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1 Introduction

Definition.

h := {τ ∈ C | Im τ > 0},
Γ(1) := SL2(Z),

GL2(R)+ := {g ∈ GL2(R) | det(g) > 0}.

Lemma 1.1. GL2(R)+ acts transitively on h by Möbius transformations.

Proof. g =

(
a b
c d

)
∈ GL2(R)+, then Im(gτ) = det(g) Im τ

|cτ+d|2 > 0. If τ = x + iy, then

τ =

(
y x
0 1

)
i, so the action is transitive.

Definition. Let k ∈ Z. If g ∈ GL2(R)+, τ ∈ h, define j(g, τ) = cτ + d (the “modular
cocycle”). If f : h→ C, we define f |k[g] : h→ C by the formula

f |k[g](τ) = f(gτ) det(g)k−1j(g, τ)−k.

Lemma 1.2. This defines a right action on the set of functions f : h→ C.

Proof. Need to check that for all g, h ∈ GL2(R)+ we have f |k[gh] = (f |k[g])|k[h].

f |k[gh](τ) = f(ghτ) det(gh)k−1j(gh, τ)−k

(f |k[g])|k[h](τ) = (f |k[g])(hτ) det(h)k−1j(h, τ)−k

= f(ghτ) det(g)k−1j(g, hτ)−k det(h)k−1j(h, τ)−k

Thus, we need to show that j(gh, τ) = j(g, hτ)j(h, τ) (”cocycle condition”).

Use the formula j(g, τ)

(
gτ
1

)
= g

(
τ
1

)
. We have

j(h, τ)j(g, hτ)

(
ghτ
1

)
= g

(
j(h, τ)

(
hτ
1

))
= gh

(
τ
1

)
= j(gh, τ)

(
ghτ
1

)
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Definition. Let k ∈ Z, and let Γ ≤ Γ(1) be a finite index subgroup. A weakly modular
function f of level Γ and weight k is a meromorphic function in h such that f |k[γ] = f
for all γ ∈ Γ.

Goal of this course: define and study spaces of modular forms ⇝Mk(Γ), C-vector spaces
of modular forms, finite-dimensional equipped with Hecke operators.

Motivation:

1. Theory of elliptic functions: Let E be an elliptic curve over C. Let ω be a non-
zero holomorphic differential on E. Then there exists a unique lattice Λ ≤ C and
holomorphic isomorphism ϕ : C/Λ→ E, satisfying ϕ∗(ω) = dz.

One can show that E may be given by the equation y2 = x3−60G4(Λ)x−140G6(Λ)
where for k ∈ Z we define Gk(Λ) =

∑
λ∈Λ\0 λ

−k (abs. convergent when k ≥ 4). Gk’s
are examples of modular forms. (Gk(τ) = Gk(Λτ ) where Λτ = Zτ ⊕ Z, “Eisenstein
series”).

2. Modular forms have interesting q-expansions. If f is a modular form, it has a Fourier
expansion

∑
n∈Z ane

2πinτ/h, h ∈ N, an ∈ C. The coefficients an are often interesting.

Example: Θ(τ) =
∑

n∈Z e
πin2τ . If k ∈ 2Z, then Θk is a modular form of weight k/2;

and Θk =
∑

n1,...,nk∈Z e
πi(

∑
j n

2
j )τ =

∑
m∈Z rk(m)eπimτ where

rk(m) = #{(n1, . . . , nk) ∈ Zk |
∑
j

n2
j = m}.

By expressing Θ4 in terms of Eisenstein series, one can prove r4(m) = 8
∑

d|m
4∤d

d.

3. Theory of L-functions, e.g. Riemann ζ-function. We know that ζ has

• meromorphic continuation to C,

• functional equation relating ζ(s) and ζ(1− s),

• Euler product.

We can use these to prove the Prime Number Theorem.

In general, an L-function is a Dirichlet series
∑∞

n=1 ann
−s having properties similar

to ζ.

Modular forms can be used to construct L-functions which provably have these
properties.

4. Connection to Langlands programme, e.g. modularity conjecture for elliptic curves
⇒ Fermat’s Last Theorem.

This goes via Hecke operators and L-functions.

Notation: D(a, δ) = {z ∈ C | |z − a| < δ}, D∗(a, δ) = D(a, δ) \ {a}.
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2 Modular Forms on Γ(1)

Lemma 2.1. Let f be a weakly modular function of weight k and level Γ(1). Then there
exists a unique meromorphic function f̃ in D∗(0, 1) such that f = f̃ ◦ e2πiτ .

Proof. e2πiτ : h→ D∗(0, 1) is a holomorphic surjection, and τ, τ ′ ∈ h have the same image

iff τ ′− τ ∈ Z. Consider T =

(
1 1
0 1

)
∈ Γ(1). Then f(τ) = f |k[T ](τ) = f(τ +1). Thus f is

constant on the fibers of e2πiτ and hence lifts to a function f̃ on D∗(0, 1) via e2πiτ . Since
e2πiτ is locally biholomorphic, we see that f̃ is meromorphic. Uniqueness follows from the
surjectivity of e2πiτ .

If f is a weakly modular function of weight k and level Γ(1), we say that f is meromorphic
at ∞ if f̃ extends to a meromorphic function in D(0, 1). In this case there is a δ > 0 such
that f̃ is holomorphic in D∗(0, δ) and has a Laurent expansion f̃(q) =

∑
n∈Z anq

n where
an = 0 if n sufficiently negative. Then f is holomorphic in {τ ∈ h | Im(τ) > − 1

2π log δ},
so for τ in this region, f(τ) =

∑
n∈Z anq

n where q = e2πiτ .

Similarly, f is called holomorphic at ∞ if f̃ has a removable singularity at 0, in this case
we set f(∞) = f̃(0).

Definition. Let f be a weakly modular function of weight k and level Γ(1). We say that
f is a

• modular function if it is meromorphic at ∞.

• modular form if f is holomorphic in h and holomorphic at ∞.

• cuspidal modular form if it is a modular form and f(∞) = 0.

We write Mk(Γ(1)) for the C-vector space of modular forms of weight k, level Γ(1), and
Sk(Γ(1)) for the subspace of cuspidal forms.

Example. If k ∈ Z, we consider the Eisenstein series

Gk(τ) =
∑

λ∈Λτ\0

λ−k =
∑

(m,n)∈Z2\0

(mτ + n)−k where Λτ = Zτ ⊕ Z.

If γ =

(
a b
c d

)
∈ Γ(1), then

Gk(γτ) =
∑

λ∈Λγτ\0

λ−k = j(γ, τ)kGk(τ)
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as

Λγτ = Z
aτ + b

cτ + d
⊕ Z = (cτ + d)−1(Z(aτ + b)⊕ Z(cτ + d)) = j(γ, τ)−1Λτ

provided everything converges absolutely.

Proposition 2.2. Suppose that k > 2. Then Gk(τ) converges absolutely and locally
uniformly in h. Gk(τ) is a modular form of weight k level Γ(1). If k is odd, Gk(τ) = 0.
If k is even, Gk(∞) = 2ζ(k) ̸= 0.

Proof. Let A ≥ 2, and define ΩA = {τ ∈ h | Im τ ≥ 1
A , |Re τ | ≤ A}. We show that Gk

converges absolutely and uniformly in ΩA. Let τ ∈ ΩA, x ∈ R. Then

|τ + x| ≥

{
1
A if |x| ≤ 2A,
|x|
2 if |x| ≥ 2A,

hence |τ + x| ≥ 1
2A2 sup(1, |x|).

Let mτ + n ∈ Λτ ,m ̸= 0. Then

|mτ + n|−k = |m|−k|τ + n/m|−k

≤ |m|−k(2A2)k sup(1, |n/m|)−k

= (2A2)k sup(|m|, |n|)−k.

This also holds for m = 0.

Then ∑
(m,n)∈Z2\0

|mτ + n|−k ≤ (2A2)k
∑

(m,n)∈Z2\0

sup(|m|, |n|)−k

= (2A2)k
∑
d≥1

d−k#{(m,n) ∈ Z2 | sup(|m|, |n|) = d}

= (2A2)k
∑
d≥1

8d1−k = 8(2A2)kζ(k − 1) <∞.

Thus, Gk(τ) converges absolutely and uniformly in ΩA, Hence Gk(τ) is holomorphic in h
and weakly modular of weight k, level Γ(1).

To show Gk is holomorphic at ∞ we show that limq→0 G̃k(q) exists.

lim
q→0

G̃k(q) = lim
τ∈Ω2

Im τ→∞

Gk(τ)

= lim
τ∈Ω2

Im τ→∞

∑
(m,n)∈Z2\0

(mτ + n)−k

=
∑

(m,n)∈Z2\0

lim
τ∈Ω2

Im τ→∞

(mτ + n)−k
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=
∑

n∈Z\0

n−k =

{
2ζ(k) if k even,

0 if k odd.

For k odd we have Gk = 0 by symmetry.

Note: When k is odd, any weakly modular function of weight k, level Γ(1) is 0. Take
−I ∈ Γ(1). Then f(τ) = f |k[−1](τ) = (−1)kf(τ), so f(τ) = 0.

We define the normalized Eisenstein series for even k ≥ 4 by

Ek(τ) =
1

2ζ(k)
Gk(τ) = 1 +

∞∑
n=1

anq
n.

We will show that these coefficients an are rational.

We can generate more examples, e.g. if f ∈Mk(Γ(1)), g ∈Ml(Γ(1)), then fg ∈Mk+l(Γ(1)).

Example: E3
4 , E

2
6 ∈M12(Γ(1)) with constant term 1, so E3

4 − E2
6 ∈ S12(Γ(1)).

To get further, we need to understand the action of Γ(1) on h. Define

F = {τ ∈ h | −1

2
≤ Re τ ≤ 1

2
, |τ | ≥ 1}

F ′ = {τ ∈ h | −1

2
≤ Re τ <

1

2
, |τ | ≥ 1, (|τ | = 1 =⇒ Re ≤ 0)}

Let S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
. Note that Tτ = τ + 1, Sτ = −1/τ .

Proposition 2.3.

(1) Any τ ∈ h is Γ(1)-conjugate to a unique element of F ′.

(2) If τ ∈ F ′, then StabΓ(1)(τ) = {±1}, except StabΓ(1)(i) = ⟨S⟩, and StabΓ(1)(ρ) = ⟨ST ⟩
where ρ = e2πi/3.

(3) Γ(1) is generated by S and T .

Proof. Let G = Γ(1)/{±1}, H = ⟨S, T ⟩ ≤ G. We first show that any τ ∈ h is conjugate
by H to an element of F (or F ′).

If γ ∈ Γ(1), then Im(γτ) = Im τ
|cτ+d|2 . 1, τ form a basis for C as R-vector space. Consequence:

For any X > 0, #{(c, d) ∈ Z2 \ 0 | |cτ + d| < X} is finite. In particular, the set
{|cτ + d| | (c, d) ∈ Z2 \ 0} has a minimum.

So the set {Im(γτ) = Im τ
|cτ+d|2 | γ ∈ H} has a maximum. After replacing τ by γτ , we can

assume that Im(γτ) ≤ Im(τ) for all γ ∈ H. We can also assume that Re(τ) ∈ [−1
2 ,

1
2 ]. If

|τ | < 1, then Im(Sτ) = Im τ
|τ |2 > Im τ . So |τ | ≥ 1 and τ ∈ F .
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Let’s now consider τ, τ ′ ∈ F ′ and γ ∈ Γ(1) such that τ ′ = γτ . Claim: τ = τ ′ and γ ∈ {±1}
except if τ = i or ρ in which case γ ∈ ⟨S⟩ or γ ∈ ⟨ST ⟩. This claim will imply 1) and 2).

Proof of the claim: WLOG Im(γτ) = Im τ
|cτ+d|2 ≥ Im(τ), so |cτ + d| ≤ 1. If τ ′′ ∈ F ′, then

Im τ ′′ ≥
√
3
2 , with equality iff τ ′′ = ρ. So |cτ + d| ≥ |c|

√
3
2 , so |c| ≤ 2√

3
, so |c| ≤ 1.

WLOG, c ≥ 0, so c = 0 or c = 1.

Case c = 0 : γ =

(
±1 b
0 ±1

)
= ±T b which implies b = 0, γ = ±1, τ ′ = τ .

Case c = 1 : Then |τ + d| ≤ 1, so we must have either d = 0, |τ | = 1 or d = 1, τ = ρ,
|τ + 1| = 1 (because the only τ ∈ F ′ with |τ + 1| ≤ 1 is τ = ρ and there is no τ ∈ F ′ with
|τ − 1| ≤ 1)

Case c = 1, d = 0, |τ | = 1: Then γ =

(
a −1
1 0

)
and so γτ = a− 1

τ and Re(γτ) = a−Re(τ)

as 1/τ = τ̄ . Then (a+ [0, 12 ]) ∩ [−1
2 ,

1
2 ] ̸= ∅ so a = 0,Re(γτ) = Re(τ) = 0, τ = i, γ = S or

a = −1,Re(γτ) = Re(τ) = −1
2 , τ = ρ, γ = (ST )2.

Case c = 1, d = 1, τ = ρ: |τ + 1| = 1, Im(γτ) = Im ρ, so γτ = ρ.

ρ = γτ = aρ+b
ρ+1 , so aρ+ b = ρ2 + ρ = −1, so a = 0, b = −1, so γ = ST .

It remains to show that Γ(1) = ⟨S, T ⟩. Note that S2 = −1, so it is equivalent to show that
H = G. Let τ = 2i, take γ ∈ G. By what we showed there is δ ∈ H such that δγτ ∈ F ′.
By (2), we must have δγτ = τ , hence δγ ∈ StabG(τ) = 1, so γ = δ−1 ∈ H, so H = G.

Let f be a non-zero modular function of level Γ(1) and some weight k. If γ ∈ Γ(1), then
f(γτ) = f(τ)j(γ, τ)k, so vγτ (f) = vτ (f). We define v∞(f) = order of f̃ at q = 0, where
f(τ) = f̃(e2πiτ ).

If τ ∈ h, then we define eτ = | StabΓ(1)/{±1}(τ)| =


1 if τ ̸∼ i, ρ,

2 if τ ∼ i,

3 if τ ∼ ρ.

Proposition 2.4. Let f be a non-zero modular function. Then

v∞(f) +
∑

τ∈Γ(1)\h

1

eτ
vτ (f) =

k

12
.

[Note: Theorem from algebraic geometry: degree of section of line bundle only depends
on the line bundle]

Proof. Why is the sum finite? It is enough to show that f has only finitely many ze-
ros/poles in F . Since f̃ is meromorphic in D(0, 1), it has to be holomorphic and non-
vanishing in D∗(0, δ) for some δ > 0. Hence f is holomorphic and non-vanishing in
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{τ ∈ h | Im > R} for some R > 0. So the only zeros/poles of f in F are contained in the
compact subset {τ ∈ F | Im ≤ R}, hence f has only finitely many zeros/poles in F .

We now prove the formula. Note first that we have
∫
u◦γ d log f =

∫
γ u

∗(d log f) =∫
γ d(log f ◦ u).

Continue to fix R > 2 such that f has no zeros/poles in {Im τ ≥ R}. Consider the
following contour:

Here A = −1
2 +Ri,B = ρ, C = i,D = B + 1, E = A+ 1.

We suppose first that f has no zeros or poles on γ. Then

1

2πi

∫
γ
d log f =

∑
τ∈Int γ

vτ (f)
!
=

∑
τ∈Γ(1)\h

1

eτ
vτ (f)

Also: ∫
γ
d log f =

∫
AB

+

∫
BC

+

∫
CD

+

∫
DE

+

∫
EA

d log f

We first compute
∫
DE using the pullback formula. If u(τ) = τ +1, then u(AB) = ED and

f ◦ u = f . So ∫
ED

d log f =

∫
u(AB)

d log f =

∫
AB

d log(f ◦ u) =
∫
AB

log f,

so
∫
AB +

∫
DE = 0.

Now let u(τ) = − 1
τ , so (f ◦ u)(τ) = f(τ)τk. Then CD = u(CB) and so∫

CD
d log f =

∫
CB

d log(f ◦ u) =
∫
CB

d log f + d log τk =

∫
CB

d log f + k

∫
CB

d log τ
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Hence∫
BC

+

∫
CD

d log f =

∫
BC

+

∫
CB

d log f + k

∫
CB

d log τ = k(logB − logC) = 2πi
k

12

Now let u(τ) = e2πiτ . Then u(AE) is a positively oriented circle around 0 in D∗(0, 1). So
v∞(f) = 1

2πi

∫
u(AE) d log f̃ =

∫
AE d log f .

Conclusion:
∑

τ∈Γ(1)\h
1
eτ
vτ (f) =

1
2πi

∫
γ d log f = k

12 − v∞(f) under the assumption that f
has no zeros in γ.

Now suppose f has a zero or pole at a point P in the interior of AB, but no other
zeros/poles on γ except P + 1. Choose ε > 0 such that f has no zeros or poles in
D+(P, 2ε). Consider the contour γP with semicircles around P, P + 1 of radius ε. Now
proceed as before. A similar modification to the contour works if there are zeros/poles in
the interior of the arc BC.

The tricky case is when there is a zero or pole at B or C (Exercise).

Example. Let k = 4, f = E4 = 1 +
∑

n≥1 anq
n. The formula says

v∞(E4) +
∑

τ∈Γ(1)\h

1

eτ
vτ (E4) =

1

3
.

We know v∞(E4) = 0 and vτ (E4) ≥ 0 for all τ . So we necessarily have vρ(E4) = 1 and
vτ (E4) = 0 for all other τ ̸∼ ρ.

For k = 6, f = E6 we have
∑

τ∈Γ(1)\h
1
eτ
vτ (E6) =

1
2 , so vi(E6) = 1 and vτ (E6) = 0 for all

τ ̸∼ i.

So ∆ =
E3

4−E2
6

1728 is non-zero because ∆(i) = E4(i)3

1728 ̸= 0. We have v∞(∆)+
∑

τ∈Γ(1)\h
1
eτ
vτ (∆) =

1, so v∞(∆) = 1 and vτ (∆) = 0 for all τ ∈ h.

Lemma 2.5. Let k be an even integer.

(1) Mk(Γ(1)) = 0 for k < 0 or k = 2. M0(Γ(1)) = C.

(2) If 4 ≤ k ≤ 10, then Mk(Γ(1)) = CEk.

(3) If k ≥ 0, then multiplication by ∆ is an isomorphism Mk(Γ(1))
∼−→ Sk+12(Γ(1))

Proof.

(1) If k < 0 and f ∈Mk(Γ(1)) is non-zero, then 0 ≤ v∞(f)+
∑

τ∈Γ(1)\h
1
eτ
vτ (f) =

k
12 < 0,

a contradiction. For k = 2 similarly v∞(f) +
∑

τ∈Γ(1)\h
1
eτ
vτ (f) = 1

6 , which is not
possible.

If f ∈M0(Γ(1)) is non-constant, then f − f(∞) is still non-constant and vanishing at
infinity, contradicting our formula again.
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(2) Let 4 ≤ k ≤ 10. If f ∈ Mk(Γ(1)) \ CEk, then 0 ̸= f − f(∞)Ek ∈ Sk(Γ(1)). But then
again 1 ≤ v∞(f) +

∑
τ∈Γ(1)\h

1
eτ
vτ (f) =

k
12 < 1, thus Mk(Γ(1)) = CEk.

(3) Let k ≥ 0 and consider the map ϕ : Mk(Γ(1))→ Sk+12(Γ(1)) given by ϕ(f) = ∆f . If
∆f = ϕ(f) = 0, then clearly f = 0 and if g ∈ Sk+12(Γ(1)), then f := g/∆ ∈Mk(Γ(1))
as v∞(∆) = 1 ≤ v∞(g), so ϕ(f) = g. Thus, ϕ is bijective.

Corollary 2.6. Let k ≥ 0 be an even integer. Then

dimCMk(Γ(1)) =

{⌊
k
12

⌋
k ≡ 2 (mod 12),⌊

k
12

⌋
+ 1 k ̸≡ 2 (mod 12).

Proof. Induction on k. For 0 ≤ k ≤ 10 we already proved this. For k ≥ 12 not that

Mk(Γ(1)) = CEk ⊕ Sk(Γ(1)) ∼= CEk ⊕Mk−12(Γ(1))

and our claim follows by induction.

Corollary 2.7. Let M =
⊕∞

k=0Mk(Γ(1)). Then M is generated as a C-algebra by E4, E6.

Proof. Show by induction on k that Mk(Γ(1)) = ⟨Ea
4E

b
6 | a, b ∈ Z≥0, 4a + 6b = k⟩. We

know this is true for k = 0, 2, 4, 6. dimM8(Γ(1)) = 1, E2
4(∞) = 1 = E8(∞), so we have

E2
4 = E8. Similarly E4E6 = E10.

For k ≥ 12 choose A,B ≥ Z≥0 such that k = 4A+ 6B. Then

Ek(Γ(1)) = CEAEB ⊕ Sk(Γ(1)) = CEAEB ⊕∆Mk−12(Γ(1)).

We know by induction thatMk−12(Γ(1)) = ⟨Ea
4E

b
6 | 4a+6b = k−12⟩. Hence ∆Mk−12(Γ(1)) =

⟨(E3
4 − E2

6)E
a
4E

b
6 | 4a+ 6b = k − 12⟩ ⊆ ⟨Ea

4E
b
6 | 4a+ 6b = k⟩.

Define j =
E3

4
∆ . This is a modular function of weight 0, holomorphic in h with v∞(j) = −1.

Theorem 2.8. j : h → C is surjective and τ, τ ′ ∈ h have the same image under j if and
only if they are conjugate under Γ(1).

Moreover, any other modular function of weight 0, level Γ(1) is a rational function of j.

Proof. Let z ∈ C. We want to show that there is a unique Γ(1)-orbit of τ ∈ h such
that j(τ) = z, i.e. vτ (j − z) > 0. Note that −1 +

∑
τ∈Γ(1)\h

1
eτ
vτ (j − z) = 0. Note that

vτ (j − z) ≥ 0 for all τ ∈ h and the only solutions for a + b
2 + c

3 = 1 in a, b, c ≥ Z≥0 are
(1, 0, 0), (0, 2, 0), (0, 0, 3). So in particular there is exactly one Γ(1)-orbit (of say τ) such
that vτ (j − z) > 0.

For the second assertion let f be any modular function of weight 0, level Γ(1). By multiply-
ing it by

∏
i(j(τ)−j(τi)) where the τi are the poles of f in h (counted with multiplicity) we
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may assume that f has no poles in h. Let N = −v∞(f). Then f∆N is a modular form of
weight 12N , so it is a linear combination of functions of the form Ea

4E
b
6 with 4a+6b = 12N .

So it suffices to prove that Ea
4E

b
6/∆

N is a rational function in j. Note that b = 2q, a = 3p
for p, q ∈ Z. Hence Ea

4E
b
6/∆

n = E3p
4 E2q

6 /∆p+q = (E3
4/∆)p(E2

6/∆)q = jp(E2
6/∆)q. Note

that by definition 1728∆ = E3
4 − E2

6 , hence E2
6/∆ = E3

4/∆ − 1728 = j − 1728 which is
also rational function of j, so we are done.

Remark: j(τ) is the j-invariant of the elliptic curve C/Λτ where Λτ = Zτ ⊕ Z.

Proposition 2.9. Let k ≥ 4 be an even integer. Then the q-expansion of Gk(τ) is

2ζ(k) +
2(2πi)k

(k − 1)!

∑
n≥1

σk−1(n)q
n.

Proof. We start with the formula π cot(πτ) = 1
τ +

∑∞
n=1

1
τ+n + 1

τ−n , valid and locally
uniformly convergent in h. Then

π cot(πτ) = πi
q + 1

q − 1
= −πi(1 + q)(1 + q + q2 + . . . ) = −πi(1 + 2

∑
n≥1

qn)

Differentiate (k − 1) times to get

−2πi
∞∑
n=1

(2πin)k−1qn = (−1)k−1(k − 1)!
(
τ−k +

∞∑
n=1

(
(τ + n)−k + (τ − n)k

))
= (−1)k−1(k − 1)!

∑
n∈Z

(τ + n)−k

Hence
∑

n∈Z(τ + n)−k = (2πi)k

(k−1)!

∑∞
n=1 n

k−1qn. Therefore

Gk(τ) =
∑

(m,n)∈Z2\0

(mτ + n)−k =
∑

n∈Z\0

n−k +
∑

m∈Z\0,n∈Z

(mτ + n)−k

= 2ζ(k) + 2
∑

m≥1,n∈Z
(mτ + n)−k

= 2ζ(k) + 2
(2πi)k

(k − 1)!

∑
m≥1

∑
n∈Z

nk−1qnm

= 2ζ(k) + 2
(2πi)k

(k − 1)!

∑
n≥1

σk−1(n)q
n.

Corollary 2.10. Ek(τ) = Gk(τ)/2ζ(k) = 1 +
∑

n≥1 anq
n where all an ∈ Q. Moreover, if

k = 4 or 6, then all an ∈ Z.
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Proof. The q-expansion of Ek is 1 + (2πi)k

ζ(k)(k−1)!

∑∞
n=1 σk−1(n)q

n. By an exercise we know

that πk/ζ(k) ∈ Q, so the coefficients are rational. For k = 4 or 6, we need to show that
(2πi)k

ζ(k)(k−1)! ∈ Z. For k = 4 we obtain 240 and for k = 6 we get −504.

Corollary 2.11. ∆ = q+
∑∞

n=2 anq
n, where an ∈ Z and j = 1

q +
∑∞

n=0 bnq
n where bn ∈ Z.

Proof. From j = E3
4/∆ we see that we only need to show the claim for ∆. By definition

∆ =
E3

4−E2
6

1728 . By the previous corollary we have E4 = 1+240U(q), E6 = 1−504V (q) where
U(q) =

∑∞
n=1 σ3(n)q

n, V (q) =
∑∞

n=1 σ5(n)q
n, so

∆ =
1

1728
(3 · 240U + 3 · (240)2U2 + (240)3U3 + 2 · 504V − (504)2V 2)

We only need to check that 3·240U+2·504V
1728 ∈ ZJqK. This is 5U+7V

12 , so we have to prove that
12 | 5σ3(n) + 7σ5(n) for all n ∈ N, equivalently σ3(n) ≡ σ5(n) (mod 12). It is enough
to show that for all d ∈ N we have d3 ≡ d5 (mod 12) which is easily checked. So all
coefficients of ∆ are integers. One also verifies easily that its leading coefficient is 1.

Next we will use this to show that Mk(Γ(1)) has a Z-structure, i.e. if Mk(Γ(1),Z) = {f ∈
Mk(Γ(1)) | q-expansion coefficients of f are integers}, thenMk(Γ(1),Z) is a free Z-module
and the natural map Mk(Γ(1),Z)⊗Z C→Mk(Γ(1)) is an isomorphism.

Theorem 2.12. Let k ≥ 4 be even. Then Mk(Γ(1)) has a unique basis f0, . . . , fN satis-
fying:

(i) For all 0 ≤ i, j ≤ N , ai(fj) = δij (where f =
∑∞

n=0 an(f)q
n),

(ii) For all 0 ≤ i ≤ N , n ∈ Z≥0, an(fi) ∈ Z.

Proof. LetN = dimSk(Γ(1)). Write k = 12a+d where a, d ∈ Z≥0 and d ∈ {0, 4, 6, 8, 10, 14}.
Note that N + 1 = dimMk(Γ(1)) = a + 1, so a = N . Write d = 4A + 6B for some

A,B ∈ Z≥0. Define for each i = 0, . . . , N , gi = EA
4 E

B
6 ∆iE

2(N−i)
6 , a modular form of

weight 4A + 6B + 12(N − i) + 12i = d + 12a = k. Note that for all n ∈ Z≥0, an(gi) ∈ Z
and the leading term of gi is qi. Now perform row reduction to get f0, . . . , fN such that
for all n ∈ Z≥0, an(fi) ∈ Z, and for all 0 ≤ i, j ≤ N , ai(fj) = δij . From this it is clear
that the fj are linearly independent. Since dimMk(Γ(1)) = N + 1, the f0, . . . , fN form a
basis of Mk(Γ(1)). The uniqueness is also clear as the fi must be dual to the ai.

12



3 Hecke Operators

Mk(Γ(1)), Sk(Γ(1)) have additional symmetries.

They can be constructed (at least) group theoretically (GL2(Q)+) and geometrically: think
of modular forms as functions of lattices.

Recall: If V is a finite dimensional R-vector space, then a lattice Λ ⊆ V is a discrete
cocompact subgroup.

Lemma 3.1. Let Λ ⊆ V be a subgroup. Then Λ is a lattice iff there exists a basis e1, . . . , en
for V such that Λ = Ze1 ⊕ · · · ⊕ Zen.

Proof. Example sheet 2.

We write L for the set of lattices in C. Note that C× acts on L by zΛ = {zλ | λ ∈ Λ}.

Proposition 3.2. The map h→ L given by τ 7→ Λτ = Zτ ⊕ Z descends to a bijection

Γ(1) \ h ∼−→ C× \ L.

Proof. First show that h → C× \ L is surjective. If Λ = Ze1 ⊕ Ze2, then Im(e1/e2) ̸= 0.
WLOG Im(e1/e2) > 0. Then Λ = e2Λe1/e2 . We next check that Γ(1) \ h → C× \ L is
well-defined, i.e. if τ ∈ h, γ ∈ Γ(1), then Λτ ,Λγτ are homothetic. This true as

Λγτ = (cτ + d)−1Z(aτ + b)⊕ Z(cτ + d) = (cτ + d)−1Λτ .

Finally, we check our map is injective, i.e. if τ, τ ′ ∈ h, z ∈ C×, and zΛτ ′ = Λτ , then
τ ′ = γτ for some γ ∈ Γ(1). If zΛτ ′ = Λτ , then zτ ′ = aτ + b, z = cτ + d for some

γ =

(
a b
c d

)
∈ GL2(Z). Then τ ′ = aτ+b

cτ+d , and Im(τ ′) = det(γ) Im(τ)
|cτ+d|2 > 0, so γ ∈ Γ(1).

This shows that functions f : h→ C such that f |0[γ] = f for all γ ∈ SL2(Z) are the same
as functions F : L → C such that F (zΛ) = F (Λ) for all z ∈ C×.

We say a function F : L → C is of weight k ∈ Z if for all Λ ∈ L, z ∈ C×, F (zΛ) = z−kF (Λ).

Proposition 3.3. The map F 7→ (f(τ) = F (Λτ )) defines a bijection between the following
two sets:

(1) Functions F : L → C of weight k.

(2) Functions f : h→ C such that for all γ ∈ Γ(1), f |k[γ] = f .

13



Proof. First check that if F is of weight k, then f(τ) = F (Λτ ) is invariant under weight k
action of Γ(1). We use the relation Λγτ = j(γ, τ)−1Λτ . Then f |k[γ](τ) = f(γτ)j(γ, τ)−k =
F (Λγτ )j(γ, τ)

−k = j(γ, τ)−kF (j(γ, τ)−1Λγτ ) = F (Λτ ) = f(τ).

Conversely, let f be a function as in (2). Given Λ ∈ L, choose a basis e1, e2 such that
Im(e1/e2) > 0. Define F (Λ) = e−k

2 f(e1/e2). This is well-defined as if Λ = Ze′1 ⊕ Ze′2 and
Im(e′1/e

′
2) > 0, then there exist γ ∈ Γ(1) such that e′1 = ae1 + be2, e2 = ce1 + de2. Then

e′−k
2 f(e′1/e

′
2) = (ce1 + de2)

−kf((ae1 + be2)/(ce1 + de2)) = e−k
2 j(γ, e1/e2)

−kf(γe1/e2) =
e−k
2 f(e1/e2). Next we check that F (zΛ) = zkF (Λ): If e1, e2 is a basis for Λ such that
Im(e1/e2) > 0, then also Im((ze1)/(ze2)) > 0, so F (zΛ) = (ze2)

−kf((ze1)/(ze2)) =
z−ke−k

2 f(e1/e2) = z−kF (Λ).

These two maps between functions in (1), (2) are inverse to each other.

Let’s write Vk for the C-vector space of functions F : L → C of weight k. The proposition
gives a linear embedding Mk(Γ(1)) ↪−→ Vk, f 7→ F . We will define Hecke operators on Vk.

We write Wk for the C-vector space of functions f : h → C such that for all γ ∈ Γ(1) we
have f |k[γ] = f .

Definition. If n ∈ N, we define the n-th Hecke operator Tn : Vk → Vk by the formula

(TnF )(Λ) = nk−1
∑
Λ′≤

n
Λ

F (Λ′)

where the sum is over subgroups Λ′ ⊆ Λ of index n.

We define Tn : Wk →Wk by using the identification Vk
∼= Wk above.

Let us check that {Λ′ | Λ′ ≤
n
Λ} is finite. If Λ′ ≤

n
Λ, then nΛ ≤ Λ′. So there is a map

{Λ′ ≤
n
Λ} → {A ≤

n
Λ/nΛ},

Λ′ 7→ Λ′/nΛ.

This is bijective and the set on the right is finite as Λ ∼= Z2, so Λ/nΛ ∼= (Z/nZ)2.

Now let us check that TnF is of weight k.

(TnF )(zΛ) = nk−1
∑

Λ′≤
n
zΛ

F (Λ′) = nk−1
∑
Λ′≤

n
Λ

F (zΛ′) = nk−1
∑
Λ′≤

n
Λ

z−kF (Λ′) = z−k(TnF )(Λ)

Proposition 3.4.

(1) If n,m ∈ N are coprime, then TnTm = Tnm = TmTn.

(2) If p is prime and n ≥ 1, then TpnTp = Tpn+1 + pk−1Tpn−1.
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Proof. Let n,m ∈ N, not necessarily coprime. Then

Tn(TmF )(Λ) = nk−1
∑
Λ′≤

n
Λ

(TmF )(Λ′) = nk−1
∑
Λ′≤

n
Λ

∑
Λ′′≤

m
Λ′

F (Λ′′)

= (nm)k−1
∑

Λ′′ ≤
nm

Λ

a(Λ,Λ′′)F (Λ′′)

where a(Λ,Λ′′) = #{Λ′ ≤
n
Λ | Λ′′ ≤

m
Λ′} = #{A ≤

n
Λ/Λ′′}.

Fact: If n,m are coprime, B finite abelian group of order nm, then B = B[n]×B[m] and
B[m] is the unique subgroup of index n.

Consequence for us: If n,m are coprime, then a(Λ,Λ′′) = 1 for any Λ′′ ≤
nm

Λ. So in this

case Tn(TmF )(Λ) = (TnmF )(Λ).

Now let p be prime, n ≥ 1. Then

Tpn(TpF )(Λ) = p(n+1)(k−1)
∑

Λ′′ ≤
pn+1

Λ

a(Λ,Λ′′)F (Λ′′)

where a(Λ,Λ′′) = #{A ≤ Λ/Λ′′ | #A = p}. This now depends on the choice of Λ′′.

Recall: If Λ′′ ≤ Λ is a subgroup of index pn+1, then there exists a Z-basis e1, e2 for Λ and
a ≥ b ≥ 0 such that a+ b = n+ 1 such that pae1, p

be2 is a Z-basis for Λ′′. Two cases:

(1) b = 0. Λ = Ze1⊕Ze2, Λ′′ = Zpn+1e1⊕Ze2, then Λ/Λ′′ is cyclic of order pn+1. In this
case Λ/Λ′′ has a unique subgroup of order p, and a(Λ,Λ′′) = 1.

(2) b ≥ 1, Λ = Ze1 ⊕ Ze2,Λ′′ = Zpae1 ⊕ Zpbe2, then Λ/Λ′′ ∼= Z/paZ ⊕ Z/pbZ. Then
subgroups A of Λ/Λ′′ of order p correspond to order p subgroups of (Λ/Λ′′)[p] =
(Z/pZ)2. There are p+ 1 of them (lines in 2-dimensional space), so a(Λ,Λ′′) = p+ 1.

In case 1, Λ′′ ̸≤ pΛ, as e2 ∈ Λ′′ − pΛ. In case 2, Λ′′ ≤ pΛ as pae1, p
be2 ∈ pΛ.

Therefore

Tpn(TpF )(Λ) = p(n+1)(k−1)

 ∑
Λ′′ ≤

pn+1
Λ

F (Λ′′) + p
∑

Λ′′ ≤
pn−1

pΛ

F (Λ′′)


= Tpn+1F (Λ) + p(n+1)(k−1)p

∑
Λ′′ ≤

pn−1
Λ

F (pΛ′′)

= Tpn+1F (Λ) + pk−1Tpn−1F (Λ).
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Corollary 3.5. For all n,m ∈ N we have TnTm = TmTn.

Proof. Claim: If p is a prime, then Tpn is a polynomial in Tp with Z-coefficients. This
follows immediately by induction from the formula in the lemma.

In particular, the corollary holds when n,m are powers of the same prime.

In general, let us write n =
∏

i p
ai
I ,m =

∏
i p

bi
i with ai, bi ≥ 0. Then Tn =

∏
i Tp

ai
i
, Tm =∏

i Tp
bi
i

. We need to know that for all i, j the operators Tp
ai
i
, T

p
bj
j

commute. For the same

prime we just proved it, for different primes we already knew, so we are done.

Lemma 3.6. Let n ∈ N and let e1, e2 be a Z-basis for Λ ∈ L. then

{Λ′ ≤
n
Λ} ←→ {(a, b, d) | a,d∈N,ad=n

b∈Z,0≤b<d}

Z(ae1 + be2)⊕ Zde2 ←− [ (a, b, d)

Proof. Recall: Let M ∈ Mn×n(Z),detM ̸= 0. Let N finite free Z module of basis
w1, . . . , wn. Then

⊕n
i=1 Z(

∑n
j=1Mijwj) ≤ N is a subgroup of finite index | detM |.

Here we take M =

(
a b
0 d

)
. This has determinant n, so Z(ae1 + be2) ⊕ Zde2 indeed has

index n in Λ. We will define an inverse. Let Λ′ ≤
n
Λ. Consider the short exact sequence

0→ (Λ′ + Ze2)/Λ′ → Λ/Λ′ → Λ/(Λ′ + Ze2)→ 0.

Let a = |Λ/(Λ′ + Ze2)|, d = |Ze2/(Λ ∩ Ze2)|, then ad = |Λ/Λ′| = n. We have d = inf{k ≥
1 : ke2 ∈ Λ′}, a = inf{k ≥ 1 | ∃b ∈ Z : ke1 + be2 ∈ Λ′}. If b, b′ ∈ Z are such that
ae1 + be2 ∈ Λ′, ae2 + b′e2 ∈ Λ′, then (b − b′)e2 ∈ Λ′, so b ≡ b′ (mod d). We see that
there exists a unique b ∈ Z such that ae1 + be2 ∈ Λ′, de2 ∈ Λ′ and 0 ≤ b < d. Then
Z(ae1 + be2) ⊕ Zde2 ≤ Λ′ ≤ Λ and both Z(ae1 + be2) ⊕ Zde2,Λ′ have index n in Λ, so
Z(ae1 + be2)⊕ Zde2 = Λ′.

Proposition 3.7. Let f ∈Wk. Then

(Tnf)(τ) = nk−1
∑

a,b,d∈Z≥0

ad=n
0≤b<d

d−kf

(
aτ + b

d

)
=
∑
a,b,d

f |k
[(

a b
0 d

)]
(τ).

Proof. Let F ∈ Vk correspond to f . Then

(Tnf)(τ) = TnF (Λτ ) = nk−1
∑

Λ′≤
n
Λτ

F (Λ′)

= nk−1
∑
a,b,d

F (Z(aτ + b)⊕ Zd)
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= nk−1
∑
a,b,d

d−kF (Z
(
aτ + b

d

)
⊕ Z)

= nk−1
∑
a,b,d

d−kf

(
aτ + b

d

)

=
∑
a,b,d

f |k
[(

a b
0 d

)]
(τ)

Corollary 3.8. If f ∈Wk is holomorphic in h, then Tkf is also holomorphic.

Proposition 3.9. Let f ∈Mk(Γ(1)) have q-expansion
∑

m≥0 amqm. Then Tnf ∈Mk(Γ(1))

has q-expansion
∑

m≥0 cmqm where cm =
∑

l|(m,n)
a∈N

lk−1amn/l2

Proof.

Tnf(τ) = nk−1
∑
a,b,d

d−kf

(
aτ + b

d

)
= nk−1

∑
a,b,d

d−k
∑
m≥0

ame2πim(aτ+b)/d

= nk−1
∑
a,d∈N
ad=n

d−k
∑
m≥0

ame2πimaτ/d
∑

0≤b<d

e2πimb/d

Let m ≥ 0, d ∈ N. Factor m = gm1, d = gd1 where g = (m, d). Then e2πim/d = e2πim1/d1

is a primitive d1-th root of unity if d1 > 1. Then

∑
0≤b<d

e2πibm1/d1 = g
∑

0≤b<d1

e2πibm1/d1 =

{
0 if d1 > 1,

d if d1 = 1.

We then get

Tnf(τ) = nk−1
∑
a,d∈N
ad=n

d1−k
∑
m≥0

admqam =
∑
a,d∈N
ad=n

(n/d)k−1
∑
m≥0

admqam

=
∑
a∈N
a|n

ak−1
∑
m≥0

amn/aq
am

=
∑
m≥0

cmqm.

By uniqueness of Laurent expansion of T̃nf , this is the Laurent expansion of T̃nf . It has
no negative powers of q, so Tnf is holomorphic at ∞ and Tnf ∈Mk(Γ(1)).

If l ∈ Z≥0, the coefficient of ql is
∑

a∈N
a|n,a|l

ak−1aln/a2 .
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Corollary 3.10.

a1(Tnf) = an(f)

a0(Tnf) = σk−1(n)a0(f)

In particular each Tn preserves Sk(Γ(1)) ≤Mk(Γ(1)).

Next goal is to understand the spectral decomposition of Mk(Γ(1)) under the action of
the Hecke operators.

Example. M4(Γ(1)) is 1-dimensional, so E4 is an eigenvector for Tn for all n ∈ N. Same
for S12(Γ(1)) and ∆(τ) = q

∏∞
n=1(1− qn)24 =

∑∞
n=1 τ(n)q

n.

What are the eigenvalues? If Tn∆ = αn∆, then τ(n) = a1(Tn∆) = αna1(∆) = αn. So
Tn∆ = τ(n)∆.

So the properties of Hecke operators prove a conjecture by Ramanujan: For p prime
τ(pn)τ(p) = τ(pn+1) + p11τ(pn−1) and if (m,n) = 1, then τ(mn) = τ(m)τ(n).

If f ∈ Mk(Γ(1)) is an eigenvector for every Tn (n ∈ N), we say f is an eigenform. If
further a1(f) = 1, then we say that f is a normalized eigenform.

Lemma 3.11. Let k > 0. Let f be an eigenform in Mk(Γ(1)). Then:

(1) There is a non-zero scalar multiple of f which is normalized.

(2) If f is normalized, then Tn(f) = an(f) · f for all n ∈ N, so the Hecke eigenvalues are
the q-expansion coefficients.

Proof. To prove (1), we need to show a1(f) ̸= 0. Suppose a1(f) = 0, and let αn ∈ C be
the eigenvalue of Tn on f . Then Tnf = αn, so an(f) = a1(Tnf) = αna1(f) = 0 for all
n ≥ 1, so f = a0(f), i.e. f is constant, contradicting k > 0.

To prove (2), we note that that again an(f) = αna1(f) = αn.

Proposition 3.12. Let k ≥ 4 even. Then Gk(τ) is an eigenform, on which Tn has
eigenvalue σk−1(n).

Proof. Tn is a polynomial in operators Tp, for prime numbers p. So, to show Gk is
an eigenvector for Tn, it is enough to show it is an eigenvector for Tp, p | n. Recall
Gk is associated to Gk(Λ) =

∑
λ∈Λ−0 λ

−k. Hence TpGk(Λ) = pk−1
∑

Λ′≤
p
ΛGk(Λ

′) =

pk−1
∑

Λ′≤
p
Λ

∑
λ∈Λ−0 λ

−k = pk−1
∑

λ∈Λ−0 a(Λ, λ)λ
−k where a(Λ, λ) = #{Λ′ ≤

p
Λ | λ ∈ Λ′}.

Case 1: λ ∈ pΛ. We know that if Λ′ ≤
p

Λ, then pΛ ≤ Λ′, so λ ∈ Λ′. In this case,

#{Λ′ ≤
p
Λ | λ ∈ Λ′} = #{Λ′ ≤

p
Λ} = p+ 1.
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Case 2: λ /∈ pΛ. Then the image of λ in Λ/pΛ has order p and Zλ + pΛ has index p in
Λ. If Λ′ ≤

p
Λ and λ ∈ Λ′, then Zλ+ pΛ ≤ Λ′ ≤

p
Λ and we get Λ′ = Zλ+ pΛ. In this case

#{Λ′ ≤
p
Λ | λ ∈ Λ′} = #{Zλ+ pΛ} = 1. Hence

pk−1
∑

λ∈Λ−0

a(Λ, λ)λ−k = pk−1
( ∑

λ∈pΛ−0

(p+ 1)λ−k +
∑

λ∈Λ\pΛ

λ−k
)

= pk−1
( ∑

λ∈pΛ−0

pλ−k +
∑

λ∈Λ−0

λ−k
)

= pk
∑

λ∈Λ−0

(pλ)−k + pk−1
∑

λ∈Λ−0

λ−k

= (1 + pk−1)
∑

λ∈Λ−0

λ−k = σk−1(p)Gk(Λ).

Hence Gk is an eigenvector for Tp, hence for Tn for all n ∈ N. If αn is the eigenvalue
of Tn, then TnGk = αnGk, so σk−1(n)a0(Gk) = a0(TnGk) = a0(αnGk) = αna0(Gk), so
αn = σk−1(n) as a0(Gk) ̸= 0.

We have shown that the decomposition Mk(Γ(1)) = CGk ⊕ Sk(Γ(1)) is invariant under
the Tn. In determining the spectrum of Tn, we can therefore restrict to Sk(Γ(1)).

Remark: It is usually not the case that a product of eigenforms is an eigenforms.

Remark: The q-expansion of Gk is 2ζ(k) + 2(2πi)k

(k−1)!

∑
m≥1 σk−1(m)qm. We defined Ek =

1
2ζ(k)Gk, so that a0(Ek) = 1. The normalized eigenform Fk associated to Gk is

a1(Gk)
−1Gk =

ζ(k)(k − 1)!

(2πi)k
+
∑
m≥1

σk−1(m)qm =
ζ(1− k)

2
+
∑
m≥1

σk−1(m)qm

=
−Bk

2k
+
∑
m≥1

σk−1(m)qm.

Proposition 3.13. The eigenvalues of Tn on Sk(Γ(1)) are algebraic integers, which lie
in a number field of finite degree over Q (which depends on k but not on n)

Proof. We will show that det(X − Tn|Sk(Γ(1))) ∈ Z[X]. Recall: We can find a basis
f1, . . . , fN of Sk(Γ(1)) such that

(1) ai(fj) = δij for 1 ≤ i, j ≤ N .

(2) For all j = 1, . . . , N and for all n ∈ N, an(fj) ∈ Z.

If f ∈ Sk(Γ(1)), then f =
∑N

j=1 aj(f)fj . Let us compute the matrix of Tn on Sk(Γ(1))

with respect to this basis. The i, j-entry equals ai(Tn(fj)) =
∑

b|(n,i)
b≥1

bk−1ani/b2(fj) ∈ Z.
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So det(X − Tn|Sk(Γ(1))) is the characteristic polynomial of a matrix of coefficients in Z, so
its root (i.e. the eigenvalues of Tn are algebraic integers.

Now let f be a normalized eigenform. Then the corresponding eigenvalue for Tn is an(f).
Writing f =

∑N
j=1 aj(f)fj we see that an ∈ Q(a1, . . . , aN ).

This proof gives an algorithm to compute the action of Tn on Sk(Γ(1)).

Example. k = 24, so dimC S24(Γ(1)) = 2. Let us compute the eigenvalues of T2.

First write down basis f1, f2 as above. We have f1 = ∆E2
6 +1032∆2 = q+0 · q2+195660 ·

q3 + 12080128q4 + . . . , f2 = ∆2 = 0 + q2 − 48q3 + 1080q4 + . . . . Now let us write down

[T2] =

( ∑
b|1

∑
b|1∑

b|(2,2)
∑

b|(2,2)

)
=

(
a2(f1) a2(f2)

a4(f1) + 223a1(f1) a4(f2) + 223a1(f2)

)
=

(
0 1

20468736 1080

)
Its eigenvalues are 12 · (45±

√
144169). All an(f) for f ∈ S24(Γ(1)) normalized eigenform

lie in Q(
√
144169).

Definition. Let f : h→ C be a continuous function, which is invariant under the weight
0-action of Γ(1). Then we define∫

Γ(1)\h
f(τ)

dxdy

y2
:=

∫
F
f(τ)

dxdy

y2
,

provided this converges absolutely.

Idea: dxdy
y2

is invariant under the action of GL2(R)+ (i.e. ∀ g, g∗(dxdy
y2

) = dxdy
y2

). Would

like to say: It descends to the manifold Γ(1) \ h, so
∫
Γ(1)\h f

dxdy
y2

can be defined using
integration on manifold.

Then it would be the case that∫
Γ(1)\h

f(τ)
dxdy

y2
=

∫
F ′

f(τ)
dxdy

y2
=

∫
F
f(τ)

dxdy

y2
.

Lemma 3.14. Let f, g ∈ Sk(Γ(1)). Then f(τ)g(τ) Im(τ)k is invariant under the weight
0 action of Γ(1) and

∫
Γ(1)\h f(τ)g(τ) Im(τ)k dxdy

y2
is absolutely convergent.

Proof. If γ ∈ Γ(1), then f(γτ)g(γτ) Im(γτ)k = f(τ)j(γ, τ)kg(τ)j(γ, τ)
k
Im(τ)k|j(γ, τ)|−2k =

f(τ)g(τ) Im(τ)k.

Recall f(τ) = f̃(e2πiτ ), with f̃ : D(0, 1) → C holomorphic which vanishes at q = 0. We
can write f̃(q) = qf0(q), with f0(q) : D(0, 1) → C holomorphic. So for all δ < 1 there
exists Cf,δ > 0 such that |f̃(q)| ≤ |q|Cf,δ, e.g. Cf,δ = sup

q∈D(0,δ)
|f0(q)|. If τ = x + iy,
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then |q| = e−2πy. So there exists Cf > 0 such that for all τ ∈ h with Im τ ≥ 1
2 we have

|f(τ)| ≤ Cfe
−2πy, y = Im τ . Then∫
F
|f(τ)g(τ) Im(τ)k|dxdy

y2
≤
∫ 1/2

x=−1/2

∫
y=

√
3

2

Cfe
−2πyCge

−2piyyk
dxdy

y2

=

∫ ∞

y=
√
3/2

CfCge
−4πyyk−2dy <∞

Definition. The Petersson inner product on Sk(Γ(1)) is defined by

⟨f, g⟩ =
∫
F
f(τ)g(τ) Im(τ)k

dxdy

y2

Theorem 3.15. For all n ∈ N, Tn is self-adjoint w.r.t. the Petersson inner product, i.e.
for all f, g ∈ Sk(Γ(1)) we have ⟨Tnf, g⟩ = ⟨f, Tng⟩.

Theorem 3.16. For all k > 0, Sk(Γ(1)) has a basis f1, . . . , fN of normalized eigenforms,
unique up to re-ordering. These have the following properties:

(1) For all n ∈ N, Tn(fi) = an(fi)fi.

(2) There exists a number field Kfi ≤ R such that for all n ∈ N, an(fi) ∈ OKfi
.

Proof. Recall if V is a finite dimensional C-vector space with inner product ⟨, ⟩ and T :
V → V a self-adjoint linear map, then T is diagonalizable and all of its eigenvalues are
real. Moreover, if (Ti)i∈I is a family of commuting self-adjoint linear maps, then they
are simultaneously diagonalizable. The previous theorem says we are in this situation.
So we can find a basis f1, . . . , fN of Sk(Γ(1)), consisting of eigenforms. After rescaling
we may assume that they are all normalized. Properties (1),(2) follow from what we
have done already. If f1, f2 are both normalized eigenforms in the same eigenspace, then
an(f1) = an(f2), so f1 = f2. Thus the basis is uniquely determined.

The sequences (a1(f), a2(f), a3(f), . . . ) for normalized eigenforms f have great arithmetic
significance.

Another conjecture of Ramanujan:

Lemma 3.17. If p is prime, then
∑∞

n=0 τ(p
n)Xn = (1− τ(p)X + p11X2)−1.

Proof.

(1− τ(p)X + p11X2)

∞∑
n=0

τ(pn)Xn = 1 +
∑
n≥2

(τ(pn)− τ(pn−1)τ(p) + p11τ(pn−2))Xn = 0

by the proven recurrence relations for τ .
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We factor 1 − τ(p)X + p11X2 = (1 − αpX)(1 − βpX) with αp, βp ∈ C. By the quadratic
formula, there are two possibilities:

(1) τ(p)2 − 4p11 ≤ 0. In this case, αp, βp are conjugate complex numbers with |αp| =
|βp| = p11/2.

(2) τ(p)2 − 4p11 > 0. In this case, αp, βp are distinct real numbers.

Ramanujan’s conjecture: (1) always happens.

Ramanujan-Petersson conjecture: If f ∈ Sk(Γ(1)) is a normalized eigenform, then
for all primes p we have |ap(f)| ≤ 2p(k−1)/2. (Proved by Deligne 1973)

Many applications of modular forms use generalizations of Ramanujan’s conjecture. Ra-
manujan proved the formula

r24(p) =
16

691
(1 + p11) +

33152

691
τ(p)

for p odd primes.

Ramanujan’s conjecture says here that r24(p) =
16
691p

11 +O(p11/2)

Proof of Theorem 3.15. We know Tn is a polynomial with integer coefficients in Tp for
p | n, p prime. Thus it suffices to show that ⟨Tpf, g⟩ = ⟨f, Tpg⟩. Recall

⟨Tpf, g⟩ =
∫
Γ(1)\h

Tpf(τ)g(τ) Im(τ)k
dxdy

y2

We rewrite this in terms of lattices. If f, g ∈ Sk(Γ(1)), then f(τ)g(τ) Im(τ)k ∈ W0. This
function should correspond to an element of V0. Claim: If f ↔ F ∈ Vk, g ↔ G ∈ Vk, then
fg Im(τ)k ↔ F (Λ)G(Λ) covol(Λ)k ∈ V0. Check F (Λ)G(Λ) covol(Λ)k is of weight 0:

F (zΛ)G(zΛ) covol(zΛ)k = z−kF (Λ)z−kG(Λ)|z|2k covol(Λ)k = F (Λ)G(Λ) covol(Λ)k

Now compute F (Λτ )G(Λτ ) covol(Λτ )
k. We have covol Λτ = det

(
1 x
0 y

)
= y = Im(τ), so

f(τ)g(τ) Im(τ)k.

If A : C× \ L → C is a function corresponding to a continuous function a ∈ W0, let us
define ∫

C×\L
A(Λ)dΛ =

∫
Γ(1)\h

a(τ)
dxdy

y2
.

Hence

⟨Tpf, g⟩ =
∫
C×\L

(TpF )(Λ)G(Λ) covol(Λ)kdΛ

= pk−1

∫
C×\L

∑
Λ′≤

p
Λ

F (Λ′)G(Λ) covol(Λ)kdΛ
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Let us write Lp = {(Λ′,Λ) | Λ′ ≤
p
Λ,Λ ∈ L}. There is a bijective map

Γ0(p) \ h −→ C× \ Lp,
τ 7−→ (Zpτ ⊕ Z,Zτ ⊕ Z)

where Γ0(p) = {
(
a b
c d

)
∈ Γ(1) | c ≡ 0 (mod p)}.

If A : C×\Lp → C is a function which corresponds to a continuous function a : Γ0(p)\h→
C, then we define

∫
C×\Lp

A(Λ′,Λ)d(Λ′,Λ) =
∫
Γ0(p)\h a(τ)

dxdy
y2

.

Then

pk−1

∫
C×\L

∑
Λ′≤

p
Λ

F (Λ′)G(Λ) covol(Λ)kdΛ = pk−1

∫
C×\Lp

F (Λ′)G(Λ) covol(Λ)kd(Λ′,Λ)

And similarly

⟨f, Tpg⟩ = pk−1

∫
C×\Lp

F (Λ)G(Λ′) covol(Λ)kd(Λ′,Λ)

To transform one integral into the other, we make a change of variables. If Λ′ ≤
p
Λ, then

pΛ ≤
p
Λ′. So we can define a map

ι : Lp −→ Lp
(Λ′,Λ) 7→ (pΛ,Λ′)

Note that ι2(Λ′,Λ) = (pΛ′, pΛ), so ι induces a map C× \ Lp → C× \ Lp whose square is
the identity.

If A ↔ a is continous, then
∫
C×\Lp

Ad(Λ′,Λ) =
∫
C×\Lp

(A ◦ ι)d(Λ′,Λ). Why? Under the

identification C× \ Lp ∼= Γ0(p) \ h, ι corresponds to the action of ηp =

(
0 −1
p 0

)
. We are

using that η∗p((dxdy)/y
2) = (dxdy)/y2.

Making the change of variables, we have

⟨Tpf, g⟩ = pk−1

∫
C×\Lp

F (pΛ)G(Λ′) covol(Λ′)kd(Λ′,Λ)

= pk−1

∫
C×\Lp

F (Λ)G(Λ′) covol(Λ)kd(Λ′,Λ)

= ⟨f, Tpg⟩

(Note covol(Λ′) = p covol(Λ) and F (pΛ) = p−kF (Λ).)
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Proposition 3.18. Let Γ∞ = {±
(
1 a
0 1

)
| a ∈ Z} ≤ Γ(1). Let f : h→ C be a continuous

function which is invariant under the action of Γ∞, i.e. such that f(τ) = f(τ+1). Suppose

that for all τ ∈ h:
∑

γ∈Γ∞\Γ(1) |f(γτ)| <∞ and that
∫ 1

2

x=− 1
2

∫∞
y=0 |f(x+iy)|dxdy

y2
<∞. Then∑

γ∈Γ∞\Γ(1) f(γτ) is measurable, invariant under (weight 0) action of Γ(1), and satisfies

∫
Γ(1)\h

∑
γ∈Γ∞\Γ(1)

f(γτ)
dxdy

y2
=

∫ 1
2

x=− 1
2

∫ ∞

y=0
f(x+ iy)

dxdy

y2

Proof. We would like to show
∫
Γ(1)\h

∑
γ∈Γ∞\Γ(1) f(γτ)

dxdy
y2

=
∫
Γ∞\h f(τ)

dxdy
y2

(“Unfold-

ing”).

We will show the proposition using our definition
∫
Γ(1)\h =

∫
F . Fubini’s theorem says that

if
∑

γ∈Γ∞\Γ(1)
∫
F |f(γτ)|

dxdy
y2

< ∞, then
∑

γ∈Γ∞\Γ(1) f(γτ) is measurable and there is an
equality ∑

γ∈Γ∞\Γ(1)

∫
F
f(γτ)

dxdy

y2
=

∫
F

∑
γ∈Γ∞\Γ(1)

f(γτ)
dxdy

y2

So we need to show why
∑

γ∈Γ∞\Γ(1)
∫
F f(γτ)dxdy

y2
=
∫ 1

2

x=− 1
2

∫∞
y=0 f(x+ iy)dxdy

y2
. Note that∑

γ∈Γ∞\Γ(1)
∫
F f(γτ)dxdy

y2
=
∑

i∈I
∫
γiF◦ f(τ)

dxdy
y2

where (γi)i∈I is a set of representatives

for Γ∞ \ Γ(1). Let S = {τ ∈ h | Re τ ∈ (−1
2 ,

1
2)}. We know that (γF◦) ∩ {τ ∈ h | Re τ ∈

1
2 + Z} = ∅. Consequence: There exists a unique δ ∈ Γ∞/{±1} such that δγF◦ ⊆ S.
Equivalently, each coset Γ∞γ/{±1} contains a unique element γi such that γiF◦ ⊆ S.
Let us take (γi)i∈I to be this choice of set of representatives for Γ∞ \ Γ(1) in Γ(1)/{±1}.
We have h =

⊔
γ∈Γ(1)/{±1} γF◦ ∪W where W is a closed set of measure 0. Hence S =⊔

γ∈Γ(1)/{±1}(S ∩ γF◦) ∪ (S ∩W ) =
⊔

i∈I γiF◦ ∪ (S ∩W ). Hence

∑
i∈I

∫
γF◦

f(τ)
dxdy

y2
=

∫
S
f(τ)

dxdy

y2
=

∫ 1
2

x=− 1
2

∫ ∞

y=0
f(x+ iy)

dxdy

y2
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4 L-Functions

Motivating example of an L-function: ζ(s) =
∑∞

n=1 n
−s. It is absolutely convergent in

{Re s > 1} and holomorphic there.

Properties of ζ(s) :

(1) Meromorphic continuation: ζ(s) has a meromorphic continuation to C with a simple
pole at s = 1 and no other poles.

(2) Functional equation: If ξ(s) = π−s/2Γ(s/2)ζ(s), then ξ(s) = ξ(1− s).

(3) Euler product: ζ(s) =
∏

p(1− p−s)−1.

In general, an L-function is a Dirichlet series
∑∞

n=1 ann
−s with analogous properties.

Modular forms give rise to L-functions:

Definition. If f =
∑∞

n=0 an(f)q
n ∈ Mk(Γ(1)), then its associated Dirichlet series is

L(f, s) =
∑∞

n=1 an(f)n
−s.

Example. Let Fk = −Bk
2k +

∑∞
n=1 σk−1(n)q

n be the normalized eigenform associated to
Gk. Then

L(Fk, s) =
∞∑
n=1

σk−1(n)n
−s =

∞∑
n=1
m|n

mk−1n−s =
∞∑
a=1

∞∑
d=1

dk−1(ad)−s = ζ(s)ζ(s+ 1− k).

We now consider those L(f, s) associated to f ∈ Sk(Γ(1)).

Proposition 4.1. Let f ∈ Sk(Γ(1)). Then L(f, s) converges absolutely in {s ∈ C | Re s >
1 + k

2} and defines a holomorphic function there.

Proof. Notation s = σ + it. Then |n−s| = n−σ. By Exercise 4 on Sheet 2 there is a
constant Cf > 0 such that |an(f)| ≤ Cfn

k/2. In the region {Re s > 1 + k
2 + δ} we have

∞∑
n=1

|an(f)n−s| ≤
∞∑
n=1

|an(f)|n−σ ≤ Cf

∞∑
n=1

n−(σ−k/2) ≤ Cf

∞∑
n=1

n−(1+δ).

Remark: If we assume the Ramanujan-Petersson conjecture, then we get absolute conver-
gence in the region {σ > 1+k

2 }.
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Theorem 4.2. Let f ∈ Sk(Γ(1)). Then L(f, s) has

(1) Analytic continuation: L(f, s) admits a holomorphic extension to C.

(2) Functional equation: Let Λ(f, s) = (2π)−sΓ(s)L(f, s). Then Λ(f, s) admits an analytic
continuation to C satisfying Λ(f, k − s) = ikΛ(f, s).

Before proving the theorem, we consider Γ(s) as a warmup. By definition,

Γ(s) =

∫ ∞

y=0
e−yys

dy

y

This integral is absolutely convergent when Re(s) > 0. In this region, it is a continuous
and holomorphic.

Proposition 4.3.

(1) The integral defining Γ(s) converges absolutely in {σ > 0} and defines a holomorphic
function there.

(2) Γ(s) admits a meromorphic continuation to C with simple poles at the non-positive
integers and no other poles.

(3) Γ(s) is non-vanishing on C.

Proof.

(1) Absolute convergence is easy. To show that Γ(s) is holomorphic, consider for N > 1

the function ΓN (s) =
∫ N
y=1/N e−yys dyy . Claim: ΓN is continuous and holomorphic.

This follows easily from the usual theorems on interchanging limit and integral (e.g.
dominated convergence theorem). Then let N →∞.

(2) Integration by parts gives sΓ(s) = Γ(s+1). This can be used to extend the definition
of Γ(s) to be the whole of C.

(3) omitted.

Proof of Theorem 4.2. Define F (s) =
∫∞
y=0 f(iy)y

s dy
y . Claim: This converges absolutely

in C and defines a holomorphic function.

Since f is cuspidal, there exists a constant Cf > 0 such that for y ≥ 1, |f(iy)| ≤ Cfe
−2πy.

Also, f(−1/τ) = f(τ)τk, so f(i/τ) = f(iy)(iy)k. So∫ ∞

y=0
f(iy)ys

dy

y
=

∫ 1

y=0
f(iy)ys

dy

y
+

∫ ∞

y=1
f(iy)ys

dy

y

=

∫ ∞

y=1
f(i/y)y−sdy

y
+

∫ ∞

y=1
f(iy)ys

dy

y
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=

∫ ∞

y=1
f(iy)ikyk−sdy

y
+

∫ ∞

y=1
f(iy)ys

dy

y

Since |f(iy)| ≤ Cfe
−2πy, this clearly converges absolutely everywhere. And it is holomor-

phic in s as the integrand is.

Next we compute

F (s) =

∫ ∞

0

∞∑
n=1

ane
−2πnyys

dy

y
=

∞∑
n=1

∫ ∞

0
e−2πnyys

dy

y

where the interchange of the sum and the integral is justified provided that

∞∑
n=1

|an|
∫ ∞

0
eπnyyσ

dy

y
<∞

This expression is
∑∞

n=1 |an|n−σ(2π)−σΓ(σ). This is finite iff L(f, s) is absolutely conver-
gent, e.g. when σ > 1 + k

2 . So when σ > 1 + k
2 , we get

F (s) =
∞∑
n=1

an

∫ ∞

y=0
e−2πnyys

dy

y
= (2π)−sΓ(s)L(f, s) = Λ(f, s)

Thus Λ(f, s) does have a holomorphic continuation to C. Hence so does L(f, s) =
(2π)sΓ(s)−1Λ(f, s) as 1/Γ(s) is holomorphic in C. The functional equation follows from
the expression:

Λ(f, s) =

∫ ∞

1
f(iy)[ikyk−s + ys]

dy

y

Λ(f, k − s) =

∫ ∞

1
f(iy)[ikys + yk−s]

dy

y

Theorem 4.4. Let f ∈ Sk(Γ(1)) be a normalized eigenform. Then L(f, s) has an Euler
product

L(f, s) =
∞∑
n=1

an(f)n
−s =

∏
p

(1− ap(f)p
−s + pk−1−2s)−1.

Proof. Let us argue formally at first. We know that if n ∈ N, n =
∏

paii , then an(f) =∏
apaii

(f). Thus

L(f, s) =
∏
p

( ∞∑
i=0

api(f)p
−is
)

We also know
∑∞

i=0 api(f)p
−is = (1 − ap(f)p

−1 + pk−1−2s)−1 (we proved it for f = ∆).
By the example sheet this relation also holds non-formally as functions (when L(f, s) is
absolutely convergent).
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Applications of L-functions.

Theorem 4.5 (Wiener-Ikehara Tauberian Theorem). Suppose (an)n≥1 is a sequence of
complex numbers such that f(s) =

∑∞
n=1 ann

−s is absolutely convergent in {σ > 1}.
Suppose further that f admits a meromorphic continuation to an open neighborhood of
{σ ≥ 1} which is holomorphic on the line {σ = 1} with the possible exception of a simple
pole of residue α at s = 1. Then ∑

1≤n≤x

an = αx+ o(x).

Proof. Omitted.

Proposition 4.6. Suppose that ζ(s) =
∑∞

n=1 n
−s has a meromorphic continuation to C,

holomorphic and non-vanishing on {σ = 1}, except for a simple pole at s = 1. Then the
Prime Number Theorem holds: π(x) :=

∑
p≤x 1 = x

log x + o( x
log x).

Proof. We can write down a branch of log ζ(s) in {σ > 1} using − log(1− x) =
∑

k≥1
xk

k
where |x| < 1. Thus

log ζ(s) =
∑
p

− log(1− p−s)

=
∑
p

∞∑
k=1

p−ks

k

Hence the logarithmic derivative of ζ(s) is

ζ ′(s)

ζ(s)
=
∑
p

∞∑
k=1

−k log pp
−ks

k

= −
∑
p

log(p)p−s −
∑
p

∞∑
k=2

log(p)p−ks

Since ζ is meromorphic in C, ζ ′/ζ is meromorphic in C. Since ζ is non-vanishing on
{σ = 1, s ̸= 1}, ζ ′/ζ is holomorphic on {σ = 1, s ̸= 1}. Since ζ has a simple pole at
s = 1, ζ ′/ζ has a simple pole at s = 1 of residue −1.

∑
p

∑
k≥2 log(p)p

−ks is absolutely

convergent in {σ > 1
2}. So

∑
p log(p)p

−s has a meromorphic continuation to {σ > 1
2},

holomorphic on {σ = 1, s ̸= 1} with a simple pole of residue 1 at s = 1. Therefore∑
p≤x

log(p) ∼ x

To show this implies the PNT, we use:
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Lemma 4.7. Let (an)n≥0 be a sequence of complex numbers, 0 < x < y. Let f : [x, y]→ C
be continuously differentiable, A(t) =

∑
1≤n≤t an. Then∑

x<n≤y

anf(n) = A(y)f(y)−A(x)f(x)−
∫ y

x
A(t)f ′(t)dt

Here we choose an =

{
log p n = p prime,

0 otherwise.
, so A(t) =

∑
p≤t log p = t + o(t), and f(t) =

1/ log(t). Then

π(y) = 1 +
∑

e<n≤y

anf(n) = 1 +A(y)/ log(y)−A(e)−
∫ y

e
A(t)

1

t
· −1
(log t)2

dt

= y/ log y + o(y/ log y) +

∫ y

e
A(t)/t

1

(log t)2
dt

To finish the proof, we need to show that∫ y

e
A(t)/t

1

(log t)2
dt = o(y/ log y)

Since A(t) = t + o(t), A(t) = O(t), so A(t)/t is bounded. So it is enough to show that∫ y
e

1
(log t)2

dt = o(y/ log y). But∫ y

e

1

(log t)2
dt =

∫ √
y

e
+

∫ y

√
y

1

(log t)2
dt ≤ √y + y/(log

√
y)2 =

√
y +

4y

(log y)2
= o(y/ log y)

Hence we are done.

We will establish the necessary properties of ζ later in the course, using modular forms.

There is a generalization:

Proposition 4.8. Fix n ≥ 1, suppose given for any prime number p a matrix Φp ∈
GLn(C) whose eigenvalues have absolute value 1. Define

L({Φp}, s) =
∏
p

det(1− p−sΦp)
−1.

Then L({Φp}, s) converges absolutely in {σ > 1}. Suppose further that L({Φp}, s) admits
a meromorphic continuation to an open neighborhood of {σ = 1}, which is holomorphic
and non-vanishing on {σ = 1}, with the possible exception of a pole of order δ at s = 1.
Then ∑

1≤p≤x

tr Φp = δx/ log x+ o(x/ log x)

Proof. Similar to the proof of the PNT, see Example Sheet 3.
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Example. Let N ∈ N, n = 1. Take a homomorphism χ : (Z/NZ)× → C×. Then
L({χ(p mod N)}p∤N , s) =

∏
p∤N (1 − χ(p mod N)p−s)−1 is the Dirichlet L-function of χ.

If one can show that for any χ, L(χ, s) is non-vanishing on {σ = 1}, we get Dirichlet’s
theorem for natural density.

Now: Applications to modular forms.

Let f ∈ Sk(Γ(1)) be a normalized eigenform. For each prime p, 1 − ap(f)X + pk−1X2 =

(1 − αpX)(1 − βpX). Let Φp =

(
αp 0
0 βp

)
. Then det(1 − Φpx) = (1 − αpx)(1 − βpx) =

1− ap(f)x+ pk−1x2. In particular, L({Φp}, s) =
∏

p(1− ap(f)p
−s + pk−1−2s)−1 = L(f, s).

Under the Ramanujan-Peteresson conjecture, then |αp| = |βp| = p(k−1)/2, so p−(k−1)/2Φp

has eigenvalues of absolute value 1 and tr p−(k−1)/2Φp = p−(k−1)/2(αp + βp) =
ap(f)

p(k−1)/2 .

Then L({p−(k−1)/2Φp}, s) =
∏

p det(1− p−(s+(k−1)/2)Φp)
−1 = L(f, s+ (k − 1)/2).

Corollary 4.9. Assume the RP conjecture, and that L(f, s + k−1
2 ) ̸= 0 when Re(s) = 1.

Then

lim
x→∞

1

π(x)

∑
p<x

ap(f)/p
(k−1)/2 = 0.

The non-vanishing of L(f, s+ k−1
2 ) ̸= 0 when Re(s) = 1 is true, but proving it is too hard

for this course.

So the average of ap(f)/p
(k−1)/2 is 0.

Example: For p an odd prime, r24(p) =
16
691(1 + p11) + 33152

691 τ(p). We interpreted RPC as
saying that

|r24(p)−
16

691
(1 + p11)| = O(p11/2)

The corollary is saying that the average of

r24(p)− 16
691(1 + p11)

p11/2

is 0. We can go much further than this by considering a family of L-functions associated
to the normalized eigenform f .

These are the symmetric power L-functions associated to the representation Symn : GL2 →
GLn+1. We let

L(Symn, f, s) = L({SymnΦp}, s) =
∏
p

n∏
i=0

(1− αi
pβ

n−i
p p−s)−1.

If n = 1, then L(Symn, f, s) = L(f, s), otherwise this is something genuinely new.

Proposition 4.10.
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(1) (Langlands ∼1965) If for all n ≥ 1, L(Symn, f, s) admits an analytic continuation to
C, then the RP conjecture holds for f .

(2) (Serre ∼1965) If for all n ≥ 1, L(Symn, f, s) admits an analytic continuation to C,
non-vanishing on the line Re(s) = 1+ n(k−1)

2 , then the Sato-Tate conjecture holds for
f .

Sato-Tate says: The values ap(f)/(2p
(k−1)/2) ∈ [−1, 1] are equidistributed with respect

to Sato-Tate density. This density is 2
π

√
1− t2dt. Equidistributed means that for any

continuous function g : [−1, 1] → C we have limx→∞
1

π(x)

∑
p<x g(ap(f)/(2p

(k−1)/2)) =
2
π

∫ 1
−1 g(t)

√
1− t2dt.

RP conjecture (1975), Sato-Tate conjecture (∼ 2010) and continuation of L(Symn f, s)

and non-vanishing on Re(s) = 1 + n(k−1)
2 (∼ 2019) have all been proved.
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5 Modular Forms on Congruence Subgroups

Definition. If N ∈ N, define Γ(N) = ker (Γ(1)→ SL2(Z/NZ)).

A congruence subgroup Γ ≤ Γ(1) is any subgroup which contains Γ(N) for some N ∈ N.

Example. Γ(1),Γ(N). We also introduce the subgroups

Γ0(N) :=

{(
a b
c d

)
∈ Γ(1) | c ≡ 0 mod N

}
,

Γ1(N) :=

{(
a b
c d

)
∈ Γ(1) | a ≡ d ≡ 1 mod N, c ≡ 0 mod N

}
.

Definition. Let k ∈ Z, Γ ≤ Γ(1) a congruence subgroup. A weakly modular function of
weight k, level Γ is a meromorphic function f : h→ C such that for all γ ∈ Γ, f |k[γ] = f .

Example: There exists a fundamental set for Γ0(2) whose closure is F0(2) = {τ ∈ h |
Re(τ) ∈ [0, 1], |τ − 1

2 | ≥
1
2}.

Definition. A cusp of a congruence subgroup Γ is a Γ-orbit on the set P1(Q) = Q∪{∞} ⊆
C ∪ {∞}.

Lemma 5.1. Γ(1) acts transitively on P1(Q), so Γ(1) has a unique cusp, and a congruence
subgroup Γ ≤ Γ(1) has only finitely many cusps.

Proof. To show Γ(1) acts transitively, it is enough to show that for all a/c ∈ Q with
(a, c) = 1 there exists γ ∈ Γ(1) such that γ∞ = a/c. Since a, c are coprime, there are

integers b, d such that ad− bc = 1. Then take γ =

(
a b
c d

)
.

If Γ ≤ Γ(1) is a congruence subgroup, then Γ \ Γ(1) is finite, as [Γ(1) : Γ] < ∞. There
is a Γ(1)-equivariant bijection Γ(1)/Γ∞

∼−→ P1(Q), γG∞ 7→ γ∞ as Γ∞ = StabΓ(1)(∞) =

{±
(
1 n
0 1

)
| n ∈ Z}. It follows that Γ-orbits on P1(Q) correspond to Γ-orbits on Γ(1)/Γ∞,

i.e. double cosets Γ \ Γ(1)/Γ∞. These in turn correspond to Γ∞-orbits on Γ \ Γ(1) which
is a finite set.

We first show how to impose conditions on a weakly modular function at ∞. First note

that Γ ∩ Γ∞ has finite index in Γ∞, as Γ(N) ≤ Γ for some N , so

(
1 N
0 1

)
∈ Γ ∩ Γ∞. We
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define the width of the cusp ∞ of Γ to be

h = min

(
h ∈ N

∣∣∣ (1 h
0 1

)
∈ Γ

)

Suppose f is a weakly modular function of weight k, level Γ. Then f(τ + h) = f(τ). Just
as in the case of Γ(1), we see that there is a meromorphic function f̃ : D∗(0, 1)→ C such
that for all τ ∈ h, f(τ) = f̃(e2πiτ/h). If f̃ extends to a meromorphic function in D(0, 1),
then f̃ will have a Laurent expansion

f̃(qh) =
∑
n∈Z

anq
n
h

valid in some D∗(0, δ), δ > 0, and an = 0 for all but finitely many negative n. Then f has
an expansion f(τ) =

∑
n∈Z anq

n
h where qh = e2πiτ/h, valid in some half-plane {Im τ > R}.

We call this the q-expansion of f at ∞. We say f is meromorphic at ∞ if f̃ indeed
extends to a meromorphic function in D(0, 1). Similarly, f is holomorphic at ∞ if it is
meromorphic at ∞ and an = 0 for n < 0. And f vanishes at ∞ if it is meromorphic at ∞
and an = 0 for n ≤ 0.

What about the other cusps? If Γ · z is a cusp, z ∈ P1(Q), we choose α ∈ Γ(1) such that
α∞ = z. Then α−1Γα ≤ Γ(1) is a congruence subgroup of Γ(1), and f |k[α] is a weakly
modular function of weight k, level α−1Γα. We call the width of the cusp Γ · z of Γ the
width of the cusp ∞ of α−1Γα. We say f is meromorphic/holomorphic/vanishing at Γ · z
if f |k[α] is meromorphic/holomorphic/vanishing at ∞.

Lemma 5.2. The width of Γ·z and the meromorphy etc. of f at Γ·z is indeed independent
of choices.

Proof. We have chosen z, a representative for the orbit Γ · z, and α ∈ Γ(1), an element
such that α∞ = z.

Independence of α: If β∞ = z, then β = αδ, δ ∈ Γ∞ = StabΓ(1)(∞) and β ∈ Γ(1). We
have β−1Γβ ∩ Γ∞ = δ−1α−1Γαδ ∩ Γ∞ = δ−1(α−1Γα ∩ δΓ∞δ−1)δ = α−1Γα ∩ Γ∞. So the
width is independent of α.

Suppose f |k[α] is meromorphic at ∞, f |k[α] =
∑

n∈Z ane
2πinτ/h. Let δ = ±

(
1 m
0 1

)
.

Then f |k[αδ] = f |k[α]|k[δ] = f |k[α](τ +m)(−1)k =
∑

n∈Z ane
2πinτ/he2πinm/h(−1)k. So we

see that f |k[α] is meromorphic etc. at ∞ if f |k[αδ] is. So everything is independent of the
choice of α.

Next: Independence of z. Suppose Γ · z = Γ · z′, i.e. that z′ = γz for some γ ∈ Γ. We need
to show that

min

(
h ∈ N

∣∣∣ (1 h
0 1

)
∈ α−1Γα

)
= min

(
h ∈ N

∣∣∣ (1 h
0 1

)
∈ α′−1Γα′

)
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where α, α′ ∈ Γ(1) with α∞ = z, α′∞ = z′. We can choose α′ = γα. Then α′−1Γα′∩Γ∞ =
(γα)−1Γγα ∩ Γ∞ = α−1Γα ∩ Γ∞. So the heights are the same. We finally need to show
that f |k[α] is meromorphic at∞ iff f |k[γα] is. This is true because f |k[γα] = f |k[γ]|k[α] =
f |k[α].

Note: The q-expansion of f at Γ · z is not well-defined, as it depends on α with α∞ = z.

Definition. Let k ∈ Z, Γ ≤ Γ(1) a congruence subgroup, f a weakly modular function of
weight k, level Γ. We say that

(1) f is a modular function if it is meromorphic at every cusp of Γ.

(2) f is a modular form if it is holomorphic in h and holomorphic at every cusp of Γ.

(3) f is a cuspidal modular form if it is a modular form that vanishes at every cusp.

We write Mk(Γ) for the C-vector space of modular forms of weight k, level Γ and Sk(Γ)
for the subspace of cuspidal modular forms.

Remark: If f is weakly modular and holomorphic in h, then f is a modular form iff for
every α ∈ Γ(1), f |k[α] is holomorphic at ∞.

The Mk(Γ) are finite-dimensional (Example Sheet 3) and it is possible to give an exact
formula for their dimensions (when k > 1).

Lemma 5.3.

(1) If f ∈Mk(Γ), g ∈Ml(Γ), then fg ∈Mk+l(Γ).

(2) If Γ′ ≤ Γ is another congruence subgroup, then Mk(Γ) ≤Mk(Γ
′).

(3) If Γ′ ≤ Γ(1) is another congruence subgroup, and α ∈ GL2(Q)+ satisfies Γ′ ≤ α−1Γα,
then for all f ∈Mk(Γ) (resp. Sk(Γ)), f |k[α] ∈Mk(Γ

′) (resp. Sk(Γ
′)).

Proof.

(1) Same as in the case Γ = Γ(1).

(2) Special case of (3) with α = 1.

(3) We will use the observation: If g : h→ C is weakly modular form of weight k, level Γ,
holomorphic in h, then g is holomorphic at ∞ (resp. vanishes at ∞) iff g is bounded
at ∞ (resp. tends to 0 at ∞).

If f ∈Mk(Γ), then f |k[α] is holomorphic in h and weakly modular of weight k and level
Γ′. Indeed, we have αΓ′α−1 ≤ Γ, so if γ′ ∈ Γ′, then f |k[α]|k[γ′] = f |k[αγ′α−1][α] =
f |k[α]. To show f |k[α] is holomorphic at cusps, it is enough to show that for all
β ∈ Γ(1), f |k[αβ] is holomorphic at ∞. By the observation, it is enough to show that
f |k[αβ] is bounded at∞ for all β ∈ Γ(1). We can write αβ∞ = γ∞ for some γ ∈ Γ(1).

Then αβ = γδ for some δ ∈ StabGL2(Q)+(∞), i.e. δ =

(
a b
0 d

)
with a, b, d ∈ Q. Then
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f |k[αβ] = f |k[γδ] = f |k[γ]((aτ+b)/d)·(ad)k−1d−k. Since f is a modular form, f |k[γ] is
bounded at∞. The formula shows that f |k[αβ] is also bounded at∞, so f ∈Mk(Γ

′).
Same argument applies in the case f ∈ Sk(Γ).

Corollary 5.4. Suppose f ∈Mk(Γ(1)), N ∈ N. Then f(Nτ) ∈Mk(Γ0(N)).

Proof. Take α = diag(N, 1). Then f |k[α](τ) = f(Nτ)Nk−1. Then need to show that
αΓ0(N)α−1 ≤ Γ(1). This is easy.

We now introduce the theta function θ(τ) =
∑

n∈Z e
πin2τ = 1+2

∑
n≥1 q

n2

2 where q2 = eπiτ .
This is a holomorphic function in h, invariant under τ 7→ τ + 2. To show that θ has a
modular-type transformation property, we use:

Proposition 5.5 (Poisson Summation Formula). Let f : R→ C be a continuous function
such that there exist C, δ > 0 such that for all t ∈ R, |f(t)| ≤ C/(1+ |t|)δ+1. Then f̂(s) =∫∞
−∞ f(t)e−2πistdt converges. Suppose further that

∑
n∈Z |f̂(n)| < ∞. Then

∑
n∈Z f(n) =∑

n∈Z f̂(n).

Proof. Define F (t) =
∑

n∈Z f(t + n). This converges absolutely and uniformly in any
bounded interval. So F is continuous and F (t) = F (t + 1). We also define G(t) =∑

n∈Z f̂(n)e
2πint. Again this converges absolutely and uniformly on R. Then G is contin-

uous and G(t) = G(t + 1). Claim: F = G. This implies the proposition, set t = 0. We
have F = G iff for all n ∈ Z, F̂ (n) =

∫ 1
0 F (t)e−2πintdt = Ĝ(n) (here ·̂ denotes the Fourier

coefficient, not the transformation). We have

F̂ (n) =

∫ 1

0

∑
m∈Z

f(m+ t)e−2πintdt =
∑
m∈Z

∫ 1

0
f(m+ t)e−2πintdt

=
∑
m

∫ m+1

m
f(t)e−2πintdt

=

∫ ∞

−∞
f(t)e−2πintdt = f̂(n).

And

Ĝ(n) =

∫ 1

0

∑
m∈Z

f̂(m)e2πi(m−n)tdt =
∑
m

f̂(m)

∫ 1

0
e2π(m−n)tdt = f̂(n).

Let fy(t) = e−πyt2 : R→ C. Then θ(iy) =
∑

n∈Z e
−πn2y =

∑
n∈Z fy(n) for y > 0. We have

f̂y(s) =

∫ ∞

−∞
e−πt2ye−2πstdt =

∫ ∞

−∞
e−π(t

√
y+is/

√
y)2e−πs2/ydt
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=
e−πs2/y

√
y

∫ ∞

−∞
e−π(t+is/

√
y)2dt

=
e−πs2/y

√
y

∫ ∞

−∞
e−πt2dt

=
e−πs2/y

√
y

.

Where the second last equality holds by Cauchy’s theorem from complex analysis. So
f̂y(s) =

1√
yfy−1(s).

The hypotheses of the Poisson Summation Formula are satisfied, so we get

θ(iy) =
∑
n∈Z

fy(n) =
∑
n∈Z

f̂y(n) =
1
√
y

∑
n

e−πn2/y =
1
√
y
θ(i/y)

So the two holomorphic functions θ(τ),
√
τ/i

−1
θ(−1/τ) coincide where

√
τ/i : h → C is

the branch which takes positive values in iR>0.

θ is an example of a “modular form of weight 1/2”. Here we observe that if k ∈ 8N, then
θk(τ) = (

√
τ/i

−1
)kθ(−1/τ)k = τ−k/2θ(−1/τ)k = θk|k/2[S](τ).

Proposition 5.6. If k ∈ 8N, then θk ∈Mk/2(Γ) where Γ = Γ(2) ∪ SΓ(2).

Proof. θk is holomorphic in h and is invariant under the weight k/2-action of S, T 2. By the
third example sheet these two elements generate Γ. So θk is holomorphic in h and weakly
modular of weight k/2 and level Γ. It is also holomorphic at ∞. It is also holomorphic at
∞, as θ(k)(τ) = (1 + 2

∑
n≥1 q

n2

2 )k. What remains: Determine the cusps of Γ, and show

that θk is holomorphic at the remaining cusps. We have

Cusps←→ Γ \ P1(Q)←→ Γ \ Γ(1)/Γ∞ ←→ ⟨S⟩ \ SL2(F2)/⟨T ⟩.

SL2(F2) acts on P1(F2) = {[1 : 0], [1 : 1], [0 : 1]}. StabSL2(F2)([1 : 0]) = ⟨T ⟩. So

⟨S⟩ \ SL2(F2)/⟨T ⟩ ←→ ⟨S⟩ \ P1(F2)

and this has size 2 as S[1 : 1] = [1 : 1], S[1 : 0] = [0 : 1]. So Γ has two cusps, Γ∞, and

Γγ∞ for any γ ∈ Γ(1) such that (γ mod 2)

(
1
0

)
=

(
1
1

)
. We can take γ =

(
1 −1
1 0

)
, so

γ∞ = 1 ∈ P1(Q).

We need to show that θk|k/2[γ] is holomorphic at∞. Note that θ(τ+1) =
∑

n∈Z(−1)neπin
2τ ,

so θ(τ) + θ(τ + 1) = 2
∑

n∈Z e
πi(2n)2τ = 2θ(4τ). γτ = τ−1

τ = 1 − 1
τ . We have θ(1 −

1/τ) = 2θ(−4/τ) − θ(−1/τ) = 2
√

τ/(4i)θ(τ/4) −
√

τ/iθ(τ) =
√
τ/i(θ(τ/4) − θ(τ)). So

θ(1 − 1/τ)
√

τ/i
−1

= θ(τ/4) − θ(τ). Then θk|k/2[γ](τ) = θ(1 − 1/τ)kτ−k/2 = (θ(1 −
1/τ)

√
τ/i

−1
)k = (θ(τ/4)−θ(τ))k. So θk is holomorphic and vanishes at the cusp Γ ·1.
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Note that for all k ∈ N we have θk =
∑

n1,...,nk∈Z q
n2
1+···+n2

k
2 =

∑
m≥0 rk(m)qm2 where

rk(m) = {(n1, . . . , nk) ∈ Zk |
∑k

i=1 n
2
i = m}.

Theorem 5.7. Let n ∈ N. Then

r24(n) =
65536

691
σ11(n/2)− (−1)n 16

691
σ11(n)−

65536

691
τ(n/2)− (−1)n 33152

691
τ(n)

where ∆(τ) =
∑

n≥1 τ(n)q
n, and if n is odd, then σ11(n/2) = τ(n/2) = 0. In particular,

if n is odd, then

r24(n) =
16

691
σ11(n) +

33152

691
τ(n)

Proof. We have shown θ24 =
∑

n≥0 r24(n)q
n
2 ∈ M12(Γ), Γ = Γ(2) ∪ SΓ(2). We need

to express θ24 in terms of other modular forms. By Exercise 4 on example sheet 3,
dimCMk(Γ) ≤ 1+ k[Γ(1):Γ]

12 . In this case, [Γ(1) : Γ] = [SL2(F2) : ⟨S⟩] = 3, so dimCMk(Γ) ≤
1 + 12·3

12 = 4. Since Γ(1) ≥ Γ, we have M12(Γ(1)) ≤ M12(Γ), so we get ∆(τ), F12(τ) =

691
65520 +

∑
n≥1 σ11(n)q

n ∈ M12(Γ). To find more elements, take α =

(
1 1
0 2

)
∈ GL2(Q)+.

Claim: Γ ≤ α−1Γ(1)α, i.e. αΓα−1 ≤ Γ(1), so ∆|12[α], F |12[α] ∈ M12(Γ), so ∆((τ +
1)/2), F12((τ + 1)/2) ∈M12(Γ).

Proof of claim: α

(
A B
C D

)
α−1 =

(
A+ C 1

2(B +D −A− C)
2C D − C

)
. If

(
A B
C D

)
∈ Γ(2),

then B ≡ C ≡ 0 mod 2 and A ≡ D ≡ 1, so B +D − (A + C) ≡ 0 mod 2. If

(
A B
C D

)
∈

SΓ(2), then A ≡ D ≡ 1 mod 2, B ≡ C ≡ 0 mod 2 and (B + D) − (A + C) ≡ 0. So

α

(
A B
C D

)
α−1 ∈ Γ(1).

Now we have

∆ =
∑
n≥1

τ(n)qn

F12 =
691

65520
+
∑
n≥1

σ11(n)q
n

∆(
τ + 1

2
) =

∑
n≥1

τ(n)e2πi(τ+1)n/2 =
∑
n≥1

τ(n)(−1)nqn2

F12(
τ + 1

2
) =

691

65520
+
∑
n≥1

(−1)nσ11(n)qn2

Exercise in linear algebra: ∆(τ), F12(τ),∆( τ+1
2 ), F12(

τ+1
2 ) mod q42 ∈ CJq2K/q42 are linearly

independent over C. These four modular forms form a basis of M12(Γ).

Then

θ24 =
65536

691
F12 −

16

691
F12(

τ + 1

2
)− 65536

691
∆(τ)− 33152

691
∆(

τ + 1

2
).
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The theorem follows on extracting the coefficient of qn2 (e.g. ∆(τ) contributes τ(n/2)).

Another application of θ: meromorphic continuation of ζ(s).

Theorem 5.8. Let ξ(s) = π−s/2Γ(s/2)ζ(s). Then ξ admits a meromorphic continuation
to C with simple poles at s = 1, 0 of residues 1,−1, and no other poles. It satisfies the
functional equation ξ(s) = ξ(1− s).

Proof. Consider X(s) =
∫∞
y=0(θ(iy) − 1)ys/2 dyy . Note that as θ(iy) = 1 + 2

∑
n≥1 e

−πn2y

we have θ(iy) − 1 = O(e−πy) as y → ∞. So the integral
∫∞
y=1(θ(iy) − 1)ys/2 dyy converges

absolutely for all s ∈ C and defines a holomorphic function. Next: need to look at y → 0.
We know θ(iy) =

√
y−1θ(i/y), so θ(iy) − 1 = (θ(i/y) − 1)

√
y−1 + (

√
y−1 − 1) ∼ 1/

√
y as

y → 0. So
∫ 1
0 (θ(iy) − 1)ys/2 dyy converges absolutely when σ−1

2 > 0, i.e. when σ > 1 and
defines a holomorphic function in this region. We can compute

X(s) =

∫ ∞

0
2
∑
n≥1

e−πn2yys/2
dy

y
= 2

∑
n≥1

∫ ∞

y=0
e−πn2yys/2

dy

y

= 2
∑
n≥1

π−s/2n−sΓ(s) = 2ξ(s)

valid when σ > 1. Also

X(s) =

∫ 1

0
+

∫ ∞

1
(θ(iy)− 1)ys/2

dy

y

=

∫ ∞

1
(θ(i/y)− 1)y−s/2dy

y
+

∫ ∞

1
(θ(iy)− 1)ys/2

dy

y

=

∫ ∞

1
(θ(iy)y1/2 − 1)y−s/2dy

y
+

∫ ∞

1
(θ(iy)− 1)ys/2

dy

y

=

∫ ∞

1
(θ(iy)− 1)y(1−s)/2 + (y(1−s)/2 − y−s/2)

dy

y
+

∫ ∞

1
(θ(iy)− 1)ys/2

dy

y

We have
∫∞
1 y−s dy

y = 1/s, so

X(s) =
2

s− 1
− 2

s
+

∫ ∞

1
(θ(iy)− 1)(y(1−s)/2 + ys/2)

dy

y
= 2ξ(s)

Now note that the integral converges everywhere. This shows ξ(s) has a meromorphic
continuation with properties as claimed. The invariance under s 7→ 1−s is immediate.

Generalization: Let Λ ≤ Rn be a lattice, and define θΛ(τ) =
∑

λ∈Λ eπi⟨λ,λ⟩τ for τ ∈ h. E.g.
if Λ = Z ≤ R, then θΛ = θ.

Check: θΛ is holomorphic in h
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Proposition 5.9 (Poisson in Rn). Let f : Rn → C be a continuous function such that there
exist C, δ > 0 such that for all t ∈ Rn, |f(t)| ≤ C

(1+|t|)n+δ . Then f̂(s) =
∫
Rn f(t)e

−2πi⟨s,t⟩dt

converges absolutely. Let Λ ≤ Rn be a lattice and suppose
∑

µ∈Λ∨ |f̂(µ)| <∞. Then∑
λ∈Λ

f(λ) =
1

m(Λ)

∑
µ∈Λ∨

f̂(µ),

where m(Λ) = covol(Λ) = vol(Rn/Λ).

Proof. Omitted, as very similar to the case n = 1.

We apply this with f(t) = e−π⟨t,t⟩ =
∏n

i=1 e
−πt2i , if t = (t1, . . . , tn). We know f = f̂ when

n = 1. In fact, f = f̂ for any n ≥ 1 by separation of variables. Then

θΛ(iy) =
∑
λ∈Λ

e−π⟨λ,λ⟩y =
∑
λ∈Λ

e−π⟨√yλ,
√
yλ⟩ =

∑
λ∈√yΛ

e−π⟨λ,λ⟩.

We then apply the Poisson summation formula with f and lattice
√
yΛ. Then (

√
yΛ)∨ =

√
y−1Λ∨, m(

√
yΛ) = yn/2m(Λ). So

θΛ(iy) =
∑

λ∈√yΛ

f(λ) =
1

m(
√
yΛ)

∑
µ∈(√yΛ)∨

f̂(µ)

= y−n/2m(Λ)−1
∑

µ∈ 1√
y
Λ∨

f(µ) = y−n/2m(Λ)−1θΛ∨(i/y)

We find that θΛ(τ) =
√
τ/i

−n
m(Λ)−1θΛ∨(−1/τ) by the identity principle.

Proposition 5.10. Suppose that n ∈ 8N, and that Λ ≤ Rn is a lattice satisfying:

(1) Λ = Λ∨, i.e. Λ is self-dual.

(2) Λ is even, i.e for all λ ∈ Λ ∈ 2Z.

Then θΛ ∈Mn/2(Γ(1)).

Proof. θΛ(τ) =
∑

λ∈Λ eπi⟨λ,λ⟩τ =
∑

n≥0 rΛ(n)q
n, where rΛ(n) = #{λ ∈ Λ | ⟨λ, λ⟩ = 2n}.

This shows θΛ(τ) = θΛ(τ+1). We have θΛ|n/2[S](τ) = θΛ(−1/τ)τ−n/2 = θΛ(−1/τ)(
√

τ/i)−n

as n ≡ 0 mod 8. This is θΛ∨(τ) = θΛ(τ). Since S, T generate Γ(1), θΛ is weakly modular
of weight n/2, level Γ(1). It is holomorphic at ∞, so θΛ ∈Mn/2(Γ(1)).

Example. The E8 root lattice ΛE8 ≤ R8 classifies the exceptional Lie group/algebra E8,
and it is self-dual and even.

So θΛE8
∈ M4(Γ(1)). So θΛE8

= E4 = 1 + 240
∑

n≥1 σ3(n)q
n (where the latter E4 is the

Eisenstein series and the former E8 stands for the exceptional Lie group). So 240 = a1(E4)
can be interpreted as 240 = # of roots in the E8 root system.
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Next we will introduce the Epstein zeta function ζΛ(s) =
∑

λ∈Λ−0⟨λ, λ⟩−s.

E.g. for Z ≤ R we get ζZ(s) = 2ζ(2s).

Theorem 5.11. Let ξΛ(s) = π−sΓ(s)ζΛ(s). Then

(1) ξΛ admits a meromorphic continuation to C, with simple poles at s = n
2 , 0 with residues

m(Λ)−1,−1 respectively, and no other poles.

(2) We have the functional equation ξΛ(
n
2 − s) = m(Λ)−1ξΛ∨(s).

Remarks: 2ξ(s) = ξZ(s/2). ξΛ usually does not have an Euler product.

Proof. We consider XΛ(s) =
∫∞
0 (θΛ(iy)− 1)ys dyy . Then

XΛ(s) =

∫ ∞

0

∑
λ∈Λ−0

e−π⟨λ,λ⟩yys
dy

y

=
∑

λ∈Λ−0

π−s⟨λ, λ⟩−sΓ(s)

= π−sΓ(s)ζΛ(s) = ξΛ(s)

Also

XΛ(s) =

∫ 1

0
+

∫ y

1
(θΛ(iy)− 1)ys

dy

y

=

∫ ∞

1
(θΛ(i/y)− 1)y−sdy

y
+

∫ ∞

1
(θΛ(iy)− 1)ys

dy

y

=

∫ ∞

1
(m(Λ)−1yn/2θΛ∨(iy)− 1)y−sdy

y
+

∫ ∞

1
(θΛ(iy)− 1)ys

dy

y

= m(Λ)−1

∫ ∞

1
(θΛ∨(iy)− 1)y

n
2
−sdy

y
+

∫ ∞

1
(θΛ(iy)− 1)ys

dy

y

+

∫ ∞

1
m(Λ)−1y

n
2
−s − y−sdy

y

Finally we get

ξΛ(s) =

∫ ∞

1

(
m(Λ)−1(θΛ∨(iy)− 1)y

n
2
−s + (θΛ(iy)− 1)ys

) dy

y
+

(
m(Λ)−1

s− n
2

− 1

s

)
To get the functional equation, compare the expressions for ξΛ(

n
2 − s), ξΛ∨(s) and use the

identity m(Λ)m(Λ∨) = 1.
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6 Non-holomorphic Eisenstein series

Modular forms are only the beginning of the story.

More general point of view: Study decomposition of L2(Γ(1)\SL2(R)) as a representation
of SL2(R).

Fact: If k ≥ 2, there exists an irreducible representationDk of SL2(R) such that Sk(Γ(1)) ≃
HomSL2(R)(Dk, L

2(Γ(1) \ SL2(R))).

The remainder of L2(Γ(1) \ SL2(R)) can be described in terms of automorphic forms.

In the remainder of the course, we will study some examples, the non-holomorphic Eisen-
stein series.

Definition. Let s ∈ C, Re(s) > 1. Then the (non-holomorphic) Eisenstein series of
parameter s is

G(τ, s) =
∑

(m,n)∈Z2−0

Im(τ)s|mτ + n|−2s

for τ ∈ h.

Check: This converges absolutely and locally uniformly in h× {σ > 1}. It is holomorphic
as a function of s, but not as a function of τ .

First, we want to understand how G(τ, s) transforms under Γ(1).

G(τ, s) =
∑
d∈N

∑
(m,n)∈Z2

gcd(m,n)=d

Im(τ)s|mτ + n|−2s

=
∑
d∈N

d−2s
∑

(m,n)∈Z2

gcd(m,n)=1

Im(τ)s|mτ + n|−2s

= 2ζ(2s)
∑

(m,n)∈Z2/{±1}
gcd(m,n)=1

Im(τ)s|mτ + n|−2s

= 2ζ(2s)
∑

γ∈Γ∞\Γ(1)

Im(γτ)s

The last equality follows from the bijection

Γ∞ \ Γ(1)←→ {(m,n) ∈ Z2 | gcd(m,n) = 1}/{±1}
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γ =

(
a b
c d

)
7−→ (c, d)

So
G(τ, s) = 2ζ(2s)E(τ, s)

where
E(τ, s) =

∑
γ∈Γ∞\Γ(1)

Im(γτ)s

Note that if δ ∈ Γ(1), then E(δτ, s) = E(τ, s). So G(τ, s) = G(δτ, s) for all δ ∈ Γ(1).

Next, we want to meromorphically continue G(τ, s) as a function of s. This is possible, as
G(τ, s) is an Epstein zeta function.

Recall notation: Λτ = Zτ ⊕ Z ≤ C ≃ R2

Claim: G(τ, s) = ζy−1/2Λτ
(s).

Proof: ζy−1/2Λτ
(s) =

∑
λ∈y−1/2Λτ−0⟨λ, λ⟩−s =

∑
λ∈Λτ−0⟨y−1/2λ, y−1/2λ⟩−s, so ζy−1/2Λτ

(s) =∑
(m,n)∈Z2 Im(τ)s|mτ + n|−2s = G(τ, s).

Lemma 6.1. m(y−1/2Λτ ) = 1, (y−1/2Λτ )
∨ = iy−1/2Λτ .

Proof. y−1/2Λτ has basis (y−1/2(x+ iy), y−1/2) = (y−1/2x+ iy1/2, y−1/2), so m(y−1/2Λτ ) =

| det
(
y−1/2x y−1/2

y1/2 0

)
| = 1. iy−1/2Λτ has basis iy−1/2,−y1/2 + iy−1/2x. Then one checks

that this is up to sign the dual basis and so iy−1/2Λτ = (y−1/2Λτ )
∨.

Theorem 6.2. Let G∗(τ, s) = π−sΓ(s)G(τ, s). Then

1) For fixed τ , G∗(τ, s) admits a meromorphic continuation to C with simple poles at
s = 1, 0 of residues 1,−1 and not other poles.

2) G∗(τ, s) = G∗(τ, 1− s)

3) G∗(τ, s)− 1
s(s−1) extends to a C∞ function on h× C.

Proof. Meromorphic continuation holds as G∗(τ, s) = ξy−1/2Λτ
(s). Functional equation

holds as ξiy−1/2Λτ
(s) = ξy−1/2Λτ

(s) = G∗(τ, s).

For the final part, we have the expression

G∗(τ, s) =
1

s− 1
− 1

s
+

∫ ∞

1

∑
(m,n)∈Z2−0

e−π|mτ+n|2t/y(ts + t1−s)
dt

t

which is C∞ by differentiation under the integral.
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We know G∗(x + iy, s) = G∗(x + 1 + iy, s) (invariance under T ∈ Γ(1)). It follows
that there is a Fourier expansion G∗(x + iy, s) =

∑
k∈ZA

∗
k(y, s)e

2πikx where A∗
k(y, s) =∫ 1

0 G∗(τ, s)e−2πikxdx. G∗(τ, s) is C∞ in h× (C− {0, 1}). A∗
k(y, s) is C

∞ in (0,∞)× (C−
{0, 1}) and holomorphic as a function of s.

Theorem 6.3. A∗
0(y, s) = 2ξ(2s)ys + 2ξ(2(1− s))y1−s.

Proof. Both sides of this equality are holomorphic in C−{0, 1}. It is enough to show this
holds when Re s > 1. Under this assumption, we have

A∗
0(y, s) =

∫ 1

0
G∗(y, s)dx

=

∫ 1

0

∫ ∞

0
(θy−1/2Λτ

(it)− 1)ts
dt

t
dx

=

∫ 1

0

∫ ∞

0

∑
(m,n)∈Z2−0

e−π|mτ+n|2t/yts
dt

t
dx

This iterated integral/sum is absolutely convergent as Re s > 1. So This is

2
∑
n≥1

∫ 1

0

∫ ∞

0
e−πn2t/yts

dt

t
dx+ 2

∑
m≥1

∫ 1

0

∫ ∞

0

∑
n∈Z

eπ|mτ+n|2t/yts
dt

t
dx

Then

Im=0 = 2
∑
n≥1

∫ ∞

0
e−πn2t/yts

dt

t
= 2ysπ−sΓ(s)ζ(2s) = 2ξ(2s)ys

To compute Im̸=0, first note that eπ|mτ+n|2t/y = e−π(mx+n)2t/ye−πm2yt. So for m ≥ 1 we
have ∑

n∈Z

∫ 1

0
e−π(mx+n)2t/ydx =

∑
n∈Z

1

m

∫ n+m

n
e−πx2t/ydx =

∫ ∞

−∞
e−πx2t/ydx =

√
y

t

Hence

Im̸=0 = 2
∑
m≥1

∫ ∞

0
e−πm2ty

∑
n∈Z

∫ 1

0
e−π(mx+n)2t/ydxts

dt

t

= 2
∑
m≥1

∫ ∞

0
e−πm2ty√yts−

1
2
dt

t
= 2

∑
m≥1

π
1
2
−sm2( 1

2
−s)y

1
2
−sy

1
2Γ(s− 1

2
)

= 2π
1−2s

2 ζ(2s− 1)Γ(
2s− 1

2
)y1−s = 2ξ(2s− 1)y1−s

= 2ξ(1− (2s− 1))y1−s = 2ξ(2(1− s))y1−s
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To compute A∗
k(y, s), we introduce the k-Bessel function Ks(c), defined for c ∈ (0,∞),

s ∈ C by

Ks(c) =

∫ ∞

0
e−c(t+t−1)ts

dt

t
=

∫ ∞

1
e−c(t+t−1)(ts + t−s)

dt

t
.

Theorem 6.4. If k ̸= 0, then A∗
k(y, s) = 2

√
y|k|s−

1
2σ1−2s(|k|)Ks− 1

2
(π|k|y).

Proof. Both sides are holomorphic in C − {0, 1}, so it is enough to prove equality in
Re s > 1. We use the expression

A∗
k(y, s) =

∑
(m,n)∈Z2−0

∫ ∞

k=0

∫ 1

0
e−π(mx+n)2t/ye−2πikxdxe−πm2tyts

dt

t
.

The terms with m = 0 vanish, as then e−π(mx+n)2t/y does not depend on x. So

A∗
k(y, s) = 2

∑
m≥1

∫ ∞

0
e−πm2ty

∑
n∈Z

∫ 1

0
e−π(mx+n)2t/ye−2πikxdxts

dt

t

We have∑
n∈Z

∫ 1

0
e−π(mx+n)2t/ye−2πikxdx =

1

m

∑
n∈Z

∫ n+m

x=n
e−πx2t/ye−2πikx/ne2πikn/mdx

=
∑

a∈Z/mZ

1

m
e2πika/m

∑
n∈Z

n≡a mod m

∫ n+m

n
e−πx2t/y−2πikx/mdx

This is 0 if m ∤ k, and otherwise∫ ∞

−∞
e−πx2t/y−2πikx/mdx =

∫ ∞

−∞
e−2π(xt1/2/y1/2+iky1/2/(mt1/2))2e−πk2y/(m2t)dt

= e−πk2y/(m2t)y1/2/t1/2.

So

A∗
k(y, s) = 2

∑
m≥1
m|k

∫ ∞

0
e−πm2tye−πk2y/(m2t)√yts−

1
2
dt

t

= 2
√
y
∑
m≥1
m|k

∫ ∞

0
e−π|k|y(m2/(|k|t)+|k|/m2t−1)ts−

1
2
dt

t

= 2
√
y
∑
m≥1
m|k

(|k|/m2)s−
1
2Ks− 1

2
(π|k|y)

= 2
√
y|k|s−

1
2

( ∑
m≥1
m||k|

m1−2s
)
Ks− 1

2
(π|k|y).
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To use this computation, we need to know more about Ks(c).

Lemma 6.5.

(1) If c ∈ (0,∞), then Ks(c) is entire as a function of s.

(2) If c0 > 0 and σ0 < σ1, then there exists C = C(c0, σ0, σ1) such that for all c ≥ c0, s ∈ C
with Re s ∈ [σ0, σ1], |Ks(c)| ≤ Ce−c.

(3) For all s ∈ C, there exists c ∈ (0,∞) such that Ks(c) ̸= 0.

Proof. For (2), we bound

|Ks(c)| ≤
∫ ∞

1
e−c(t+t−1)(tσ + t−σ)

dt

t

It is enough to show that
∫∞
1 e−c(t+t−1)tσ dt

t = O(e−c) for c ≥ c0, σ ∈ [σ0, σ1]. This is∫ 2

1
+

∫ ∞

2
e−c(t+t−1)tσ

dt

t

If t ≥ 1, t+ t−1 ≥ 1, so ∫ 2

1
≤ e−c

∫ 2

1
tσ−1dt

If t ≥ 2, t ≥ 1 + t
2 , so∫ ∞

2
≤
∫ ∞

2
e−ce−c( t

2
+t−1)tσ

dt

t
≤ e−c

∫ ∞

2
e−c0(

t
2
+t−1)tσ

dt

t

Summing those gives the required bound.

For (3), fix s ∈ C. We take the Mellin transform of Ks(c), i.e.∫ ∞

0
Ks(c)c

s1 dc

c
=

∫ ∞

0

∫ ∞

0
e−(ct+c/t)cs1ts

dtdc

tc
.

Change of variable: a = ct, b = c/t, c =
√
ab, t =

√
a/b. Then dadb = −2 c

tdcdt. So∫ ∞

0
Ks(c)c

s1 dc

c
=

∫ ∞

0

∫ ∞

0
e−(a+b)(ab)s1/2(a/b)s/2

dadb

2ab

=
1

2

∫ ∞

0
e−aa(s1+s)/2da

a

∫ ∞

0
e−bb(s1−s)/2db

b
=

1

2
Γ((s1 + s)/2)Γ((s1 − s)/2)

This computation is valid provided both integrals are absolutely convergent, i.e. provided
Re(s1 + s) > 0,Re(s1 − s) > 0. We can choose s1 with this property. Since Γ is non-
vanishing, Ks(c) cannot be zero for all c ∈ (0,∞).

Corollary 6.6.
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(1) For all s ∈ C− {0, 1}, G∗(τ, s) is not the zero function on h.

(2) For all s ∈ C− {0, 1}, |G∗(τ, s)−A∗
0(y, s)| = O(e−πy/2) as y →∞.

(3) For all s ∈ C− {0, 1}, |G∗(τ, s)| = O(max(yσ, y1−σ)) as y →∞.

Remark: Compare with |Gk(τ)−Gk(∞)| = O(e−2πy) as y →∞.

Proof. Let s = s0.

(1) If G∗(τ, s0) = 0 for all τ ∈ h, then A∗
k(y, s0) = 0 for all y. But A∗

1(y, s0) =
2
√
yKs0− 1

2
(πy). We have just shown that there exists y > 0 such that Ks0− 1

2
(πy) ̸= 0.

(2) |G∗(τ, s0) − A∗
0(y, s0)| ≤

∑
k∈Z−0 2

√
y|k|σ0− 1

2σ1−2σ0(|k|)|Ks0− 1
2
(π|k|y)|. We can find

M,N > 0 such that |k|σ0− 1
2σ1−2σ0(|k|) ≤ M |k|N for all k ∈ Z− 0. Then |G∗(τ, s0)−

A∗
0(y, s0)| ≤ 2

∑
k≥1 2

√
ykNMCe−πky when y ≥ 1 and C = C(1, σ0, σ0) of Lemma.

√
ykNe−πky/2 is bounded in (0,∞)× N, so

|G∗(τ, s0)−A∗
0(y, s0)| ≤ A

∑
k≥1

e−πky/2 = O(e−πy/2).

(3)

|G∗(τ, s)| ≤ |A∗
0(y, s)|+O(e−πy/2) = 2|ξ(2s)ys + ξ(2(1− s))y1−s|+O(e−πy/2)

We can now give the remaining ingredient in the proof of the Prime Number Theorem.

Theorem 6.7. For any t ∈ R, t ̸= 0, we have ζ(1 + it) ̸= 0.

Proof. ζ(s) =
∑

n≥1 n
−s, so ζ(s) = ζ(s) for all s ∈ C. Suppose ζ(1 + it) = 0, then

ζ(1− it) = 0. Let s0 =
1+it
2 . Then 1− s0 =

1−it
2 and

A∗
0(y, s0) = 2ξ(1 + it)ys0 + 2ξ(1− it)y1−s0 = 0

We consider the function F (s) =
∫
Γ(1)\hG

∗(τ, s)G∗(τ, s0)
dxdy
y2

. This makes sense as G∗ is

invariant under Γ(1). The integral converges absolutely for all s ∈ C:∫
F
|G∗(τ, s)||G∗(τ, s0)|

dxdy

y2
≤ C

∫ ∞

y=
√
3/2

max(yσ, y1−σ)e−πy/2dy

y2

converges. The exponential decay of G∗(τ, s0) implies that F (s) is entire. When Re s > 1,
we can write G(τ, s) = 2ζ(2s)E(τ, s) with E(τ, s) =

∑
γ∈Γ∞\Γ(1) Im(γτ)s, and G∗(τ, s) =

2ξ(2s)E(τ, s). When Re(s) > 1,

F (s) =

∫
Γ(1)\h

∑
γ∈Γ∞\Γ(1)

2ξ(2s)G∗(γτ, s0) Im(γτ)s
dxdy

y2
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=

∫ 1
2

− 1
2

∫ ∞

0
2ξ(2s)G∗(τ, s0)y

sdxdy

y2
.

Note that
∫ 1

2

− 1
2

G∗(τ, s0)dx = A∗
0(y, s0) = 0, so F (s) = 0 when Re s > 1. By the identity

principle F (s) = 0 for all s ∈ C. If s = s0, F (s0) =
∫
Γ(1)\hG

∗(τ, s0)G∗(τ, s0)
dxdy
y2

=∫
Γ(1)\h |G

∗(τ, s0)|2 dxdyy2
= 0. This is only possible if G∗(τ, s0) = 0 for all τ ∈ h. This

contradicts the corollary.
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7 *Modular Forms and Galois
Representations

Langlands Programme:

Modular forms, Automorphic forms, Automorphic representations

←→
Galois representations, Motives

Q: What do the prime number theorem and Fermat’s Last Theorem have in common?

What is a Galois representation?

Let K/Q be a normal extension (possibly of infinite degree). Its Galois group Gal(K/Q) =
Aut(K/Q). We make Gal(K/Q) into a topological group by taking a basis of neigh-
borhood of e ∈ Gal(K/Q) to be the subgroups Gal(K/M) where K/M/Q is an inter-
mediate field, finite over Q. A Galois representation is a continuous homomorphism
Gal(K/Q)→ GLn(E), where E is a local field (e.g. E = C,Qℓ).

E.g. f(X) ∈ Z[X] separable, K = splitting field, Gal(K/Q) → GLn(C) any irreducible
representation.

E.g. E/Q an elliptic curve, ℓ prime. There is a Galois representation ρE,ℓ : Gal(Q,Q) →
GL2(Qℓ). Where does this come from? E is an abelian algebraic group, and the ℓn-torsion
points are a finite subgroup of E(Q), isomorphic to (Z/ℓnZ)2, with an action of Gal(Q/Q).
It is unramified at any prime p ∤ ∆Eℓ, i.e. ρE,ℓ factors through Gal(Q/Q) → Gal(QS/Q)
where for a set S of primes, QS ⊆ Q is the maximal subextension unramified away from
S. Here we take S = {p | ∆Eℓ}.

If p /∈ S, then there is a distinguished congruency class of Frobenius elements Frobp ∈
Gal(QS/Q).

We have tr ρE,ℓ(Frobp) = p+ 1−#E(Fp).

Modular forms also give rise to Galois representations.

Theorem 7.1. Let f ∈ Sk(Γ(1)) be a normalized eigenform. Let ℓ be a prime, and let λ be
a prime ideal of OKf

lying above ℓ (where Kf = Q({an(f)})). Then there exists a unique
Galois representation ρf,λ : Gal(Q{ℓ}/Q)→ GL2(Kf,λ) such that tr ρf,λ(Frobp) = ap(f).
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(Proved by Deligne, on the way to proving the Ramanujan-Petersson Conjecture)

One application: To a generalization of Kummer’s criterion:

Theorem 7.2 (Kummer). If p is an odd prime, then p is regular iff none of the rational
numbers Bk, k = 2, 4, 6, . . . , p− 3 has numerator divisible by p.

p is regular if p ∤ #Cl(Q(ζp)).

Kummer could prove FLT in exponent p for regular primes p.

How we see k in terms of Cl(Q(ζp))? Note p is regular iff p ∤ #Cl(Qζp) iff Cl(Q(ζp))[p] = 0.
Gal(Q(ζp)/Q) acts on Cl(Q(ζp)), hence on Cp = Cl(Q(ζp))[p]. We have a direct sum
decomposition Cp =

⊕
χCp,χ, where χ : Gal(Q(ζp)/Q) ∼= (Z/pZ)× → F×

p and Cp,χ = {a ∈
Cp | ∀σ ∈ Gal(Q(ζp)/Q), σ(a) = χ(a)a}.

Theorem 7.3 (Herbrand-Ribet). If p is an odd prime, 2 ≤ k ≤ p − 3 even, then p | Bk

iff Cp,χk
̸= 0 where χk : Gal(Q(ζp)/Q) → F×

p acts as b 7→ b1−k under the identification
Gal(Q(ζp)/Q) ∼= (Z/pZ)×.

Hard part: p | Bk =⇒ Cp,χk
̸= 0. Starting point: Fk = −Bk

2k +
∑

n≥1 σk−1(n)q
n is congru-

ent mod p to a cuspidal normalized eigenform. Then there exists a Galois representation
ρf,p : Gal(Q{p}/Q)→ GL2(Kf,p) such that for all ℓ ̸= p, tr ρf,p(Frobℓ) ≡ σk−1(ℓ) mod p.
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