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1 Introduction

Definition.

h:={reC|ImT > 0},
['(1) := SLy(Z),
GL2(R)™ := {g € GL2(R) | det(g) > 0}.

Lemma 1.1. GLo(R)" acts transitively on b by Mobius transformations.

Proof. g = <i Z) € GLy(R)*", then Im(g7) = % > 0. If 7 = x + iy, then
T= (0 1) i, so the action is transitive. ]

Definition. Let k € Z. If g € GLa(R)",7 € b, define j(g,7) = et + d (the “modular
cocycle”). If f : h — C, we define f|i[g] : b — C by the formula

Flklgl(r) = f(g7) det(9)* (g, 7) "
Lemma 1.2. This defines a right action on the set of functions f : h — C.

Proof. Need to check that for all g, h € GL2(R)" we have f|x[gh] = (f|x[g])|x[R]-

Flelghl(r) = f(ghr) det(gh)"~"j(gh, 7)™
(FlelgDIk[)() = (Flelg]) (hr) det(h)*~j(h, 7) "
= f(ghT) det(9)*""j(g, hr) ™" det(n)*~"j(h, 7) 7
Thus, we need to show that j(gh,7) = j(g, h7)j(h,T) ("cocycle condition”).

Use the formula j(g, 7) <ng> =g (;) We have

j(h,7)j(g, hT) <g}fT> =g <j(h, 7) <hf>) =gh G) =jlgh,7) <g?7>



Definition. Let k € Z, and let I' < T'(1) be a finite index subgroup. A weakly modular
function f of level I' and weight k is a meromorphic function in b such that f|x[y] = f
for all v €T.

Goal of this course: define and study spaces of modular forms ~» M (T"), C-vector spaces
of modular forms, finite-dimensional equipped with Hecke operators.

Mbotivation:

1. Theory of elliptic functions: Let E be an elliptic curve over C. Let w be a non-
zero holomorphic differential on E. Then there exists a unique lattice A < C and
holomorphic isomorphism ¢ : C/A — E, satisfying ¢*(w) = dz.

One can show that E may be given by the equation y? = 23 — 60G4(A)x — 140Gg(A)
where for k € Z we define G(A) = 3- a0 A~F (abs. convergent when k > 4). G}’s
are examples of modular forms. (Gi(7) = Gr(A;) where A, = Z7 @ Z, “Eisenstein
series”).

2. Modular forms have interesting g-expansions. If f is a modular form, it has a Fourier
expansion ) ane?™7/h b e N, a, € C. The coefficients a,, are often interesting.

Example: O(7) = >, s e™n’T If k € 27, then OF is a modular form of weight k/2;
and " =% ™ (T = > ez Tk(m)e™™T where

rk(m) = #{(nl,. . .,nk) c Zk ’ Zn? = m}
J

By expressing ©* in terms of Eisenstein series, one can prove r4(m) = 8 > _djm d-
Afd

3. Theory of L-functions, e.g. Riemann {-function. We know that ¢ has
e meromorphic continuation to C,
e functional equation relating ((s) and ((1 — s),
e FEuler product.
We can use these to prove the Prime Number Theorem.

In general, an L-function is a Dirichlet series Y > | a,n~*® having properties similar
to (.

Modular forms can be used to construct L-functions which provably have these
properties.

4. Connection to Langlands programme, e.g. modularity conjecture for elliptic curves
= Fermat’s Last Theorem.

This goes via Hecke operators and L-functions.

Notation: D(a,0) ={z € C||z —a| <}, D*(a,d) = D(a,d) \ {a}.



2 Modular Forms on I'(1)

Lemma 2.1. Let f be a weakly modular function of weight k and level ['(1). Then there
exists a unique meromorphic function f in D*(0,1) such that f = f o e®™7,

Proof. €2™7 :h — D*(0,1) is a holomorphic surjection, and 7,7’ € h have the same image

iff 7/ —7 € Z. Consider T = <(1) i) € I'(1). Then f(7) = flx[T](7) = f(r+1). Thus fis

constant on the fibers of €2™" and hence lifts to a function f on D*(0,1) via e?™7. Since
e?™ is locally biholomorphic, we see that f is meromorphic. Uniqueness follows from the
surjectivity of €277, O

If f is a weakly modular function of weight k and level I'(1), we say that f is meromorphic
at oo if f extends to a meromorphic function in D(0,1). In this case there is a § > 0 such
that f is holomorphic in D*(0,4§) and has a Laurent expansion f(q) = Y nez Gnq" Where
an = 0 if n sufficiently negative. Then f is holomorphic in {r € b | Im() > —5- log d},
so for 7 in this region, f(7) = Y,z ang™ where ¢ = €*™'7,

Similarly, f is called holomorphic at oo if f has a removable singularity at 0, in this case
we set f(oo0) = f(0).

Definition. Let f be a weakly modular function of weight k and level T'(1). We say that
fisa

e modular function if it is meromorphic at oo.
e modular form if f is holomorphic in b and holomorphic at cc.
e cuspidal modular form if it is a modular form and f(occ) = 0.

We write M, (I'(1)) for the C-vector space of modular forms of weight k, level I'(1), and
Sk(T(1)) for the subspace of cuspidal forms.

Example. If £ € Z, we consider the Fisenstein series

Gir(r) = Z AR = Z (mt + n)_k where A, = Z7 ® Z.
AEAN\O (m,n)€Z2\0

a b
If v = <c d> € I'(1), then

Gr(vr) = Y AF =7 Gu(r)
AEAL\O



as
at+b

e (et +d)"NZ(aT +b) B Z(eT +d)) = j(v,7) A~

AN:=2Z

YT
provided everything converges absolutely.

Proposition 2.2. Suppose that k > 2. Then Gp(t) converges absolutely and locally
uniformly in . Gi(7) is a modular form of weight k level I'(1). If k is odd, Gi(T) = 0.
If k is even, G(oc0) = 2¢(k) # 0.

Proof. Let A > 2, and define Q4 = {7 € h | Im7 > §,|Rer| < A}. We show that Gy,
converges absolutely and uniformly in Q4. Let 7 € Q4,2 € R. Then

el > L if |z < 24,
2 if |2 > 24,

2
hence |7 + x| > 2,%2 sup(1, |z]).
Let mrm +n € A;,m # 0. Then
im7 +n|™% = |m| |7 + n/m|7*

< |m|F (@42 sup(1, [n/m])

= (24%)% sup(Im|, |n|) 7"
This also holds for m = 0.
Then

Yoo Imrralt < @A YT sup(iml, )"

(m,n)eZ2\0 (m,n)€Z2\0
= (2438 " d *#{(m,n) € Z* | sup(|m|, |n|) = d}
d>1
= (24%)F) "8d'F = 8(24%)F¢(k — 1) < o0.
d>1

Thus, G (7) converges absolutely and uniformly in Q 4, Hence G (7) is holomorphic in b
and weakly modular of weight k, level I'(1).

To show Gy, is holomorphic at co we show that lim,_,g Gr(q) exists.

lim Gi(¢) = lim Gy(7)
q—0 TEQ
Imr—o00

= 1 —k
Jim Z (mT +n)
Im7T—o00 (m,n)EZQ\O

= Z lim (m7 +n)~F

TEN
(m,n)€Z2\0 Im T— 00



Y {QC(k:) if k even,
neZn0 0 if k£ odd.

For k odd we have G = 0 by symmetry. O

Note: When k is odd, any weakly modular function of weight k, level I'(1) is 0. Take
—I € T(1). Then f(1) = flx[-1](1) = (=1)*f(7), so f(r) =0.

We define the normalized Eisenstein series for even k > 4 by

Ey(r) = QS(MG,C(T) —1g nzlanqn.

We will show that these coefficients a,, are rational.
We can generate more examples, e.g. if f € My(I'(1)),g € M;(I'(1)), then fg € My1,(I'(1)).
Example: E3, E2 € Mi5(I'(1)) with constant term 1, so Ef — E2 € S12(I'(1)).

To get further, we need to understand the action of I'(1) on h. Define

1 1
-7::{765|_§§R67§§a’7‘21}

1 1
Fl={rep|-5<Rer<g|r|>1(r|=1 = Re<0)}

Let S = (? _01> T = <(1) 1) Note that 77 =7+ 1,57 = —1/7.

Proposition 2.3.
(1) Any 7 € b is T'(1)-conjugate to a unique element of F'.

(2) If T € F', then Stabp(y)(7) = {£1}, except Stabp(y(i) = (S), and Stabpy(p) = (ST)
where p = e*™/3,

(3) T(1) is generated by S and T.

Proof. Let G =T(1)/{£1}, H = (S,T) < G. We first show that any 7 € h is conjugate
by H to an element of F (or F).

If vy € T'(1), then Im(~7) = |CITmT;|2. 1, 7 form a basis for C as R-vector space. Consequence:
For any X > 0, #{(c,d) € Z>\ 0 | |er +d| < X} is finite. In particular, the set
{ler +d| | (¢,d) € Z*\ 0} has a minimum.

So the set {Im(y7) = |CITH‘T5|2 | v € H} has a maximum. After replacing 7 by y7, we can

assume that Im(y7) < Im(7) for all v € H. We can also assume that Re(r) € [—3, 3]. If
I7| < 1, then Im(S7) = BT > Tm 7. So |7| > 1 and 7 € F.

P



Let’s now consider 7,7 € F' and v € I'(1) such that 7/ = y7. Claim: 7 = 7/ and v € {£1}
except if 7 =14 or p in which case v € (S) or v € (ST). This claim will imply 1) and 2).
Proof of the claim: WLOG Im(y7) = ‘CITmTT‘Q > Im(7), so |er +d| < 1. If 77 € F/, then
Im 7" > ?, with equality iff 7 = p. So |er + d| > |c|£, so |c] < %, so |e] < 1.

WLOG, ¢>0,soc=0o0rc=1.

+1 b

Casec:O:’y:(O 11

) = 47" which implies b = 0,y = +1,7" = 7.

Case ¢ = 1 : Then |7+ d| < 1, so we must have either d = 0, |7| = 1ord =1, 7 = p,

|74+ 1] =1 (because the only 7 € ' with |74+ 1| < 1is 7 = p and there is no 7 € F’ with

[T —1[<1)

Casec=1,d =0, || =1: Theny = (Cll _O

as 1/7 = 7. Then (a + [0, %]) N [—5, 5] # 0 soa=0,Re(yr) = Re(r) = 0,7 =i,7 =S or
= —1,Re(y7) = Re(r) = —3,7 = p,v = (ST)%.

) and so 77 = a— 1 and Re(y7) = a— Re(7)

Case c=1,d=1,7=p: |7+ 1] = 1,Im(y7) = Im p, so y7 = p.
p:'yT—“p+b soap+b=p>+p=—-1,50a=0,b=—1,50y=ST.

It remains to show that I'(1) = (S, T). Note that S? = —1, so it is equivalent to show that
H = G. Let 7 = 2i, take v € G. By what we showed there is § € H such that dyr € F'.
By (2), we must have 6y7 = 7, hence dy € Stabg(7) =1,s0y=6"1 € H,so H=G. O

Let f be a non-zero modular function of level I'(1) and some weight k. If v € T'(1), then
flyr) = f(r)ily ,T)*, 80 vy (f) = vr(f). We define voo(f) = order of f at ¢ = 0, where
(1) = J(e).
1 if14i,p,
If 7 € b, then we define e, = |Stabp)/ 113 (7)| = {2 if 7~ 14,
3 ifr~p.

Proposition 2.4. Let f be a non-zero modular function. Then

1 k

i)+ D —ul) =15
rel(I\bh

[Note: Theorem from algebraic geometry: degree of section of line bundle only depends
on the line bundle]

Proof. Why is the sum finite? It is enough to show that f has only finitely many ze-
ros/poles in F. Since f is meromorphic in D(0,1), it has to be holomorphic and non-
vanishing in D*(0,0) for some § > 0. Hence f is holomorphic and non-vanishing in



{r € h|Im > R} for some R > 0. So the only zeros/poles of f in F are contained in the
compact subset {7 € F | Im < R}, hence f has only finitely many zeros/poles in F.

We now prove the formula. Note first that we have fuovdlogf = f,y u*(dlog f) =
f7 d(log f o u).

Continue to fix R > 2 such that f has no zeros/poles in {Im7 > R}. Consider the
following contour:

A E

Here A= -3+ Ri,B=p,C=i,D=B+1,E=A+1.

We suppose first that f has no zeros or poles on . Then

;M/ydlogf_ Z ’Uq—(f); Z i'UT(JC)

er
T€Inty Tel'(1)\bh

Ldlogf:/43+/jgc+/(jD+/]jE+/EAdlogf

We first compute [}, using the pullback formula. If u(7) = 7+ 1, then u(AB) = ED and
fou=f. So

Also:

/EDdlogfZ/J(AB)dlogf:/ABdlog(fou):/ABlng’

50 [up+ Jpp =0
Now let u(r) = —1, 50 (fou)(r) = f(7)7*. Then CD = u(CB) and so

/ dlog f = dlog(fou) = dlogf+dlog7'k:/ dlog f + k dlog T
cD CB CB CB CB



Hence

/+/ dlogf:/ +/ dlogf+k:/ allogT:k:(logB—logC’):2772'£
Bc Jep BCc JeB CB 12

Now let u(7) = ¢*™7. Then u(AE) is a positively oriented circle around 0 in D*(0,1). So
Voo (f) = 2%” fu(AE') dlog f = [, dlog f.

Conclusion: »_ ey évT(f) =L f7 dlog f = % — Voo (f) under the assumption that f
has no zeros in ~.

Now suppose f has a zero or pole at a point P in the interior of AB, but no other
zeros/poles on 7 except P 4+ 1. Choose € > 0 such that f has no zeros or poles in
DT (P,2¢). Consider the contour yp with semicircles around P, P + 1 of radius e. Now
proceed as before. A similar modification to the contour works if there are zeros/poles in
the interior of the arc BC.

The tricky case is when there is a zero or pole at B or C' (Exercise). t

Example. Let k=4, f=FE, =1+ anl anq™. The formula says

1 1
Voo (Ea) + Z ZUT<E4) = 3
Tel'(1)\h
We know veo(F4) = 0 and v-(F4) > 0 for all 7. So we necessarily have v,(F4) = 1 and

vy (Ey) = 0 for all other 7 « p.

For k =6, f = Eg we have 3 )\ iUT(Eg) = 1,50 v;(Eg) = 1 and v-(Eg) = 0 for all
T .
E3—E2

So A = —{=2% is non-zero because A(i) = Efg? # 0. We have v (A)+3_ crayp iUT(A) =
1, 80 Voo (A) =1 and v, (A) =0 for all 7 € h.

Lemma 2.5. Let k be an even integer.

(1) M(T'(1)) =0 fork <0 ork=2. My(I'(1)) = C.

(2) If 4 < k < 10, then My(I(1)) = CEj.

(3) If k > 0, then multiplication by A is an isomorphism My(T'(1)) = Sy112(I'(1))

Proof.

(1) If k <Oand f € Mg(I'(1)) is non-zero, then 0 < voo (f) +3_ cr(iny évT(f) = % <0,
a contradiction. For k = 2 similarly veo(f) + X ;eray évT(f) = &, which is not
possible.

If f € My(I'(1)) is non-constant, then f — f(o0) is still non-constant and vanishing at
infinity, contradicting our formula again.



(2) Let 4 < k < 10. If f € My(I'(1)) \ CEy, then 0 # f — f(00)Ey € Sp(I(1)). But then
again 1 < voo(f) + D erng évT(f) = % < 1, thus M(T'(1)) = CE}.

(3) Let £ > 0 and consider the map ¢ : My (I'(1)) — Sk4+12(I'(1)) given by ¢(f) = Af. If
Af =¢(f) =0, then clearly f =0 and if g € Sk412(I'(1)), then f := g/A € M (I'(1))
as Voo (A) =1 < vso(g), so ¢(f) = g. Thus, ¢ is bijective.

O
Corollary 2.6. Let k > 0 be an even integer. Then
k _
) k=2 d 12
dime M(T'(1)) = hsz (mod 12),
|5 +1 k#2 (mod12).
Proof. Induction on k. For 0 < k < 10 we already proved this. For k& > 12 not that
Mp(T'(1)) = CE, @ Sp(I'(1)) 2 CE), & Mi_12(I'(1))
and our claim follows by induction. O

Corollary 2.7. Let M = @;2, M(I'(1)). Then M is generated as a C-algebra by Ey, F.

Proof. Show by induction on k that My(T'(1)) = (E$ES | a,b € Z>p,4a + 6b = k). We
know this is true for k = 0,2,4,6. dim Mg(T'(1)) = 1, E2(00) = 1 = Eg(00), so we have
E4 = Fg. Similarly E4F¢ = E1p.

For k > 12 choose A, B > Z>¢ such that k =44+ 6B. Then

Ep((1)) = CEAER ® Sp(I'(1)) = CEAER & AMj,_12(T'(1)).
We know by induction that My_15(I'(1)) = (E$Eg | 4a+6b = k—12). Hence AMj,_15(T(1)) =
(B} — E2)EYEL | 4a +6b =k — 12) C (EYEL | 4a + 6b = k). O
Define j = —¢. This is a modular function of weight 0, holomorphic in § with v, (j) = —1.

Theorem 2.8. j: h — C is surjective and 7,7" € b have the same image under j if and
only if they are conjugate under T'(1).

Moreover, any other modular function of weight 0, level I'(1) is a rational function of j.

Proof. Let z € C. We want to show that there is a unlque I'(1)-orbit of 7 € b such
that j(r) = z, i.e. v7(j — 2) > 0. Note that —1+ 3 \h o-vr(j — 2) = 0. Note that
vr(j —2) > 0 for all 7 € h and the only solutions for a + 3 b4 ¢ §=1ina,b,c> Zxq are
(1,0,0),(0,2,0),(0,0,3). So in particular there is exactly one ['(1)-orbit (of say 7) such
that v, (j — 2z) > 0.

For the second assertion let f be any modular function of weight 0, level I'(1). By multiply-
ing it by [[;(j(7) —j (7)) where the 7; are the poles of f in h (counted with multiplicity) we

10



may assume that f has no poles in h. Let N = —vy(f). Then fAY is a modular form of
weight 12V, so it is a linear combination of functions of the form EZEg with 4a+6b = 12N.
So it suffices to prove that EZEg/AN is a rational function in j. Note that b = 2¢q,a = 3p
for p,q € Z. Hence E{EY/A" = EPEZ1/APY = (E3/A)P(EZ/A) = jP(E2/A)1. Note
that by definition 1728A = E$ — E3, hence E3/A = E3/A — 1728 = j — 1728 which is
also rational function of j, so we are done. O

Remark: j(7) is the j-invariant of the elliptic curve C/A; where A, = Z7 @ Z.
Proposition 2.9. Let k > 4 be an even integer. Then the q-expansion of Gi(T) is

2¢(k
n>1
Proof. We start with the formula 7 cot(r7) = = —|— Yoy 7 +n ﬁ, valid and locally
uniformly convergent in . Then
. .q +1 . . 2 . . n
7 cot(mT) —mq_ 1= —mi(l4+q)(1+qg+q¢*+...)= —m(1+22q )
n>1

Differentiate (k — 1) times to get

o0

—27riZ(27rin)k_1q” = (—1)* Yk - ( —* 4 Z T+n)""+ (17— n)k))
n=1
= (-D)F k=1 (r+ n)_k

nez
Hence Y, ., (7 4+ n) % = (me >0 nFlgm. Therefore
Gi(1) = Z (mT +n) Z n~F + Z (m7 +n)~F
(m,n)€Z2\0 nezZ\0 mEZ\O,nE€Z
=20(k)+2 Y  (mr+n)F
m>1,neZ
27” k—1 nm
(k) + 255 2 D"
m2>1neZ
2m
= 2¢(k) + 2 I Z o—1(
n>1

O]

Corollary 2.10. Ej(7) = Gi(7)/2¢(k) = 1+ ) _,~1 anq"” where all a, € Q. Moreover, if
k=4 or6, then all a, € 7Z. B

11



2 :
m) 171 2on1 Ok—1(n)q". By an exercise we know

Proof. The g-expansion of Ej is 1 + ROIC
that 7% /((k) € Q, so the coefficients are ratlonal For k = 4 or 6, we need to show that

C(,g?ig)fl), € Z. For k = 4 we obtain 240 and for k£ = 6 we get —504. O

Corollary 2.11. A =g+) ", anq", wherea, € Z and j = é—FZZO:O bnq"™ where b, € Z.
P?“oof. From j = E3/A we see that we only need to show the claim for A. By definition

A= 1728 . By the previous corollary we have Ey = 14240U(q), Es = 1 —504V (q) where
Ulq) = 3oy 03(n)q", V(g) = 3252, 05(n)g"”, so

= [opg (37 240U +3- (240)2U2 + (240)3U3 + 2 - 504V — (504)*V?)

We only need to check that W € Z[q]. This is 5U1+27V so we have to prove that

12 | 5o3(n) + 7o5(n) for all n € N, equivalently o3(n) = o5(n) (mod 12). It is enough
to show that for all d € N we have d®> = d® (mod 12) which is easily checked. So all
coefficients of A are integers. One also verifies easily that its leading coefficient is 1. [

Next we will use this to show that My (T'(1)) has a Z-structure, i.e. if My(T'(1),Z) ={f €
M (T'(1)) | g-expansion coefficients of f are integers}, then My(I'(1),Z) is a free Z-module
and the natural map My(I'(1),Z) ®z C — My (I'(1)) is an isomorphism.

Theorem 2.12. Let k > 4 be even. Then My(T'(1)) has a unique basis fo,..., fn satis-
fying:

(i) For all0 <1i,j <N, a;(f;) = di; (where f =527 qan(f)q"),
(i1) For all0 <i < N, n € Z>o, an(fi) € Z.

Proof. Let N = dim Si(I'(1)). Write kK = 12a+d where a,d € Z>p and d € {0,4,6, 8,10, 14}.
Note that N +1 = dim M (I'(1)) = a+ 1, so a = N. Write d = 44 + 6B for some
A,B € Z>o. Define for each i = 0,...,N, g; = EfEGBAiEg(N%), a modular form of
weight 4A + 6B + 12(N — i) + 12i = d 4+ 12a = k. Note that for all n € Z>¢,an(g;) € Z
and the leading term of g; is ¢*. Now perform row reduction to get fo,..., fx such that
for all n € Z>o, an(fi) € Z, and for all 0 < 4,5 < N, a;(f;) = d;j. From this it is clear
that the f; are linearly independent. Since dim M (I'(1)) = N + 1, the fy,..., fx form a
basis of My (T'(1)). The uniqueness is also clear as the f; must be dual to the a;. O

12



3 Hecke Operators

My (I'(1)), Sk(I'(1)) have additional symmetries.

They can be constructed (at least) group theoretically (GL2(Q)™) and geometrically: think
of modular forms as functions of lattices.

Recall: If V is a finite dimensional R-vector space, then a lattice A C V is a discrete
cocompact subgroup.

Lemma 3.1. Let A CV be a subgroup. Then A is a lattice iff there exists a basis ey, ..., e,
for'V such that A = Ze, & - - - @ Ze,,.

Proof. Example sheet 2. O

We write £ for the set of lattices in C. Note that C* acts on £ by zA = {zX | A € A}.

Proposition 3.2. The map h — L given by 7 — A = Z7 @ Z descends to a bijection
I(1)\h = C*\ L.

Proof. First show that h — C* \ L is surjective. If A = Ze; & Zea, then Im(e;/e2) # 0.
WLOG Im(e1/e2) > 0. Then A = e2A., /., We next check that I'(1) \ h — C*\ L is
well-defined, i.e. if 7 € b,y € I'(1), then A, A, are homothetic. This true as

Ay = (e +d) 'Z(aT +b) @ Z(er + d) = (er + d) A,

Finally, we check our map is injective, i.e. if 7,7 € h, z € C*, and zA,» = A,, then
7' = A7 for some v € T'(1). If zA» = A, then 27" = ar + b,z = ¢ + d for some

e (3 Z) € GLy(Z). Then v/ = &5, and Tm(') = {0 > 0,50y €T(1). O

This shows that functions f : h — C such that f|o[y] = f for all v € SLy(Z) are the same
as functions F' : £ — C such that F/(zA) = F'(A) for all z € C*.

We say a function F' : £ — Cis of weight k € Zifforall A € £, z € CX, F(zA) = 2 *F(A).

Proposition 3.3. The map F — (f(7) = F(A;)) defines a bijection between the following
two sets:

(1) Functions F' : L — C of weight k.
(2) Functions f : b — C such that for all v € T'(1), flx[y] = f.
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Proof. First check that if F' is of weight k, then f(7) = F(A;) is invariant under weight &
action of I'(1). We use the relation A, = j(v,7) 'A. Then f|x[y](7) = f(y7)j(y,7)7* =
F(Ayr)j(y, 1) 7% = (v, 1) " F((y, 7) 7 Ayr) = F(A2) = f(7).

Conversely, let f be a function as in (2). Given A € L, choose a basis e1, ea such that
Im(e1/ez) > 0. Define F(A) = 5" f(e1/eq). This is well-defined as if A = Ze) @ Ze, and
Im(e/ey) > 0, then there exist v € I'(1) such that €] = ae; + bea, e2 = ce; + dea. Then
ey P f(eh/eh) = (cer + dea) ™ f((aer + bea)/(cer + dea)) = 5" (v, e1/ea)F f(yer/ea) =
e5 ¥ f(er/es). Next we check that F(zA) = 2°F(A): If e1,eq is a basis for A such that
Im(e;/e2) > 0, then also Im((ze1)/(ze2)) > 0, so F(zA) = (ze2) ¥ f((ze1)/(ze2)) =
z7kesF fler/ea) = 2 FF(A).

These two maps between functions in (1), (2) are inverse to each other. O
Let’s write Vi, for the C-vector space of functions F': £ — C of weight k. The proposition
gives a linear embedding My (I'(1)) — Vj, f — F. We will define Hecke operators on V.

We write W, for the C-vector space of functions f : h — C such that for all v € I'(1) we
have flx[y] = f.

Definition. Ifn € N, we define the n-th Hecke operator Ty, : Vi, — Vi by the formula

(TF)(A) =nF' 37 F(A)

A <A

n

where the sum is over subgroups A C A of index n.

We define T}, : Wy, — Wy by using the identification Vi, = Wy, above.

Let us check that {A’ | A’ < A} is finite. If A’ < A, then nA < A’. So there is a map
n n

{N <A} = {A < A/nA},
A — A /nA.
This is bijective and the set on the right is finite as A = Z2, so A/nA = (Z/n7Z)>.

Now let us check that T, F' is of weight k.

(T F)(zA) =n*"1 > F(N)=nF"1Y" FAN)=n"1>" 27 F) =2 HT,F)(A)
A/%ZA A'<A A'<A

n n

Proposition 3.4.
(1) If n,m € N are coprime, then T, T, = Typm = T/ Ty
(2) If p is prime and n > 1, then TpnT) = Tynta —I—pkflTpnq.

14



Proof. Let n,m € N, not necessarily coprime. Then

To(TnF)(A) ="' Y (T F)(N) = Z Z F(A")
N<AN'SN
—1

A/<A

= (nm)F Z (A, A")F(A")

where a(A, ") = #{A’ % A A % AN}y =#{A % A/AN"}.

Fact: If n,m are coprime, B finite abelian group of order nm, then B = B[n| x B[m] and
B[m)] is the unique subgroup of index n.

Consequence for us: If n,m are coprime, then a(A,A”) =1 for any A” < A. So in this
case Tp(TrnF)(A) = (Tom F)(A). "

Now let p be prime, n > 1. Then

Ty (T,F)(A) = ptDED 37 a(A, A")F(A”)

A < A
pn+l

where a(A,A") = #{A < A/A" | #A = p}. This now depends on the choice of A”.

Recall: If A” < A is a subgroup of index p™*!, then there exists a Z-basis ey, e for A and
a > b >0 such that a + b = n + 1 such that p%e;, ples is a Z-basis for A”. Two cases:

(1) b=0. A = Zey © Zey, A" = Zp" ey @ Zey, then A/A" is cyclic of order p"*+!. In this
case A/A” has a unique subgroup of order p, and a(A, A”) = 1.

(2) b > 1, A = Zey @ Zey, \" = Zp“e; ® Zp’ea, then A/N' = 7./p°Z & Z/p*Z. Then
subgroups A of A/A” of order p correspond to order p subgroups of (A/A")[p] =
(Z/pZ)?. There are p+ 1 of them (lines in 2-dimensional space), so a(A, A”) = p + 1.

In case 1, A” £ pA, as e; € A” — pA. In case 2, A” < pA as pPeq, pPes € pA.

Therefore

Ty (T, F)(A) = p" VO YT P +p Y0 F(A)

A < A A < pA
pn+1 pnfl
= Ty F(A) + pmtEDp N P(pA”)
A < A
pnfl

= Tpni1 F(A) + p* ' T2 F(A).

15



Corollary 3.5. For all n,m € N we have T,, T, = T, T},.

Proof. Claim: If p is a prime, then T)» is a polynomial in 7}, with Z-coefficients. This
follows immediately by induction from the formula in the lemma.

In particular, the corollary holds when n, m are powers of the same prime.

In general, let us write n = [[, p7",m =[], pfi with a;,b; > 0. Then T,, = [[, T, ai,Tm =
IL T b;- We need to know that for all ¢, j the operators T o T b; commute. For the same

prlme we just proved it, for different primes we already knew, so we are done. O

Lemma 3.6. Let n € N and let eq, es be a Z-basis for A € L. then
(A <A} e {(a,b,d) | 256450
Z(aey + beay) ® Zdeg +—i (a,b,d)

Proof. Recall: Let M € Myxn(Z),det M # 0. Let N finite free Z module of basis
w1, ..., wp. Then @, Z(3 75, Mijw;) < N is a subgroup of finite index | det M.

a b
0 d

index n in A. We will define an inverse. Let A’ < A. Consider the short exact sequence
n

0— (A +Zeg)/N — AJN — AJ(N + Zes) — 0.

Here we take M = < > This has determinant n, so Z(ae; + bea) @ Zdes indeed has

Let a = |A/(N + Zeg)|,d = |Zea /(A N Zes)|, then ad = [A/A'| = n. We have d = inf{k >
1:kes € N}ja=inf{k > 1| 3b€Z: kegt+bey € N'}. If b/ € Z are such that
ae; + bey € N aes +bey € N, then (b—b)ey € A, so b =1V (mod d). We see that
there exists a unique b € Z such that ae; + bes € A’, des € A and 0 < b < d. Then
Z(aey + beg) @ Zdes < A < A and both Z(aey + bes) & Zdea, A have index n in A, so
Z(ae1 + bea) @ Zdes = N O

Proposition 3.7. Let f € Wy. Then

T = S at (T =S (5 h)] o
a,b,dEZZO a,b,d
0

Proof. Let F' € Vi correspond to f. Then

(Tnf) (1) = T,F(A:) =nF1 Y F(A)

A’<A

nF1N " P(Z(ar + b) @ Zd)
a,b,d
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— k1S d Rz (‘”; b) & 7)

a,b,d

1N gk <a,7 + b>
2 7

= 3l (5 o))

Corollary 3.8. If f € W}, is holomorphic in by, then Ty f is also holomorphic.
Proposition 3.9. Let f € My(I'(1)) have g-expansion . ~q amg™. ThenT,f € My(I'(1))

has g-expansion Y <o cmq™ where cm =Y ij(mn) lkilamn/lz

aeN
Proof.
_ _ at +b _ 7 .
Tnf(T) — nk 1 Z d k:f < y > — nk: 1 Z d k Z am627rzm(a'r+b)/d
a,b,d a,b,d m>0
:nkfl Z dfk Z am627rima7'/d Z e27rimb/d
a,deN m>0 0<b<d
ad=n

Let m > 0,d € N. Factor m = gmy,d = gd; where g = (m,d). Then e2™m/d = g2mim1/di
is a primitive di-th root of unity if d; > 1. Then

; ; 0 ifdy>1

§ 2mibm1 /dy § : 2mibmy /dy 1 >
€ = e =

g {d ifd; =1.

0<b<d 0<b<d;
We then get
k—1 1-k k—1
Tof(t)=n Z d Z agmq™™ = Z (n/d) Z agmq™™
a,deN m>0 a,deN m>0
ad=n ad=n
k—1
=2 a7 ) apnjag™
a€eN m>0
aln
=2 cmd™
m>0

By uniqueness of Laurent expansion of m, this is the Laurent expansion of m . It has
no negative powers of ¢, so T, f is holomorphic at co and T,,f € My (I'(1)).

If | € Z>o, the coefficient of ¢’ isY" 4en ak_laln/az. O

aln,all
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Corollary 3.10.
ar(Tnf) = an(f)
ao(Tnf) = ox-1(n)ao(f)
In particular each T, preserves Si(I'(1)) < My(I'(1)).

Next goal is to understand the spectral decomposition of M (I'(1)) under the action of
the Hecke operators.

Example. M4(I'(1)) is 1-dimensional, so Ej is an eigenvector for T, for all n € N. Same
for S15(D(1)) and A(r) = ¢ [[2, (1 — ¢")? = Y255, 7(n)g".

What are the eigenvalues? If T,,A = a,A, then 7(n) = a1(T,A) = ana1(A) = a,. So
T,.A = 71(n)A.

So the properties of Hecke operators prove a conjecture by Ramanujan: For p prime
(p™)7(p) = 7(p" ) + p'ir(p~ 1) and if (m,n) = 1, then 7(mn) = 7(m)7(n).

If f € Mi(I'(1)) is an eigenvector for every T, (n € N), we say f is an eigenform. If
further a1 (f) = 1, then we say that f is a normalized eigenform.

Lemma 3.11. Let k > 0. Let f be an eigenform in My (I'(1)). Then:
(1) There is a non-zero scalar multiple of f which is normalized.

(2) If f is normalized, then T,,(f) = an(f) - f for alln € N, so the Hecke eigenvalues are

the g-expansion coefficients.

Proof. To prove (1), we need to show ai(f) # 0. Suppose a;1(f) = 0, and let a,, € C be
the eigenvalue of T}, on f. Then T, f = an, so an(f) = ai1(Tnf) = anai(f) = 0 for all
n>1,s0 f =ag(f), i.e. f is constant, contradicting k > 0.

To prove (2), we note that that again a,(f) = anai(f) = ap. O

Proposition 3.12. Let k > 4 even. Then Gi(T) is an eigenform, on which T, has
eigenvalue og_1(n).

Proof. T, is a polynomial in operators 7T),, for prime numbers p. So, to show G} is
an eigenvector for T),, it is enough to show it is an eigenvector for T,, p | n. Recall
Gy is associated to G(A) = Y cp_g A" Hence Tp,Gr(A) = pF=13", 4 Gr(A) =

P
prt DoN<A 2oAeA—0 AR = pF LY caso a(A, AR where a(A, X)) = #{A % Al xe A}
p

Case 1: X € pA. We know that if A’ < A, then pA < A/, so A € A’. 1In this case,
P
H#{N<A|NeN}=#{N <A}=p+1.
P P
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Case 2: X\ ¢ pA. Then the image of A in A/pA has order p and ZX + pA has index p in
A I A < A and X\ € A/, then ZX\ + pA < A’ < A and we get A’ = Z\ + pA. In this case

#{N < < A | A e N} =H#{Z N+ pA} =1. Hence

Pl Z a(A’)\))\—k:pkA( Z (p+ DAk + Z )\—k)

AEA—O AEPA—O AEA\pA

:pk—1< Z A 4 Z /\—k)

AepA—0 AEA-0

=" > Nt Y A

AEA-0 AEA—O
=(1+p" ) Z AP = 01_1(p)Gr(N).
AEA—0O

Hence Gy, is an eigenvector for T),, hence for T,, for all n € N. If o, is the eigenvalue
of T,, then T,,G) = o, G}, so ak_l(n)ao(Gk) = ag(TnGk) = ao(anGk) = oznao(Gk), SO
apn, = oi—1(n) as ag(Gy) # 0. d

We have shown that the decomposition My(I'(1)) = CGy & Sk(I'(1)) is invariant under
the T),. In determining the spectrum of 7,,, we can therefore restrict to Sk(I'(1)).

Remark: It is usually not the case that a product of eigenforms is an eigenforms.

Remark: The g-expansion of Gy is 2¢(k) + (27”), > m>10k-1(m)g™. We defined Ey =
f(k)Gk’ so that ag(Ex) = 1. The normalized eigenform Fj, associated to Gy is

al(Gk)_le — C(k) + Z Ol 1 — 4(12_]{:) + Z Uk—l(m)q
m>1 m>1
-B
= Tkk + m§>:101~<:—1(m)qm

Proposition 3.13. The eigenvalues of T,, on Sk(I'(1)) are algebraic integers, which lie
in a number field of finite degree over Q (which depends on k but not on n)

Proof. We will show that det(X — Tn’Sk(F(l))) € Z[X]. Recall: We can find a basis
fis.., fn of Sg(I'(1)) such that

(1) ai(fj) = 5ij for 1 <i,5 < N.
(2) Forall j=1,...,N and for all n € N, a,(f;) € Z.

If fe Sg(T'(1)), then f = Z;\le a;(f)f;. Let us compute the matrix of T;, on Si(I'(1))
with respect to this basis. The i, j-entry equals a;(T,,(f;)) = > b|(n,i) bk_lam-/bz (fj) € Z.
b>1
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So det(X — Tp|s, (r(1))) is the characteristic polynomial of a matrix of coefficients in Z, so
its root (i.e. the eigenvalues of T}, are algebraic integers.

Now let f be a normalized eigenform. Then the corresponding eigenvalue for T}, is a,(f).
Writing f = Zjvzl a;(f)f; we see that a, € Q(a1,...,an). O
This proof gives an algorithm to compute the action of 7}, on Si(I'(1)).

Example. k = 24, so dim¢ S24(T'(1)) = 2. Let us compute the eigenvalues of Tb.

First write down basis f1, f2 as above. We have f; = AE3 +1032A% = ¢+0- ¢ + 195660 -
¢® 4+ 12080128¢* + ..., fo = A% = 0+ ¢% — 48¢° 4+ 1080¢* + . ... Now let us write down

Ty = 2o 2 ) _ < az(f1) as(fa) > _ ( 0 1 )
’ Do0)(22) 2ub/(2.2) as(f1) +2%a1(f1)  as(f2) +2Ba1(f2) 20468736 1080

Its eigenvalues are 12 - (45 £ 1/144169). All a,,(f) for f € S24(I'(1)) normalized eigenform
lie in Q(v/144169).

Definition. Let f: b — C be a continuous function, which is invariant under the weight
0-action of T'(1). Then we define

dody _ drdy
/F LSO /f =,

provided this converges absolutely.

Idea: % is invariant under the action of GLo(R)™ (i.e. Vg, g (dzdy) = %). Would

like to say: It descends to the manifold I'(1) \ b, so fr )\ fdzdy can be defined using
integration on manifold.

Then it would be the case that
dxdy dxdy dxdy
f(r :/ f(r :/ f(r .

/m)\hmyz 105 = [ o5

Lemma 3.14. Let f,g € Sp(I'(1)). Then f(1)g(t)Im(7)* is invariant under the weight
0 action of I'(1) and fF e S (T)g(T )Im(T)k% is absolutely convergent.

. — 7~k . —
Proof. 1fy € T(1), then f(y7)g(yr) Im(y7)* = f(7)j (v, 7)* g(r)i(v,7) Im(7)*|j (v, 7)| 7> =
f()g(7) Im(7)*.
Recall f(7) = f(e¥™7), with f : D(0,1) — C holomorphic which vanishes at ¢ = 0. We
can write f(q) = qfo(q), with fo(q) : D(0,1) — C holomorphic. So for all § < 1 there
exists Crs > 0 such that |f(q)| < |q|Cfs, e.g. Cps = supqem|fo(q)|. If 7= a4y,
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then |g| = e™>™. So there exists Cy > 0 such that for all 7 € h with Im7 > 1 we have
|f(7)] < Cre™®™, y = ImT. Then

S 1/2 |
/ [£(7)g(r) Im(T)k\dgcgy §/ / Cfe*Q“ngeﬂpwyk@
. e y

= / Cnge*Myyk*Zdy < 00
y=v3/2

Definition. The Petersson inner product on Si(I'(1)) is defined by

,dzdy
Y2

(f.g) = /f f(r)g(r) Tm(7)

Theorem 3.15. For alln € N, T, s self-adjoint w.r.t. the Petersson inner product, i.e.
for all £,9 € S(T(1)) we have (Tuf,g) = (f. Tug).

Theorem 3.16. For all k > 0, Sk(I'(1)) has a basis f1,..., fn of normalized eigenforms,
unique up to re-ordering. These have the following properties:

(1) For alln € N, T,(f;) = an(fi) fi-
(2) There exists a number field Ky <R such that for alln € N, a,(f;) € OKfi'

Proof. Recall if V' is a finite dimensional C-vector space with inner product (,) and 7T :
V — V a self-adjoint linear map, then T is diagonalizable and all of its eigenvalues are
real. Moreover, if (T;);cr is a family of commuting self-adjoint linear maps, then they
are simultaneously diagonalizable. The previous theorem says we are in this situation.
So we can find a basis f1,..., fy of Sp(I'(1)), consisting of eigenforms. After rescaling
we may assume that they are all normalized. Properties (1),(2) follow from what we
have done already. If fi, fo are both normalized eigenforms in the same eigenspace, then
an(f1) = an(f2), so fi = fa. Thus the basis is uniquely determined. O

The sequences (a1(f),az(f),as(f),...) for normalized eigenforms f have great arithmetic
significance.
Another conjecture of Ramanujan:

Lemma 3.17. If p is prime, then Y oo o T(p") X" = (1 — 7(p) X + pH X?)~L.

Proof.
[e.e]
1=r(@)X +p"X*)D 7@")X" =14 (7(0") —7@" () +p" (" )X" =0
n=0 n>2
by the proven recurrence relations for 7. O
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We factor 1 — 7(p) X + p X2 = (1 — 0, X)(1 — 8,X) with oy, 8, € C. By the quadratic
formula, there are two possibilities:

(1) 7(p)? — 4p't < 0. In this case, ay, 3, are conjugate complex numbers with |a,| =
‘Bp’ — p11/2.
(2) 7(p)? — 4p!'! > 0. In this case, oy, B, are distinct real numbers.

Ramanujan’s conjecture: (1) always happens.

Ramanujan-Petersson conjecture: If f € Si(I'(1)) is a normalized eigenform, then
for all primes p we have |a,(f)| < 2p*~D/2. (Proved by Deligne 1973)

Many applications of modular forms use generalizations of Ramanujan’s conjecture. Ra-
manujan proved the formula

ny | 33152

691 7(p)

16
r24(p) = @(1 +

for p odd primes.

Ramanujan’s conjecture says here that ra4(p) = gop'' + O(p'/?)

Proof of Theorem[3.15. We know T), is a polynomial with integer coefficients in 7, for
p | n, p prime. Thus it suffices to show that (T,,f, g) = (f,Tpg). Recall

= T 77— mi\7 kd:rdy
(T,f.g) = /F 1 T O I

We rewrite this in terms of lattices. If f,g € Sg(I'(1)), then f(7)g(7) Im(7)* € W,. This
function should correspond to an element of V. Claim: If f <> F € Vi, g <> G € V}, then
fgIm(7)* <+ F(A)G(A) covol(A)* € V. Check F(A)G(A) covol(A)¥ is of weight O:

F(zA)G(zA) covol(zA)F = 27 F(A)Z7*G(A)|2]?* covol(A)* = F(A)G(A) covol(A)*

Now compute F(A;)G(A,)covol(A;)*. We have covol A, = det <1 z> =y = Im(7), so

0
F(7)g(r) Im(7)*.

If A:C*\ £ — C is a function corresponding to a continuous function a € Wy, let us

define dod
/ A(A)dA:/ a(r) =Y.
CX\L T(1)\h Y

Tt = [ TG coval ) an

Hence

= ph1 NG(A) covo k
— /(CX\L S F(N)G(A) covol(A)FdA

A'<A
p
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Let us write £, = {(A’,A) | A" <A, A € L}. There is a bijective map
P

F0<p)\h_>(c><\£p7
T+— (ZpTr @ L, Z7 D L)

where To(p) = {<Z 2) €T(1) | c=0 (mod p)}.

If A:C*\ L, — Cis afunction which corresponds to a continuous function a : 'o(p) \h —
dxd
C, then we define f(CX\L,, AN NN A) = fFO(P)\h a(T) ygy.

Then

o ! covol(A)FdA = pF~! / covol(MVEd(A!
p /CX\L A’ZS:AF(A)G<A) 1(A)*dA = p /cxmp F(AN)G(A) covol(A)*d(A', A)

P

And similarly

(f, Tpg) = ph-1 /(CX\L F(ANG(A) COVOl(A)kd(A/,A)

To transform one integral into the other, we make a change of variables. If A’ < A, then
P

pA < A’. So we can define a map
P

v Ly, — L,
(A, A) = (pA, )

Note that (2(A’, A) = (pA’,pA), so ¢ induces a map C* \ £, — C* \ £, whose square is
the identity.

If A <> a is continous, then fCX\Lp Ad(N A) = f(CX\Ep (Ao)d(A,A). Why? Under the

identification C* \ £, = I'g(p) \ b, ¢ corresponds to the action of 7, = <2 _01> We are
using that n;((dxdy)/y2) = (dzdy) /y>.
Making the change of variables, we have
Tpfg) =0 [ FAGT covol ) d(A' )
C\Lp
= pk_l/ F(A)G(A') covol(A)¥d(A’, A)
CX\Lp
= (f,Tp9)
(Note covol(A’) = pcovol(A) and F(pA) = p~*F(A).) O
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Proposition 3.18. Let 'y, = {£ (1 a) |laeZ} <TI(1). Let f : h — C be a continuous

function which is invariant under the action of I' o, 1. e such that f(1) = f(r+1). Suppose

that for all T € b: Zvel“oo\l“ 1) |f(yT)| < oo and that f 1y |f(m+zy)|dxdy
2 verar(y f(¥7) is measurable, invariant under (wezght 0) action of T'(1), and satisfies

/W 3 g0 N - / /f +iy) Y

yel\I'(1

< 00. Then

Proof. We would like to show fr D\ > eroarm f ("}/T fFoo\h f(r d‘rdy (“Unfold-
ing”).

We will show the proposition using our definition fF(l)\h = [ Fubini’s theorem says that

if 3 crorq) Jr |f('y7')|dzgy < oo, then 3 o \p(1) f(77) is measurable and there is an

equality
dq:dy da:dy
> JrenSE= ) 3 som
YEL\I'(1) Fyerara
So we need to show why 3> cr_\r() J=f( dmdy f;__l fy o flz+iy) dmdy Note that
> eranr Jr £ dmgy = Yier o ro f(’]') dziy where (7;)ics is a set of representatlves

for FOO\F( ). Let S— {reb|Rer e (—1,1)} We know that (vF°)N{r € h|ReT €
3+ Z} = (. Consequence: There exists a unique § € I's,/{£1} such that §vF° C S.
Equivalently, each coset I'ny/{£1} contains a unique element ~; such that v, F° C S.
Let us take (7;)ier to be this choice of set of representatives for I'no \ I'(1) in T'(1)/{£1}.
We have h = leel“(l)/{il} ~vF° U W where W is a closed set of measure 0. Hence S =
Leray /ey (SNAF2)USNW) = [;je; % F° U (SN W). Hence

1
d:cdy / dzdy / 2 / *° . dxdy
> gm0t = [ [ e

i€l 7]:0 =0
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4 [-Functions

Motivating example of an L-function: ((s) = > o>, n~°. It is absolutely convergent in
{Re s > 1} and holomorphic there.

Properties of ((s) :

(1) Meromorphic continuation: {(s) has a meromorphic continuation to C with a simple
pole at s = 1 and no other poles.

(2) Functional equation: If &(s) = 7~%/2T'(5/2)((s), then &(s) = £(1 — s).
(3) Euler product: ((s) = [[,(1 —p~%)7L.

% with analogous properties.

In general, an L-function is a Dirichlet series Y 2 | apn™
Modular forms give rise to L-functions:

Definition. If f = Y 07 jan(f)g" € My(I'(1)), then its associated Dirichlet series is
L(f,8) = 2onzy an(f)n "

Example. Let Fj, = _Bk + >0, 0k—1(n)g"™ be the normalized eigenform associated to
Gy. Then
oo [e.9]
L(Fy, s) Zak ] Zm n* =YY d*Nad)"* = ((s)¢(s + 1 — k).

a=1d=1
nﬂn

We now consider those L(f, s) associated to f € Si(I'(1)).
Proposition 4.1. Let f € Si(I'(1)). Then L(f,s) converges absolutely in {s € C | Res >
1+ g} and defines a holomorphic function there.

Proof. Notation s = o +it. Then [n™%| = n™?. By Exercise 4 on Sheet 2 there is a
constant Cy > 0 such that |a,(f)| < Cyn*/2. In the region {Res > 1+ £ + 6} we have

Z_:l lan(f)n?] < Z:l lan(f)In™7 < CpY =R < Cp Ym0,

n=1 n=1

O]

Remark: If we assume the Ramanujan-Petersson conjecture, then we get absolute conver-
gence in the region {o > 13*}.
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Theorem 4.2. Let f € S(I'(1)). Then L(f,s) has
(1) Analytic continuation: L(f,s) admits a holomorphic extension to C.

(2) Functional equation: Let A(f,s) = (2m)~*T'(s)L(f,s). Then A(f,s) admits an analytic
continuation to C satisfying A(f, k — s) = i*A(f, s).

Before proving the theorem, we consider I'(s) as a warmup. By definition,
o0
d
I(s) = / e_yys—y
y=0 Y

This integral is absolutely convergent when Re(s) > 0. In this region, it is a continuous
and holomorphic.

Proposition 4.3.

(1) The integral defining T'(s) converges absolutely in {o > 0} and defines a holomorphic
function there.

(2) T'(s) admits a meromorphic continuation to C with simple poles at the non-positive
integers and no other poles.

(8) T'(s) is non-vanishing on C.

Proof.

(1) Absolute convergence is easy. To show that I'(s) is holomorphic, consider for N > 1

s y

the function I'y(s) = fy]il/Ne Yy Claim: I'y is continuous and holomorphic.

This follows easily from the usual theorems on interchanging limit and integral (e.g.
dominated convergence theorem). Then let N — oc.

(2) Integration by parts gives sI'(s) = I'(s +1). This can be used to extend the definition
of I'(s) to be the whole of C.

(3) omitted.

O
Proof of Theorem[{.2 Define F(s f o fy)y %. Claim: This converges absolutely
in C and defines a holomorphic funct1on

Since f is cuspidal, there exists a constant C'y > 0 such that for y > 1, | f(iy)| < Cpe™ 2.
Also, f(=1/7) = f(r)7%, s0 f(i/7) = f(iy)(iy)*. So

/ iy - f(zy) dyy+ / f<z'y>ysdyy

1

/f/y +/yoolfzy gl
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_ ~ -k, k— sdy > . s@
- / i)ty /ylf(ly)y :

Since | f(iy)| < Cre™2™, this clearly converges absolutely everywhere. And it is holomor-
phic in s as the integrand is.

Next we compute

/ Za e 27my s y Z/ —Qﬂny s

where the interchange of the sum and the integral is justified provided that

e 00
d
S ol [ <
n=1 0 Yy

This expression is > | |a,|n~7(27) T (). This is finite iff L(f, s) is absolutely conver-
gent, e.g. when o > 1+ % So when o > 1+ %, we get

—Ooa O06_27””45@: m) (s s) = s
9= an [ ey = T = M)

Thus A(f,s) does have a holomorphic continuation to C. Hence so does L(f,s) =
(27)5T'(s)"*A(f, s) as 1/T(s) is holomorphic in C. The functional equation follows from

the expression:
o ik ke dy
=/ fiy)li*y" Tyl
1

Afk—s) = / " fli)litye + y’”]iy
]

Theorem 4.4. Let f € Sp(I'(1)) be a normalized eigenform. Then L(f,s) has an Euler
product

$)=> an(fin~s =1 —ap(f)p~ +p*17%)7".
n=1

p

Proof. Let us argue formally at first. We know that if n € N, n = [[p{*, then a,(f) =
[Ta,e:(f). Thus

H(Za » )

We also know > 22 a,i (f)p™™ = (1 = ap(f)p~" + pF~172%)7" (we proved it for f = A).
By the example sheet this relation also holds non-formally as functions (when L(f,s) is
absolutely convergent). O
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Applications of L-functions.

Theorem 4.5 (Wiener-Ikehara Tauberian Theorem). Suppose (an)n>1 is a sequence of
complex numbers such that f(s) = Y07, a,n~% is absolutely convergent in {o > 1}.
Suppose further that f admits a meromorphic continuation to an open neighborhood of
{o > 1} which is holomorphic on the line {o = 1} with the possible exception of a simple
pole of residue o at s =1. Then

Proof. Omitted. 0

Proposition 4.6. Suppose that ((s) =>.,°,n~° has a meromorphic continuation to C,
holomorphic and non-vanishing on {o = 1}, except for a simple pole at s = 1. Then the

Prime Number Theorem holds: m(x) := 3, 1 = 1527 + o(i557)-

p<w

Proof. We can write down a branch of log ((s) in {o > 1} using —log(1 —z) = >+, %
where |z| < 1. Thus

P
_ Z i pfks
k
P k=1
Hence the logarithmic derivative of ((s) is
¢'(s) S p ke
= —kl
o) ~ 22 Hlosr
P k=1
== log(p)p* = > > log(p)p~**
p p k=2

Since ¢ is meromorphic in C, ¢’/¢ is meromorphic in C. Since ¢ is non-vanishing on
{oc = 1,s # 1}, {’/¢ is holomorphic on {o = 1,s # 1}. Since ¢ has a simple pole at
s = 1, ('/( has a simple pole at s = 1 of residue —1. >~ >, -, log(p)p~*¢ is absolutely
convergent in {o > 3}. So >_plog(p)p~* has a meromorphic continuation to {o > 33
holomorphic on {o = 1, s # 1} with a simple pole of residue 1 at s = 1. Therefore

> log(p) ~

p<z

To show this implies the PN'T, we use:
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Lemma 4.7. Let (ap)n>0 be a sequence of complex numbers, 0 < x <vy. Let f : [z,y] - C
be continuously differentiable, A(t) =3 ., <;an. Then

> anf(n) = AWF) - A@)F@) - [ A 0t

z<n<ly

logp n = p prime,
Here we choose a,, = , S

At) = 1 =t t d f(t) =
0 otherwise. o Al Zpgt oep *olt), and f(1)

1/log(t). Then

7)) =1+ Y anf(n) =1+ Al)/logly) — ACe) - [ Al o

2
ity logt)

Y 1
=y/logy + o(y/ logy) +/ A g2

To finish the proof, we need to show that
! A 1 dt = 1
t)/t——=dt =
/e ( )/ (log t)2 O(y/ Ogy)

Since A(t) =t + o(t), A(t) = O(t), so A(t)/t is bounded. So it is enough to show that
fey mdt =o(y/logy). But

4y
/6 logt / / 10 BE dt < /y+y/(log \/?3)2 =\y+ (log )2 = o(y/ logy)

Hence we are done. O

We will establish the necessary properties of ( later in the course, using modular forms.
There is a generalization:

Proposition 4.8. Fiz n > 1, suppose given for any prime number p a matriz ®, €
GL,,(C) whose eigenvalues have absolute value 1. Define

L({®,},s) Hdet 1—p3®,) !

Then L({®,},s) converges absolutely in {o > 1}. Suppose further that L({®,},s) admits
a meromorphic continuation to an open neighborhood of {o = 1}, which is holomorphic
and non-vanishing on {o = 1}, with the possible exception of a pole of order § at s = 1.
Then

Z tr @, = 0x/logz + o(x/log x)

1<p<z

Proof. Similar to the proof of the PNT, see Example Sheet 3. O
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Example. Let N € N, n = 1. Take a homomorphism y : (Z/NZ)* — C*. Then
L({x(p mod N)}yn,s) = [Iyn(1 = x(p mod N)p~*)~! is the Dirichlet L-function of .
If one can show that for any x, L(x,s) is non-vanishing on {o = 1}, we get Dirichlet’s
theorem for natural density.

Now: Applications to modular forms.

Let f € Sk(I'(1)) be a normalized eigenform. For each prime p, 1 — a,(f)X +p*1X2% =

(1 — a,X)(1 - B,X). Let &, (06? g) Then det(1 — ®pa) = (1 — apz)(L — Bpz) =
P

1 —ay(f)z + p*~tz? In particular, L({®,},s) = [, —ay(f)p~* +pF1729) =l = L(f, 5).

Under the Ramanujan-Peteresson conjecture, then |oy,| = |5p| = pk=1/2 50 p_(k_l)/gq)p
has eigenvalues of absolute value 1 and trp*(kfl)/ZCI)p = p*(kfl)ﬂ(ap + Bp) = p(a]f_i(f?m.

Then L({p~*"1/2@,}, 5) = [, det(L — p~CTED/29,)"1 = L(f, s + (k —1)/2).

Corollary 4.9. Assume the RP conjecture, and that L(f,s + %) # 0 when Re(s) = 1.

Then
1

lim —— Zap(‘)‘")/p(k_l)/2 =0.
.1‘) p<x

z—o0 7 (

The non-vanishing of L(f, s + £51) # 0 when Re(s) = 1 is true, but proving it is too hard
for this course.

So the average of a,(f)/p*~1/2 is 0.

Example: For p an odd prime, ro4(p) = %(1 +pth) + %T(p). We interpreted RPC as
saying that

The corollary is saying that the average of

roa(p) — 5oy (1 +p™)
il

is 0. We can go much further than this by considering a family of L-functions associated
to the normalized eigenform f.

These are the symmetric power L-functions associated to the representation Sym™ : GLg —
GLy41. We let

)

L(Sym™, f,s) = L({Sym" @, },s) = [ [ [[(1 — el ~'p ).
p =0

If n =1, then L(Sym", f,s) = L(f, s), otherwise this is something genuinely new.
Proposition 4.10.
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(1) (Langlands ~1965) If for all n > 1, L(Sym", f,s) admits an analytic continuation to
C, then the RP conjecture holds for f.

(2) (Serre ~1965) If for all n > 1, L(Sym", f,s) admits an analytic continuation to C,
non-vanishing on the line Re(s) = 1+ n(k;l), then the Sato-Tate conjecture holds for
f.

Sato-Tate says: The values a,(f)/(2p*~1/2) € [~1,1] are equidistributed with respect

to Sato-Tate density. This density is %\/1 — t2dt. Equidistributed means that for any

continuous function g : [-1,1] — C we have lim,_, ﬁZp@: glay(f)/(2p*—D/2)) =
2 (1 ()T —2dt.

RP conjecture (1975), Sato-Tate conjecture (~ 2010) and continuation of L(Sym” f,s)
and non-vanishing on Re(s) =1+ @ (~ 2019) have all been proved.
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5 Modular Forms on Congruence Subgroups

Definition. If N € N, define I'(N) = ker (I'(1) — SL2(Z/NZ)).
A congruence subgroup I' < T'(1) is any subgroup which contains I'(N) for some N € N.

Example. T'(1),I'(N). We also introduce the subgroups

To(N) = {(Z Z) €T(1) | ¢ = 0 mod N},

I'(N) ::{<Z Z) EI‘(I)\azdzlmodN,czOmodN}.

Definition. Let k € Z, I' < T'(1) a congruence subgroup. A weakly modular function of
weight k, level I' is a meromorphic function f : bt — C such that for ally € T, flx[y] = f.

Example: There exists a fundamental set for I'g(2) whose closure is Fy(2) = {7 € b |
Re(7) € [0,1],|7 - 3/ > 3}.

Definition. A cusp of a congruence subgroup T is a T'-orbit on the set P*(Q) = QU{co} C
CU{oo}.

Lemma 5.1. I'(1) acts transitively on P*(Q), so I'(1) has a unique cusp, and a congruence
subgroup I' < T'(1) has only finitely many cusps.
Proof. To show I'(1) acts transitively, it is enough to show that for all a/c € Q with

(a,c) = 1 there exists v € I'(1) such that yoo = a/c. Since a,c are coprime, there are

integers b, d such that ad — bc = 1. Then take v = <(Z Z)

If T' < T(1) is a congruence subgroup, then I' \ T'(1) is finite, as [['(1) : I'] < co. There
is a I'(1)-equivariant bijection I'(1)/T'oe — P1(Q),7Goo + 00 as T = Stabr)(oc) =

{+ (1 n) | n € Z}. It follows that T-orbits on P!(Q) correspond to I'-orbits on I'(1) /T,

i.e. double cosets I' \ I'(1) /I'o. These in turn correspond to I'oo-orbits on I' \ I'(1) which
is a finite set. O

We first show how to impose conditions on a weakly modular function at co. First note

that I' N I's has finite index in I'so, as I'(NV) < T for some N, so <(1] ]l[) el'NTsx. We
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define the width of the cusp oo of I' to be

h:min<h6N’<(1] if)el“)

Suppose f is a weakly modular function of weight k, level I'. Then f(7 + h) = f(7). Just
as in the case of T'(1), we see that there is a meromorphic function f : D*(0,1) — C such
that for all 7 € b, f(7) = f(e2™/M). If f extends to a meromorphic function in D(0, 1),
then f will have a Laurent expansion

flan) = angh

neEL

valid in some D*(0,0), 6 > 0, and a,, = 0 for all but finitely many negative n. Then f has
an expansion f(7) = 3, .z ang? where g, = 2™7/" valid in some half-plane {Im 7 > R}.
We call this the g-expansion of f at co. We say f is meromorphic at oo if f indeed
extends to a meromorphic function in D(0,1). Similarly, f is holomorphic at oo if it is
meromorphic at oo and a, = 0 for n < 0. And f vanishes at oo if it is meromorphic at oo
and a, = 0 for n < 0.

What about the other cusps? If I' - z is a cusp, z € P1(Q), we choose o € I'(1) such that
aoco = z. Then a 'T'a < I'(1) is a congruence subgroup of I'(1), and f|[a] is a weakly
modular function of weight k, level o 'T'a. We call the width of the cusp I'- z of T' the
width of the cusp oo of @ 'T'a. We say f is meromorphic/holomorphic/vanishing at T - z
if f|g[«] is meromorphic/holomorphic/vanishing at co.

Lemma 5.2. The width of I'-z and the meromorphy etc. of f at I'-z is indeed independent
of choices.

Proof. We have chosen z, a representative for the orbit I" - z, and o € T'(1), an element
such that aco = z.

Independence of a: If foo = z, then 8 = ad, § € I'xy = Stabp(j)(co) and 3 € T'(1). We

have BT NT =6 ta Tad NT = 6 Ha ' TaNdTud™1)d = a ' TaNTy. So the
width is independent of «.

0 1
Then f[x[ad] = flx[alls[6] = IRla](7 +m)(—1)F = T, eq ane?™n/e2minm/A(_ 1)k S0 we
see that f|x[a] is meromorphic etc. at oo if f|g[ad] is. So everything is independent of the
choice of a.

; 1
Suppose f|i[e] is meromorphic at oo, flila] = 3,z ane? /M. Let § = :|:< m).

Next: Independence of z. Suppose I'- 2z = I'- 2/, i.e. that 2’ = vz for some v € I'. We need
to show that

. 1 h 1 . 1 h 1/
mm(heN’(O 1>€a I‘a)-mm(heN’(O 1>€a Fa>
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where o, o € T'(1) with aco = z,a’0c0 = 2/. We can choose o/ = ya. Then o/~1T'a/NTy, =
(ya) ' T'ya NIy = a 'Ta NT4. So the heights are the same. We finally need to show
that f|x[a] is meromorphic at oo iff f|i[ya] is. This is true because f|x[ya] = flx[v]lk[a] =
flkled. O

Note: The g-expansion of f at I' - z is not well-defined, as it depends on « with aco = z.

Definition. Let k € Z, I' <T'(1) a congruence subgroup, f a weakly modular function of
weight k, level I'. We say that

(1) f is a modular function if it is meromorphic at every cusp of T'.
(2) f is a modular form if it is holomorphic in b and holomorphic at every cusp of T'.
(3) f is a cuspidal modular form if it is a modular form that vanishes at every cusp.

We write M(T") for the C-vector space of modular forms of weight k, level T' and Si(T")
for the subspace of cuspidal modular forms.

Remark: If f is weakly modular and holomorphic in b, then f is a modular form iff for
every o € I'(1), f|x[a] is holomorphic at oo.

The My (I') are finite-dimensional (Example Sheet 3) and it is possible to give an exact
formula for their dimensions (when k& > 1).

Lemma 5.3.

(1) If f € My(T'), g € My(L), then fg € My(T).

(2) If 17 < T is another congruence subgroup, then My(T') < M (I").

(3) If T’ < T(1) is another congruence subgroup, and o € GLo(Q)" satisfies I < a™'Ta,
then for all f € Mg(T) (resp. Sk(I')), flela] € Mk(T') (resp. Sk(I”)).

Proof.

(1) Same as in the case I' = I'(1).

(2) Special case of (3) with a = 1.

(3) We will use the observation: If g : h — C is weakly modular form of weight k, level T',
holomorphic in h, then g is holomorphic at co (resp. vanishes at co) iff g is bounded
at oo (resp. tends to 0 at co).

If f € My(T), then f|g[c] is holomorphic in h and weakly modular of weight &k and level
IV. Indeed, we have al'a~! < T, so if 4/ € I”, then flp[a]|x[] = flr[ay a o] =
flkla]. To show f|g[a] is holomorphic at cusps, it is enough to show that for all
B €T(1), flxlapf] is holomorphic at co. By the observation, it is enough to show that
flxlas] is bounded at oo for all 5 € T'(1). We can write ayfoo = yoo for some v € T'(1).
b> with a,b,d € Q. Then

. a
Then a8 = 4§ for some ¢ € Stabgy,(g)+(o0), i.e. § = <O d
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flrlaBl = fle[vd] = flelv]((aT4Db)/d)-(ad)*~1d~". Since f is a modular form, f|z[7] is
bounded at co. The formula shows that f|[a/3] is also bounded at oo, so f € M (I).
Same argument applies in the case f € Si(T).

O
Corollary 5.4. Suppose f € M(I'(1)), N € N. Then f(N7) € Mi(To(N)).

Proof. Take a = diag(N,1). Then f|i[a](7) = f(N7)N*~1. Then need to show that
al'o(N)a~! <T'(1). This is easy. O

We now introduce the theta function 6(7) =3, -, emin’T = 142 D16 * where g = ™.
This is a holomorphic function in b, invariant under 7 — 7 + 2. To show that 6 has a
modular-type transformation property, we use:

Proposition 5.5 (Poisson Summation Formula). Let f: R — C be a continuous functzon
such, that there exist C,8 > 0 such that for allt € R, |f(t)| < C/(1+ |t])*F'. Then f(s) =
75 f(t)e 2™t dt converges. Suppose further that Y-, o, |f(n)] < 0. Then Yonez f(n) =

Yonez ()

Proof. Define F(t) = > ., f(t +n). This converges absolutely and uniformly in any
bounded interval. So F' is continuous and F(t) = F(t + 1). We also define G(t) =
Y nez f (n)e?mt, Again this converges absolutely and uniformly on R. Then G is contin-
uous and G(t) = G(t + 1). Clalm F = G This implies the proposition, set t = 0. We
have F' = G iff for all n € Z, F(n fo e 2t — G(n) (here ~ denotes the Fourier
coefficient, not the transformatlon) We have

/ meth Ve 2mint gy — Z/ f(m +t)e 2mintqt

meZ MmEZ
m+1
-3 / " pemina
— [ semnia = o).

And
1
G = [ 3 flmer =3 fm ) [ ot = f,
[

2

Let fy(t) = e~™! . R — C. Then 6(iy) = Yonez € ™Y =3 ez fy(n) for y > 0. We have

fyls) = / ey amtgy / % s ) =52y gy
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—ms?[y oo A
_ € e—Tr(t—l—zs/\/g)Zdt

VY s
2
_° e /OO e_”tht
VY )
6*7T52/y
— 7

Where the second last equality holds by Cauchy’s theorem from complex analysis. So
Fols) = L by1(9).
The hypotheses of the Poisson Summation Formula are satisfied, so we get

. 1 a2y L
y)=> fyln)=> fyn) = 7 D ey = 1)

neL neL n

So the two holomorphic functions 6(7 m 6(—1/7) coincide where y/7/i : h — C is
the branch which takes positive values in iR<g.

6 is an example of a “modular form of weight 1/2”. Here we observe that if k € 8N, then
08(7) = (V/7/i FO(=1/7)* = 7k /20(=1/r)* = 0¥ o S](7).
Proposition 5.6. If k € 8N, then 0% € Mj,5(T') where I' =T'(2) U ST'(2).

Proof. 0% is holomorphic in b and is invariant under the weight k/2-action of S, T2. By the
third example sheet these two elements generate I'. So 6 is holomorphic in h and weakly
modular of weight k/2 and level I'. Tt is also holomorphic at oo. It is also holomorphic at
00, as O(k)(1) = (14+2>,+, quQ)k. What remains: Determine the cusps of I', and show

that 6 is holomorphic at the remaining cusps. We have
Cusps +— I'\ P}(Q) +— '\ I'(1)/Ts +— (S) \ SLo(F2)/(T).

SLy(F5) acts on P! (Fy) = {[1: 0], [1: 1], [0 1]}. Stabgy,y ([1 : 0]) = (T). So

(S) \ SLy(F2)/(T) +— (S) \ P'(F2)

and this has size 2 as S[1 : 1] = [1: 1], S[1 :0] = [0: 1]. So I' has two cusps, 'co, and

I'yoo for any v € T'(1) such that (v mod 2) <(1)> = (1) We can take v = (i _01>, SO

yoo =1 € PHQ).

We need to show that 9k|k/2[ | is holomorphic at co. Note that §(7+1) = Znez(—l)"em"27,
so O0(t) +0(r+1) =23 emin)’T = 29(47). 4T = =l = 1- 1 We have 6(1 —
1/7) = 20(—4/7) — 0(=1/7) = 2\/7/(40)0(7/4) — \/T/i0(T) \ﬁ (0(/4) — 6(7)). So
6(1 — 1/7‘)\/7%71 = 0(7/4) — 0(r). Then 0| 5[y](r) = (1 — 1/7)Fr=*/2 = (9(1 —
1/T)m_1)k = (6(1/4) —0(7))*. So 6* is holomorphic and vanishes at the cusp I'-1. [
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Note that for all & € N we have 6% = Y€l qgﬁ nk = > >0 Tk(m)gy" where

re(m) = {(n1,...,ng) € Z% | 8 n?2 = m}.
Theorem 5.7. Let n € N. Then
65536 16 65536 33152
2) — (=1)"— — 2) — (=1)"——
o Zon(n/2) — (-1 on(n) — =22 (n/2) — (-1 (n)

where A(T) =3, 7(n)q", and if n is odd, then o11(n/2) = 7(n/2) = 0. In particular,
if n is odd, then

7"24(71) =

16 33152
r24(n )f@ o11(n) + eol 7(n)

Proof. We have shown 6** = 37 - ra(n)qy € Mp(T), T = T(2) U ST(2). We need

to express #** in terms of other modular forms. By Exercise 4 on example sheet 3,

dimge Mg (T') < l—i—M. In this case, [['(1) : I'] = [SLa(FF2) : (S)] = 3, so dim¢ M (") <
1+ % = 4. Since F( ) > I, we have Mi2(I'(1)) < Mia(T'), so we get A(7), Fia(T) =

0 2
Claim: T < o 'T'(1)a, ie. al'a™! < T'(1), so Ali2[a], Flizla] € Mia(T), so A((r +
1)/2), Fia((7 +1)/2) € Ma(T).

(A B\ , (A+C iB+D-4-0) A B
Proof of claim: a(c D)a —<20 D_C It c D e I'(2),

(
s+ > n>1011(n)g" € Mi2(T). To find more elements, take a = (1 1) € GL2(Q)™.
(

then B=C=0mod2and A=D=1,s0 B+D —(A+C)=0mod 2. H<é g)e

ST(2), then A=D =1mod 2, B=C =0mod 2 and (B+ D) —-(A+C)=0. So
a(c D)a eI'(1).

Now we have

A=) 7(n)g"

n>1
691
Fip = —— n
12 65520 + o11(n)q
n>1
T+ 1 (T n n_.n
Al )= T(n)e™ TN =N " (n)(—1)"g5
n>1 n>1
T+1 691
F = 1" s
120757) = 5530 +nz>:1( Vo (n)dz

Exercise in linear algebra: A(7), Fia(7), A(ZE), Fio(T3) mod ¢3 € C[g2] /g3 are linearly
independent over C. These four modular forms form a basis of Mys(T).

Then

65536 16 T+1 65536 33152 1741
924 = F12 — 7F12( 9 ) — 691 A(T) — 7A( 9

691 691 691 )
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The theorem follows on extracting the coefficient of ¢4 (e.g. A(7) contributes 7(n/2)). O

Another application of #: meromorphic continuation of {(s).

Theorem 5.8. Let £(s) = n=%/2I'(s/2)((s). Then & admits a meromorphic continuation
to C with simple poles at s = 1,0 of residues 1,—1, and no other poles. It satisfies the
functional equation £(s) = &(1 — s).

Proof. Consider X(s) = fyoio(ﬁ(iy) — l)yS/Qd—yy. Note that as 6(iy) = 1+2), e~y
we have (iy) —1 = O(e™™) as y — oo. So the integral fyoil(G(iy) - 1)y5/2%y converges
absolutely for all s € C and defines a holomorphic function. Next: need to look at y — 0.
We know 0(iy) = /g '0(i/y), so 0(iy) — 1 = (0(i/y) — 1)y '+ (g ' —1) ~1//7 as
y — 0. So fol(é’(iy) — l)yS/Q%y converges absolutely when ”Tfl > 0, i.e. when o > 1 and
defines a holomorphic function in this region. We can compute

— dy _n2 dy
S — 9 mn?y 5/2 -9 / ™ yys/27
DX > /

n>1 n>1

=2 70T (s) = 2¢(s)

n>1

valid when o > 1. Also

/ / ’Ly S/Qdy
Y

= 7 — —s/29Y = i) — 5/2@
—/1 (6G/y) - 1)y y+/1 (i) = 1y

=/ (0(ig)y™? — 1)y—2 Y +/ (6(iy) — 1)y
1 Yy 1 )

> . —s —s —s d > . s d
=/1 (0(iy) — 1)yI=9/2 4 (y1=9)/2 _y /2),y'y+/1 (0(iy) — 1)y /QZy

We have [~y *sdy =1/s, so

o= 2 2 [Tt - D92 4 W o
X(s) +/1 (0(9) = DO+ )% = 20

s—1 s

Now note that the integral converges everywhere. This shows {(s) has a meromorphic
continuation with properties as claimed. The invariance under s — 1—s is immediate. [

Generalization: Let A < R" be a lattice, and define 05 (7) = > ca ™A for 7 € h. E.g.
if A=7Z <R, then 65 = 6.

Check: 64 is holomorphic in b
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Proposition 5.9 (Poisson in R"). Let f : R" — C be a continuous function such that there
exist C,0 > 0 such that for allt € R™, |f(t)] < W Then f = Jan f( e 2mils:t) gt

converges absolutely. Let A < R™ be a lattice and suppose 3, \v \f( )| < oo. Then

YN = Z Fp

AEA peAY

where m(A) = covol(A) = vol(R™/A).
Proof. Omitted, as very similar to the case n = 1. O

We apply this with f(t) = e ™0 =], e ™ if t = (t1,...,tn). We know f = f when
n = 1. In fact, f = f for any n > 1 by separation of variables. Then

Ze )\/\y_zefﬂ'\f)\f/\ Ze

AEA AEA AEV/HA

We then apply the Poisson summation formula with f and lattice \/yA. Then (\/yA)Y =
VI A m(gA) = y™?m(A). So
1 ~
YN =——= > fw
A
AE VA m(\/y ) ue(f/\)v
=y " EY D ) =y Pm(A) 0 (i)

1 Av
uEﬂA

We find that 05 (7) = \/7/i 'm(A)~'0xv(—1/7) by the identity principle.
Proposition 5.10. Suppose that n € 8N, and that A <R" is a lattice satisfying:
(1) A =AY, i.e. A is self-dual.

(2) A is even, i.e for all A € A € 2Z.

Then Ox € M, /5(I'(1)).

Proof. Oa(T) = Y \cp €TONT = > n>0TA(n)q", where ra(n) = #{\ € A | (A\,\) = 2n}.

This shows 05 (7) = 05 (7+1). We have 0|, 2[S](7) = OA(=1/7)77 2 = 0z (=1/7)(\/T/i)™™
as n = 0 mod 8. This is Opv (1) = 0o (7). Since S, T generate I'(1), 65 is weakly modular
of weight n/2, level I'(1). It is holomorphic at oo, so O € M,, /5(I'(1)). O

Example. The Eg root lattice Ag, < R® classifies the exceptional Lie group/algebra Eg,
and it is self-dual and even.

So Orp, € Ma(T'(1)). So Orp, = B4 =1+2403" -, 03(n)g" (where the latter Ey is the
Eisenstein series and the former Eg stands for the exceptional Lie group). So 240 = a;(E4)
can be interpreted as 240 = # of roots in the Eg root system.
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Next we will introduce the Epstein zeta function (a(s) = > yca_o{A, A)7°
E.g. for Z <R we get (z(s) = 2¢(2s).
Theorem 5.11. Let {p(s) = 7T (s)Ca(s). Then

(1) & admits a meromorphic continuation to C, with simple poles at s = 5,0 with residues
m(A)~Y, =1 respectively, and no other poles.

(2) We have the functional equation & (% — s) = m(A)"1&av(s).

Remarks: 2£(s) = £z(s/2). & usually does not have an Euler product.

Proof. We consider Xa(s) = [;°(0a(iy) — 1)ysi—y. Then

/ZeM

AEA-0

= > 7N TT(s)

AEA-O

=7 °I'(s)Ca(s) = &a(s)
Also

Y

d o0 d
“Lyn2g, (i) — 1y 4 / (Baiy) — 1)y %Y
) 1 )
00 7—sd 00 . sd
mA) ! / (Bav (iy) — )y3 2 4 / (Oaiy) — 1)y %Y
1 ) 1 Yy

+/ m(A) "ty -y

1

Finally we get

Enls) = /100 (rm(A) (0w (i) = 1)y 3 + (Baliy) — 1)y )0;%( Wnl_l)

S — b S

To get the functional equation, compare the expressions for {4 (% — s),£av(s) and use the
identity m(A)m(AY) = 1. O
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6 Non-holomorphic Eisenstein series

Modular forms are only the beginning of the story.

More general point of view: Study decomposition of L?(T'(1)\ SL2(R)) as a representation
of SLs(R).

Fact: If k > 2, there exists an irreducible representation Dy, of SLa(R) such that S (T'(1)) ~
Homgr,, g) (Dy, L*(T(1) \ SL2(R))).
The remainder of L2(T'(1) \ SLa(R)) can be described in terms of automorphic forms.

In the remainder of the course, we will study some examples, the non-holomorphic Eisen-
stein series.

Definition. Let s € C, Re(s) > 1. Then the (non-holomorphic) Fisenstein series of
parameter s 1is

G(r,s) = Z Im(7)%|m7 + n| =
(m,n)€Z2-0

for T €0.

Check: This converges absolutely and locally uniformly in h x {o > 1}. It is holomorphic
as a function of s, but not as a function of 7.

First, we want to understand how G(7, s) transforms under I'(1).

G(r,s) = Z Z Im(7)%|m7 + n| =%
deN (m,n)ez?
ged(m,n)=d

= Z d—2s Z Im(7)%|m7 4 n| =

deN (m,n)€z?
ged(m,n)=1

=20(2s) Y. Im(r)’|mr+n|>

(m,n)€Z?/{*£1}
ged(m,n)=1

= 2((2s) Z Im(y7)*

€T \I'(1)

The last equality follows from the bijection

Too \T(1) +— {(m,n) € Z? | ged(m,n) = 1}/{%1}
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So
G(t,s) = 2((2s)E(T, s)

where

E(r,s) = Z Im(y7)*

€T \I'(1)

Note that if § € I'(1), then E(07,s) = E(7,s). So G(7,s) = G(é7,s) for all 6 € I'(1).

Next, we want to meromorphically continue G(7, s) as a function of s. This is possible, as
G(1,s) is an Epstein zeta function.

Recall notation: A, = Z7 & Z < C ~ R?
Claim: G(7,8) = (,-1/2,,(8)-

Proof: ¢,-1/2p (5) = Yaey-1/2a, 0(AA) T = Dnen, oy Ay 2N 75,50 ( oz () =
> mmyeze I(7)°|mT + 0|72 = G(7,5).

Lemma 6.1. m(y~'/2A;) =1, (y~V/2A,)Y =iy~ V/2A,.

Proof. y~Y/2A, has basis (y™Y2(z +iy), y=/%) = (y~V2a+iy™?, y~12), so m(y/2A,) =
~1/2 ~1/2

| det <yy1/2x y 0 ) | = 1. iy~ Y2A, has basis iy~ /2, —y1/2 + iy=1/2z. Then one checks

that this is up to sign the dual basis and so iy~ /2A, = (y~1/2A,)V. O

Theorem 6.2. Let G*(1,s) = 1 °I'(s)G(7,s). Then

1) For fixed T, G*(7,s) admits a meromorphic continuation to C with simple poles at
s = 1,0 of residues 1, —1 and not other poles.

2) G*(1,s) = G*(1,1 — s)

3) G*(t,s) — ﬁ extends to a C* function on b x C.

Proof. Meromorphic continuation holds as G*(1,s) = fy_uz A, (8). Functional equation
holds as &, —1/25_(8) = §,~1/25_(s) = G*(7,5).

For the final part, we have the expression

* 1 1 > —7mlmT+n|?t/y s 1-s dt
Gi(rys) = — =<+ Yoo (8 + 17—
1 (m,n)€Z2—0
which is C*° by differentiation under the integral. O
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We know G*(z + iy,s) = G*(z + 1 + iy, s) (invariance under 7' € I'(1)). It follows
that there is a Fourier expansion G*(z + iy, s) = 3¢z A5 (y, 5)e*™* where Af(y,s) =

fol G*(7, s)e” ke dy. G*(7,5) is O in h x (C —{0,1}). A% (y,s) is C* in (0,00) x (C —
{0,1}) and holomorphic as a function of s.

Theorem 6.3. Aj(y, s) = 2£(2s)y® + 2£(2(1 — 5))y*—5.

Proof. Both sides of this equality are holomorphic in C — {0, 1}. It is enough to show this
holds when Re s > 1. Under this assumption, we have

AO Y, s / G* ya
dt
_ / / 0 _1/2A7(it)—1)ts?d:r
/ / —fr|mr+n|2t/ytsdtd

(m n)622 0

This iterated integral/sum is absolutely convergent as Res > 1. So This is

) b —mn?t/y sdtd 92 b wlmT4n|?t/y sdtd
Z s e t 7 T+ Z s Ze t ry T
n>1 m>1 nez

Then

Lo =23 [ e ne = 2y T(s)0(29) = 2625

n>1

To compute I, first note that erlmr+nl2t/y — g=m(ma+n)*t/yo—mm?yt Qo for m > 1 we

have
Z/ —7m(ma+n) t/ydl’ Z / —7rz2t/ydx _ /oo e_7rx2t/ydl, — \/g
— oo t

ne”L

Hence

m>1 nez
1
—9 Z / —ﬂmzty\[ts—fi =9 Z ﬁ%_st(%_S)y%_sy%F(S — 5)

L)y —ag(2s — 1)y

= o2 (25 — 1)r(
e 25(2(1 —8)y'*

— 2¢(1 - (25— 1)y
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To compute Aj(y,s), we introduce the k-Bessel function K,(c), defined for ¢ € (0, 00),

s € C by
Ks(c) = / ettt I / ettt (45 4 t—S)@.
0 t 1 t

Theorem 6.4. If k # 0, then Aj(y,s) = 2/glk|"" 201 o, (k) K,_1 (w|kly).

Proof. Both sides are holomorphic in C — {0,1}, so it is enough to prove equality in
Res > 1. We use the expression

kf(y"c’) Z / / mx ’I’L t/ye 27”]“31‘% —TTm Iy’sCit

The terms with m = 0 vanish, as then e~m(ma+n)*t/y qoes not depend on x. So

dt
Ak y,s) =2 Z / —7rm2ty Z/ 7 (mz+n)2t/y o 2mikz g5 40 ;

m>1 nez
We have
Z/ —m(mz+n)?t/y 727rzk:rdl, Z/ fcht/y 727rzk:v/n 2mkn/mdx
neZ M ez v=n
_ Z 27rzka/m Z / —Trxzt/y—Qﬂikx/mdl,
aEZ/mZ nez

n=a mod m

This is 0 if m { k, and otherwise
/OO e—ﬂ'aﬂt/y—?ﬂ”ikx/mdx — /OO e—27r(gct1/2/y1/2+ik‘y1/2/(mt1/2))2€_7rk2y/(m2t)dt
_ e—ﬁkzy/(mZt)yl/Q/tl/Q.
So
77rm2ty 77rk2y/( 2t) s—2 1 dt
k(y:5) =2 Z VTR

m>1

m|k
SENDD / o= lkly(m?/(kl)+ k] /m2e=1) 51 G
m>1 t
mlk
1
=2y Z(!k\/mQ)sﬁKs_%(ﬂlk!y)
m2>1
mlk
= 2y/lkl* 73 (30 mI ) K, (rlkly).
m>1
milk
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To use this computation, we need to know more about K(c).
Lemma 6.5.
(1) If c € (0,00), then K(c) is entire as a function of s.

(2) Ifco > 0 and o9 < o1, then there exists C = C(co, 00, 01) such that for allc > ¢y, s € C
with Re s € [00,01], |Ks(c)| < Ce™c.

(8) For all s € C, there exists ¢ € (0,00) such that Ks(c) # 0.

Proof. For (2), we bound

\KS(C)| S/ efc(tﬂ‘fl)(tg_i_tfa)%
1

It is enough to show that [ e_C(Hfl)t“% =0(e °) for ¢ > ¢y, 0 € [0¢,01]. This is

/ / c(t+t=) o &0 dt
t

2 2
(/ gei/ o dt
1 1
Ift22,t21—|—% SO

/Oo < /OO 670676(%“71)#’@ <e ¢ /OO e—co(z 1)y "dt
2 J2 t - 2 t

Summing those gives the required bound.

For (3), fix s € C. We take the Mellin transform of K(c), i.e

/ Ks( dC / / —(ct+c/t) 5148 didc )
0 &

Change of variable: a = ct,b = c/t, ¢ = Vab,t = \/a/b. Then dadb = —2¢dcdt. So

0
1

=2 / e~aqler+o/22 / *bbwrsw@ = S0 ((s1 +8)/2)0((s1 = 5)/2)
2/, 0 b2

a

Ift>1,t+t1'>1,s0

This computation is valid provided both integrals are absolutely convergent, i.e. provided
Re(s1 +s) > 0,Re(s1 — s) > 0. We can choose s; with this property. Since I' is non-
vanishing, K(c¢) cannot be zero for all ¢ € (0, 00). O

Corollary 6.6.
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(1) For all s € C—{0,1}, G*(7,s) is not the zero function on b.

(2) For all s € C—{0,1}, |G*(7, 5) — Ai(y,s)| = O(e"™/?) as y — oco.
(3) For all s € C —{0,1}, |G*(7,5)| = O(max(y°,y' 7)) as y — .
Remark: Compare with |Gy (1) — Gi(o0)| = O(e™?™) as y — oc.

Proof. Let s = sp.

(1) If G*(1,50) = 0 for all 7 € b, then Aj(y,s0) = 0 for all y. But Aj(y,so) =
2yyK,,_1(my). We have just shown that there exists y > 0 such that K, _1(wy) # 0.
2 2

_1
(2) 16" (. 50) — A(050)| < Cieno 2VFII™ 3or1_am (KK, (xlkly)|. We can find
M, N > 0 such that |k[70"201_s0, (|k|) < M|E|"N for all k € Z — 0. Then |G*(r, so) —
Ay, s0)l < 23 ks 2,/ykN MCe™ ™Y when y > 1 and C' = C(1,00,00) of Lemma.

\/gjk:Ne_“ky/z is bounded in (0, 00) x N, so

(G (7, 50) — Ab(y, s0)| < AD_ eT™U/2 = O(e/2),

k>1

G (7,5)] < |43y, )| + O(e™™/2) = 2¢(2s)y" + £(2(1 — 5))y'~*| + O(e™™/2)
O]

We can now give the remaining ingredient in the proof of the Prime Number Theorem.

Theorem 6.7. For anyt € R, t # 0, we have ((1 + it) # 0.

Proof. ((s) = >_,51n7%, so ¢(5) = ((s) for all s € C. Suppose ((1 +it) = 0, then
C(]- _Zt) = 0. Let S0 — % Then 1 — So = % and
Aj(y, s0) = 26(1 + it)y* + 2£(1 — it)y' =0 = 0

d;gly. This makes sense as G* is

We consider the function F(s) = fF(l)\h G*(7,5)G*(1, 50)
invariant under I'(1). The integral converges absolutely for all s € C:

dxd o d
[ @ale e =gl <o [ maxty gty
F ) y=+/3/2 Y
converges. The exponential decay of G*(7, s9) implies that F'(s) is entire. When Res > 1,
we can write G(7,s) = 2¢(2s)E(7, s) with E(7,s) = >_,cr_\r)Im(y7)%, and G*(7,s) =
2£(2s)E(1,s). When Re(s) > 1,

F(s) = / > 25(25)61*@7,30)1m<w>8d”yf§‘y

Y€l \I'(1)
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1
Lo and
_ / 2¢(28) G (7, 50)y" y2y.
0

_1
2

1

Note that [2, G*(7,so)dz = Ai(y,s0) = 0, so F(s) = 0 when Res > 1. By the identity
2 —

principle F(s) = 0 for all s € C. If s = s9, F(so) = fF(l)\h G* (7, 50)G* (7, s0) 2y —

y2
Jrang 1G* (7, 50)|2dz§y = 0. This is only possible if G*(7,s9) = 0 for all 7 € h. This
contradicts the corollary. O
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7 *Modular Forms and Galois
Representations

Langlands Programme:

Modular forms, Automorphic forms, Automorphic representations
—

Galois representations, Motives

Q: What do the prime number theorem and Fermat’s Last Theorem have in common?
What is a Galois representation?

Let K/Q be a normal extension (possibly of infinite degree). Its Galois group Gal(K/Q) =
Aut(K/Q). We make Gal(K/Q) into a topological group by taking a basis of neigh-
borhood of e € Gal(K/Q) to be the subgroups Gal(K /M) where K/M/Q is an inter-
mediate field, finite over Q. A Galois representation is a continuous homomorphism
Gal(K/Q) — GL,(E), where E is a local field (e.g. E = C,Qy).

E.g. f(X) € Z[X] separable, K = splitting field, Gal(K/Q) — GL,(C) any irreducible

representation.

E.g. E/Q an elliptic curve, ¢ prime. There is a Galois representation pg, : Gal(Q, Q) —
GL2(Qg). Where does this come from? E is an abelian algebraic group, and the ¢"-torsion
points are a finite subgroup of E(Q), isomorphic to (Z/¢"Z)?, with an action of Gal(Q/Q).
It is unramified at any prime p { Agl, i.e. pgy factors through Gal(Q/Q) — Gal(Qs/Q)
where for a set S of primes, Qg C Q is the maximal subextension unramified away from
S. Here we take S = {p | Ag/}.

If p ¢ S, then there is a distinguished congruency class of Frobenius elements Frob, €

Gal(Qs/Q).
We have tr pg ¢(Frob,) =p+ 1 — #E(F,).
Modular forms also give rise to Galois representations.

Theorem 7.1. Let f € Si(I'(1)) be a normalized eigenform. Let ¢ be a prime, and let \ be
a prime ideal of Ok, lying above ¢ (where Ky = Q({an(f)})). Then there exists a unique
Galois representation py x : Gal(Qp /Q) — GL2(Ky\) such that tr pg (Froby) = ap(f).
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(Proved by Deligne, on the way to proving the Ramanujan-Petersson Conjecture)
One application: To a generalization of Kummer’s criterion:

Theorem 7.2 (Kummer). If p is an odd prime, then p is reqular iff none of the rational
numbers By, k = 2,4,6,...,p — 3 has numerator divisible by p.

p is regular if p 1 # C1(Q((p))-

Kummer could prove FLT in exponent p for regular primes p.

How we see k in terms of C1(Q(())? Note p is regular iff p { # C1(Qy, ) iff C1(Q((p))[p] = 0.
Gal(Q(¢p)/Q) acts on CL(Q((p)), hence on C, = CI(Q((p))[p]. We have a direct sum
decomposition C), = P, Cy,y, where x : Gal(Q((p)/Q) = (Z/pZ)* — F and Cp, = {a €
Cp | Vo € Gal(Q(¢p)/Q), 0(a) = x(a)a}.

Theorem 7.3 (Herbrand-Ribet). If p is an odd prime, 2 < k < p — 3 even, then p | By
iff Cpxi # 0 where xi @ Gal(Q(¢)/Q) — F, acts as b — b'=F under the identification

Gal(Q(¢p)/Q) = (Z/pZ)" .

Hard part: p | By = Cjy, # 0. Starting point: Fj, = —%4—2721 ok—1(n)q"™ is congru-
ent mod p to a cuspidal normalized eigenform. Then there exists a Galois representation
prp - Gal(Qqpy /Q) — GLa(Ky) such that for all £ # p, tr ps,(Froby) = op—1(¢) mod p.
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