = n, by induction on n. The base case n = 0 is

clear since then λ = ∅. Now suppose n > 0. Then n = |λ| = |Ce(λ)| + e
∑e−1

x=0 |λ(x)| =
|TC(λ)0|+e

∑e−1
x=0

∑∞
j=0 |TC(λ(x))j |ej by the inductive hypothesis, since≥ 2 means |λ(x)| <

|λ|. This is

|TC(λ)0|+
∞∑
j=0

( e−1∑
x=0

|TC(λ
(x)
j )|

)
ej+1 = |TC(λ)0|+

∞∑
j=0

|TC(λ)j+1|ej+1 =
∞∑
j=0

|TC(λ)j |ej .
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Next, to prove that h is a bijection, we show for all T ∈ θ(n) that there exists a unique
λ ⊢ n such that TC(λ) = T . For x ∈ [e], let S(x) be the subtree of T rooted at λ1x,
where T = (T0, T1, T2, . . . ), Tj = (λj0, λ

j
1, . . . , λ

j
ej−1

). Since T is an e-core tower, so is

S(x). Then since nx :=
∑∞

j=0 |S(x)j |ej ≤
∑∞

j=0 |Tj+1|ej < |T0| +
∑∞

j=0 |Tj+1|ej+1 =
n, we can use inductive hypothesis to see that there is a unique µx ⊢ nx such that
TC(µx) = S(x). By Theorem 4.13 there is a unique partition λ such that Ce(λ) = λ00
and Qe(λ) = (µ0, µ1, . . . , µe−1). Observe TC(λ) = T since TC(µx) = S(x) = TC(λ(x)), i.e.
TC(µx) is the subtree of TC(λ) rooted at λ1x = Ce(λ

(x)) = Ce(µx). To check |λ| = n:

|λ| = |Ce(λ)|+ e

e−1∑
x=0

|µx|

= |TC(λ)0|+ e

e−1∑
x=0

∞∑
j=0

|S(x)j |ej

= |λ00|+
∞∑
j=0

( e−1∑
x=0

|S(x)j |
)
ej+1

=
∞∑
j=0

|Tj |ej = n

Uniqueness of λ is also clear from this argument.

Remark. This is not a bijection when e = 1 since then TC(λ) is empty for all λ.

Example. Given T ∈ θ(n), how to compute λ = h−1(T )? Let e = 3, T =

(1)

∅

∅ (1)

∅

∅

(2)

∅

∅

where ∅ means that from that vertex onwards there are only empty partitions. We have
n = 1 · 30 + 2 · 31 + 1 · 32 = 16.

• When we see a subtree rooted at an e-core partition γ with all empty below, this
subtree is the e-core tower of γ because Ce(γ) = γ, Qe(γ) = (∅, . . . , ∅).

• We will draw boxes to replace subtrees by the partition whose e-core tower is that
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subtree.
(1)

∅

∅ (1) ∅

(2) ∅

• Work up the layers: What µ has TC(µ) = ∅

∅ (1) ∅

? It is the partition µ with

C3(µ) = ∅ and Q3(µ) = (∅, (1), ∅). We showed how to find this in the example after
Theorem 4.13. In this case we get µ = (2, 1). Then we get

T = (1)

(2, 1) (2) ∅

So T = TC(λ) where C3(λ) = (1) and Q3(λ) = ((2, 1), (2), ∅). We find that λ =
(7, 6, 3).

Example. How does hook removal interact with core towers? Let e = 3, λ = (7, 6, 3),

TC(λ) =

TC((2, 1)) =

(1)

∅

∅ (1)

∅

∅

(2)

∅

∅

λ 0 1 2
...

# # #

# # #

# # #

# # #

# # #

(a) Remove the 3-hook marked in
× × ×

. So let µ = λ \H, where H = H3,1(λ),

h3,1(λ) = 3. On the abacus:

λ 0 1 2
...

# # #

# # #

# # #

# # #

# # #
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So C3(µ) = (1) = C3(λ), Q3(µ) = Q3(λ) \ f(H) = (λ(0) \ f(H), λ(1), λ(2)) =
((2), (2), ∅). We have

TC(µ) =

TC((2)) =

(1)

(2)

∅

(2)

∅

∅

(b) Remove the 9-hook marked in
× ×

× × × ×
× × ×

. Let γ = λ \K, where K = H1,1(λ),

h1,1(λ) = 9.
λ 0 1 2

...

# # #

# # #

# # #

# # #

# # #

So C3(γ) = (1) = C3(γ) and Q3(γ) = Q3(γ) \ f(K) = (λ(0) \ f(K), λ(1), λ(2)) =
(∅, (2), ∅). So

TC(γ) =

TC(∅) =

(1)

∅ (2)

∅

∅

Proposition 4.17. Let e ∈ N, let k, n ∈ N0 with n < ek+1. Let λ ⊢ n and µ =
Cek(λ). Then the e-core tower TC(µ) of µ is obtained from the e-core tower TC(λ) by
replacing every partition in the k-th layer by the empty partition. That is, TC(λ)j ={
TC(λ)j if j ̸= k,

(∅, ∅, . . . , ∅) if j = k.

Part (b) of the example above is an example for this proposition.

Proof. Example Sheet 4.

Definition. Let p be a prime. The p-adic valuation vp : N → N0 is defined as vp(n) =
max{k ∈ N0 s.t. pk | n}.

Theorem 4.18. Let p be prime, n ∈ N0 with p-adic expansion n =
∑∞

r=0 αrp
r, i.e.

αr ∈ {0, 1, . . . , p− 1} for all r ∈ N0. Let λ ⊢ n. Then

vp(χ
λ(1)) =

∑∞
r=0 |T c(λ)r| −

∑∞
r=0 αr

p− 1
,
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where TC(λ) is the p-core tower of λ.

Proof. Recall the hook length formula, Theorem 3.1: We get

vp(χ
λ(1)) = vp

( n!∏
n∈H(λ) h

)
= vp(n!)− vp

( ∏
h∈H(λ)

h
)
.

• Step 1. We compute vp(n!). Observe that

vp(n!) =
∞∑
r=1

⌊ n
pr
⌋ =

∞∑
r=1

(αr + αr+1p+ αr+2p
2 + . . . )

=

∞∑
r=1

αr(1 + p+ p2 + · · ·+ pr−1)

=
∑
r=1

αr
pr − 1

p− 1

=
1

p− 1

( ∞∑
r=1

αrp
r −

∞∑
r=1

αr

)
=

1

p− 1

( ∞∑
r=0

αrp
r −

∞∑
r=0

αr

)
=
n−

∑∞
r=0 αr

p− 1
.

• Step 2. We claim that vp(
∏

h∈H(λ) h) =
∑∞

r=1 |TQ(λ)r|, where TQ(λ) is the p-
quotient tower of λ. We prove this by induction on n. The base case n = 0 is clear
since vp(1) = 0. Now suppose n > 0. We write H(Qp(λ)) for the multiset of hook
lengths of Qp(λ). Then

vp

( ∏
h∈H(λ)

h
)
= vp

( ∏
h∈H(λ)

p|h

hv)

Theorem 4.11
= vp

( ∏
h∈H(Qp(λ))

ph
)

= |Qp(λ)|+ vp

( ∏
h∈H(Qp(λ))

h
)

= |Qp(λ)|+ vp

( p−1∏
x=0

∏
h∈H(λ(x))

h
)

= |TQ(λ)1|+
p−1∑
x=0

vp

( ∏
h∈H(λ(x))

h
)
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ind. hypothesis
= |TQ(λ)1|+

p−1∑
x=0

∞∑
r=1

|TQ(λ(x))r|

= |TQ(λ)1|+
∞∑
r=1

p−1∑
x=0

|TQ(λ(x))r|

= |TQ(λ)1|+
∞∑
r=1

|TQ(λ)r+1|

=

∞∑
r=1

|TQ(λ)r|

• Step 3. By Proposition 4.12 for all r ∈ N0, i ∈ [p]r,

|λi| = |Cp(λ
i)|+ p|Qp(λ

i)|.

Summing over i ∈ [p]r, we get

|TQ(λ)r| = |TC(λ)r|+ p|TQ(λ)r+1|.

Therefore,

n = |λ| = |TQ(λ)0|

=
∞∑
r=0

|TQ(λ)r| −
∞∑
r=1

|TQ(λ)r|

=
( ∞∑

r=0

|TC(λ)r| − p
∞∑
r=0

|TQ(λ)r+1|
)
−

∞∑
r=1

|TQ(λ)r|

=
∞∑
r=0

|TC(λ)r|+ (p− 1)
∞∑
r=1

|TQ(λ)r|.

Hence

vp(χ
λ(1)) = vp(n!)− vp

( ∏
h∈H(λ)

h
)

=
1

p− 1

(
n−

∞∑
r=0

αr

)
−

∞∑
r=1

|TQ(λ)r|

=
1

p− 1

( ∞∑
r=0

|TC(λ)r|+ (p− 1)

∞∑
r=1

|TQ(λ)r| −
∞∑
r=0

αr

)
−

∞∑
r=1

|TQ(λ)r|

=
1

p− 1

( ∞∑
r=0

|TC(λ)r| −
∞∑
r=0

αr

)
.
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Corollary 4.19. Let p be prime, n ∈ N0 with p-adic expansion n =
∑∞

r=0 αrp
r. Let

λ ⊢ n. Then vp(χ
λ(1)) = 0 iff |TC(λ)r| = αr for all r ∈ N0, where T

C(λ) is the p-core
tower of λ.

Proof. “if” is clear from the theorem. For “only if” the theorem gives us
∑∞

r=0 |TC(λ)r| =∑∞
r=0 αr. Also note that

∑∞
r=0 |TC(λ)r|pr = n. Let βr = |TC(λ)r|. So we have∑

r≥0

αr =
∑
r≥0

βr∑
r≥0

αrp
r =

∑
r≥0

βrp
r

We show that αr = βr for all r ∈ N0. First, β0 ≡ α0 mod p. Hence we can write
β0 = α0 + m1p, for some m1 ∈ N0. Since β0 ∈ N0 and α0 ∈ {0, 1, . . . , p − 1}. Thus∑

r≥0 βrp
r =

∑
r≥2 βrp

r + (β1 +m1)p + α0 =
∑

r≥0 αrp
r. Then β1 +m1 ≡ α1 mod p, so

β1 +m1 = α1 +m2p for some m2 ∈ N0. Iterating, βr +mr = αr +mr+1p for all r ∈ N0

where mr ∈ N0 and m0 = 0. Then
∑

r≥0 αr =
∑

r≥0 βr =
∑

r≥0 αr + (p − 1)
∑

r≥0mr,
hence mr = 0 for all r and so αr = βr.

Example. We compute Irr2′(S4). By Theorem 4.16 there is a bijection between partitions
and 2-core towers. By the corollary, for λ ⊢ 4 = 1 · 22, we have χλ ∈ Irr2′(S4) iff
|TC(λ)2| = 1 and |TC(λ)r| = 0 for all r ̸= 2. So we already see that | Irr2′(S4)| = 4. The
towers are:

∅

∅

(1)

∅

∅

∅

∅

∅

∅ (1)

∅

∅

∅

∅ ∅

(1)

∅

∅

∅

∅ ∅

∅ (1)

∅

As in the example after Theorem 4.16 we compute:

∅

∅

(1) ∅

∅

↓

∅

(12) ∅

↓

λ = (14)

∅

∅

∅ (1)

∅

↓

∅

(2) ∅

↓

λ = (3, 1)

∅

∅ ∅

(1) ∅
↓

∅

∅ (12)

↓

λ = (2, 1)

∅

∅ ∅

∅ (1)

↓

∅

∅ (2)

↓

λ = (4)
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Hence we see that

Irr2′(S4) = {χλ s.t. λ ∈ {(4), (3, 1), (2, 12), (14)}}.

Note that these partitions are exactly the hooks of size 4.

4.3 The McKay Conjecture

Recall the McKay Conjecture: Let G be a finite group, p a prime, P a Sylow p-subgroup
of G. Then

| Irrp′(G)| = | Irrp′(NG(P ))|.

Definition. Let G be a finite group, p a prime. The McKay numbers of G are

mi(p,G) = |{χ ∈ Irr(G) s.t. vp(χ(1)) = i}|,

for i ∈ N0.

So we are interested in m0(p,G) for G = Sn (and G = NSn(P )).

Corollary 4.20. Let n ∈ N with binary expansion n = 2n1 + 2n2 + · · · + 2nt, i.e. t ∈ N,
and the ni ∈ N0 are distinct. Then

m0(2, Sn) = | Irr2′(Sn)| = 2n1+n2+···+nt .

Proof. By Theorem 4.16, we have a bijection

h : ℘(n) −→ θ(n)

λ 7−→ 2-core tower TC(λ)

By Corollary 4.19, for λ ⊢ n we have χλ ∈ Irr2′(Sn) iff

|TC(λ)r| =

{
1 if r ∈ {n1, . . . , nt},
0 otherwise.

But |TC(λ)r| = 1 means TC(λ)r is a sequence of 2r many partitions, exactly one of which
is (1), the rest ∅. So the number of such 2-core towers is 2n1 · 2n2 · · · 2nt .

Corollary 4.21. Let p be a prime, n ∈ N with p-adic expansion n =
∑

r≥0 αrp
r. Then

m0(p, Sn) = | Irrp′(Sn)| =
∏
r≥0

kp(p
r, αr),

where kp(l,m) is the number of tuples of partitions (γ1, . . . , γl) such that each γi is a p-core

partition and
∑l

i=1 |γi| = m.
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Proof. The same as the previous corollary, use Theorem 4.16 and Corollary 4.19.

Sketch towards the McKay conjecture. We need some group theoretic facts.

Suppose p = 2.

• Let Pn ∈ Syl2(Sn) be a Sylow 2-subgroup of Sn. Then NSn(Pn) = Pn.

• For n = 2k, Irr2′(NSn(Pn)) = Irr2′(Pn) = {degree 1 characters of Pn} as the degree
of any irreducible character divides the group order. But now the degree 1 charac-
ters of any group H are in bijection with Irr(H/H ′) where H ′ is the commutator
subgroup. If H = P2k , then H/H

′ ∼= C×k
2 , hence | Irr2′(P2k)| = | Irr(C×k

2 )| = 2k.

• For general n = 2n1+2n2+· · ·+2nt , count the number of factors of p = 2 in |Sn| = n!
to see that

Pn
∼= P2n1 × P2n2 × · · · × P2nt .

Then

| Irr2′(NSn(Pn))| = | Irr2′(Pn)| =
s∏

i=1

| Irr2′(P2ni )| =
b∏

i=1

2ni = m0(2, Sn).

For p > 2 the first point need no longer be true.

75



Bibliography

[CR62] Charles W Curtis and I. Reiner. Representation theory of finite groups and as-
sociative algebras. 1962.

[Isa76] I. Martin Isaacs. Character theory of finite groups. Pure and applied mathemat-
ics (Academic Press) ; 69. New York: Academic Press, 1976.

[Jam78] G. D James. The Representation Theory of the Symmetric Groups. Vol. 682.
Lecture Notes in Mathematics. Berlin, Heidelberg: Springer Berlin / Heidelberg,
1978.

[JK84] G James and A Kerber. The representation theory of the symmetric group. En-
cyclopedia of mathematics and its applications volume 16. 1984.

[Ols94] J. Olsson. Combinatorics and Representations of Finite Groups. Vorlesungen
aus dem Fachbereich Mathematik der Universität GH Essen, Heft 20. 1994.

76


	1 Introduction
	1.1 Motivation
	1.2 Background
	1.2.1 Representations & modules
	1.2.2 Some Linear Algebra
	1.2.3 Character Theory


	2 Specht Modules
	2.1 The Symmetric Group
	2.2 Irreducible modules
	2.3 Standard Basis Theorem

	3 Character Theory
	3.1 Hook Length Formula
	3.2 The Determinantal Form
	3.3 Applications
	3.3.1 Young's Rule Revisited
	3.3.2 Branching Rule
	3.3.3 Murnaghan-Nakayama Rule


	4 McKay Numbers
	4.1 James's Abacus
	4.2 Towers
	4.3 The McKay Conjecture

	Bibliography

