Local Fields

Cambridge Part III, Michaelmas 2022
Taught by Rong Zhou
Notes taken by Leonard Tomczak

Contents

1 Valued Fields 2
1.1 Absolute Values and Valuations 2
$1.2 p$-adic numbers 5
2 Complete Valued Fields 7
2.1 Hensel's Lemma 7
2.2 Teichmüller Lifts 8
2.3 Extensions of complete valued fields 9
3 Local Fields 13
4 Global Fields 16
5 Dedekind Domains 18
5.1 Dedekind domains and extensions 19
5.2 Completions 21
5.3 Decomposition groups 22
6 Ramification Theory 24
6.1 Different and discriminant 24
6.2 Unramified and totally ramified extensions of local fields 26
6.3 Structure of Units 28
6.4 Higher ramification groups 29
7 Local Class Field Theory 32
7.1 Weil Group 32
7.2 Statements of local class field theory 34
7.3 Construction of Art $_{\mathbb{Q}_{p}}$ 36
7.4 Construction of Art_{K} | 36
8 Lubin-Tate Theory 38
8.1 Formal group laws 38
8.2 Lubin-Tate formal groups 39
8.3 Lubin-Tate extensions 41
9 **Upper Numbering of Ramification Groups 44

1 Valued Fields

1.1 Absolute Values and Valuations

Definition. Let K be a field. An absolute value on K is a function $|\cdot|: K \rightarrow \mathbb{R}$ such that:

1. $|x| \geq 0$ for all $x \in K$ with equality iff $x=0$.
2. $|x y|=|x| \cdot|y|$ for all $x, y \in K$.
3. $|x+y| \leq|x|+|y|$ for all $x, y \in K$.

An absolute value $|\cdot|$ is called non-archimedean if it satisfies the ultrametric inequality

$$
|x+y| \leq \max \{|x|,|y|\}
$$

for all $x, y \in K$. Otherwise it is called archimedean.
It is easily seen that if $|\cdot|$ is non-archimedean and $x, y \in K$ with $|x|<|y|$, then $|x+y|=$ $\max (|x|,|y|)=|y|$.

Two absolute values on a field are said to be equivalent if they define the same topology.
$|\cdot|$ is called the trivial absolute value on K if $|x|=1$ for all $x \neq 0$.
Example. Let $K=\mathbb{Q}$ and p a prime number. Given $x \in \mathbb{Q}^{\times}$write $x=p^{n} \frac{a}{b}$ with $a, b \in \mathbb{Z}$ not divisible by p. Then let $|x|_{p}:=p^{-n}$ and set $|0|_{p}=0$. Then $|\cdot|_{p}$ is a non-archimedean absolute value on \mathbb{Q}, called the p-adic absolute value. The field \mathbb{Q}_{p} of p-adic numbers is defined to be the completion of \mathbb{Q} w.r.t. the p-adic absolute value.

Of course \mathbb{Q} also has the ordinary archimedean absolute value $|\cdot|_{\infty}$ whose completion is \mathbb{R}. We will later see (Theorem 3.6) that every absolute value on \mathbb{Q} is equivalent to either $|\cdot|_{p}$ for some prime p or to $|\cdot|_{\infty}$.

Proposition 1.1. Let $|\cdot|,|\cdot|^{\prime}$ non-trivial absolute values on field K. TFAE:
(i) $|\cdot|,|\cdot|^{\prime}$ are equivalent.
(ii) $|x|<1 \Leftrightarrow|x|^{\prime}<1$ for all $x \in K$.
(iii) There exists $c \in \mathbb{R}_{>0}$ such that $|x|^{c}=|x|^{\prime}$ for all $x \in K$.

Proof. $(i) \Longrightarrow(i i)$ is clear from $|x|<1 \Leftrightarrow x^{n} \rightarrow 0$ w.r.t. $|\cdot|$.
(ii) \Longrightarrow (iii) Let $a \in K^{\times}$such that $|a|>1$. We need to show that for all $x \in K^{\times}$, $\frac{\log |x|}{\log |a|}=\frac{\log |x|^{\prime}}{\log |a|^{\prime}}$. Let $m / n \in \mathbb{Q}$ such that $\frac{\log |x|}{\log |a|}<m / n$, i.e. $\left|\frac{x^{n}}{a^{m}}\right|<1$. Then $\left|\frac{x^{n}}{a^{m}}\right|^{\prime}<1$ and hence $\frac{\log |x|^{\prime}}{\log |a|^{\prime}}<m / n$. Thus $\frac{\log |x|}{\log |a|} \geq \frac{\log |x|^{\prime}}{\log |a|^{\prime}}$ and similarly \leq.
$(i i i) \Longrightarrow(i)$ clear .
The ultra-metric inequalities gives the following lemma:
Lemma 1.2. If $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a sequence in K such that $\left|x_{n}-x_{n+1}\right| \rightarrow 0$ as $n \rightarrow \infty$, then $\left(x_{n}\right)_{n}$ is a Cauchy sequence. In particular $\left(x_{n}\right)_{n}$ converges if K is complete.

Example. $p=5$. We construct a sequence $\left(x_{n}\right)_{n}$ in \mathbb{Q} such that
(i) $x_{n}^{2}+1 \equiv 0\left(\bmod 5^{n}\right)$,
(ii) $x_{n} \equiv x_{n+1}\left(\bmod 5^{n}\right)$
as follows: Take $x_{1}=2$. Let $x_{n}^{2}+1=a 5^{n}$ and $x_{n+1}=x_{n}+b 5^{n}$. Then

$$
x_{n+1}^{2}+1 \equiv a 5^{n}+2 b x_{n} 5^{n} \bmod 5^{n+1}
$$

i.e. want b such that $a+2 b x_{n} \equiv 0(\bmod 5)$ which is possible as $2, x_{n}$ are coprime to 5 . Now (ii) implies that $\left(x_{n}\right)_{n}$ is Cauchy w.r.t. $|\cdot|_{5}$. Suppose $x_{n} \rightarrow L \in \mathbb{Q}$. Then $x_{n}^{2} \rightarrow L^{2}$. By (i) we have $x_{n}^{2} \rightarrow-1$, hence $L^{2}=-1$, a contradiction. So \mathbb{Q} is not 5 -adically complete.

Now let $(K,|\cdot|)$ be non-archimedean valued field. For $x \in K, r \in \mathbb{R}_{>0}$ we let:

$$
\begin{aligned}
& B(x, r):=\{y \in K| | y-x \mid<r\} \\
& \bar{B}(x, r):=\{y \in K| | y-x \mid \leq r\}
\end{aligned}
$$

(Note that $\bar{B}(x, r)$ need not be the closure of $B(x, r)$.)
Lemma 1.3. Let $x \in K, r \in \mathbb{R}_{>0}$
(i) If $z \in B(x, r)$, then $B(z, r)=B(x, r)$.
(ii) If $z \in \bar{B}(x, r)$, then $\bar{B}(z, r)=\bar{B}(x, r)$.
(iii) $B(x, r)$ is closed.
(iv) $\bar{B}(x, r)$ is open.

Proof. Follows easily from the ultra-metric inequality.
Definition. A valuation on a field K is a function $v: K \rightarrow \mathbb{R}^{\times}$such that for all $x, y \in K$ the following holds:
(i) $v(x y)=v(x)+v(y)$,
(ii) $v(x+y) \geq \min (v(x), v(y))$.

Valuations correspond to (equivalence classes of) non-archimedean absolute values on K. Given a valuation v and a fixed $\alpha>1$, define $|x|:=\alpha^{-v(x)}$ for $x \neq 0$. We will thus sometimes switch between (non-archimedean) absolute values and valuations, whichever is more convenient.

Definition. Let $(K,|\cdot|)$ be a non-archimedean valued field. We let

$$
\begin{aligned}
\mathcal{O}_{K} & =\{x \in K| | x \mid \leq 1\} \\
\mathfrak{m} & =\{x \in K \mid v(x) \geq 0\} \\
& =\{x| | x \mid<1\}
\end{aligned}=\{x \in K \mid v(x)>0\} .
$$

\mathcal{O}_{K} is called the valuation ring of K. The residue field is $\mathcal{O}_{K} / \mathfrak{m}$.
Note that \mathcal{O}_{K} is indeed a subring of K and \mathfrak{m} is its unique maximal ideal.
Definition. A valuation v on K is discrete if $v\left(K^{\times}\right) \cong \mathbb{Z}$. If $\pi \in K^{\times}$is such that $v(\pi)>0$ and $v(\pi)$ generates $v\left(K^{\times}\right)$, then π is called a uniformizer.

Lemma 1.4. Let (K, v) be a valued field. TFAE:
(i) v is discrete.
(ii) \mathcal{O}_{K} is a PID.
(iii) \mathcal{O}_{K} is noetherian
(iv) \mathfrak{m} is principal.

Proof. $(i) \Rightarrow(i i)$: Let $0 \neq I \subseteq \mathcal{O}_{K}$ be an ideal. Let $x \in I$ with $v(x)$ minimal. Then $I=x \mathcal{O}_{K}$. Thus, \mathcal{O}_{K} is a PID.
$($ ii $) \Rightarrow(i i i):$ clear.
$($ iii $) \Rightarrow(i v):$ Write $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$, wlog $v\left(x_{1}\right) \leq \cdots \leq v\left(x_{n}\right)$. Then $\mathfrak{m}=x_{1} \mathcal{O}_{K}$.
$(i v) \Rightarrow(i)$: Let $\mathfrak{m}=\pi \mathcal{O}_{K}$ and $c=v(\pi)$. Then, if $x \in \mathfrak{m}$, then $v(x) \geq c$, hence $v\left(K^{\times}\right) \cap$ $(0, c)=\emptyset$ which easily implies that $v\left(K^{\times}\right)=c \mathbb{Z}$.

Lemma 1.5. If v is a discrete valuation on K with uniformizer π, then for every $x \in K^{\times}$ there are unique $n \in \mathbb{Z}, u \in \mathcal{O}_{K}^{\times}$such that $v=\pi^{n} u$.

Definition. A ring R is called a discrete valuation ring ($D V R$) if R is a principal ideal domain with exactly one non-zero prime ideal.

Lemma 1.6. Let K be a field. If v is a discrete valuation on K, then \mathcal{O}_{K} is a $D V R$. Conversely if R is a DVR with $K=\operatorname{Frac} R$, then there is a discrete valuation on K such that $\mathcal{O}_{K}=R$.

Example. The rings $\mathbb{Z}_{(p)}$ with p prime and $k \llbracket t \rrbracket$ with k a field are DVRs.

$1.2 p$-adic numbers

Recall that \mathbb{Q}_{p} is the completion of \mathbb{Q} w.r.t. the p-adic absolute value. The ring of p-adic integers is its valuation ring, denoted \mathbb{Z}_{p}.
Proposition 1.7. \mathbb{Z}_{p} is the closure of \mathbb{Z} inside \mathbb{Q}_{p}. In particular \mathbb{Z}_{p} is the completion of \mathbb{Z} w.r.t. $|\cdot|_{p}$.

Proof. Since \mathbb{Q} is dense in \mathbb{Q}_{p} and $\mathbb{Z}_{p} \subseteq \mathbb{Q}_{p}$ is open, $\mathbb{Z}_{p} \cap \mathbb{Q}$ is dense in \mathbb{Z}_{p}. Note that $\mathbb{Z}_{p} \cap \mathbb{Q}=\left\{\left.\frac{a}{b} \in \mathbb{Q} \right\rvert\, p \nmid b\right\}=\mathbb{Z}_{(p)}$. Thus it suffices to show that \mathbb{Z} is dense in $\mathbb{Z}_{(p)}$. Let $a / b \in \mathbb{Z}_{(p)}$ with $a, b \in \mathbb{Z}, p \nmid b$. For $n \in \mathbb{N}$ choose $y_{n} \in \mathbb{Z}$ such that $b y_{n} \equiv a\left(\bmod p^{n}\right)$. Then $y_{n} \rightarrow \frac{a}{b}$ w.r.t. $|\cdot|_{p}$.

Let $\left(A_{n}\right)_{n=1}^{\infty}$ be a sequence of sets/groups/rings together with homomorphisms φ_{n} : $A_{n+1} \rightarrow A_{n}$. Recall that the inverse limit of the system $\left(\left(A_{n}\right)_{n},(\varphi)_{n}\right)$ is

$$
A:=\lim _{{ }_{n}} A_{n}=\left\{\left(a_{n}\right) \in \prod_{n=1}^{\infty} A_{n} \mid \varphi_{n}\left(a_{n+1}\right)=a_{n} \text { for all } n \in \mathbb{N}\right\} .
$$

It is again a set/group/ring and inherits the algebraic structure from $\prod_{n=1}^{\infty} A_{n}$. Let θ_{m} : $A \rightarrow A_{m}$ be the projection onto the m-th coordinate. Then $\left(A,\left(\theta_{m}\right)_{m}\right)$ enjoys the following universal property:

Proposition 1.8. Let B be a set/group/ring together with homomorphisms $\psi_{n}: B \rightarrow A_{n}$ such that the diagram

commutes. Then there exists a unique homomorphism $\psi: B \rightarrow A$ such that $\theta_{n} \circ \psi=\psi_{n}$ for all n.

Definition. Let R be a ring and I an ideal of R. Then

$$
\widehat{R}:={\underset{\zeta}{\underset{n}{*}}}^{\lim ^{2}} R / I^{n}
$$

is called the I-adic completion of R. The transition maps are the projections $R / I^{n+1} \rightarrow$ R / I^{n}. If the natural map $R \rightarrow \widehat{R}$ (induced by the projections $R \rightarrow R / I^{n}$ and the universal property) is an isomorphism, R is called I-adically complete.

Let $(K,|\cdot|)$ be a non-archimedean valued field and $\pi \in \mathcal{O}_{K}$ such that $|\pi|<1$.
Proposition 1.9. Assume K is complete w.r.t. $|\cdot|$.
(i) Then $\mathcal{O}_{K} \cong \varliminf_{\curvearrowleft} \mathcal{O}_{K} / \pi^{n}$, i.e. \mathcal{O}_{K} is π-adically complete
(ii) Every $x \in \mathcal{O}_{K}$ can be written uniquely as $x=\sum_{i=0}^{\infty} a_{i} \pi^{i}$, $a_{i} \in A \subseteq \mathcal{O}_{K}$ where A is a set of coset representatives for $\mathcal{O}_{K} / \pi \mathcal{O}_{K}$.

Moreover any such series $\sum_{i=0}^{\infty} a_{i} \pi^{i}$ converges.
Proof.
(i) Note that \mathcal{O}_{K} is complete. If $x \in \bigcap_{n=0}^{\infty} \pi^{n} \mathcal{O}_{K}$, then $v(x) \geq n v(\pi)$ for all n, so $x=0$, hence $\mathcal{O}_{K} \rightarrow \varliminf_{\lim _{n}} \mathcal{O}_{K} / \pi^{n}$ is injective. Let $\left(x_{n}\right)_{n=1}^{\infty} \in \varliminf_{\rightleftarrows} \lim _{n} \mathcal{O}_{K} / \pi^{n}$. For each n let $y_{n} \in \mathcal{O}_{K}$ be a lift of x_{n}. Then $y_{n}-y_{n+1} \in \pi^{n} \mathcal{O}_{K}$ so that $v\left(y_{n}-y_{n+1}\right) \geq n v(\pi)$. Thus $\left(y_{n}\right)_{n=1}^{\infty}$ is a Cauchy sequence in \mathcal{O}_{K}, so it converges to an element $y \in \mathcal{O}_{K}$ which maps to $\left(x_{n}\right)_{n=1}^{\infty}$ in $\varliminf_{\curvearrowleft} \mathcal{O}_{K} / \pi^{n}$.
(ii) is an exercise.

Warning: If $(K,|\cdot|)$ is not discretely valued, \mathcal{O}_{K} is not necessarily \mathfrak{m}-adically complete.

Corollary 1.10.

(i) $\mathbb{Z}_{p} \cong \lim _{\sum_{n}} \mathbb{Z} / p^{n} \mathbb{Z}$.
(ii) Every $x \in \mathbb{Q}_{p}$ can be written uniquely as $\sum_{i=n}^{\infty} a_{i} p^{i}$ where $a_{i} \in\{0, \ldots, p-1\}$.

Proof. It suffices to show that $\mathbb{Z} / p^{n} \mathbb{Z}=\mathbb{Z}_{p} / p^{n} \mathbb{Z}_{p}$. Let $f_{n}: \mathbb{Z} \rightarrow \mathbb{Z}_{p} / p^{n} \mathbb{Z}_{p}$ be the natural map. Clearly, $\operatorname{ker}\left(f_{n}\right)=\left\{x \in \mathbb{Z} \mid v_{p}(x) \geq n\right\}=p^{n} \mathbb{Z}$. Let $y \in \mathbb{Z}_{p} / p^{n} \mathbb{Z}_{p}$ and $c \in \mathbb{Z}_{p}$ be a lift. Since \mathbb{Z} is dense in \mathbb{Z}_{p}, there is $x \in \mathbb{Z}$ such that $x \in c+p^{n} \mathbb{Z}_{p}$, i.e. $f_{n}(x)=y$.

2 Complete Valued Fields

2.1 Hensel's Lemma

Theorem 2.1 (Hensel's Lemma version 1). Let $(K,|\cdot|)$ be a complete discretely valued field. Let $f(t) \in \mathcal{O}_{K}[t]$ and assume there is $a \in \mathcal{O}_{K}$ such that $|f(a)|<\left|f^{\prime}(a)\right|^{2}$. Then there exists a unique $x \in \mathcal{O}_{K}$ such that $f(x)=0$ and $|x-a|<\left|f^{\prime}(a)\right|$.

Proof. Let $\pi \in \mathcal{O}_{K}$ be a uniformizer and let $r=v\left(f^{\prime}(a)\right)$. We construct a sequence $\left(x_{n}\right)_{n}$ in \mathcal{O}_{K} such that (i) $f\left(x_{n}\right) \equiv 0\left(\bmod \pi^{n+2 r}\right)$ and (ii) $x_{n} \equiv x_{n+1}\left(\bmod \pi^{n+r}\right)$.
Take $x_{1}=a$, then $f\left(x_{1}\right) \equiv 0\left(\bmod \pi^{1+2 r}\right)$ by assumption. Suppose we have constructed x_{1}, \ldots, x_{n} satisfying (i) and (ii). Define $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$. Since $x_{n} \equiv x_{1}\left(\bmod \pi^{r+1}\right)$, $v\left(f^{\prime}\left(x_{n}\right)\right)=r$ and hence $\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \equiv 0\left(\bmod \pi^{n+r}\right)$ by (i).

Thus, $x_{n+1} \equiv x_{n}\left(\bmod \pi^{n+r}\right)$, so (ii) holds. Note that $f\left(x_{n+1}\right)=f\left(x_{n}\right)+f^{\prime}\left(x_{n}\right) c+g\left(x_{n}\right) c^{2}$ where $c=-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$. Since $c \equiv 0\left(\bmod \pi^{n+r}\right)$, we get $f\left(x_{n+1}\right) \equiv f\left(x_{n}\right)+f^{\prime}\left(x_{n}\right) c \equiv 0$ $\left(\bmod \pi^{n+2 r+1}\right)$.

Property (ii) implies that $\left(x_{n}\right)_{n}$ is Cauchy. So let $x \in \mathcal{O}_{K}$ such that $x_{n} \rightarrow x$. By (i) it follows that $f(x)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=0$. Moreover (ii) implies that $a=x_{1} \equiv x_{n}$ $\left(\bmod \pi^{r+1}\right)$ for all n, hence $|x-a|<\left|f^{\prime}(a)\right|$.

Uniqueness: Suppose x^{\prime} also satisfies $f\left(x^{\prime}\right)=0$ and $\left|x^{\prime}-a\right|<\left|f^{\prime}(a)\right|$. Let $\delta=x^{\prime}-x$. Then $|\delta|=\left|x^{\prime}-x\right|<\left|f^{\prime}(a)\right|$. Also $0=f\left(x^{\prime}\right)=f(x+\delta)=f(x)+f^{\prime}(x) \delta+(\ldots) \delta^{2}$. Hence $\left|f^{\prime}(x) \delta\right| \leq|\delta|^{2}$. Since $a \equiv x\left(\bmod \pi^{1+r}\right)$, we have $f^{\prime}(x) \equiv f^{\prime}(a) \not \equiv 0\left(\bmod \pi^{1+r}\right)$, so $\left|f^{\prime}(x)\right|=\left|f^{\prime}(a)\right|$. Thus, if $\delta \neq 0$, we would get $\left|f^{\prime}(a)\right| \leq|\delta|$, a contradiction.

Corollary 2.2 .

$$
\mathbb{Q}_{p}^{\times} /\left(\mathbb{Q}_{p}^{\times}\right)^{2} \cong \begin{cases}(\mathbb{Z} / 2 \mathbb{Z})^{2} & \text { if } p>2, \\ (\mathbb{Z} / 2 \mathbb{Z})^{3} & \text { if } p=2 .\end{cases}
$$

Proof. Case $p>2$. Let $b \in \mathbb{Z}_{p}^{\times}$. Applying Hensel's Lemma to $x^{2}-b$, we find that $b \in\left(\mathbb{Z}_{p}^{\times}\right)^{2}$ iff $\bar{b} \in\left(\mathbb{F}_{p}^{\times}\right)^{2}$. Thus $\mathbb{Z}_{p}^{\times} /\left(\mathbb{Z}_{p}^{\times}\right)^{2} \cong \mathbb{F}_{p}^{\times} /\left(\mathbb{F}_{p}^{\times}\right)^{2} \cong \mathbb{Z} / 2 \mathbb{Z}$. We have an isomorphism $\mathbb{Z}_{p}^{\times} \times \mathbb{Z} \cong \mathbb{Q}_{p}^{\times}$, then done.
Case $p=2$. Let $b \in \mathbb{Z}_{p}^{\times}$and $f(x)=x^{2}-b$. Let $b \equiv 1(\bmod 8) .|f(1)|_{2} \leq 2^{-3}<2^{-2}=$ $\left|f^{\prime}(1)\right|^{2}$. Thus, f has a unique root a with $a \equiv b(\bmod 4)$.

Hence, $b \in\left(\mathbb{Z}_{p}^{\times}\right)^{2}$ iff $b \equiv 1(\bmod 8)$. Thus, $\mathbb{Z}_{2}^{\times} /\left(\mathbb{Z}_{2}^{\times}\right)^{2} \cong(\mathbb{Z} / 8 \mathbb{Z})^{2} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. We conclude as in the case $p>2$.

Theorem 2.3 (Hensel's Lemma version 2). Let $(K,|\cdot|)$ be a complete discretely valued field and $f(x) \in \mathcal{O}_{K}[x]$. Suppose that $\bar{f}(x) \in k[x]$ factorises as $\bar{f}(x)=\bar{g}(x) \bar{h}(x)$ in $k[x]$ with $\bar{g}(x), \bar{h}(x)$ coprime. Then there is a factorization $f(x)=g(x) h(x)$ in $\mathcal{O}_{K}[x]$ with $\bar{g}(x) \equiv g(x)(\bmod \mathfrak{m}), \bar{h} \equiv h(\bmod \mathfrak{m})$ and $\operatorname{deg} g=\operatorname{deg} \bar{g}$.

Proof. Example Sheet 1.

Corollary 2.4. Let $f(x)=a_{n} x^{n}+\cdots+a_{0} \in K[x]$ where $(K,|\cdot|)$ is complete discretely valued with $a_{0}, a_{n} \neq 0$. If f is irreducible, then $\left|a_{i}\right| \leq \max \left\{\left|a_{0}\right|,\left|a_{n}\right|\right\}$ for all i.

Proof. Upon rescaling we may assume that $f \in \mathcal{O}_{K}[x]$ with $\max _{i}\left|a_{i}\right|=1$, so we need to show that $\left|a_{0}\right|=1$ or $\left|a_{n}\right|=1$. Suppose this is not the case. Let r be minimal such that $\left|a_{r}\right|=1$. Then $0<r<n$. Thus we have $f(x) \equiv x^{r}\left(a_{r}+\cdots+a_{n} x^{n-r}\right)(\bmod \mathfrak{m})$. By Hensel's Lemma version 2 we can lift this factorization to a non-trivial factorization over \mathcal{O}_{K}, contradicting the irreducibility.

2.2 Teichmüller Lifts

Definition. A ring R of characteristic $p>0$ is called perfect if the Frobenius $x \mapsto x^{p}$ is a bijection.

Theorem 2.5. Let $(K,|\cdot|)$ be a complete discretely valued field such that $k=\mathcal{O}_{K} / \mathfrak{m}$ is a perfect field of characteristic p. Then there exists a unique map $[\cdot]: k \rightarrow \mathcal{O}_{K}$ such that
(i) $a=[a] \bmod \mathfrak{m}$
(ii) $[a b]=[a][b]$

Moreover if char $K=p$, this lifting [•] is a ring homomorphism.
The element $[a] \in \mathcal{O}_{K}$ is called the Teichmüller lift of a.
Lemma 2.6. Let $(K,|\cdot|)$ be as in the theorem and $\pi \in \mathcal{O}_{K}$ a uniformizer. Let $x, y \in \mathcal{O}_{K}$ such that $x \equiv y\left(\bmod \pi^{k}\right)$ for some $k \geq 1$. Then $x^{p} \equiv y^{p}\left(\bmod \pi^{k+1}\right)$.

Proof. Let $x=y+u \pi^{k}$ with $u \in \mathcal{O}_{K}$. Then

$$
x^{p}=\sum_{i=0}^{p}\binom{p}{i} y^{p-i}\left(u \pi^{k}\right)^{i}=y^{p}+p \pi^{k}(\ldots)+u^{p} \pi^{p k} \equiv y^{p} \quad\left(\bmod \pi^{k+1}\right)
$$

Proof of the theorem. Let $a \in k$. For each $i \geq 0$ we choose a lift $y_{i} \in \mathcal{O}_{K}$ of $a^{1 / p^{i}}$ and we define $x_{i}=y_{i}^{p^{i}}$. We claim that $\left(x_{i}\right)_{i}$ is a Cauchy sequence and its limit x is independent of the choice of y_{i}. By construction $y_{i} \equiv y_{i+1}^{p}(\bmod \pi)$. By the lemma and induction we obtain $y_{i}^{p^{r}} \equiv y_{i+1}^{p^{r+1}}\left(\bmod \pi^{r+1}\right)$, so $x_{i} \equiv x_{i+1}\left(\bmod \pi^{i+1}\right)($ take $r=i)$. Then $\left(x_{i}\right)_{i}$ is Cauchy, so $x_{i} \rightarrow x \in \mathcal{O}_{K}$. Suppose $\left(x_{i}^{\prime}\right)_{i}$ arises from another choice of y_{i}^{\prime} lifting $a^{1 / p_{i}}$. Then $\left(x_{i}^{\prime}\right)_{i}$ is Cauchy and $x_{i}^{\prime} \rightarrow x^{\prime} \in \mathcal{O}_{K}$. Let $x_{i}^{\prime \prime}=x_{i}$ for i even and $x_{i}^{\prime \prime}=x_{i}$ for i odd. Then $x_{i}^{\prime \prime}$ arises in a similar way and we get that $x_{i}^{\prime \prime}$ is Cauchy. But then the subsequences x_{i}, x_{i}^{\prime} must converge to the same limit, i.e. $x=x^{\prime}$.

We define $[a]=x$. Then $x_{i}=y_{i}^{p^{i}} \equiv\left(a^{1 / p^{i}}\right)^{p^{i}}=a(\bmod \pi)$, so $[a]$ is indeed a lift of a, i.e. (i) is satisfied.

Let $b \in k$ and we choose $u_{i} \in \mathcal{O}_{K}$ a lift of $b^{1 / p^{i}}$. Let $z_{i}=u_{i}^{p^{i}}$. Then $\lim _{i} z_{i}=[b]$. Now $u_{i} y_{i}$ is a lift of $(a b)^{1 / p^{i}}$, hence $[a b]=\lim _{i \rightarrow \infty} x_{i} z_{i}=\lim _{i} x_{i} \lim _{i} z_{i}=[a][b]$. This shows that (ii) is satisfied.

Suppose that char $K=p . \quad y_{i}+u_{i}$ is a lift of $a^{1 / p^{i}}+b^{1 / p^{i}}=(a+b)^{1 / p^{i}}$, so $[a+b]=$ $\lim _{i \rightarrow \infty}\left(y_{i}+u_{i}\right)^{p^{i}}=\lim _{i \rightarrow \infty} y_{i}^{p^{i}}+u_{i}^{p^{i}}=\lim _{i} x_{i}+\lim _{i} z_{i}=[a]+[b]$.
Uniqueness: Let $\phi: k \rightarrow \mathcal{O}_{K}$ be another such map. Then for $a \in k, \phi\left(a^{1 / p^{i}}\right)$ lifts $a^{1 / p^{i}}$. It follows that $[a]=\lim _{i \rightarrow \infty} \phi\left(a^{1 / p^{i}}\right)^{p^{i}}=\phi(a)$.
E.g. $K=\mathbb{Q}_{p},[\cdot]: \mathbb{F}_{p} \rightarrow \mathbb{Z}_{p} . a \in \mathbb{F}_{p}^{\times},[a]^{p-1}=\left[a^{p-1}\right]=[1]=1$, so $[a]$ is a $(p-1)$-th root of unity.

More generally:
Lemma 2.7. ($K,|\cdot|$) complete discretely valued field. If $k=\mathcal{O}_{K} / \mathfrak{m} \subseteq \mathbb{F}_{p}^{\text {alg }}$, then $[a] \in \mathcal{O}_{K}$ is a root of unity.

Theorem 2.8. Let $(K,|\cdot|)$ be a complete discretely valued field with char $K=p>0$. Assume k is perfect. Then $K \cong k((t))$.

Proof. It suffices to show that $\mathcal{O}_{K} \cong k \llbracket t \rrbracket$. Fix $\pi \in \mathcal{O}_{K}$ a uniformizer, let $[\cdot]: k \rightarrow \mathcal{O}_{K}$ be the Teichmüller lift. Define $\varphi: k \llbracket t \rrbracket \rightarrow \mathcal{O}_{K}$ by $\varphi\left(\sum_{i=0}^{\infty} a_{i} t^{i}\right)=\sum_{i=0}^{\infty}\left[a_{i}\right] \pi^{i}$. Then φ is a ring homomorphism since [.] is and it is a bijection since every element in \mathcal{O}_{K} has a unique π-adic expansion.

2.3 Extensions of complete valued fields

Theorem 2.9. Let $(K,|\cdot|)$ be a complete non-archimedean discretely valued field and L / K a finite extension of degree n. Then
(1) $|\cdot|$ extends uniquely to an absolute value $|\cdot|_{L}$ on L defined by

$$
|y|_{L}=\left|N_{L / K}(y)\right|^{1 / n}
$$

(2) L is complete w.r.t. $|\cdot|_{L}$.

Definition. Let Let $(K,|\cdot|)$ be a non-archimedean valued field, V a vector space over K. A norm on V is a function $\|\cdot\|: V \rightarrow \mathbb{R}_{\geq 0}$ satisfying
(i) $\|x\|=0$ iff $x=0$,
(ii) $\|\lambda x\|=|\lambda|\|x\|$ for $\lambda \in K, x \in V$,
(iii) $\|x+y\| \leq \max \{\|x\|,\|y\|\}$ for $x, y \in V$.

Example. Let V be finite-dimensional over K and e_{1}, \ldots, e_{n} a basis for V. The sup-norm on V (relative to this basis) is defined by

$$
\|x\|_{\text {sup }}=\sup _{i}\left|x_{i}\right|
$$

where $x=\sum_{i} x_{i} e_{i}$.
Definition. Two norms $\|\cdot\|_{1},\|\cdot\|_{2}$ on V are equivalent if there are $C, D>0$ such that $C\|x\|_{1} \leq\|x\|_{2} \leq D\|x\|_{1}$ for all $x \in V$.

Note that two norms are equivalent iff they induce the same topology.
Proposition 2.10. Let $(K,|\cdot|)$ be a complete non-archimedean valued field and V a finite dimensional vector space over K. Then V is complete w.r.t. any sup-norm.

Proof. Easy, as in the real case.

Theorem 2.11. Let $(K,|\cdot|)$ be complete non-archimedean valued field and V a finite dimensional vector space over K. Then any two norms on V are equivalent, in particular V is complete w.r.t. any norm.

Proof. Since equivalence of norms is an equivalence relation, we may assume that every norm $\|\cdot\|$ is equivalent to the sup-norm w.r.t. to some chosen basis e_{1}, \ldots, e_{n}. Set $D:=$ $\max _{i}\left\{\left\|e_{i}\right\|\right\}$. Then clearly, $\|x\| \leq D\|x\|_{\text {sup }}$ for all $x \in V$. To find the constant C in the other direction $\left(C\|x\|_{\text {sup }} \leq\|x\|\right)$ we induct on n. For $n=1$ the existence of C is clear since every element of V is a multiple of e_{1}. Let $n>1$. Set $V_{i}=\left\langle e_{1}, \ldots, e_{i-1}, e_{i+1}, \ldots, e_{n}\right\rangle$. By induction hypothesis V_{i} is complete, hence closed in V. Then $e_{i}+V_{i}$ is also closed for all i, thus so is $S=\bigcup_{i=1}^{n}\left(e_{i}+V_{i}\right)$. S is a closed subset that does not contain 0 , hence there exists $C>0$ such that $B(0, C) \cap S=\emptyset$. Let $0 \neq x=\sum_{i} x_{i} e_{i}$ and suppose that $\left|x_{i}\right|=\|x\|_{\text {sup }}$. Then $\frac{1}{x_{i}} x \in S$, so $\left\|\frac{1}{x_{i}} x\right\| \geq C$, i.e. $\|x\| \geq C\|x\|_{\text {sup }}$.

Lemma 2.12. Let $(K,|\cdot|)$ be a valued field. Then \mathcal{O}_{K} is integrally closed in K.
Proof of Theorem 2.9. We show that $|\cdot|_{L}=\left|N_{L / K}(\cdot)\right|^{1 / n}$ defines an absolute value on L. The only non-trivial property is that $|x+y|_{L} \leq \max \left\{|x|_{L},|y|_{L}\right\}$. Let $\mathcal{O}_{L}=\left\{\left.y \in L| | y\right|_{L} \leq\right.$ $1\}$. We claim that \mathcal{O}_{L} is the integral closure of \mathcal{O}_{K} in L and hence in particular a subring.

Assuming this we prove the ultrametric inequality. Wlog we may assume that $|x|_{L} \leq|y|_{L}$. Then $|x / y|_{L} \leq 1$, so $x / y \in \mathcal{O}_{L}$. But then also $x / y+1 \in \mathcal{O}_{L}$ and so $|x+y|_{L} \leq|y|_{L}$.
Proof of the claim: Suppose $y \in L$ is integral over \mathcal{O}_{K}, let $f(x)=x^{m}+a_{m-1} x^{m-1}+$ $\cdots+a_{0} \in K[x]$ be its minimal polynomial. Since the coefficients are integral over \mathcal{O}_{K} and \mathcal{O}_{K} is integrally closed, we have $f(x) \in \mathcal{O}_{K}[x]$. Then $\left|N_{L / K}(y)\right|=\left| \pm a_{0}^{k}\right| \leq 1$, so $y \in \mathcal{O}_{L}$. Conversely, suppose $y \in \mathcal{O}_{L}$ and let $f(x)=x^{m}+a_{m-1} x^{m-1}+\cdots+a_{0} \in K[x]$ be its minimal polynomial over K. By 2.4 we have $\left|a_{m-1}\right|, \ldots,\left|a_{1}\right| \leq \max \left\{1,\left|a_{0}\right|\right\}=1$, so $f \in \mathcal{O}_{K}[x]$ and thus y is integral over K.

This shows that $|\cdot|_{L}$ is an absolute value. It clearly extends the absolute value on K. If $|\cdot|_{L}^{\prime}$ is another absolute value on L extending $|\cdot|$, then $|\cdot|_{L},|\cdot|_{L}^{\prime}$ are norms on L. So by Theorem 2.11 they are equivalent. Thus $|\cdot|_{L}^{\prime}=|\cdot|_{L}^{c}$ for some $c \in \mathbb{R}_{>0}$. Since both absolute values agree on K, we must have $c=1$.

Let $(K,|\cdot|)$ be a complete non-archimedean discretely valued field.
Corollary 2.13. Let L / K be a finite extension.
(i) L is discretely valued w.r.t. $|\cdot|_{L}$.
(ii) \mathcal{O}_{L} is the integral closure of \mathcal{O}_{K} in L.

Proof. (ii) had been proven during the proof of the theorem.
For (i) let v be the valuation on K and v_{L} its extension to L (via the extension of the absolute value). Then $v_{L}(y)=\frac{1}{n} v\left(N_{L / K}(y)\right)$, so $v_{L}\left(L^{\times}\right) \subseteq \frac{1}{n} v\left(K^{\times}\right)$is also discrete.

Corollary 2.14. Let K^{alg} / K be an algebraic closure. Then the absolute value on K extends uniquely to a unique absolute value on $K^{\text {als }}$.
Remark: $|\cdot|_{K^{\text {alg }}}$ is never discrete. E.g. $K=\mathbb{Q}_{p}, \sqrt[n]{p} \in \mathbb{Q}_{p}^{\text {alg }}$ for all $n \in \mathbb{Z} \geq 0$. Then $v(\sqrt[n]{p})=\frac{1}{n} v(p)=\frac{1}{n}$.
Proposition 2.15. Let L / K be a finite extension. Assume that
(i) \mathcal{O}_{K} is compact.
(ii) The extension k_{L} / k of residue fields is finite and separable.

Then there exists $\alpha \in \mathcal{O}_{L}$ such that $\mathcal{O}_{L}=\mathcal{O}_{K}[\alpha]$.
(Later we will see that condition (i) already implies (ii))
Proof. Since k_{L} / k is separable there exists $\bar{\alpha} \in k_{L}$ such that $k_{L}=k(\bar{\alpha})$. Let $\alpha \in \mathcal{O}_{K}$ be a lift of $\bar{\alpha}$ and let $g(x) \in \mathcal{O}_{K}[x]$ be a monic lift of the minimal polynomial of $\bar{\alpha}$. Fix a uniformizer $\pi_{L} \in \mathcal{O}_{L}$. As $\bar{g}(x) \in k[x]$ is separable, we have $g(\alpha) \equiv 0\left(\bmod \pi_{L}\right)$, but $g^{\prime}(\alpha) \not \equiv\left(\bmod \pi_{L}\right)$. Thus, by replacing α by $\alpha+\pi_{L}$ if necessary we may assume that $v(g(\alpha))=1$ (where v is the normalized valuation on L). As \mathcal{O}_{K} is compact, so is
$\mathcal{O}_{K}[\alpha]$, hence it is closed in \mathcal{O}_{L}. Since $k_{L}=k(\bar{\alpha}), \mathcal{O}_{K}[\alpha]$ contains a set $\left\{\lambda_{i}\right\}$ of coset representatives of $k_{L}=\mathcal{O}_{L} / \beta \mathcal{O}_{L}$ where $\beta=g(\alpha) \in \mathcal{O}_{K}[\alpha]$. So every $y \in \mathcal{O}_{L}$ can be written as $\sum_{i=0}^{\infty} \lambda_{i} \beta^{i}$ with $\lambda_{i} \in \mathcal{O}_{K}[\alpha]$. By truncating we see that y is in the closure of $\mathcal{O}_{K}[\alpha]$, hence $\mathcal{O}_{K}[\alpha]=\mathcal{O}_{L}$.

Remark: Assumption (i) is actually not necessary.

3 Local Fields

Definition. Let $(K,|\cdot|)$ be a valued field. K is a local field if it is complete and locally compact.

Proposition 3.1. Let $(K,|\cdot|)$ be a non-archimedean complete valued field. Then TFAE:
(i) K is locally compact.
(ii) \mathcal{O}_{K} is compact.
(iii) v is discrete and $k=\mathcal{O}_{K} / \mathfrak{m}$ is finite.

Proof. (i) \Longrightarrow (ii). Let U be a compact neighborhood of 0 . Then there exists $0 \neq x \in \mathcal{O}_{K}$ such that $x \mathcal{O}_{K} \subseteq U$. Since $x \mathcal{O}_{K}$ is closed, $x \mathcal{O}_{K}$ is compact. From this it follows that \mathcal{O}_{K} is compact as multiplication by x defines a homeomorphism $\mathcal{O}_{K} \rightarrow x \mathcal{O}_{K}$.
(ii) \Longrightarrow (i). Immediate.
(ii) \Longrightarrow (iii). Let $x \in \mathfrak{m}$ and $A_{x} \subseteq \mathcal{O}_{K}$ be a set of coset representatives for $\mathcal{O}_{K} / x \mathcal{O}_{K}$. Then $\mathcal{O}_{K}=\bigcup_{y \in A_{x}} y+x \mathcal{O}_{K}$ a disjoint open cover. As \mathcal{O}_{K} is compact, A_{x} and so $\mathcal{O}_{K} / x \mathcal{O}_{K}$ is finite, hence $\mathcal{O}_{K} / \mathfrak{m}$ is finite. Suppose v is not discrete. Let $x=x_{1}, x_{2}, \ldots$ such that $v\left(x_{1}\right)>v\left(x_{2}\right)>\cdots>0$. Then $x_{1} \mathcal{O}_{K} \subsetneq x_{2} \mathcal{O}_{K} \subsetneq \cdots \subsetneq \mathcal{O}_{K}$. This is not possible as $\mathcal{O}_{K} / x_{1} \mathcal{O}_{K}$ is finite.
(iii) \Longrightarrow (ii). Let $\left(x_{n}\right)_{n}$ be a sequence in \mathcal{O}_{K} and fix a uniformizer $\pi \in \mathcal{O}_{K}$. Since $\pi^{i} \mathcal{O}_{K} / \pi^{i+1} \mathcal{O}_{K} \cong k$, we have $\mathcal{O}_{K} / \pi^{i} \mathcal{O}_{K}$ is finite for all i. Since $\mathcal{O}_{K} / \pi \mathcal{O}_{K}$ is finite, there exists $a \in \mathcal{O}_{K} / \pi \mathcal{O}_{K}$ and a subsequence $\left(x_{1_{n}}\right)_{n=1}^{\infty}$ such that $x_{1_{n}} \equiv a(\bmod \pi)$ for all n. Since $\mathcal{O}_{K} / \pi^{2} \mathcal{O}_{K}$ is finite, there exists a_{2} and a subsequence $\left(x_{2_{n}}\right)_{n}$ of $\left(x_{1 n}\right)$ such that $x_{2 n} \equiv a_{2}\left(\bmod \pi^{2} \mathcal{O}_{K}\right)$. Continue like this and get a sequence $\left(x_{i n}\right)_{n}$ for $i=1,2 \ldots$ such that (1) $\left(x_{(i+1) n}\right)_{n}$ is a subsequence of $\left(x_{i n}\right)_{n}$ and (2) for any i there exists $a_{i} \in \mathcal{O}_{K} / \pi^{i} \mathcal{O}_{K}$ such that $x_{i n} \equiv a\left(\bmod \pi^{i} \mathcal{O}_{K}\right)$ for all n. Then necessarily $a_{i} \equiv a_{i+1}\left(\bmod \pi^{i}\right)$ for all i.

Now let $y_{i}=x_{i i}$, this defines a subsequence of $\left(x_{n}\right)_{n}$. Moreover $y_{i} \equiv y_{i+1}\left(\bmod \pi^{i} \mathcal{O}_{K}\right)$, so $\left(y_{i}\right)_{i}$ is Cauchy, hence converges by completeness.

Examples.

(i) \mathbb{Q}_{p} is a local field.
(ii) $\mathbb{F}_{q}((t))$ is a local field.

Proposition 3.2. Let K be a non-archimedean local field. Under the isomorphism $\mathcal{O}_{K} \cong$ $\lim _{\llcorner } \mathcal{O}_{K} / \pi^{n} \mathcal{O}_{K}$ the topology on \mathcal{O}_{K} coincides with the profinite topology.

Proof. One checks that the sets $B=\left\{a+\pi^{n} \mathcal{O}_{K} \mid n \in \mathbb{Z}_{\geq 1}, a \in \mathcal{O}_{K}\right\}$ is a basis of open sets in both topologies.

Lemma 3.3. Let K be a non-archimedean local field and L / K a finite extension. Then L is a local field.

Proof. We know that L is complete and discretely valued. It suffices to show that $k_{L}=\mathcal{O}_{L} / \mathfrak{m}_{L}$ is finite. Let $\alpha_{1}, \ldots, \alpha_{n}$ be a basis for L as a K-vector space. Then the corresponding sup-norm is equivalent to $|\cdot|_{L}$, so there exists $r>0$ such that $\mathcal{O}_{L} \subseteq\{x \in$ $\left.L \mid\|x\|_{\text {sup }} \leq r\right\}$. Take $a \in K$ such that $|a| \geq r$. Then $\mathcal{O}_{L} \subseteq \oplus_{i=1}^{n} a \alpha_{i} \mathcal{O}_{K}$. Thus, \mathcal{O}_{L} is finitely generated as a \mathcal{O}_{K}-module, so k_{L} is finitely generated as a k-module, so k_{L} is finite.

Definition. A non-archimedean valued field $(K,|\cdot|)$ has equal characteristic if char $K=$ char k, otherwise mixed characteristic.

Theorem 3.4. Let K be a non-archimedean local field of equal characteristic $p>0$. Then $K \cong \mathbb{F}_{p^{n}}((t))$.

Proof. We know that the residue field is finite, say $\mathbb{F}_{p^{n}}$. Then it is perfect, so we know from the Teichmüller lifts that $K \cong \mathbb{F}_{p^{n}}((t))$.

Lemma 3.5. An absolute value on a field K is non-archimedean iff it is bounded on \mathbb{Z}.
Proof. " \Rightarrow " obvious from the ultrametric inequality.
" \Leftarrow " Suppose $|n| \leq B$ for all $n \in \mathbb{Z}$. Let $x, y \in K$ such that $|x| \leq|y|$. Then

$$
|x+y|^{m}=\left|\sum_{i=0}^{m}\binom{m}{i} x^{i} y^{m-i}\right| \leq \sum_{i=0}^{m}\left|\binom{m}{i} x^{i} y^{m-i}\right| \leq(m+1) B|y|^{m}
$$

Then $|x+y| \leq[(m+1) B]^{1 / m}|y|$. Letting $m \rightarrow \infty$ we get $|x+y| \leq|y|$, so the absolute value is non-archimedean.

Theorem 3.6 (Ostrowski's Theorem). Any non-trivial absolute value on \mathbb{Q} is equivalent to either the usual absolute value $|\cdot|_{\infty}$ or a p-adic absolute value $|\cdot|_{p}$ for some prime p.

Proof. Case 1. $|\cdot|$ is archimedean. We fix an integer $b>1$ such that $|b|>1$ (exists by previous lemma). Let $a>1$ be an integer and write b^{n} in base a :

$$
b^{n}=c_{m} a^{m}+c_{m-1} a^{m-1}+\cdots+c_{0}
$$

where $0 \leq c_{i}<a$ and $c_{m} \neq 0$. Let $B=\max _{0 \leq c<a}|c|$. Then we have

$$
|b|^{n} \leq(m+1) B \max \left(|a|^{m}, 1\right)
$$

Then $|b| \leq\left[\left(n\left(\log _{a} b\right)+1\right) B\right]^{1 / n} \max \left(|a|^{\log _{a} b}, 1\right)$ (Note that $\left.m \leq n \log _{a} b\right)$ This goes to 1 as $n \rightarrow \infty$. Therefore $|b| \leq \max \left(|a|^{\log _{a} b}, 1\right)$ Then $|a|>1$, and $|b| \leq|a|^{\log _{a} b}$. Switching the roles of a and b, we obtain $|a| \leq|b|^{\log _{b} a}$. Then these two inequalities we get

$$
\frac{\log |a|}{\log a}=\frac{\log |b|}{\log b}=: \lambda
$$

Then $|a|=a^{\lambda}$ for all $a \in \mathbb{Z}_{>1}$. Then $|x|=|x|_{\infty}^{\lambda}$ for all $x \in \mathbb{Q}$. Hence $|\cdot|$ is equivalent to $|\cdot|_{\infty}$.
Case 2. $|\cdot|$ is non-archimedean. Then we have $|n| \leq 1$ for all $n \in \mathbb{Z}$. As $|\cdot|$ is non-trivial, there exists $n \in \mathbb{Z}_{>0}$ such that $|n|<1$. Then there is a prime factor p of n such that $|p|<1$. Suppose that there exists another prime $q \neq p$ with $|q|<1$. Then $r p+s q=1$ for some integers $r, s \in \mathbb{Z}$. Then $1=|1|=|r p+r s|<1$ by the ultrametric inequality, a contradiction. Then $\alpha:=|p|<1$ and $|q|=1$ for all primes $q \neq p$. By decomposition into prime factors we see that this uniquely determines $|\cdot|$ and shows that it is equivalent to $|\cdot|_{p}$.

Theorem 3.7. Let $(K,|\cdot|)$ be a non-archimedean local field of mixed characteristic. Then K is a finite extension of \mathbb{Q}_{p} for some prime p.

Proof. As K has mixed characterstic, char $K=0$, so $\mathbb{Q} \subseteq K . K$ is non-archimedean, so $\mid \cdot \|_{\mathbb{Q}}$ is equivalent to $|\cdot|_{p}$ for some prime μ^{\dagger}. As K is complete we get $\mathbb{Q}_{p} \subseteq K$. Let $\pi \in \mathcal{O}_{K}$ be a uniformizer, v normalized valuation on K and set $v(p)=e$. Then $\mathcal{O}_{K} / p \mathcal{O}_{K} \cong \mathcal{O}_{K} / \pi^{e} \mathcal{O}_{K}$ is finite. Let $x_{1}, \ldots, x_{n} \in \mathcal{O}_{K}$ be coset representatives for a basis of $\mathcal{O}_{K} / p \mathcal{O}_{K}$ as a \mathbb{F}_{p}-vector space. Then $\left\{\sum_{i=1}^{n} a_{i} x_{i} \mid a_{i} \in\{0,1, \ldots, p-1\}\right\}$ is a set of coset representatives for $\mathcal{O}_{K} / p \mathcal{O}_{K}$. Let $y \in \mathcal{O}_{K}$. We then get

$$
y=\sum_{i=0}^{\infty}\left(\sum_{i=1}^{n} a_{i j} x_{i}\right) p^{i}=\sum_{j=1}^{n}\left(\sum_{i=0}^{\infty} a_{i j} p^{i}\right) x_{j} .
$$

Note that $\sum_{i=0}^{\infty} a_{i j} p^{i}$ converges in \mathbb{Z}_{p}, so the x_{j} give a generating set of \mathcal{O}_{K} over \mathbb{Z}_{p}. Then K is finite over \mathbb{Q}_{p}.

Theorem 3.8. Let $(K,|\cdot|)$ be an archimedean local field. Then $K \cong \mathbb{R}$ or $K \cong \mathbb{C}$.
Proof. See example sheet.

[^0]
4 Global Fields

Definition. A global field is a field which is either
(i) an algebraic number field (i.e. a finite extension of \mathbb{Q}) or
(ii) a global function field (i.e. a finite extension of $\mathbb{F}_{p}(t)$).

Lemma 4.1. Let $(K,|\cdot|)$ be a complete discretely valued field, L / K a finite Galois extension with absolute value $|\cdot|_{L}$ extending the one on K. Then for any $x \in L$ and $\sigma \in \operatorname{Gal}(L / K)$ we have $|\sigma x|_{L}=|x|_{L}$.

Proof. Follows from the uniqueness of extensions of absolute values on complete fields.
Lemma 4.2 (Krasner's Lemma). Let $(K,|\cdot|)$ be a complete discretely valued field. Let $f(x) \in K[x]$ be a separable irreducible polynomial with roots $\alpha_{1}, \ldots, \alpha_{n} \in K^{\text {alg }}$. Suppose $\beta \in K^{\text {alg }}$ is such that $\left|\beta-\alpha_{1}\right|<\left|\beta-\alpha_{i}\right|$ for $i=2, \ldots, n$. Then $K\left(\alpha_{1}\right) \subseteq K(\beta)$.

Proof. Let $L=K(\beta), L^{\prime}=L\left(\alpha_{1}, \ldots, \alpha_{n}\right) . L^{\prime} / L$ is Galois. Let $\sigma \in \operatorname{Gal}\left(L^{\prime} / L\right)$. We have $\left|\beta-\sigma \alpha_{1}\right|=\left|\sigma\left(\beta-\alpha_{1}\right)\right|=\left|\beta-\alpha_{1}\right|<\left|\beta-\alpha_{i}\right|$ for $i \neq 1$. Therefore $\sigma \alpha_{1}=\alpha_{1}$. Hence $\alpha_{1} \in L=K(\beta)$.

Proposition 4.3. Let $(K,|\cdot|)$ be a complete discretely valued field and $f(x)=\sum_{i=0}^{n} a_{i} x^{i} \in$ $\mathcal{O}_{K}[x]$ be a separable irreducible monic polynomial. Let $\alpha \in K^{\text {alg }}$ be a root of f. Then there exists $\varepsilon>0$ such that for any $g(x)=\sum_{i=0}^{n} b_{i} x^{i} \in \mathcal{O}_{K}[x]$ monic with $\left|a_{i}-b_{i}\right|<\varepsilon$, there exists a root β of $g(x)$ such that $K(\alpha)=K(\beta)$.

Proof. Let $\alpha=\alpha_{1}, \ldots, \alpha_{n}$ be the roots of f (which are necessarily distinct). Then $f^{\prime}\left(\alpha_{1}\right) \neq$ 0 . We choose ε sufficiently small such that $\left|g\left(\alpha_{1}\right)\right|<\left|f^{\prime}(\alpha)\right|^{2}$ and $\left|f^{\prime}\left(\alpha_{1}\right)-g^{\prime}\left(\alpha_{1}\right)\right|<\left|f^{\prime}(\alpha)\right|$. Then we have $\left|g\left(\alpha_{1}\right)\right|<\left|f^{\prime}\left(\alpha_{1}\right)\right|^{2}=\left|g^{\prime}\left(\alpha_{1}\right)\right|^{2}$. By Hensel's Lemma applied to g (in the field $\left.K\left(\alpha_{1}\right)\right)$ there exists $\beta \in K\left(\alpha_{1}\right)$ such that $g(\beta)=0$ and $\left|\beta-\alpha_{1}\right|<\left|g^{\prime}\left(\alpha_{1}\right)\right|=\left|f^{\prime}\left(\alpha_{1}\right)\right|=$ $\prod_{i=2}^{n}\left|\alpha_{1}-\alpha_{i}\right| \leq\left|\alpha_{1}-\alpha_{i}\right|$ for $i=2, \ldots, n$ (by integrality). Since $\left|\beta-\alpha_{1}\right|<\left|\alpha_{1}-\alpha_{i}\right|=$ $\left|\beta-\alpha_{i}\right|$, by Krasner's lemma $\alpha_{1} \in K(\beta)$ and hence $K\left(\alpha_{1}\right)=K(\beta)$.

Theorem 4.4. Let K be a local field, then K is the completion of a global field.

Proof. Case 1: $|\cdot|$ is archimedean. Then K is \mathbb{R} or \mathbb{C} and thus the completion of \mathbb{Q} or $\mathbb{Q}(i)$ with $|\cdot|_{\infty}$.

Case 2: $|\cdot|$ non-archimedean, equal characteristic, so $K \cong \mathbb{F}_{q}((t))$, then K is the completion of $\mathbb{F}_{q}(t)$ with the t-adic absolute value.
Case 3: $|\cdot|$ non-archimedean, mixed characteristic, so $K=\mathbb{Q}_{p}(\alpha)$ where α is a root of a monic irreducible polynomial $f(x) \in \mathbb{Z}_{p}[x]$. Since \mathbb{Z} is dense in \mathbb{Z}_{p}, we can choose $g(x) \in \mathbb{Z}[x]$ that is close enough to $f(x)$ such that $K=\mathbb{Q}_{p}(\beta)$ where β is a root of $g(x)$. Then $\mathbb{Q}(\beta)$ is an algebraic number field. Since $\mathbb{Q}(\beta)$ is dense in $\mathbb{Q}_{p}(\beta)=K, K$ is the completion of $\mathbb{Q}(\beta)$ w.r.t. the restriction of $|\cdot|$ to $\mathbb{Q}(\beta)$.

5 Dedekind Domains

Definition. A Dedekind domain is a ring R such that
(i) R is a noetherian integral domain.
(ii) R is integrally closed.
(iii) Every non-zero prime ideal is maximal.

Theorem 5.1. A ring R is a DVR iff R is a Dedekind domain with exactly one non-zero prime ideal.

Lemma 5.2. Let R be a noetherian ring and $I \subseteq R$ a non-zero ideal, then there exist non-zero prime ideals $\mathfrak{p}_{1}, \ldots \mathfrak{p}_{r} \subseteq R$ such that $\mathfrak{p}_{1} \ldots \mathfrak{p}_{r} \subseteq I$.

Proof. Suppose not, then there is an ideal I maximal with the property that it contains no product of prime ideals. Then I is not prime, so there are elements $x, y \in R \backslash I$ with $x y \in I$. Then both $I+(x)$ and $I+(y)$ contain products of prime ideals. Then also $(I+(x))(I+(y))$ contains a product of prime ideals, a contradiction as $(I+(x))(I+(y)) \subseteq I$.

Lemma 5.3. Let R be an integral domain which is integrally closed. Let $I \subseteq R$ be a non-zero finitely generated ideal and $x \in K=\operatorname{Frac} R$. Then if $x I \subseteq I$, we have $x \in R$.

Proof. Let $I=\left(c_{1}, \ldots, c_{n}\right)$. Then $x c_{i}=\sum_{j=1}^{n} a_{i j} c_{j}$ for some $a_{i j} \in R$. Let $A=\left(a_{i j}\right)_{i j}$. Set $B=x I_{n}-A$. Then $B\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right)=0$, so multiplying by the adjugate matrix of B we get $\operatorname{det} B=0$. This determinant is a monic polynomial in x with coefficients in R, so $x \in R$ as R is integrally closed.

Proof of Theorem 5.1. " \Rightarrow " is clear.
For " \Leftarrow " we need to show that R is a PID. Let \mathfrak{m} be the maximal ideal of R.
Step 1 . \mathfrak{m} is principal. Let $x \in \mathfrak{m}$ by non-zero. Then $(x) \supseteq \mathfrak{m}^{n}$ for some $n \geq 1$ by Lemma 5.2. Let n be minimal with this property. Then we may choose $y \in \mathfrak{m}^{n-1} \backslash(x)$. Let $\pi:=\frac{x}{y}$. Then $y \mathfrak{m} \subseteq \mathfrak{m}^{n} \subseteq(x)$, so $\pi^{-1} \mathfrak{m} \subseteq R$. Suppose $\pi^{-1} \mathfrak{m} \neq R$, then $\pi^{-1} \mathfrak{m} \subseteq \mathfrak{m}$ and so $\pi^{-1} \in R$ by the lemma. Hence $y \in(x)$, which is a contradiction. Hence $\pi^{-1} \mathfrak{m}=R$, i.e. $\mathfrak{m}=(\pi)$.

Step 2. R is a PID. Let R be any non-zero ideal. Consider the sequence of fractional ideals $I \subseteq \pi^{-1} I \subseteq \pi^{-2} I \subseteq \ldots$ Since $\pi^{-1} \notin R$, we have $\pi^{-k} I \neq \pi^{-(k+1)} I$ for all k. As R is noetherian, we can choose n maximal such that $\pi^{-n} I \subseteq R$. If $\pi^{-n} I \neq R$, then $\pi^{-n} I \subseteq \mathfrak{m}=(\pi)$, but then $\pi^{-(n+1)} I \subseteq R$, contradicting the maximality of n, hence $\pi^{-n} I=R$, so $I=\left(\pi^{n}\right)$ is principal.

Corollary 5.4. Let R be a Dedekind domain and $\mathfrak{p} \subseteq R$ a non-zero prime ideal. Then $R_{(\mathfrak{p})}$ is a DVR.

Definition. If R is a Dedekind domain, $\mathfrak{p} \subseteq R$ a non-zero prime ideal, then we write $v_{\mathfrak{p}}$ for the normalized valuation on $\operatorname{Frac} R$ corresponding to the $D V R R_{(\mathfrak{p})}$.

Theorem 5.5. Let R be a Dedekind domain. Then every non-zero ideal $I \subseteq R$ can be written uniquely as a product of prime ideals $I=\mathfrak{p}_{1}^{e_{1}} \ldots \mathfrak{p}_{r}^{e_{r}}\left(\mathfrak{p}_{i}\right.$ distinct, $\left.e_{i}>0\right)$.

Proof. Let $I \subseteq R$ be a non-zero ideal. By Lemma 5.2 there are distinct prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$ and $\beta_{1}, \ldots, \beta_{r}>0$ such that $\mathfrak{p}_{1}^{\beta_{1}} \cdots \mathfrak{p}_{r}^{\beta_{r}} \subseteq I$. Let $0 \neq \mathfrak{p}$ be a prime ideal distinct from the $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$. Then we have $\mathfrak{p}_{i} R_{(\mathfrak{p})}=R_{(\mathfrak{p})}$, so $I R_{(\mathfrak{p})}=R_{(\mathfrak{p})}$. Since $R_{\left(\mathfrak{p}_{i}\right)}$ is a DVR we have $I R_{\left(\mathfrak{p}_{i}\right)}=\left(\mathfrak{p}_{i} R_{\left(\mathfrak{p}_{i}\right)}\right)^{\alpha_{i}}=\mathfrak{p}_{i}^{\alpha_{i}} R_{\left(\mathfrak{p}_{i}\right)}$. Then $I=\mathfrak{p}_{1}^{\alpha_{1}} \ldots \mathfrak{p}_{r}^{\alpha_{r}}$ as this holds locally at each prime. For uniqueness, if $I=\mathfrak{p}_{1}^{\alpha_{1}} \ldots \mathfrak{p}_{r}^{\alpha_{r}}=\mathfrak{p}_{1}^{\gamma_{1}} \ldots \mathfrak{p}_{r}^{\gamma_{r}}$, then $\mathfrak{p}_{i}^{\alpha_{i}} R_{\left(\mathfrak{p}_{i}\right)}=\mathfrak{p}_{i}^{\gamma_{i}} R_{\left(\mathfrak{p}_{i}\right)}$, so $\alpha_{i}=\gamma_{i}$ by unique factorization in DVR's.

5.1 Dedekind domains and extensions

Lemma 5.6. Let L / K be a finite separable field extension. Then the symmetric bilinear pairing

$$
\begin{aligned}
(,): L \times L & \longrightarrow K \\
(x, y) & \longmapsto \operatorname{Tr}_{L / K}(x y)
\end{aligned}
$$

is non-degenerate.
Proof. As L / K is separable, we have $L=K(\alpha)$ for some $\alpha \in L$. Consider the matrix A representing (,) in the K-basis for L given by $1, \alpha, \ldots, \alpha^{n-1}$. Then $A_{i j}=\operatorname{Tr}_{L / K}\left(\alpha^{i+j}\right)=$ $B B^{T}$ where $B=\left(\sigma_{j}\left(\alpha^{i}\right)\right)_{i j}$ where the σ_{j} are the embeddings of L / K into $K^{\text {alg }}$, so $\operatorname{det} A=$ $(\operatorname{det} B)^{2}$ and $\operatorname{det} B=\prod_{1 \leq i<j \leq n}\left(\sigma_{j}(\alpha)-\sigma_{i}(\alpha)\right) \neq 0$.

Theorem 5.7. Let \mathcal{O}_{K} be a Dedekind domain (where $K=\operatorname{Frac} \mathcal{O}_{K}$) and L a finite separable extension of K. Then the integral closure \mathcal{O}_{L} of \mathcal{O}_{K} in L is also a Dedekind domain.

Proof. \mathcal{O}_{L} is clearly an integrally closed integral domain.
Let $e_{1}, \ldots, e_{n} \in L$ be a K-basis for L which we may assume to be contained in \mathcal{O}_{L}. Let $f_{1}, \ldots, f_{n} \in L$ be the dual basis for e_{1}, \ldots, e_{n} w.r.t. the trace form, i.e. $\operatorname{Tr}_{L / K}\left(e_{i} f_{j}\right)=\delta_{i j}$.

Let $x \in \mathcal{O}_{L}$, write $x=\sum_{i=1}^{n} \lambda_{i} f_{i}$ where $\lambda_{i} \in K$. Then $\lambda_{i}=\operatorname{Tr}_{L / K}\left(x e_{i}\right) \in \mathcal{O}_{K}$. Therefore $\mathcal{O}_{L} \subseteq \sum_{i=1}^{n} \mathcal{O}_{K} f_{i}$. Since \mathcal{O}_{K} is noetherian, \mathcal{O}_{L} is finitely generated (as a module) over \mathcal{O}_{K}. Then \mathcal{O}_{L} is also noetherian.

Let \mathfrak{q} be a non-zero prime ideal in \mathcal{O}_{L} and let $\mathfrak{p}=\mathfrak{q} \cap \mathcal{O}_{K}$. Then \mathfrak{p} is a prime ideal of \mathcal{O}_{K} and it is non-zero, since if $0 \neq x \in \mathfrak{q}$, then $x^{n}+a_{1} x^{n-1}+\cdots+a_{n}=0$ for some $a_{i} \in \mathcal{O}_{K}$ with wlog $a_{n} \neq 0$, then $a_{n} \in \mathfrak{p}$. So \mathfrak{p} is a non-zero prime ideal of \mathcal{O}_{K}, hence maximal. We have an integral extension $\mathcal{O}_{K} / \mathfrak{p} \subseteq \mathcal{O}_{L} / \mathfrak{q}$. Since $\mathcal{O}_{K} / \mathfrak{p}$ is a field, it follows easily that $\mathcal{O}_{L} / \mathfrak{q}$ is a field, hence \mathfrak{q} is maximal.

Corollary 5.8. The ring of integers in a number field is a Dedekind domain.
Conventions on normalizations: Let \mathcal{O}_{K} be the ring of integers of a number field K, $0 \neq \mathfrak{p} \subseteq \mathcal{O}_{K}$ a prime ideal. We normalize $|\cdot|_{\mathfrak{p}}$ by $|x|_{\mathfrak{p}}=N \mathfrak{p}^{-v_{\mathfrak{p}}(x)}$ where $N \mathfrak{p}=\# \mathcal{O}_{K} / \mathfrak{p}$.

Now let \mathcal{O}_{K} be a Dedekind domain with $K=\operatorname{Frac} \mathcal{O}_{K}$. Let L / K be a finite separable extension and \mathcal{O}_{L} the integral closure of \mathcal{O}_{K} in L.
It is easy to see that for $0 \neq x \in \mathcal{O}_{K}$ we have $(x)=\prod_{\mathfrak{p} \neq 0} \mathfrak{p}^{v_{\mathfrak{p}}(x)}$.
Theorem 5.9. For \mathfrak{p} a non-zero prime ideal of \mathcal{O}_{K}, write $\mathfrak{p} \mathcal{O}_{L}=P_{1}^{e_{1}} \cdots P_{r}^{e_{r}}$ with $e_{i}>0$. Then the absolute values on L extending $|\cdot|_{\mathfrak{p}}$ (up to equialence) are precisely $|\cdot|_{P_{1}}, \ldots,|\cdot|_{P_{r}}$.

Proof. For any $0 \neq x \in \mathcal{O}_{K}$ we have $v_{P_{i}}(x)=e_{i} v_{\mathfrak{p}}(x)$. Hence, up to equivalence, $|\cdot|_{P_{i}}$ extends $|\cdot|_{\mathfrak{p}}$. Now suppose $|\cdot|$ is an absolute value on L extending $|\cdot|_{\mathfrak{p}}$. Note that it is bounded on \mathbb{Z}, thus non-archimedean. Let $R=\{x \in L| | x \mid \leq 1\} \subseteq L$ be the valuation ring corresponding to $|\cdot|$. Then $\mathcal{O}_{K} \subseteq R$, and since R is integrally closed in L we have $\mathcal{O}_{L} \subseteq R$. Set $P=\left\{x \in \mathcal{O}_{L}| | x \mid<1\right\}=\mathcal{O}_{L} \cap \mathfrak{m}_{R} . P$ is a prime ideal of \mathcal{O}_{L}. It is non-zero as it contains \mathfrak{p}. Then $\mathcal{O}_{L, P} \subseteq R$. By maximality of DVRs we have $\mathcal{O}_{L, P}=R$. From this it follows that $|\cdot|$ is equivalent to $|\cdot|_{P}$. Since $|\cdot|$ extends $|\cdot|_{\mathfrak{p}}, P \cap \mathcal{O}_{K}=\mathfrak{p}$. Therefore $P_{1}^{e_{1}} \cdots P_{r}^{e_{r}} \subseteq P$, so $P=P_{i}$ for some i.

Let K be a number field. If $\sigma: K \rightarrow \mathbb{R}, \mathbb{C}$ is a real or complex embedding, then $x \mapsto$ $|\sigma(x)|_{\infty}$ defines an absolute value on K, denoted by $|\cdot|_{\sigma}$.

Corollary 5.10. Let K be a number field with ring of integers \mathcal{O}_{K}. Then any absolute value on K is equivalent to either $|\cdot|_{\mathfrak{p}}$ for some non-zero prime ideal $\mathfrak{p} \subseteq \mathcal{O}_{K}$ or $|\cdot|_{\sigma}$ for some embedding $\sigma: K \rightarrow \mathbb{R}$ or \mathbb{C}.

Proof. Case $|\cdot|$ is non-archimedean. Then $\mid \cdot \|_{\mathbb{Q}}$ is equivalent to $|\cdot|_{p}$ for some prime p. Thus by the Theorem $|\cdot| \sim|\cdot|_{\mathfrak{p}}$ for some prime $\mathfrak{p} \mid p$.

The archimedean case is an exercise.

5.2 Completions

Setup as before: \mathcal{O}_{K} Dedekind domain, L / K finite separable extension. Let $\mathfrak{p} \subseteq \mathcal{O}_{K}, P \subseteq$ \mathcal{O}_{L} non-zero prime ideals with $P \mid \mathfrak{p}$. We write $K_{\mathfrak{p}}$ and L_{P} for the completion with respect to the \mathfrak{p} - resp. P-adic absolute values.

Lemma 5.11.

(i) The natural map $\pi_{P}: L \otimes_{K} K_{\mathfrak{p}} \rightarrow L_{P}$ is surjective.
(ii) $\left[L_{P}: K_{\mathfrak{p}}\right] \leq[L: K]$.

Proof. (ii) is immediate from (i). Consider $M=L K_{\mathfrak{p}}=\operatorname{im} \pi_{P} . M$ is complete as it is a finite extension of $K_{\mathfrak{p}}$ and $L \subseteq M \subseteq L_{P}$, thus $M=L_{P}$.

Theorem 5.12. The natural map $L \otimes_{K} K_{\mathfrak{p}} \rightarrow \prod_{P \mid \mathfrak{p}} L_{P}$ is an isomorphism.
Proof. Write $L=K(\alpha)$ and let $f(x) \in K[x]$ be the minimal polynomial of α. Then we have $f(x)=f_{1}(x) \ldots f_{r}(x)$ in $K_{\mathfrak{p}}[x]$ where $f_{i} \in K_{\mathfrak{p}}[X]$ are distinct irreducible. Since $L=K[X] /(f(x))$ we have $L \otimes_{K} K_{\mathfrak{p}}=K_{\mathfrak{p}}[X](f(x)) \cong \prod_{i=1}^{r} K_{\mathfrak{p}}[x] /\left(f_{i}(x)\right)$. Let $L_{i}=$ $K_{\mathfrak{p}}[x] /\left(f_{i}(x)\right)$. This is a finite extension of $K_{\mathfrak{p}}$. Then L_{i} contains both L and $K_{\mathfrak{p}}$. Moreover, L is dense inside L_{i}. Indeed, since K is dense in $K_{\mathfrak{p}}$, we can approximate coefficients of an element of $K_{\mathfrak{p}}[x] /\left(f_{i}(x)\right)$ by an element in $K[x] / f(x)=L$. The theorem will follow from the following three claims:
(1) $L_{i} \cong L_{P}$ for some prime P of \mathcal{O}_{L} dividing \mathfrak{p} (and the isomorphism fixes L and $K_{\mathfrak{p}}$)
(2) Each P appears at most once.
(3) Each P appears at least once.

Proof:
(1) Since $\left[L_{i}: K_{\mathfrak{p}}\right]<\infty$, there is a unique absolute value $|\cdot|_{L_{i}}$ on L_{i} extending $|\cdot|_{\mathfrak{p}}$. We must have that $\left.|\cdot|_{L_{i}}\right|_{L}$ is equivalent to $|\cdot|_{P}$ for some $P \mid \mathfrak{p}$. Since L is dense in L_{i} and L_{i} is complete, we have $L_{i} \cong L_{P}$.
(2) Suppose $\varphi: L_{i} \cong L_{j}$ is an isomorphism preserving L and $K_{\mathfrak{p}}$, then $\varphi: K_{\mathfrak{p}}[x] /\left(f_{i}(x)\right) \rightarrow$ $K_{\mathfrak{p}}[x] /\left(f_{j}(x)\right)$ takes x to x and hence $f_{i}=f_{j}$, i.e. $i=j$.
(3) By the previous lemma the map $\pi_{P}: L \otimes_{K} K_{\mathfrak{p}} \rightarrow L_{P}$ is surjective for every $P \mid \mathfrak{p}$. Since L_{P} is a field, π_{P} factors through L_{i} for some i and we have $L_{i} \cong L_{P}$ by surjectivity.

Corollary 5.13. For $x \in L$,

$$
\begin{aligned}
N_{L / K}(x) & =\prod_{P \mid \mathfrak{p}} N_{L_{P} / K_{\mathfrak{p}}}(x) \\
\operatorname{Tr}_{L / K}(x) & =\sum_{P \mid \mathfrak{p}} \operatorname{Tr}_{L_{P} / K_{\mathfrak{p}}}(x) .
\end{aligned}
$$

5.3 Decomposition groups

Let $0 \neq \mathfrak{p}$ be a prime ideal of \mathcal{O}_{K}. Let $\mathfrak{p} \mathcal{O}_{L}=P_{1}^{e_{1}} \ldots P_{r}^{e_{r}}$ where the P_{i} are distinct prime ideals in $\mathcal{O}_{L}, e_{i}>0$.
e_{i} is called the ramification index of P_{i} over $\mathfrak{p} . f_{i}:=\left[\mathcal{O}_{L} / P_{i}: \mathcal{O}_{K} / \mathfrak{p}\right]$ is called the residue class degree of P_{i} over \mathfrak{p}.
Theorem 5.14. $\sum_{i=1}^{r} e_{i} f_{i}=[L: K]$
Proof. Let $S=\mathcal{O}_{K} \backslash \mathfrak{p}$. We note that $S^{-1} \mathcal{O}_{L}$ is the integral closure of $S^{-1} \mathcal{O}_{K}$ in L. Furthermore $\mathfrak{p} S^{-1} \mathcal{O}_{L}=S^{-1} P_{1}^{e_{1}} \ldots P_{r}^{e_{r}}$ and $S^{-1} \mathcal{O}_{L} / S^{-1} P_{i} \cong \mathcal{O}_{L} / P_{i}$ and $S^{-1} \mathcal{O}_{K} / S^{-1} \mathfrak{p} \cong \mathcal{O}_{K} / \mathfrak{p}$. Thus, we may assume that \mathcal{O}_{K} is a DVR. By CRT, we have $\mathcal{O}_{L} / \mathfrak{p} \mathcal{O}_{L} \cong \prod_{i=1}^{r} \mathcal{O}_{L} / P_{i}^{e_{i}}$. We count dimensions of both sides as $k=\mathcal{O}_{K} / \mathfrak{p}$ vector spaces. For each i we have an increasing sequence of k-subspaces:

$$
0 \subseteq P_{i}^{e_{i}-1} / P_{i}^{e_{i}} \subseteq \ldots \subseteq P_{i} / P_{i}^{e_{i}} \subseteq \mathcal{O}_{L} / P_{i}^{e_{i}}
$$

Note that P_{i}^{j} / P_{i}^{j+1} is an \mathcal{O}_{L} / P_{i}-module and $x \in P_{i}^{j} \backslash P_{i}^{j+1}$ is a generator. (E.g. can prove this after localization at P_{i}). So $\operatorname{dim}_{k} P_{i}^{j} / P_{i}^{j+1}=f_{i}$ and we have $\operatorname{dim}_{k} \mathcal{O}_{L} / P_{i}^{e_{i}}=e_{i} f_{i}$. \mathcal{O}_{L} has rank $[L: K]$ over \mathcal{O}_{K}, so $\mathcal{O}_{L} / \mathfrak{p} \mathcal{O}_{L}$ has dimension $[L: K]$ over k.

Now assume that L / K is Galois. Then for any $\sigma \in \operatorname{Gal}(L / K), \sigma\left(P_{i}\right) \cap \mathcal{O}_{K}=\mathfrak{p}$ and hence $\sigma\left(P_{i}\right) \in\left\{P_{1}, \ldots, P_{r}\right\}$.

Proposition 5.15. The action of $\operatorname{Gal}(L / K)$ on $\left\{P_{1}, \ldots, P_{r}\right\}$ is transitive.
Proof. Suppose not, then there are $i \neq j$ such that $\sigma\left(P_{i}\right) \neq P_{j}$ for all $\sigma \in \operatorname{Gal}(L / K)$. There is $x \in \mathcal{O}_{L}$ such that $x \equiv 0\left(\bmod P_{j}\right), x \equiv 1\left(\bmod \sigma\left(P_{i}\right)\right)$ for all $\sigma \in \operatorname{Gal}(L / K)$. We have $N_{L / K}(x)=\prod_{\sigma} \sigma(x) \in \mathcal{O}_{K} \cap P_{j}=\mathfrak{p} \subseteq P_{i}$, so $\sigma(x) \in P_{i}$ for some σ, i.e. $x \in \sigma^{-1}\left(P_{i}\right)$, a contradiction.

Corollary 5.16. Suppose L / K is Galois. Then $e:=e_{1}=\cdots=e_{r}$ and $f:=f_{1}=f_{2}=$ $\cdots=f_{r}$ and we have $n=e f r$.

Proof. For any $\sigma \in \operatorname{Gal}(L / K)$ we have $\mathfrak{p} \mathcal{O}_{L}=\sigma\left(\mathfrak{p} \mathcal{O}_{L}\right)=\sigma\left(\mathfrak{p}_{1}\right)^{e_{1}} \cdots \sigma\left(\mathfrak{p}_{r}\right)^{e_{r}}$. By uniqueness of prime ideal factorization we get $e_{1}=\cdots=e_{r}$. Furthermore $\mathcal{O}_{L} / P_{i} \cong \mathcal{O}_{L} / \sigma\left(P_{i}\right)$ via σ, so $f_{1}=\cdots=f_{r}$.

If L / K is an extension of complete discretely valued fields with normalized valuation v_{L}, v_{K}, and uniformizers π_{L}, π_{K}, we have $e:=e_{L / K}=v_{L}\left(\pi_{K}\right)$ (i.e. $\left.\pi_{K} \mathcal{O}_{K}=\pi_{L}^{e} \mathcal{O}_{L}\right)$ and $f:=f_{L / K}=\left[k_{L}: k\right]$.
Corollary 5.17. Let L / K be a finite separable extension of complete fields, then $[L$: $K]=e f$.

Remark: The corollary holds without assumption L / K separable (since in the case of complete fields, \mathcal{O}_{L} is automatically finite over \mathcal{O}_{K}).
Definition. Let \mathcal{O}_{K} be a Dedekind domain. Let L / K be a finite Galois extension. The decomposition group at a prime P of \mathcal{O}_{L} is the subgroup of $\operatorname{Gal}(L / K)$ is defined by

$$
G_{P}=\{\sigma \in \operatorname{Gal}(L / K) \mid \sigma(P)=P\} .
$$

Note that any two decomposition groups of primes lying over the same prime in K are conjugate.
Proposition 5.18. Suppose L / K is Galois and $P \mid \mathfrak{p}$. Then
(i) $L_{P} / K_{\mathfrak{p}}$ is Galois
(ii) There is a natural map res: $\operatorname{Gal}\left(L_{P} / K_{\mathfrak{p}}\right) \rightarrow \operatorname{Gal}(L / K)$ which is injective and has image G_{P}.

Proof. (i) L / K is Galois, so L is the splitting field of a separable polynomial $f(x) \in K[x]$. Then $L_{P} / K_{\mathfrak{p}}$ is the splitting field of $f(x) \in K_{\mathfrak{p}}[x]$, so $L_{P} / K_{\mathfrak{p}}$ is Galois.
(ii) Let $\sigma \in \operatorname{Gal}\left(L_{P} / K_{\mathfrak{p}}\right)$. Then $\sigma(L)=L$ since L / K is normal, hence we get a map res : $\operatorname{Gal}\left(L_{P} / K_{\mathfrak{p}}\right) \rightarrow \operatorname{Gal}(L / K)$. Since L is dense in L_{P}, res is injective. We know that $|\sigma x|_{P}=|x|_{P}$ for all $\sigma \in \operatorname{Gal}\left(L_{P} / K_{\mathfrak{p}}\right)$ and $x \in L_{P}$, hence $\sigma(P)=P$ for all $\sigma \in$ $\operatorname{Gal}\left(L_{P} / K_{P}\right)$, i.e. $\operatorname{res}(\sigma) \in G_{P}$. To show that the image is all of G_{P}, it suffices to show that $\# G_{P}=f e=\# \operatorname{Gal}\left(L_{P} / K_{\mathfrak{p}}\right)=\left[L_{P}: K_{\mathfrak{p}}\right]$. The first equality is immediate from efr $=n$ and the transitivity of the action of $\operatorname{Gal}(L / K)$ on the primes above \mathfrak{p}. The equality $\left[L_{P}: K_{\mathfrak{p}}\right]=e f$ follows from Corollary 5.17 and the fact that e and f don't change when we take completions.

[^1]
6 Ramification Theory

6.1 Different and discriminant

Let L / K be an extension of algebraic number fields, $n=[L: K]$. Let $x_{1}, \ldots, x_{n} \in L$. We set

$$
\Delta\left(x_{1}, \ldots, x_{n}\right)=\operatorname{det}\left(\operatorname{Tr}_{L / K}\left(x_{i} x_{j}\right)\right)_{i j}=\operatorname{det}\left(\sigma_{i}\left(x_{j}\right)\right)^{2} \in K
$$

where $\sigma_{i}: L \rightarrow K^{\text {alg }}$ are the distinct embeddings. Note: If $y_{i}=\sum_{j=1}^{n} a_{i j} x_{j}$ where $a_{i j} \in K$, then $\Delta\left(y_{1}, \ldots, y_{n}\right)=\operatorname{det}(A)^{2} \Delta\left(x_{1}, \ldots, x_{n}\right)$ where $A=\left(a_{i j}\right)$. If $x_{1}, \ldots, x_{n} \in \mathcal{O}_{L}$, then $\Delta\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{O}_{K}$.

Lemma 6.1. Let k be a perfect field, R a finite-dimensional k-algebra. The trace form $():, R \times R \rightarrow K,(x, y)=\operatorname{Tr}_{R / k}(x y)$ is non-degenerate iff $R \cong k_{1} \times \cdots \times k_{m}$ where k_{1}, \ldots, k_{m} are finite field extensions of k.

Proof. Exercise on Sheet 3.

Theorem 6.2. Let $0 \neq \mathfrak{p} \subseteq \mathcal{O}_{K}$ be a prime ideal.
(i) If \mathfrak{p} ramifies in L, then for every $x_{1}, \ldots, x_{n} \in \mathcal{O}_{L}$ we have $\mathfrak{p} \mid \Delta\left(x_{1}, \ldots, x_{n}\right)$.
(ii) If \mathfrak{p} is unramified, then there are $x_{1}, \ldots, x_{n} \in \mathcal{O}_{L}$ such that $\mathfrak{p} \nmid \Delta\left(x_{1}, \ldots, x_{n}\right)$.

Proof. Let $\mathfrak{p} \mathcal{O}_{L}=P_{1}^{e_{1}} \ldots P_{r}^{e_{r}}$, where the P_{i} are distinct and $e_{i}>0$. Then $R:=\mathcal{O}_{L} / \mathfrak{p} \mathcal{O}_{L} \cong$ $\prod_{i=1}^{r} \mathcal{O}_{L} / P_{i}^{e_{i}}$. If \mathfrak{p} ramifies, then $e_{i}>1$ for some i, i.e. R is nilpotent elements, so it cannot be the product of field extensions of $k=\mathcal{O}_{K} / \mathfrak{p}$. By the previous lemma the trace form $\operatorname{Tr}_{R / k}$ is degenerate. So $\Delta\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)=0$ for all $\bar{x}_{i} \in \mathcal{O}_{L} / \mathfrak{p} \mathcal{O}_{L}$. This proves (i). The argument for (ii) is the same.

Definition. The discriminant of L / K is the ideal $d_{L / K} \leq \mathcal{O}_{K}$ generated by $\Delta\left(x_{1}, \ldots, x_{n}\right)$ for all choices of $x_{1}, \ldots, x_{n} \in \mathcal{O}_{L}$.

Corollary 6.3. \mathfrak{p} ramifies in L iff $\mathfrak{p} \mid d_{L / K}$
Definition. The inverse different is the fractional ideal

$$
D_{L / K}^{-1}:=\left\{y \in L \mid \operatorname{Tr}_{L / K}(x y) \in \mathcal{O}_{K} \forall x \in \mathcal{O}_{L}\right\}
$$

This is an \mathcal{O}_{L}-submodule of L containing \mathcal{O}_{L}.

Lemma 6.4. $D_{L / K}^{-1}$ is a fractional ideal of \mathcal{O}_{L}.
Proof. Let $x_{1}, \ldots, x_{n} \in \mathcal{O}_{L}$ be a basis for L as a K-vector space. Set $d:=\Delta\left(x_{1}, \ldots, x_{n}\right)=$ $\operatorname{det}\left(\operatorname{Tr}_{L / K}\left(x_{i} x_{j}\right)\right) \in \mathcal{O}_{K}$. For $x \in D_{L / K}^{-1}$ write $x=\sum_{j=1}^{n} \lambda_{j} x_{j}$ with $\lambda_{j} \in K$. Then $\operatorname{Tr}_{L / K}\left(x x_{i}\right)=\sum_{j=1}^{n} \lambda_{j} \operatorname{Tr}_{L / K}\left(x_{i} x_{j}\right)$. Then multiplying with the adjugate matrix we get $d \lambda_{j} \in \mathcal{O}_{K}$ for all j, so $d D_{L / K}^{-1} \subseteq \mathcal{O}_{L}$.

Definition. The inverse of $D_{L / K}^{-1}$, denoted $D_{L / K} \subseteq \mathcal{O}_{L}$, is the different ideal.
Let I_{L}, I_{K} be the groups of fractional ideals in L, K resp. Define $N_{L / K}: I_{L} \rightarrow I_{K}$ on prime ideals P by $P \mapsto\left(P \cap \mathcal{O}_{K}\right)^{f\left(P \mid\left(P \cap \mathcal{O}_{K}\right)\right)}$ and extend multiplicatively.
Fact: $N_{L / K}\left(a \mathcal{O}_{L}\right)=N_{L / K}(a) \mathcal{O}_{K}$. To see this, use $v_{\mathfrak{p}}\left(N_{L_{P} / K_{\mathfrak{p}}}(x)\right)=f_{P / \mathfrak{p}} v_{P}(x)$ for $x \in L_{P}^{\times}$.
Theorem 6.5. $N_{L / K}\left(D_{L / K}\right)=d_{L / K}$
Proof. First assume that $\mathcal{O}_{K}, \mathcal{O}_{L}$ are PID's. Let x_{1}, \ldots, x_{n} be an \mathcal{O}_{K}-basis for \mathcal{O}_{L} and y_{1}, \ldots, y_{n} be the dual basis with respect to the trace form. Then y_{1}, \ldots, y_{n} form a basis for $D_{L / K}^{-1}$. Let $\sigma_{1}, \ldots, \sigma_{n}: L \rightarrow \bar{K}$ be the distinct embeddings. Then $\sum_{i=1}^{n} \sigma_{i}\left(x_{j}\right) \sigma_{i}\left(y_{k}\right)=$ $\operatorname{Tr}_{L / K}\left(x_{j} y_{k}\right)=\delta_{j, k}$. But $\Delta\left(x_{1}, \ldots, x_{n}\right)=\operatorname{det}\left(\sigma_{i}\left(x_{j}\right)\right)^{2}$, so $\Delta\left(x_{1}, \ldots, x_{n}\right) \Delta\left(y_{1}, \ldots, y_{n}\right)=1$. Write $D_{L / K}^{-1}=\beta \mathcal{O}_{L}$ with some $\beta \in L$. Then $d_{L / K}^{-1}=\Delta\left(x_{1}, \ldots, x_{n}\right)^{-1}=\Delta\left(y_{1}, \ldots, y_{n}\right)=$ $\Delta\left(\beta x_{1}, \ldots, \beta x_{n}\right)=N_{L / K}(\beta)^{2} \Delta\left(x_{1}, \ldots, x_{n}\right)=N_{L / K}(\beta)^{2} d_{L / K}$. Then $d_{L / K}^{-1}=N_{L / K}(\beta)=$ $N_{L / K}\left(D_{L / K}^{-1}\right)$. In general, localize at $S=\mathcal{O}_{K} \backslash \mathfrak{p}$ and use $S^{-1} D_{L / K}=D_{S^{-1} \mathcal{O}_{K} / S^{-1} \mathcal{O}_{L}}$ and same for the discriminant.

Theorem 6.6. If $\mathcal{O}_{L}=\mathcal{O}_{K}[\alpha]$ and α has monic minimal polynomial $g(x) \in \mathcal{O}_{K}[x]$, then $D_{L / K}=\left(g^{\prime}(\alpha)\right)$.

Proof. Let $\alpha=\alpha_{1}, \ldots, \alpha_{n}$ be the roots of g. Write $\frac{g(x)}{x-\alpha}=\beta_{n-1} x^{n-1}+\beta_{n-2} x^{n-2}+\cdots+\beta_{0}$ with $\beta_{i} \in \mathcal{O}_{L}$ and $\beta_{n-1}=1$. We claim that

$$
\sum_{i=1}^{n} \frac{g(x)}{x-\alpha_{i}} \cdot \frac{\alpha_{i}^{r}}{g^{\prime}\left(\alpha_{i}\right)}=x^{r}
$$

for $0 \leq r \leq n-1$. Indeed, the difference is a polynomial of degree $<n$ which vanishes at $\alpha_{1}, \ldots, \alpha_{n}$.

Equating coefficients of X^{s} gives $\operatorname{Tr}_{L / K}\left(\frac{\alpha^{r} \beta_{s}}{g^{\prime}(\alpha)}\right)=\delta_{r s}$. So the dual basis (and hence the \mathcal{O}_{K}-basis of $D_{L / K}^{-1}$) of $1, \alpha, \ldots, \alpha^{n-1}$ is $\frac{\beta_{0}}{g^{\prime}(\alpha)}, \ldots, \frac{\beta_{n-1}}{g^{\prime}(\alpha)}=\frac{1}{g^{\prime}(\alpha)}$. So $D_{L / K}^{-1}$ is generated as a fractional ideal by $\frac{1}{g^{\prime}(\alpha)}$.
P prime of $\mathcal{O}_{L}, \mathfrak{p}=P \cap \mathcal{O}_{K}$. We identify $D_{L_{P} / K_{\mathfrak{p}}}$ with a power of P.
Theorem 6.7. $D_{L / K}=\prod_{P} D_{L_{P} / K_{\mathfrak{p}}}$.

Proof. Let $x \in L, \mathfrak{p} \subseteq \mathcal{O}_{K}$ prime. Then (*) $\operatorname{Tr}_{L / K}(x)=\sum_{P \mid \mathfrak{p}} \operatorname{Tr}_{L_{P} / K_{\mathfrak{p}}}(x)$. Let $r(P)=$ $v_{P}\left(D_{L / K}\right), s(P)=v_{P}\left(D_{L_{P} / K_{\mathbf{p}}}\right)$.
" \subseteq " (i.e. $r(P) \geq s(P)$). Fix P and let $x \in P^{-s(P)} \backslash P^{-s(P)+1}$. Then $v_{P}(x)=-s(P)$ and $v_{P^{\prime}}(x) \geq 0 \geq-s(P)$ for all $P^{\prime} \neq P$. Then $\operatorname{Tr}_{L_{P^{\prime}} / K_{\mathrm{p}}}(x y) \in \mathcal{O}_{K_{\mathrm{p}}}$ for all $y \in \mathcal{O}_{L}$ and for all P^{\prime}. So by $(*) \operatorname{Tr}_{L / K}(x y) \in \mathcal{O}_{K_{\mathfrak{p}}}$ for all $y \in \mathcal{O}_{L}$ and for all \mathfrak{p}, so $\operatorname{Tr}_{L / K}(x y) \in \mathcal{O}_{K}$ for all $y \in \mathcal{O}_{L}$, i.e. $x \in D_{L / K}^{-1}$. So $-s(P)=v_{P}(x) \geq-r(P)$.
"き" (i.e $r(P) \leq s(P)$). Fix P and let $x \in P^{-r(P)} \backslash P^{-r(P)+1}$. Then $v_{P}(x)=-r(P)$ and $v_{P^{\prime}}(x) \geq 0$ for all $P^{\prime} \neq P$. By (*) we have

$$
\operatorname{Tr}_{L_{P} / K_{\mathbf{p}}}(x y)=\operatorname{Tr}_{L / K}(x y)-\sum_{P^{\prime} \mid \mathbf{p}, P^{\prime} \neq P} \operatorname{Tr}_{L_{P^{\prime}} / K_{\mathbf{p}}}(x y)
$$

for all $y \in \mathcal{O}_{L}$. By continuity $\operatorname{Tr}_{L_{P} / K_{\mathrm{p}}}(x y) \in \mathcal{O}_{K_{\mathrm{p}}}$ for all $y \in \mathcal{O}_{L_{P}}$, so $x \in D_{L_{P} / K_{\mathrm{p}}}^{-1}$, i.e. $-v_{P}(x)=r(P) \leq s(P)$.

Corollary 6.8. $d_{L / K}=\prod_{P} d_{L_{P} / K_{\mathrm{p}}}$.

6.2 Unramified and totally ramified extensions of local fields

Let L / K be a finite separable extension of non-archimedean local fields.
Definition. L / K is unramified (resp. ramified, fully ramified) if $e_{L / K}=1$ (resp. $e_{L / K}>$ 1, $\left.e_{L / K}=[L: K]\right)$.
Lemma 6.9. Let $M / L / K$ be finite extensions of local fields. Then $f_{M / K}=f_{M / L} f_{L / K}$, $e_{M / K}=e_{M / L} e_{L / K}$.

Proof. Clear from the definitions.
Theorem 6.10. There exists a field K_{0} with $K \subseteq K_{0} \subseteq L$ such that
i) K_{0} / K is unramified.
ii) L / K_{0} is totally ramified.

Moreover $\left[K_{0}: K\right]=f_{L / K},\left[L: K_{0}\right]=e_{L / K}$ and K_{0} / K is Galois.
Proof. Let $k=\mathbb{F}_{q}$, so that $k_{L}=\mathbb{F}_{q^{f}}, f=f_{L / K}$. Set $m=q^{f}-1$. Let $[\cdot]: \mathbb{F}_{q^{f}} \rightarrow L$ be the Teichmüller lift for L. Let $\xi_{m}=[\alpha]$, for α a generator of $\mathbb{F}_{q^{f}}^{\times}$. Then ξ_{m} is a primitive m-th root of unity. Set $K_{0}=K\left(\xi_{m}\right)$. This is Galois as it is the splitting field of $x^{m}-1$. Let res : $\operatorname{Gal}\left(K_{0} / K\right) \rightarrow \operatorname{Gal}\left(k_{0} / K\right)$ be the natural map. For $\sigma \in \operatorname{Gal}\left(K_{0} / K\right)$, we have $\sigma\left(\xi_{m}\right)=\xi_{m}$ if $\sigma\left(\xi_{m}\right) \equiv \xi_{m} \bmod \mathfrak{m}_{0}$, since $\mathcal{O}_{K_{0}}^{\times} \rightarrow k_{0}^{\times}$induces a bijection between the m-th roots of unity. Hence res is injective. So $f_{K_{0} / K} \leq \# \operatorname{Gal}\left(K_{0} / K\right) \leq \# \operatorname{Gal}\left(k_{0} / k\right)=f_{K_{0} / K}$, so we get $\left[K_{0}: K\right]=f_{K_{0} / K}=f$ and $e_{K_{0} / K}=1$ and res is an isomorphism. By multiplicativity
of residue class/ramification degrees, we get $f_{L / K_{0}}=1$ and $e_{L / K_{0}}=e_{L / K}=[L: K] /\left[K_{0}\right.$: $K]=\left[L: K_{0}\right]$.

Theorem 6.11. $k=\mathbb{F}_{q}$. For any $n \geq 1$ there exists a unique unramified extension L / K of degree n. Moreover, L / K is Galois and the natural restriction map $\operatorname{Gal}(L / K) \rightarrow$ $\operatorname{Gal}\left(k_{L} / k\right)$ is an isomorphism. In particular, $\operatorname{Gal}(L / K)=\left\langle\operatorname{Frob}_{L / K}\right\rangle$ where $\operatorname{Frob}_{L / K}(x) \equiv$ $x^{q} \bmod \mathfrak{m}_{L}$ for all $x \in \mathcal{O}_{L}$.

Proof. For $n \geq 1$, take $L=K\left(\zeta_{m}\right)$, where $m=q^{n}-1$ and ζ_{m} is a primitive m-root of unity. As in the theorem $\operatorname{Gal}(L / K) \rightarrow \operatorname{Gal}\left(k_{L} / k\right)$ is an isomorphism. Therefore L / K is unramified. Then L / K is unramified and $\operatorname{Gal}(L / K)$ is generated by a lift of $x \mapsto x^{q}$ 回 Uniqueness: If L / K is degree n and unramified, then $\zeta_{m} \in L$ by Hensel's Lemma or Teichmüller lift and thus $L=K\left(\zeta_{m}\right)$ for degree reasons.

Corollary 6.12. L / K is finite Galois. The map res : $\operatorname{Gal}(L / K) \rightarrow \operatorname{Gal}\left(k_{L} / K\right)$ is surjective.

Proof. res factors as $\operatorname{Gal}(L / K) \rightarrow \operatorname{Gal}\left(K_{0} / K\right) \xrightarrow{\simeq} \operatorname{Gal}\left(k_{L} / k\right)$.
Definition. L/K finite Galois. The inertia subgroup is

$$
I_{L / K}:=\operatorname{ker}\left(\operatorname{Gal}(L / K) \rightarrow \operatorname{Gal}\left(k_{L} / k\right)\right) .
$$

Since $e_{L / K} f_{L / K}=[L: K]$, we have $\# I_{L / K}=e_{L / K}$. Also $I_{L / K}=\operatorname{Gal}\left(L / K_{0}\right)$.

Theorem 6.13.

(i) Let L / K be finite totally ramified, $\pi_{L} \in \mathcal{O}_{L}$ a uniformizer. Then the minimal polynomial of π_{L} is Eisenstein, $\mathcal{O}_{L}=\mathcal{O}_{K}\left[\pi_{L}\right]$ and $L=K\left(\pi_{L}\right)$.
(ii) Conversely, if $f(x) \in \mathcal{O}_{K}[x]$ is Eisenstein and α is a root of f, then $L=K(\alpha)$ is a totally ramified extension of K and α is a uniformizer in L.

Proof.

(i) Let $e=[L: K]$ and $f(x)=x^{m}+a_{m-1} x^{m-1}+\cdots+a_{0} \in \mathcal{O}_{K}[x]$ be the minimal polynomial of π_{L}. Then $m \leq e$. Since $v_{L}\left(K^{\times}\right)=e \mathbb{Z}$, we have $v_{L}\left(a_{i} \pi_{L}^{i}\right) \equiv i \bmod e$ for $i<m$, hence these terms have distinct valuations. As $\pi_{L}^{m}=-\sum_{i=0}^{m-1} a_{i} \pi_{L}^{i}$ we have $m=v_{L}\left(\pi_{L}^{m}\right)=\min _{0 \leq i \leq m-1}\left(i+e v_{k}\left(a_{i}\right)\right)$. But this can only happen if $e=m$, $v_{K}\left(a_{i}\right) \geq 1$ for all i and $v_{K}\left(a_{0}\right)=1$. So f is Eisenstein and $L=K\left(\pi_{L}\right)$. For $y \in L$ write $y=\sum_{i=0}^{e} b_{i} \pi_{L}^{i}, b_{i} \in K$. Then $v_{L}(y)=\min _{0 \leq i \leq e-1}\left(i+e v_{K}\left(b_{i}\right)\right)$. Thus $y \in \mathcal{O}_{L}$ iff $v_{L}(y) \geq 0$ iff $v_{K}\left(b_{i}\right) \geq 0$ iff $y \in \mathcal{O}_{K}\left[\pi_{L}\right]$.

[^2](ii) Let $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in \mathcal{O}_{K}[x]$ be Eisenstein, and let $e:=e_{L / K}$ where $L=K(\alpha)$. Thus $v_{L}\left(a_{i}\right) \geq e$ and $v_{L}\left(a_{0}\right)=e$. If $v_{L}(\alpha) \leq 0$, we have $n v_{L}(\alpha)<$ $v_{L}\left(a_{n-1} \alpha^{n-1}+\cdots+a_{0}\right)$, contradiction. So $v_{L}(\alpha)>0$. Then for $i \neq 0, v_{L}\left(a_{i} \alpha^{i}\right)>$ $e=v_{L}\left(a_{0}\right)$. Therefore $n v_{L}(\alpha)=v_{L}\left(\alpha^{n}\right)=v_{L}\left(-\sum_{i=0}^{n-1} a_{i} \alpha^{i}\right)=e$.

6.3 Structure of Units

Let K be a finite extension of \mathbb{Q}_{p}, let $e:=e_{K / \mathbb{Q}}, \pi$ uniformizer in K.
Proposition 6.14. If $r>e /(p-1)$, then

$$
\exp (x)=\sum_{i=0}^{\infty} \frac{x^{n}}{n!}
$$

converges on $\pi^{r} \mathcal{O}_{K}$ and induces an isomorphism $\left(\pi^{r} \mathcal{O}_{K},+\right) \cong\left(1+\pi^{r} \mathcal{O}_{K}, \times\right)$.
Proof. $v_{K}(n!)=e v_{p}(n!)=e \frac{n-s_{p}(n)}{p-1} \leq e \frac{n-1}{p-1}$, so for $x \in \pi^{r} \mathcal{O}_{K}$ and $n \geq 1$ we have

$$
v_{K}\left(x^{n} / n!\right) \geq n r-e \frac{n-1}{p-1}=r+(n-1)(\underbrace{r-\frac{e}{p-1}}_{>0})
$$

So $v_{K}\left(x^{n} / n!\right) \rightarrow \infty$ as $n \rightarrow \infty$, so $\exp (x)$ converges. Since $v_{K}\left(x^{n} / n!\right) \geq r$ for $n \geq 1$, $\exp (x) \in 1+\pi^{r} \mathcal{O}_{K}$.

Similarly consider $\log : 1+\pi^{r} \mathcal{O}_{K} \rightarrow \pi^{r} \mathcal{O}_{K}$ where $\log (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{n}$. Note that $v_{K}\left(x^{n} / n\right)=r n-e v_{p}(n) \geq r n-e \frac{n-1}{p-1}=(n-1)\left(r-\frac{e}{p-1}\right)+r$, so the series converges and also $v(\log (1+x)) \geq r$, so \log maps $1+\pi^{r} \mathcal{O}_{K}$ into $\pi^{r} \mathcal{O}_{K}$.

The identities $\exp (X+Y)=\exp (X) \exp (Y), \exp (\log (1+X))=1+X, \log (\exp (X))=X$ hold in $\mathbb{Q} \llbracket X, Y \rrbracket$. So $\exp :\left(\pi^{r} \mathcal{O}_{K},+\right) \rightarrow\left(1+\pi^{r} \mathcal{O}_{K}, \times\right)$ is an isomorphism.

For K a local field we let $U_{K}=\mathcal{O}_{K}^{\times}$.
Definition. For $s \in \mathbb{Z}_{\geq 1}$, the s-th unit group $U_{K}^{(s)}$ is defined by $U_{K}^{(s)}=\left(1+\pi^{s} \mathcal{O}_{K}, \times\right)$. We set $U_{K}^{(0)}=U_{K}$.
We have $\ldots \subseteq U_{K}^{(s)} \subseteq U_{K}^{(s-1)} \subseteq \ldots \subseteq U_{K}^{(0)}=U_{K}$.

Proposition 6.15.

(i) $U_{K}^{(0)} / U_{K}^{(1)} \cong\left(k^{\times}, \times\right)$
(ii) $U_{K}^{(s)} / U_{K}^{(s+1)} \cong(k,+)$ for $s \geq 1$.

Proof. For (i) note that the reduction map $\mathcal{O}_{K}^{\times} \rightarrow k^{\times}$is surjective with kernel $1+\pi \mathcal{O}_{K}=$ $U_{K}^{(1)}$.
For (ii) let $f: U_{K}^{(s)} \rightarrow k$ be defined by $1+\pi^{s} x \mapsto x \bmod \pi$. This is a surjective group homomorphism with kernel $U_{K}^{(s+1)}$.

Corollary 6.16. Let $\left[K: \mathbb{Q}_{p}\right]<\infty$. There exists a finite index subgroup of \mathcal{O}_{K}^{\times}isomorphic to ($\mathcal{O}_{K},+$).

Proof. Let $r>\frac{e}{p-1}$. Then $U_{K}^{(r)} \cong\left(\mathcal{O}_{K},+\right)$ by the first proposition and $U_{k}^{(r)} \subseteq U_{K}$ has finite index.

Remark: This is not true for K equal characteristic.
Example. Consider \mathbb{Z}_{p} for $p>2$. Then $e=1$, so that we can take $r=1$. Then using the Teichmüller lift we get

$$
\mathbb{Z}_{p}^{\times} \xrightarrow{\sim}(\mathbb{Z} / p \mathbb{Z})^{\times} \times\left(1+p \mathbb{Z}_{p}\right) \cong \mathbb{Z} /(p-1) \mathbb{Z} \times \mathbb{Z}_{p}
$$

For $p=2$ take $r=2$, then $\mathbb{Z}_{2}^{\times} \xrightarrow{\sim}(\mathbb{Z} / 4 \mathbb{Z})^{\times} \times\left(1+4 \mathbb{Z}_{2}\right) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z}_{2}$.

6.4 Higher ramification groups

Let L / K be a finite Galois extension of local fields, $\pi_{L} \in \mathcal{O}_{L}$ a uniformizer, v_{L} the normalized valuation on L.
Definition. For $s \in \mathbb{R}_{\geq-1}$, the s-th ramification group is

$$
G_{s}(L / K)=\left\{\sigma \in \operatorname{Gal}(L / K) \mid v_{L}(\sigma(x)-x) \geq s+1 \text { for all } x \in \mathcal{O}_{L}\right\} .
$$

E.g. $G_{-1}(L / K)=\operatorname{Gal}(L / K)$ and $G_{0}(L / K)=\{\sigma \in \operatorname{Gal}(L / K) \mid \sigma(x) \equiv x \bmod \pi$ for all $x \in$ $\left.\mathcal{O}_{L}\right\}=\operatorname{ker}\left(\operatorname{Gal}(L / K) \rightarrow \operatorname{Gal}\left(k_{L} / k\right)\right)=I_{L / K}$.
Note: For $s \in \mathbb{Z}_{\geq 0}, G_{s}(L / K)=\operatorname{ker}\left(\operatorname{Gal}(L / K) \rightarrow \operatorname{Aut}\left(\mathcal{O}_{L} / \pi_{L}^{s+1} \mathcal{O}_{L}\right)\right)$, hence $G_{s}(L / K)$ is a normal subgroup of $\operatorname{Gal}(L / K)$.
We get a filtration $\ldots \subseteq G_{s} \subseteq G_{s-1} \subseteq \ldots \subseteq G_{-1}=\operatorname{Gal}(L / K)$.
Remark: G_{s} can only change at integer values of s. The indexing using real numbers is used to define the upper numbering (see Chapter 9).

Theorem 6.17.

(i) For $s \geq 0, G_{s}=\left\{\sigma \in G_{0} \mid v_{L}\left(\sigma\left(\pi_{L}\right)-\pi_{L}\right) \geq s+1\right\}$.
(ii) $\bigcap_{s=0}^{\infty} G_{s}=\{1\}$.
(iii) Let $s \in \mathbb{Z}_{\geq 0}$. There is an injective group homomorphism $G_{s} / G_{s+1} \hookrightarrow U_{L}^{(s)} / U_{L}^{(s+1)}$ induced by $\sigma \mapsto \sigma\left(\pi_{L}\right) / \pi_{L}$. This map is independent of the choice of π_{L}.

Proof. Let $K_{0} \subseteq L$ be the maximal unramified extension of K in L. Upon replacing K by K_{0} we may assume that L / K totally ramified.
(i) We know that $\mathcal{O}_{L}=\mathcal{O}_{K}\left[\pi_{L}\right]$. From this it follows that if $v_{L}\left(\sigma\left(\pi_{L}\right)-\pi_{L}\right) \geq s+1$, then $v_{L}(\sigma(x)-x) \geq s+1$ for all $x \in \mathcal{O}_{L}$. Indeed, if $x=f\left(\pi_{L}\right)$ with $f \in \mathcal{O}_{K}[x]$, then $\sigma(x)-x=f\left(\sigma\left(\pi_{L}\right)\right)-f\left(\pi_{L}\right)=\left(\sigma\left(\pi_{L}\right)-\pi_{L}\right) g\left(\pi_{L}\right)$ for some polynomial $g \in \mathcal{O}_{L}[x]$. Then $v_{L}(\sigma(x)-x) \geq v_{L}\left(\sigma\left(\pi_{L}\right)-\pi_{L}\right) \geq s+1$.
(ii) Suppose $\sigma \in \operatorname{Gal}(L / K), \sigma \neq 1$. Then $\sigma\left(\pi_{L}\right) \neq \pi_{L}$ as $L=K\left(\pi_{L}\right)$. Hence $v_{L}\left(\sigma\left(\pi_{L}\right)-\right.$ $\left.\pi_{L}\right)<\infty$, so $\sigma \notin G_{s}$ for some $s>0$.
(iii) Note: For $\sigma \in G_{s}, s \in \mathbb{Z}_{\geq 0}$ we have $\sigma\left(\pi_{L}\right) \in \pi_{L}+\pi_{L}^{s+1} \mathcal{O}_{L}$, so $\sigma\left(\pi_{L}\right) / \pi_{L} \in 1+\pi_{L}^{s} \mathcal{O}_{L}=$ $U_{L}^{(s)}$. We claim $\varphi: G_{s} \rightarrow U_{L}^{(s)} / U_{L}^{(s+1)}, \sigma \mapsto \sigma\left(\pi_{L}\right) / \pi_{L}$ is a group homomorphism with kernel G_{s+1}. For $\sigma, \tau \in G_{s}$, let $\tau\left(\pi_{L}\right)=u \pi_{L}, u \in \mathcal{O}_{L}^{\times}$, then $(\sigma \tau)\left(\pi_{L}\right) / \pi_{L}=$ $\sigma\left(\tau\left(\pi_{L}\right)\right) / \tau\left(\pi_{L}\right) \cdot \tau\left(\pi_{L}\right) / \pi_{L}=\frac{\sigma(u)}{u} \frac{\sigma\left(\pi_{L}\right)}{\pi_{L}} \frac{\tau\left(\pi_{L}\right)}{\pi_{L}}$. But $\sigma(u) \in u+\pi_{L}^{s+1} \mathcal{O}_{L}$, so $\frac{\sigma(u)}{u} \in$ $1+\pi_{L}^{s+1} \mathcal{O}_{L}=U_{L}^{(s+1)}$. So φ is a homomorphism. Moreover $\operatorname{ker} \varphi=\left\{\sigma \in G_{s} \mid \sigma \pi_{L} \equiv\right.$ $\left.\pi_{L} \bmod \pi_{L}^{s+1}\right\}=G_{s+1}$.

Corollary 6.18. Let L / K be a finite Galois extension of local fields. Then $\operatorname{Gal}(L / K)$ is solvable.

Proof. For $s \in \mathbb{Z}_{\geq-1}$ we have $G_{s} / G_{s+1} \cong$ a subgroup of $\operatorname{Gal}\left(k_{L} / k\right)$ if $s=-1,\left(k_{L}^{\times}, \times\right)$if $s=0$ or $\left(k_{L},+\right)$ if $s \geq 1$. This gives us a filtration of $\operatorname{Gal}(L / K)$ with abelian quotients ending at 1 .

Let $p=$ char k. Then $\#\left(G_{0} / G_{1}\right)$ is coprime to p and $\# G_{1}=p^{n}$ for some $n \geq 0$. Thus G_{1} is the unique (since normal) Sylow p subgroup of $G_{0}=I_{L / K}$.
Definition. The group G_{1} is the wild inertia group and G_{0} / G_{1} is the tame quotient. Let L / K be a finite separable extension of local fields. Say L / K is tamely ramified if char $k \nmid e_{L / K}$ (equivalently $G_{1}=1$ if L / K is Galois). Otherwise L / K is wildly ramified.
Theorem 6.19. Let $\left[K: \mathbb{Q}_{p}\right]<\infty, L / K$ finite, $D_{L / K}=\left(\pi_{L}\right)^{\delta(L / K)}$. Then $\delta(L / K) \geq$ $e_{L / K}-1$, with equality iff L / K is tamely ramified.
In particular, L / K is unramified iff $D_{L / K}=\mathcal{O}_{L}$.
Proof. By Exercise Sheet 3 we have $D_{L / K}=D_{L / K_{0}} D_{K_{0} / K}$. So it suffices to check two cases.
(i) L / K unramified. Then $\mathcal{O}_{L}=\mathcal{O}_{K}[\alpha]$ for some $\alpha \in \mathcal{O}_{L}$ with $k_{L}=k(\bar{\alpha})$. Let $g(x) \in$ $\mathcal{O}_{K}[x]$ be the minimal polynomial of α. Since $[L: K]=\left[k_{L}: k\right], \bar{g}(x) \in k[x]$ is the minimal polynomial of $\bar{\alpha}$. So $\bar{g}(x)$ is separable and hence $g^{\prime}(\alpha) \not \equiv 0 \bmod \pi_{L}$. Thus $D_{L / K}=\left(g^{\prime}(\alpha)\right)=\mathcal{O}_{L}$.
(ii) L / K totally ramified. Then $[L: K]=e$ and $\mathcal{O}_{L}=\mathcal{O}_{K}\left[\pi_{L}\right]$ where π_{L} is the root of some Eisenstein polynomial $g(x)=x^{e}+\sum_{i=0}^{e-1} a_{i} x^{i} \in \mathcal{O}_{K}[x]$. Then $g^{\prime}\left(\pi_{L}\right)=$ $e \pi_{L}^{e-1}+\sum_{i=1}^{e-1} i a_{i} \pi_{L}^{i-1}$. Then $v_{L}\left(g^{\prime}\left(\pi_{L}\right)\right) \geq e-1$ with equality iff $p \nmid e$.

Corollary 6.20. Let L / K be an extension of number fields, $P \subseteq \mathcal{O}_{L}, P \cap \mathcal{O}_{K}=\mathfrak{p}$. Then $e(P \mid \mathfrak{p})>1$ iff $P \mid D_{L / K}$.

Proof. Combine the theorem with the fact that the global different is the product of the local differents.

Example. Let $K=\mathbb{Q}_{p}, \xi_{p^{n}}$ a primitive p^{n}-th root of unity and $L=\mathbb{Q}_{p}\left(\xi_{p^{n}}\right)$. Then the p^{n}-th cyclotomic polynomial is $\Phi_{p^{n}}(x)=x^{p^{n-1}(p-1)}+x^{p^{n-1}(p-2)}+\cdots+1 \in \mathbb{Z}_{p}[x]$.
Example Sheet 3: $\Phi_{p^{n}}(x)$ is irreducible, so $\Phi_{p^{n}}(x)$ is the minimal polynomial of $\xi_{p^{n}} . L / \mathbb{Q}_{p}$ is Galois, totally ramified, degree $p^{n-1}(p-1)$.

Let $\pi=\xi_{p^{n}}-1$. This is a uniformizer of \mathcal{O}_{L}. Then $\mathcal{O}_{L}=\mathbb{Z}_{p}\left[\xi_{p^{n}}-1\right]=\mathbb{Z}_{p}\left[\xi_{p^{n}}\right]$. Then $\operatorname{Gal}\left(L / \mathbb{Q}_{p}\right) \cong\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times}$. Let σ_{m} be the Galois automorphism with $\sigma_{m}\left(\xi_{p^{n}}\right)=\xi_{p^{n}}^{m}$. Then $v_{L}\left(\sigma_{m}(\pi)-\pi\right)=v_{L}\left(\xi_{p^{n}}^{m}-\xi_{p^{n}}\right)=v_{L}\left(\xi_{p^{n}}^{m-1}-1\right)$. Suppose $m \not \equiv 1 \bmod p^{n}$. Let k be maximal such that $p^{k} \mid m-1$. Then $\xi_{p^{n}}^{m-1}$ is a primitive p^{n-k}-th root of unity and hence $\xi_{p^{n}}^{m-1}-1$ is a uniformizer in $L^{\prime}=\mathbb{Q}_{p}\left(\xi_{p^{n}}^{m-1}\right)$. So $v_{L}\left(\xi_{p^{n}}^{m-1}-1\right)=e_{L / L^{\prime}}=e_{L / \mathbb{Q}_{p}} / e_{L^{\prime} / \mathbb{Q}_{p}}=\left[L: \mathbb{Q}_{p}\right] /\left[L^{\prime}\right.$: $\left.\mathbb{Q}_{p}\right]=p^{k}$. So $\sigma_{m} \in G_{i}$ iff $p^{k} \geq i+1$. Thus

$$
G_{i} \cong \begin{cases}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times} & i \leq 0 \\ \left(1+p^{k} \mathbb{Z}\right) / p^{n} \mathbb{Z} & p^{k-1}-1<i \leq p^{k}-1,1 \leq k \leq n-1 \\ \{1\} & p^{n-1}-1<i\end{cases}
$$

7 Local Class Field Theory

Recall some infinite Galois theory:
Proposition 7.1. Let L / K be a Galois extension. The restriction maps $\operatorname{Gal}(L / K) \rightarrow$ $\operatorname{Gal}(F / K)$ for finite subextensions F / K induce an isomorphism

$$
\operatorname{Gal}(L / K) \stackrel{\simeq}{\longrightarrow} \lim _{F / K \text { finite }} \operatorname{Gal}(F / K)
$$

We give $\operatorname{Gal}(L / K)$ the topology for which the above isomorphism becomes a homeomorphism.
Example. $\operatorname{Gal}\left(\mathbb{F}_{q}^{\text {alg }} / \mathbb{F}_{q}\right) \simeq \lim _{n \in \mathbb{N}} \operatorname{Gal}\left(\mathbb{F}_{q^{n}} / \mathbb{F}_{q}\right) \cong \lim _{n \in \mathbb{N}} \mathbb{Z} / n \mathbb{Z}=\widehat{\mathbb{Z}}$. Under this isomorphism the Frobenius $\operatorname{Fr}_{q} \in \operatorname{Gal}\left(\mathbb{F}_{q}^{\text {alg }} / \mathbb{F}_{q}\right)$ corresponds to $1 \in \widehat{\mathbb{Z}}$.

Theorem 7.2 (Fundamental theorem of Galois theory). Let L / K be a Galois extension. Endow $\operatorname{Gal}(L / K)$ with the profinite topology. Then there is a bijection:

$$
\begin{aligned}
\{\text { subextensions of } L / K\} & \longleftrightarrow\{\text { closed subgroups of } \operatorname{Gal}(L / K)\} \\
F & \longmapsto \operatorname{Gal}(L / F) \\
L^{H} & \longleftrightarrow H
\end{aligned}
$$

Moreover, F / K is finite iff $\operatorname{Gal}(L / F)$ is open and F / K Galois iff $\operatorname{Gal}(L / F)$ is normal in $\operatorname{Gal}(L / K)$ in which case $\operatorname{Gal}(F / K) \simeq \operatorname{Gal}(L / K) / \operatorname{Gal}(L / F)$.

7.1 Weil Group

Let K be a local field, L / K a separable algebraic extension.

Definition.

(i) L / K is unramified if F / K is unramified for all finite subextensions F / K.
(ii) L / K is totally ramified if F / K is totally ramified for all finite subextensions F / K.

Proposition 7.3. Let L / K be an unramified extension. Then L / K is Galois and $\operatorname{Gal}(L / K) \simeq$ $\operatorname{Gal}\left(k_{L} / k\right)$.

Proof. Every finite subextension F / K is unramified, hence Galois. So L / K is Galois. Moreover there exists a diagram:

The subextensions $L / F / K$ correspond via $F \mapsto k_{F}$ bijectively to the intermediate extensions $k_{L} / k^{\prime} / k$ and the Galois groups are isomorphic via the reduction map, hence we get an isomorphism of the bottom two groups and the diagram commutes.

If $L_{1}, L_{2} / K$ are finite unramified, then $L_{1} L_{2} / K$ is unramified by Exercise Sheet 3. Thus for any L / K there exists a maximal unramified subextension K_{0} / K.
Let L / K be Galois. There exists a surjection res: $\operatorname{Gal}(L / K) \rightarrow \operatorname{Gal}\left(K_{0} / K\right) \simeq \operatorname{Gal}\left(k_{L} / k\right)$. Set $I_{L / K}=\operatorname{ker}($ res $)$ (Inertia subgroup).
Let $\operatorname{Fr}_{k_{L} / k} \in \operatorname{Gal}\left(k_{L} / k\right)$ be the Frobenius $x \mapsto x^{\# k}$ and let $\left\langle\operatorname{Fr}_{k_{L} / k}\right\rangle$ be the subgroup generated by $\mathrm{Fr}_{k_{L} / k}$.
Definition. Let L / K be Galois. The Weil group $W(L / K) \subseteq \operatorname{Gal}(L / K)$ is $\operatorname{res}^{-1}\left(\left\langle\operatorname{Fr}_{k_{L} / k}\right\rangle\right)$.
Remark: If k_{L} / k is finite, then $W(L / K)=\operatorname{Gal}(L / K)$. Otherwise $W(L / K) \subsetneq \operatorname{Gal}(L / K)$.
There is a commutative diagram

with exact rows.
We endow $W(L / K)$ with the weakest topology such that
(1) $W(L / K)$ is a topological group.
(2) $I_{L / K}$ is an open subgroup of $W(L / K)$ where $I_{L / K}=\operatorname{Gal}\left(L / K_{0}\right)$ is equipped with the profinite topology.
I.e. open sets are translates of open sets in $I_{L / K}$ by elements of $W(L / K)$.

Warning: If k_{L} / k is infinite, $W(L / K)$ does not carry the subspace topology in $\operatorname{Gal}(L / K)$, e.g. $I_{L / K} \subseteq W(L / K)$ is not open in subspace topology.

Proposition 7.4. Let L / K be Galois.
(i) $W(L / K)$ is dense in $\operatorname{Gal}(L / K)$
(ii) If F / K is a finite subextension of L / K, then $W(L / F)=W(L / K) \cap \operatorname{Gal}(L / F)$.
(iii) If F / K is a finite Galois subextension, then

$$
W(L / K) / W(L / F) \cong \operatorname{Gal}(F / K) .
$$

Proof.
(i) $W(L / K)$ dense in $\operatorname{Gal}(L / K)$ iff for all F / K finite Galois subextensions $W(L / K)$ intersects every coset of $\operatorname{Gal}(L / F)$ iff for all F / K finite Galois subextensions $W(L / K) \rightarrow$ $\operatorname{Gal}(F / K)$ is surjective. Consider the diagram

Let K_{0} / K be the maximal unramified extension contained in L. Then $K_{0} \cap F$ is the maximal unramified extension in F. Then $\operatorname{Gal}\left(L / K_{0}\right) \rightarrow \operatorname{Gal}\left(F /\left(K_{0} \cap F\right)\right)$, so a is surjective. Since $\operatorname{Gal}\left(k_{F} / k\right)$ is generated by $\mathrm{Fr}_{k_{F} / k}=\left.\mathrm{Fr}_{k_{L} / k}\right|_{k_{F}}, c$ is surjective. By diagram chase, b is surjective.
(ii) Easy from the definitions.
(iii)

$$
\begin{aligned}
W(L / K) / W(L / F) & =W(L / K) /(W(L / K) \cap \operatorname{Gal}(L / F)) \\
& \cong(W(L / K) \operatorname{Gal}(L / F)) / \operatorname{Gal}(L / F) \\
& =\operatorname{Gal}(L / K) / \operatorname{Gal}(L / F) \cong \operatorname{Gal}(F / K)
\end{aligned}
$$

Note that $W(L / K) \operatorname{Gal}(L / F)=\operatorname{Gal}(L / K)$ as $W(L / K)$ is dense in $\operatorname{Gal}(L / K)$ by (i).

7.2 Statements of local class field theory

Let K be a local field and let $K^{\text {ab }}$ be the maximal abelian extension in $K^{\text {sep }}$.
We know that $K^{\mathrm{ur}}=\bigcup_{m=1}^{\infty} K\left(\zeta_{q^{m}-1}\right)$ where $q=\# k$. Then $k_{K^{\mathrm{ur}}}=\mathbb{F}_{q}^{\mathrm{alg}}$ and $\operatorname{Gal}\left(K^{\mathrm{ur}} / K\right) \simeq$ $\operatorname{Gal}\left(\mathbb{F}_{q}^{\text {alg }} / \mathbb{F}_{q}\right) \simeq \widehat{\mathbb{Z}}$.
So K^{ur} is abelian and hence $K^{\mathrm{ur}} \subseteq K^{\mathrm{ab}}$. There is an exact sequence

$$
0 \rightarrow I_{K^{\mathrm{ab}} / K} \rightarrow W\left(K^{\mathrm{ab}} / K\right) \rightarrow \mathbb{Z} \rightarrow 0 .
$$

Theorem 7.5.

(1) (Local Artin reciprocity) There exists a unique topological isomorphism $\operatorname{Art}_{K}: K^{\times} \xrightarrow{\simeq}$ $W\left(K^{\mathrm{ab}} / K\right)$ satisfying the following properties:
(i) $\left.\operatorname{Art}_{K}(\pi)\right|_{K^{\mathrm{ur}}}=\operatorname{Fr}_{K^{\mathrm{ur}} / K}$ for any uniformizer $\pi \in K$.
(ii) For each finite subextension L / K in $K^{\mathrm{ab}} / K,\left.\operatorname{Art}_{K}\left(N_{L / K}\left(L^{\times}\right)\right)\right|_{L}=\{1\}$.
(2) Let L / K be finite abelian. Then Art_{K} induces an isomorphism $K^{\times} / N_{L / K}\left(L^{\times}\right) \simeq$ $W\left(K^{\mathrm{ab}} / K\right) / W\left(K^{\mathrm{ab}} / L\right) \simeq \operatorname{Gal}(L / K)$

Remarks:
(i) Special case of Local Langlands.
(ii) Used to characterize global Artin map of global class field theory.

Properties of the Artin map:

- (Existence theorem) For any open finite index subgroup $H \subseteq K^{\times}$there exists a finite abelian extension L / K such that $N_{L / K}\left(L^{\times}\right)=H$. In particular, Art $_{K}$ induces an (inclusion reversing) isomorphism of posets:

$$
\begin{aligned}
\text { \{open finite index subgroups of } \left.K^{\times}\right\} & \longleftrightarrow\{\text { finite abelian extensions } L / K\} \\
H & \longmapsto\left(K^{\mathrm{ab}^{\operatorname{Art}_{K}(H)}}\right. \\
N_{L / K}\left(L^{\times}\right) & \longleftrightarrow L / K
\end{aligned}
$$

- (Norm functoriality) Let L / K be a finite separable extension. There is a commutative diagram:

Proposition 7.6. Let L / K be a finite abelian extension of degree n. Then $e_{L / K}=\left[\mathcal{O}_{K}^{\times}\right.$: $\left.N_{L / K}\left(\mathcal{O}_{L}^{\times}\right)\right]$.

Proof. For $x \in L^{\times}$, we have $v_{K}\left(N_{L / K}(x)\right)=f_{L / K} v_{L}(x)$. So we get a surjection

$$
K^{\times} / N_{L / K}\left(L^{\times}\right) \xrightarrow{v_{K}} \mathbb{Z} / f_{L / K} \mathbb{Z}
$$

with kernel

$$
\left(\mathcal{O}_{K}^{\times} N_{L / K}\left(L^{\times}\right)\right) / N_{L / K}\left(L^{\times}\right)=\mathcal{O}_{K}^{\times} /\left(\mathcal{O}_{K}^{\times} \cap N_{L / K}\left(L^{\times}\right)\right)=\mathcal{O}_{K}^{\times} / N_{L / K}\left(\mathcal{O}_{L}^{\times}\right)
$$

By Theorem $7.5(2), n=\left[K^{\times}: N_{L / K}\left(L^{\times}\right)\right]=f_{L / K}\left[\mathcal{O}_{K}^{\times}: N_{L / K}\left(\mathcal{O}_{L}^{\times}\right)\right]$.
Corollary 7.7. Let L / K be a finite abelian extension. Then L / K is unramified iff $N_{L / K}\left(\mathcal{O}_{L}^{\times}\right)=\mathcal{O}_{K}^{\times}$.

7.3 Construction of $\operatorname{Art}_{\mathbb{Q}_{p}}$

Recall: $\mathbb{Q}_{p}^{\mathrm{ur}}=\bigcup_{m=1}^{\infty} \mathbb{Q}_{p}\left(\zeta_{p^{m}-1}\right)=\bigcup_{p \nmid m} \mathbb{Q}_{p}\left(\zeta_{m}\right)$.
$\mathbb{Q}_{p}\left(\zeta_{p^{n}}\right) / \mathbb{Q}_{p}$ is totally ramified of degree $p^{n-1}(p-1)$ with $\theta_{n}: \operatorname{Gal}\left(\mathbb{Q}_{p}\left(\zeta_{p^{n}}\right) / \mathbb{Q}_{p}\right) \simeq\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times}$. For $n \geq m \geq 1$ there is a commutative diagram:

$$
\begin{array}{cc}
\operatorname{Gal}\left(\mathbb{Q}_{p}\left(\zeta_{p^{n}}\right) / \mathbb{Q}_{p}\right) \xrightarrow{\text { res }} & \operatorname{Gal}\left(\mathbb{Q}_{p}\left(\zeta_{p^{m}}\right) / \mathbb{Q}_{p}\right) \\
\left.\simeq\right|_{\theta_{n}} & \simeq \theta_{m} \\
\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times} \xrightarrow{\text { proj }} & \left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{\times}
\end{array}
$$

Set $\mathbb{Q}_{p}\left(\zeta_{p^{\infty}}\right)=\bigcup_{n=1}^{\infty} \mathbb{Q}_{p}\left(\zeta_{p^{n}}\right)$. Then $\mathbb{Q}_{p}\left(\zeta_{p^{\infty}} / \mathbb{Q}_{p}\right)$ is Galois and we have

$$
\theta: \operatorname{Gal}\left(\mathbb{Q}_{p}\left(\zeta_{p} \infty\right) / \mathbb{Q}_{p}\right) \xrightarrow{\simeq}{\underset{n \geq 1}{ } \lim _{n \geq 1}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times} \simeq \mathbb{Z}_{p}^{\times}}
$$

We have $\mathbb{Q}_{p}\left(\zeta_{p^{\infty}}\right) \cap \mathbb{Q}_{p}^{\text {ur }}=\mathbb{Q}_{p}$, so there is an isomorphism $\operatorname{Gal}\left(\mathbb{Q}_{p}\left(\zeta_{p^{\infty}}\right) \mathbb{Q}_{p}^{\mathrm{ur}} / \mathbb{Q}_{p}\right) \simeq \widehat{\mathbb{Z}} \times \mathbb{Z}_{p}^{\times}$.
Theorem 7.8 (Local Kronecker-Weber). $\mathbb{Q}_{p}^{\text {ab }}=\mathbb{Q}_{p}^{\text {ur }} \mathbb{Q}_{p}\left(\zeta_{p}\right)$.
Proof. Omitted
Construct Art $_{\mathbb{Q}_{p}}$ as follows: We have $\mathbb{Q}_{p}^{\times} \simeq \mathbb{Z} \times \mathbb{Z}_{p}^{\times}$. Then
$\operatorname{Art}_{\mathbb{Q}_{p}}\left(p^{n} u\right)=\left(\left(\operatorname{Fr}_{\mathbb{Q}_{p}^{\text {ur }}} / \mathbb{Q}_{p}\right)^{n}, \theta^{-1}\left(u^{-1}\right)\right) \in \operatorname{Gal}\left(\mathbb{Q}_{p}^{\mathrm{ur}} / \mathbb{Q}_{p}\right) \times \operatorname{Gal}\left(\mathbb{Q}_{p}\left(\zeta_{p^{\infty}}\right) / \mathbb{Q}_{p}\right) \simeq \operatorname{Gal}\left(\mathbb{Q}_{p}^{\text {ab }} / \mathbb{Q}_{p}\right)$.
The image lies in $W\left(\mathbb{Q}_{p}^{\text {ab }} / \mathbb{Q}_{p}\right)$.

7.4 Construction of Art_{K}

Let K be a local field, π a uniformizer of K. For $n \geq 1$, we will construct totally ramified Galois extensions $K_{\pi, n}$ such that:
(i) $K \subseteq \ldots \subseteq K_{\pi, n} \subseteq K_{\pi, n+1} \subseteq \ldots$.
(ii) For $n \geq m \geq 1$ there is a commutative diagram:

$$
\begin{array}{cll}
\operatorname{Gal}\left(K_{\pi, n} / K\right) & \longrightarrow & \operatorname{Gal}\left(K_{\pi, m} / K\right) \\
\simeq \downarrow \psi_{n} & & \downarrow \psi_{m} \\
\mathcal{O}_{K}^{\times} / U_{K}^{(n)} \xrightarrow{\text { proj }} & \mathcal{O}_{K}^{\times} / U_{K}^{(m)}
\end{array}
$$

(iii) Setting $K_{\pi, \infty}=\bigcup_{n=1}^{\infty} K_{\pi, n}$ we have $K^{\mathrm{ab}}=K^{\mathrm{ur}} K_{\pi, \infty}$.

Then (ii) implies that there is an isomorphism $\Psi: \operatorname{Gal}\left(K_{\pi, \infty} / K\right) \stackrel{\simeq}{\leftrightarrows} \lim _{n} \mathcal{O}_{K} / U_{K}^{(n)} \cong \mathcal{O}_{K}^{\times}$. Define Art_{K} by:

$$
\begin{aligned}
& K^{\times} \cong \mathbb{Z} \times \mathcal{O}_{K}^{\times} \longrightarrow \operatorname{Gal}\left(K^{\mathrm{ur}} / K\right) \times \operatorname{Gal}\left(K_{\pi, \infty} / K\right) \cong \operatorname{Gal}\left(K^{\mathrm{ab}} / K\right), \\
& x=\pi^{n} u \longmapsto\left(\operatorname{Fr}_{K^{\mathrm{ur}} / K}^{n}, \Psi^{-1}\left(u^{-1}\right)\right)
\end{aligned}
$$

Remark: Both $K_{\pi, \infty}$ and the isomorphism $K^{\times} \cong \mathbb{Z} \times \mathcal{O}_{K}^{\times}$depend on π, but Art_{K} does not.

Goal: Construct $K_{\pi, n}$.

8 Lubin-Tate Theory

8.1 Formal group laws

Let R be a ring.
Definition. A (1-dimensional commutative) formal group law over R is a power series $F(X, Y) \in R \llbracket X, Y \rrbracket$ satisfying
(i) $F(X, Y) \equiv X+Y \bmod (X, Y)^{2}$
(ii) $F(X, F(Y, Z))=F(F(X, Y), Z)$
(iii) $F(X, Y)=F(Y, X)$

Examples.

- $\widehat{\mathbb{G}}_{a}(X, Y)=X+Y$ (formal additive group)
- $\widehat{\mathbb{G}}_{m}(X, Y)=X+Y+X Y$ (formal multiplicative group)

Lemma 8.1. Let F be a formal group law over R. Then
(i) $F(X, 0)=X, F(0, Y)=Y$
(ii) There exists a unique $i(X) \in X R \llbracket X \rrbracket$ such that $F(X, i(X))=0$.

Proof. Example sheet 4.
Let K be a complete non-archimedean valued field, F a formal group law over \mathcal{O}_{K}. Then $F(x, y)$ converges for all $x, y \in \mathfrak{m}_{K}$ to an element in \mathfrak{m}_{K}. Defining $x \cdot{ }_{F} y=F(X, Y)$ turns $\left(\mathfrak{m}_{K},{ }_{F}\right)$ into a commutative group.
$\widehat{\mathbb{G}}_{m}$ over \mathbb{Z}_{p} gives $x \cdot \widehat{\mathbb{G}}_{m} y=x+y+x y$ for $x, y \in p \mathbb{Z}_{p}$. There is an isomorphism $\left(p \mathbb{Z}_{p}, \widehat{\mathbb{G}}_{m}\right) \cong$ $\left(1+p \mathbb{Z}_{p}, \times\right), x \mapsto 1+x$.

Definition. Let F, G be formal group laws over R. A homomorphism $f: F \rightarrow G$ is an element $f(X) \in X R \llbracket X \rrbracket$ such that $f(F(X, Y))=G(f(X), f(Y))$. A homomorphism $f: F \rightarrow G$ is an isomorphism if there exists a homomorphism $g: G \rightarrow F$ such that $f \circ g=X=g \circ f$.
Define $\operatorname{End}_{R}(F)$ to be the set of homomorphisms $f: F \rightarrow F$.

Proposition 8.2. Let R be a \mathbb{Q}-algebra. There is an isomorphism of formal group laws $\exp : \widehat{\mathbb{G}}_{a} \xrightarrow{\simeq} \widehat{\mathbb{G}}_{m}$ where $\exp (X)=\sum_{n=1}^{\infty} \frac{X^{n}}{n!}$.

Proof. Define $\log X=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{X^{n}}{n}$. Then there is an equality of formal power series $\log \exp X=X=\exp \log X$ and $\exp \left(\widehat{\mathbb{G}}_{a}(X, Y)\right)=\widehat{\mathbb{G}}_{m}(\exp X, \exp Y)$.

Lemma 8.3. $\operatorname{End}_{R}(F)$ is a ring with addition $f+_{F} g(X)=F(f(X), g(X))$ and multiplication given by composition.

8.2 Lubin-Tate formal groups

Let K be a local field with $\# k=q$.
Definition. A formal \mathcal{O}_{K}-module over \mathcal{O}_{K} is a formal group law $F(X, Y) \in \mathcal{O}_{K} \llbracket X, Y \rrbracket$ together with a ring homomorphism $[\cdot]_{F}: \mathcal{O}_{K} \rightarrow \operatorname{End}_{\mathcal{O}_{K}}(F)$ such that for all a $\in \mathcal{O}_{K}$, $[a]_{F}(X) \equiv a X \bmod X^{2} A$ homomorphism/isomorphism $f: F \rightarrow G$ of formal \mathcal{O}_{K} modules is a homomorphism/isomorphism of formal group laws such that $f \circ[a]_{F}=[a]_{G} \circ f$ for all $a \in \mathcal{O}_{K}$.
Definition. Let $\pi \in \mathcal{O}_{K}$ be a uniformizer. A Lubin-Tate series for π is a power series $f(X) \in \mathcal{O}_{K} \llbracket X \rrbracket$ such that
(a) $f(X) \equiv \pi X \bmod X^{2}$
(b) $f(X) \equiv X^{q} \bmod \pi$

Example. $K=\mathbb{Q}_{p}, f(X)=(X+1)^{p}-1$ is a Lubin-Tate series for p.
Theorem 8.4. Let $f(X)$ be a Lubin-Tate series for π. Then:
(i) There exists a unique formal group law F_{f} over \mathcal{O}_{K} such that $f \in \operatorname{End}_{\mathcal{O}_{K}}\left(F_{f}\right)$.
(ii) There exists a ring homomorphism $[\cdot]_{f}: \mathcal{O}_{K} \rightarrow \operatorname{End}_{\mathcal{O}_{K}}\left(F_{f}\right)$ which makes F_{f} into a formal \mathcal{O}_{K}-module over \mathcal{O}_{K}.
(iii) If $g(x)$ is another Lubin-Tate series for π, then $F_{f} \cong F_{g}$ as formal \mathcal{O}_{K}-modules.
F_{f} is the Lubin-Tate formal group law for π.
Example. $K=\mathbb{Q}_{p}, f(X)=(X+1)^{p}-1$. The associated Lubin-Tate formal group F_{f} is $\widehat{\mathbb{G}}_{m}$. For this we need to show that $f \circ \widehat{\mathbb{G}}_{m}=\widehat{\mathbb{G}}_{m} \circ(f, f)$. We have

$$
f\left(\widehat{\mathbb{G}}_{m}(X, Y)\right)=(1+X+Y+X Y)^{p}-1=(1+X)^{p}(1+Y)^{p}-1=\widehat{\mathbb{G}}_{m}(f(X), f(Y))
$$

Lemma 8.5. Let $f(X), g(X)$ be two Lubin-Tate series for π. Let $L\left(X_{1}, \ldots, X_{n}\right)=$ $\sum_{i=1}^{n} a_{i} X_{i}$, with $a_{i} \in \mathcal{O}_{K}$. Then there exists a unique power series $F\left(X_{1}, \ldots, X_{n}\right) \in$ $\mathcal{O}_{K} \llbracket X_{1}, \ldots, X_{n} \rrbracket$ such that:
(i) $F\left(X_{1}, \ldots, X_{n}\right) \equiv L\left(X_{1}, \ldots, X_{n}\right) \bmod \operatorname{deg} 2$.
(ii) $f\left(F\left(X_{1}, \ldots, X_{n}\right)\right)=F\left(g\left(X_{1}\right), \ldots, g\left(X_{n}\right)\right)$.

Proof. We show by induction that there exists a unique $F_{m} \in \mathcal{O}_{K}\left[X_{1}, \ldots, X_{n}\right]$ of total degree $\leq m$ such that
(a) $f\left(F_{m}\left(X_{1}, \ldots, X_{n}\right)\right) \equiv F_{m}\left(g\left(X_{1}\right), \ldots, g\left(X_{n}\right)\right) \bmod \operatorname{deg} m+1$.
(b) $F_{m}\left(X_{1}, \ldots, X_{n}\right) \equiv L\left(X_{1}, \ldots, X_{n}\right) \bmod \operatorname{deg} 2$
(c) $F_{m} \equiv F_{m+1} \bmod \operatorname{deg} m+1$.

For $m=1$, take $F_{1}=L$. Then (b) is satisfied. For (a) we compute $f\left(F_{1}\left(X_{1}, \ldots, X_{n}\right)\right) \equiv$ $\pi L\left(X_{1}, \ldots, X_{n}\right) \equiv F_{1}\left(g\left(X_{1}\right), \ldots, g\left(X_{n}\right)\right) \bmod \operatorname{deg} 2$.
Suppose F_{m} is constructed where $m \geq 1$. Set $F_{m+1}=F_{m}+h$ where $h \in \mathcal{O}_{K}\left[X_{1}, \ldots, X_{n}\right]$ is homogeneous of degree $m+1$. Then since $f(X+Y)=f(X)+f^{\prime}(X) Y+Y^{2}(\ldots)$ and $f^{\prime}(X) \equiv \pi \bmod X$,

$$
f \circ\left(F_{m}+h\right) \equiv f \circ F_{m}+\pi h \bmod \operatorname{deg} m+2 .
$$

Similarly,
$\left(F_{m}+h\right) \circ g \equiv F_{m} \circ g+h\left(\pi X_{1}, \ldots, \pi X_{n}\right) \equiv F_{m} \circ g+\pi^{m+1} h\left(X_{1}, \ldots, X_{m}\right) \bmod \operatorname{deg} m+2$.
Thus (a), (b) and (c) are satisfied iff $f \circ F_{m}-F_{m} \circ g \equiv\left(\pi-\pi^{m+1}\right) h \bmod \operatorname{deg} m+2$. But $f(X) \equiv g(X) \equiv X^{q} \bmod \pi$, so

$$
f \circ F_{m}-F_{m} \circ g \equiv F_{m}\left(X_{1}, \ldots, X_{n}\right)^{q}-F_{m}\left(X_{1}^{q}, \ldots, X_{n}^{q}\right) \bmod \pi .
$$

Thus $f \circ F_{m}-F_{m} \circ g \in \pi \mathcal{O}_{K} \llbracket X_{1}, \ldots, X_{n} \rrbracket$. Let $r\left(X_{1}, \ldots, X_{n}\right)$ be the degree $m+1$ terms in $f \circ F_{m}-F_{m} \circ g$. Then set $h:=\frac{1}{\pi\left(1-\pi^{m}\right)} r \in \mathcal{O}_{K}\left[X_{1}, \ldots, X_{n}\right]$ so that F_{m+1} satisfies (a), (b), (c). It is unique since h is determined by property (a).

Set $F=\lim _{m \rightarrow \infty} F_{m}$ which exists by (c). Uniqueness of F follows from uniqueness of the F_{m}.

Proof of Theorem 8.4.
(i) By the Lemma there exists a unique $F_{f}(X, Y) \in \mathcal{O}_{K} \llbracket X, Y \rrbracket$ such that

- $F_{f}(X, Y) \equiv X+Y \bmod \operatorname{deg} 2$,
- $f\left(F_{f}(X, Y)\right)=F_{f}(f(X), f(Y))$.

We must prove that F_{f} is indeed a formal group law.
Associativity: $F_{f}\left(X, F_{f}(Y, Z)\right) \equiv X+Y+Z \equiv F_{f}\left(F_{f}(X, Y), Z\right) \bmod \operatorname{deg} 2$ and $f \circ F_{f}\left(X, F_{f}(Y, Z)\right)=F_{f}\left(f(x), f\left(F_{f}(Y, Z)\right)\right)=F_{f}\left(f(x), F_{f}(f(Y), f(Z))\right)$. Similarly $f \circ F_{f}\left(F_{f}(X, Y), Z\right)=F_{f}\left(F_{f}(f(X), f(Y)), f(Z)\right)$. Thus $F_{f}\left(X, F_{f}(Y, Z)\right)=$ $F_{f}\left(F_{f}(X, Y), Z\right)$ by the uniqueness in the lemma.

Commutativity is proved similarly.
(ii) By the Lemma, for $a \in \mathcal{O}_{K}$ there exists a unique $[a]_{F_{f}} \in \mathcal{O}_{K} \llbracket X \rrbracket$ such that

- $[a]_{F_{f}} \equiv a X \bmod X^{2}$
- $f \circ[a]_{F_{f}}=[a]_{F_{f}} \circ f$.

Then $[a]_{F_{f}} \circ F_{f}=F_{f} \circ[a]_{F_{f}}$ using a similar argument as above (uniqueness).
The map $[\cdot]_{F_{f}}: \mathcal{O}_{K} \rightarrow \operatorname{End}_{\mathcal{O}_{K}}\left(F_{f}\right)$ is a ring homomorphism (again verified using uniqueness). So F_{f} is a formal \mathcal{O}_{K}-module over \mathcal{O}_{K}. Also note that $[\pi]_{F_{f}}=f$.
(iii) If $g(X)$ is another Lubin-Tate series for π, let $\theta(X) \in \mathcal{O}_{K} \llbracket X \rrbracket$ be the unique power series such that $\theta(X) \equiv X \bmod X^{2}$ and $\theta \circ f=g \circ \theta$. Then $\theta \circ F_{f}=F_{g}(\theta(X), \theta(Y))$ (uniqueness), so $\theta \in \operatorname{Hom}_{\mathcal{O}_{K}}\left(F_{f}, F_{g}\right)$. Reversing roles of f, g, we obtain $\theta^{-1}(X) \in$ $\mathcal{O}_{K} \llbracket X \rrbracket, \theta^{-1} \in \operatorname{Hom}_{\mathcal{O}_{K}}\left(F_{g}, F_{f}\right)$. Then $\theta^{-1} \circ \theta(X)=X$ and $\theta \circ \theta^{-1}(X)=X$ (uniqueness). So θ is an isomorphism of formal group laws.
Again by uniqueness we find that $\theta \circ[a]_{F_{f}}(X)=[a]_{F_{f}} \circ \theta(X)$ for all $a \in \mathcal{O}_{K}$ and hence θ is an isomorphism of formal \mathcal{O}_{K}-modules.

8.3 Lubin-Tate extensions

Let K be a non-archimedean local field, $\# k=q, \pi$ uniformizer. Let $K^{\text {alg }}$ be the algebraic closure of $K, \overline{\mathfrak{m}} \subseteq \mathcal{O}_{K^{\text {alg }}}$ the maximal ideal.
Lemma 8.6. Let F be a formal \mathcal{O}_{K}-module over \mathcal{O}_{K}. Then $\overline{\mathfrak{m}}$ becomes a (genuine) \mathcal{O}_{K}-module with $x+_{F} y=F(x, y)$ and $a \cdot{ }_{F} x=[a]_{F}(x)$ for $x, y, \in \overline{\mathfrak{m}}$ and $a \in \mathcal{O}_{K}$.

Proof. Given $x \in \overline{\mathfrak{m}}$, we have $x \in \mathfrak{m}_{L}$ for some L / K finite. Since $[a]_{F} \in \mathcal{O}_{K} \llbracket X \rrbracket$, $[a]_{F}(x)$ converges in L and its limit lies in $\mathfrak{m}_{L} \subseteq \overline{\mathfrak{m}}$. Similarly $x+{ }_{F} y$ is well-defined.

Definition. Let $f(x)$ be a Lubin-Tate series for π and F_{f} the associated Lubin-Tate formal group law. The π^{n}-torsion group is

$$
\mu_{f, n}:=\left\{x \in \overline{\mathfrak{m}} \mid \pi^{n} \cdot F_{f} x=0\right\}=\left\{x \in \overline{\mathfrak{m}} \mid f_{n}(x)=f \circ f \circ \cdots \circ f(x)=0\right\} .
$$

Note that $\mu_{f, n}$ is an \mathcal{O}_{K}-module and $\mu_{f, n} \subseteq \mu_{f, n+1}$.
Example. $K=\mathbb{Q}_{p}, f(X)=(X+1)^{p}-1$. Then $\left[p^{n}\right]_{F_{f}}(x)=(x+1)^{p^{n}}-1$. Thus $\mu_{f, n}=\left\{\zeta_{p^{n}}^{i}-1 \mid i=0, \ldots, p^{n}-1\right\}$.
Now let $f(X)=\pi X+X^{q}$. Then $f_{n}(X)=f \circ f_{n-1}(X)=f_{n-1}(X)\left(\pi+f_{n-1}(X)^{q-1}\right)$. Set $h_{n}(X)=\frac{f_{n}(X)}{f_{n-1}(X)}=\pi+f_{n-1}(X)^{q-1}$. We set $f_{0}(X)=X$.

Proposition 8.7. $h_{n}(X)$ is a separable Eisenstein polynomial of degree $q^{n-1}(q-1)$.
Proof. It is clear that $h_{n}(X)$ is monic of degree $q^{n-1}(q-1) . \quad f(X) \equiv X^{q} \bmod \pi$, so $f_{n-1}(X)^{q-1} \equiv X^{q^{n-1}(q-1)} \bmod \pi$. Since $f_{n-1}(X)$ has 0 constant term, $h_{n}(X)=$ $\pi+f_{n-1}(X)^{q-1}$ has constant term π. Thus $h_{n}(X)$ is Eisenstein. Since $h_{n}(X)$ is irreducible, $h_{n}(X)$ is separable if char $K=0$, or if char $K=p$ and $h_{n}^{\prime}(X) \neq 0$. Assume char $K=p$. Induct on $n . h_{1}(X)=\pi+X^{q-1}$ is separable. Suppose $h_{n-1}(X), \ldots, h_{1}(X)$ are separable. Then $f_{n-1}(X)=h_{n-1}(X) \cdots h_{1}(X) X$ is separable (product of separable irreducible polynomials of different degrees). Then $h_{n}(X)=\pi+f_{n-1}(X)^{q-1}$. We have $h_{n}^{\prime}(X)=(q-1) f_{n-1}^{\prime}(X) f_{n-1}(X)^{q-2} \neq 0$, so $h_{n}(X)$ is separable.

Note that the proof also shows that $f_{n}(X)$ is separable.

Proposition 8.8.

(i) $\mu_{f, n}$ is a free module of rank 1 over $\mathcal{O}_{K} / \pi^{n} \mathcal{O}_{K}$.
(ii) If g is another Lubin-Tate series for π, then $\mu_{f, n} \cong \mu_{q, n}$ as \mathcal{O}_{K}-modules and $K\left(\mu_{f, n}\right)=$ $K\left(\mu_{g, n}\right)$.

Proof.

(i) Let $\alpha \in K$ be a root of $h_{n}(X)$. Since $h_{n}(X)$ and $f_{n-1}(X)$ are coprime, $\alpha \in \mu_{f, n} \backslash$ $\mu_{f, n-1}$. Then the map $\tilde{\varphi}: \mathcal{O}_{K} \rightarrow \mu_{f, n}, a \mapsto a \cdot F_{f} \alpha$ is an \mathcal{O}_{K}-module homomorphism with $\pi^{n} \mathcal{O}_{K} \subseteq \operatorname{ker} \tilde{\varphi}$ and $\pi^{n-1} \notin \operatorname{ker} \tilde{\varphi}$. Therefore $\operatorname{ker} \tilde{\varphi}=\pi^{n} \mathcal{O}_{K}$. Thus $\tilde{\varphi}$ induces an injection $\varphi: \mathcal{O}_{K} / \pi^{n} \mathcal{O}_{K} \hookrightarrow \mu_{f, n}$. Since $f_{n}(X)$ is separable, $\# \mu_{f, n}=\operatorname{deg} f_{n}(X)=$ $q^{n}=\# \mathcal{O}_{K} / \pi^{n} \mathcal{O}_{K}$. So φ is an isomorphism.
(ii) Let $\theta \in \operatorname{Hom}_{\mathcal{O}_{K}}\left(F_{f}, F_{g}\right)$ be an isomorphism of formal \mathcal{O}_{K}-modules. It induces an isomorphism $\theta:\left(\overline{\mathfrak{m}},+F_{f}, \cdot F_{f}\right) \xrightarrow{\simeq}\left(\overline{\mathfrak{m}},+F_{g}, F_{g}\right)$ and hence $\mu_{f, n} \cong \mu_{g, n}$. Since $\mu_{f, n}$ is algebraic, $K\left(\mu_{f, n}\right) / K$ is finite, hence complete. Since $\theta(X) \in \mathcal{O}_{K} \llbracket X \rrbracket$, for $x \in \mu_{f, n}$ we also have $\theta(x) \in K\left(\mu_{f, n}\right)$. So $K\left(\mu_{g, n}\right) \subseteq K\left(\mu_{f, n}\right)$. The same argument for θ^{-1} gives the reverse inclusion.

Definition. $K_{\pi, n}:=K\left(\mu_{f, n}\right)$
Remark: $K_{\pi, n}$ does not depend on f by the proposition. We have $K_{\pi, n} \subseteq K_{\pi, n+1}$.
Proposition 8.9. $K_{\pi, n}$ are totally ramified Galois extensions of degree $q^{n-1}(q-1)$.
Proof. We may choose $f(X)=\pi X+X^{q}$. Then $K_{\pi, n} / K$ is Galois since $K_{\pi, n}=K\left(\mu_{f, n}\right)$ is the splitting field of $f_{n}(X)$. Let α be a root of $h_{n}(X)=f_{n}(X) / f_{n-1}(X)$. It suffices to show $K(\alpha)=K\left(\mu_{f, n}\right)$ since α is the root of an Eisenstein polynomial of degree $q^{n-1}(q-1)$. By the proposition every element $x \in \mu_{f, n}$ is of the form $a \cdot{ }_{F} \alpha$ for some $a \in \mathcal{O}_{K}$. Since $K(\alpha)$ is complete and $[a]_{F_{f}}(X) \in \mathcal{O}_{K} \llbracket X \rrbracket$, we get $x=[a]_{F_{f}}(\alpha) \in K(\alpha)$.

Let f be the Lubin-Tate series $\pi X+X^{q}$.

Theorem 8.10. There are isomorphisms $\Psi_{n}: \operatorname{Gal}\left(K_{\pi, n} / K\right) \cong\left(\mathcal{O}_{K} / \pi^{n} \mathcal{O}_{K}\right)^{\times}$characterized by

$$
(*) \quad \Psi_{n}(\sigma) \cdot F_{f} x=\sigma(x) \quad \forall x \in \mu_{f, n}, \sigma \in \operatorname{Gal}\left(K_{\pi, n} / K\right)
$$

Moreover, Ψ_{n} does not depend on f.
Proof. Let $\sigma \in \operatorname{Gal}\left(K_{\pi, n} / K\right)$. Then σ preserves $\mu_{f, n}$, and acts continuously on $K\left(\mu_{f, n}\right)=$ $K_{\pi, n}$. Since $F_{f}(X, Y) \in \mathcal{O}_{K} \llbracket X \rrbracket$, and $[a]_{F_{f}} \in \mathcal{O}_{K} \llbracket X \rrbracket$ for all $a \in \mathcal{O}_{K}$, we have $\sigma\left(x+F_{f} y\right)=$ $\sigma(x)+_{F_{f}} \sigma(y)$ and $\sigma\left(a \cdot{ }_{F_{f}} x\right)=a \cdot{ }_{F_{f}} \sigma(x)$ for all $x, y \in \mu_{f, n}, a \in \mathcal{O}_{K}$.
Thus $\sigma \in \operatorname{Aut}_{\mathcal{O}_{K}}\left(\mu_{f, n}\right)$. this induces a group homomorphism $\operatorname{Gal}\left(K_{\pi, n} / K\right) \rightarrow \operatorname{Aut}_{\mathcal{O}_{K}}\left(\mu_{f, n}\right)$ which is injective since $K_{\pi, n}=K\left(\mu_{f, n}\right)$. Since $\mu_{f, n} \cong \mathcal{O}_{K} / \pi^{n}$ as \mathcal{O}_{K}-module, we get

$$
\operatorname{Aut}_{\mathcal{O}_{K}}\left(\mu_{f, n}\right) \cong \operatorname{Aut}_{\mathcal{O}_{K} / \pi^{n}}\left(\mu_{f, n}\right) \cong\left(\mathcal{O}_{K} / \pi^{n}\right)^{\times}
$$

We obtain $\Psi_{n}: \operatorname{Gal}\left(K_{\pi, n} / K\right) \hookrightarrow\left(\mathcal{O}_{K} / \pi^{n}\right)^{\times}$defined by: $\Psi_{n}(\sigma) \in\left(\mathcal{O}_{K} / \pi^{n}\right)^{\times}$is the unique element such that $\Psi_{n}(\sigma) \cdot F_{f} x=\sigma(x)$ for all $x \in \mu_{f, n}$. Since $\left[K_{\pi, n}: K\right]=q^{n-1}(q-1)=$ $\#\left(\mathcal{O}_{K} / \pi^{n}\right)^{\times}, \Psi_{n}$ is surjective by counting.
Let g be another Lubin-Tate series. Then we obtain $\Psi_{n}^{\prime}: \operatorname{Gal}\left(K_{\pi, n} / K\right) \xrightarrow{\simeq}\left(\mathcal{O}_{K} / \pi^{n}\right)^{\times}$. Let $\theta: F_{f} \rightarrow F_{g}$ be an isomorphism of formal \mathcal{O}_{K}-modules. It induces an isomorphism $\theta: \mu_{f, n} \xrightarrow{\simeq} \mu_{g, n}$ of \mathcal{O}_{K}-modules. Hence for $x \in \mu_{f, n}, \theta\left(\Psi_{n}(\sigma) \cdot F_{f} x\right)=\Psi_{n}(\sigma) \cdot F_{g} \theta(x)$. But $\theta \in \mathcal{O}_{K} \llbracket X \rrbracket$ has coefficients in \mathcal{O}_{K}, so $\theta(\sigma x)=\sigma(\theta x)$ for all $x \in \mu_{f, n}$. Then $\theta\left(\Psi_{n}(\sigma) \cdot F_{f} x\right)=$ $\theta(\sigma x)=\sigma(\theta x)=\Psi_{n}^{\prime}(\sigma) \cdot F_{g} \theta(x)$, so $\Psi_{n}(\sigma)=\Psi_{n}^{\prime}(\sigma)$.

Set $K_{\pi, \infty}=\bigcup_{k=1}^{\infty} K_{\pi, n}$. Then there is an isomorphism

Theorem 8.11 (Generalized local Kronecker-Weber). $K^{\text {ab }}=K_{\pi, \infty} K^{\mathrm{ur}}$.
Proof. Omitted.
Now we define Art_{K} by

$$
\begin{aligned}
& K^{\times} \cong \mathbb{Z} \times \mathcal{O}_{K}^{\times} \longrightarrow \operatorname{Gal}\left(K^{\mathrm{ur}} / K\right) \times \operatorname{Gal}\left(K_{\pi, \infty} / K\right) \cong \operatorname{Gal}\left(K^{\mathrm{ab}} / K\right), \\
& x=\pi^{n} u \\
& \longmapsto\left(\operatorname{Fr}_{K^{\mathrm{ur}} / K}^{n}, \Psi^{-1}\left(u^{-1}\right)\right)
\end{aligned}
$$

9 **Upper Numbering of Ramification Groups

Let L / K be a finite Galois extension of local fields. Define the function

$$
\begin{gathered}
\Phi:=\Phi_{L / K}: \mathbb{R}_{\geq-1} \longrightarrow \mathbb{R} \\
\Phi(s)=\int_{0}^{s} \frac{d t}{\left[G_{0}: G_{t}\right]}
\end{gathered}
$$

For $t \in[-1,0)$ we set $\frac{1}{\left[G_{0}: G_{t}\right]}=\left[G_{t}: G_{0}\right]$.
For $m \leq s<m+1$ where $m \in \mathbb{Z}_{\geq-1}$ we have

$$
\Phi(s)= \begin{cases}s\left[G_{-1}: G_{0}\right] & m=-1 \\ \frac{1}{\# G_{0}}\left(\# G_{1}+\cdots+\# G_{m}+(s-m) \# G_{m+1}\right) & m \geq 0\end{cases}
$$

Φ is continuous, piecewise linear and strictly increasing. Therefore we can define $\Psi_{L / K}=$ $\Phi_{L / K}^{-1}$.

Definition (Upper numbering). The higher ramification groups in upper numbering are defined by

$$
G^{s}(L / K):=G_{\Psi_{L / K}(s)}(L / K) \subseteq \operatorname{Gal}(L / K)
$$

Key point: $G_{s}(L / K)$ behaves well w.r.t. subgroups. $G^{s}(L / K)$ behaves well w.r.t. quotients.

Let $L / F / K$ be fields with L / K Galois. Then $G_{s}(L / F)=G_{s}(L / K) \cap \operatorname{Gal}(L / F)$. If also F / K is Galois, then $G^{t}(L / K) \operatorname{Gal}(L / F) / \operatorname{Gal}(L / F)=G^{t}(F / K)$ (Herbrand's theorem).
Example. $K=\mathbb{Q}_{p}, L=\mathbb{Q}_{p}\left(\zeta_{p^{n}}\right)$. Let $k \in \mathbb{Z}, 1 \leq k \leq n-1$. For $p^{k-1}-1<s \leq p^{k}-1$, $G_{s} \simeq\left\{m \in\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times} \mid m \equiv 1 \bmod p^{k}\right\} \cong U_{\mathbb{Q}_{p}}^{(k)} / U_{\mathbb{Q}_{p}}^{(n)}$.
G_{s} jumps at $p^{k}-1, \Phi_{L / K}$ is linear on $\left[p^{k-1}-1, p^{k}-1\right]$, thus to compute $\Phi_{L / K}$, it suffices to compute $\Phi_{L / K}\left(p^{k}-1\right)$. We have $\Phi_{L / K}\left(p^{k}-1\right)=(p-1) \cdot \frac{1}{p-1}+\frac{p^{2}-1-(p-1)}{p(p-1)}+\cdots=$ $1+1+\cdots+1=k$. Then

$$
G^{s} \cong \begin{cases}\left(\mathbb{Z} / p^{n}\right)^{\times} & s \leq 0 \\ \left(1+p^{k} \mathbb{Z}\right) / p^{n} \mathbb{Z} & k-1<s \leq k(1 \leq k \leq n-1) \\ 1 & s>n-1\end{cases}
$$

In particular $G^{k} \cong U_{\mathbb{Q}_{p}}^{(k)} / U_{\mathbb{Q}_{p}}^{(n)} 1 \leq k \leq n-1$.

[^0]: ${ }^{1}$ Addendum: We also need that $\mid \cdot \|_{\mathbb{Q}}$ is non-trivial. This follows from the fact that $\mathcal{O}_{K} / \mathfrak{m}$ is finite, so that there exists $n \in \mathbb{Z}$ with $n \in \mathfrak{m}$, i.e. $|n|<1$.

[^1]: ${ }^{1}$ Alternativley, one can directly see that the map is surjective: If $\sigma \in G_{P}$, then σ is continuous for the P-adic absolute value, hence extends to $L_{P} / K_{\mathfrak{p}}$.

[^2]: ${ }^{1}$ To get the inequality $[L: K] \leq n$ take the minimal polynomial of ζ_{m} and show that it is irreducible over k.

