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1 Valued Fields

1.1 Absolute Values and Valuations

Definition. Let K be a field. An absolute value on K is a function |-|: K — R such
that:

1. || > 0 for all x € K with equality iff x = 0.
2. |xy| = x| - |y| for all x,y € K.
3. |z +y| < x|+ |y| for all z,y € K.

An absolute value | - | is called non-archimedean if it satisfies the ultrametric inequality
|z + y| < max{l|z|, [y[}

for all x,y € K. Otherwise it is called archimedean.

It is easily seen that if | - | is non-archimedean and z,y € K with |z| < |y|, then |z 4+ y| =
max(|z], ly[) = [yl

Two absolute values on a field are said to be equivalent if they define the same topology.
| - | is called the trivial absolute value on K if |x| =1 for all x # 0.

Example. Let K = Q and p a prime number. Given x € Q* write x = p"§ with a,b € Z
not divisible by p. Then let |z|, := p™ and set |0|, = 0. Then |- |, is a non-archimedean
absolute value on Q, called the p-adic absolute value. The field Q, of p-adic numbers is
defined to be the completion of Q w.r.t. the p-adic absolute value.

Of course Q also has the ordinary archimedean absolute value | - | whose completion is
R. We will later see (Theorem [3.6) that every absolute value on Q is equivalent to either
||, for some prime p or to ||

Proposition 1.1. Let |- |,|-|" non-trivial absolute values on field K. TFAE:
(i) |-1,| -1 are equivalent.
(it) x| <1< x| <1 foralzeK.

(iii) There exists ¢ € Rsg such that |z|¢ = |z|" for all x € K.

Proof. (i) = (i7) is clear from |z| <1< 2" — 0 wrt. | -]



(15) == (iii) Let a € K* such that |a|] > 1. We need to show that for all r e KX,

log|z| _ log|z|’ log || - /

Togla| — Toglaf- Let m/n € Q such that logla] < m/n, i.e. | < 1. Then |7 "' <1 and
/ ’

hence }ggl\il" < m/n. Thus }gg m > igil\il" and similarly <.

(131) = (i) clear. O

The ultra-metric inequalities gives the following lemma:

Lemma 1.2. If (xy)nen 8 a sequence in K such that |x, — xp+1| — 0 as n — oo, then
(xn)n is a Cauchy sequence. In particular (x,), converges if K is complete.

Example. p =5. We construct a sequence (x,), in Q such that
(i) 22 +1=0 (mod 5"),
(#i) xp = Tpt1 (mod 5")
as follows: Take 1 = 2. Let x% +1=ab" and z,4+1 = x, + b5™. Then
22, +1=ab" + 2bx,5" mod 5",

i.e. want b such that a + 2bz,, = 0 (mod 5) which is possible as 2, x,, are coprime to 5.
Now (i) implies that (z,,), is Cauchy w.r.t. | - |5. Suppose x,, — L € Q. Then x2 — L2
By (i) we have 22 — —1, hence L? = —1, a contradiction. So Q is not 5-adically complete.

Now let (K, | -|) be non-archimedean valued field. For z € K,r € Ry we let:
B,r) = {y € K ||y — 2l <},
B(x,r)={yeK|ly—a| <r}
(Note that B(z,r) need not be the closure of B(z,1).)
Lemma 1.3. Letz € K,r € Ry
(2) If z € B(x,r), then B(z,r) = B(x,r).
(ii) If z € B(x,r), then B(z,r) = B(z,r).
(7i1) B(z,r) is closed.
(iv)

Proof. Follows easily from the ultra-metric inequality. O

B(z,r) is open.

Definition. A valuation on a field K is a function v : K — R* such that for all z,y € K
the following holds:

(1) v(zy) = v(z) +v(y),
(i) v(z +y) = min(v(z), v(y)).



Valuations correspond to (equivalence classes of) non-archimedean absolute values on K.
Given a valuation v and a fixed a > 1, define |z| := o~ V@ for z # 0. We will thus
sometimes switch between (non-archimedean) absolute values and valuations, whichever
is more convenient.

Definition. Let (K,|-|) be a non-archimedean valued field. We let
Ox={ze K ||z| <1} ={x € K |v(z) >0},
m={zxeK|l|z|]<1l}={zx e K|v(z)>0}.
Ok s called the valuation ring of K. The residue field is O /m.
Note that O is indeed a subring of K and m is its unique maximal ideal.

Definition. A wvaluation v on K is discrete if v(K*) =2 Z. If 7 € K* is such that
v(mw) > 0 and v(w) generates v(K™), then 7 is called a uniformizer.

Lemma 1.4. Let (K,v) be a valued field. TFAE:
(i) v is discrete.
(i) Ok is a PID.
(131) Ok is noetherian
(iv) m is principal.
Proof. (i) = (ii): Let 0 # I C Ok be an ideal. Let z € I with v(z) minimal. Then
I =x20g. Thus, Ok is a PID.
(13) = (i77): clear.
)

(
(iv) = (i): Let m = 7Ok and ¢ = v(w). Then, if x € m, then v(z) > ¢, hence v(K*) N
(0,¢) = 0 which easily implies that v(K*) = ¢Z. O

= (w): Write m = (x1,...,2y), wlog v(z1) < -+ <v(zy). Then m = 210k
=

Lemma 1.5. Ifv is a discrete valuation on K with uniformizer w, then for every x € K*
there are unique n € Z,u € Oj¢ such that v = 1"u.

Definition. A ring R is called a discrete valuation ring (DVR) if R is a principal ideal
domain with exactly one non-zero prime ideal.

Lemma 1.6. Let K be a field. If v is a discrete valuation on K, then Ok is a DVR.
Conversely if R is a DVR with K = Frac R, then there is a discrete valuation on K such
that OK = R.

Example. The rings Z, with p prime and k[t] with k a field are DVRs.



1.2 p-adic numbers

Recall that @, is the completion of Q w.r.t. the p-adic absolute value. The ring of p-adic
integers is its valuation ring, denoted Z,,.

Proposition 1.7. Z, is the closure of Z inside Q,. In particular Z, is the completion of
Z w.r.t. |- |p.

Proof. Since Q is dense in Q, and Z, C Q, is open, Z, N Q is dense in Z,. Note that
ZyNQ={3 € Q| ptb} =Zgy). Thus it suffices to show that Z is dense in Z,. Let
a/b € Z,) with a,b € Z,p t b. For n € N choose y, € Z such that by, = a (mod p").
Then y, — ¢ w.r.t. [ [p. O

Let (A4,)%%; be a sequence of sets/groups/rings together with homomorphisms ¢, :
Apt+1 — Ay Recall that the inverse limit of the system ((Ap)n, (¢)n) is

A:=1lmA, = {(an) € H Ay | on(ans1) = ay, for all n € N}.

n=1

It is again a set/group/ring and inherits the algebraic structure from [[;7 | A,. Let 6,, :
A — A,, be the projection onto the m-th coordinate. Then (A, (6,,)m) enjoys the following
universal property:

Proposition 1.8. Let B be a set/group/ring together with homomorphisms v, : B — A,

such that the diagram

wn+1
n+1

B—— A
% Jén
Ap

commutes. Then there exists a unique homomorphism ¢ : B — A such that 6, oy = ¢,
for all n.

Definition. Let R be a ring and I an ideal of R. Then

R:=limR/T"

1s called the I-adic completion Qf R. The transition maps are the projections R/I" ™! —
R/I™. If the natural map R — R (induced by the projections R — R/I™ and the universal
property) is an isomorphism, R is called I-adically complete.

Let (K,|-|) be a non-archimedean valued field and © € Ok such that |r| < 1.
Proposition 1.9. Assume K is complete w.r.t. | -|.

(i) Then Ok = lim Ok /7", i.e. Ok is w-adically complete



(it) Fvery x € Ok can be written uniquely as v =Y ;2 a;mt, a; € A C Ok where A is
a set of coset representatives for Ok /mOf.

. o0 y
Moreover any such series Y .~ a;m" converges.

Proof.

(i) Note that O is complete. If x € (72, 7" O, then v(x) > nuv(x) for all n, so x = 0,
hence Og — lim Ok /m" is injective. Let (zn)pZ; € lim Ok /™. For each n let
yn € Ok be a lift of x,. Then y, — ynt1 € 7" Ok so that v(y, — yn+1) = no(n).
Thus (yn)22, is a Cauchy sequence in Ok, so it converges to an element y € O
which maps to (z,,)22, in lim Og /m™.

(ii) is an exercise. O

Warning: If (K, |-|) is not discretely valued, O is not necessarily m-adically complete.
Corollary 1.10.

(i) Zp = Jm Z/p"Z.

(i) Every x € Q, can be written uniquely as Y oo a;p" where a; € {0,...,p—1}.
Proof. 1t suffices to show that Z/p"Z = Z,/p"Z,. Let f, : Z — Z,/p"Z, be the natural

map. Clearly, ker(f,) = {z € Z | vy(x) > n} = p"Z. Let y € Z,/p"7Z, and ¢ € Z, be a
lift. Since Z is dense in Zj, there is x € Z such that z € ¢ + p"Z,, i.e. fu(z)=1y. O



2 Complete Valued Fields

2.1 Hensel’'s Lemma

Theorem 2.1 (Hensel’s Lemma version 1). Let (K,|-|) be a complete discretely valued
field. Let f(t) € Ok|t] and assume there is a € Ok such that |f(a)| < |f'(a)|?>. Then there
exists a unique x € Ok such that f(x) =0 and |z — a| < |f'(a)|.

Proof. Let m € Ok be a uniformizer and let » = v(f/(a)). We construct a sequence (),
in Ok such that (i) f(z,) =0 (mod 7#"*?") and (ii) z,, = 2n41 (mod 7"7T).

Take z1 = a, then f(x1) =0 (mod 7'*?") by assumption. Suppose we have constructed

x1,..., T, satisfying (i) and (i7). Define z,, 41 = x,, — f,((”;’;)). Since z, = 1 (mod 7" t1),
v(f'(x,)) = r and hence jf,((a;fz)) =0 (mod 7"*") by (i).

Thus, Tp41 = 2, (mod 7F7), so (ii) holds. Note that f(xni1) = f(zn)+f' () c+g(xn)c?
where ¢ = —J{,(("i’;)). Since ¢ = 0 (mod 7"*"), we get f(zni1) = f(xn) + f(zn)c = 0
(InOd Trn+2r+1)‘

Property (ii) implies that (z,), is Cauchy. So let x € Ok such that x, — x. By (i)
it follows that f(z) = lim, e f(x,) = 0. Moreover (ii) implies that a = 21 = x,
(mod 77 +1) for all n, hence |z — a| < |f'(a)|.

Uniqueness: Suppose z’ also satisfies f(z') = 0 and |2/ — a| < |f/(a)]. Let 6 = 2/ — x.
Then |§| = |2/ — x| < |f'(a)]. Also 0 = f(2') = f(z +6) = f(z) + f'(x)d + (...)d5%
Hence |f'(z)8| < |6]?. Since a = z (mod 7'*7"), we have f'(x) = f'(a) # 0 (mod 7*7),
so |f'(x)| = |f'(a)|]. Thus, if § # 0, we would get |f'(a)| < |d], a contradiction. O

Corollary 2.2.
QX/(QX)Q ~ {(Z/QZ)Q pr > 27
P P -

(Z)27)3  if p=2.

Proof. Case p > 2. Let b € Z, . Applying Hensel’s Lemma to z? — b, we find that
be () iff be (F)y)? Thus Zs/(ZX)? = F)/(F))? = Z/2Z. We have an isomorphism
Zy x 7= Q,, then done.

Case p=2. Let b€ Z¥ and f(z) = 2® —b. Let b=1 (mod 8). [f(1)]2 <273 <272 =
|f'(1)|?. Thus, f has a unique root a with a = b (mod 4).



Hence, b € (Z;)* iff b =1 (mod 8). Thus, Z5 /(Zy)* = (Z/8Z)* = L/2Z x L|2Z. We
conclude as in the case p > 2. O

Theorem 2.3 (Hensel’s Lemma version 2). Let (K, |-|) be a complete discretely valued
field and f(x) € Ok|x]. Suppose that f(z) € k[x] factorises as f(x) = g(x)h(x) in k||
with g(z), h(z) coprime. Then there is a factorization f(x) = g(x)h(z) in Oklz] with
g(z) = g(z) (mod m), h = h (mod m) and degg = deg g.

Proof. Example Sheet 1. O

Corollary 2.4. Let f(z) = apa"™ + -+ + ag € K|x]| where (K,|-|) is complete discretely
valued with ag, an # 0. If f is irreducible, then |a;| < max{|ao|, |an|} for all i.

Proof. Upon rescaling we may assume that f € Og[z] with max;|a;| = 1, so we need to
show that |ag| = 1 or |a,| = 1. Suppose this is not the case. Let r be minimal such that
lar| = 1. Then 0 < r < n. Thus we have f(x) = 2"(ar + -+ + ap2™™ ") (mod m). By
Hensel’s Lemma version 2 we can lift this factorization to a non-trivial factorization over
Ok, contradicting the irreducibility. O

2.2 Teichmiller Lifts

Definition. A ring R of characteristic p > 0 is called perfect if the Frobenius x — P is
a bijection.

Theorem 2.5. Let (K,|-|) be a complete discretely valued field such that k = Ok /m is
a perfect field of characteristic p. Then there exists a unique map [-] : k — Ok such that

(i) a = [a] mod m

(ii) [ab] = [a] 8]
Moreover if char K = p, this lifting [-] is a ring homomorphism.
The element [a] € Ok s called the Teichmiiller lift of a.

Lemma 2.6. Let (K, |-|) be as in the theorem and m € Ok a uniformizer. Let x,y € Ok
such that x =y (mod %) for some k > 1. Then zP = y? (mod 7F+1).

Proof. Let & =y + un® with u € Og. Then

p
o = Z <]Z) yP (urk) = P +prf (L) +uPaPP =P (mod 7FFY).
i—0



Proof of the theorem. Let a € k. For each i > 0 we choose a lift y; € O of al/P' and we

define z; = y¥ ", We claim that (z;); is a Cauchy sequence and its limit z is independent
of the choice of y;. By construction y; = y? "+, (mod 7). By the lemma and induction

r+1)

we obtain y? = yf_:1 (mod 71, so x; = ;11 (mod 7*!) (take r = ). Then (z;); is

Cauchy, so z; — x € Ok. Suppose (z}); arises from another choice of ¥, lifting a'/Pi. Then
(x}); is Cauchy and z} — 2/ € Og. Let 2/ = x; for ¢ even and ) = x; for i odd. Then
x} arises in a similar way and we get that =/ is Cauchy. But then the subsequences z;, z}
must converge to the same limit, i.e. z = 2/

We define [a] = . Then z; = yzpi = (al/P')*' = 4 (mod =), so [a] is indeed a lift of a, i.c.
(i) is satisfied.

Let b € k and we choose u; € Ok alift of bL/7'. Let 2 = ufz Then lim; z; = [b]. Now w;y;
is a lift of (ab)'/?", hence [ab] = lim;_,o0 ;2 = lim; ; lim; z; = [a][b]. This shows that (ii)
is satisfied.

Suppose that char K = p. y; + u; is a lift of al/? 4 P = (@ + b)VP' so [a+b] =
o0 (¥ + wi)P" = limy o0 yfz + ufz = lim; x; + lim; 2z; = [a] + [b].

Uniqueness: Let ¢ : K — Ok be another such map. Then for a € £, qﬁ(al/pi) lifts a/". Tt
follows that [a] = lim;_,s ¢(a'/?")?" = ¢(a). O
Eg K=Q, []:Fp—Zy. acF), [aP~! =[aP~!] = [1] = 1, s0 [a] is a (p — 1)-th root of
unity.

More generally:

Lemma 2.7. (K,|-|) complete discretely valued field. If k = Ok /m C IFZlg, then [a] € Ok
1 a oot of unity.

Theorem 2.8. Let (K,|-|) be a complete discretely valued field with char K = p > 0.
Assume k is perfect. Then K =2 k((t)).

Proof. It suffices to show that Ox = k[t]. Fix 7 € Ok a uniformizer, let [] : k — O
be the Teichmiiller lift. Define ¢ : k[t] — Ok by p(Y o ait’) = Y i2olailr’. Then ¢
is a ring homomorphism since [-] is and it is a bijection since every element in Ok has a
unique m-adic expansion. O]

2.3 Extensions of complete valued fields

Theorem 2.9. Let (K,|-|) be a complete non-archimedean discretely valued field and
L/K a finite extension of degree n. Then

(1) | -| extends uniquely to an absolute value | - |, on L defined by

lylL = |NL/K(y)|1/n'



(2) L is complete w.r.t. |- |L.

Definition. Let Let (K, |-|) be a non-archimedean valued field, V a vector space over K.
A norm on V is a function ||-|| : V — R>¢ satisfying

(i) ||zl = 0 iff = = 0,
(ii) | Azl| = [A[|lz]| for Ae K,z €V,
(i) o +yl| < max{|[z]],[[yl} for z,y € V.

Example. Let V be finite-dimensional over K and ey, ..., e, a basis for V. The sup-norm
on V (relative to this basis) is defined by

]

sup = SUP |74
K3

where x = ), ze;.

Definition. Two norms |-||,, |||y on V are equivalent if there are C,D > 0 such that
Cllzlly < ||zl £ D||z||y for allz € V.

Note that two norms are equivalent iff they induce the same topology.

Proposition 2.10. Let (K, |-|) be a complete non-archimedean valued field and V' a finite
dimensional vector space over K. Then V is complete w.r.t. any sup-norm.

Proof. Easy, as in the real case. O

Theorem 2.11. Let (K, |- |) be complete non-archimedean valued field and V' a finite
dimensional vector space over K. Then any two norms on V are equivalent, in particular
V' is complete w.r.t. any norm.

Proof. Since equivalence of norms is an equivalence relation, we may assume that every
norm ||| is equivalent to the sup-norm w.r.t. to some chosen basis e1,...,e,. Set D :=
max;{||e;||}. Then clearly, ||z|| < D |z||,, for all z € V. To find the constant C' in the

sup
other direction (C ||z|s,, < [lz[|) we induct on n. For n =1 the existence of C is clear
since every element of V' is a multiple of e;. Let n > 1. Set V; = (e1,...,€i—1,€i41,...,€n).

By induction hypothesis V; is complete, hence closed in V. Then e; + V; is also closed for
all 4, thus so is S = J_,(e; + V;). S is a closed subset that does not contain 0, hence
there exists C' > 0 such that B(0,C)NS = (. Let 0 # = = ), z;e; and suppose that
|z;| = ||| Then x%x €S, so ||%1$H > C,ie. ||z]| > C || O

sup”’ sup”’

Lemma 2.12. Let (K,|-|) be a valued field. Then Ok is integrally closed in K.
Proof of Theorem[2.9. We show that |- |, = \NL/K(-)W" defines an absolute value on L.

The only non-trivial property is that |z +y|r, < max{|z|z, |y|r}. Let O ={y € L | |y|r <
1}. We claim that Oy, is the integral closure of O in L and hence in particular a subring.

10



Assuming this we prove the ultrametric inequality. Wlog we may assume that |z|; < |y|L.
Then |z/y|p <1, s0 z/y € Op. But then also z/y+ 1 € Op and so |z +y|r < |y|L.

Proof of the claim: Suppose y € L is integral over O, let f(z) = 2™ + ap_12™ ! +
-+ ag € KJ[z] be its minimal polynomial. Since the coefficients are integral over O
and Ok is integrally closed, we have f(z) € Og[z]. Then [Ny k(y)| = |+af| < 1, so
y € Op. Conversely, suppose y € Op, and let f(x) = 2™ + apm_12™ 1 + -+ + ag € K|x]
be its minimal polynomial over K. By [2.4 we have |an,—1], ..., |a1| < max{1,|ao|} = 1, so
f € Oklx] and thus y is integral over K.

This shows that | - |1 is an absolute value. It clearly extends the absolute value on K. If

| - |}, is another absolute value on L extending | - |, then |- |, |- |} are norms on L. So
by Theorem they are equivalent. Thus |- |, = |- |} for some ¢ € Rsg. Since both
absolute values agree on K, we must have ¢ = 1. ]

Let (K| -|) be a complete non-archimedean discretely valued field.
Corollary 2.13. Let L/K be a finite extension.
(i) L is discretely valued w.r.t. | -|L.

(ii) Op is the integral closure of Ok in L.

Proof. (ii) had been proven during the proof of the theorem.

For (i) let v be the valuation on K and vy, its extension to L (via the extension of the
absolute value). Then vr(y) = 20(Ny,/k(y)), so vp(L*) C tv(K*) is also discrete. O

Corollary 2.14. Let K*8/K be an algebraic closure. Then the absolute value on K
extends uniquely to a unique absolute value on K.

Remark: |- |ga is never discrete. E.g. K = Q,, /p € Qe

o(yp) = o) = 1.

Proposition 2.15. Let L/K be a finite extension. Assume that

for all n € Z>p. Then

(i) Ok is compact.

(ii) The extension ki /k of residue fields is finite and separable.
Then there exists o € Or, such that O, = Okla].
(Later we will see that condition (i) already implies (ii))
Proof. Since kr,/k is separable there exists @ € kr such that k;, = k(a). Let o € Og
be a lift of @ and let g(xz) € Ogk|x] be a monic lift of the minimal polynomial of a.
Fix a uniformizer 7, € Or. As g(x) € k[z] is separable, we have g(a) = 0 (mod 77p),

but ¢'(a) Z (mod 7r). Thus, by replacing a by a + 7 if necessary we may assume
that v(g(a)) = 1 (where v is the normalized valuation on L). As Ok is compact, so is

11



Ok|a], hence it is closed in Op. Since kr, = k(a), Oka] contains a set {\;} of coset
representatives of k = Op/B0OL where = g(a) € Oglal]. So every y € Of can be

written as > iog A8 with \; € Okla]. By truncating we see that y is in the closure of
Oklal, hence Okla] = Op. O

Remark: Assumption (i) is actually not necessary.

12



3 Local Fields

Definition. Let (K,|-|) be a valued field. K is a local field if it is complete and locally
compact.

Proposition 3.1. Let (K, |-|) be a non-archimedean complete valued field. Then TFAE:
(i) K is locally compact.
(i) Ok is compact.

(iii) v is discrete and k = Ok /m is finite.

Proof. (i) = (ii). Let U be a compact neighborhood of 0. Then there exists 0 # x € Og
such that xOx C U. Since zOf is closed, zOk is compact. From this it follows that O
is compact as multiplication by x defines a homeomorphism O — O

(i) = (i). Immediate.

(i) = (iii). Let 2 € m and A; C Og be a set of coset representatives for O /zOk.
Then Ok = UyeAI y+ 20O a disjoint open cover. As Ok is compact, A, and so Ok /2O
is finite, hence O /m is finite. Suppose v is not discrete. Let © = xy,z2,... such that
v(x1) > v(xa) > -+ > 0. Then 210 C 220k C --- C Og. This is not possible as
OK/.%'loK is finite.

(ili) = (ii). Let (zn), be a sequence in Ok and fix a uniformizer 7 € Og. Since
O /T O = k, we have O /7'Of is finite for all 4. Since O /7Oy is finite, there
exists a € Ok /mOk and a subsequence (z1, )52 ; such that z;, = a (mod m) for all n.
Since Ok /m?Of is finite, there exists as and a subsequence (x3,), of (71,) such that
T2, = az (mod 720k). Continue like this and get a sequence (), for i = 1,2... such
that (1) (Z(i11)n)n is a subsequence of (2 ), and (2) for any i there exists a; € Ok /7O
such that z;, = a (mod 7'Of) for all n. Then necessarily a; = a;+1 (mod 7*) for all i.

Now let y; = x;;, this defines a subsequence of (x,),. Moreover y; = y;11 (mod 7'Of),

so (y;); is Cauchy, hence converges by completeness. O

Examples.
(i) Qp is a local field.
(ii) Fy((%) is a local field.

13



Proposition 3.2. Let K be a non-archimedean local field. Under the isomorphism Og =
l'gln Ok /7" O the topology on Ok coincides with the profinite topology.

Proof. One checks that the sets B = {a + 7"Ok | n € Z>1,a € Ok} is a basis of open
sets in both topologies. d

Lemma 3.3. Let K be a non-archimedean local field and L/K a finite extension. Then
L is a local field.

Proof. We know that L is complete and discretely valued. It suffices to show that
kr, = Or/my is finite. Let aq,...,a, be a basis for L as a K-vector space. Then the
corresponding sup-norm is equivalent to | - |, so there exists r > 0 such that O C {z €
L | [zl < r}. Take a € K such that |a] > r. Then O C &} a0;0k. Thus, Of
is finitely generated as a Ox-module, so kr, is finitely generated as a k-module, so kj, is

finite. O

Definition. A non-archimedean valued field (K,|-|) has equal characteristic if char K =
char k, otherwise mixed characteristic.

Theorem 3.4. Let K be a non-archimedean local field of equal characteristic p > 0. Then
K 2 Fyn (1)

Proof. We know that the residue field is finite, say Fy». Then it is perfect, so we know
from the Teichmiiller lifts that K = Fyn ((2)). O

Lemma 3.5. An absolute value on a field K is non-archimedean iff it is bounded on Z.

Proof. “=" obvious from the ultrametric inequality.

“«<” Suppose |n| < B for all n € Z. Let z,y € K such that |z| < |y|. Then
L /m | /m

i, M—1 < i, M—1
2 (D)< ()

=0
Then |z + y| < [(m + 1)B]Y™|y|. Letting m — oo we get |z + y| < |y|, so the absolute
value is non-archimedean. O

[z +y[™ = < (m+1)Bly[™.

Theorem 3.6 (Ostrowski’s Theorem). Any non-trivial absolute value on Q is equivalent
to either the usual absolute value |- | or a p-adic absolute value |- |, for some prime p.

Proof. Case 1. |- | is archimedean. We fix an integer b > 1 such that [b] > 1 (exists by
previous lemma). Let a > 1 be an integer and write b" in base a:

b = cna™ + cp_1a™ T+ -+ ¢

14



where 0 < ¢; < a and ¢, # 0. Let B = maxo<c<q |¢|. Then we have
|b]" < (m + 1)Bmax(|a|™,1)

Then || < [(n(log, b) + 1)B]"/" max(|a|'®&«®, 1) (Note that m < nlog, b) This goes to 1
as n — oo. Therefore |b| < max(|a|'®®® 1) Then |a| > 1, and |b| < |a|'°8a®. Switching the
roles of a and b, we obtain |a| < |86 . Then these two inequalities we get

logla] _loglt| _

loga  logh
Then |a| = a” for all @ € Z~;. Then |z| = |z|}, for all z € Q. Hence | - | is equivalent to
’ ’ |oo-
Case 2. || is non-archimedean. Then we have |n| <1 for all n € Z. As |- | is non-trivial,

there exists n € Zsg such that |n| < 1. Then there is a prime factor p of n such that
Ip| < 1. Suppose that there exists another prime ¢ # p with |¢| < 1. Then rp+ sq =1
for some integers r,s € Z. Then 1 = |1| = |rp + rs| < 1 by the ultrametric inequality, a
contradiction. Then « := |p| < 1 and |¢q| = 1 for all primes ¢ # p. By decomposition into
prime factors we see that this uniquely determines | - | and shows that it is equivalent to
1. 0

Theorem 3.7. Let (K,|-|) be a non-archimedean local field of mized characteristic. Then
K is a finite extension of Q, for some prime p.

Proof. As K has mixed characterstic, char K = 0, so Q € K. K is non-archimedean,
so | - || is equivalent to |- |, for some prime ]fl As K is complete we get Q, C K.
Let m € Ok be a uniformizer, v normalized valuation on K and set v(p) = e. Then
Ok /pOk = Ok /7¢O is finite. Let x1,...,x, € Ok be coset representatives for a basis
of Ok /pOk as a Fp-vector space. Then {d " | a;z; | a; € {0,1,...,p—1}} is a set of coset
representatives for Ok /pOk. Let y € Og. We then get

oo n n oo
1= (S = 32 (L)
=0 \i=1 7=1 \:=0

Note that > 7, aijpi converges in Z,, so the x; give a generating set of O over Z,. Then
K is finite over Q. O

Theorem 3.8. Let (K,|-|) be an archimedean local field. Then K 2R or K = C.

Proof. See example sheet. O

!Addendum: We also need that | - ||g is non-trivial. This follows from the fact that Ox /m is finite, so
that there exists n € Z with n € m, i.e. |n| < 1.
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4 Global Fields

Definition. A global field is a field which is either
(i) an algebraic number field (i.e. a finite extension of Q) or
(i1) a global function field (i.e. a finite extension of Fp(t)).

Lemma 4.1. Let (K,|-|) be a complete discretely valued field, L/K a finite Galois ex-
tension with absolute value | - |p extending the one on K. Then for any x € L and
o € Gal(L/K) we have |ox|f, = |z|L.

Proof. Follows from the uniqueness of extensions of absolute values on complete fields. [

Lemma 4.2 (Krasner’s Lemma). Let (K,|-|) be a complete discretely valued field. Let
f(z) € K[x] be a separable irreducible polynomial with roots az,...,a, € K&, Suppose
B € K8 is such that |8 — ay| < |B — ay| fori=2,...,n. Then K(a1) C K(B).

Proof. Let L = K(B), L' = L(a,...,ay). L'/L is Galois. Let o € Gal(L'/L). We have
| —oai] = |o(B—a1)| = |f —a1| < |B — ;| for i # 1. Therefore ca; = ;. Hence
ap € L= K(ﬁ) O

Proposition 4.3. Let (K, | |) be a complete discretely valued field and f(z) = > 1 a;x’ €
Oklz] be a separable irreducible monic polynomial. Let o € K®8 be a root of f. Then
there exists € > 0 such that for any g(z) = > 1o bix’ € Ok[z] monic with |a; — b;| < e,
there exists a root B of g(x) such that K(a) = K(5).

Proof. Let a = aq, ..., ay be the roots of f (which are necessarily distinct). Then f'(ay) #
0. We choose ¢ sufficiently small such that |g(a1)| < |f/(a)|? and | f'(a1)—g'(a1)]| < |f' ().
Then we have |g(a1)| < |f'(c1)]? = |¢'(a1)]?. By Hensel’s Lemma applied to g (in the field
K(a)) there exists 8 € K(aq) such that g(8) = 0 and |8 — a1| < |¢'(a1)| = |f'(a1)| =
[T lon — | < |ar — oy for i = 2,...,n (by integrality). Since |3 — 1| < |a1 — a4| =
|8 — ], by Krasner’s lemma «; € K(f) and hence K (o) = K(f). O

Theorem 4.4. Let K be a local field, then K is the completion of a global field.

Proof. Case 1: | - | is archimedean. Then K is R or C and thus the completion of Q or
Q(Z) with ’ ’ |oo
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Case 2: || non-archimedean, equal characteristic, so K = [Fy((t)), then K is the completion
of F,(t) with the t-adic absolute value.

Case 3: |- | non-archimedean, mixed characteristic, so K = Qp(«) where « is a root
of a monic irreducible polynomial f(z) € Zp[z]. Since Z is dense in Z,, we can choose
g(x) € Z[z] that is close enough to f(x) such that K = Q,(5) where 3 is a root of g(x).
Then Q(B) is an algebraic number field. Since Q(3) is dense in Q,(8) = K, K is the
completion of Q(f8) w.r.t. the restriction of |- | to Q(5). O

17



5 Dedekind Domains

Definition. A Dedekind domain is a ring R such that
(i) R is a noetherian integral domain.

(ii) R is integrally closed.

(iii) Every non-zero prime ideal is maximal.

Theorem 5.1. A ring R is a DVR iff R is a Dedekind domain with exactly one non-zero
prime ideal.

Lemma 5.2. Let R be a noetherian ring and I C R a non-zero ideal, then there exist
non-zero prime ideals p1,...p, € R such that py...p, C 1.

Proof. Suppose not, then there is an ideal I maximal with the property that it contains no
product of prime ideals. Then [ is not prime, so there are elements x,y € R\ I with xy € I.
Then both I+ (z) and I+ (y) contain products of prime ideals. Then also (I+(x))(I+(y))
contains a product of prime ideals, a contradiction as (I + (z))(I + (y)) C I. O

Lemma 5.3. Let R be an integral domain which is integrally closed. Let I C R be a
non-zero finitely generated ideal and x € K = Frac R. Then if xI C I, we have x € R.

Proof. Let I = (c1,...,¢,). Then x¢; = Z;‘:l a;jcj for some a;; € R. Let A = (a;j)ij-

C1
Set B =x1l, — A. Then B | : | =0, so multiplying by the adjugate matrix of B we get
Cn
det B = 0. This determinant is a monic polynomial in x with coefficients in R, so ©z € R
as R is integrally closed. d

Proof of Theorem [5.1 “=" is clear.
For “«<” we need to show that R is a PID. Let m be the maximal ideal of R.

Step 1. m is principal. Let € m by non-zero. Then (z) 2 m” for some n > 1 by Lemma
Let n be minimal with this property. Then we may choose y € m" 1\ (z). Let 7 := %
Then ym C m” C (x), so 7~ 'm C R. Suppose 7~ 'm # R, then 7 'm Cmandso 7! € R
by the lemma. Hence y € (x), which is a contradiction. Hence 77 'm = R, i.e. m = (7).
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Step 2. R is a PID. Let R be any non-zero ideal. Consider the sequence of fractional
ideals I C 71T C 772 C .... Since 7! ¢ R, we have kI %+ = &+DT for all k.
As R is noetherian, we can choose n maximal such that 77" C R. If #7"1 # R, then
7" C m = (w), but then 7~ (D[ C R, contradicting the maximality of n, hence
7 "] = R, so [ = (7") is principal. O

Corollary 5.4. Let R be a Dedekind domain and p C R a non-zero prime ideal. Then
Ry is a DVR.

Definition. If R is a Dedekind domain, p C R a non-zero prime ideal, then we write vy
Jor the normalized valuation on Frac R corresponding to the DVR Ry).

Theorem 5.5. Let R be a Dedekind domain. Then every non-zero ideal I C R can be
written uniquely as a product of prime ideals I = p{* ... pSr (p; distinct,e; > 0).

Proof. Let I C R be a non-zero ideal. By Lemma there are distinct prime ideals
p1,...,pr and B1,..., 5 > 0 such that p’fl = -pfr C I. Let 0 # p be a prime ideal distinct
from the py,...,p,. Then we have le(p) = R(p), SO IR(p) = R(p) Since R(Pz) is a DVR
we have TR,y = (piR(p,))* = p; Rp,)- Then I = pf" ... p2" as this holds locally at each
i Ry = P Ry, 0 ai =i

prime. For uniqueness, if I = p{'...p% =p]"...p)", then p;
by unique factorization in DVR’s. O

5.1 Dedekind domains and extensions

Lemma 5.6. Let L/K be a finite separable field extension. Then the symmetric bilinear
pairing
(,):LxL—K
(z,y) — Trp g (zy)
s non-degenerate.
Proof. As L/K is separable, we have L = K(«) for some a € L. Consider the matrix A
representing (, ) in the K-basis for L given by 1,q,...,a" !, Then Ay = TrL/K(a”j) =

BBT where B = (0(a));; where the o; are the embeddings of L/K into K2, so det A =
(det B)? and det B = [li<icj<n(oj(@) —oi(a)) # 0. O

Theorem 5.7. Let Ok be a Dedekind domain (where K = FracOg) and L a finite
separable extension of K. Then the integral closure O of Ok in L is also a Dedekind
domain.

Proof. Oy, is clearly an integrally closed integral domain.

Let eq1,...,e, € L be a K-basis for L which we may assume to be contained in Op. Let
fi,---, fn € L be the dual basis for eq,...,e, w.r.t. the trace form, i.e. Trp, k(e f;) = ;.
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Let x € Op, write x = >_" | Aifi where \; € K. Then \; = Trp i (ze;) € Ok. Therefore
Op € >, Ok fi. Since Ok is noetherian, O, is finitely generated (as a module) over
Og. Then Oy, is also noetherian.

Let q be a non-zero prime ideal in Op, and let p = N Ok. Then p is a prime ideal of O
and it is non-zero, since if 0 # z € q, then 2" + a12" ' 4+ --- + a, = 0 for some a; € O
with wlog a, # 0, then a, € p. So p is a non-zero prime ideal of O, hence maximal.
We have an integral extension O /p C Or/q. Since Ok /p is a field, it follows easily that
Opr/q is a field, hence q is maximal. O

Corollary 5.8. The ring of integers in a number field is a Dedekind domain.

Conventions on normalizations: Let Og be the ring of integers of a number field K,
0 # p C Ok a prime ideal. We normalize | - |, by |z|, = Np~2@) where Np = #0k /p.

Now let Ok be a Dedekind domain with K = FracOg. Let L/K be a finite separable
extension and Oy, the integral closure of Ok in L.

It is easy to see that for 0 # 2 € Og we have (z) =[], pvr (),

Theorem 5.9. For p a non-zero prime ideal of Ok, write pOr, = P{*--- P with e; > 0.

Then the absolute values on L extending |-|, (up to equialence) are precisely |-|p,,...,|-|p,.

Proof. For any 0 # « € Ok we have vp,(z) = ejvp(x). Hence, up to equivalence, |- |p,
extends | - [,. Now suppose | -| is an absolute value on L extending |- |,. Note that it is
bounded on Z, thus non-archimedean. Let R = {x € L | |z| < 1} C L be the valuation
ring corresponding to |- |. Then Ox C R, and since R is integrally closed in L we have
OLCR. Set P={xeOr||z|] <1} =0rNmpg. P isa prime ideal of O. It is non-zero
as it contains p. Then O p C R. By maximality of DVRs we have Or p = R. From this
it follows that | - | is equivalent to |- |p. Since |- | extends |- |,, PN Ok = p. Therefore
Prt... P C P, so P = P; for some i. O

Let K be a number field. If ¢ : K — R,C is a real or complex embedding, then z +—
|o(2)|oo defines an absolute value on K, denoted by | - |,.

Corollary 5.10. Let K be a number field with ring of integers Ok . Then any absolute
value on K is equivalent to either |- |, for some non-zero prime ideal p C O or |- |5 for
some embedding o : K — R or C.

Proof. Case | - | is non-archimedean. Then |- ||g is equivalent to |- |, for some prime p.
Thus by the Theorem |- | ~ |- |, for some prime p | p.

The archimedean case is an exercise. O
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5.2 Completions

Setup as before: Ok Dedekind domain, L/K finite separable extension. Let p C Ok, P C
Or, non-zero prime ideals with P | p. We write K, and Lp for the completion with respect
to the p- resp. P-adic absolute values.

Lemma 5.11.
(i) The natural map p : L @ Ky, — Lp 1is surjective.
(i) [Lp : K] < [L: K].

Proof. (ii) is immediate from (i). Consider M = LK, = imnp. M is complete as it is a
finite extension of K, and L C M C Lp, thus M = Lp. O

Theorem 5.12. The natural map L @ K, — thg Lp s an isomorphism.

Proof. Write L = K(«) and let f(z) € K[z] be the minimal polynomial of a. Then
we have f(z) = fi(z)... fr(x) in Ky[z] where f; € K,[X] are distinct irreducible. Since
L = K[X]/(f(x)) we have L @k Ky = Kp[X)(f(2) = [T, Kyle)/(fi()). Let Ly =
Ky[z]/(fi(x)). Thisis a finite extension of K. Then L; contains both L and K,. Moreover,
L is dense inside L;. Indeed, since K is dense in K, we can approximate coefficients of an
element of Ky[z]/(fi(z)) by an element in Kz]/f(x) = L. The theorem will follow from
the following three claims:

(1) L; = Lp for some prime P of Of, dividing p (and the isomorphism fixes L and K,)
(2) Each P appears at most once.

(3) Each P appears at least once.

Proof:

(1) Since [L; : K] < oo, there is a unique absolute value |- |z, on L; extending |- |,. We
must have that |- |1,|r is equivalent to |- |p for some P | p. Since L is dense in L; and
L; is complete, we have L; = Lp.

(2) Suppose ¢ : L; = Lj is an isomorphism preserving L and K, then ¢ : Ky[z]/(fi(x)) —
K,[z]/(fj(x)) takes = to x and hence f; = f;, i.e. i = j.

(3) By the previous lemma the map 7p : L&k K, — Lp is surjective for every P | p. Since
Lp is afield, wp factors through L; for some ¢ and we have L; = Lp by surjectivity. [J

Corollary 5.13. Forz € L,

Npk(x) = H Npp/k, (@),
Plp

Trpp(x) =Y Trp i, (@).
Plp
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5.3 Decomposition groups

Let 0 # p be a prime ideal of Ok. Let pOp = P{' ... P¢" where the P; are distinct prime
ideals in Oy, e; > 0.

e; is called the ramification index of P; over p. f; :=[Or/P; : Ok/p] is called the residue
class degree of P; over p.

Theorem 5.14. >/ eif;i =[L: K]

Proof. Let S = Og\p. We note that S~1Op is the integral closure of S~!Of in L. Further-
more pS~1O, = STIP{ ... Pé and ST1OL/STIP =2 O /P and ST'Ok/S™p = Ok /p.
Thus, we may assume that Ok is a DVR. By CRT, we have Or/pOr, = [[;_, Or/FP/".
We count dimensions of both sides as k = O /p vector spaces. For each i we have an
increasing sequence of k-subspaces:

0C -F)Z‘Ei_l/f)z‘ei C... gP’L/PZeZ C OL/-F)Z‘Ei

Note that Pij/PZ-jJrl is an Or,/P;-module and z € Pij\PijJrl is a generator. (E.g. can prove
this after localization at P;). So dimy, PZ-J/PZ?Jrl = f; and we have dim; O /P = e; f;. Of
has rank [L : K] over O, so Or/pOr, has dimension [L : K| over k. O

Now assume that L/K is Galois. Then for any o € Gal(L/K), o(P;) N Ok = p and hence
o(P) € {Pr,..., P},

Proposition 5.15. The action of Gal(L/K) on {P,...,P.} is transitive.

Proof. Suppose not, then there are i # j such that o(P;) # P; for all 0 € Gal(L/K).
There is z € Oy, such that £ =0 (mod Pj),z =1 (mod o(F;)) for all o € Gal(L/K). We
have Ny /i (z) =[], 0(x) € Ok N Pj =p C P;, so o(x) € P; for some o, i.e. z € o~ H(P),
a contradiction. O

Corollary 5.16. Suppose L/K is Galois. Thene :=e; = --- =€, and f := f1 = fo =
-« = fr and we have n = efr.

Proof. For any o € Gal(L/K) we have pOr, = o(pOr) = o(p1)* ---o(p,). By unique-
ness of prime ideal factorization we get e; = --- = e,. Furthermore Or/P; = O /o(P;)
viao,s0 f1 =--- = f. O

If L/K is an extension of complete discretely valued fields with normalized valuation
v, vk, and uniformizers mp, 7k, we have e := ey i = vp(nk) (i.e. TkOx = 17O0) and
= fL/K = [kr : k.

Corollary 5.17. Let L/K be a finite separable extension of complete fields, then [L :
K] =ef.
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Remark: The corollary holds without assumption L/K separable (since in the case of
complete fields, Op is automatically finite over O ).

Definition. Let O be a Dedekind domain. Let L/K be a finite Galois extension. The
decomposition group at a prime P of Of, is the subgroup of Gal(L/K) is defined by

Gp = {0 € Gal(L/K) | o(P) = P}.

Note that any two decomposition groups of primes lying over the same prime in K are
conjugate.

Proposition 5.18. Suppose L/K is Galois and P | p. Then
(1) Lp/K, is Galois

(it) There is a natural map res : Gal(Lp/K,) — Gal(L/K) which is injective and has
image Gp.

Proof. (i) L/K is Galois, so L is the splitting field of a separable polynomial f(z) € K[x].
Then Lp/K, is the splitting field of f(z) € K,[z], so Lp/K, is Galois.

(ii) Let 0 € Gal(Lp/Ky). Then o(L) = L since L/K is normal, hence we get a map
res : Gal(Lp/K,) — Gal(L/K). Since L is dense in Lp, res is injective. We know
that |oxz|p = |z|p for all 0 € Gal(Lp/K,) and x € Lp, hence o(P) = P for all 0 €
Gal(Lp/Kp), i.e. res(0) € Gp. To show that the image is all of Gp, it suffices to show
that #Gp = fe = # Gal(Lp/K,) = [Lp : Kp]ﬂ The first equality is immediate from
efr = n and the transitivity of the action of Gal(L/K) on the primes above p. The
equality [Lp : K] = ef follows from Corollaryand the fact that e and f don’t change
when we take completions. ]

! Alternativley, one can directly see that the map is surjective: If o € Gp, then o is continuous for the
P-adic absolute value, hence extends to Lp/K,.
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6 Ramification Theory

6.1 Different and discriminant

Let L/K be an extension of algebraic number fields, n = [L : K|. Let z1,...,2, € L. We
set
A(.%’l, Ce ,J:‘n) = det(TI"L/K(:Ei:Ej))ij = det(ai(mj))Z e K

where o; : L — K?2 are the distinct embeddings. Note: If y; = Z?Zl a;jr; where

aij € K, then A(y1,...,y,) = det(4)?A(x1,...,2,) where A = (a;;). If 21,..., 3, € O,
then A(zq,...,2,) € Ok.

Lemma 6.1. Let k be a perfect field, R a finite-dimensional k-algebra. The trace form
(,): Rx R — K,(z,y) = Trg/p(vy) is non-degenerate iff R = ky x -+ X kp, where
ki,...,kn are finite field extensions of k.

Proof. Fxercise on Sheet 3. O

Theorem 6.2. Let 0 # p C Ok be a prime ideal.
(i) If p ramifies in L, then for every xi,...,x, € O we have p | A(z1,...,2y).

(ii) If p is unramified, then there are x1,...,x, € Op such that pt A(x1,...,2,).
Proof. Let pOr, = P{* ... P, where the P; are distinct and e; > 0. Then R := O, /pOp, =
[I;_, Or/Pf". If p ramifies, then e; > 1 for some ¢, i.e. R is nilpotent elements, so it cannot
be the product of field extensions of k = O /p. By the previous lemma the trace form

Trgi, is degenerate. So A(Z1,...,Z,) = 0 for all 7; € Op/pOp. This proves (i). The
argument for (ii) is the same. O

Definition. The discriminant of L/K is the ideal dr ) < Ok generated by A(z1,. .., Tp)
for all choices of x1,...,x, € OF.

Corollary 6.3. p ramifies in L iff p | dp i

Definition. The inverse different is the fractional ideal
Dy =1{y € L| Trpk(zy) € O Vo € Or}.

This is an Ofp-submodule of L containing Of,.
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Lemma 6.4. DL/K is a fractional ideal of O,

Proof. Let x1,...,x, € Of be a basis for L as a K-vector space. Set d := A(z1,...,x,) =
det(Trp /i (wiw;)) € Okg. For z € DZ/IK write z = >0 ; A\jz; with A; € K. Then
Trp g (v2;) = Z" Aj TrL/K(a?ixj). Then multiplying with the adjugate matrix we get
d)\; € Ok for all 7, so dDL/KCOL. O

Definition. The inverse of D71, denoted Dy € Oy, is the different ideal.

L/K’
Let I, Ix be the groups of fractional ideals in L, K resp. Define Ny i : I, — Ik on
prime ideals P by P~ (P N O )/ (PIPNOK)) and extend multiplicatively.

Fact: Np/k(aOr) = Np i (a)Ok. To see this, use vp(Np, k, () = fppvp(z) forz € L.
Theorem 6.5. NL/K(DL/K) = dL/K

Proof. First assume that Ok, Op are PID’s. Let x1,...,x, be an Og-basis for O, and
Yly oo, yn be the dual basis with respect to the trace form. Then y1,...,y, form a basis
for DL/K Let 01,...,0n : L = K be the distinct embeddings. Then Y. | 04(z;)04(yx) =
TrL/K(:ijk) =0,k But A(zq,...,2z,) = det(az(xj))Q, so A(z1, .., Zn) AY1, -, yn) = 1.
Write D = 80, with some B € L. Then dL/K = A1, .., 1) L= Ayt yn) =

(ﬁxl,...,ﬂxn) NL/K(,B)QA(ml,..., n) = NL/K(ﬂ)QdL/K. Then dZ/lK = Np/x(B) =
NL/K(DZ/IK). In general, localize at S = O \ p and use SilDL/K = Dg-10,/5-10, and
same for the discriminant.

Theorem 6.6. If O, = Okla] and a has monic minimal polynomial g(x) € Ok |[x], then
Dp/k = (¢ ().

Proof. Let a = aq,...,a, be the roots of g. erte IZ) — g " 4 B, o 24+ By
with 8; € O, and ﬁn 1 = 1. We claim that

z": g@) _af _ .
r—oa; ¢(ay)

i=1

for 0 <r <n — 1. Indeed, the difference is a polynomial of degree < n which vanishes at
A1y...,0p.

%) = drs. So the dual basis (and hence the

n—1 : 50 ﬁn—l —
of l,a,...,« I8 ey g = ( Ik So D, / is generated as a

Equating coefficients of X° gives Try g (

Ok-basis of DL/K)
fractional ideal by g,(la . O

P prime of Or, p = PN Og. We identify Dy, /, with a power of P.
Theorem 6.7. Dy /g = [[p Dy, /k,-
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Proof. Let x € L, p C Ok prime. Then (x) Try/r(z) = > py, Trr,p i, (2). Let r(P) =
vp(DrKi ), $(P) =vp(Drp/k,)-

“C” (ie. r(P) > s(P)). Fix P and let z € P~5(P)\ P=(P)*1 Then vp(z) = —s(P) and
vpr(r) > 0 > —s(P) for all P’ # P. Then Try, x,(zy) € Ok, for all y € Op, and for all
P'. So by (x) Trp/k(zy) € Ok, for all y € Op, and for all p, so Try i (zy) € Of for all
ye€ Op,ie x€ DZ/IK So —s(P) =vp(x) > —r(P).

“D” (i.e r(P) < s(P)). Fix P and let € P~"(P)\ p~"(P)+1 Then vp(z) = —r(P) and
vpr(x) > 0 for all P’ # P. By (%) we have

Tr i, (ty) = Trpic(y) — Y Trp ik, (2y)
P'[p,P'A£P

for all y € Or. By continuity Try, k, (zy) € Ok, for all y € OL,, so z € DZ;»/KF’ ie.
—vp(x) =r(P) < s(P).

Corollary 6.8. dr = [[pdr,/x,-

6.2 Unramified and totally ramified extensions of local fields

Let L/K be a finite separable extension of non-archimedean local fields.

Definition. L/K is unramified (resp. ramified, fully ramified ) if ey /g = 1 (resp. er g >
L ek =[L:K])
Lemma 6.9. Let M/L/K be finite extensions of local fields. Then fyrx = fu/nfr/i
€M/K = €EM/LCL/K -

Proof. Clear from the definitions. O

Theorem 6.10. There exists a field Ko with K C Ko C L such that
i) Ko/K is unramified.
i1) L/ Ky is totally ramified.

Moreover [Ko : K] = fr/k,[L: Ko] = ek and Ko/K is Galois.

Proof. Let k =T, so that kp =F s, f = fr k. Set m = q¢f —1. Let []: F,s — L be the

Teichmiiller lift for L. Let &, = [a], for a a generator of quf. Then &, is a primitive m-th
root of unity. Set Ko = K (&,,). This is Galois as it is the splitting field of ™ — 1. Let res :
Gal(Ky/K) — Gal(ko/K) be the natural map. For o € Gal(K(/K), we have o(&,,) = &
if 0(&n) = &, mod myg, since O[X(O — k§ induces a bijection between the m-th roots of
unity. Hence res is injective. So fr,/x < # Gal(Ko/K) < # Gal(ko/k) = fx,/K, so we

get [Ko : K| = fr,/x = f and e, /g = 1 and res is an isomorphism. By multiplicativity
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of residue class/ramification degrees, we get fr,/x, = 1 and ey /g, = e/ = [L : K]/[Ko :
K] =[L: K. O

Theorem 6.11. £ = ;. For any n > 1 there exists a unique unramified extension
L/K of degree n. Moreover, L/K is Galois and the natural restriction map Gal(L/K) —
Gal(kr/k) is an isomorphism. In particular, Gal(L/K) = (Froby k) where Froby /i (x) =
9 mod my, for all x € Op,.

Proof. For n > 1, take L = K((p), where m = ¢" — 1 and (,, is a primitive m-root of
unity. As in the theorem Gal(L/K) — Gal(kr/k) is an isomorphism. Therefore L/K is
unramified. Then L/K is unramified and Gal(L/K) is generated by a lift of z qu
Uniqueness: If L/K is degree n and unramified, then (,, € L by Hensel’s Lemma or
Teichmiiller lift and thus L = K((,,) for degree reasons. O

Corollary 6.12. L/K is finite Galois. The map res: Gal(L/K) — Gal(kr/K) is surjec-
tive.

Proof. res factors as Gal(L/K) — Gal(Ky/K) = Gal(kp/k). O
Definition. L/K finite Galois. The inertia subgroup is

I, = ker(Gal(L/K) — Gal(kp/k)).

Since er i fr/x = [L : K], we have #I; x = er . Also I, /x = Gal(L/Kp).
Theorem 6.13.

(i) Let L/K be finite totally ramified, 7, € Or a uniformizer. Then the minimal poly-
nomial of 7y, is Eisenstein, Op = Ok|[nr] and L = K ().

(i) Conversely, if f(x) € Oklx] is Eisenstein and « is a root of f, then L = K(«) is a
totally ramified extension of K and « is a uniformizer in L.

Proof.

(i) Let e = [L : K] and f(x) = 2™ + am—12™ 1 + -+ + a9 € OkJz] be the minimal
polynomial of 7r;,. Then m < e. Since v, (K*) = eZ, we have v (a;7%) = i mod e
for ¢ < m, hence these terms have distinct valuations. As 77" = — Z;’;Bl a;my we
have m = vr(7}") = ming<j<m—1(¢ + evg(a;)). But this can only happen if e = m,
vi(a;) > 1 for all i and vg(ag) = 1. So f is Eisenstein and L = K(ry). For y € L
write y = ZS:O bz‘ﬂ'iL, b; € K. Then UL(y) = minogige_l(i + BUK(bZ')). Thus y € Oy,
iff vp(y) > 0iff vg(b;) > 0iff y € Ok [mp].

1To get the inequality [L : K] < n take the minimal polynomial of {, and show that it is irreducible over
k.
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(ii) Let f(z) = 2" +an—12"" '+ -- +ag € Ok[z] be Eisenstein, and let e := e, /; where
L = K(a). Thus vg(a;) > e and vp(ag) = e. If vp(a) < 0, we have nvp(a) <
vr(an—1a""t + -+ + ag), contradiction. So vy (a) > 0. Then for i # 0, vy (a;at) >
e = vr(ag). Therefore nvr(a) = vp(a™) = v (— E?:_Ol a;ol) = e.

O]

6.3 Structure of Units

Let K be a finite extension of Qy, let e := ek /g, 7 uniformizer in K.
Proposition 6.14. Ifr >e/(p — 1), then

o0 n

oxple) =3 2

=0

converges on 7" O and induces an isomorphism (7" Ok, +) = (1 4+ 71" Ok, X).

Proof. vig(n!) = evy(n!) = e%”fn) < e%, so for z € 7Ok and n > 1 we have

-1
vi (2" /n!) ZnT_eZ—l :T+(n—1)(r—pi1).
——
>0

So vi(x"/n!) — oo as n — 00, so exp(x) converges. Since v (z"/n!) > r for n > 1,
exp(r) € 1 + 1" Ok.

Similarly consider log : 1+7"Og — 7" O where log(1+xz) = >, (_17):_1 x™. Note that

v (z™/n) = rn — evp(n) > rn — e% = (n—1)(r — ;%) + r, so the series converges and
also v(log(1 + z)) > r, so log maps 1+ 7" Ok into 7" Of.

The identities exp(X +Y) = exp(X) exp(Y), exp(log(1 + X)) = 1 + X, log(exp(X)) = X
hold in Q[X,Y]. So exp : (7" Ok, +) = (1 + 1" Ok, x) is an isomorphism. O

For K a local field we let Ux = OF.

Definition. For s € Z>1, the s-th unit group U[(?) is defined by UI((S) = (1 4+ 7O, x).
We set U[(?) =Ug.

We have ... QUI(;S) QU[(?A) Cc...C U[(( = Uk.
Proposition 6.15.
(i) UR /U = (k% %)

(ii) UL JUS™ = (k,+) for s > 1.

28



Proof. For (i) note that the reduction map O — k* is surjective with kernel 1 +7Ox =
U,

For (ii) let f : U[((s) — k be defined by 1 4+ 72 — 2 mod w. This is a surjective group
homomorphism with kernel U ;?H). 0

Corollary 6.16. Let [K : Q] < co. There exists a finite index subgroup of Ojc isomorphic
to (OK, +).

Proof. Let r > pfl. Then UI(;) > (Og,+) by the first proposition and U,Sn) C Uk has

finite index. O

Remark: This is not true for K equal characteristic.

Example. Consider Z, for p > 2. Then e = 1, so that we can take r = 1. Then using
the Teichmiiller lift we get

Z; S (Z)pZ)* x (1 + pZy) 2 Z)(p— 1)Z X Zyp.

For p = 2 take r = 2, then ZJ = (Z/4Z)* x (1 + 4Zs) X 7Z/27 x Zs.

6.4 Higher ramification groups

Let L/K be a finite Galois extension of local fields, 7, € O a uniformizer, vy, the
normalized valuation on L.

Definition. For s € R>_1, the s-th ramification group s

Gs(L/K) ={0 € Gal(L/K) | v (o(x) —x) > s+ 1 for all x € Or}.

E.g. G_1(L/K) = Gal(L/K)and Go(L/K) = {c € Gal(L/K) | o(x) = x mod 7 for all z €
Or} = ker(Gal(L/K) — Gal(kr/k)) = Ik

Note: For s € Z>q, Gs(L/K) = ker(Gal(L/K) — Aut(O /75T 0OL)), hence G5(L/K) is a
normal subgroup of Gal(L/K).

We get a filtration ... C Gs C Gs—1 C ... C G_1 = Gal(L/K).

Remark: G, can only change at integer values of s. The indexing using real numbers is
used to define the upper numbering (see Chapter @

Theorem 6.17.
(i) For s >0, Gs ={o € Go | vr(o(mr) — L) > s+ 1}.
(1) Nozo Gs = {1}
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(iii) Let s € Z>o. There is an injective group homomorphism Gs/Gsy1 — Ujgs)/U]gSH)

induced by o — o(rr)/mr. This map is independent of the choice of 7y,.

Proof. Let Ky C L be the maximal unramified extension of K in L. Upon replacing K by
Ky we may assume that L/K totally ramified.

(i) We know that Op = Ok|[rr]. From this it follows that if vy (o(7wp) —7p) > s+ 1,
then vy (o(z) —x) > s+ 1 for all x € Of. Indeed, if x = f(nr) with f € Ok|z], then
o(x) —x = f(o(rp)) — f(nr) = (o(wp) — 7p)g(mr) for some polynomial g € Op|x].
Then vy (o(x) —x) > vi(o(n) — 7)) > s+ 1.

(ii) Suppose o € Gal(L/K),o # 1. Then o(ny) # 7 as L = K(7p). Hence vy (o(7p) —
L) < 00, 80 0 ¢ G for some s > 0.

(ili) Note: For o € G, s € Z>o we have o(r) € mp,+75 1O, s0 o(wp) /7y, € 14750, =
Ués). We claim ¢ : G5 — Ués)/UfH), o — o(rr)/7r is a group homomorphism
with kernel Gsi1. For 0,7 € G, let 7(nr) = unp, u € OF, then (o7)(nr) /7, =

o(r(x))/r(rL) - (7))L = #”;ﬁ”%). But o(u) € u+ 750y, so 24 ¢

1+ Wi“(’),; = UISSH). So ¢ is a homomorphism. Moreover ker ¢ = {0 € G5 | o7 =
7, mod 7TZ+1} = Gsi1-

O]

Corollary 6.18. Let L/K be a finite Galois extension of local fields. Then Gal(L/K) is
solvable.

Proof. For s € Z>_1 we have G5/Gs41 = a subgroup of Gal(kr/k) if s = —1, (k[, x) if
s =0 or (kr,+) if s > 1. This gives us a filtration of Gal(L/K) with abelian quotients
ending at 1. O

Let p = char k. Then #(Go/G1) is coprime to p and #G; = p™ for some n > 0. Thus G
is the unique (since normal) Sylow p subgroup of Go = I, k-

Definition. The group G; is the wild inertia group and Go/Gy is the tame quotient.
Let L/K be a finite separable extension of local fields. Say L/K is tamely ramified if
chark { er/k (equivalently Gi =1 if L/K is Galois). Otherwise L/K is wildly ramified.

Theorem 6.19. Let [K : Q)] < oo, L/K finite, Dy = ()’ /%) Then §(L/K) >
er ik — 1, with equality iff L/K is tamely ramified.

In particular, L/K is unramified iff Dy, /x = O

Proof. By Exercise Sheet 3 we have Dy x = Dk, Dy, k- So it suffices to check two
cases.

30



(i) L/K unramified. Then Of, = Ok|[a] for some o € O, with kr, = k(@). Let g(z) €
Ok|[z] be the minimal polynomial of «. Since [L : K| = [kp, : k|, g(x) € k[x] is the
minimal polynomial of @. So g(x) is separable and hence ¢'(a) # 0 mod 7z,. Thus
Dpjk = (g'(a)) = OL.

(ii) L/K totally ramified. Then [L : K| = e and OL = Ok|rr] where 7y, is the root
of some Elsenstein polynomial g(z) = z¢ + EZ 0 air’ € Oglz]. Then ¢'(mr) =
ers ! 4+ S ia;my ', Then vr(¢'(7r)) > e — 1 with equality iff p { e.

O]

Corollary 6.20. Let L/K be an extension of number fields, P C Op, PN Ok =p. Then
e(P|p)>1iff P|Dpk.

Proof. Combine the theorem with the fact that the global different is the product of the
local differents. ]

Example. Let K = Q,, £ a primitive p"-th root of unity and L = Q,(&y»). Then the
p"-th cyclotomic polynomial is ®pn () = 2" =1 4 2P" =2 4 ... 41 € Z[z].

Example Sheet 3: ®,n(x) is irreducible, so ®pn () is the minimal polynomial of &pn. L/Q,
is Galois, totally ramified, degree p"~1(p — 1).

Let m = &n — 1. This is a uniformizer of Or. Then Op = Zy[{n — 1] = Zy[€pn]. Then
Gal(L/Qy) = (Z/p"Z)*. Let oy, be the Galois automorphism with o (§pn) = §jn. Then
v (om(m) =) = vL(En —Epn) = vr(§pn 1 _1). Suppose m # 1 mod p". Let k be maximal
such that p¥ | m —1. Then 5;”_1 is a prlmltlve p"*-th root of unity and hence 5;771 —1is
a uniformizer in L' = Q, (&)~ D). So vr(Epn - — 1) =ep = erjq,/er /0, = [L: Qpl/[L
Qp] = p*. So oy, € Gy iff p* > i+ 1. Thus

(Z./p"7)* i <0,
G2 (1+p*2)/p"Z pF1—1<i<pF—1,1<k<n-1,
{1} ptl—1 <.
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7 Local Class Field Theory

Recall some infinite Galois theory:

Proposition 7.1. Let L/K be a Galois extension. The restriction maps Gal(L/K) —
Gal(F/K) for finite subextensions F'/K induce an isomorphism

Gal(L/K) = lim Gal(F/K).
F/K finite

We give Gal(L/K) the topology for which the above isomorphism becomes a homeomor-
phism.

Example. Gal(F2%/F,) ~ lim _ Gal(Fgn/Fg) = lim Z//T\lZ = Z. Under this isomor-
phism the Frobenius Fr, € Gal(F2'®/F,) corresponds to 1 € Z.

Theorem 7.2 (Fundamental theorem of Galois theory). Let L/K be a Galois extension.
Endow Gal(L/K) with the profinite topology. Then there is a bijection:

{subextensions of L/ K} «— {closed subgroups of Gal(L/K)}
F+— Gal(L/F)
L%« H

Moreover, F/K s finite iff Gal(L/F) is open and F/K Galois iff Gal(L/F) is normal in
Gal(L/K) in which case Gal(F/K) ~ Gal(L/K)/ Gal(L/F).

7.1 Weil Group

Let K be a local field, L/K a separable algebraic extension.
Definition.
(i) L/K is unramified if F/K is unramified for all finite subextensions F/K.
(ii) L/K is totally ramified if F'//K is totally ramified for all finite subextensions F/K.

Proposition 7.3. Let L/K be an unramified extension. Then LK is Galois and Gal(L/K) ~
Gal(kL/k).
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Proof. Every finite subextension F'/K is unramified, hence Galois. So L/K is Galois.
Moreover there exists a diagram:

Gal(L/K) ——— Gal(k/k)
1'£1F/K Gal(F/K) ----- > @k//k Gal(k'/k)
The subextensions L/F/K correspond via F' — kp bijectively to the intermediate exten-

sions kr /k'/k and the Galois groups are isomorphic via the reduction map, hence we get
an isomorphism of the bottom two groups and the diagram commutes. O

If Ly, Lo/ K are finite unramified, then L Ls/K is unramified by Exercise Sheet 3. Thus
for any L/K there exists a maximal unramified subextension Ky/K.

Let L/K be Galois. There exists a surjection res : Gal(L/K) — Gal(Ky/K) ~ Gal(k./k).
Set I,k = ker(res) (Inertia subgroup).

Let Fry, ,, € Gal(kr/k) be the Frobenius z z#* and let (Fry, /&) be the subgroup
generated by Fry, /.

Definition. Let L/K be Galois. The Weil group W(L/K) C Gal(L/K) isres™ ((Fry, /1))
Remark: If kz,/k is finite, then W(L/K) = Gal(L/K). Otherwise W(L/K) C Gal(L/K).

There is a commutative diagram

0 — Ipyg —— W(L/K) —— (FTkL/k> — 0

- l [

0 — Ik — Gal(L/K) —— Gal(kp/k) —— 0

with exact rows.
We endow W(L/K) with the weakest topology such that
(1) W(L/K) is a topological group.

(2) Ir/x is an open subgroup of W (L/K) where I}, /i = Gal(L/Ky) is equipped with the
profinite topology.

Le. open sets are translates of open sets in I /i by elements of W(L/K).

Warning: If k7, /k is infinite, W(L/K) does not carry the subspace topology in Gal(L/K),
e.g. I,yx € W(L/K) is not open in subspace topology.

Proposition 7.4. Let L/K be Galois.
(i) W(L/K) is dense in Gal(L/K)
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(i) If F/K is a finite subextension of L/K, then W (L/F) =W (L/K)N Gal(L/F).
(iii) If F/K is a finite Galois subextension, then

W(L/K)/W(L/F) 2 Gal(F/K).

Proof.

(i) W(L/K) dense in Gal(L/K) iff for all F'/K finite Galois subextensions W (L/K) in-
tersects every coset of Gal(L/F) iff for all F'// K finite Galois subextensions W (L/K) —
Gal(F/K) is surjective. Consider the diagram

I L I

0 —— Ipjg — Gal(F/K) —— Gal(kp/k) — 0

Let K(y/K be the maximal unramified extension contained in L. Then KN F is the
maximal unramified extension in F. Then Gal(L/Ky) — Gal(F/(KoN F)), so a is
surjective. Since Gal(kp/k) is generated by Fry, i, = Fry, jilkp, ¢ is surjective. By
diagram chase, b is surjective.

(ii) Easy from the definitions.
(i)
W(L/K)/W(L/F) = W(L/K)/(W(L/K) N Gal(L/F))

~ (W(L/K)Gal(L/F))/ Gal(L/F)
= Gal(L/K)/Gal(L/F) = Gal(F/K)

Note that W(L/K)Gal(L/F) = Gal(L/K) as W(L/K) is dense in Gal(L/K) by
(). O

7.2 Statements of local class field theory

Let K be a local field and let K2 be the maximal abelian extension in KSP.

We know that K" = (J7°_| K((gm—1) where g = #k. Then kgw = Fglg and Gal(K"/K) ~
Gal(F2% /F,) ~ Z.

So K is abelian and hence K™ C K2 There is an exact sequence

0 = Ipan /e = W(K™/K) = Z — 0.

Theorem 7.5.
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(1) (Local Artin reciprocity) There exists a unique topological isomorphism Artg : K* =
W (K /K) satisfying the following properties:

(i) Artg(m)|kuw = Frgu g for any uniformizer m € K.
(ii) For each finite subextension L/K in K* /K, Artg (Np/ g (L)L = {1}.

(2) Let L/K be finite abelian. Then Arty induces an isomorphism K> /Ny p(L*) ~
W(K*/K)/W (K /L) ~ Gal(L/K)

Remarks:

(i) Special case of Local Langlands.

(ii) Used to characterize global Artin map of global class field theory.
Properties of the Artin map:

e (Existence theorem) For any open finite index subgroup H C K* there exists a finite
abelian extension L/K such that Ny x(L*) = H. In particular, Artx induces an
(inclusion reversing) isomorphism of posets:

{open finite index subgroups of K*} +— {finite abelian extensions L/K}
H— (Kab)ArtK(H)

e (Norm functoriality) Let L/K be a finite separable extension. There is a commuta-

tive diagram:

L A wrab/r)

lN L/K lres

K A (Kb K)
Proposition 7.6. Let L/K be a finite abelian extension of degree n. Then er/Kk = [(’)IX( :
Ni/x(Of)].
Proof. For x € L™, we have vk (Np k(7)) = fr/kvi(x). So we get a surjection
K*/Npk(L™) = Z/fr/kZ
with kernel
(O NLyr(LX)) /Ny (L) = O /(O N N (L)) = O /N (OF).
By Theorem (2), n=[K*: Ny g(L*)] = fr/x[OF : Npyk(OF)]. O

Corollary 7.7. Let L/K be a finite abelian extension. Then L/K is unramified iff
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7.3 Construction of Artg,

Recall: QpF = Up—; Qp(¢pm—1) = Uﬁm Qp(Gm)-

Qp(¢n)/Qy is totally ramified of degree p™ 1 (p—1) with 6,, : Gal(Qp((pn)/Qp) =~ (Z/p"Z)*.
For n > m > 1 there is a commutative diagram:

Gal(Qp(Gn)/Qp) —= Gal(Qy(¢pm)/Qp)

zlen lem

(2)p"2)* — s (2/p" D)

Set Qp(Cpee) = UnZ Qp(Gpr). Then Qp(p~/Qp) is Galois and we have
0 : Gal(Qp(Gpe)/Qy) = Ig%@/pnzv ~ 7.

We have Qp((pee) NQy" = Qp, so there is an isomorphism Gal(Q,((pe )Q)7/Qp) =~ 7 x Zy.
Theorem 7.8 (Local Kronecker-Weber). Qi = QprQ,((pe ).
Proof. Omitted 0
Construct Artg, as follows: We have Q) ~Z x Z;. Then
Artg, (p"u) = ((Frg/g,)", 07 (v™1)) € Gal(Q}'/Qp) x Gal(Qy((pe) /Qp) =~ Gal(Q5°/Qy).

The image lies in I/V(Qgb /Qp).

7.4 Construction of Artg

Let K be a local field, 7 a uniformizer of K. For n > 1, we will construct totally ramified
Galois extensions Ky , such that:

() KC...C Knp CKpnt1C....

(ii) For m > m > 1 there is a commutative diagram:

Gal(Kypn/K) — Gal(Kpm/K)

o <Jon

O /U —2s O3 U

(iii) Setting Kr oo = Upey Krn we have K% = K%K, .

36



Then (ii) implies that there is an isomorphism ¥ : Gal(Ky o /K) — lim OK/U[(?) = Of.
Define Artg by:
KX =7 x 0 — Gal(K™/K) x Gal(K, «/K) = Gal(K*®/K),

v =7"ur— (Friu g, Tt

Remark: Both Kr o and the isomorphism K* = Z x Oy depend on w, but Artx does
not.

Goal: Construct K .
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8 Lubin-Tate Theory

8.1 Formal group laws

Let R be a ring.

Definition. A (1-dimensional commutative) formal group law over R is a power series
F(X,Y) € R[X,Y] satisfying

(i) F(X,Y)= X +Y mod (X,Y)?
(i) F(X,F(Y,Z))=F(F(X,Y),Z)
(iii) P(X,Y) = F(Y,X)
Examples.
. @G(X,Y) = X +Y (formal additive group)
. ([A}m(X, Y)=X+Y 4+ XY (formal multiplicative group)
Lemma 8.1. Let F' be a formal group law over R. Then
(i) F(X,0)=X, F(0,Y)=Y
(i) There exists a unique i(X) € X R[X] such that F(X,i(X)) = 0.

Proof. Example sheet 4. O

Let K be a complete non-archimedean valued field, F' a formal group law over Ok. Then
F(x,y) converges for all z,y € mg to an element in mg. Defining x -py = F(X,Y) turns
(mg,-p) into a commutative group.

>~

G,y over Zyp gives x5 y=z+ytzy for x,y € pZ,. There is an isomorphism (pZ

p, .@7")
(14 pZy, %), x 1+x

Definition. Let F,G be formal group laws over R. A homomorphism f : FF — G is
an element f(X) € XR[X] such that f(F(X,Y)) = G(f(X), f(Y)). A homomorphism
f+ F — G is an isomorphism if there exists a homomorphism g : G — F such that

fog=X=golf.
Define Endg(F) to be the set of homomorphisms f : F — F.
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Pr0p051t10n 8.2. Let R be a Q-algebra. There is an isomorphism of formal group laws
exp : Gg = Gy, where exp(X) = S0, X7

n=1 n!

Proof. Define log X =3 77 | (— )”Jrl X" Then there is an equality of formal power series
logexp X = X = explog X and exp(Ga(X, Y)) = G(exp X, expY). O

Lemma 8.3. Endg(F) is a ring with addition f+r g(X) = F(f(X),9(X)) and multipli-
cation given by composition.

8.2 Lubin-Tate formal groups

Let K be a local field with #k = q.

Definition. A formal Og-module over Ok is a formal group law F(X,Y) € O[X,Y]
together with a ring homomorphism [-|p : Ox — Endo, (F) such that for all a € Ok,
[a](X) = aX mod X2 A homomorphism/isomorphism f : F' — G of formal Oxmodules
is a homomorphism/isomorphism of formal group laws such that fo[alp = [a]go f for all
a€ Og.

Definition. Let m € Ok be a uniformizer. A Lubin-Tate series for 7 is a power series
f(X) € Og[X] such that

(a) f(X)=nX mod X?
(b) f(X)=X?modw
Example. K =Q,, f(X) = (X +1)? — 1 is a Lubin-Tate series for p.
Theorem 8.4. Let f(X) be a Lubin-Tate series for m. Then:
(i) There exists a unique formal group law Fy over Ok such that f € Endp, (Fy).

(1t) There exists a ring homomorphism [y : Ox — Endo, (Fy) which makes Fy into a
formal Ok -module over Ok .

(111) If g(x) is another Lubin-Tate series for m, then Fy = F, as formal Ok -modules.

Fy is the Lubin-Tate formal group law for 7.

Example. K = Qp, f(X) = (X +1)? —1. The associated Lubin-Tate formal group FY is
Gyy. For this we need to show that fo Gy =G o (f, f). We have

f(@m(X,Y)) =14+X4+Y+XY)P-1=014+X)P1+Y)P-1= @m(f(X),f(Y)).

Lemma 8.5. Let f(X),g9(X) be two Lubin-Tate series for m. Let L(Xy,...,X,) =
Yo, aiXs, with a; € Og. Then there exists a unique power series F(X1,...,X,) €
Ok[X1,...,X,] such that:
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(i) F(Xi1,...,X,) = L(X1,...,X,) mod deg?2.
(i) f(F(X1,..., Xn)) = F(g(X1), .., 9(Xn)).
Proof. We show by induction that there exists a unique F,, € Og|[X1,...,X,] of total
degree < m such that
(@) f(Fn(X1,...,Xn)) = Fn(g(X1),...,9(X,)) mod degm + 1.
(b) Fin(X1,...,X,) = L(Xy,...,X,) mod deg2
(¢) Fp, = Fyyy1 mod degm + 1.

For m =1, take F; = L. Then (b) is satisfied. For (a) we compute f(Fi(X1,...,Xn))
mL(X1,...,Xn) = F1(9(X1),...,9(Xy)) mod deg2.

Suppose Fy, is constructed where m > 1. Set F,,41 = F,,, + h where h € Og[X1,..., X,]
is homogeneous of degree m + 1. Then since f(X +Y) = f(X) + f/(X)Y +Y?(...) and
f(X)=m mod X,

fo(Fmn+h)=fokF,+nhmod degm + 2.
Similarly,
(Fn+h)og=Fpog+h(nXy,...,7Xy,) = Fmog+7rm+1h(X1,...,Xm) mod degm + 2.

Thus (a), (b) and (c) are satisfied iff f o F},, — F,09 = (7 — 7#™*1)h mod degm + 2. But
f(X)=¢(X)=X?mod , so

foF,—Fpog=Fyu(Xi,...,Xn)?— Fu(X{,..., X2) mod .
Thus fo F,, — Fpog € mOg[X1,...,X,]. Let 7(X1,...,X,) be the degree m + 1 terms
in foF,, —F,o0g. Thenset h:= ———r ¢ Ok[X1,...,Xy] so that F,,; satisfies (a),

w(l—7™)

(b), (c¢). It is unique since h is determined by property (a).
Set F' = limy,—,o0 F, which exists by (c¢). Uniqueness of F' follows from uniqueness of the
F,,. O
Proof of Theorem[8.].
(i) By the Lemma there exists a unique Fy(X,Y’) € Og[X,Y] such that
o [4(X,Y)=X+Y mod deg2,
We must prove that F is indeed a formal group law.

Associativity: Fp(X,Fy(Y,Z)) = X +Y + Z = Fy(F¢(X,Y),Z) mod deg2 and
[ o Fy(X,Fy(Y.2)) = Fy(f(@), [(Fy(Y,2))) = Fy(f(a), Fy(F(Y), f(Z))). Simi-
larly f o Fy(Fy(X,Y), 2) = Fy(Fy(f(X), f(V)), f{(2)). Thus Fy(X,Fy(Y, 7)) =
Fy(F¢(X,Y),Z) by the uniqueness in the lemma.
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Commutativity is proved similarly.
(ii) By the Lemma, for a € Ok there exists a unique [a]r, € Og[X] such that
e [a]p;, = aX mod X?
o folalp, =lalp o f
Then [a]r, o Fy = Fy o [a]F, using a similar argument as above (uniqueness).

The map [-|r, : Ok — Endoy (Fy) is a ring homomorphism (again verified using
uniqueness). So F is a formal Ox-module over Of. Also note that [r]r, = f.

(iii) If g(X) is another Lubin-Tate series for m, let §(X) € O [X] be the unique power
series such that (X) = X mod X? and o f = gof. Then 6o Fy = F,(0(X),0(Y))
(uniqueness), so 6 € Homop, (Ff, F,). Reversing roles of f, g, we obtain 671(X) €
Ok[X], 67! € Homo,, (F,, Ff). Then 671 06(X) = X and o6~ (X) = X (unique-
ness). So 6 is an isomorphism of formal group laws.

Again by uniqueness we find that 6 o [a]r,(X) = [a]F, 0 6(X) for all @ € Ok and
hence 6 is an isomorphism of formal Ox-modules.

O

8.3 Lubin-Tate extensions

Let K be a non-archimedean local field, #k = ¢, 7 uniformizer. Let K?2 be the algebraic
closure of K, m C Opa the maximal ideal.

Lemma 8.6. Let F' be a formal Ox-module over Og. Then m becomes a (genuine)
Ok -module with x +ry = F(z,y) and a -p x = [a]p(x) for z,y, € m and a € Ok.

Proof. Given x € m, we have z € my, for some L/K finite. Since [a|r € Ok [X], [a|r(z)
converges in L and its limit lies in my C m. Similarly x + g y is well-defined. O

Definition. Let f(x) be a Lubin-Tate series for m and Fy the associated Lubin-Tate formal
group law. The m™-torsion group is

pn i ={zem|r" pr=0}={rem| fy(r)=fofo- . of(zx)=0}

Note that juy, is an Ox-module and g7, C s 41
Example. K = Qp, f(X) = (X +1)?» — 1. Then [p"|p,(z) = (z + 1)?" — 1. Thus
Now let f(X) =7X + X9 Then f,(X) = fo fu_1(X) = fa1(X)(m + fru_1(X)771). Set

ha(X) = 2200 — 74 fu 1 (X)) We set fo(X) = X.
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Proposition 8.7. h,(X) is a separable Eisenstein polynomial of degree ¢"'(q —1).

Proof. It is clear that h,(X) is monic of degree ¢" (¢ —1). f(X) = X9 mod m,
0 fpo1(X)?7!1 = X" @=D mod 7. Since f,_1(X) has 0 constant term, h,(X) =
7+ fno1(X)?! has constant term 7. Thus h,(X) is Eisenstein. Since h,(X) is irre-
ducible, h,(X) is separable if char K = 0, or if char K = p and hl,(X) # 0. Assume
char K = p. Induct on n. hi(X) = 7 + X9 is separable. Suppose h,_1(X),...,h1(X)
are separable. Then f,_1(X) = h,—1(X)---h1(X)X is separable (product of separable
irreducible polynomials of different degrees). Then h,(X) = 7 + f,_1(X)?"!. We have
RL(X) = (¢ —1)f,_1(X)fa—1(X)?72 #0, so hp(X) is separable. O

Note that the proof also shows that f,,(X) is separable.
Proposition 8.8.
(i) ppn is a free module of rank 1 over Ok /1" Of.
(it) If g is another Lubin-Tate series for 7, then g, = pgn as Ox-modules and K(ug,,) =
K(pgn)-
Proof.

(i) Let o € K be a root of hy(X). Since hy,(X) and f,—1(X) are coprime, o € pgy \
pfn—1. Then the map ¢ : Ox — pgn,a— a-p, ais an Ox-module homomorphism
with 7Ok C ker p and 7! ¢ ker . Therefore ker p = 7"Op. Thus ¢ induces
an injection ¢ : O /7" Ok < pify. Since f,(X) is separable, #pir, = deg fn(X) =
q" = #Ok /7" Ok. So ¢ is an isomorphism.

(ii) Let # € Homo, (Ff, Fy) be an isomorphism of formal Og-modules. It induces an
isomorphism 6 : (W, + 5, *F,) = (m, +F,, r,) and hence piyf, = pgn. Since piy, is
algebraic, K(us,)/K is finite, hence complete. Since §(X) € Og[X], for x € pysp
we also have 0(x) € K(ufy). So K(ugn) € K(pfy,). The same argument for 6!
gives the reverse inclusion. O

Definition. K, := K(uyn)

Remark: K, does not depend on f by the proposition. We have K, C K p41.
Proposition 8.9. K, are totally ramified Galois extensions of degree " g —1).
Proof. We may choose f(X) = nX + X% Then K ,/K is Galois since Ky, = K({fn)
is the splitting field of f,,(X). Let o be a root of hy,(X) = fn(X)/fn-1(X). It suffices to
show K (a) = K (uy,) since a is the root of an Eisenstein polynomial of degree ¢"~!(g—1).

By the proposition every element = € g, is of the form a -p, o for some a € Ok. Since
K(a) is complete and [a]r, (X) € Ok [X], we get x = [a]r, (@) € K (a). O

Let f be the Lubin-Tate series 71X + X9.
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Theorem 8.10. There are isomorphisms ¥, : Gal(Kr ,/K) = (O /1"Ok)* character-
ized by
(%) V(o) F,x=0(x) Vo€ sy, 0 € Gal(Krpn/K)

Moreover, ¥,, does not depend on f.

Proof. Let o € Gal(Kr,/K). Then o preserves py.,, and acts continuously on K(us,) =
Kz Since Fy(X,Y) € Ok[X], and [a|r;, € Ok[X] for all a € Ok, we have o(z+F, y) =
o(x) +r, 0(y) and o(a g, v) = a-p, o(x) for all 2,y € gy, a € Ok.

Thus o € Auto, (1f,,). this induces a group homomorphism Gal(Kx ,/K) — Auto, (1f.n)
which is injective since Ky, = K(uyy). Since puy, = O /" as Og-module, we get

Autoy (pfn) = Auto /en (i) = (Ok /7")7

We obtain ¥, : Gal(Kr,/K) — (Og/7™)* defined by: ¥, (c) € (Og/n™)* is the unique
element such that W, (0) -p, © = o(x) for all @ € gy, Since [Krp : K| = ¢ Hg—1) =
#(Og /m™)*, ¥, is surjective by counting.

Let g be another Lubin-Tate series. Then we obtain ¥/, : Gal(Ky ,/K) = (O /7"™)*.
Let 0 : Iy — F, be an isomorphism of formal Og-modules. It induces an isomorphism

0: tifn — pign of Or-modules. Hence for x € if,, (¥, (0) 7y x) = V(o) F, 0(x). But
¢ € Ok [X] has coefficients in O, so 0(ox) = o(0z) for all x € pig,. Then O(Vy(0)-Fpz) =
O(ox) = o(0z) = U} (0) -F, 0(x), so ¥, (o) = ¥;,(0). O

Set Ky oo = UZO:1 K . Then there is an isomorphism

U Gal(Kr oo/ K) 2 1im(Ok /7" O) ™ = Of.

Theorem 8.11 (Generalized local Kronecker-Weber). K% = K, K.
Proof. Omitted. 0

Now we define Artg by

KX 27 x 0 — Gal(K™/K) x Gal(K, «/K) = Gal(K*®/K),

v =m"ur— (Friguw g, T (u)
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9 **Upper Numbering of Ramification
Groups

Let L/K be a finite Galois extension of local fields. Define the function
P .= (I)L/K : RZ—I — R,

S dt
P(s) = —_
=), Gl
For t € [-1,0) we set m =[Gy : Go).

For m < s <m + 1 where m € Z>_1 we have

B(s) = olG1 : Gl "o
g #G + -+ H#Gm + (s —m)#Gimy1) m >0,

® is continuous, piecewise linear and strictly increasing. Therefore we can define Vp, /=

—1
By

Definition (Upper numbering). The higher ramification groups in upper numbering are

defined by
G*(L/K) := G\I/L/K(s)(L/K) C Gal(L/K).

Key point: Gs(L/K) behaves well w.r.t. subgroups. G*(L/K) behaves well w.r.t. quo-

tients.

Let L/F/K be fields with L/K Galois. Then G4(L/F) = Gs(L/K) N Gal(L/F). If also
F/K is Galois, then G*(L/K) Gal(L/F)/ Gal(L/F) = GY(F/K) (Herbrand’s theorem).

Example. K =Q,, L =Q,((n). Let k€ Z, 1<k <n—1 ForpP 1 -1<s<pr—-1,

Gs~{m e (Z/p"Z)* | m =1 mod pF} = U&)/U(z).

G, jumps at p* — 1, ®r,/k is linear on [pF=1 —1,p* — 1], thus to compute /K, it suffices
1-(p=1)

to compute @L/K(pk —1). We have <I>L/K(p’C -1)=(p-1)- z% + pz;

(p-1)
1+1+---+1=k. Then

(z/p")* 5 <0,
G =JA+p"2)/p'Z k—1<s<k(l<k<n-1),
1 s>n—1.

In particular GF = U&)/U&) 1<k<n-1.
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