Representation Theory of Symmetric Groups
Cambridge Part III, Michaelmas 2022

Taught by Stacey Law

Notes taken by Leonard Tomczak

Contents

(1__Introduction|

(.1 Motivationl . ... ..
1.2  Background| . . . . ..

(1.2.1  Representations & modules| . . . . . ... ... ... ... ... ..

[1.2.2  Some Linear Algebral. . . . . . ... ... .. ... ... ... ...,

(1.2.3  Character Theory|] . . ... .. ... ... ... . ... ........

[2

Specht Modules|

2.1  The Symmetric Group|

Character Theory|

[3.1 Hook Length Formulal

3.2  The Determinantal Form| . . . . . . .. .. ... .. ... ...

[3.3  Applications|. . . . . .

[3.3.1  Young’s Rule Revisited| . . . . .. ... ... ... .. ........

[3.3.2  Branching Rule]

[3.3.3  Murnaghan-Nakayama Rulel . . . . . ... ... ... ... ... ...

McKay Numbers|

11
18

23
23
29
42
42
46
48

53
53
65
74

76



1 Introduction

1.1 Motivation

e Representation theory of finite groups: active area of research

e Many open problems, e.g. Local-Global Conjectures
Definition. Let G be a finite group, p a prime. Then we let

o Irr(Q) := {irreducible characters of G},

o Irry(G) :={x € Irr(G) | pt x(1)}.
Conjecture (McKay 1972). Let G be a finite group, p a prime, P a Sylow p-subgroup of
G. Then

| Irryy (G)| = |Irry (Ng(P))].

The case p = 2 has been proved in 2016.

Theorem 1.1 (Olsson 1976). The McKay Conjecture holds for all symmetric groups Sy,
and all primes p.

Outline of the course:
e Chapter [} Introduction and background
e Chapter 2t Specht modules ([Jam78g|)
e Chapter 3t Character theory (|JK84])
e Chapter {4 McKay numbers ([O1s94])

1.2 Background

Notation.
e N=1{1,2,3,...},No={0,1,2,...}.
o If n e N, let [n] :={1,2,...,n}.

o Irr(G) (or Irrp(G) to specify the field F) is a complete set of irreducible representa-
tions of G over F.



1.2.1 Representations & modules

F will denote an arbitrary field and G a finite group. All modules considered in this course
will be finite-dimensional left modules.

A (finite-dimensional) representation of G over F is a group homomorphism p : G —
GL(V'), where V is a (finite-dimensional) vector space over F. We write g - v for p(g)(v).
Equivalently a representation is an FG-module. The degree or dimension of a representa-
tion is the dimension of the underlying vector space.

Example. The (one-dimensional) trivial representation of G is a one-dimensional vector
space with trivial G-action. It will be denoted by 1.

Other concepts.
e Subprepresentations W of V', written W <V

e Simple or irreducible modules, i.e. those with no proper non-zero submodules.

Semisimple or completely reducible modules, i.e. direct sums of simple modules.

e Decomposable modules, i.e. modules decomposing into a direct sum of proper sub-
modules; opposite: indecomposable.

o G-homomorphisms: If V. W are G-modules, then an F-linear map 6 : V — W is a
G-homomorphism if g - 0(v) = 0(g-v) for all g € G,v € V.

Useful results.

Lemma 1.2 (Schur’s Lemma). Let V, W be simple G-modules, 6 : V. — W a G-homomorphism.
Then 6 = 0 or 6 is an isomorphism. If F = F28 and V = W, then @ = cidy for some
c€F, ie Endpg(V) = F.

Example. The (left) regular module of G is FG viewed as a left module over itself. If
Irrp(G) = {S; | ¢ € I'} and charF = 0, then

IFG ~ @Si@dim]y S;
el
as G-modules.

Theorem 1.3 (Maschke’s Theorem). Suppose charF 1 |G|. IfU <V are G-modules, then
there is a G-submodule W <V such that V =U & W.

Corollary 1.4. Every finite-dimensional representation of a finite group G over F where
char F 1 |G| is semisimple.

Common constructions.

e Tensor products: If V,W are G-modules, then V ®r W becomes a G-module via
g-(v@w)=(g9v)® (gw) for all g € G,v € V;w € W.



e Restriction: If H < G, V is a G-module, then we can also view V' as an H-module,
written V |7, V| ., Vir or Res§ (V).

e Induction: If H < G, U is an H-module, we can get a G-module out of it. Let
{ti | i € I} be a set of left coset representatives of H in G. Then the induction of U
from H to G is the vector space direct sum

@(ti ®@U) = UTfI, UTG or UY,

el
where t; ® U = {t; ® u | u € U}, and the G-action is as follows: ¢ - (t; ® u) =
t; ® (tj_lgt,;)u where given g € G,i € I, then j € I is the unique index such that
gt; € t;H. Equivalently, we can define the induction as U Tg = FG Qrg U, see
Example Sheet 1, Question 1.

e Permutation modules: A G-module with a permutation basis B, i.e. g-b € B for all
g € G,b € B. E.g. the left regular module FG is a permutation module with basis
B=aG.

Lemma 1.5. Suppose G acts transitively on a set ). Let M be the corresponding permu-

tation module. Then M = ]IHTG, where H = Stabg(w) for any w € Q.

Proof. Special case of Example Sheet 1, Question 2. O

1.2.2 Some Linear Algebra

e Recall that if M is a (finite-dimensional) F-vector space, M = Homp(M, F) is again
an F-vector space. If eq, ..., e is a basis of M, then the dual basis €1,...,e, € M*
is defined by €i(€j) = (S”

e Let M be a G-module, the dual M* of M carries the G action (g-¢)(v) = ¢(g~*-v).

e Suppose we have a symmetric bilinear form (-, -) on some finite-dimensional F-vector
space M. For a vector subspace V of M define

Vi={me M| (v,m)=0% eV}

Consider the linear map ¢ : M — M*,m — (-,m). Note even if (-, -) is non-singular,
ie. ker¢p = M+ =0, we could have VNV #£0.

We can describe how large this is using a basis of V. Let e1,...,e; of V. The Gram
matrix of V' w.r.t. this basis be the matrix A with A;; = (e;, e;).

Lemma 1.6. We have that dimp V/(V NV+) = rank A.
Proof. Consider ¢ : V. — V* v — (-,v). Let €1,...,e be the basis of V* dual to
€1,...,e. Then p(e;) = Z§:1<€ja ei)€j. So the Gram matrix A is the matrix of ¢

with repsect to the basis eq,...,e; and €1,...,e;. Clearly kerp = VNV, and so
dimV/(VNV+) =dimV — dimker ¢ = rank A. O



1.2.3 Character Theory

In this subsection, F = C. Let p : G — GL(V') be a representation of the finite group G
over some finite-dimensional C-vector space V. Recall that this representation affords the
character xy : G — C, g — trp(g).

Theorem 1.7. CG-modules U,V are isomorphic iff xu = xv-
Useful facts.
e There is an inner product on class functions on G given by

X:¢ |G\ZX ) mzx

geG gelG
e Irr(G) is an orthonormal basis for the space of class functions w.r.t. (-, -), in particular
|Irr(G)| is the number of conjugacy classes of G.
e Characters of the usual constructions:

— Direct sum: xyev = xu + Xv-

Tensor product: xyeyv = XUXV-

Permutation modules: If V is a permutation module with permutation basis
B, then x(g) = |{b € B | gb = b}| is the number of fixed points of g.

Restriction: If H < G is a subgroup and V' a representation of G, then le g=
XVig = XV|H-

o Frobenius reciprocity: If x is a character of G, 6 a character of H, then
G
(X! 0) = (x0]7)

e Mackey’s theorem: For H, K < G, ¢ a character of H, we can compute (qﬁTg)lK by
decomposing it as a sum of characters indexed by a set of double coset representations
of K, H in G. (See handout for details)



2 Specht Modules

Let F be an arbitrary field.

2.1 The Symmetric Group

Let © be a finite set. Call the symmetric group on €, Sym(€2). When Q = [n], write S,
for Sym(£2).

Conventions:
e (123)(12) = (13) (i.e. composition from right to left)
e Sy = Sym(()) = trivial group
Some representations of S),:
o Trivial representation of Sy, 1g, .
e Sign representation of Sy, sgng :p: S, — F*, g+ sgn(g).
o Natural permutation module V,, with permutation basis [n].
Note V,, = llgn_lTS”, because Stab(n) = Sp_1.
Also Vol =V @ls, .

Definition. A partition A of n, written A F n, is a non-increasing sequence of positive
integers which sum to n, i.e. A = (A1,..., ) with \; € Ny A\ > Ao > -+- > A\ and
Zle Ai =n. We call

e )\; the parts of the partition,
e n the size of A (also denoted |\|),
o k the length of A (also denoted £(X)).
The set {\ | A\Fn} of all partitions of n will be denoted by p(n).

We can extend this notion to 0 by convention: the only partition of 0 is the empty sequence,
i.e. p(0)={0}.
Short notation: A\ = (4,3,3,1) = (4,32, 1) - 11.



Definition. Let A = (\1,..., ;) be a partition. The Young diagram of A is

Y(A) ={(,j) e NxN[1<i <k 1<j< N}

Typically, Young diagrams are drawn using boxes rather than points, e.g.:

(4) (3.1 (22 (219 1Y

p(4):lllll,_ll, ’_I’E

The rows and columns are numbered as in a matrix.

Definition. Let A = (A1,...,A\x) be a partition. The conjugate partition of \ is the
partition N such that Y (N') is the transpose of Y (X\). Explicitly, N = (p1, ..., py,) where
pi =#{i € k] | \i > j}. Note |N| = |\ and (X) = A

Example. Consider A = (4,3,1) 8. Then

and so

fe. N =(3,2,2,1).

Definition. Let A = (A\1,...,A\g) and p = (p1, ..., ps) be two partitions of n € N. Then
we say that A\ dominates p, written X > p or p < A\, if 25:1 A > 22:1 wi for all
le{1,2,...,min(k,s)}.

Example. Take n = 4. Then (4) > (3,1) > (2,2) > (2,12) > (1%).

However, in general, dominance is only a partial order, for example (4,3,1) & (5,1%) and
(5,1%) ¥ (4,3, 1).

Dominance can be extended to a total ordering on p(n), e.g. the lexicographic ordering:
If X # p, we say A > pif \; > p; where i = min{j € N | A\; # p;}.

Definition. Let A be a partition of n. A A-tableau, or Young tableau of shape A, is a
bijection t : Y(\) — [n]. The set of all A-tableaux will be denoted by A™.

We usually write the values of a Young tableau ¢ in the boxes of the Young diagram Y ().

Example. Take A = (3,1) F 4, so Y(\) = L] Consider the tableau ¢ : Y(A\) —

[4],(1,1) = 2,(1,2) = 3,(1,3) ~ 4,(2,1) + 1. Then we write this as a labelled Young
diagram, namely

2[3[4]
T .

t =




The natural permutation action of S, on [n] extends to a permutation action on A*:
(9-4)(0,7) = g(t(i, ) for (i,5) € Y (N), t € A%,
i.e. we just apply ¢ to each entry of ¢.

To continue the example above, take g = (123) € Sy. Then

2(3]4 3|1]4
gt —g- [P0 _[3ITT,

Definition. Let A = (\1,...,\x) be a partition and t € A*. For each 1 <i < k, define
Ri(t) == {t(i,4) |1 <j < Ai}
and for each 1 < j < A1, define
Cj(t) = {t(i,5) | 1 < i < (X);},
i.e. R;i(t), Cj(t) are the sets of entries in the i-th row, resp. j-th column of t.

Definition. Let A - n and t,s € A*. We say that t and s are row-equivalent, written
t ~r s, if Ri(t) = Ri(s) for all i. Note that ~g is an equivalence relation on A*, we
will denote the equivalence classes by O := A* /~g. Each element of Q (i.e. equivalence
class) will be called a A\-tabloid. We write {t} for the equivalence class containing t € A

12[3] . _[2
a5 5[5

Example. Consider A = (3,2) F 5 and ¢t = ) Clearly {t} = {s}.

N

To denote tabloids, we omit the vertical bars, i.e. we write

123 231
{t}=g5—=571—=1{sh

The natural permutation of S,, on A* descends to a well-defined action on Q.

Definition. Let A F n. The A-Young permutation module M? is the S,-module with
permutation basis Q.

Lemma 2.1. Let A= (A1,..., M) b n. Then M> = 15, 7" where Sy = Sy, x -+ x Sy, .

Proof. S, acts transitively on [n] and so acts transitively on Q*. For t € A*,

Sy = Stabs, ({t}) = {9 € Su | gR:(t) = Ri(t) ¥i} = Sym(Ri (1)) x -+ x Sym(Re(1))
gSM X SAk

The claim then follows from Lemma [I.5 O

Remark. The subgroup Sy of S, above is called a Young subgroup of type A. There is a

Young subgroup of type A for each set partitions of [n] into subsets of sizes A1, ..., A\x and
for fixed X they are all conjugate to each other in S,,, and all isomorphic to Sy, x--- xSy, .



Example. Take n =9, A = (4,3,2). There are (Z) (g) (g) = 1260 many Young subgroups
of type A.

Examples.
(a) Let A = (n). Then
Q= {12},
and S, acts trivially on this single A-tabloid. Then S) =5, and M (n) o~ 1s,.
(b) Let A= (n—1,1) F n, for n > 2. Then

Q,\_{1 2. i—1 4+l - n
J

1§¢§n}

Then Sy = Sp,_1 X S1 = S,_1, hence M1 =~ Ilsnfl]\s" = V,, the natural
permutation representation.

(c) Let A = (1") F n. Then {t} = {s} iff t = s for t,s € A*. So S, is trivial and so
M"Y ILlTS" is the regular module FS,.

Definition. Let A = (\1,...,\x) Fn and t € AN
(i) The row stabiliser of ¢ is
R(t) :={g € Sn | gRi(t) = Ry(t) Vi},
and similarly define the column stabiliser C(t).

(i) The column symmetriser of t is

b = Z sgn(g)g € FS,.
geC(t)

(iii) The polytabloid corresponding to ¢, or t-polytabloid, is

e(t) :=b;-{t} = Y sen(g)g- {t} € M .

geC(t)

Note that e(t) depends on the tableau ¢, not just the tabloid {t}.
Example. Let A = (2,1) 3. Then

() - T (E).

Definition. Let A - n. The A-Specht module is defined as

S = (e(t) | t € AN C M,

i.e. S* is the F-vector space spanned by polytabloids corresponding to tableaux of shape \.



The next lemma shows that S* is indeed a module over S,,.
Lemma 2.2. Let \Fn and t € AN
(1) eft) #0
(2) Vg € Sn, g-e(t) =e(g-1)
(3) Vg € C(t), g-e(t) = sgn(g)e(t)
(4) 8 is a cyclic submodule of M?, in particular S* = FS,, - e(u) for any u € A .

Proof.
(1) Observe that R(t)NC(t) =1, and so if g € C(t) and g - {t} = {t}, then g = 1.
It follows that the coefficient of {t} in e(t) is sgn(1) =1 # 0, hence e(t) # 0.
[In fact, R(t)NC(t) = 1 implies that e(¢) is a signed sum of |C(¢)| distinct A-tabloids]
(2) Observe that C(g-t) = gC(t)g~ !, and so
g-et)=g > sen(h)h-{t}
heC(t)

= > sen(h){gh-t}

heC(t)

= Y sen(ghg ghg ' {g -t}
heC(t)

= Z sgn(z)r - {g-t} =e(g-1t).

zeC(g-t)
(3) If g € C(t), then

g-et)= > sgn(h){gh-t} = > sgn(g'y){y-t} = sgn(g)e(t).
heC (t) yeC(t)
(4) That S is an S,-submodule of M* follows from (2)

That S* can be generated as an FS,-module by e(u) for any u € A* also follows
from (2) and the fact that S, acts transitively on A*.

O]

Examples.

(a) Let A = (n). We have by (1) and (4) of the lemma that 0 # S* < M*. But in a
previous example we showed that M = 1g . Hence S™ = 1  also.

10



(b) Let A = (1") F n. Then C(t) = S, and thus by the lemma, g - e(t) = sgn(g)e(t) for
all g € S, for any t € A*. Thus, dimp(S1!™)) =1 and SI") = FS,, - e(t) = sgng, .

(c) Let A=(2,1) 3. Then

5= (B« (B

By (iii) of the lemma,

= oom (D)

[o]=
w
~—
o
—~
S

o) () () e

[w»—l
[\&]
~—

2

I

9]
—
[o]=
w
~
~———"

tﬁ\r

. 3]2

since e.g. e( T [> = —a. Moreover,
_ 12 32
T3 I
5_21—31
3 2
_ 13 723
7_2 1 )

so a@ = 8+ . Since 3,7 are linearly independent, dim S* = 2 for all fields F. See
Exercise Sheet 1, Question 4 for more.

2.2 Irreducible modules

Goal: If charF = 0, then {S* | A\ n} is a full set of irreducible FS,,-modules.
Definition. Let A - n. Define a symmetric bilinear form (-,-) on M* via

{t}, {s}) = {(1) if {t} = {s},

otherwise,

for t,s € A and then extend linearly, i.e. we take the tabloids to be an “orthonormal
basis”.

We will always take the orthogonal complement U+ of a subspace U with respect to this
bilinear form.

Lemma 2.3. Let A+ n.
(1) The form (-,-) is Sp-invariant, i.e. {gx,gy) = (x,y) for all x,y,€ M* g € S,.
(2) If U is an Sy,-submodule of M*, then so is U*.

Proof.

(1) This is clearly true for z = {t},y = {s}, where t, s € A*, then follows by bilinearity.

11



(2) This follows from (1): For z € UL, g € S, we have (gx,u) = (z,g u) = 0 for all
weU,sogreUt

O

Plan:
e James’s Submodule Theorem: If U < M*, then U > S§* or U < (S*)*.
e JST = certain quotients of S* are irreducible.
This will give us the first part of our goal: S* is irreducible when char F = 0.
Then the second part will be to show that they are pairwise non-isomorphic.
Proposition 2.4. Let A\ = (\1,...,\x) Fn. Suppose t,u € A* satisfy by - {u} #0. Then
(1) 3h € C(t) such that h - {t} = {u},
(2) b -{u} = *e(?),
(3) by - M» = Fe(t).
Proof.
(1) We want to construct h € C(t) such that R;(h-t) = R;(u) for all i.

Claim: b; - {u} # 0 = if x # y are the numbers appearing in the same row of u,
then they appear in different columns of t.

Proof of claim: Suppose not, so (zy) € C(t). Take Z to be a set of left coset
representatives of ((xy)) in C(t), i.e. C(t) = ZUZ(xy).

Then by =3 cosen(9)g = X.ez58n(2)z(1 — (zy)). But then
be- {u} =) sen(2)z({u} — (zy) - {u}) =0,
z2€Z

since (zy) € R(u) as z,y belong to the same row in u. This concludes the proof of
the claim.

Returning to the proof of (1), let Ri(u) = {x1,z2,...,2),}. Suppose z, belongs to
column j, of t, for each r € [A]. By the claim the j, are pairwise distinct. Let

yr = t((1,r))-

Define hy = [],epn,)(zryr) € C(t). Then
TrFYr

Ri(hy -t) = {h1(y1),- -, ha(yr)} = {21, 20} = Ra(u).

Since hy € C(t), then C(hy -t) = hiC(t)h;* = C(t). Thus by = by, and so
bhlt . {u} 7é 0.

12



Let Rp(u) = {2,...,7),}. Suppose z; belongs to column j; of ¢’ = hy - t. By the
claim, the j; are pairwise distinct. Let y,. = t'((2,j;)). Define ha = [[,cn,)(779;) €

T FY)
C(t") = C(t). Observe Ry(hg-t') = Ro(u) and Ry(ha-t') = R1(t') = R1(u). That is:

Ri(hghl . t) = RZ(U,) for all 7 € {1, 2}.

Iteratively, we construct for each m € {3,4,...,k} an element h,, € C(t) such that
Ri(hmhm—1---h1 - t) = R;i(u) for all i € [m]. For m = k we get what we want by
taking h = hk s hghl.

(2) Let h be as in (1). Then by - {u} = bsh - {t} = sgn(h)b; - {t} = sgn(h)e(t).
(3) For all {u} € M?* we have either b; - {u} = 0 or b; - {u} = +{u} by (2), hence
by - M* C Fe(t) and equality holds as by {t} = e(t).
O

Theorem 2.5 (James’s Submodule Theorem). Let A+ n, U < M?>. Then either U > S
or U < (8M)*.

Proof. Suppose U £ (S*)*, then there exists z € U and t € A such that (z,e(t)) # 0.
Then

0# (z,e(t) = Y sen(9)(g 'z, {t}) = (b, z,{t}),

geC(t)

so in particular by -  # 0. By the proposition we have b; - x = ce(t) for some ¢ € F*. So
from by -2 € U we get e(t) € U and thus S* = FS,e(t) C U. O

Remark. By JST, if we decompose M* into a direct sum of indecomposable modules,
then there is a unique summand that contains S*. This module is denoted Y*, and called
the Young module corresponding to A (more later).

Corollary 2.6. Let A+ n. Then S*/(S* N (SM)1) is either O or irreducible.
Proof. If S* < (8*)*, then the quotient is zero, so now suppose S* N (S*)* is a proper

submodule of S*. Let U < S*. Then U < MA, so by JST we have U = Sror U <
SAN (SM)E. This tells us that S*/(S* N (S*)*) is irreducible. O

Definition. A representation p : G — GL,(FF) is absolutely irreducible if for any field
extension K of F, the corresponding representation p : G — GL,(K) is irreducible.

Example. Let G = C4 = (g). The representation

p: G — GL2(Q), plg) = <_01 (1)>

is irreducible, since it has no 1-dimensional submodules (i.e. eigenspaces of p(g)) when we
work over Q. However, it is not absolutely irreducible: p: G — GL2(Q(4)) is a direct sum
of two 1-dimensional submodules (because the eigenvalues of p(g) are +i).

13



Theorem 2.7. Let A n. Then S*/(8* N (SM)*) is either 0 or absolutely irreducible.

Proof. We can extract a basis eq, ..., e of S* consisting of polytabloids. By Lemma
dimg S*/(8* N (S*)1) = rank A

where A is the Gram matrix corresponding to ey, ..., e,. But A;; = (e;, e;) belongs to the

prime subfield of F (i.e. Q or F,) and so the dimension of $*/(S* N (S*)+) doesn’t change
when we extend F. Since over any field S*/(S* N (S*)1) is either 0 or irreducible by our
previous result, it is either 0 or absolutely irreducible. O

Corollary 2.8. If charF = 0, then S is irreducible for all partitions \.

Proof. Over Q the form (-,-) satisfies (u,u) > 0 for all u € M@, with equality iff © = 0.
Hence 86 N (8@)L = 0. Thus 86 is absolutely irreducible by the theorem. Hence Sp is
irreducible since F extends Q. O

Proposition 2.9. Let A = (A,...,\¢) and p = (p1,...,pus) be two partitions of n.
Suppose t € A* and u € A" with by - {u} # 0. Then
(1) 3h € C(t) such that for alll € {1,2,...,min(k,s)} we have

l l

(2) A> p.

Proof.

(1) Arguing as in the claim in the proof of Proposition we have that if © # y appear
in the same row of u, then they appear different columns of ¢.

Let Ry(u) = {x1,%2,...,24,}. Suppose z, lies in column j,. of ¢, so the j, are
pairwise distinct. Let y, = t((1,7)).

Define hy = [],¢[u,)(zryr) € C(t). Then
377‘752,17‘

Ri(u) ={z1,. o b ={ha(y1), - ha(ypa)} € Ra(ha - 1).
Since C(hy -t) = hiC(t)h7" = C(t), 50 bp,.¢ = by, 50 by, ¢ - {u} # 0.

Let Ro(u) = {21,2,...,%,,} and t' = hy - t. Suppose t'((iy,j;)) = x;. If i) > 2,
then let y, = t'((2,4,.)). Define hy = [ e, (2y,) € C(t') = C(t). Then

i >2

T FY,

Ro(u) ={a,..., 2, } ={a} [ i, > 2} U {al | i, =1}

14



= {ha(y,)} U{z; | 7 = 1}
- Rg(hg . t/) L Rl(hl . t/)

Also Ry(u) € Ri(t') = Ry(hg - t'). Therefore |_|é:1 Ri(u) C |_|é:1 Ri(hahy - t) for all
I € {1,2}. Now induct.

(2) By (1), l l l
S =Y IRi(u)| <> [Ri(h-t)] =D\,
i=1 i=1 i=1 ‘
forall l =1,...,min(k, s).
]

Theorem 2.10. Let A\, pu - n. Suppose 0 # ¢ € Hompg, (S, MH*). If there exists ¢ €
Homgg, (M?*, M*) extending ¢, then X\ > p.

Proof. Since S* = FS,, - e(t) for any t € A, then ¢(e(t)) # 0 as ¢ # 0. Fix any t € A

Then 0 # ¢(e(t)) = d(e(t)) = d(bs-{t}) = by-d({t}). Writing ¢({t}) as a sum of p-tabloids,
we see that there is u € A* such that b, - {u} # 0, so we are done by the proposition. [J

Example. Let charF =2, n =2, A = (12), = (2). Then S1*) =~ sgng, = 1g, = M®),
and so Homgpg, (S*, M*) # 0, in particular, it contains isomorphisms.

On the other hand, M* = <g,?> and if § : M* — MH is FSy linear, then H(g) =

(12)0@ = 9@. In particular e(e()) = 0@—9@ = 0. So for any § € Hompg, (M*, M*)
we have 0|gx = 0, in particular not all ¢ € Hompg,(S*, M*) have extensions to M?.
Corollary 2.11. IfcharF =0, \, u F n, then S* = S* iff X = p.
Proof. Suppose S* 22 S*, take an isomorphism S* — S* and compose this with the natural
inclusion S* — M* to get 0 # ¢ € Hompg, (S, M*). By Maschke’s Theorem there exists
V < M? such that M* = S* @ V. And so we can extend ¢ to ¢ € Homgg, (M*, M*) by
setting ¢y = 0, so A > p by the theorem. By symmetry we also have > X\, so A = p. O
So far we showed: If charF = 0, then

e cach S* is irreducible,

e the S* are pairwise non-isomorphic.

If F = C, then |Irrc(S,)| = #conjugacy classes of S, = |p(n)|, so
Irre(Sn) = {S2 | A Fn}.

We now extend this to arbitrary fields of characteristic 0.
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Theorem 2.12. If charF = 0, then Irrp(S,) = {S | A - n}.
We already know that |Irrp(S,,)| > |p(n)|. We now want to prove the reverse inequality.

Definition. F is a splitting field for the finite group G if every irreducible FG-representation
18 absolutely irreducible.

Fact. If F = F28_ then F is a splitting field. See [[sa76] Corollary 9.4]
Theorem 2.13. If F is a splitting field for G, and K a field extension of F, then K is
also a splitting field for G, and |Irrg (G)| = | Irrp(G)].

Proof. See [Isa76, Corollary 9.8]. O

Fact. Every field is a splitting field for S,,. See [JK84] Theorem 2.1.12] and [CR62].

So in particular, Q is a splitting field for S,,. Hence |Irrp(S,,)| = | Irrg(Sy)| = | Irre(S,)| =
p(n)].

Alternatively, one can use the following:

Theorem 2.14. Let K be a field with charK 1 |G|. Then |Irrx (G)| < #conjugacy classes
of G. If K = K*&, then equality holds.

Proof. See Moodle for a sketch using the Artin-Wedderburn theorem. O

Proof of Theorem[2.13 Corollary and Corollary show that the S* are pairwise
distinct and irreducible. Then the claim follows either from Theorem 2.13] and the fact or
from Theorem R.141 O

Remarks.

e Modular representation theory: char = p > 0, ordinary representation theory:
char = 0.

o If char = p > 0, but p 1 |G|, then the situation is similar to char = 0.
e If char = p | |G|, the situation is very different.

e For char(F) =p > 0:

S>\ 1 [ 2
Irrp(Sy) = {W‘)\ Fnis “p-regular } .

Theorem 2.15 (Brauer). Suppose charF = p > 0. Then the number of isomorphism
classes of absolutely irreducible FG-modules is at most the number of p-reqular conjugacy
classes of G. If F is a splitting field for G, then equality holds.

Proof. See |[CR62| pp. 82.6, 83.6] O
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Definition. Let p be a prime.

(i) A partition X = (A1,...,\x) is p-singular if it has at least p equal parts, i.e. there
exists i € [k —p+ 1] such that \j = A\iy1 = -+ = Aiyp—1. Otherwise, X is called
p-regular.

(ii) An element g € G is p-regular if ptordg. A conjugacy class of G is p-regular if its
elements are p-regular.

If g € S, then g is p-regular iff in its disjoint cycle decomposition, no cycle has length
divisible by p.

Proposition 2.16. Let p be a prime, n € N. Then
#{p-reqgular \F-n} = #{A\Fn|pt\Vi}.

Proof. Proof 1. The generating function for all partitions is

Gx)=> lpm)z" = [0 +2"+2*+...)=]]

n>0 1€EN ieN

1
1—at

where a partition with a; many parts of size i corresponds to choosing the 2’* term from
the ¢-th bracket when we multiply out. The generating function for p-regular partitions is

F(z) = Z #{p-regular A - n}a" = H(l + x4 4 P

n>0 €N
1 — Pt
o H 1 — gt
ieN
I
o 1 — gt
1€N, pfi

=Y #{AEn|ptAvil.

n>0

Proof 2. Consider .
{p-regular \Fn} 2 {AFn|pt\Vi}
%)
where 0, @ are as follows:

e 0: If X\ has a part of size divisibly by p, break it into p equal parts; repeat until there
are no more parts of size divisible by p.

e : For each s, suppose A has Eizo a;p’ parts of size s where 0 < a; < p — 1. Glue
them together to form a; many parts of size sp® for each i.

Then check that 6, ¢ are inverses. O

In fact, the proposition and both proofs hold for all p € N (not necessarily prime), provided
we extend the definition accordingly.
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2.3 Standard Basis Theorem

We have S* = (e(t) | t € AMg. Our goal for this section is to extract a basis of polytabloids
for S*, uniform over all F, thereby computing dim S* (independently of FF).

Definition. Let A n, t € A*. Then we say

e t is row-standard if the entries of t increase along rows from left to right, i.e.

t((d,9)) <t((i,5 +1)) for alli € [((N)],j € [N — 1],

e ¢ is column-standard if the entries of t increase along columns from top to bottom,
i.e. t((4, 7)) < t((i+1,7)) for all j € [M\1],i € [(N); — 1],

e ¢t is standard if it is both row- and column-standard.
Define std(\) = {t € A* | t is standard}. We say a polytabloid e(t) is standard if t is.
Examples.

e Let A = (n), so dimS* =1 and std(\) = {{I[2[-[n]}.
e Let A= (1") - n, so dimS* = 1 and std()\) = {}

e Let A = (2,1). We have seen earlier that then dim S* = 2. Then

std(\) = {é”,é?’l}.

e More generally, let A = (n — 1,1) with n > 2. Then dimS* = n — 1 by Example
Sheet 1, Question 5, and

std(\) = {

<. =

PETED 5 < j < )

Our aim will be to show that {e(t) | ¢ € std(A\)} is an F-basis for S.

For linear independence, we begin by putting a total order on Q*, the set of all tableaux
of shape .

Definition. Let A n, t,u € A*. Let

A = {numbers that don’t appear in the same row of t and u}
€N

= [n] \ U R;(t) N R;(u).
i=1

If {t} # {u}, equivalently A # 0, then let y = max(A). We say {t} > {u} if y €
Ri(t) N Rj(u) where i > j.

18



Remark. Note that > is a total order on Q%; it is equivalent to a total order on the set
of all row-standard A-tableaux. The maximal element w.r.t. > is

123\
A1+l - Ai4Ag
-n
Small example: Take A\ = (3,2), t = }1 g 3[,u = ; g 4 Then A = {3,4}, so y = 4 and

{t} > {u}.
Lemma 2.17. Let \F n, t € A* column-standard. Let h € C(t)\{1}. Then {h-t} < {t}.

Proof. Since h # 1 and R(t) N C(t) = {1}, then {h -t} # {t}. Then

ey

y := max <[n] \ L_J Ri(t) N Ri(h - h))

exists. Suppose y = t((,5)). Where is y in h - t7 Since h € C(t), then y € Cj(h - t), say
y € Ry(h-t). First, i’ # i by definition of y. But also, i’ # i since the entries in column j
below row ¢ must match exactly in ¢ and h-t by maximality of y and column-standardness
of t. Hence ¢/ <, so {h-t} < {t}. O

Proposition 2.18. Let A+ n. Then the e(t) with t € std(\) are linearly independent.

Proof. Suppose not. Then there exists ) # A C std()) such that >, 5 ae(t) = 0 where
ay € F*. For t,u € std(A), we have {t} = {u} iff ¢ = u. So there is a unique m € A such
that {m} > {t} for all t € A,t # m. For t € A*, recall e(t) = > _gec sen(g)g - {t}, so by
the lemma,

e(t) = {t} + (a signed sum of tabloids < {t}).

Therefore,
0= ame(m) + Z ae(t) = am{m} + X € M?,

teA
t#m

where X is a linear combination of tabloids < {m}. Hence a,, = 0, a contradiction. [
To show that the e(t) for ¢ € std()\) span S, we want to find elements of FS,, that
annihilate a given e(t).

Definition. Let A n, t € A Let X C C;(t) and Y C Cjy1(t) for some j € [\ — 1].
Then choose T a set of left coset representatives for Sx x Sy in Sxyy where we abbreviate
Sym(X) =: Sx, etc. Define the Garnir element Gxy := > crsgn(g)g € FS,.
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Example. Let A = (2,1), t = 2[, j=1 X =1{1,3}, Y = {2}. Then choose T =
{1,(12),(23)} for Sx x Sy = ((13)) x 1in S3. Then Gxy =1 — (12) — (23). Observe

Gxye(t) = (1 - (12) - (23) (32 - 37)

_ (12 32\ (21 31\ (13 23
R 3 2 2 L

Proposition 2.19. Let A\Fn, t € A* j € [\ —1], X C Cj(t), Y C Cj41(t). Choose a
set T of left coset representatives for Sx x Sy in Sxiy. Then if | X|+ Y] > (X);, the
length of the j-th column of Y'(X), then Gxy -e(t) =0

Proof. Consider Gx_y := ), sgn(p)p € FS,,. Then

PESx LY
Gxoy =3 >0 Y sen(ghk)ghk = (D sen(g)g ) (S sen(mn) (D sen(k)k).
g€T heSx keSy geT heSx keSy
=Gx,y

Recall from Lemma 2.2} For o € C(t), o - e(t) = sgn(o)e(t), and note Sx, Sy C C(t), so
GXUY : €(t) = G)Qy’SXHSy‘e(t) = ’X"’Y"(G}Qy . e(t)).

We will show Gxy - e(t) = 0. If charF = 0, then we immediately deduce Gx,y - e(t) =
0, but in positive characteristic we could have |X|!|Y|! = 0. But once we have that
Gx,y-e(t) = 0 holds in characteristic 0, then G x y -e(t) is just an integer linear combination
of tabloids, so we can reduce the coefficients mod p to obtain Gxy - e(t) = 0, viewed as
an Fp-linear combination. Hence we have Gx y - e(t) = 0 for all fields.

It remains to show Gxuy - e(t) = 0. For o € C(t), since | X|+ Y| > (X);, there exist
zs € X,ys € Y such that z,,y, lie in the same row of o - ¢, i.e. (z,y,) - {o -t} = {o-t}.
Let Z be a set of left coset representatives for ((z,ys)) in Sxy, i.e. Sxuy = ZUZ(25Ye).
Then

Gxuy otk = 3 sgn(2)2(1 - (woys)) {01} = 0.

z2€Z

Thus
Gxuy -e(t)= > sgn(o)Gxuy -{o-t} =0.
oeC(t)

Definition. Let A n, t,u € A" column-standard. Let

B = {numbers not in the same column of t and u}
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A1

=\ J G nCj(u).

=1

If for alloc € C(t), o -t # u, then B # (), so max B =: x exists. In this case, we sayt > u
if x € Ci(t) N Cj(u) where i > j.

Remark. This is the column analogue of the ordering > defined earlier, except we defined
it on tabloids earlier. The maximal column standard tableau w.r.t. > is

1 I+ ...

2 N+2[... | n

A

Note that this tableau is standard.

Proposition 2.20. Let A - n, v € A column-standard. Then e(v) € {(e(t) | t € std()\))p.

Proof. Let W = (e(t) | t € std(\))p. Let the column-standard A-tableaux be t1 > to >
tz3 > .... We prove by induction on r that e(t,) € W.

Base case r = 1: t; is standard, see the remark above, so e(t;) € W.

Inductive step: Suppose t = t, where we have already shown that e(ts) € W for all
s < r, i.e. whenever u is column-standard and u > ¢, then e(u) € W. Then we want
to show e(t) € W. If ¢ is row-standard, then ¢ is standard and so e(t) € W. Otherwise,
t((i,5)) > t((i,j+1)) for some i € [((N)],j € [Ai —1]. Define X = {¢t((1,4)) | < j < (X);}
and Y = {t((l,j+1)) | 1 <1 <i}. Then Gxy - e(t) = 0 by Proposition [2.19} where Gx y
is defined w.r.t. any set T of coset representatives of Sx x Sy in Sx_y. Choose 1 € T.
Then

0=Gxy elt)=e()+ > sanlg)g-e(t).
geT\{1}

We will prove that e(g-t) € W for all g € T'\ {1}. Then we also get e(t) € W from this
relation. Fix g € T'\{1}. Since g ¢ Sx xSy, we must have some y € Y such that g(y) € X.
Hence A:={g(y) |y €Y, g(y) € X} # 0. It is easy to see that A =X NCj1(g-1t).

Consider B := [n] \ U;‘:ll Ci(t)NCi(g-t) € X UY. Moreover,
B={reX[zeCnlg-t)iu{yeY[yecCig-t)}
= (X NCinlg-1)) V(Y NCi(g-1))
—_——
— A0

Therefore max(B) = max(4) € X N Cjy1(g - t) (using that ¢ is column-standard and
t((i,7)) > t((i,74+1))). Let u be the unique column-standard A-tableau such that Cj(u) =
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Ci(g - t) for all I. Then B = [n]\ Ul)‘:ll Ci(t) N Cj(u). We have shown that max(B) €
X NCjti(g-t) € Cj(t) N Cjya(u), hence u > t, so e(u) € W by inductive hypothesis.
There exists o € C'(u) such that 0-u =g -t, and so e(g-t) =e(o-u) =0 -e(u) = te(u).
Therefore, e(g - t) € W as desired. O

Theorem 2.21 (Standard Basis Theorem). Let A - n, F any field. Then {e(t) | t €
std(A\)} is a basis for S*, called the standard basis.

Proof. Linear independence holds by Proposition m For span, let v € A*. Then
there is a g € C(v) such that u := g - v is column standard. By Proposition [2.20]
e(u) € (e(t) | t € std(\))p. But e(u) = +e(v), so we are done. O

Note that the standard basis is not a permutation basis in general: g - e(t) = e(g - t) for
all g € S,,,t € A*. But there are many g,t such that ¢ € std()\), but g - ¢ is not.

Corollary 2.22. For A+ n, any field F,

dimp 8 = #standard \-tableaus.
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3 Character Theory

From now on, F = C, unless otherwise stated.

Notation. Let A - n. We will let x* denote the character of the irreducible A-Specht
module.

3.1 Hook Length Formula

Goal. Prove the hook length formula, a closed formula for calculating dim S* = y*(1).
Definition. Let A = (A1,..., ) En. Write N = (u1, ..., 1y, )-
(i) For a box (i,5) € Y(N), the (i,7)-hook of X is

Hig () = ()} U{(i,y) | 5 <y < MY U{ () i < o < iy}

arm QE

(1) The arm of H; j(N) is {(4,7) | j <y < A}, the leg is {(z,j) | i <x < pj}.
(i1i) The hand of H; j(\) is the box (i, \;), the foot is (pi, 7).
(tv) The hook length corresponding to (i,7) is |H; j(A)| =: hi j(N).

(v) Let H(X) = {hi;(N) | (4,7) € Y(A)} be the multiset of hook lengths of A (i.e. we also
count repetitions of the same hook length).

Example. Take A = (8,6,5,4,2,1) 26, (i,5) = (2,3). Then the hook is {e} L Uleg
as indicated in the diagram.
[ ]

Theorem 3.1 (Hook Length Formula). Let A+ n. Then

n!

A
X'(1) = =——.
HheH(A) h

Examples.
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(a) Let A = (n). List the hook lengths in Y (A\): [n[-]2][1]. So x (1) = Z—: = 1. This is
not unexpected as we already knew that S* = 1 S,

(b) Let A =(3,2) 5. Then

Std(/\):{123[124[125[134[135[}7

415 3|5 ’|3|4] ’|2]5] ’|2|4

so x*(1) = 5 by the standard basis theorem. This is consistent with the hook length

formula. Indeed, the hook lengths are ;1 ? 1[, so xM(1) = % =5.

(c) Let A =1(6,4,4,3,2,1,1) - 21. Then the hook lengths are

5[2[1]
2
1

= o |

=l w| oo

[»—n|1\34>c:oo©;

Therefore
21!

oy b

We give a probabilistic proof of the hook length formula due to Greene, Nijenhuis and
Wilf (1979). Another proof will be on the example sheets. The proof will be by induction
on n.

Y N(1) = 905304400.

Definition. By a composition of n, we mean a sequence of non-negative integers which
sum to m, written A\ = n.

Define a function F on {\ | A = n} as follows:

n! :
FO\ = Tocnin ® if A\Fmn,
0 otherwise.

If A= (\,...,A\x) = n, we want the inductive step to look like

k

FO) =Y F((As o Aimn A= LAt -, A)).
i=1

En—1if \; > 1

Definition. Let A = (\1,..., ;) F n. Define

A i={utFn—=1]Y(u) can be obtained from Y (X\) by removing one box}
= {()\1, e AL A — 17)\i+17 .. .,)\k) ‘ 1€ [k] such that \; —1 > )‘i—i-l}'

(Here we treat A\g41 = 0.)
We say the box (i,7) of Y(X) is removable if Y (A) \ {(i,7)} = Y (u) for some p € X\~.
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Example. Let A = (3,3,1) 7,50 Y(\) = . Then
(3,3 (3,2,1)
AT = : l

Observe that (1) = > uex- XH(1). This follows from the Standard Basis Theorem.

Indeed, x*(1) = |std(\)| and in a standard A-tableau, A - n, the number n must appear
in a removable box, which when removed, leaves a standard p-tableau for some pu € A™.

We would be able to prove Theorem by induction on n if we can show
FO) =) F(u),
HEAT

because we would have 3 o\ F(u) = > - x*(1) by the inductive hypothesis.
We will in fact show that 1 = > pEA % by interpreting % as probabilities. For the
rest of this section, fix A - n, and abbreviate H; j(\) = H; ; and h; j(\) = h; ;.
Consider the following probabilistic process on Y ()\):

e Step 1. Pick a box of Y'(\) uniformly at random (probability = 1).

e Step 2. Suppose that (i,j) is the currently chosen box. If (4,5) is removable,
equivalently h; ; = 1, then terminate the process. Otherwise, choose (i, j') € H; ; \

{(i,7)} (probability = hi,;—1)'

e Step 3. Repeat Step 2 until we terminate.

We will call each run of the process a trial.

Definition. For (a,3) € Y(N), let P(a, B) be the probability that a trial terminates at
(a, B).

Our aim is to show that P(a, 8) = % where € A7 and Y(u) = Y(A) \ {(a, 5)} (note
that if a trial terminates at («, 3), then this is necessarily a removable box, so this makes

sense).

Definition. Let 7 : (a1,b1) — (a2,b2) — -+ = (am,by) be a trial of the process. De-
fine A = {aq,...,an}, the set of horizontal projections of m. Analogously, let By =
{b1,...,bm}, the set of vertical projections of 7.

Example. Let A = (4,4,3,3,2). We could have the trial

1(2

3|4
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where we indicate the box we are in at time ¢t by t. So 7 : (2,1) = (2,2) — (4,2) — (4, 3).
Then
Ar ={2,4}, Br=1{1,2,3}.
Observe that for 7 : (a1,b1) = -+ — (am, bm),
e the starting box (a1, b;) must equal (min A,, min By).
e the last box (@, by,) must equal (max A, max By).

e for each i € [n — 1], either a; < a;+1 and b; = b1 (step down), or a; = a;4+; and
b; < bit1 (step right). So m = |Az| + |Bx| — 1.

Definition. Given (a,b) € Y(\), A, B C N, define P(A, B | a,b) to be the probability that
a trial T starting at boz (a,b) has A = A, B = B.

Outline of proof of the hook length formula:

e We will calculate P(A, B | a,b) in terms of hijlfl for various i, j.

e For € A7, we will calculate % as a product of terms of the form i, =T

interpret the terms in the expansion as probabilities of the form P(A, B | a,b).

and

e We will show P(a, 3), the probability that a trial terminates at (a, 3), is

> > P(A,B|a,b)

possible projections starting box
A7B (a‘7b)

to conclude P(a, 8) = %, where € A7 satisfies Y(u) =Y (M) \ {(«, 5) }.
Lemma 3.2. Let (o, §) € Y(\) be removable. Let A ={ay,...,a;}, B ={b1,...,b,} CN,
where a1 < as < - - <ar =, by <by<---<b,=p. Then

P(A,B|a,b) = [] 1_ 11 1_

hy g — 1 he
zeA{a} ®P T T yep\(gy Y

Proof. Induct on t + u = |A| + |B|. Base case t + u = 2, then A = {a1 = a} and
B = {by = p}. Then P(A, B | a,b) = 1 which is also the value of the RHS which is an
empty product. For the inductive step now suppose t + u > 2, and so (a1,b1) # (o, ).
Condition on the second box in the trial:

B proj. sets ‘ first box is (a1, b1) and
P4, B | a1,b1) = (Zl;) [P< =A,B second box is (a, 1) )
€Hay oy \{(a1,01)}

-P(second box is (a’,b) | first box is (a1, bl))]
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-y sy
(a/,b)carm of Hy, p,  (a',b')€leg of Hy, 3,
second box | first box
= > B\t lantp(CEUT O | 20
b1<b/§)\a1 1 1,01
second box | first box
t RN {a) B bR( PN 20 )

a1<a’<(N)y,

_ 1( Y PAB\{bi} | ar,b)

h -1
a17b1 b1<bl§>\a1

a1<a’<(N)p,

Note that P(A, B\ {b1} | a1,b’) = 0 unless b’ = by. Indeed, if ¥’ # b in a trial, then
e cither by <V < be: ' is in the vertical projection set, but b' ¢ B\ {b1}.

e or b/ > by: V' is in the vertical projection set, but by is not in the vertical projection
set.

Similarly, P(A\ {a1}, B | a’,b1) = 0 unless a’ = ay. Therefore,

P(A, B | ar,bi) = — : (IP’(A, B\ {bi} | a1,bs) + P(A\ {a1}, B | as, b1)>.

ha17b1 -

If one of u,t is 1, we simply omit the corresponding term. By the induction hypothesis,
this is

1 1 1 1 1
pn =t L g T e I g I

ha: - a x -1 ha -1
veA\{a} ®P T T yeB\{B b} MY veM\{aar} *P T T yem\(pr Y

_ (ha,bl —1)+ (ha1,6 —1) H 1 H 1

B h’al:bl -1

heg—1 B — 1
zeA\{a} PP T T yeB\(a} Y

Now draw a picture to see why (hap, — 1) + (hey 8 — 1) = hgyp, — 1, so the first term
disappears and we are done. O

Proposition 3.3. Let (a,5) € Y () be a removable box. Suppose jn € X~ is such that
Y() = YOO\ {(e B)}. Then

Proof. Observe that
o Ruy(i) = hay(N) if 2 # o and y # B,
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o hoy(p) = hay(\) —1ify # B,

Thus
Fp) _ Ihenen (n-1)!
. 1 H hxwg H ha,y
n 1<z<a hx,ﬁ -1 1<y<pB ha,y -1
1 1 1
-~ II (1+ IT (1+
n 1 oca ( hep — 1) 15y<8 ( hey — 1)

We want to interpret the terms in the expansion as the probabilities that a trial terminating
at (o, ) has certain horizontal and vertical projections. We have

1<xl_£a (1 + hxﬁl— 1) - (1 + hy 51— 1) <1 + hgwgl— 1) <1 * ha_1715 — 1>
=2 1 53

8 — 1
AC[a] xeA\{a}
acA

and similarly

)= 1

1<y<p “y BC[ﬁ] yeB\{8} hay =
Then
F(p) 1 1
F\) n D H ep— 1 11 Ry — 1
AC[a],acA xeA\{a} “ yeB\{B8}
BC[p],8eB
LS B4, B | min(4), min(B)).
" AC[a],a€A
BC[B],8eB

Also, P(«, 3), the probability of terminating at (a, 3), is

terminate at
> P

(a,b)EY (V)

start at

(a,b)

) - P(start at (a,b))

B 1 Z P terminate at ‘ start at )
(o, B) (a,b)

:% S S R B ab)

(a,b)EY (\) A, B’

n
(a,b)EY (N)

28



where the second sum runs over A’ C [a], B’ C [f] such that « = max A’,;a = min A’,
f = max B’,b = min B’. We conclude IP’( B) = ( ; O

Proof of Theorem[3.1] Since a trial must terminate at a removable box,
F(p)
1= P = —.
> (@.8) =) FO\)
(e, B) removable HENT

So we are done by induction on n, as previously described. ]

3.2 The Determinantal Form

Applications.

e Recall the permutation module M?* = ILSATS”, see Lemma In a direct sum
decomposition of M A into irreducibles, how many times do we get S#? ~» Young’s

Rule, Theorem [3.11] and Corollary -

e We have a nested structure: S;1 < So < --- < 5,1 < S, <.... How do S,,-modules
relate to S, _1-modules?

E.g. angn_l = V-1 @ 1g, , where V,, is the natural permutation module of S,,.
What is S’\\Lgn_l? ~» Branching Rule, Theorem [3.22

e What is x*(g) for all g € S,,? ~» Murnaghan-Nakayama Rule, Theorem
e And more:

— e.g. Branching Rule describes SAl‘qu, What about S)\igz,mxsm? ~

Littlewood-Richardson Rule.

1XS51°

— e.g. another proof of the hook length formula, see Example Sheet 2.
Notation.
e S, is the symmetric group, Sy Young subroups

e Before: S* were Specht modules. For the rest of this chapter we use [u] to replace
S* to denote the p-Specht module. When it is clear from context, for u = (m), we
abbreviate [u] = [(m)] to [m].

o Let & be the character of M*.
Definition.

o Let G, H be finite groups, V a G-module, W an H-module. Then V QW can be into
a (G x H)-module via

(g:1) - (v @w) = (gv) @ (hw)
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forallg e G,h € H, v e V,we W. The resulting (G x H)-module is the (outer)
tensor product of V and W, which we will denote by VH#HW . If V affords x, and W
affords ¢, then VH#W affords x#¢ where

(x#¢)((g,h)) = x(9)9(h)
forallge G,h € H.

o Letm,n €N, abm,BFn. Then x*#x® € Irr(S,, x Sy) since x* € Irr(Sy), X° €
Irr(S,). Note that S,, x Sy, naturally embeds inside Sy +n as Sym{l,2,...,m} X
Sym{m + 1,...,m +n}. Then the outer product of [a] and [5] is defined as

[][8] = [l #18] 75

Remarks.

(i) The outer product is associative and commutative.

(ii) Let H < G, z € G. Then ILHTG = ]]_sz—lTG. Suppose that A = (A1,..., A\g) F n.
Recall Sy 22 Sy, x---xS8y,. Wemay fix S\ = Sym{l,..., At} xSym{ i +1,..., A\ +
A} X oo X Sym{Zi-:ll Ai+1,...,n} when we consider M* = 1s, TS", since all Young
subgroups of type A are conjugate to this one.

Also,
M 1,15 = ﬂsAl#lsAQ#---#ﬂsAkTs’l = [M][A2] - - [,
and so [A1][Xa]...[A\x] has character £

Example. For A = (A1,...,\x) F n, consider the k X k-matrix D) whose (i, j)-entry is
the module [A\; — i + j] where we interpret [I] as the zero module when [ < 0.

(a) Let A= (n —1,1). Then, using the outer product to multiply modules,

) — o — 1)fn] - [n][0].

[
This (virtual) representation has (virtual) character

)

det Dy, = det <[”[g] 1 [1]

g(n—l,l) _ g(n) _ é-(n—l,l) o X(n) _ X(n—l,l) _ X/\
by Example Sheet 1, Question 5.
(b) Let A = (3,12) F 5. Then

31 [4] [5]
[ 2] 4] [5]
det Dy =det | [0] [1] [2] | = [3]det — [0] det
(0 0 m) (o 1) 10 () )
[3]

which has (virtual) character

€31 _eB2) _ @D | ¢(5) = ¢(B1%) — A
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Definition. A virtual character of G is a Z-linear combination of irreducible characters

of G.

Definition. Let A = (A1,...,\x) F n. Let Dy be the k x k matriz whose (i, j)-entry is the
module [N\ — i+ j| (i.e. as in the ezample above).

We could in fact have defined Dy = [A\; — i + j];; to be k' x k' for any k" > k, and the
determinant remains unchanged. E.g. for A = (3,1, 1),

(3] 4] [5] [6]
3] [4] [5]
det [ [0] [1] [2] | = det [8] H % E ’
0 [0] [1] 0 0 0 [0]

viewing (3,1,1) = (3,1,1,0,0,...).
Goal. Prove that det Dy has character x* for all A - n.

For the rest of this chapter, we will work with ZY, the set of sequences with integer entries,
under pointwise addition.

Let n € N. Summary:

Term | Notation | Def.: A = (A, Ag,...) € ZN s.t. 3, A = n and
partition of n AEn A > X > ... and \; € Ny for all 4
composition of n AEn A € Ng for all 4
integer composition of n AEN only finitely many A; are non-zero

(a) Recall Sn = Sym{l’ 2’ oo 7n}' Define SN = UnEN Sn

e For 7 € Sy, we can view it as an element of Z" via 7 = (771(1),771(2),...).
Note that 7 does not have finite support, but 7=!(i) = i for all sufficiently large
i. In particular, the identity of Sy is id = (1,2,3,...).

e For 7 € Sy and A € ZN, we define 7 - \ := (Ar-1(1), Ax—1(2)5 - -+ ). Then 7 -id =
idr=mnr-7l=ratl.r=id,and 7- (7)) = (77) - \.
e For m € Sy and A [E n, observe that 7- A E n. Also A —id+7m = (M — 1+
7 1(1), A —2+712),...) En.
(b) In the above, we let A; be the j-th entry of A as usual. If A has finite support,

we can define /(\) = max{i € N | \; # 0}. We may write (A1,..., ) and
(A1, -5 A00), 0,0, ... ) interchangeably.

(¢) We can extend Young subgroups to have type given by compositions, not just
partitions; these will be conjugate to Young subgroups of type given by parti-
tions. E.g. S(1,00200,.) = Sa,2) = Sym{l} x Sym{2,3} is conjugate to S 1) =
Sym{1,2} x Sym{3}.
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(d) We can extend £ to be defined for all integer compositions A = n by:

o {IISATS" if A = n,
0 otherwise.
So for all A [ n, [A1][A2]. .. [Agn)] has character £, since [r] = 0 if 7 < 0.

(e) We could e.g. dominance partial ordering to A = n, Young diagrams, Dj, etc.

Definition. For A\ E n, define
W= 3 san(me
TESN

it is a virtual character of Sy,.
Lemma 3.4. Let A E n.

(i) Only finitely many terms in the sum defining 1> are non-zero.

(ii) The virtual character afforded by det Dy = det([\; — i + j]i;) is V.

Proof.

(i) Since A has finite support, k& = ¢()\) is defined. Let m € Sy \ Sg. We claim that
A —id +7 has a negative entry. Indeed, let m := max{i | 771(i) # i}. Since 7 ¢ Sy,
we must have m > k. By maximality of m, we must have 7—'(m) < m. Then
A=id+7)m = A—m+7"L(m) =771 (m) —m < 0. So &} 447 =0 for such 7, and
so P =3 g sen(m)Er T s a finite sum.

(ii) Recall that the determinant of a k x k matrix D is given by

k
det D = Z sgn H D; 74
i=1

TESk

The claim follows since [a1][az] . .. [ayq)] has character £ for all o [ n.

So our goal is to show * = x> for all A - n.

Lemma 3.5. Let A En. Let i € N and suppose that p E n satisfies p—id = (i i + 1) -
(A —1id), i.e.
= (A1, i = LA+ 1 Ajge, ).

Then Y = —p>. In particular, if \; —i = \iy1 — (i + 1) for some i € N, then ¢ = 0.
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Proof. Let 7= (i i+1). Then p—id = 7- (A —1id), so p —id+77 = 7- (A —id +7) for any
m € Sy. Hence

Pr= Y sen(me T = 3 san(m)er it

TESN TESN
_ Z Sgn(ﬂ_)gu—id-i-ﬂr — Z Sgn(Tﬂ_)gu—id-i-ﬂr _ _wu‘
TI'ESN TESy
If \j —i = A\it1 — (i + 1), then g = A, and so ¢ = —9*, so ¥ = 0. O
Next we look at f’\ls «s, Where A E n =m+ k. Note that fkls 5 = ILSATS"lS XSy

so we will use Mackey’s theorem. For this we will need to know the double cosets of S,
Sm X Sk in Sn.

Proposition 3.6. Let A\, u = n. There is a bijection between the set of double cosets of
Sx and S, in Sy, and the set of £(\) x £(p)-matrices with entries in No whose row sums
are A\, and column sums are L.

Proof. Write Sy = SAl XSAl ><~-'XSAZ(>\) where A1 = [)\1],142 = {>\1+1,...,)\1+)\2},...,
and S, = Sp, x Sp, X -+ X SB@(;L) similarly.

For each o € S, define a matrix Z (o) via Z(0);; := |A; N o(By)| for all i,j. Note that
the i-th row sum is

S 14sn0(By)] = 450 o (Bl = 140 nl] = | 4i] = A,
j J

J

and similarly the j-th column sum is
> 1Aina(By)| = lo(B;)| = |Bj| = uy.

Conversely, any matrix in the set described in the proposition is Z(o) for some o € S,
(exercise).

Now we claim that for o, 7 € S,,, we have Z(o) = Z(7) iff S\cS,, = S\7S,,. First, suppose
T = hok for some h € Sy,k € S,. Then Z(71);; = |A; N 7(By)| = |Ai N hok(B;)| =
|A; N ha(B;j)| since k € S, so that k(B;) = Bj for all j. Similarly, h~1(4;) = A;, so
Z(1)ij = |h"YA;) no(Bj)| = |4 No(Bj)| = Z(o);;. Conversely, suppose that |A4; N
o(Bj)| = |Ai N 7(B;y)| for all i,j. For each fixed i, {A; No(Bj)}; and {4; N7(B;)}; are
both partitions of the set A;. But |[4; No(B;)| = |A; N 7(By)| for all j, so there exists
h; € SAi such that hz(Az N O'(B])) = A; N T(Bj) for all j. Then h := hy - ho-- 'hg()\) S
Say X oo X Sa,,, = Sy satisfies h(o(B;)) = 7(B;) for all j. Therefore 7 ho(B;) = B;j
for all j, and so 77 ho € Sy. Say 77 ho = k1, then 7 = hok where h € Sy, k € Sy

Thus S)oS,, — Z(0) is a well-defined bijection between the two sets in the proposition. [
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Lemma 3.7. Let \En=m+k, m,k € Ng. Then
(i) é.AlSmxgk = ZM:’? 5)\7“#5“:
(7’7’) w/\lsmxsk = ZM’:]{} df\‘##&l{

Proof.

(i) Both sides of (i) are equal to zero if A = n. So we may now assume that \ = n.
Also, note that the sum over y = k is finite since £&*7# = 0 unless A\ — u = m,
meaning we need 0 < p; < A — I for all .

By Mackey:

Sn
gAlSmxSk = ILS/\T lSmxSk

_ SmXSk
- Z HTUSA0710(57,LXSIQ)'
OGSmXSk\Sn/S)\

By Propositionthere is a bijection between (.S, X Si) —S) double cosets in .S,, and
2 x £(A\) matrices over Ny with row sums (m, k) and column sums A. Specifically,
if A1 = [m],AQ = [m + 1,...,m + k], B1 = [)\1],32 = {/\1 + 1,...,)\1 + )\2},
etc., then the double coset (S, x S)oSy corresponds to Z(o) where Z(0)1; =
‘Az N O'(Bj)| and Z(U)Qj = ‘AQ N U(Bj)’. Since Z(O’)lj + Z(U)Qj = )\j for all 7,
this matrix is in fact determined by just its second row, say, which we will call
p= ([A2No(B1)l,...,[A2N0(Byx))|) k. In particular, the first row is then A — p
and note 0 < p; < \; for all 4.

Observe

0'S>\0'71 =0(Sp, x -+ X SBZ(A))U = So(Bl) X o+ X SU(Be()\))

and hence 0530~ N (S,, x Sk) is conjugate to Sx—p % Sy. Then

SmXSk _ ]]-
TO’S)\O'flﬁ(SmXSk) — S

- ]ls)\*u Tsm#]lsu TSk
= e,

TSmXSk

This finishes the proof of (i).
(ii) We have by (i),

Plos = Xl ]

TESN
= D sen(m) Y T
TESN ,u,):k
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= > (D sen(m)gQmTiaT) e

uEk TESN

=) W,
pEk

Definition. Let 0 <k <n, A En, pu = k. Define
A= 3 san(m)eh e,
rE€SN
it is a virtual character of Sy,_p.
Note. If k =0, then = (0,0, ...); and p*\* = .
We will informally call the ¢)*\* skew characters, one can also define skew diagrams, etc.
We have the following analogue of Lemma [3.4
Lemma 3.8. Let 0 < k<n, A\En, u Ek.
(i) Only finitely many terms in the sum defining M are non-zero.

(ii) The virtual character afforded by the determinant det([\; — i — (y; — j)])ij is P\
Proof. Very similar as the proof of Lemma see Example Sheet 2, Question 5. O

Lemma 3.9. Let \Em+k, m,k € Ng. Then

W g, = SR,

Bk

Proof. All sums involved will be finite. First, from Lemma [3.7 we have

wAlSmxsk = Z sgn() Z AT e

TESN nEk

_ Z Sgn(ﬂ‘) Z £>\—id+7r—7rou#£7rou U= 7T_1 o

TESN vk

_ Z Sgn(ﬂ') Z gAfid fwo(ufid)#gu (*)

TESN l/):k

On the other hand,

S Mgyt =5 ( S sgn(m)er —m(ﬁ—id))#( 3 Sgn<7)§ﬁ—id+7>

Bk Bk wESy reSy,
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Note that if 5 k, then ¢(8) < k, so in the last sum we can sum over 7 € Sy instead of
Sy. Then

ZW\B#W — Z Z Z Sgn(m)gx—id _m(g_id)#{rlo(@_id +7)
ﬁ'_k ,3}_16 WGSN Tesk
—i

A—id —pr~Lo(B—id) 4 ¢ To(B—id)+id
=33 sen(p) #E p=nT

Bk TES), pESN

= > sgn(p)e* T4 TPl gen

pPESN wEk such that
p=1"to(B—id)+id
for some 7 € Sk, BF k

_ Z Z sgn(p)etid —polu—id) yen (xx)

pESN  pEk such that
p=1"ro(B—id)+id
for some 7 € S, B+ k

Note that we may replace » 5> by >, o, because: if 7l o (B —id) +id=7"1o (5 —

id) + id for some 7,7 € Sy, 8,8 F k, then 8 —id = (t o7 ') o (f — id). Since § + k,
Bi > iy for all i. But then f; —i > Bi11 — (i+1) for all 7, i.e. f—id is strictly decreasing.
Similarly for § — id. Therefore, 707! =1, i.e. 7 = 7 and then also 5 = j.

We want to show = For this we have to show that the restriction in can be
removed.

First, we claim that
{pEk|p=7"to(B—id) +id for some 7 € Sy, 3 F k}
={pEk|p =0foralli>k, pu —iare distinct for all i}
To see C: Take 7,3, define p = 771 o (8 — id) + id. Then
o [ul =Bl =k,
e since S F k, then 8 —id is strictly increasing, and so the p; — ¢ are distinct for all 4.
e since 7 € S; and B; = 0 for all 4 > k, then p; = 0 for all ¢ > k.

To see D: given u = k such that u; = 0 for all ¢ > k, u; — ¢ are distinct for all 4, we will
construct 7 € Si, 8 F k as follows:

Since p; = 0 for all ¢ > k, p; —i = —¢ for all ¢ > k. Since the u; — 7 are distinct, p; —i > —k
for all ¢ < k. Moreover, we can order the u; — i and then define uniquely define 7 € Si by

ey =T (1) > prrrgy =7 H2) > > gy =7 (R) > (k1) > —(k+2) > .

Then define 8 := 7o (u — id) + id. Then we get u = 771 o (3 —id) + id, so we only have
to check that S+ k. We have || = |u| = k. By construction, § — id is strictly decreasing,

36



therefore 5; > B;41 for all i. Since 7 € Sk, p; = 0 for all i > k, then 3; = 0 for all i > k.
Hence 6 F k.

Second, we claim that

{p =k |p =0foralli>k, the u; — i are distinct for all 7}
={u | k| i — ¢ are distinct for all i}

See Example Sheet 2.

Hence becomes

DNl = Y sen(p)gt T g

Brk pESN pl=k such that
pi — ¢ distinct Vi

Finally, if p = k is such that p; —i = p; — j for some i # j, then

Then

> sgn(p)gh i elnTid) gen

PESN
= 5 Z |:Sgn(0‘)£>‘_ld —O’O(H_ld)#é'ﬂ + Sgn(a o (ij))g)\—ld —ao(zg)o(,u,_ld)#gu]
€SN
= % Z {Sgn(a)gk_id _Jo(u_id)#fu — Sgn(a)§>‘_id _Uo(ﬂ—id)#gu}
oESN
=0

SNVt = S N sen(p)e e g [ = M

Bk pE Sy ul=k

Theorem 3.10. Let 0 < k<n,abn, 8FEk.

()
(i)

If *\P £ 0, then o > B; for all i,

(o7, (P = {

1 far>p1>2as>p2>...,

0 otherwise.

Ifa; > 061 >as> P2 > ..., wesay that a and (8 intertwine.

Proof.

(i)

Recall from Lemma that ¢®\? is the character of the determinant of the matrix
A where A;j = [a; — i — (B — j)]. Note that since «, § are partitions, o —id, 8 —id
are strictly decreasing. If A;; is zero (in other words, o; —i — (3; — j) < 0), then all
entries to its left and below are zero. Thus the determinant vanishes if a diagonal
entry is zero. So if *\# £ 0, we must have o; —i — (Bi—1i) >0, ie. a; > f; for all 7.
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(ii) For A E n — k, recall £* =0 if Az n — k. If A | n — k, then

Frobenius_reciprocity <

<§)\7€(nik)> = <15ATsnik’ ﬂSn#c) Ls,, ]]‘SA> =L

Thus
(B, e(n=h)y = > sgnw(¢ —ro(B=id) eln=h)y — D (380 )0 {a—id —ro(B—id)n—k}
TESN TESN

This is the determinant of M where M;; = 04, i (3;—j)>0}- Note if M;; = 0, then
all entries to its left and below are also zero. Also, M only has 0 — 1 entries. If
o) > P1>ay> Py > ..., then M =1 and M;1 ; =0 for all ¢, and so det M = 1.
Otherwise, M;; = 0 for some 4, or M;11 ; = 1 for some ¢, but then M must have a
column of all 0’s, or have two equal columns; and therefore det M = 0.

O
Theorem 3.11 (Young’s Rule). Let A |= n with £(\) < n. Let a Fn. Then (&) is
equal to the number of tuples of partitions (ﬁ(l),B(Q), e ,ﬁ(”*l)) satisfying
(i) B+ Zé-:l Aj for alli e n—1],
(ii) 0< BV < B < < "D <oy for all j € [n],

(iii) ﬁj@ < 6](.:1) for all j > 1, i > 1, where we treat 30 = (0,0,...) and B = q.

Once we have proved y* = x®, then Young’s Rule will tell us the multiplicity of the Spect
module [a] in a direct sum decomposition of M?* into irreducibles.

Example. Let n =5, a = (3,2).
(i) Let A=(2,0,1,2) = 5. Then

gO = ( o 0 0 ..)
NN

B = (Y aY Y ) ke
NN

BD = ( pY P gDy F2+0=2
NN

BB = (g BP . B® ) F2404+1=3
NN

BW = (W W Wy F2+0+4142=5
NN

a=p0 = ( 3 2 0, )
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where an arrow a — b indicates that a < b. The yellow arrows are by (ii) and the
violet arrows by condition (iii). We see that most entries are uniquely determined

as follows:

O = ( o, 0, o0, )
NN

gV = (2, 0, 0, ) F2
NN

B = ( 2, 0, 0, ) F2+0=2
AN

BB — (W B 0, ) F24041=3
NN

W = (3, 2, 0, ) F240+1+2=5
NN

a=p% = ( 3 2 0 )

We can have 5) = (3,0,...) or (2,1,0,...). Therefore (1), &) = 2.
(ii) Let A = (0,2,2,0,1) = 5. [Since £Z012) = £(0220.1) "wwe expect again two tuples]

gO = ( 0o, 0 0 ..)
NN

gL = ( W BM BN ) ko
NN

B = (P BP BP ) Fot2=2
NN

B = (g P BBy Fo+2+2=4
NN

BW = (g W Wy Fo+2+42+0=14
NN

a=p0 = ( 3, 2, 0, ...)

Again we see that most entries are uniquely determined:
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pY = (0, 0, 0, ... ) kO
NN

BB = (2, 0, 0, ... ) F0O4+2=2
NN

BB = (2/3, 2/1, 0, ... ) FO+2+2=4
AN

AW = (2/3, 2/1, 0, ... ) FO+2+2+0=4
NN

a=p00 = (3, 2 0, ...)

So we can have either ) = ) = (2,2,0,...) or & = g% = (3,1,0,...). So we again
get (Y, &N = 2,

Proof of Theorem |3.11. We have

(W, €0 = (15,17 " (7|7 1s,)
= ((v° lsinxskn_ﬁ.‘.m) Loy xss sy, £ - #E0D)
Lemgam< Z NI (B lsx 1; ?@ LG ey

BV E
« (n—1) (n— n— _
LY e gy () S oy oy
BRI A
Theore:mlm Z <1/)5("_1> Sap_1++Ag g(Anfl)##g(M»

2 Sy X XS, ?
g

where we sum over f("1 Z;le Aj such that o and B=1 intertwine. Iteratively
applying Lemma, and Theorem [3.10 we get

(W°, 5,\ Z Z Zwﬁﬂ le /\1>

ﬁ(n 1) 5(n 2) /3(1
= 2. 1

ﬁ(n—l) 7/8(n_2)""7/8(1)

where we sum over 5() - Z;: ; (this is condition (i)) such that 3 and B0~V intertwine
for all i € [n] (this gives conditlons (ii) and (iii)). O

Lemma 3.12. Let o, 8+ n. If (£€%,x®) > 0, then > a.
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Proof. Since {¢%,x?) > 0, we have Homcg, ([8], M®) # 0. Since char C = 0, Maschke’s
theorem gives a complement of [3] in M?, so we can extend any ¢ € Homcg, ([3], M%) to
¢ € Homgg, (M?, M®). Then B> a by Theorem m O
Remarks.
e We can’t use Theorem to prove the lemma, since we don’t have x? = ¢? yet.
e The converse holds, see Lemma |3.20)
Theorem 3.13. Let a - n. Then ¥ = x®. In particular, the irreducible representation
[a] has determinantal form det([o; — i + 7])sj-
Proof.
e Step 1. We first show that if A = n with £(\) < n and (£}, 9%) > 0, then a > \.
Proof. Suppose (€*,1®) > 0. Then there exists (5(1), e ,B(”_l)) satisfying Theo-
vem B-T1) (), (i), (i). By (i)

0=p" 28" >80 > >0

— p— )

so £(B1) < i for all i. Now 8O = (8, 5", ..., 8%, 0,...) b S0_, A; by (i), and
aj > B for all j by (ii). So

artazt- 4o > BP0 4 B = M de A
for all 7, in other words, a > A. O

e Step 2. We show (*,£%) = 1.

Proof. Observe that (31, ..., ("1 with 3 = (a1, as,...,q;) satisfies the con-
ditions in Theorem and so (1)®,£*) > 1. Conversely, suppose (81, ..., g(»=1)
satisfies (i), (ii), (iii) in Theorem with A = a. Then, as in Step 1, we obtain

(BD) < i, a; = B forall j, and ar +- - +a; > B+ -+ 87 = ar+-- -+ for all
1. Hence, we must have equality in o; > B](.i) forj=1,...,4, s0 B0 = (a1, ...y q5).
So there is only one such tuple (31, ..., f("=1) and therefore (1)®, %) = 1. O

e Step 3. We show (%, ¢®) = 1.

Proof. First, for any m € Sy, a —id +7 > « since for all 4,
)+ N2 4 TG > 124+ 4,
SO

(a1 =147 1)+ (a2 =247 12+ 4+ (s —i+7 (i) > a1 +as+ -+ .

41



On the other hand, if 7 € S, and (€*74+7 ) > 0, then o > « — id+7 by
Step 1 (because o — id+7 |= n, else £€2719+7 = 0, and o F n, so £(a) < n, so
(o —id47) < n). Hence a > a —id +7 > «, so m = id. Thus,

(W, 0% = > sgnm(€ T )

TESK
= <£a7 ¢a>
= 1.
L]

We can now prove ¢ = x®. Since (%, %) = 1, we have ¥ = +¢ for some ¢ € Irr(S,).
Since also x* € Irr(S,), it thus suffices to prove (¥*, x*) > 0. Next, if A = n such that
(M x®) > 0, then <§ﬁ,xo‘) > 0 where § F n is obtained from A permuting its parts.
By Lemma [3.12] o > 3, but also clearly § > X. Therefore a > X. So if 7 € S,,, and
(gamid+m yay 5 0, then a > o —id +7 > @, i.e. 7 = id. Thus

(X" = > senm(*TT 4 ) = (€%, x?).
71'6571
This is > 0, since [o] < M?.

Therefore (¢, 9*) =1 and (¢, x¢) > 0. These imply ¥* = x°. O

3.3 Applications

3.3.1 Young’s Rule Revisited
Corollary 3.14. Let atn. Then (x“,£%) = 1.

Proof.
e Either from James Submodule Theorem and complete reducibility in char 0,
e or use Theorem and Step 2 in its proof.
O

Corollary 3.15. The permutation characters {£* | a = n} gives a basis of the C-vector
space of class functions of S,,. In particular, the change of basis matriz to Irr(S,) = {x® |
B F n} is Z-valued, and unitriangular if we order the partitions in a way that extends the
dominance partial ordering.

Proof. From the definition of ¢? and the fact that ¢® = x%, it is clear that the y*?
are Z-linear combinations of the permutation characters. Conversely, it is clear that the
permutation characters are Z-linear combinations of the x®. From Lemma [3.12] it follows
that the matrix is triangular and Corollary gives that the diagonal entries are 1. [
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Remark. Young’s Rule tells us the multiplicity of [a]¢ in a direct sum decomposition
of Mé‘ into irreducibles. Over an arbitrary field F, Mf‘ decomposes as a direct sum
of indecomposables: We saw from James’ Submodule Theorem that there is a unique
summand containing [A]r, which we called the Young module YF’\.

In general, Young modules for S,, are defined as the indecomposable summands of Mﬁ\ for
some A F n. It turns out that isomorphism classes are indexed by p(n).

Fact. MI? can be decomposed as a direct sum of S,-modules each of which is isomorphic
to Yf” for some p > A, and YF)‘ appears exactly once.

If charF = 0, then indecomposable = irreducible, and ew havae proven this fact (then

Y¢ = [No).

In general, Y]F’\ % [A]r, e.g. in Example Sheet, Question 5, we saw that [(n — 1,1)]r was a

(n—1,1)

submodule, but not a direct summand of My in the case charF | n.

If charF > 2, then it is known that Specht modules are always indecomposable. In
char F = 2, this is still an open problem.

Next, we work towards another combinatorial way to interpret Young’s Rule.

Lemma 3.16. Let m,k e N, letaFm+k,B+ k,vFm. Then
B — B
WV XT) = (X g, g X #X).

Moreover, (9%, x7) = (7, x#).
Letting ~ vary, this shows that ¢®\? is a genuine character.
Proof. We have

(X Lg, s XTH#XT) = (05,0500 XT#X7)

=) @V, X )

Stk
= @) - (@, x%)
ok
= > @V x) - (X x7)
Stk
— WJQ\B; X7).
The last part follows from (x ls s X TP = (x lskxsm,x #X7). O

Remark. Multiplicities of the form <X0‘l S xS0 X #x?) are called Littlewood-Richardson
coefficients, also denoted Cg’ 45 and they occur in many different contexts, e.g. symmetric
functions and algebraic combinatorics, representation theory of algebraic groups, etc.
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Lemma 3.17. Let m,k € N, a-m. Then

X ™ Smilfs*k Z X

where the sum Tuns over v+ m + k such that o; < v; < a1 for all @, treating cg = oo.
Proof. Let v+ m + k. Then

OO XX = (0 g g XX )
= (p7\, x®))
— <¢v\a75(k)>
Theore:mm{1 if’71 > > Y2 > g > ey

0 otherwise.

O

Corollary 3.18. Notation as in Lemma . Then the Young diagrams Y () can be
obtained from Y () by adding k many bozes in all possible ways such that no two of the
newly added boxes lie in the same column

Proof. Since 7; > «; for all 7, we can certainly view Y () as a superset of Y («). The
condition y; < a;_1 corresponds to the assertion that no two boxes in Y(v) \ Y(«) lie in
the same column. O

|
Example. Let « = (3,2,2) - 7, k = 2. Then Y(«a) = . We have the following
possible Y (7):

[ 1] L] |

Therefore

[a][k] = [5,2%] ® [4,3,2] @ [4,2°, 1] & [3%,2,1] @ [3,2"]
g(a,k‘) _ X(5,22) + X(4,3,2) + X(4,22,1) + X(32,2,1) + X(3,23)

We can use Corollary repeatedly to decompose M = [a1][ag] - [ayq)] into irre-
ducibles.

'Remark by L.T.: I believe on the LHS it should not be £(**) . Correct would be the character of

[][k] and this module does not coincide with M(®* = [a1][az]as][k]. E.g. we have dim M)
7 O 51 = 7560, but using the hook length formula we calculate dim[a][k] = [So : S7 x S2] dim[a]#[k]

dim[a] dim[k] = 35 =455 - 1 = 756.

7'2'
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Example. Let a = (3,2,1) - 6. First,

3)[2] = EE e R e

—_
—

1]

[\

Here we label the original boxes with 1 and the new boxes with 2. Then,

3)[2][1] = [zremE o PR

1[1]1]2]
@ ; 1|1|2EB ; ;, 1|2[@l
- == 3
1[1]1]
oo lhRepr
3
So
Definition.

(i) A generalised Young tableau of shape a - n and content (or weight, type) A = n is
a filling of Y (a) with positive integers such that i appears exactly A\; many times for
all 1.

(ii) A generalised Young tableau is semistandard if its entries weakly increase left to
right along rows, but strictly increase down columns.

We will abbreviate semistandard tableaux to SSYT.

i T 141212 1,54 shape (6,2), content (3,3,0,2). The semistandard Young

tableaux of shape this shape and content are

—_

Example.

1
414

—_

1]2]2]2] 1]2]2]4] 1]2]4]4]

—
L
NI

—

Young tableaux from before are just generalised Young tableaux of content (1™).

3,2,1)

Using SSYT we can generalise the above example, determining &( , and reformulate

Young’s Rule.

Corollary 3.19. Let a b n,\ =n. Then (£}, x®) is the number of SSYT of shape a and
content A.

Note that unlike in Theorem we don’t require £(\) < n.
Proof. Apply Corollary and note that M* = [A\{][\g] ... [A¢(n)] has character & O
Example 1. We revisit the example after Theorem where we showed that (x®, &) =

(¥, &N =2 for a = (3,2) and A = (2,0,1,2) or A = (0,2,2,0,1). The SSYT of shape «
and content A are:

—_

4]

A=(2,0,1,2) LT

N
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)\:(072727071) 223[’ 2]2]5]

w
ot

Recall Lemma If a, B F n with (€%, x%) > 0, then o < 3. The converse also holds.
Lemma 3.20. Suppose «, S Fn with « < §. Then (€%, Xﬁ> > 0.

Proof. Example Sheet 3. 0

Remark. The number of SSYT of shape a and content A is often denoted by K, . Such
quantities are known as Kostka numbers.

3.3.2 Branching Rule

We investigate restriction from S, to S,—1 = S,—1 x S1. Note that this is a special case
of Sm X Sk

Definition. Let A E n, i € N. Define X'™ E n —1 and X't E n + 1 via \'= =
()\1,. Cey A1, A — 17)\i+17---) and Nt = ()\1,.. A1, A+ 1,/\“_1,...).

Lemma 3.21. Let A En. Then fAlS L= > e

Proof. First note that the RHS sum is finite since AX'™! £ n — 1 for all i > ¢()\), whence
" = 0. Now, by Lemma

f/\lsn_l = fl\lsn_lxsl = Z .
pEl

But ¢# = 1g, and p = (0,...,0,1,0,...) where the 1 is in the i-th position, so A — pu =
)\if‘ O

Recall we defined o, where a F n, and removable boxes in Section Observe

o ={BFn—1|B=a" forsomeicN}={a"" | ;> a1}

Definition. Let atn. We define
at ={BFn+1|8=a"" for someic N} ={a""|a; < i1},

where we treat cg = 0o. In other words, ot is the set of all partitions B such that Y (B)
can be obtained from Y () by adding a single box.

We will call (i,7) addable to « if (i,7) ¢ Y(a) and Y(a) U{(i,7)} = Y(B) for some
Beat.
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[+
+
Example. Let o = (4,2,2,1) - 9. Then Y(a) = [ |= where the removable resp.

7

addable boxes are marked with a — resp. +. So

o =1{(3,2%,1),(4,2,1), (4,2%)},
ot ={(5,2%,1),(4,3,2,1), (4,2%), (4,2%,1%)}.

Theorem 3.22 (Branching Rule - restriction). Let o n. Then Xals = 2gea- xP.
Proof. We have
Xalsn71 — walsn71 — ngn 7Tga—id-&-7r‘l,sn71

- Z sgnm Z glazid+m)™

ieN
— Z Z(Sgn W)gai_fid +7
i€N T
= Z v
1€EN

Now if 1/1ai_ # 0, then az:_ —i# ai__H —(i+1) by Lemma soo;—1—i# a1 —(i+1)
and so a; # a;41, then o'~ € a™~. O

Corollary 3.23 (Branching Rule - induction). Let oot n. Then X“TS"“ = peat xP.

Proof. This follows from Theorem and Frobenius reciprocity noting that 3 € o™ iff
o€ p. O

Example. Let o = (4,2%,1) - 9. Then
o — (3:2%1) (4,2,12) (4,2%)
Xl =X +X + X,

S 2 3 2 12
XQT 10 — X(572 71) + X(4’37271) _l_ X(472 ) + X(472 ’1 )'

Definition. The Young (branching) graph Y is the graph with

e verter set |y, 0(1),
o cdge set {(A\,p) | p €A}
We will call p(n) th n-th layer or level of Y.
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Here are the first five layers of Y:

CERN a \@/E
2 N \5/
| N

For each partition A, there is a natural bijection between std(A) and the set of upwards-
directed paths from () to A in Y. Indeed, given such a path, we construct the standard
A-tableau by putting in the layer number in each newly added box in the path. E.g.
consider A\ = (3,1) and the path

@aDaHa | L,

Then we get the sequence of tableaux

—

3]

[y

3[4]

— 5 .

1
®—>—>—>

[

1[3[4]
2]

Now is the standard tableau corresponding to this path.

3.3.3 Murnaghan-Nakayama Rule
Definition. Let A+ n, (i,7) € Y()N).
(i) The rim of X is R(\) :={(z,y) e Y(\) | (z+ 1,y +1) ¢ Y(\)}.

(1t) The (i,7)-rim hook of A is R; ;(A) = {(z,y) € R(\) | * > i and y > j}. Its hand is
(i, \i) and its foot is (N}, 7), the same as for H; j(M).

(iii) The leg length of R; ;(\) is N, — j, and arm length \; — —j, same as for H; j(X).

Note that for both the hook and the rim hook the leg (resp. arm) length is the number of
rows (resp. columns) occupied by the hook, minus one.
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Example. Let A = (7,5%,3,1) - 26. Then the boxes in the rim are highlighted
green.

Take (4,j) = (2,2). The rim hook is highlighted red.
L]

Removing Ha2(\) (resp. R 2(\)) leaves
[T TT1] [ 1]

HEEN

(7,1°),(3,3,2) (7,4%,2,1%)

Note that if we merge the two components obtained by removing Hs2()) get precisely
what is left after removing Ra ().

Lemma 3.24. Let A n, (i,j) € Y(A).
(1) [Rij(N)| = [Hij(M] = hij(A),
(1t) Removing H; j(A) from Y (X), and then sliding the lower-right component (if the
result was disconnected) up and left one unit each, gives Y (X) \ R; ;(A).
Proof. Consider a walk along each hook, one box at a time traversing from the hand to
the foot. Then the claims follow since
e H;;(A\) and R; ;(\) have the same hands and feet,
e we only move left or down at each step,

e we use the same number of leftward steps (namely the common arm length \; — j),
and downward steps (by length /\;- —1).

O]

Definition. Let A n, (i,7) € Y(X). Define A\ H; j(\) to be the partition of |A| — h; j(X\)
such that Y (A\ H; ;(X)) =Y (X)) \ Ri ;(\). Eaplicitly, letting a = \; — j be the arm length,
and b= N, — i be the leg length, then

)\ \ HrL,]()\) = ()\1, )\27 .. .,)\i_l,)\i+1 — 17)\i+2 — 17 .. '7)\’L'+b - 1,j - 17 Ai+b+1,)\i+b+2, “ee )
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Note that h; j(A) =1+a+b,soj—1=X\—a—1=X —h;;(\)+b.
e From now on, when we remove a hook from A, we mean to get A\ H; ;(\) for some

(1,7) € Y(N).

e If 4 is obtained from A by removing a hook, then we let LL(A\ u) denote the leg
length of the removed hook. That is, u = A\ H; () for some (i,7) € Y(A), and
LL(X\ p) is the leg length of H; j(\), equivalently of R; ;(A).

Theorem 3.25 (Murnaghan-Nakayama Rule). Let « - n, k € [n|. Let m € S, and
suppose that it has a k-cycle in its disjoint cycle decomposition. Let p € S,_i have the
same cycle type as ™ but with one fewer k-cycle. Then

X(m) =D (=1)FHADN A (),
5

where the sum runs over partitions B obtained from o by removing a hook of size k.

Example. Let a = (3%) 9, 7 = (1234)(56)(789). We take k = 3 and p = (1234)(56).
What are the possible hooks of size 3 we can remove?

X
X X
X XX XXX

LL =2 LL =1 LL=0

Then , ,
X () = (X = X2V 3B ()
We repeat this with n = 6,k = 2. So this is

= no removable <
X <% hooks of size 2 x x| x
LL=1 LL—=0 from (3,2,1) L —1 LL—0
- ( —X@ 4+ x4 0 - x® 4 X6 >((1234))
— (_X(2,12) + X(3,1))((1234))
x[x]
~ x[x]%]
| £

LL=2 LL=2
=( X" — X" )
o 1-1=-9

Proof of Theorem[3.25 Since characters are class functions, we may assume that = =
po for some k-cycle o disjoint from p. For p = k, recall ¢# = ]lSHTSk, so &H(o) =

ﬁ > zes, 1. But since o is a k-cycle, o belongs to a conjugate of S, if and only if
zoz~leS),
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=(...,0,k,0,...). So if p is not of this form, then £#(c) = 0. On the other hand, if
( p
(...,0,k,0,...), then ¢ = ]15<k)TSk = 1g,, and so &*(0) = 1. Therefore

7
I
Xa(ﬂ-) = wa(ﬂ-) = walsn_kxsk (pO’)
renme BN (g (o)
nEk
=D ¢ (p)H(o)
ek

_ Z ,l/}(al,Oé2,...,0éi71,ai7k,ai+l7...)(p)
=1
-3 v g

1€N
where we let ;0 = (a1, 2,...,qi—1,0; — k,®ip1,...) En— k.
Recall from Lemmathat if y—id = (j j+1)o(A—id), then 7 = —*. Fix i € N, define
Bim En—kvia fim—id=(i+mi+m—1...i+2i+114)o(B;o—id), for each m € Ny.
Explicitly, Bim = (a1, a2, ..., 01,0541 — 1, ..., Qi — 1,05 —k+m, Qigm1, ... ). Since
(i+mi+m—1...i4+2i+10)=G+mi+m—1)---(i+2i+1)(i+1 i), we can apply
Lemma, [3.5| repeatedly to get

wﬁi,o _ (_1)mwﬁi,m.

We will see that

e if there exists m € Ny such that 3;,, is a partition, then m is unique, and we will
relate 3; , to a by removing an appropiate hook,

t while if there does not exist such an m, then we will show that *™ = 0.

For (i,j) € Y(a), letting b be the leg length of H;;(a), we recall that o \ H; (a) =
(a1, 01,0501 =1, 05400 —1, e —1, 05— hi j (@) +b, g1, Qg gy2, - - - ). Compare
this with f; ,,. For any given ¢, we see that the following are equivalent:

e the existence of an m € Ny such that 3;,, is a partition,
e the existence of a rim hook R; j(c) of size k, for some j € [\;].

The highest row occupied by this hook is row i. In particular, i < ¢(«). A rim hook is
uniquely determined by its highest row and size. In particular, there is at most one m for
each 7, and when this exists, m is uniquely determined as the leg length of the hook.

Notice if ¢ > ¢(«), then for all m € Ny, §; », has a negative part:

Bw:(al,ag,...,ag(a),o,...,(),—k,o...)
ﬂ@l:(011,012,...,ag(a),o,...,o,—l,—k‘-l-1,0...)
B@QZ(041,042,...,ag(a),o,...,O,—l,—l,—k+2,0...)
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So we never talk about a hook length in row ¢ unless 7 is a genuine row in Y ().

Once we prove the claim [f| then gives

X (m) = 3 650 ()
1€EN
= > (1% (p)

€N such that
Im € No: B;,m is a partition

D DI CE RN
BFn—k
obtained from o

by removing a hook
of size k

=Y X"(p).
B
So it remains to prove m Fix ¢ € N and suppose 3;,, I/ n — k for all m € Ny. Observe

6i,m—id:(a1—1,&2—2,...,a,~_1—(i—l),aiﬂ—(z’+1),...,ai+m—(i+m),
ai—i—k,ai+m+1—(i—i—m—i—l),...)

Since « is a partition, a—id is strictly descreasing. Since a;—i > a; —i—k > o — (i+k),
there exists a unique t € Ny such that oy — (i +t) > o —i—k > qjpep1 — (i +t+1). If
oyt — (i+t) = oy —i—k, then §; ; —id has two adjacent terms equal. But then 1/15“ =0 by
Lemma hence %0 = (=1)t4pPit = 0. Otherwise, c; ¢ — (i +1) > a; —i — k. But that
means f3;; is weakly decreasing. Also (8;¢); = a; for all j > i+t +1 and «; > 0 for all
J € N. Also « has finite support, hence so does f3;;, thus §;; is a partition, contradicting
our assumption. This proves [f] and hence the proof of the theorem. ]
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4 McKay Numbers

In this chapter we go back to partitions, and continue with F = C.

Main goal. Describe Irryy (S,) and work towards understanding the techniques in Olsson’s
proof of the McKay Conjecture for symmetric groups.

4.1 James’s Abacus

Example. Let A = (7,53,3,1) - 26, and consider Ha2(\), Ro2(\). Write 1,2,..., haa()\)
into Rg2(A) from hand to foot. For those numbers in boxes at the bottom of their column,
write them in Hj2(\) in the same column. For the rest, write them in to H2(A) in the
row below. - -

ot
IS
w
ot pof =~

Observe

1=7—6=hys(\) — haa())

)

2="T—5=hga(\) — haa(N)

)

B=7—-2=hya(\) — hsa(\)

)

Lemma 4.1. Let At n, (i,7) € Y(X). Then

12, By OV} = (i) 15 9 € AU {hay (N — hoy (N | § < @ < A}
Proof. We omit (A) from the notation. Let A = {(u,v) € R;ij | u= X} = {(\,y) | j <
y < N}and B={(u,v) € Rij[u# XN} ={(x 1) i<z <N}

By Lemma |R; ;| = hsj, so we may fill the numbers 1,2, ..., h; ; into R; ; one number
in each box from hand to foot. We claim that A is filled with {h;, | 7 <y < A\;} and B
with {h;; — hyj | i <z < A}, whence the lemma follows. Consider ()y,y) in A. It is
filled with

1 + #left steps + #down steps
=1 + arm length of H;, + leg length of H;, = h;,
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Consider (z — 1, ;) € B. It is filled with
1 + #left steps + #down steps
=14+ N-d)+(@—1=9)=04+XN—j+N—i) =14+ X —j+ X, — )
=hij— haj.

Definition. Let AFn, m = {()).
(1) Let Xx = {h11(N),h21(N),...,hm1(A)} be the set of first column hook lengths of A.

(it) For each i € [m], let H;(X) = {hi;(X) | j € [Ni]} be the set of row i hook lengths of
A

Note that Hi(A) = {1,2,...,hi1(A\)}\ {h1,1(A) — ka1 (N) | i < 2 < m} by Lemma [4.1]
Convention: If ¢ > m, then H;(\) = 0.

Notice that X determines \: If we know that {hi, ha, ..., hp} where hy > hg >« > hy,,
is the set of first column hook lengths for some partition A, then A\ must be A = (h; —
(m—1),...,hp-1 — 1, hy — 0).

Idea. We represent partitions using beads on an abacus.
e Info about hook lengths is encoded into the bead positions

e given an arrangement of beads, we will be able to reconstruct the partition using
observations like the above.

e advantages: operations on partitions (e.g. hook removal) are easy to describe.

Definition. A (-set X is a finite subset {h1,...,hn} of Ng. Convention: hy > hy >
e > hm

For a 3-set X = {h1,...,hy} and | € Ny, we define X+, the l-shift of X, as follows:
° X+0 :X,
o if >0, then Xt ={hy +1Lha+1,...,hy +1}U{l—1,1-2,...,1,0}.

We define the partition corresponding to X to be P(X) = (hy — (m — 1),ha — (m —
2), ..., hum—1 — 1, hy, — 0). This expression for P(X) may have trailing zeros, which can
be remowved.

Example. Let X = {4,2}. Then P(X) = (4 —1,2-0) = (3,2). And X*2 = {6,4,1,0}
and P(X*2) = (6—-3,4—2,1—-1,0-0) = (3,2).

Lemma 4.2. Let A+ n and X a B-set. Then X is a B-set for A, meaning P(X) = X, if
and only if X € {X;™ |1 € No}.
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Proof. Let X = {hy,hg,...,hp} and t = ¢(\). Then

PX) = A= (hi— (m—=1), s bt — 1, o — 0) = (A1 Agy - o3 Ae)
hj—(m—j)=2x; ifj<t,

<= m >t and : e
hj—(m—j)=0 1ifj>t

Aj+(E—g)+(m—t) ifj<t,

< m>tand h; = e
m—j ifj>t

<~ m-—-teNyand X = X;r(m_t)

O]

Definition. Lete € N. James’s e-abacus consists of e runners (drawn as columns) labelled
0,1,2,...,e — 1 from left to right, with rows labelled by Ny increasing downards. The
positions are labelled by Ng, with that in row a and runner i labelled by ae + .

Given a (B-set X, the e-abacus configuration corresponding to X has beads precisely in
positions given by the elements of X. We call the configuration Ax . Conversely, given an
e-abacus configuration A, i.e. a finite set of beads in the e-abacus, define the corresponding
B-set X 4 to be the set of position labels of the beads. We define the corresponding partition
to be P(A) := P(X4).

Also, if X = X, then abbreviate Ax, = Aj.

Clearly,
{e-abacus configurations} & {B-sets}
AX — X
Ar— Xy
bead positions «— {h1,..., hy}
e-abacus:
0 1 2 e —1
0] 0 1 2 e —1
l{e e+l e+2 -+ 2e—-1
212 2+4+1 2e+2 --- 3e—1
Examples.
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(i) Let e > 2, X = {2¢,e+1,2}. On an e-abacus we have

0 1 2 . oe—1
o] 0 1 @ - e—1

1 e e+2 -+ 2e—1

2 2e+1 2+2 - 3e—1

and P(X) = (2e — 2,¢,2).

(ii) Consider the 3-abacus configuration A given by

[0 1 2
ojo ® @
1® 4 ©
2/6 7 8
3@ 10 (1)

so X4 = {11,9,5,3,2,1} and P(A) = P(X4) = (6,5,2,13) - 16.
Let X ={6,4,1,0}, e =3 or e = 4. Then

|01 2 0 1 2 3
BT oD
2 ® 7 8 1@ 5 ® 7

We have P(X) = (3,2).

Lemma 4.3. Lete € N. Given an e-abacus configuration A, with beads at hy > hy > -+ >
hpm, then P(A) = (a1, a2, ...,an) where a; is the number of gaps, i.e. empty positions, i
such that 0 <1i < h;.

Proof. By definition, P(A) = (hi —(m—1),..., hy, —0). But there are h; positions before
hj, of which m — j have beads, namely hji1,...,hp. ]

Definition. Let X = {hi,...,hy} be a B-set. Fori € [m], define H;(X) ={1,2,...,hi}\
{hl—h]|z<j§m}

Lemma 4.4. Let A\bn and X a B-set for A\. If X = {hq,..., hpn}, then H;(X) = H;(\)
for all i € [m].

Proof. We have X = Xj\r(m_g()‘)) from the proof of Lemmam If i > ¢(X), then |H;(X)| =
hi — (m—i) = 0, 50 Hi(X) = Hi(\) = 0. If i < €(\), then H;(\) = {1,2,... hit(A)} \
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{h11(X) —hj1(A) | i < j < €(N)} and so clearly H;(A) = Hi(X)). So it remains to check
Hi(X) = H;(XT). We have X! = {hy +1,ha+1,...,hy + 1,0}, so

Hi(XH) = 11,2, b+ T\ (i 1) — (g + 1) [ < j <m} U {hi+1) = 0})
:{1,2,...,hi}\{hi—hj|i<j§m}:Hi(X).
]

Corollary 4.5. Let A+ n and X = {hy,...,hn} be a B-set for X\. Let h € Ng. Then
heH;(\) iff hy —h >0 and h; — h ¢ X, for any i € [m].

Proof. The claim is clear if ¢ > ¢(\) (since then H;(\) = 0), or if h = 0. So we may assume
that ¢ < £(A\) and h > 0. If h > h;, then h > maxH;(X) = maxH;(\), so h € H;(N).
Otherwise, h < h;. Recall H;(A) = H;(X) ={1,2,...,hi} \ {hi — hj | i <j <m}. So

h ¢ Hi(\) <= h=h; — hj for some i < j <m
<— h;—heX

Corollary 4.6. Let A Fn and suppose ef € H(X) for some e, f € N. Then e € H(\).

Proof. Let X = X\ = {hy,h2,...,hp}. Since ef € H(N), then ef € H;(\) for some
i € [m]. By Corollary[1.5| 0 < h;—ef ¢ X. But h; € X, so there exists [ € {0,1,..., f—1}
such that 0 < h; —e(l+1) ¢ X, but h; —el € X. This means h; — el = hy for some
i <k <m. But then 0 < hy —e = h; —e(l + 1) ¢ X, hence by Corollary again,
€ c Hk()\) ]

Example. Let A\ = (7,52,3,1) - 21. So:

11 [ ] 11 []
8 [ x[x]x]x 7 X
TIx 4 X[ x| %
4% 2 [ x|[x
1] 1]
Hgg(/\) RQ,‘Z()\)
X, ={11,8,7,4,1} Xamyo0 = {11,7,4,2,1}

Note that X\, ,(0) = (Xa \ {8}) U {8 — ho2(A)} and 8 is the second element in X.

Proposition 4.7. Let A+ n, X = {h1,ha,...,h} be a -set for X\. Let (i,7) € Y(A).
Then

(1) 0 < hi—hij(A) ¢ X,
(ZZ) Z = (X \ {hz}) L {hz — h@j()\)} 1S a 5—5615 fO’I’ A \ Hi’j()\)
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Proof.
(i) Immediate from Corollary

(ii) Since B-sets are determined up to shift, and Z+ = (X T\ {h;+1})U{(hi+1)—hi j(\)},
then it is enough to prove (ii) for X = X,. So now assume X = X, m = {(A),
hi = h;j(A). Let = X\ H;;(X\). Recall that if b is the leg length of H; j(\), then
n = ()\1, )\2, ey A'i—17 )‘i+1 - 1, ey /\i+b - 1,j - 1, )\i+b+17 oo ) Let Z' be the ﬁ—set
for p such that |Z’| = m. This does exist, since £(u) < ¢(\) = m, so in particular,
7' is just X:(m_é(“)). Let Z' = {k1,...,km}. We compute Z':

e For s < i, then ks = ps + (U(p) —s) + (m —L(p)) = As +m — s = hs1(N) = hs.

e For s € {0,1,...,0—1}, kiys = pigs + (1) — (i+5)) + (m—L(1)) = Nigst1 —
D+m—(i+s)=Njsy1+m—(i+s5+1) =hiyeq1.

o kivy = pisy + (C(u) — (i +5)) + (m — €)= j — L+ m—i—b.
e Fors>i+b+ 1, ks=pus+m-—s=As+m—s=hs.

So 7' = (X\{h@})Ll{]— 1+m—i—b}. But h; _hi,j = hz,l()\) _hi,j()\) =
Nidm—i)—(L+Ai—j+b)=j—1+m—i—b. SoZ =2Z.

O
Corollary 4.8. Let e € N, A+ n, X = {hy,...,hn} a B-set for \, i € [m]. Write
hi =ae+ j fora € Ng and j € {0,1,...,e — 1}. Then the following are equivalent:
o There exists y € [N;] such that h;y(\) = e.
e a>1 and (a — 1)e is an empty position in the e-abacus configuration Ax.
When these hold, y is unique.

Moreover, the e-abacus configuration A’ obtained from Ax by sliding the bead in position

h; to position h; — e has P(A") = A\ H;y(N).

In other words, removing a hook of size e is the same as sliding a bead up one row on an
e-abacus.

Proof. By Corollary

e€eHi(N)<—=0<h —e¢ X
<=a>1,and (a—1)e+j ¢ X.

Hence the equivalence. For the second part, clearly X4 = (X \ {h;}) U {h; — e}, but this
is a B-set for A\ H;, () by Proposition O

Remark. Recall the proof of Corollary -we had 0 < h; —ef ¢ X, h; € X. The
existence of [ in the proof is equivalent to there being a bead immediately below a gap
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somewhere on this runner between h; and h; — ef. By Corollary this corresponds to
a hook of length e.

Just as we have the division algorithm for integers, giving quotients and remainders when
we divide by e, we can do something similar for partitions, giving “e-quotients”, and
“e-cores”.

Definition. Let e € N, A - n. We say that X is an e-core partition if e ¢ H(N\). The
empty partition () is always an e-core for any e.

Example.

(i) Suppose || < e. Then A is an e-core partition.

x[x]
(i) <] We can see that (4, 3,3) is not a 5 core, but (2,2,1) is.

XX

(iii) Let e = 2. Hooks of size 2 are always “dominoes” (i.e. 2 x 1 or 1 x 2 rectangles). So
the 2-core partitions are precisely

®7 DJ Y Y

ie. Qand (t,t—1,...,2,1) for t € N.
Definition. Lete € N, A+n, X a [-set for A.

1) Fort€{0,1,...,e—1}, de ne X'© = a€Ng|lae+ie X}. Thatz's,X-(e) 1s the
(i) i i
set of row labels of beads on runner i of the e-abacus configuration Ax.

(i) The e-quotient of A is Qo(A) := (A XD AE=D) yhere \O) = P(XZ-(e)). That
is, X\ is the partition corresponding to the runner i of Ax viewed as a 1-abacus.

(iii) Define X ¢y = L[SZd{ae+i|0<a< \Xi(e)\ —1}.
(iv) The e-core of \ is Ce(A) := P(X(e))-

The e-abacus configuration A X, s obtained from Ax by sliding beads up as high as
possible. The description of A X0 and Corollary imply that C¢(\) is indeed an e-core
partition.

Lemma 4.9. Lete € N, A\ n, X a B-set for \.
(i) Forie{1,2,...,e—1}, (X))l = x(9 .
(i) (X1 = (X)L
(iii) Fori€{0,1,...,e— 1}, P(X*){?) = P(X'9)) where i — 1 is taken mod e
(i) (X)) = (X)) ™!
(v) P(XH1) () = P(X(ey)
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Proof. Example Sheet 3. O

Remarks.

e Lemmal[L.9] (iv), (v) and Lemma 4.2 show that Ce(A) just depends only on e and A,
but not the choice of S-set X for A.

e Lemma (i), (ii) and (iii) show that if we shift X to X1 we induce a cyclic
shift of the components of Q¢(\) = ()\(0),)\(1), .. .,)\(6_1)). So far, Q¢(\) therefore
still depends on the choice of X. But X and X ¢ give the same cyclic shift of X(®),
and | X*!| = | X| + 1, so to fix an ordering of the components of Q.()\) and thereby
specifying Q(A) uniquely from now on, we will always choose f-sets X such that
|X| is a multiple of e when calculating e-quotients.

Example. Let ¢ = 3, A\ = (6,5,2,1%) F 16. Then X, = {11,9,5,3,2,1}. Note that
3] |Xx|]. Let X = X\. Then

Ax Axg)
[0 1 2 [0 1 2
ojo ® @ 00 © @
1@ 4 ©® 113 4 G
216 7 8 216 7
3@ 10 11 319 10 11
So C3(\) = (3,1),
Xé3):{3,1},
x{¥ = {0},

X5 = 43,1,0}

and Q3()‘) = ((27 1)>®7 (1))

Note that in total we moved four beads up when going from Ax to A X(5- This could
correspond to removing rim hooks as follows (order indicated by number)

2[1]1] 3[3]3]
4]2]2]1 4]2]2]2

etc.

or

EEEE

Definition. Let e € N. An e-hook is a hook of size exactly e.

Theorem 4.10. Let e € N, A n. Then Ce(\) is the unique e-core partition we obtain
by successively removing e-hooks from \ until we cannot remove any more. In particular,
this is independent of the order in which we removed the hooks.

60



Proof. Let X be a (B-set for A\. Let v be an e-core partition obtained from A by removing
some e-hooks. By Corollary there exists a (-set Z for v such that the e-abacus
configuration Az is obtained from Ax by sliding all beads up as far as possible. But then
clearly Z = X(,), and so v = P(Z) = P(X()) = Ce(A). O

Definition. Let e € N, A n. Consider Q(\) = MO XD XDy We say that H s
a hook of Q.(\) if H = H; ;(\)) for some s =0,...,e—1 and (i,7) € Y(A\®)). Moreover,
we define Qe(A\) \ H := (A0, ... XD XN\ g XD NEDY - When we refer to a
hook H of Q.(\), it is considered to carry both the information of which component A(*)
it came from, as well as the boz (i, 7).

Theorem 4.11. Let e € N, A= n. There is a bijection
f{Hi;(\) s.t.e| hij(A)} = {hooks of Qc(\)}
such that if H = H; j(\) with e | hi j(X), then |H| = e|f(H)| and Qe(A\H) = Qc(N)\ f(H).

Proof. Let X = {h1,ha,...,hy} be a B-set for A with e | m. Recall from Corollary
that for i € [m] and h € Ny,

heHi(N) <= 0<h;—h¢X.
So we get a bijection
{Hij(\) s.t. (i,5) € Y(N)} = {(b,9) €N [ b>g,b€ X, g ¢ X},

i.e. pairs of positions (b, g) in the e-abacus configuration Ax such that b is a bead, g is
a gap and b > g. If H; ;(\) — (b,g), then h; = b and h; — h; ;(A\) = ¢g. In particular,
hi j(A) = b — g. So this restricts to a bijection

F:{H;;(\) st.e|hij(0)}—{(b,9) N3 |b>g,be X,g¢ X,b=g mod e}

If b= g mod e, then b = b'e + s and g = g'e + s for some s € {0,1,...,e — 1} and some
W > ¢ € No. Again by Corollary [1.5] since Q.(A) = (A®, ..., A=) has A®) = p(x[),
and X = {a € Ny | ae + s € X}, we have bijections

for {Hij(O®) st (i,5) € YA} = {(0.g) eNG [V > .0 € X{9 ' ¢ X[}
And as before, if H; ;(A\(*)) = (¥/,¢'), then h; j(\®)) = 1/ — ¢’. The bijection f that we

seek follows from composing F' with the inverses of fy, fi1,..., fe—1, noting that

e—1
{(b.g)|b>gbe X, g¢ X,b=gmode} ¢ | [{V.g) |V >g.V e X g ¢ X}
s=0

Moreover, b — g = e(b — ¢') gives |H| = e|f(H)|.
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To see that Qc(A\ H) = Qc(N) \ f(H) when H = H; j(\) with e | h; j(A): from Proposi-
tion we know that Z is a S-set for A\ H, where

Z = (X \{hi}) U {hi = hi(N)} = (X \ {Ve + s} U{g'e + s}

Note e | |X]| = |Z], so we can use Z to calculate Q.(A\ H): Zlfe) = t(e) for all t €
{0,1,...,e — 1} \ {s}, and 7 = (Xs(e) \{t'})u{d} So 7 is a B-set for A®) \ f(H),
hence Qc(A\ H) = (AO, ... ATV NN f(H), A+ L ACED) = Q. (W) \ f(H). O

Example. Continue the example from before, so let e = 3, A = (6,5,2,13) - 16. Then
Xy ={11,9,5,3,2,1}.

hook lengths Ax 3-quotient
117|543 1[ ‘ 0 1 2
R 010 U@ g0 = ((2,1),0,(1)
2 26 7 8 -\
a 3@ 10 @
his(\) =3 (DHET: Hip(N) 5 Hii(A?)
row 1 h1 — hl — h175()\) 11 =2 mod 3
h2,1(/\) =9 @ — 0 HQJ()\) I—f> Hl’l()\(on
h471()\) =3 @ —0 H471<)\) 'i> H271(/\(0))

To see that e.g. Ha3(\) RN Hy5(A©) note that the runner 0 of the abacus goes from
0
0
to @

9

@@o‘o

which has partition (1,1) = H = A0\ H; 5(A®) by Lemma
Definition. Let e € N, A n. Then the e-weight of \ is we(\) := [Qe(N)| := 32574 |AD)].
Proposition 4.12. Lete € N, AFn. Then

(i) we(N) is the number of e-hooks we need to remove to get from A to Ce(N).

(ii) |Al = |Ce(M)] + €|Qc(N)].
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(iii) we(N) is the number of hooks of A of size divisible by e.

Proof.

(1) Induct on we(A). If we(A) = |Qe(A)| = 0, then by Theorem A has no e-hooks,
and so A = C¢(A). Now suppose we(A\) > 0. Then by the same theorem, A has a
hook length divisible by e. So there also exists a hook H of X of size exactly e, by

Corollary [4.6|or also Theorem [£.11] Recall Qc(A\\H) = Qc(\)\ f(H) and | f(H)| =1,
50 We(A) = [Qe(N)| =14+ QM) \ f(H)| =1+ |Qe(A\ H)| =14 we(A\ H), so the
claim follows from the inductive hypothesis since we removed one e-hook to get from
Ato A\ H and Ce(N\) = Ce(A\ H).

(ii) Immediate from (i).

(iii) Follows from Theorem as |Qe(A)| is the number of hooks of Qc(A).

Theorem 4.13. Let e € N, n € Ngy, and define

v is an e-core partition, p' is a partition for all i }

B :Z{ 0%t s
(N) (%P P ) P ) and ”)’| ‘f‘eZ?:é |pZ’ =n

Then

g:p(n) — B(n),
A (Ce(N); Qe(N))

s a bijection. In other words, a partition is uniquely determined by its e-core and e-
quotient.

Proof.

e By Proposition n = A = |Ce(N)] + e|Qe(N)], so g(A) € B(n) and g is well-
defined.

e g is surjective: Let (v;p) € B(n), where p = (0%, pt, ..., p¢ ). Let X be a B-set
for  such that e | | X| and |XZ-(€)| > {(p) for all i. Then define Z; to be the B-set
for p* such that |Z;| = |Xi(e)] for all 4, and set Z := | [""g{ae +i | a € Z;}. Let
A =P(Z). Since v is an e-core, X = X(,) and so we have Z() = Xy = X. Hence
Ce(N) =P(Z)) = P(X) =7. Next, e | [X]| = |Z],50 Qe(A) = (AO, ..., A=D) with
A = P(29) = P(2) = pi. Finally, by Proposition [1.12] [A| = [C.(\)]+€|Q.(A)] =
n since (7v; p) € B(n). So g(\) = (v;p) with A n.

e g is injective: notation as above, suppose g(u) = (v;p), for some p = n. Since
Ce(pt) = 7, there exists a unique S-set W for p such that |W| = |X|. Now [W(.| =
W] = |X][, and P(W,)) = v = P(X). Hence W(,y = X by Lemma Also,
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Wl = (W) | = 1% = 2], and PWS?) = 4 since g(u) = (v p) noting
that e | | X| = |W|. But also p' = P(Zi(e)), hence Wi(e) = Zi(e) for all ¢ again from
Lemma [£.2

Thus Wy = X = Z(o) and W = Z{ for all i, so W = Z, so p = P(W) = P(Z) =
A

O
Example. How do we reconstruct A, given Cc(A) and Qc(A)? Let e = 3 and (v;p) =
((3,1);(2,1),0, (1)) € B(16). We expect A = (6,5,2,1%) I 16.
e Step 1. Start with A,

o of
o W
~@®
co Ut NN

e Step 2. Shift to get e | | X|,

[S—y yw—Y

0 2
© 1@
3 ®
6 8

7

e Step 3. Add enough full rows of beads, i.e. shift enough by multiples of e, to get
X9 > (p?) for all 4,

'#tlﬁt%#h:
* #®®

@
+@DD
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e Step 4. Slide down to get p’ on runner 4 for all i.

o 1 2
0l ©® @
##@
# @ # @
#|# #F
# @ # @

Now this is an abacus configuration A for \. We can now shift back and start
numbering after the green dashed line. So we get the [-set {11,9,5,3,2,1}. So
A="P(4) = (6,5,2,1%).

4.2 Towers

Just as the division algorithm for integers gives us base e expansion, we can use Theo-
rem [£.13] to give “e-adic expansion” for partitions.

Example. Let e =3, A = (6,5,2,13) - 16. Then C3(\) = (3,1), Q3(\) = ((2,1),0, (1)).

AO0) — (2,1) A = A = (1)
A, @)+ Ax o) = A, y)+2

0 1 2 0 1 2 0 1 2
0] 1 @ 0]0 1 2 0@ @ 2
113 @ 5 113 45 11® 4 5
206 7 8 216 7 8 206 7 8

We get the sequence of quotients as follows:

A= (6,5,2,1%)
A0 = (2,1) AN =0 A2 = (1)
A00) — ¢ AOM) = (1) A0@2) = ¢ A0 = ¢ A0 — ¢ A2 = ¢
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The 3-cores are

C3(A) = (3,1)

\
0 C(A) = (1)
s

/

C3(A©) =0 C3(AW) =

/ (1) \
Definition. Let e € N. An e-tower is an infinite sequence T = (Tp, T1,To,...) such that

each Tj is a sequence of ¢! many partitions, T; = ()%, )\{, cel, )\ij—l)'

0

0 0

e The T} are the layers or rows of T', define |Tj| := ijz_ol ]/\z\

e The depth of T is depth(T) = sup{k € Ng | |T| # 0}. We will call the depth of the
empty tower —1.

o We say T is an e-core tower if depth(T') < oo and )\g 18 an e-core partition for all
i,].

As we saw in the example above, we can visualise e-towers using graphs.

e vertices: )\g ,

e edges: u,v are joined if p = )\g and v = )\g;lt for some j € Ng,i € {0,1,...,¢/ —
1},t € {0,1,...,e—1}.

e.g. for e =2, A
Ao A

PN PN

XA AT A3
These graphs are rooted, ordered, full e-ary trees. When we use graphs to describe e-
towers, we always mean trees like this.
Notation. Let e € N

e [e] :={0,1,...,e — 1} (residues mod e)

e For each z € [g], write Q.(A(®)) = (A@O) A1) A@e=1) instead of A(@)(0) \@)1)
etc.

e Similarly, for all » € N, and for all i = (iy,i2,...,i,) € [€]", will write Qc(\¢) =
()\(ilvi27"'7i7"70)’ . 7A(i17"'7i7"76_1)).

Definition. Let e € N, A\ n. The e-quotient tower of X is the e-tower T?(\) with
o T9(N\)o = (N
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e TON\)1 = Qe(N) = WO XD ey,

e Forallj €N, TO\); = ()\@)l-e[é]j, lexicographically ordered.
Lemma 4.14. Let e € N, A\ F n, TQ()\) the e-quotient tower. Suppose e > 2, then
depth(T?()\)) < oc.

Proof. From Proposition{4.12] |\| = |Ce(N)|+e|Qc(N)] > [Qc(N)| with equality iff |Ce(N)]
|Qc(N)| = 0, since e > 2. By Theorem equality holds iff A = (. Hence |T?(\),|
IT9(N)j11] unless T9(N;) = (0,...,0).

OVl

Remark. Q;(\) = (A9) = (), so the 1-quotient tower T9()) has all layers equal to ()).
So its depth is —1 if A = ), and oo otherwise.

Definition. Let e € N, A\ F n. The e-core tower of \ is the e-tower TC(\) obtain from
the e-quotient tower T2 () by replacing every vertex with its e-core. That is, T(\); =
(Oe(Ai))l‘e[é]j, lexicographically ordered.

When e > 2, depth(T¢()\)) < oo since depth(T9(\)) < oco. When e = 1, hen T¢()\) is
empty, so also depth(T¢()\)) < co. So TY()) is indeed an e-core tower.

Lemma 4.15. Let e € N, A\ n. For x € [€], the subtree of T (\) rooted at Co(A®)) is
the e-core tower of \®), so the (j + 1)-th layer of TC()\) is the concatenation of the j-th
layers of TC(A©), TC(AW), ... TONED). That is, TCA®)); = (Ce(A™D));ciep and
TCN)j41) = (TCAD);, TOAW);,..., TOAED);).

Proof. The subtree of T?()) rooted at A(*) is T@(\(®)), O

Theorem 4.16. Lete € N, e > 2, let n € Ny. Define

oo
0(n) := {e-core towers T such that Z |Tle’ = n}.
=0

Then
h:p(n) — 0(n),
X — e-core tower TC(\)

s a bijection.

Proof. First, we check > 22, |T¢(N\)j]e? = n, by induction on n. The base case n = 0 is
clear since then A = (). Now suppose n > 0. Then n = |\ = |C(N\)| + er;}) IA@)| =
1T (N)o|+e X2, iy T (A®)]e? by the inductive hypothesis, since > 2 means |A\(®)| <
|A|. This is

e} e—

1 00 e’}
TNl + - (SITCO))er*t = [TOW)ol + 3 ITCN)sle ™ = 37 1T (V) e
j=0 0 j=0 J=0
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Next, to prove that h is a bijection, we show for all T € 6(n) that there exists a unique
Ak n such that T9(\) = T. For z € [e], let S(x) be the subtree of T rooted at AL,
where T = (Ty, T1,T3,...), Tj = (M), A],..., X, ). Since T is an e-core tower, so is
S(@). Then since n, == Y270 [S@)ilel < Y [Taaled < [Ty] + Y2 [Taalei*! =
n, we can use inductive hypothesis to see that there is a unique u, F n, such that
T¢(uz) = S(z). By Theorem there is a unique partition A such that C.()\) = A
and Qc(N\) = (1o, i1, - - -, fte—1). Observe TC(\) = T since T (uz) = S(z) = TC(A\®), i.e.
T(11z) is the subtree of TC(\) rooted at AL = C.(A®)) = Co(p,). To check |A| = n:

e—1
A = [CeN) + € |al
=0

e—1 oo

= [Tl +e) > 1S();le!
=0 j=0

0o e—1

= N1+ (D 18(@)) e
=0 =0

Tl =n

o

<
Il
=)

Uniqueness of A is also clear from this argument. O

Remark. This is not a bijection when e = 1 since then 7 ()) is empty for all \.

Example. Given T € 0(n), how to compute A = h™1(T)? Let e =3, T =

>S

2

0o 0 é

0

where () means that from that vertex onwards there are only empty partitions. We have
n=1-3"4+2.3"41-3?=16.

e When we see a subtree rooted at an e-core partition ~ with all empty below, this
subtree is the e-core tower of v because Ce(y) =, Qe(y) = (0,...,0).

e We will draw boxes to replace subtrees by the partition whose e-core tower is that
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subtree.

(1)
/
e Work up the layers: What p has TC (u) = 0 ? It is the partition p with
(1)

C3(p) = 0 and Q3(u) = (0, (1),0). We showed how to find this in the example after
Theorem In this case we get p = (2,1). Then we get

T = (1)

So T = TY()\) where C3(\) = (1) and Q3()\) = ((2,1),(2),0). We find that A =
(7,6,3).

Example. How does hook removal interact with core towers? Let e = 3, A = (7,6, 3),

T9(\) = (1) Ao 1 2
o @ b CZD Ci) Cﬁ)
T
oo ? @ # #
b ¥ & #
#) # #
(a) Remove the 3-hook marked in [. So let yp = A\ H, where H = H3 1(\),

hs.1(A) = 3. On the abacus:

RS

4 3 ¥ (%)

(3) %
4 @)% * () -



So Cal) = (1) = Co(N), Qsl) = Qs(N)\ S(H) = (A0 \ F(H), AW, ) =
((2),(2),0). We have
T () = (1)
T
(2) (?) 0
) 0
(b) Remove the 9-hook marked in K X. Let v = A\ K, where K = Hj 1(\),

hii(A) =9.

B B @
# # #
#H # #
# (B #
#O##
So C3(7) = (1) = C3(7) and Q3(7) = Q3(7) \ f(K) = (AD\ f(K),AD,\@) =
(@,(2),0). So
T¢y) = (1)
T
0 (2‘> 0
0

Proposition 4.17. Let e € N, let k,n € Ny with n < el Let A - n and p =
C.x()\). Then the e-core tower T (i) of p is obtained from the e-core tower TC(\) by
replacing every partition in the k-th layer by the empty partition. That is, TC()\)j =

TN ifi#k

@,0,...,0) ifj=k.
Part (b) of the example above is an example for this proposition.
Proof. Example Sheet 4. O
Definition. Let p be a prime. The p-adic valuation v, : N — Ny is defined as vp(n) =
max{k € Ny s.t. p* | n}.

Theorem 4.18. Let p be prime, n € Ny with p-adic expansion n = Y 2 op", i.e.
ar €{0,1,...,p—1} for allr € Ng. Let A\ n. Then

”p(X/\(l)) = 2r=0 |TC(;‘):|1— Do O

I
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where TC(\) is the p-core tower of .

Proof. Recall the hook length formula, Theorem [3.1 We get

vp(xM(1)) = vp<Hn!) = vy(n ( I1 h)

neH(\) P hEHOM

e Step 1. We compute v,(n!). Observe that

Oon
=21

Qp + Qpp1p + ar+2p +. )

p"—1

o0
=2
r=1
:Zar(1+p+p2+~-+p“1)
r=1
2

(S )

(Zarp Z )

r=0
:n—Ei’ioar

p—1

o Step 2. We claim that vp([]pen)h) = S T9(N),|, where T9()) is the p-
quotient tower of \. We prove this by induction on n. The base case n = 0 is clear
since vp(1) = 0. Now suppose n > 0. We write H(Q,()\)) for the multiset of hook
lengths of Qp(\). Then

H h):vp( H hv)

heH(N) he7|{h(/\)
p

Theorem [A.17]
(11 )

heH(Qp(N))

=W+ I #)

hEH(Qp(/\))

= |Qp(A |+UP(H H h)

=0 heH(A(®))

- rTQ<A>lr+va( I »)

=0  pheH(\@)
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p—1 oo
ind. h; hesi
ind. hypothesis |TQ()\)1| + ZZ |TQ()\(””))T|
=0 r=1
oo p—1

=T+ 3> 1190

r=1x=0

= [T+ STV
=) IT°M)
r=1

e Step 3. By Proposition for all r € Ny, i € [p]",
M = [Cp(A)] + pl@p(AY)].
Summing over i € [p]", we get

TN = 1TV + pITON) |-

Therefore,
n =\l = [T9\)ol
=) T =Y 1T,
r=0 r=1
(Z IT%(\), | —pz IT9(A r+1\) S NAIeY
r=0 —1
= ST+ (0= 1) ST, .
r=0 r=1
Hence
() =t ~ ey T 1)
heH(N)
- i 1 (n - ZaT> - Z |TQ()\)T|
b r=0 r=1
= pil(z ITCN)el + (0= 1)) ITON),| - Zar) ~ Y e
=0 r=1 r=0 r=1
= pll(Z T =Y o)
r=0 r=0
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Corollary 4.19. Let p be prime, n € Ng with p-adic exzpansion n = Y 2 o,p". Let
A Fn. Then vy(x (1)) = 0 iff [TC(N);| = o for all r € No, where T ()\) is the p-core
tower of A.

Proof. “if” is clear from the theorem. For “only if” the theorem gives us 320 |[T¢()\),| =
> o ar. Also note that Y o2 |TC(N),|p" = n. Let . = [T()\),|. So we have

Y= 5

r>0 r>0
r r
> ap" =) B
r>0 r>0

We show that o, = B, for all r € Ny. First, 8y = a9 mod p. Hence we can write
Bo = ap + mip, for some m; € Ny. Since Sy € Ny and a9 € {0,1,...,p — 1}. Thus
Zrzo Brp" = 2722 Brp" + (61 + ml)p +ap = ZTEU a,p”. Then 1 + m1 = a; mod p, so
b1+ m1 = a1 + mep for some my € Ny. Iterating, 8, + m, = o, + m,41p for all r € Ny
where m, € Ny and mg = 0. Then Zrzo oy = Zrzo By = Zrzo ar+(p—1) Zrzo my,
hence m,. = 0 for all » and so a, = ;. ]

Example. We compute Irro/(Sy). By Theoremthere is a bijection between partitions
and 2-core towers. By the corollary, for A - 4 = 122, we have x* € Irro(Sy) iff
ITY(N)a| = 1 and |T(N),| = 0 for all » # 2. So we already see that |Irry(S;)| = 4. The
towers are:

0 0 0 0

SN TN SN N

o0 b0 0 0 0 0
PR N PR PR
@0 4 @0 0
| | | |
0 0 0 0

As in the example after Theorem [£.16 we compute:

0 0 0 0
P P P P
0 [0 L (1 ] R o 0

N N N S
(1) (1) (1) (1)
! 1 3 \J
0 0 0 0

AN PN

(%) @) (%) )
1 1 \ 1
A= (14) A= (31) —21) A= ()
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Hence we see that

Irry (Sg) = {x* s.t. A€ {(4),(3,1),(2,1%), (1%)}}.

Note that these partitions are exactly the hooks of size 4.

4.3 The McKay Conjecture

Recall the McKay Conjecture: Let G be a finite group, p a prime, P a Sylow p-subgroup
of G. Then
[ Irry (G)| = | Trry (Ne (P))]-

Definition. Let G be a finite group, p a prime. The McKay numbers of G are

mi(p, G) = {x € Irr(G) s.t. vp(x(1)) =i},
for i € Np.
So we are interested in mo(p, G) for G = S, (and G = Ng, (P)).

Corollary 4.20. Let n € N with binary expansion n = 2™ 4272 4 ... 4 2™ je . t €N,
and the n; € Ny are distinct. Then

m0(27 Sn) = |Irr2/(5n)| — onitnatetng
Proof. By Theorem we have a bijection

h:gp(n) — 0(n)
A — 2-core tower T (\)

By Corollary for A\ - n we have x* € Trry/(S,,) iff

1 if
O R
0 otherwise.

But [T¢()\),| = 1 means T¢()\), is a sequence of 2" many partitions, exactly one of which
is (1), the rest (). So the number of such 2-core towers is 2"t - 272 ... 2™, O

Corollary 4.21. Let p be a prime, n € N with p-adic expansion n = Zrzo arp”. Then

mo(p, Sn) = ‘Irrp'(sn)‘ = H kp(pTv o),
r>0

1

where ky(1,m) is the number of tuples of partitions (v, . .. ) such that each ~' is a p-core

partition and 22:1 '] =m.
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Proof. The same as the previous corollary, use Theorem and Corollary O

Sketch towards the McKay conjecture. We need some group theoretic facts.
Suppose p = 2.
o Let P, € Syly(S,) be a Sylow 2-subgroup of S,,. Then Ng, (P,) = P,.

e For n = 2%, Irro/(Ng, (P,)) = Irrer(P,) = {degree 1 characters of P,} as the degree
of any irreducible character divides the group order. But now the degree 1 charac-
ters of any group H are in bijection with Irr(H/H') where H' is the commutator
subgroup. If H = Py, then H/H' 22 C*, hence |Trry (Pyr)| = |Trr(CF)| = 2F.

e For general n = 2™ +2"2 4... 42" count the number of factors of p = 2 in |S,, | = n!
to see that
Pn = P2n1 X P2n2 X oo X PQ’nt.

Then

s b
|Trre (Ng, (P))| = |TIrry (P)| = H | Trro/ (Poni )| = HQ"Z' = mo(2, Sp).
i=1 i=1

For p > 2 the first point need no longer be true.
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