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1 Valued Fields

1.1 Absolute Values and Valuations

Definition. Let K be a field. An absolute value on K is a function | · | : K → R such
that:

1. |x| ≥ 0 for all x ∈ K with equality iff x = 0.

2. |xy| = |x| · |y| for all x, y ∈ K.

3. |x+ y| ≤ |x|+ |y| for all x, y ∈ K.

An absolute value | · | is called non-archimedean if it satisfies the ultrametric inequality

|x+ y| ≤ max{|x|, |y|}

for all x, y ∈ K. Otherwise it is called archimedean.

It is easily seen that if | · | is non-archimedean and x, y ∈ K with |x| < |y|, then |x+ y| =
max(|x|, |y|) = |y|.

Two absolute values on a field are said to be equivalent if they define the same topology.

| · | is called the trivial absolute value on K if |x| = 1 for all x ̸= 0.

Example. Let K = Q and p a prime number. Given x ∈ Q× write x = pn ab with a, b ∈ Z
not divisible by p. Then let |x|p := p−n and set |0|p = 0. Then | · |p is a non-archimedean
absolute value on Q, called the p-adic absolute value. The field Qp of p-adic numbers is
defined to be the completion of Q w.r.t. the p-adic absolute value.

Of course Q also has the ordinary archimedean absolute value | · |∞ whose completion is
R. We will later see (Theorem 3.6) that every absolute value on Q is equivalent to either
|·|p for some prime p or to |·|∞.

Proposition 1.1. Let | · |, | · |′ non-trivial absolute values on field K. TFAE:

(i) | · |, | · |′ are equivalent.

(ii) |x| < 1⇔ |x|′ < 1 for all x ∈ K.

(iii) There exists c ∈ R>0 such that |x|c = |x|′ for all x ∈ K.

Proof. (i) =⇒ (ii) is clear from |x| < 1⇔ xn → 0 w.r.t. | · |.
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(ii) =⇒ (iii) Let a ∈ K× such that |a| > 1. We need to show that for all x ∈ K×,
log |x|
log |a| =

log |x|′
log |a|′ . Let m/n ∈ Q such that log |x|

log |a| < m/n, i.e. | xnam | < 1. Then | xnam |
′ < 1 and

hence log |x|′
log |a|′ < m/n. Thus log |x|

log |a| ≥
log |x|′
log |a|′ and similarly ≤.

(iii) =⇒ (i) clear.

The ultra-metric inequalities gives the following lemma:

Lemma 1.2. If (xn)n∈N is a sequence in K such that |xn − xn+1| → 0 as n → ∞, then
(xn)n is a Cauchy sequence. In particular (xn)n converges if K is complete.

Example. p = 5. We construct a sequence (xn)n in Q such that

(i) x2n + 1 ≡ 0 (mod 5n),

(ii) xn ≡ xn+1 (mod 5n)

as follows: Take x1 = 2. Let x2n + 1 = a5n and xn+1 = xn + b5n. Then

x2n+1 + 1 ≡ a5n + 2bxn5
n mod 5n+1,

i.e. want b such that a + 2bxn ≡ 0 (mod 5) which is possible as 2, xn are coprime to 5.
Now (ii) implies that (xn)n is Cauchy w.r.t. | · |5. Suppose xn → L ∈ Q. Then x2n → L2.
By (i) we have x2n → −1, hence L2 = −1, a contradiction. So Q is not 5-adically complete.

Now let (K, | · |) be non-archimedean valued field. For x ∈ K, r ∈ R>0 we let:

B(x, r) := {y ∈ K | |y − x| < r},
B(x, r) := {y ∈ K | |y − x| ≤ r}.

(Note that B(x, r) need not be the closure of B(x, r).)

Lemma 1.3. Let x ∈ K, r ∈ R>0

(i) If z ∈ B(x, r), then B(z, r) = B(x, r).

(ii) If z ∈ B(x, r), then B(z, r) = B(x, r).

(iii) B(x, r) is closed.

(iv) B(x, r) is open.

Proof. Follows easily from the ultra-metric inequality.

Definition. A valuation on a field K is a function v : K → R× such that for all x, y ∈ K
the following holds:

(i) v(xy) = v(x) + v(y),

(ii) v(x+ y) ≥ min(v(x), v(y)).
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Valuations correspond to (equivalence classes of) non-archimedean absolute values on K.
Given a valuation v and a fixed α > 1, define |x| := α−v(x) for x ̸= 0. We will thus
sometimes switch between (non-archimedean) absolute values and valuations, whichever
is more convenient.

Definition. Let (K, | · |) be a non-archimedean valued field. We let

OK = {x ∈ K | |x| ≤ 1} = {x ∈ K | v(x) ≥ 0},
m = {x ∈ K | |x| < 1} = {x ∈ K | v(x) > 0}.

OK is called the valuation ring of K. The residue field is OK/m.

Note that OK is indeed a subring of K and m is its unique maximal ideal.

Definition. A valuation v on K is discrete if v(K×) ∼= Z. If π ∈ K× is such that
v(π) > 0 and v(π) generates v(K×), then π is called a uniformizer.

Lemma 1.4. Let (K, v) be a valued field. TFAE:

(i) v is discrete.

(ii) OK is a PID.

(iii) OK is noetherian

(iv) m is principal.

Proof. (i) ⇒ (ii): Let 0 ̸= I ⊆ OK be an ideal. Let x ∈ I with v(x) minimal. Then
I = xOK . Thus, OK is a PID.

(ii)⇒ (iii): clear.

(iii)⇒ (iv): Write m = (x1, . . . , xn), wlog v(x1) ≤ · · · ≤ v(xn). Then m = x1OK .

(iv) ⇒ (i): Let m = πOK and c = v(π). Then, if x ∈ m, then v(x) ≥ c, hence v(K×) ∩
(0, c) = ∅ which easily implies that v(K×) = cZ.

Lemma 1.5. If v is a discrete valuation on K with uniformizer π, then for every x ∈ K×

there are unique n ∈ Z, u ∈ O×
K such that v = πnu.

Definition. A ring R is called a discrete valuation ring (DVR) if R is a principal ideal
domain with exactly one non-zero prime ideal.

Lemma 1.6. Let K be a field. If v is a discrete valuation on K, then OK is a DVR.
Conversely if R is a DVR with K = FracR, then there is a discrete valuation on K such
that OK = R.

Example. The rings Z(p) with p prime and kJtK with k a field are DVRs.
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1.2 p-adic numbers

Recall that Qp is the completion of Q w.r.t. the p-adic absolute value. The ring of p-adic
integers is its valuation ring, denoted Zp.

Proposition 1.7. Zp is the closure of Z inside Qp. In particular Zp is the completion of
Z w.r.t. | · |p.

Proof. Since Q is dense in Qp and Zp ⊆ Qp is open, Zp ∩ Q is dense in Zp. Note that
Zp ∩ Q = {ab ∈ Q | p ∤ b} = Z(p). Thus it suffices to show that Z is dense in Z(p). Let
a/b ∈ Z(p) with a, b ∈ Z, p ∤ b. For n ∈ N choose yn ∈ Z such that byn ≡ a (mod pn).
Then yn → a

b w.r.t. | · |p.

Let (An)
∞
n=1 be a sequence of sets/groups/rings together with homomorphisms φn :

An+1 → An. Recall that the inverse limit of the system ((An)n, (φ)n) is

A := lim←−
n

An = {(an) ∈
∞∏
n=1

An | φn(an+1) = an for all n ∈ N}.

It is again a set/group/ring and inherits the algebraic structure from
∏∞
n=1An. Let θm :

A→ Am be the projection onto them-th coordinate. Then (A, (θm)m) enjoys the following
universal property:

Proposition 1.8. Let B be a set/group/ring together with homomorphisms ψn : B → An
such that the diagram

B An+1

An

ψn

ψn+1

φn

commutes. Then there exists a unique homomorphism ψ : B → A such that θn ◦ ψ = ψn
for all n.

Definition. Let R be a ring and I an ideal of R. Then

R̂ := lim←−
n

R/In

is called the I-adic completion of R. The transition maps are the projections R/In+1 →
R/In. If the natural map R→ R̂ (induced by the projections R→ R/In and the universal
property) is an isomorphism, R is called I-adically complete.

Let (K, | · |) be a non-archimedean valued field and π ∈ OK such that |π| < 1.

Proposition 1.9. Assume K is complete w.r.t. | · |.

(i) Then OK ∼= lim←−nOK/π
n, i.e. OK is π-adically complete
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(ii) Every x ∈ OK can be written uniquely as x =
∑∞

i=0 aiπ
i, ai ∈ A ⊆ OK where A is

a set of coset representatives for OK/πOK .

Moreover any such series
∑∞

i=0 aiπ
i converges.

Proof.

(i) Note that OK is complete. If x ∈
⋂∞
n=0 π

nOK , then v(x) ≥ nv(π) for all n, so x = 0,
hence OK → lim←−nOK/π

n is injective. Let (xn)
∞
n=1 ∈ lim←−nOK/π

n. For each n let
yn ∈ OK be a lift of xn. Then yn − yn+1 ∈ πnOK so that v(yn − yn+1) ≥ nv(π).
Thus (yn)

∞
n=1 is a Cauchy sequence in OK , so it converges to an element y ∈ OK

which maps to (xn)
∞
n=1 in lim←−nOK/π

n.

(ii) is an exercise.

Warning: If (K, | · |) is not discretely valued, OK is not necessarily m-adically complete.

Corollary 1.10.

(i) Zp ∼= lim←−n Z/p
nZ.

(ii) Every x ∈ Qp can be written uniquely as
∑∞

i=n aip
i where ai ∈ {0, . . . , p− 1}.

Proof. It suffices to show that Z/pnZ = Zp/pnZp. Let fn : Z → Zp/pnZp be the natural
map. Clearly, ker(fn) = {x ∈ Z | vp(x) ≥ n} = pnZ. Let y ∈ Zp/pnZp and c ∈ Zp be a
lift. Since Z is dense in Zp, there is x ∈ Z such that x ∈ c+ pnZp, i.e. fn(x) = y.
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2 Complete Valued Fields

2.1 Hensel’s Lemma

Theorem 2.1 (Hensel’s Lemma version 1). Let (K, | · |) be a complete discretely valued
field. Let f(t) ∈ OK [t] and assume there is a ∈ OK such that |f(a)| < |f ′(a)|2. Then there
exists a unique x ∈ OK such that f(x) = 0 and |x− a| < |f ′(a)|.

Proof. Let π ∈ OK be a uniformizer and let r = v(f ′(a)). We construct a sequence (xn)n
in OK such that (i) f(xn) ≡ 0 (mod πn+2r) and (ii) xn ≡ xn+1 (mod πn+r).

Take x1 = a, then f(x1) ≡ 0 (mod π1+2r) by assumption. Suppose we have constructed

x1, . . . , xn satisfying (i) and (ii). Define xn+1 = xn − f(xn)
f ′(xn)

. Since xn ≡ x1 (mod πr+1),

v(f ′(xn)) = r and hence f(xn)
f ′(xn)

≡ 0 (mod πn+r) by (i).

Thus, xn+1 ≡ xn (mod πn+r), so (ii) holds. Note that f(xn+1) = f(xn)+f
′(xn)c+g(xn)c

2

where c = − f(xn)
f ′(xn)

. Since c ≡ 0 (mod πn+r), we get f(xn+1) ≡ f(xn) + f ′(xn)c ≡ 0

(mod πn+2r+1).

Property (ii) implies that (xn)n is Cauchy. So let x ∈ OK such that xn → x. By (i)
it follows that f(x) = limn→∞ f(xn) = 0. Moreover (ii) implies that a = x1 ≡ xn
(mod πr+1) for all n, hence |x− a| < |f ′(a)|.

Uniqueness: Suppose x′ also satisfies f(x′) = 0 and |x′ − a| < |f ′(a)|. Let δ = x′ − x.
Then |δ| = |x′ − x| < |f ′(a)|. Also 0 = f(x′) = f(x + δ) = f(x) + f ′(x)δ + (. . . )δ2.
Hence |f ′(x)δ| ≤ |δ|2. Since a ≡ x (mod π1+r), we have f ′(x) ≡ f ′(a) ̸≡ 0 (mod π1+r),
so |f ′(x)| = |f ′(a)|. Thus, if δ ̸= 0, we would get |f ′(a)| ≤ |δ|, a contradiction.

Corollary 2.2.

Q×
p /(Q×

p )
2 ∼=

{
(Z/2Z)2 if p > 2,

(Z/2Z)3 if p = 2.

Proof. Case p > 2. Let b ∈ Z×
p . Applying Hensel’s Lemma to x2 − b, we find that

b ∈ (Z×
p )

2 iff b̄ ∈ (F×
p )

2. Thus Z×
p /(Z×

p )
2 ∼= F×

p /(F×
p )

2 ∼= Z/2Z. We have an isomorphism
Z×
p × Z ∼= Q×

p , then done.

Case p = 2. Let b ∈ Z×
p and f(x) = x2 − b. Let b ≡ 1 (mod 8). |f(1)|2 ≤ 2−3 < 2−2 =

|f ′(1)|2. Thus, f has a unique root a with a ≡ b (mod 4).
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Hence, b ∈ (Z×
p )

2 iff b ≡ 1 (mod 8). Thus, Z×
2 /(Z

×
2 )

2 ∼= (Z/8Z)2 ∼= Z/2Z × Z/2Z. We
conclude as in the case p > 2.

Theorem 2.3 (Hensel’s Lemma version 2). Let (K, | · |) be a complete discretely valued
field and f(x) ∈ OK [x]. Suppose that f̄(x) ∈ k[x] factorises as f̄(x) = ḡ(x)h̄(x) in k[x]
with ḡ(x), h̄(x) coprime. Then there is a factorization f(x) = g(x)h(x) in OK [x] with
ḡ(x) ≡ g(x) (mod m), h̄ ≡ h (mod m) and deg g = deg ḡ.

Proof. Example Sheet 1.

Corollary 2.4. Let f(x) = anx
n + · · · + a0 ∈ K[x] where (K, | · |) is complete discretely

valued with a0, an ̸= 0. If f is irreducible, then |ai| ≤ max{|a0|, |an|} for all i.

Proof. Upon rescaling we may assume that f ∈ OK [x] with maxi |ai| = 1, so we need to
show that |a0| = 1 or |an| = 1. Suppose this is not the case. Let r be minimal such that
|ar| = 1. Then 0 < r < n. Thus we have f(x) ≡ xr(ar + · · · + anx

n−r) (mod m). By
Hensel’s Lemma version 2 we can lift this factorization to a non-trivial factorization over
OK , contradicting the irreducibility.

2.2 Teichmüller Lifts

Definition. A ring R of characteristic p > 0 is called perfect if the Frobenius x 7→ xp is
a bijection.

Theorem 2.5. Let (K, | · |) be a complete discretely valued field such that k = OK/m is
a perfect field of characteristic p. Then there exists a unique map [·] : k → OK such that

(i) a = [a] mod m

(ii) [ab] = [a][b]

Moreover if charK = p, this lifting [·] is a ring homomorphism.

The element [a] ∈ OK is called the Teichmüller lift of a.

Lemma 2.6. Let (K, | · |) be as in the theorem and π ∈ OK a uniformizer. Let x, y ∈ OK
such that x ≡ y (mod πk) for some k ≥ 1. Then xp ≡ yp (mod πk+1).

Proof. Let x = y + uπk with u ∈ OK . Then

xp =

p∑
i=0

(
p

i

)
yp−i(uπk)i = yp + pπk(. . . ) + upπpk ≡ yp (mod πk+1).
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Proof of the theorem. Let a ∈ k. For each i ≥ 0 we choose a lift yi ∈ OK of a1/p
i
and we

define xi = yp
i

i . We claim that (xi)i is a Cauchy sequence and its limit x is independent
of the choice of yi. By construction yi ≡ ypi+1 (mod π). By the lemma and induction

we obtain yp
r

i ≡ yp
r+1

i+1 (mod πr+1), so xi ≡ xi+1 (mod πi+1) (take r = i). Then (xi)i is

Cauchy, so xi → x ∈ OK . Suppose (x′i)i arises from another choice of y′i lifting a
1/pi . Then

(x′i)i is Cauchy and x′i → x′ ∈ OK . Let x′′i = xi for i even and x′′i = xi for i odd. Then
x′′i arises in a similar way and we get that x′′i is Cauchy. But then the subsequences xi, x

′
i

must converge to the same limit, i.e. x = x′.

We define [a] = x. Then xi = yp
i

i ≡ (a1/p
i
)p

i
= a (mod π), so [a] is indeed a lift of a, i.e.

(i) is satisfied.

Let b ∈ k and we choose ui ∈ OK a lift of b1/p
i
. Let zi = up

i

i . Then limi zi = [b]. Now uiyi
is a lift of (ab)1/p

i
, hence [ab] = limi→∞ xizi = limi xi limi zi = [a][b]. This shows that (ii)

is satisfied.

Suppose that charK = p. yi + ui is a lift of a1/p
i
+ b1/p

i
= (a + b)1/p

i
, so [a + b] =

limi→∞(yi + ui)
pi = limi→∞ yp

i

i + up
i

i = limi xi + limi zi = [a] + [b].

Uniqueness: Let ϕ : k → OK be another such map. Then for a ∈ k, ϕ(a1/pi) lifts a1/pi . It
follows that [a] = limi→∞ ϕ(a1/p

i
)p

i
= ϕ(a).

E.g. K = Qp, [·] : Fp → Zp. a ∈ F×
p , [a]

p−1 = [ap−1] = [1] = 1, so [a] is a (p− 1)-th root of
unity.

More generally:

Lemma 2.7. (K, | · |) complete discretely valued field. If k = OK/m ⊆ Falg
p , then [a] ∈ OK

is a root of unity.

Theorem 2.8. Let (K, | · |) be a complete discretely valued field with charK = p > 0.
Assume k is perfect. Then K ∼= k((t)).

Proof. It suffices to show that OK ∼= kJtK. Fix π ∈ OK a uniformizer, let [·] : k → OK
be the Teichmüller lift. Define φ : kJtK → OK by φ(

∑∞
i=0 ait

i) =
∑∞

i=0[ai]π
i. Then φ

is a ring homomorphism since [·] is and it is a bijection since every element in OK has a
unique π-adic expansion.

2.3 Extensions of complete valued fields

Theorem 2.9. Let (K, | · |) be a complete non-archimedean discretely valued field and
L/K a finite extension of degree n. Then

(1) | · | extends uniquely to an absolute value | · |L on L defined by

|y|L = |NL/K(y)|1/n.
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(2) L is complete w.r.t. | · |L.

Definition. Let Let (K, | · |) be a non-archimedean valued field, V a vector space over K.
A norm on V is a function ∥·∥ : V → R≥0 satisfying

(i) ∥x∥ = 0 iff x = 0,

(ii) ∥λx∥ = |λ| ∥x∥ for λ ∈ K,x ∈ V ,

(iii) ∥x+ y∥ ≤ max{∥x∥ , ∥y∥} for x, y ∈ V .

Example. Let V be finite-dimensional over K and e1, . . . , en a basis for V . The sup-norm
on V (relative to this basis) is defined by

∥x∥sup = sup
i
|xi|

where x =
∑

i xiei.

Definition. Two norms ∥·∥1 , ∥·∥2 on V are equivalent if there are C,D > 0 such that
C ∥x∥1 ≤ ∥x∥2 ≤ D ∥x∥1 for all x ∈ V .

Note that two norms are equivalent iff they induce the same topology.

Proposition 2.10. Let (K, | · |) be a complete non-archimedean valued field and V a finite
dimensional vector space over K. Then V is complete w.r.t. any sup-norm.

Proof. Easy, as in the real case.

Theorem 2.11. Let (K, | · |) be complete non-archimedean valued field and V a finite
dimensional vector space over K. Then any two norms on V are equivalent, in particular
V is complete w.r.t. any norm.

Proof. Since equivalence of norms is an equivalence relation, we may assume that every
norm ∥·∥ is equivalent to the sup-norm w.r.t. to some chosen basis e1, . . . , en. Set D :=
maxi{∥ei∥}. Then clearly, ∥x∥ ≤ D ∥x∥sup for all x ∈ V . To find the constant C in the
other direction (C ∥x∥sup ≤ ∥x∥) we induct on n. For n = 1 the existence of C is clear
since every element of V is a multiple of e1. Let n > 1. Set Vi = ⟨e1, . . . , ei−1, ei+1, . . . , en⟩.
By induction hypothesis Vi is complete, hence closed in V . Then ei + Vi is also closed for
all i, thus so is S =

⋃n
i=1(ei + Vi). S is a closed subset that does not contain 0, hence

there exists C > 0 such that B(0, C) ∩ S = ∅. Let 0 ̸= x =
∑

i xiei and suppose that
|xi| = ∥x∥sup. Then

1
xi
x ∈ S, so ∥ 1

xi
x∥ ≥ C, i.e. ∥x∥ ≥ C ∥x∥sup.

Lemma 2.12. Let (K, | · |) be a valued field. Then OK is integrally closed in K.

Proof of Theorem 2.9. We show that | · |L = |NL/K(·)|1/n defines an absolute value on L.
The only non-trivial property is that |x+y|L ≤ max{|x|L, |y|L}. Let OL = {y ∈ L | |y|L ≤
1}. We claim that OL is the integral closure of OK in L and hence in particular a subring.
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Assuming this we prove the ultrametric inequality. Wlog we may assume that |x|L ≤ |y|L.
Then |x/y|L ≤ 1, so x/y ∈ OL. But then also x/y + 1 ∈ OL and so |x+ y|L ≤ |y|L.

Proof of the claim: Suppose y ∈ L is integral over OK , let f(x) = xm + am−1x
m−1 +

· · · + a0 ∈ K[x] be its minimal polynomial. Since the coefficients are integral over OK
and OK is integrally closed, we have f(x) ∈ OK [x]. Then |NL/K(y)| =

∣∣±ak0∣∣ ≤ 1, so
y ∈ OL. Conversely, suppose y ∈ OL and let f(x) = xm + am−1x

m−1 + · · · + a0 ∈ K[x]
be its minimal polynomial over K. By 2.4 we have |am−1|, . . . , |a1| ≤ max{1, |a0|} = 1, so
f ∈ OK [x] and thus y is integral over K.

This shows that | · |L is an absolute value. It clearly extends the absolute value on K. If
| · |′L is another absolute value on L extending | · |, then | · |L, | · |′L are norms on L. So
by Theorem 2.11 they are equivalent. Thus | · |′L = | · |cL for some c ∈ R>0. Since both
absolute values agree on K, we must have c = 1.

Let (K, | · |) be a complete non-archimedean discretely valued field.

Corollary 2.13. Let L/K be a finite extension.

(i) L is discretely valued w.r.t. | · |L.

(ii) OL is the integral closure of OK in L.

Proof. (ii) had been proven during the proof of the theorem.

For (i) let v be the valuation on K and vL its extension to L (via the extension of the
absolute value). Then vL(y) =

1
nv(NL/K(y)), so vL(L

×) ⊆ 1
nv(K

×) is also discrete.

Corollary 2.14. Let Kalg/K be an algebraic closure. Then the absolute value on K
extends uniquely to a unique absolute value on Kalg.

Remark: | · |Kalg is never discrete. E.g. K = Qp, n
√
p ∈ Qalg

p for all n ∈ Z≥0. Then
v(n
√
p) = 1

nv(p) =
1
n .

Proposition 2.15. Let L/K be a finite extension. Assume that

(i) OK is compact.

(ii) The extension kL/k of residue fields is finite and separable.

Then there exists α ∈ OL such that OL = OK [α].

(Later we will see that condition (i) already implies (ii))

Proof. Since kL/k is separable there exists ᾱ ∈ kL such that kL = k(ᾱ). Let α ∈ OK
be a lift of ᾱ and let g(x) ∈ OK [x] be a monic lift of the minimal polynomial of ᾱ.
Fix a uniformizer πL ∈ OL. As ḡ(x) ∈ k[x] is separable, we have g(α) ≡ 0 (mod πL),
but g′(α) ̸≡ (mod πL). Thus, by replacing α by α + πL if necessary we may assume
that v(g(α)) = 1 (where v is the normalized valuation on L). As OK is compact, so is

11



OK [α], hence it is closed in OL. Since kL = k(ᾱ), OK [α] contains a set {λi} of coset
representatives of kL = OL/βOL where β = g(α) ∈ OK [α]. So every y ∈ OL can be
written as

∑∞
i=0 λiβ

i with λi ∈ OK [α]. By truncating we see that y is in the closure of
OK [α], hence OK [α] = OL.

Remark: Assumption (i) is actually not necessary.

12



3 Local Fields

Definition. Let (K, | · |) be a valued field. K is a local field if it is complete and locally
compact.

Proposition 3.1. Let (K, | · |) be a non-archimedean complete valued field. Then TFAE:

(i) K is locally compact.

(ii) OK is compact.

(iii) v is discrete and k = OK/m is finite.

Proof. (i) =⇒ (ii). Let U be a compact neighborhood of 0. Then there exists 0 ̸= x ∈ OK
such that xOK ⊆ U . Since xOK is closed, xOK is compact. From this it follows that OK
is compact as multiplication by x defines a homeomorphism OK → xOK .

(ii) =⇒ (i). Immediate.

(ii) =⇒ (iii). Let x ∈ m and Ax ⊆ OK be a set of coset representatives for OK/xOK .
Then OK =

⋃
y∈Ax

y+xOK a disjoint open cover. As OK is compact, Ax and so OK/xOK
is finite, hence OK/m is finite. Suppose v is not discrete. Let x = x1, x2, . . . such that
v(x1) > v(x2) > · · · > 0. Then x1OK ⊊ x2OK ⊊ · · · ⊊ OK . This is not possible as
OK/x1OK is finite.

(iii) =⇒ (ii). Let (xn)n be a sequence in OK and fix a uniformizer π ∈ OK . Since
πiOK/πi+1OK ∼= k, we have OK/πiOK is finite for all i. Since OK/πOK is finite, there
exists a ∈ OK/πOK and a subsequence (x1n)

∞
n=1 such that x1n ≡ a (mod π) for all n.

Since OK/π2OK is finite, there exists a2 and a subsequence (x2n)n of (x1n) such that
x2n ≡ a2 (mod π2OK). Continue like this and get a sequence (xin)n for i = 1, 2 . . . such
that (1) (x(i+1)n)n is a subsequence of (xin)n and (2) for any i there exists ai ∈ OK/πiOK
such that xin ≡ a (mod πiOK) for all n. Then necessarily ai ≡ ai+1 (mod πi) for all i.

Now let yi = xii, this defines a subsequence of (xn)n. Moreover yi ≡ yi+1 (mod πiOK),
so (yi)i is Cauchy, hence converges by completeness.

Examples.

(i) Qp is a local field.

(ii) Fq((t)) is a local field.

13



Proposition 3.2. Let K be a non-archimedean local field. Under the isomorphism OK ∼=
lim←−nOK/π

nOK the topology on OK coincides with the profinite topology.

Proof. One checks that the sets B = {a + πnOK | n ∈ Z≥1, a ∈ OK} is a basis of open
sets in both topologies.

Lemma 3.3. Let K be a non-archimedean local field and L/K a finite extension. Then
L is a local field.

Proof. We know that L is complete and discretely valued. It suffices to show that
kL = OL/mL is finite. Let α1, . . . , αn be a basis for L as a K-vector space. Then the
corresponding sup-norm is equivalent to | · |L, so there exists r > 0 such that OL ⊆ {x ∈
L | ∥x∥sup ≤ r}. Take a ∈ K such that |a| ≥ r. Then OL ⊆ ⊕ni=1aαiOK . Thus, OL
is finitely generated as a OK-module, so kL is finitely generated as a k-module, so kL is
finite.

Definition. A non-archimedean valued field (K, | · |) has equal characteristic if charK =
char k, otherwise mixed characteristic.

Theorem 3.4. Let K be a non-archimedean local field of equal characteristic p > 0. Then
K ∼= Fpn((t)).

Proof. We know that the residue field is finite, say Fpn . Then it is perfect, so we know
from the Teichmüller lifts that K ∼= Fpn((t)).

Lemma 3.5. An absolute value on a field K is non-archimedean iff it is bounded on Z.

Proof. “⇒” obvious from the ultrametric inequality.

“⇐” Suppose |n| ≤ B for all n ∈ Z. Let x, y ∈ K such that |x| ≤ |y|. Then

|x+ y|m =

∣∣∣∣∣
m∑
i=0

(
m

i

)
xiym−i

∣∣∣∣∣ ≤
m∑
i=0

∣∣∣∣(mi
)
xiym−i

∣∣∣∣ ≤ (m+ 1)B|y|m.

Then |x + y| ≤ [(m + 1)B]1/m|y|. Letting m → ∞ we get |x + y| ≤ |y|, so the absolute
value is non-archimedean.

Theorem 3.6 (Ostrowski’s Theorem). Any non-trivial absolute value on Q is equivalent
to either the usual absolute value | · |∞ or a p-adic absolute value | · |p for some prime p.

Proof. Case 1. | · | is archimedean. We fix an integer b > 1 such that |b| > 1 (exists by
previous lemma). Let a > 1 be an integer and write bn in base a:

bn = cma
m + cm−1a

m−1 + · · ·+ c0

14



where 0 ≤ ci < a and cm ̸= 0. Let B = max0≤c<a |c|. Then we have

|b|n ≤ (m+ 1)Bmax(|a|m, 1)

Then |b| ≤ [(n(loga b) + 1)B]1/nmax(|a|loga b, 1) (Note that m ≤ n loga b) This goes to 1
as n→∞. Therefore |b| ≤ max(|a|loga b, 1) Then |a| > 1, and |b| ≤ |a|loga b. Switching the
roles of a and b, we obtain |a| ≤ |b|logb a. Then these two inequalities we get

log |a|
log a

=
log |b|
log b

=: λ

Then |a| = aλ for all a ∈ Z>1. Then |x| = |x|λ∞ for all x ∈ Q. Hence | · | is equivalent to
| · |∞.

Case 2. | · | is non-archimedean. Then we have |n| ≤ 1 for all n ∈ Z. As | · | is non-trivial,
there exists n ∈ Z>0 such that |n| < 1. Then there is a prime factor p of n such that
|p| < 1. Suppose that there exists another prime q ̸= p with |q| < 1. Then rp + sq = 1
for some integers r, s ∈ Z. Then 1 = |1| = |rp + rs| < 1 by the ultrametric inequality, a
contradiction. Then α := |p| < 1 and |q| = 1 for all primes q ̸= p. By decomposition into
prime factors we see that this uniquely determines | · | and shows that it is equivalent to
| · |p.

Theorem 3.7. Let (K, | · |) be a non-archimedean local field of mixed characteristic. Then
K is a finite extension of Qp for some prime p.

Proof. As K has mixed characterstic, charK = 0, so Q ⊆ K. K is non-archimedean,
so | · ||Q is equivalent to | · |p for some prime p1. As K is complete we get Qp ⊆ K.
Let π ∈ OK be a uniformizer, v normalized valuation on K and set v(p) = e. Then
OK/pOK ∼= OK/πeOK is finite. Let x1, . . . , xn ∈ OK be coset representatives for a basis
of OK/pOK as a Fp-vector space. Then {

∑n
i=1 aixi | ai ∈ {0, 1, . . . , p−1}} is a set of coset

representatives for OK/pOK . Let y ∈ OK . We then get

y =
∞∑
i=0

(
n∑
i=1

aijxi

)
pi =

n∑
j=1

( ∞∑
i=0

aijp
i

)
xj .

Note that
∑∞

i=0 aijp
i converges in Zp, so the xj give a generating set of OK over Zp. Then

K is finite over Qp.

Theorem 3.8. Let (K, | · |) be an archimedean local field. Then K ∼= R or K ∼= C.

Proof. See example sheet.

1Addendum: We also need that | · ||Q is non-trivial. This follows from the fact that OK/m is finite, so
that there exists n ∈ Z with n ∈ m, i.e. |n| < 1.
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4 Global Fields

Definition. A global field is a field which is either

(i) an algebraic number field (i.e. a finite extension of Q) or

(ii) a global function field (i.e. a finite extension of Fp(t)).

Lemma 4.1. Let (K, | · |) be a complete discretely valued field, L/K a finite Galois ex-
tension with absolute value | · |L extending the one on K. Then for any x ∈ L and
σ ∈ Gal(L/K) we have |σx|L = |x|L.

Proof. Follows from the uniqueness of extensions of absolute values on complete fields.

Lemma 4.2 (Krasner’s Lemma). Let (K, | · |) be a complete discretely valued field. Let
f(x) ∈ K[x] be a separable irreducible polynomial with roots α1, . . . , αn ∈ Kalg. Suppose
β ∈ Kalg is such that |β − α1| < |β − αi| for i = 2, . . . , n. Then K(α1) ⊆ K(β).

Proof. Let L = K(β), L′ = L(α1, . . . , αn). L
′/L is Galois. Let σ ∈ Gal(L′/L). We have

|β − σα1| = |σ(β − α1)| = |β − α1| < |β − αi| for i ̸= 1. Therefore σα1 = α1. Hence
α1 ∈ L = K(β).

Proposition 4.3. Let (K, |·|) be a complete discretely valued field and f(x) =
∑n

i=0 aix
i ∈

OK [x] be a separable irreducible monic polynomial. Let α ∈ Kalg be a root of f . Then
there exists ε > 0 such that for any g(x) =

∑n
i=0 bix

i ∈ OK [x] monic with |ai − bi| < ε,
there exists a root β of g(x) such that K(α) = K(β).

Proof. Let α = α1, . . . , αn be the roots of f (which are necessarily distinct). Then f ′(α1) ̸=
0. We choose ε sufficiently small such that |g(α1)| < |f ′(α)|2 and |f ′(α1)−g′(α1)| < |f ′(α)|.
Then we have |g(α1)| < |f ′(α1)|2 = |g′(α1)|2. By Hensel’s Lemma applied to g (in the field
K(α1)) there exists β ∈ K(α1) such that g(β) = 0 and |β − α1| < |g′(α1)| = |f ′(α1)| =∏n
i=2 |α1 − αi| ≤ |α1 − αi| for i = 2, . . . , n (by integrality). Since |β − α1| < |α1 − αi| =
|β − αi|, by Krasner’s lemma α1 ∈ K(β) and hence K(α1) = K(β).

Theorem 4.4. Let K be a local field, then K is the completion of a global field.

Proof. Case 1: | · | is archimedean. Then K is R or C and thus the completion of Q or
Q(i) with | · |∞.
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Case 2: |·| non-archimedean, equal characteristic, so K ∼= Fq((t)), then K is the completion
of Fq(t) with the t-adic absolute value.

Case 3: | · | non-archimedean, mixed characteristic, so K = Qp(α) where α is a root
of a monic irreducible polynomial f(x) ∈ Zp[x]. Since Z is dense in Zp, we can choose
g(x) ∈ Z[x] that is close enough to f(x) such that K = Qp(β) where β is a root of g(x).
Then Q(β) is an algebraic number field. Since Q(β) is dense in Qp(β) = K, K is the
completion of Q(β) w.r.t. the restriction of | · | to Q(β).
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5 Dedekind Domains

Definition. A Dedekind domain is a ring R such that

(i) R is a noetherian integral domain.

(ii) R is integrally closed.

(iii) Every non-zero prime ideal is maximal.

Theorem 5.1. A ring R is a DVR iff R is a Dedekind domain with exactly one non-zero
prime ideal.

Lemma 5.2. Let R be a noetherian ring and I ⊆ R a non-zero ideal, then there exist
non-zero prime ideals p1, . . . pr ⊆ R such that p1 . . . pr ⊆ I.

Proof. Suppose not, then there is an ideal I maximal with the property that it contains no
product of prime ideals. Then I is not prime, so there are elements x, y ∈ R\I with xy ∈ I.
Then both I+(x) and I+(y) contain products of prime ideals. Then also (I+(x))(I+(y))
contains a product of prime ideals, a contradiction as (I + (x))(I + (y)) ⊆ I.

Lemma 5.3. Let R be an integral domain which is integrally closed. Let I ⊆ R be a
non-zero finitely generated ideal and x ∈ K = FracR. Then if xI ⊆ I, we have x ∈ R.

Proof. Let I = (c1, . . . , cn). Then xci =
∑n

j=1 aijcj for some aij ∈ R. Let A = (aij)ij .

Set B = xIn −A. Then B

c1...
cn

 = 0, so multiplying by the adjugate matrix of B we get

detB = 0. This determinant is a monic polynomial in x with coefficients in R, so x ∈ R
as R is integrally closed.

Proof of Theorem 5.1. “⇒” is clear.

For “⇐” we need to show that R is a PID. Let m be the maximal ideal of R.

Step 1. m is principal. Let x ∈ m by non-zero. Then (x) ⊇ mn for some n ≥ 1 by Lemma
5.2. Let n be minimal with this property. Then we may choose y ∈ mn−1\(x). Let π := x

y .

Then ym ⊆ mn ⊆ (x), so π−1m ⊆ R. Suppose π−1m ̸= R, then π−1m ⊆ m and so π−1 ∈ R
by the lemma. Hence y ∈ (x), which is a contradiction. Hence π−1m = R, i.e. m = (π).
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Step 2. R is a PID. Let R be any non-zero ideal. Consider the sequence of fractional
ideals I ⊆ π−1I ⊆ π−2I ⊆ . . . . Since π−1 /∈ R, we have π−kI ̸= π−(k+1)I for all k.
As R is noetherian, we can choose n maximal such that π−nI ⊆ R. If π−nI ̸= R, then
π−nI ⊆ m = (π), but then π−(n+1)I ⊆ R, contradicting the maximality of n, hence
π−nI = R, so I = (πn) is principal.

Corollary 5.4. Let R be a Dedekind domain and p ⊆ R a non-zero prime ideal. Then
R(p) is a DVR.

Definition. If R is a Dedekind domain, p ⊆ R a non-zero prime ideal, then we write vp
for the normalized valuation on FracR corresponding to the DVR R(p).

Theorem 5.5. Let R be a Dedekind domain. Then every non-zero ideal I ⊆ R can be
written uniquely as a product of prime ideals I = pe11 . . . perr (pi distinct,ei > 0).

Proof. Let I ⊆ R be a non-zero ideal. By Lemma 5.2 there are distinct prime ideals
p1, . . . , pr and β1, . . . , βr > 0 such that pβ11 · · · p

βr
r ⊆ I. Let 0 ̸= p be a prime ideal distinct

from the p1, . . . , pr. Then we have piR(p) = R(p), so IR(p) = R(p). Since R(pi) is a DVR
we have IR(pi) = (piR(pi))

αi = pαi
i R(pi). Then I = pα1

1 . . . pαr
r as this holds locally at each

prime. For uniqueness, if I = pα1
1 . . . pαr

r = pγ11 . . . pγrr , then pαi
i R(pi) = pγii R(pi), so αi = γi

by unique factorization in DVR’s.

5.1 Dedekind domains and extensions

Lemma 5.6. Let L/K be a finite separable field extension. Then the symmetric bilinear
pairing

( , ) : L× L −→ K

(x, y) 7−→ TrL/K(xy)

is non-degenerate.

Proof. As L/K is separable, we have L = K(α) for some α ∈ L. Consider the matrix A
representing ( , ) in the K-basis for L given by 1, α, . . . , αn−1. Then Aij = TrL/K(αi+j) =

BBT where B = (σj(α
i))ij where the σj are the embeddings of L/K into Kalg, so detA =

(detB)2 and detB =
∏

1≤i<j≤n(σj(α)− σi(α)) ̸= 0.

Theorem 5.7. Let OK be a Dedekind domain (where K = FracOK) and L a finite
separable extension of K. Then the integral closure OL of OK in L is also a Dedekind
domain.

Proof. OL is clearly an integrally closed integral domain.

Let e1, . . . , en ∈ L be a K-basis for L which we may assume to be contained in OL. Let
f1, . . . , fn ∈ L be the dual basis for e1, . . . , en w.r.t. the trace form, i.e. TrL/K(eifj) = δij .
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Let x ∈ OL, write x =
∑n

i=1 λifi where λi ∈ K. Then λi = TrL/K(xei) ∈ OK . Therefore
OL ⊆

∑n
i=1OKfi. Since OK is noetherian, OL is finitely generated (as a module) over

OK . Then OL is also noetherian.

Let q be a non-zero prime ideal in OL and let p = q∩OK . Then p is a prime ideal of OK
and it is non-zero, since if 0 ̸= x ∈ q, then xn + a1x

n−1 + · · · + an = 0 for some ai ∈ OK
with wlog an ̸= 0, then an ∈ p. So p is a non-zero prime ideal of OK , hence maximal.
We have an integral extension OK/p ⊆ OL/q. Since OK/p is a field, it follows easily that
OL/q is a field, hence q is maximal.

Corollary 5.8. The ring of integers in a number field is a Dedekind domain.

Conventions on normalizations: Let OK be the ring of integers of a number field K,
0 ̸= p ⊆ OK a prime ideal. We normalize | · |p by |x|p = Np−vp(x) where Np = #OK/p.

Now let OK be a Dedekind domain with K = FracOK . Let L/K be a finite separable
extension and OL the integral closure of OK in L.

It is easy to see that for 0 ̸= x ∈ OK we have (x) =
∏

p̸=0 p
vp(x).

Theorem 5.9. For p a non-zero prime ideal of OK , write pOL = P e11 · · ·P err with ei > 0.
Then the absolute values on L extending |·|p (up to equialence) are precisely |·|P1 , . . . , |·|Pr .

Proof. For any 0 ̸= x ∈ OK we have vPi(x) = eivp(x). Hence, up to equivalence, | · |Pi

extends | · |p. Now suppose | · | is an absolute value on L extending | · |p. Note that it is
bounded on Z, thus non-archimedean. Let R = {x ∈ L | |x| ≤ 1} ⊆ L be the valuation
ring corresponding to | · |. Then OK ⊆ R, and since R is integrally closed in L we have
OL ⊆ R. Set P = {x ∈ OL | |x| < 1} = OL ∩mR. P is a prime ideal of OL. It is non-zero
as it contains p. Then OL,P ⊆ R. By maximality of DVRs we have OL,P = R. From this
it follows that | · | is equivalent to | · |P . Since | · | extends | · |p, P ∩ OK = p. Therefore
P e11 · · ·P err ⊆ P , so P = Pi for some i.

Let K be a number field. If σ : K → R,C is a real or complex embedding, then x 7→
|σ(x)|∞ defines an absolute value on K, denoted by | · |σ.

Corollary 5.10. Let K be a number field with ring of integers OK . Then any absolute
value on K is equivalent to either | · |p for some non-zero prime ideal p ⊆ OK or | · |σ for
some embedding σ : K → R or C.

Proof. Case | · | is non-archimedean. Then | · ||Q is equivalent to | · |p for some prime p.
Thus by the Theorem | · | ∼ | · |p for some prime p | p.

The archimedean case is an exercise.
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5.2 Completions

Setup as before: OK Dedekind domain, L/K finite separable extension. Let p ⊆ OK , P ⊆
OL non-zero prime ideals with P | p. We write Kp and LP for the completion with respect
to the p- resp. P -adic absolute values.

Lemma 5.11.

(i) The natural map πP : L⊗K Kp → LP is surjective.

(ii) [LP : Kp] ≤ [L : K].

Proof. (ii) is immediate from (i). Consider M = LKp = imπP . M is complete as it is a
finite extension of Kp and L ⊆M ⊆ LP , thus M = LP .

Theorem 5.12. The natural map L⊗K Kp →
∏
P |p LP is an isomorphism.

Proof. Write L = K(α) and let f(x) ∈ K[x] be the minimal polynomial of α. Then
we have f(x) = f1(x) . . . fr(x) in Kp[x] where fi ∈ Kp[X] are distinct irreducible. Since
L = K[X]/(f(x)) we have L ⊗K Kp = Kp[X](f(x)) ∼=

∏r
i=1Kp[x]/(fi(x)). Let Li =

Kp[x]/(fi(x)). This is a finite extension ofKp. Then Li contains both L andKp. Moreover,
L is dense inside Li. Indeed, since K is dense in Kp, we can approximate coefficients of an
element of Kp[x]/(fi(x)) by an element in K[x]/f(x) = L. The theorem will follow from
the following three claims:

(1) Li ∼= LP for some prime P of OL dividing p (and the isomorphism fixes L and Kp)

(2) Each P appears at most once.

(3) Each P appears at least once.

Proof:

(1) Since [Li : Kp] <∞, there is a unique absolute value | · |Li on Li extending | · |p. We
must have that | · |Li |L is equivalent to | · |P for some P | p. Since L is dense in Li and
Li is complete, we have Li ∼= LP .

(2) Suppose φ : Li ∼= Lj is an isomorphism preserving L and Kp, then φ : Kp[x]/(fi(x))→
Kp[x]/(fj(x)) takes x to x and hence fi = fj , i.e. i = j.

(3) By the previous lemma the map πP : L⊗KKp → LP is surjective for every P | p. Since
LP is a field, πP factors through Li for some i and we have Li ∼= LP by surjectivity.

Corollary 5.13. For x ∈ L,

NL/K(x) =
∏
P |p

NLP /Kp
(x),

TrL/K(x) =
∑
P |p

TrLP /Kp
(x).
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5.3 Decomposition groups

Let 0 ̸= p be a prime ideal of OK . Let pOL = P e11 . . . P err where the Pi are distinct prime
ideals in OL, ei > 0.

ei is called the ramification index of Pi over p. fi := [OL/Pi : OK/p] is called the residue
class degree of Pi over p.

Theorem 5.14.
∑r

i=1 eifi = [L : K]

Proof. Let S = OK\p. We note that S−1OL is the integral closure of S−1OK in L. Further-
more pS−1OL = S−1P e11 . . . P err and S−1OL/S−1Pi ∼= OL/Pi and S−1OK/S−1p ∼= OK/p.
Thus, we may assume that OK is a DVR. By CRT, we have OL/pOL ∼=

∏r
i=1OL/P

ei
i .

We count dimensions of both sides as k = OK/p vector spaces. For each i we have an
increasing sequence of k-subspaces:

0 ⊆ P ei−1
i /P eii ⊆ . . . ⊆ Pi/P

ei
i ⊆ OL/P

ei
i

Note that P ji /P
j+1
i is an OL/Pi-module and x ∈ P ji \P

j+1
i is a generator. (E.g. can prove

this after localization at Pi). So dimk P
j
i /P

j+1
i = fi and we have dimkOL/P eii = eifi. OL

has rank [L : K] over OK , so OL/pOL has dimension [L : K] over k.

Now assume that L/K is Galois. Then for any σ ∈ Gal(L/K), σ(Pi)∩OK = p and hence
σ(Pi) ∈ {P1, . . . , Pr}.

Proposition 5.15. The action of Gal(L/K) on {P1, . . . , Pr} is transitive.

Proof. Suppose not, then there are i ̸= j such that σ(Pi) ̸= Pj for all σ ∈ Gal(L/K).
There is x ∈ OL such that x ≡ 0 (mod Pj), x ≡ 1 (mod σ(Pi)) for all σ ∈ Gal(L/K). We
have NL/K(x) =

∏
σ σ(x) ∈ OK ∩ Pj = p ⊆ Pi, so σ(x) ∈ Pi for some σ, i.e. x ∈ σ−1(Pi),

a contradiction.

Corollary 5.16. Suppose L/K is Galois. Then e := e1 = · · · = er and f := f1 = f2 =
· · · = fr and we have n = efr.

Proof. For any σ ∈ Gal(L/K) we have pOL = σ(pOL) = σ(p1)
e1 · · ·σ(pr)er . By unique-

ness of prime ideal factorization we get e1 = · · · = er. Furthermore OL/Pi ∼= OL/σ(Pi)
via σ, so f1 = · · · = fr.

If L/K is an extension of complete discretely valued fields with normalized valuation
vL, vK , and uniformizers πL, πK , we have e := eL/K = vL(πK) (i.e. πKOK = πeLOL) and
f := fL/K = [kL : k].

Corollary 5.17. Let L/K be a finite separable extension of complete fields, then [L :
K] = ef .
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Remark: The corollary holds without assumption L/K separable (since in the case of
complete fields, OL is automatically finite over OK).

Definition. Let OK be a Dedekind domain. Let L/K be a finite Galois extension. The
decomposition group at a prime P of OL is the subgroup of Gal(L/K) is defined by

GP = {σ ∈ Gal(L/K) | σ(P ) = P}.

Note that any two decomposition groups of primes lying over the same prime in K are
conjugate.

Proposition 5.18. Suppose L/K is Galois and P | p. Then

(i) LP /Kp is Galois

(ii) There is a natural map res : Gal(LP /Kp) → Gal(L/K) which is injective and has
image GP .

Proof. (i) L/K is Galois, so L is the splitting field of a separable polynomial f(x) ∈ K[x].
Then LP /Kp is the splitting field of f(x) ∈ Kp[x], so LP /Kp is Galois.

(ii) Let σ ∈ Gal(LP /Kp). Then σ(L) = L since L/K is normal, hence we get a map
res : Gal(LP /Kp) → Gal(L/K). Since L is dense in LP , res is injective. We know
that |σx|P = |x|P for all σ ∈ Gal(LP /Kp) and x ∈ LP , hence σ(P ) = P for all σ ∈
Gal(LP /KP ), i.e. res(σ) ∈ GP . To show that the image is all of GP , it suffices to show
that #GP = fe = #Gal(LP /Kp) = [LP : Kp]

1. The first equality is immediate from
efr = n and the transitivity of the action of Gal(L/K) on the primes above p. The
equality [LP : Kp] = ef follows from Corollary 5.17 and the fact that e and f don’t change
when we take completions.

1Alternativley, one can directly see that the map is surjective: If σ ∈ GP , then σ is continuous for the
P -adic absolute value, hence extends to LP /Kp.
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6 Ramification Theory

6.1 Different and discriminant

Let L/K be an extension of algebraic number fields, n = [L : K]. Let x1, . . . , xn ∈ L. We
set

∆(x1, . . . , xn) = det(TrL/K(xixj))ij = det(σi(xj))
2 ∈ K

where σi : L → Kalg are the distinct embeddings. Note: If yi =
∑n

j=1 aijxj where

aij ∈ K, then ∆(y1, . . . , yn) = det(A)2∆(x1, . . . , xn) where A = (aij). If x1, . . . , xn ∈ OL,
then ∆(x1, . . . , xn) ∈ OK .

Lemma 6.1. Let k be a perfect field, R a finite-dimensional k-algebra. The trace form
( , ) : R × R → K, (x, y) = TrR/k(xy) is non-degenerate iff R ∼= k1 × · · · × km where
k1, . . . , km are finite field extensions of k.

Proof. Exercise on Sheet 3.

Theorem 6.2. Let 0 ̸= p ⊆ OK be a prime ideal.

(i) If p ramifies in L, then for every x1, . . . , xn ∈ OL we have p | ∆(x1, . . . , xn).

(ii) If p is unramified, then there are x1, . . . , xn ∈ OL such that p ∤ ∆(x1, . . . , xn).

Proof. Let pOL = P e11 . . . P err , where the Pi are distinct and ei > 0. Then R := OL/pOL ∼=∏r
i=1OL/P

ei
i . If p ramifies, then ei > 1 for some i, i.e. R is nilpotent elements, so it cannot

be the product of field extensions of k = OK/p. By the previous lemma the trace form
TrR/k is degenerate. So ∆(x̄1, . . . , x̄n) = 0 for all x̄i ∈ OL/pOL. This proves (i). The
argument for (ii) is the same.

Definition. The discriminant of L/K is the ideal dL/K ≤ OK generated by ∆(x1, . . . , xn)
for all choices of x1, . . . , xn ∈ OL.

Corollary 6.3. p ramifies in L iff p | dL/K
Definition. The inverse different is the fractional ideal

D−1
L/K := {y ∈ L | TrL/K(xy) ∈ OK ∀x ∈ OL}.

This is an OL-submodule of L containing OL.
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Lemma 6.4. D−1
L/K is a fractional ideal of OL.

Proof. Let x1, . . . , xn ∈ OL be a basis for L as a K-vector space. Set d := ∆(x1, . . . , xn) =
det(TrL/K(xixj)) ∈ OK . For x ∈ D−1

L/K write x =
∑n

j=1 λjxj with λj ∈ K. Then

TrL/K(xxi) =
∑n

j=1 λj TrL/K(xixj). Then multiplying with the adjugate matrix we get

dλj ∈ OK for all j, so dD−1
L/K ⊆ OL.

Definition. The inverse of D−1
L/K , denoted DL/K ⊆ OL, is the different ideal.

Let IL, IK be the groups of fractional ideals in L,K resp. Define NL/K : IL → IK on

prime ideals P by P 7→ (P ∩ OK)f(P |(P∩OK)) and extend multiplicatively.

Fact: NL/K(aOL) = NL/K(a)OK . To see this, use vp(NLP /Kp
(x)) = fP/pvP (x) for x ∈ L×

P .

Theorem 6.5. NL/K(DL/K) = dL/K

Proof. First assume that OK , OL are PID’s. Let x1, . . . , xn be an OK-basis for OL and
y1, . . . , yn be the dual basis with respect to the trace form. Then y1, . . . , yn form a basis
for D−1

L/K . Let σ1, . . . , σn : L→ K be the distinct embeddings. Then
∑n

i=1 σi(xj)σi(yk) =

TrL/K(xjyk) = δj,k. But ∆(x1, . . . , xn) = det(σi(xj))
2, so ∆(x1, . . . , xn)∆(y1, . . . , yn) = 1.

Write D−1
L/K = βOL with some β ∈ L. Then d−1

L/K = ∆(x1, . . . , xn)
−1 = ∆(y1, . . . , yn) =

∆(βx1, . . . , βxn) = NL/K(β)2∆(x1, . . . , xn) = NL/K(β)2dL/K . Then d−1
L/K = NL/K(β) =

NL/K(D−1
L/K). In general, localize at S = OK \ p and use S−1DL/K = DS−1OK/S−1OL

and
same for the discriminant.

Theorem 6.6. If OL = OK [α] and α has monic minimal polynomial g(x) ∈ OK [x], then
DL/K = (g′(α)).

Proof. Let α = α1, . . . , αn be the roots of g. Write g(x)
x−α = βn−1x

n−1+βn−2x
n−2+ · · ·+β0

with βi ∈ OL and βn−1 = 1. We claim that

n∑
i=1

g(x)

x− αi
· αri
g′(αi)

= xr

for 0 ≤ r ≤ n− 1. Indeed, the difference is a polynomial of degree < n which vanishes at
α1, . . . , αn.

Equating coefficients of Xs gives TrL/K(α
rβs

g′(α)) = δrs. So the dual basis (and hence the

OK-basis of D−1
L/K) of 1, α, . . . , αn−1 is β0

g′(α) , . . . ,
βn−1

g′(α) =
1

g′(α) . So D
−1
L/K is generated as a

fractional ideal by 1
g′(α) .

P prime of OL, p = P ∩ OK . We identify DLP /Kp
with a power of P .

Theorem 6.7. DL/K =
∏
P DLP /Kp

.
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Proof. Let x ∈ L, p ⊆ OK prime. Then (∗) TrL/K(x) =
∑

P |pTrLP /Kp
(x). Let r(P ) =

vP (DL/K), s(P ) = vP (DLP /Kp
).

“⊆” (i.e. r(P ) ≥ s(P )). Fix P and let x ∈ P−s(P ) \ P−s(P )+1. Then vP (x) = −s(P ) and
vP ′(x) ≥ 0 ≥ −s(P ) for all P ′ ̸= P . Then TrLP ′/Kp

(xy) ∈ OKp for all y ∈ OL and for all
P ′. So by (∗) TrL/K(xy) ∈ OKp for all y ∈ OL and for all p, so TrL/K(xy) ∈ OK for all

y ∈ OL, i.e. x ∈ D−1
L/K . So −s(P ) = vP (x) ≥ −r(P ).

“⊇” (i.e r(P ) ≤ s(P )). Fix P and let x ∈ P−r(P ) \ P−r(P )+1. Then vP (x) = −r(P ) and
vP ′(x) ≥ 0 for all P ′ ̸= P . By (∗) we have

TrLP /Kp
(xy) = TrL/K(xy)−

∑
P ′|p,P ′ ̸=P

TrLP ′/Kp
(xy)

for all y ∈ OL. By continuity TrLP /Kp
(xy) ∈ OKp for all y ∈ OLP

, so x ∈ D−1
LP /Kp

, i.e.

−vP (x) = r(P ) ≤ s(P ).

Corollary 6.8. dL/K =
∏
P dLP /Kp

.

6.2 Unramified and totally ramified extensions of local fields

Let L/K be a finite separable extension of non-archimedean local fields.

Definition. L/K is unramified (resp. ramified, fully ramified) if eL/K = 1 (resp. eL/K >
1, eL/K = [L : K]).

Lemma 6.9. Let M/L/K be finite extensions of local fields. Then fM/K = fM/LfL/K ,
eM/K = eM/LeL/K .

Proof. Clear from the definitions.

Theorem 6.10. There exists a field K0 with K ⊆ K0 ⊆ L such that

i) K0/K is unramified.

ii) L/K0 is totally ramified.

Moreover [K0 : K] = fL/K , [L : K0] = eL/K and K0/K is Galois.

Proof. Let k = Fq, so that kL = Fqf , f = fL/K . Set m = qf − 1. Let [·] : Fqf → L be the

Teichmüller lift for L. Let ξm = [α], for α a generator of F×
qf
. Then ξm is a primitive m-th

root of unity. Set K0 = K(ξm). This is Galois as it is the splitting field of xm−1. Let res :
Gal(K0/K)→ Gal(k0/K) be the natural map. For σ ∈ Gal(K0/K), we have σ(ξm) = ξm
if σ(ξm) ≡ ξm mod m0, since O×

K0
→ k×0 induces a bijection between the m-th roots of

unity. Hence res is injective. So fK0/K ≤ #Gal(K0/K) ≤ #Gal(k0/k) = fK0/K , so we
get [K0 : K] = fK0/K = f and eK0/K = 1 and res is an isomorphism. By multiplicativity
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of residue class/ramification degrees, we get fL/K0
= 1 and eL/K0

= eL/K = [L : K]/[K0 :
K] = [L : K0].

Theorem 6.11. k = Fq. For any n ≥ 1 there exists a unique unramified extension
L/K of degree n. Moreover, L/K is Galois and the natural restriction map Gal(L/K)→
Gal(kL/k) is an isomorphism. In particular, Gal(L/K) = ⟨FrobL/K⟩ where FrobL/K(x) ≡
xq mod mL for all x ∈ OL.

Proof. For n ≥ 1, take L = K(ζm), where m = qn − 1 and ζm is a primitive m-root of
unity. As in the theorem Gal(L/K) → Gal(kL/k) is an isomorphism. Therefore L/K is
unramified. Then L/K is unramified and Gal(L/K) is generated by a lift of x 7→ xq.1

Uniqueness: If L/K is degree n and unramified, then ζm ∈ L by Hensel’s Lemma or
Teichmüller lift and thus L = K(ζm) for degree reasons.

Corollary 6.12. L/K is finite Galois. The map res : Gal(L/K)→ Gal(kL/K) is surjec-
tive.

Proof. res factors as Gal(L/K) ↠ Gal(K0/K)
≃−→ Gal(kL/k).

Definition. L/K finite Galois. The inertia subgroup is

IL/K := ker(Gal(L/K)→ Gal(kL/k)).

Since eL/KfL/K = [L : K], we have #IL/K = eL/K . Also IL/K = Gal(L/K0).

Theorem 6.13.

(i) Let L/K be finite totally ramified, πL ∈ OL a uniformizer. Then the minimal poly-
nomial of πL is Eisenstein, OL = OK [πL] and L = K(πL).

(ii) Conversely, if f(x) ∈ OK [x] is Eisenstein and α is a root of f , then L = K(α) is a
totally ramified extension of K and α is a uniformizer in L.

Proof.

(i) Let e = [L : K] and f(x) = xm + am−1x
m−1 + · · · + a0 ∈ OK [x] be the minimal

polynomial of πL. Then m ≤ e. Since vL(K
×) = eZ, we have vL(aiπ

i
L) ≡ i mod e

for i < m, hence these terms have distinct valuations. As πmL = −
∑m−1

i=0 aiπ
i
L we

have m = vL(π
m
L ) = min0≤i≤m−1(i + evk(ai)). But this can only happen if e = m,

vK(ai) ≥ 1 for all i and vK(a0) = 1. So f is Eisenstein and L = K(πL). For y ∈ L
write y =

∑e
i=0 biπ

i
L, bi ∈ K. Then vL(y) = min0≤i≤e−1(i+ evK(bi)). Thus y ∈ OL

iff vL(y) ≥ 0 iff vK(bi) ≥ 0 iff y ∈ OK [πL].

1To get the inequality [L : K] ≤ n take the minimal polynomial of ζm and show that it is irreducible over
k.
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(ii) Let f(x) = xn+ an−1x
n−1+ · · ·+ a0 ∈ OK [x] be Eisenstein, and let e := eL/K where

L = K(α). Thus vL(ai) ≥ e and vL(a0) = e. If vL(α) ≤ 0, we have nvL(α) <
vL(an−1α

n−1 + · · · + a0), contradiction. So vL(α) > 0. Then for i ̸= 0, vL(aiα
i) >

e = vL(a0). Therefore nvL(α) = vL(α
n) = vL(−

∑n−1
i=0 aiα

i) = e.

6.3 Structure of Units

Let K be a finite extension of Qp, let e := eK/Q, π uniformizer in K.

Proposition 6.14. If r > e/(p− 1), then

exp(x) =
∞∑
i=0

xn

n!

converges on πrOK and induces an isomorphism (πrOK ,+) ∼= (1 + πrOK ,×).

Proof. vK(n!) = evp(n!) = e
n−sp(n)
p−1 ≤ en−1

p−1 , so for x ∈ πrOK and n ≥ 1 we have

vK(xn/n!) ≥ nr − en− 1

p− 1
= r + (n− 1)(r − e

p− 1︸ ︷︷ ︸
>0

).

So vK(xn/n!) → ∞ as n → ∞, so exp(x) converges. Since vK(xn/n!) ≥ r for n ≥ 1,
exp(x) ∈ 1 + πrOK .

Similarly consider log : 1+πrOK → πrOK where log(1+x) =
∑∞

n=1
(−1)n−1

n xn. Note that
vK(xn/n) = rn− evp(n) ≥ rn− en−1

p−1 = (n− 1)(r − e
p−1) + r, so the series converges and

also v(log(1 + x)) ≥ r, so log maps 1 + πrOK into πrOK .

The identities exp(X + Y ) = exp(X) exp(Y ), exp(log(1 +X)) = 1 +X, log(exp(X)) = X
hold in QJX,Y K. So exp : (πrOK ,+)→ (1 + πrOK ,×) is an isomorphism.

For K a local field we let UK = O×
K .

Definition. For s ∈ Z≥1, the s-th unit group U
(s)
K is defined by U

(s)
K = (1 + πsOK ,×).

We set U
(0)
K = UK .

We have . . . ⊆ U (s)
K ⊆ U (s−1)

K ⊆ . . . ⊆ U (0)
K = UK .

Proposition 6.15.

(i) U
(0)
K /U

(1)
K
∼= (k×,×)

(ii) U
(s)
K /U

(s+1)
K

∼= (k,+) for s ≥ 1.
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Proof. For (i) note that the reduction map O×
K → k× is surjective with kernel 1+πOK =

U
(1)
K .

For (ii) let f : U
(s)
K → k be defined by 1 + πsx 7→ x mod π. This is a surjective group

homomorphism with kernel U
(s+1)
K .

Corollary 6.16. Let [K : Qp] <∞. There exists a finite index subgroup of O×
K isomorphic

to (OK ,+).

Proof. Let r > e
p−1 . Then U

(r)
K
∼= (OK ,+) by the first proposition and U

(r)
k ⊆ UK has

finite index.

Remark: This is not true for K equal characteristic.

Example. Consider Zp for p > 2. Then e = 1, so that we can take r = 1. Then using
the Teichmüller lift we get

Z×
p

∼−→ (Z/pZ)× × (1 + pZp) ∼= Z/(p− 1)Z× Zp.

For p = 2 take r = 2, then Z×
2

∼−→ (Z/4Z)× × (1 + 4Z2) ∼= Z/2Z× Z2.

6.4 Higher ramification groups

Let L/K be a finite Galois extension of local fields, πL ∈ OL a uniformizer, vL the
normalized valuation on L.

Definition. For s ∈ R≥−1, the s-th ramification group is

Gs(L/K) = {σ ∈ Gal(L/K) | vL(σ(x)− x) ≥ s+ 1 for all x ∈ OL}.

E.g.G−1(L/K) = Gal(L/K) andG0(L/K) = {σ ∈ Gal(L/K) | σ(x) ≡ xmod π for all x ∈
OL} = ker(Gal(L/K)→ Gal(kL/k)) = IL/K .

Note: For s ∈ Z≥0, Gs(L/K) = ker(Gal(L/K)→ Aut(OL/πs+1
L OL)), hence Gs(L/K) is a

normal subgroup of Gal(L/K).

We get a filtration . . . ⊆ Gs ⊆ Gs−1 ⊆ . . . ⊆ G−1 = Gal(L/K).

Remark: Gs can only change at integer values of s. The indexing using real numbers is
used to define the upper numbering (see Chapter 9).

Theorem 6.17.

(i) For s ≥ 0, Gs = {σ ∈ G0 | vL(σ(πL)− πL) ≥ s+ 1}.

(ii)
⋂∞
s=0Gs = {1}.
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(iii) Let s ∈ Z≥0. There is an injective group homomorphism Gs/Gs+1 ↪→ U
(s)
L /U

(s+1)
L

induced by σ 7→ σ(πL)/πL. This map is independent of the choice of πL.

Proof. Let K0 ⊆ L be the maximal unramified extension of K in L. Upon replacing K by
K0 we may assume that L/K totally ramified.

(i) We know that OL = OK [πL]. From this it follows that if vL(σ(πL) − πL) ≥ s + 1,
then vL(σ(x)−x) ≥ s+1 for all x ∈ OL. Indeed, if x = f(πL) with f ∈ OK [x], then
σ(x) − x = f(σ(πL)) − f(πL) = (σ(πL) − πL)g(πL) for some polynomial g ∈ OL[x].
Then vL(σ(x)− x) ≥ vL(σ(πL)− πL) ≥ s+ 1.

(ii) Suppose σ ∈ Gal(L/K), σ ̸= 1. Then σ(πL) ̸= πL as L = K(πL). Hence vL(σ(πL)−
πL) <∞, so σ /∈ Gs for some s > 0.

(iii) Note: For σ ∈ Gs, s ∈ Z≥0 we have σ(πL) ∈ πL+πs+1
L OL, so σ(πL)/πL ∈ 1+πsLOL =

U
(s)
L . We claim φ : Gs → U

(s)
L /U

(s+1)
L , σ 7→ σ(πL)/πL is a group homomorphism

with kernel Gs+1. For σ, τ ∈ Gs, let τ(πL) = uπL, u ∈ O×
L , then (στ)(πL)/πL =

σ(τ(πL))/τ(πL) · τ(πL)/πL = σ(u)
u

σ(πL)
πL

τ(πL)
πL

. But σ(u) ∈ u + πs+1
L OL, so σ(u)

u ∈
1 + πs+1

L OL = U
(s+1)
L . So φ is a homomorphism. Moreover kerφ = {σ ∈ Gs | σπL ≡

πL mod πs+1
L } = Gs+1.

Corollary 6.18. Let L/K be a finite Galois extension of local fields. Then Gal(L/K) is
solvable.

Proof. For s ∈ Z≥−1 we have Gs/Gs+1
∼= a subgroup of Gal(kL/k) if s = −1, (k×L ,×) if

s = 0 or (kL,+) if s ≥ 1. This gives us a filtration of Gal(L/K) with abelian quotients
ending at 1.

Let p = char k. Then #(G0/G1) is coprime to p and #G1 = pn for some n ≥ 0. Thus G1

is the unique (since normal) Sylow p subgroup of G0 = IL/K .

Definition. The group G1 is the wild inertia group and G0/G1 is the tame quotient.
Let L/K be a finite separable extension of local fields. Say L/K is tamely ramified if
char k ∤ eL/K (equivalently G1 = 1 if L/K is Galois). Otherwise L/K is wildly ramified.

Theorem 6.19. Let [K : Qp] < ∞, L/K finite, DL/K = (πL)
δ(L/K). Then δ(L/K) ≥

eL/K − 1, with equality iff L/K is tamely ramified.

In particular, L/K is unramified iff DL/K = OL.

Proof. By Exercise Sheet 3 we have DL/K = DL/K0
DK0/K . So it suffices to check two

cases.
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(i) L/K unramified. Then OL = OK [α] for some α ∈ OL with kL = k(α). Let g(x) ∈
OK [x] be the minimal polynomial of α. Since [L : K] = [kL : k], g(x) ∈ k[x] is the
minimal polynomial of α. So g(x) is separable and hence g′(α) ̸≡ 0 mod πL. Thus
DL/K = (g′(α)) = OL.

(ii) L/K totally ramified. Then [L : K] = e and OL = OK [πL] where πL is the root
of some Eisenstein polynomial g(x) = xe +

∑e−1
i=0 aix

i ∈ OK [x]. Then g′(πL) =
eπe−1

L +
∑e−1

i=1 iaiπ
i−1
L . Then vL(g

′(πL)) ≥ e− 1 with equality iff p ∤ e.

Corollary 6.20. Let L/K be an extension of number fields, P ⊆ OL, P ∩OK = p. Then
e(P | p) > 1 iff P | DL/K .

Proof. Combine the theorem with the fact that the global different is the product of the
local differents.

Example. Let K = Qp, ξpn a primitive pn-th root of unity and L = Qp(ξpn). Then the

pn-th cyclotomic polynomial is Φpn(x) = xp
n−1(p−1) + xp

n−1(p−2) + · · ·+ 1 ∈ Zp[x].

Example Sheet 3: Φpn(x) is irreducible, so Φpn(x) is the minimal polynomial of ξpn . L/Qp

is Galois, totally ramified, degree pn−1(p− 1).

Let π = ξpn − 1. This is a uniformizer of OL. Then OL = Zp[ξpn − 1] = Zp[ξpn ]. Then
Gal(L/Qp) ∼= (Z/pnZ)×. Let σm be the Galois automorphism with σm(ξpn) = ξmpn . Then

vL(σm(π)−π) = vL(ξ
m
pn−ξpn) = vL(ξ

m−1
pn −1). Suppose m ̸≡ 1 mod pn. Let k be maximal

such that pk | m−1. Then ξm−1
pn is a primitive pn−k-th root of unity and hence ξm−1

pn −1 is

a uniformizer in L′ = Qp(ξ
m−1
pn ). So vL(ξ

m−1
pn − 1) = eL/L′ = eL/Qp

/eL′/Qp
= [L : Qp]/[L

′ :

Qp] = pk. So σm ∈ Gi iff pk ≥ i+ 1. Thus

Gi ∼=


(Z/pnZ)× i ≤ 0,

(1 + pkZ)/pnZ pk−1 − 1 < i ≤ pk − 1, 1 ≤ k ≤ n− 1,

{1} pn−1 − 1 < i.
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7 Local Class Field Theory

Recall some infinite Galois theory:

Proposition 7.1. Let L/K be a Galois extension. The restriction maps Gal(L/K) →
Gal(F/K) for finite subextensions F/K induce an isomorphism

Gal(L/K)
≃−→ lim←−

F/K finite

Gal(F/K).

We give Gal(L/K) the topology for which the above isomorphism becomes a homeomor-
phism.

Example. Gal(Falg
q /Fq) ≃ lim←−n∈NGal(Fqn/Fq) ∼= lim←−n∈N Z/nZ = Ẑ. Under this isomor-

phism the Frobenius Frq ∈ Gal(Falg
q /Fq) corresponds to 1 ∈ Ẑ.

Theorem 7.2 (Fundamental theorem of Galois theory). Let L/K be a Galois extension.
Endow Gal(L/K) with the profinite topology. Then there is a bijection:

{subextensions of L/K} ←→ {closed subgroups of Gal(L/K)}
F 7−→ Gal(L/F )

LH ←− [ H

Moreover, F/K is finite iff Gal(L/F ) is open and F/K Galois iff Gal(L/F ) is normal in
Gal(L/K) in which case Gal(F/K) ≃ Gal(L/K)/Gal(L/F ).

7.1 Weil Group

Let K be a local field, L/K a separable algebraic extension.

Definition.

(i) L/K is unramified if F/K is unramified for all finite subextensions F/K.

(ii) L/K is totally ramified if F/K is totally ramified for all finite subextensions F/K.

Proposition 7.3. Let L/K be an unramified extension. Then L/K is Galois and Gal(L/K) ≃
Gal(kL/k).
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Proof. Every finite subextension F/K is unramified, hence Galois. So L/K is Galois.
Moreover there exists a diagram:

Gal(L/K) Gal(kL/k)

lim←−F/K Gal(F/K) lim←−k′/kGal(k′/k)

≃ ≃

The subextensions L/F/K correspond via F 7→ kF bijectively to the intermediate exten-
sions kL/k

′/k and the Galois groups are isomorphic via the reduction map, hence we get
an isomorphism of the bottom two groups and the diagram commutes.

If L1, L2/K are finite unramified, then L1L2/K is unramified by Exercise Sheet 3. Thus
for any L/K there exists a maximal unramified subextension K0/K.

Let L/K be Galois. There exists a surjection res : Gal(L/K)→ Gal(K0/K) ≃ Gal(kL/k).
Set IL/K = ker(res) (Inertia subgroup).

Let FrkL/k ∈ Gal(kL/k) be the Frobenius x 7→ x#k and let ⟨FrkL/k⟩ be the subgroup
generated by FrkL/k.

Definition. Let L/K be Galois. The Weil groupW (L/K) ⊆ Gal(L/K) is res−1(⟨FrkL/k⟩).

Remark: If kL/k is finite, then W (L/K) = Gal(L/K). Otherwise W (L/K) ⊊ Gal(L/K).

There is a commutative diagram

0 IL/K W (L/K) ⟨FrkL/k⟩ 0

0 IL/K Gal(L/K) Gal(kL/k) 0

=

with exact rows.

We endow W (L/K) with the weakest topology such that

(1) W (L/K) is a topological group.

(2) IL/K is an open subgroup of W (L/K) where IL/K = Gal(L/K0) is equipped with the
profinite topology.

I.e. open sets are translates of open sets in IL/K by elements of W (L/K).

Warning: If kL/k is infinite,W (L/K) does not carry the subspace topology in Gal(L/K),
e.g. IL/K ⊆W (L/K) is not open in subspace topology.

Proposition 7.4. Let L/K be Galois.

(i) W (L/K) is dense in Gal(L/K)
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(ii) If F/K is a finite subextension of L/K, then W (L/F ) =W (L/K) ∩Gal(L/F ).

(iii) If F/K is a finite Galois subextension, then

W (L/K)/W (L/F ) ∼= Gal(F/K).

Proof.

(i) W (L/K) dense in Gal(L/K) iff for all F/K finite Galois subextensions W (L/K) in-
tersects every coset of Gal(L/F ) iff for all F/K finite Galois subextensionsW (L/K)→
Gal(F/K) is surjective. Consider the diagram

0 IL/K W (L/K) ⟨FrkL/k⟩ 0

0 IF/K Gal(F/K) Gal(kF /k) 0

a b c

Let K0/K be the maximal unramified extension contained in L. Then K0 ∩F is the
maximal unramified extension in F . Then Gal(L/K0) ↠ Gal(F/(K0 ∩ F )), so a is
surjective. Since Gal(kF /k) is generated by FrkF /k = FrkL/k|kF , c is surjective. By
diagram chase, b is surjective.

(ii) Easy from the definitions.

(iii)

W (L/K)/W (L/F ) =W (L/K)/(W (L/K) ∩Gal(L/F ))
∼= (W (L/K)Gal(L/F ))/Gal(L/F )

= Gal(L/K)/Gal(L/F ) ∼= Gal(F/K)

Note that W (L/K)Gal(L/F ) = Gal(L/K) as W (L/K) is dense in Gal(L/K) by
(i).

7.2 Statements of local class field theory

Let K be a local field and let Kab be the maximal abelian extension in Ksep.

We know thatKur =
⋃∞
m=1K(ζqm−1) where q = #k. Then kKur = Falg

q and Gal(Kur/K) ≃
Gal(Falg

q /Fq) ≃ Ẑ.

So Kur is abelian and hence Kur ⊆ Kab. There is an exact sequence

0→ IKab/K →W (Kab/K)→ Z→ 0.

Theorem 7.5.

34



(1) (Local Artin reciprocity) There exists a unique topological isomorphism ArtK : K× ≃−→
W (Kab/K) satisfying the following properties:

(i) ArtK(π)|Kur = FrKur/K for any uniformizer π ∈ K.

(ii) For each finite subextension L/K in Kab/K, ArtK(NL/K(L×))|L = {1}.

(2) Let L/K be finite abelian. Then ArtK induces an isomorphism K×/NL/K(L×) ≃
W (Kab/K)/W (Kab/L) ≃ Gal(L/K)

Remarks:

(i) Special case of Local Langlands.

(ii) Used to characterize global Artin map of global class field theory.

Properties of the Artin map:

• (Existence theorem) For any open finite index subgroup H ⊆ K× there exists a finite
abelian extension L/K such that NL/K(L×) = H. In particular, ArtK induces an
(inclusion reversing) isomorphism of posets:

{open finite index subgroups of K×} ←→ {finite abelian extensions L/K}
H 7−→ (Kab)ArtK(H)

NL/K(L×)←− [ L/K

• (Norm functoriality) Let L/K be a finite separable extension. There is a commuta-
tive diagram:

L× W (Lab/L)

K× W (Kab/K)

ArtL

NL/K res

ArtK

Proposition 7.6. Let L/K be a finite abelian extension of degree n. Then eL/K = [O×
K :

NL/K(O×
L )].

Proof. For x ∈ L×, we have vK(NL/K(x)) = fL/KvL(x). So we get a surjection

K×/NL/K(L×)
vK
↠ Z/fL/KZ

with kernel

(O×
KNL/K(L×))/NL/K(L×) = O×

K/(O
×
K ∩NL/K(L×)) = O×

K/NL/K(O×
L ).

By Theorem 7.5 (2), n = [K× : NL/K(L×)] = fL/K [O×
K : NL/K(O×

L )].

Corollary 7.7. Let L/K be a finite abelian extension. Then L/K is unramified iff
NL/K(O×

L ) = O
×
K .
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7.3 Construction of ArtQp

Recall: Qur
p =

⋃∞
m=1Qp(ζpm−1) =

⋃
p∤mQp(ζm).

Qp(ζpn)/Qp is totally ramified of degree pn−1(p−1) with θn : Gal(Qp(ζpn)/Qp) ≃ (Z/pnZ)×.
For n ≥ m ≥ 1 there is a commutative diagram:

Gal(Qp(ζpn)/Qp) Gal(Qp(ζpm)/Qp)

(Z/pnZ)× (Z/pmZ)×

res

θn≃ ≃ θm

proj

Set Qp(ζp∞) =
⋃∞
n=1Qp(ζpn). Then Qp(ζp∞/Qp) is Galois and we have

θ : Gal(Qp(ζp∞)/Qp)
≃−→ lim←−

n≥1

(Z/pnZ)× ≃ Z×
p .

We have Qp(ζp∞)∩Qur
p = Qp, so there is an isomorphism Gal(Qp(ζp∞)Qur

p /Qp) ≃ Ẑ×Z×
p .

Theorem 7.8 (Local Kronecker-Weber). Qab
p = Qur

p Qp(ζp∞).

Proof. Omitted

Construct ArtQp as follows: We have Q×
p ≃ Z× Z×

p . Then

ArtQp(p
nu) = ((FrQur

p /Qp
)n, θ−1(u−1)) ∈ Gal(Qur

p /Qp)×Gal(Qp(ζp∞)/Qp) ≃ Gal(Qab
p /Qp).

The image lies in W (Qab
p /Qp).

7.4 Construction of ArtK

Let K be a local field, π a uniformizer of K. For n ≥ 1, we will construct totally ramified
Galois extensions Kπ,n such that:

(i) K ⊆ . . . ⊆ Kπ,n ⊆ Kπ,n+1 ⊆ . . . .

(ii) For n ≥ m ≥ 1 there is a commutative diagram:

Gal(Kπ,n/K) Gal(Kπ,m/K)

O×
K/U

(n)
K O×

K/U
(m)
K

≃ ψn ≃ ψm

proj

(iii) Setting Kπ,∞ =
⋃∞
n=1Kπ,n we have Kab = KurKπ,∞.
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Then (ii) implies that there is an isomorphism Ψ : Gal(Kπ,∞/K)
≃−→ lim←−nOK/U

(n)
K
∼= O×

K .

Define ArtK by:

K× ∼= Z×O×
K −→ Gal(Kur/K)×Gal(Kπ,∞/K) ∼= Gal(Kab/K),

x = πnu 7−→ (FrnKur/K ,Ψ
−1(u−1))

Remark: Both Kπ,∞ and the isomorphism K× ∼= Z × O×
K depend on π, but ArtK does

not.

Goal: Construct Kπ,n.
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8 Lubin-Tate Theory

8.1 Formal group laws

Let R be a ring.

Definition. A (1-dimensional commutative) formal group law over R is a power series
F (X,Y ) ∈ RJX,Y K satisfying

(i) F (X,Y ) ≡ X + Y mod (X,Y )2

(ii) F (X,F (Y, Z)) = F (F (X,Y ), Z)

(iii) F (X,Y ) = F (Y,X)

Examples.

• Ĝa(X,Y ) = X + Y (formal additive group)

• Ĝm(X,Y ) = X + Y +XY (formal multiplicative group)

Lemma 8.1. Let F be a formal group law over R. Then

(i) F (X, 0) = X, F (0, Y ) = Y

(ii) There exists a unique i(X) ∈ XRJXK such that F (X, i(X)) = 0.

Proof. Example sheet 4.

Let K be a complete non-archimedean valued field, F a formal group law over OK . Then
F (x, y) converges for all x, y ∈ mK to an element in mK . Defining x ·F y = F (X,Y ) turns
(mK , ·F ) into a commutative group.

Ĝm over Zp gives x ·Ĝm
y = x+y+xy for x, y ∈ pZp. There is an isomorphism (pZp, ·Ĝm

) ∼=
(1 + pZp,×), x 7→ 1 + x.

Definition. Let F,G be formal group laws over R. A homomorphism f : F → G is
an element f(X) ∈ XRJXK such that f(F (X,Y )) = G(f(X), f(Y )). A homomorphism
f : F → G is an isomorphism if there exists a homomorphism g : G → F such that
f ◦ g = X = g ◦ f .

Define EndR(F ) to be the set of homomorphisms f : F → F .
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Proposition 8.2. Let R be a Q-algebra. There is an isomorphism of formal group laws
exp : Ĝa

≃−→ Ĝm where exp(X) =
∑∞

n=1
Xn

n! .

Proof. Define logX =
∑∞

n=1(−1)n+1Xn

n . Then there is an equality of formal power series

log expX = X = exp logX and exp(Ĝa(X,Y )) = Ĝm(expX, expY ).

Lemma 8.3. EndR(F ) is a ring with addition f +F g(X) = F (f(X), g(X)) and multipli-
cation given by composition.

8.2 Lubin-Tate formal groups

Let K be a local field with #k = q.

Definition. A formal OK-module over OK is a formal group law F (X,Y ) ∈ OKJX,Y K
together with a ring homomorphism [·]F : OK → EndOK

(F ) such that for all a ∈ OK ,
[a]F (X) ≡ aX mod X2 A homomorphism/isomorphism f : F → G of formal OKmodules
is a homomorphism/isomorphism of formal group laws such that f ◦ [a]F = [a]G ◦ f for all
a ∈ OK .

Definition. Let π ∈ OK be a uniformizer. A Lubin-Tate series for π is a power series
f(X) ∈ OKJXK such that

(a) f(X) ≡ πX mod X2

(b) f(X) ≡ Xq mod π

Example. K = Qp, f(X) = (X + 1)p − 1 is a Lubin-Tate series for p.

Theorem 8.4. Let f(X) be a Lubin-Tate series for π. Then:

(i) There exists a unique formal group law Ff over OK such that f ∈ EndOK
(Ff ).

(ii) There exists a ring homomorphism [·]f : OK → EndOK
(Ff ) which makes Ff into a

formal OK-module over OK .

(iii) If g(x) is another Lubin-Tate series for π, then Ff ∼= Fg as formal OK-modules.

Ff is the Lubin-Tate formal group law for π.

Example. K = Qp, f(X) = (X +1)p− 1. The associated Lubin-Tate formal group Ff is

Ĝm. For this we need to show that f ◦ Ĝm = Ĝm ◦ (f, f). We have

f(Ĝm(X,Y )) = (1 +X + Y +XY )p − 1 = (1 +X)p(1 + Y )p − 1 = Ĝm(f(X), f(Y )).

Lemma 8.5. Let f(X), g(X) be two Lubin-Tate series for π. Let L(X1, . . . , Xn) =∑n
i=1 aiXi, with ai ∈ OK . Then there exists a unique power series F (X1, . . . , Xn) ∈

OKJX1, . . . , XnK such that:
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(i) F (X1, . . . , Xn) ≡ L(X1, . . . , Xn) mod deg 2.

(ii) f(F (X1, . . . , Xn)) = F (g(X1), . . . , g(Xn)).

Proof. We show by induction that there exists a unique Fm ∈ OK [X1, . . . , Xn] of total
degree ≤ m such that

(a) f(Fm(X1, . . . , Xn)) ≡ Fm(g(X1), . . . , g(Xn)) mod degm+ 1.

(b) Fm(X1, . . . , Xn) ≡ L(X1, . . . , Xn) mod deg 2

(c) Fm ≡ Fm+1 mod degm+ 1.

For m = 1, take F1 = L. Then (b) is satisfied. For (a) we compute f(F1(X1, . . . , Xn)) ≡
πL(X1, . . . , Xn) ≡ F1(g(X1), . . . , g(Xn)) mod deg 2.

Suppose Fm is constructed where m ≥ 1. Set Fm+1 = Fm + h where h ∈ OK [X1, . . . , Xn]
is homogeneous of degree m+ 1. Then since f(X + Y ) = f(X) + f ′(X)Y + Y 2(. . . ) and
f ′(X) ≡ π mod X,

f ◦ (Fm + h) ≡ f ◦ Fm + πh mod degm+ 2.

Similarly,

(Fm+ h) ◦ g ≡ Fm ◦ g+ h(πX1, . . . , πXn) ≡ Fm ◦ g+ πm+1h(X1, . . . , Xm) mod degm+2.

Thus (a), (b) and (c) are satisfied iff f ◦Fm−Fm ◦ g ≡ (π− πm+1)h mod degm+2. But
f(X) ≡ g(X) ≡ Xq mod π, so

f ◦ Fm − Fm ◦ g ≡ Fm(X1, . . . , Xn)
q − Fm(Xq

1 , . . . , X
q
n) mod π.

Thus f ◦ Fm − Fm ◦ g ∈ πOKJX1, . . . , XnK. Let r(X1, . . . , Xn) be the degree m+ 1 terms
in f ◦ Fm − Fm ◦ g. Then set h := 1

π(1−πm)r ∈ OK [X1, . . . , Xn] so that Fm+1 satisfies (a),

(b), (c). It is unique since h is determined by property (a).

Set F = limm→∞ Fm which exists by (c). Uniqueness of F follows from uniqueness of the
Fm.

Proof of Theorem 8.4.

(i) By the Lemma there exists a unique Ff (X,Y ) ∈ OKJX,Y K such that

• Ff (X,Y ) ≡ X + Y mod deg 2,

• f(Ff (X,Y )) = Ff (f(X), f(Y )).

We must prove that Ff is indeed a formal group law.

Associativity: Ff (X,Ff (Y,Z)) ≡ X + Y + Z ≡ Ff (Ff (X,Y ), Z) mod deg 2 and
f ◦ Ff (X,Ff (Y,Z)) = Ff (f(x), f(Ff (Y, Z))) = Ff (f(x), Ff (f(Y ), f(Z))). Simi-
larly f ◦ Ff (Ff (X,Y ), Z) = Ff (Ff (f(X), f(Y )), f(Z)). Thus Ff (X,Ff (Y, Z)) =
Ff (Ff (X,Y ), Z) by the uniqueness in the lemma.
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Commutativity is proved similarly.

(ii) By the Lemma, for a ∈ OK there exists a unique [a]Ff
∈ OKJXK such that

• [a]Ff
≡ aX mod X2

• f ◦ [a]Ff
= [a]Ff

◦ f .

Then [a]Ff
◦ Ff = Ff ◦ [a]Ff

using a similar argument as above (uniqueness).

The map [·]Ff
: OK → EndOK

(Ff ) is a ring homomorphism (again verified using
uniqueness). So Ff is a formal OK-module over OK . Also note that [π]Ff

= f .

(iii) If g(X) is another Lubin-Tate series for π, let θ(X) ∈ OKJXK be the unique power
series such that θ(X) ≡ X mod X2 and θ ◦ f = g ◦ θ. Then θ ◦ Ff = Fg(θ(X), θ(Y ))
(uniqueness), so θ ∈ HomOK

(Ff , Fg). Reversing roles of f, g, we obtain θ−1(X) ∈
OKJXK, θ−1 ∈ HomOK

(Fg, Ff ). Then θ
−1 ◦ θ(X) = X and θ ◦ θ−1(X) = X (unique-

ness). So θ is an isomorphism of formal group laws.

Again by uniqueness we find that θ ◦ [a]Ff
(X) = [a]Ff

◦ θ(X) for all a ∈ OK and
hence θ is an isomorphism of formal OK-modules.

8.3 Lubin-Tate extensions

Let K be a non-archimedean local field, #k = q, π uniformizer. Let Kalg be the algebraic
closure of K, m ⊆ OKalg the maximal ideal.

Lemma 8.6. Let F be a formal OK-module over OK . Then m becomes a (genuine)
OK-module with x+F y = F (x, y) and a ·F x = [a]F (x) for x, y,∈ m and a ∈ OK .

Proof. Given x ∈ m, we have x ∈ mL for some L/K finite. Since [a]F ∈ OKJXK, [a]F (x)
converges in L and its limit lies in mL ⊆ m. Similarly x+F y is well-defined.

Definition. Let f(x) be a Lubin-Tate series for π and Ff the associated Lubin-Tate formal
group law. The πn-torsion group is

µf,n := {x ∈ m | πn ·Ff
x = 0} = {x ∈ m | fn(x) = f ◦ f ◦ · · · ◦ f(x) = 0}.

Note that µf,n is an OK-module and µf,n ⊆ µf,n+1.

Example. K = Qp, f(X) = (X + 1)p − 1. Then [pn]Ff
(x) = (x + 1)p

n − 1. Thus
µf,n = {ζipn − 1 | i = 0, . . . , pn − 1}.

Now let f(X) = πX +Xq. Then fn(X) = f ◦ fn−1(X) = fn−1(X)(π + fn−1(X)q−1). Set

hn(X) = fn(X)
fn−1(X) = π + fn−1(X)q−1. We set f0(X) = X.

41



Proposition 8.7. hn(X) is a separable Eisenstein polynomial of degree qn−1(q − 1).

Proof. It is clear that hn(X) is monic of degree qn−1(q − 1). f(X) ≡ Xq mod π,
so fn−1(X)q−1 ≡ Xqn−1(q−1) mod π. Since fn−1(X) has 0 constant term, hn(X) =
π + fn−1(X)q−1 has constant term π. Thus hn(X) is Eisenstein. Since hn(X) is irre-
ducible, hn(X) is separable if charK = 0, or if charK = p and h′n(X) ̸= 0. Assume
charK = p. Induct on n. h1(X) = π +Xq−1 is separable. Suppose hn−1(X), . . . , h1(X)
are separable. Then fn−1(X) = hn−1(X) · · ·h1(X)X is separable (product of separable
irreducible polynomials of different degrees). Then hn(X) = π + fn−1(X)q−1. We have
h′n(X) = (q − 1)f ′n−1(X)fn−1(X)q−2 ̸= 0, so hn(X) is separable.

Note that the proof also shows that fn(X) is separable.

Proposition 8.8.

(i) µf,n is a free module of rank 1 over OK/πnOK .

(ii) If g is another Lubin-Tate series for π, then µf,n ∼= µq,n as OK-modules and K(µf,n) =
K(µg,n).

Proof.

(i) Let α ∈ K be a root of hn(X). Since hn(X) and fn−1(X) are coprime, α ∈ µf,n \
µf,n−1. Then the map φ̃ : OK → µf,n, a 7→ a ·Ff

α is an OK-module homomorphism
with πnOK ⊆ ker φ̃ and πn−1 /∈ ker φ̃. Therefore ker φ̃ = πnOK . Thus φ̃ induces
an injection φ : OK/πnOK ↪→ µf,n. Since fn(X) is separable, #µf,n = deg fn(X) =
qn = #OK/πnOK . So φ is an isomorphism.

(ii) Let θ ∈ HomOK
(Ff , Fg) be an isomorphism of formal OK-modules. It induces an

isomorphism θ : (m,+Ff
, ·Ff

)
≃−→ (m,+Fg , ·Fg) and hence µf,n ∼= µg,n. Since µf,n is

algebraic, K(µf,n)/K is finite, hence complete. Since θ(X) ∈ OKJXK, for x ∈ µf,n
we also have θ(x) ∈ K(µf,n). So K(µg,n) ⊆ K(µf,n). The same argument for θ−1

gives the reverse inclusion.

Definition. Kπ,n := K(µf,n)

Remark: Kπ,n does not depend on f by the proposition. We have Kπ,n ⊆ Kπ,n+1.

Proposition 8.9. Kπ,n are totally ramified Galois extensions of degree qn−1(q − 1).

Proof. We may choose f(X) = πX +Xq. Then Kπ,n/K is Galois since Kπ,n = K(µf,n)
is the splitting field of fn(X). Let α be a root of hn(X) = fn(X)/fn−1(X). It suffices to
show K(α) = K(µf,n) since α is the root of an Eisenstein polynomial of degree qn−1(q−1).
By the proposition every element x ∈ µf,n is of the form a ·Ff

α for some a ∈ OK . Since
K(α) is complete and [a]Ff

(X) ∈ OKJXK, we get x = [a]Ff
(α) ∈ K(α).

Let f be the Lubin-Tate series πX +Xq.
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Theorem 8.10. There are isomorphisms Ψn : Gal(Kπ,n/K) ∼= (OK/πnOK)× character-
ized by

(∗) Ψn(σ) ·Ff
x = σ(x) ∀x ∈ µf,n, σ ∈ Gal(Kπ,n/K)

Moreover, Ψn does not depend on f .

Proof. Let σ ∈ Gal(Kπ,n/K). Then σ preserves µf,n, and acts continuously on K(µf,n) =
Kπ,n. Since Ff (X,Y ) ∈ OKJXK, and [a]Ff

∈ OKJXK for all a ∈ OK , we have σ(x+Ff
y) =

σ(x) +Ff
σ(y) and σ(a ·Ff

x) = a ·Ff
σ(x) for all x, y ∈ µf,n, a ∈ OK .

Thus σ ∈ AutOK
(µf,n). this induces a group homomorphism Gal(Kπ,n/K)→ AutOK

(µf,n)
which is injective since Kπ,n = K(µf,n). Since µf,n ∼= OK/πn as OK-module, we get

AutOK
(µf,n) ∼= AutOK/πn(µf,n) ∼= (OK/πn)×

We obtain Ψn : Gal(Kπ,n/K) ↪→ (OK/πn)× defined by: Ψn(σ) ∈ (OK/πn)× is the unique
element such that Ψn(σ) ·Ff

x = σ(x) for all x ∈ µf,n. Since [Kπ,n : K] = qn−1(q − 1) =
#(OK/πn)×, Ψn is surjective by counting.

Let g be another Lubin-Tate series. Then we obtain Ψ′
n : Gal(Kπ,n/K)

≃−→ (OK/πn)×.
Let θ : Ff → Fg be an isomorphism of formal OK-modules. It induces an isomorphism

θ : µf,n
≃−→ µg,n of OK-modules. Hence for x ∈ µf,n, θ(Ψn(σ) ·Ff

x) = Ψn(σ) ·Fg θ(x). But
θ ∈ OKJXK has coefficients inOK , so θ(σx) = σ(θx) for all x ∈ µf,n. Then θ(Ψn(σ)·Ff

x) =
θ(σx) = σ(θx) = Ψ′

n(σ) ·Fg θ(x), so Ψn(σ) = Ψ′
n(σ).

Set Kπ,∞ =
⋃∞
k=1Kπ,n. Then there is an isomorphism

Ψ : Gal(Kπ,∞/K) ∼= lim←−
n

(OK/πnOK)× ∼= O×
K .

Theorem 8.11 (Generalized local Kronecker-Weber). Kab = Kπ,∞K
ur.

Proof. Omitted.

Now we define ArtK by

K× ∼= Z×O×
K −→ Gal(Kur/K)×Gal(Kπ,∞/K) ∼= Gal(Kab/K),

x = πnu 7−→ (FrnKur/K ,Ψ
−1(u−1))
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9 **Upper Numbering of Ramification
Groups

Let L/K be a finite Galois extension of local fields. Define the function

Φ := ΦL/K : R≥−1 −→ R,

Φ(s) =

∫ s

0

dt

[G0 : Gt]
.

For t ∈ [−1, 0) we set 1
[G0:Gt]

= [Gt : G0].

For m ≤ s < m+ 1 where m ∈ Z≥−1 we have

Φ(s) =

{
s[G−1 : G0] m = −1,

1
#G0

(#G1 + · · ·+#Gm + (s−m)#Gm+1) m ≥ 0.

Φ is continuous, piecewise linear and strictly increasing. Therefore we can define ΨL/K =

Φ−1
L/K .

Definition (Upper numbering). The higher ramification groups in upper numbering are
defined by

Gs(L/K) := GΨL/K(s)(L/K) ⊆ Gal(L/K).

Key point: Gs(L/K) behaves well w.r.t. subgroups. Gs(L/K) behaves well w.r.t. quo-
tients.

Let L/F/K be fields with L/K Galois. Then Gs(L/F ) = Gs(L/K) ∩ Gal(L/F ). If also
F/K is Galois, then Gt(L/K)Gal(L/F )/Gal(L/F ) = Gt(F/K) (Herbrand’s theorem).

Example. K = Qp, L = Qp(ζpn). Let k ∈ Z, 1 ≤ k ≤ n− 1. For pk−1 − 1 < s ≤ pk − 1,

Gs ≃ {m ∈ (Z/pnZ)× | m ≡ 1 mod pk} ∼= U
(k)
Qp
/U

(n)
Qp

.

Gs jumps at pk − 1, ΦL/K is linear on [pk−1− 1, pk − 1], thus to compute ΦL/K , it suffices

to compute ΦL/K(pk − 1). We have ΦL/K(pk − 1) = (p − 1) · 1
p−1 + p2−1−(p−1)

p(p−1) + · · · =
1 + 1 + · · ·+ 1 = k. Then

Gs ∼=


(Z/pn)× s ≤ 0,

(1 + pkZ)/pnZ k − 1 < s ≤ k(1 ≤ k ≤ n− 1),

1 s > n− 1.

In particular Gk ∼= U
(k)
Qp
/U

(n)
Qp

1 ≤ k ≤ n− 1.
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