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1 Manifolds and smooth maps

1.1 Manifolds

Definition. A topological n-manifold is a topological space X such that for all p € X
there exists an open neighborhood U of p, an open set V. C R™ and a homeomorphism
w:U = V. We also require that X is Hausdorff and second countable.

Remark. One can show that for spaces locally homeomorphic to R™ the condition “Haus-
dorff 4+ second countable” is equivalent to “metrisable + has countably many components”

Maps ¢ as in the definition are called charts for X. A collection of charts whose domains
cover X is called an atlas for X.

If oo : Uy — Vi, 5 : Ug — Vj are overlapping charts, then

05003t 0a(Us NUg) — (U NUp)
is the transition map. It expresses the ¢z coordinates as functions of the ¢, coordinates.

Definition. Given an atlas A = {pq : Uy — Vo | @ € A} on X and a fucntion f: W — R
on an open W C X, say f is smooth with repsect to A if for all o the map

fopat:wa(UaNW) =R
is smooth. The atlas is smooth if every transition map g o o=t is smooth. Two smooth
atlases are equivalent if their union is smooth.
Here smooth means C*°.

Definition. A smooth structure on a topological n-manifold X is an equivalence class of
smooth atlases. A smooth n-manifold is a topological n-manifold together with the choice
of a smooth structure.

Note: Being a topological manifold is a property of a space, but for a differentiable manifold
one needs to choose additional structure, i.e. the smooth structure. There are topological
manifolds with different smooth structures (not even diffeomorphic).

Example. The n-sphere S™ has the underlying set

{z e R™ | ||z] = 1} SR,



endowed with the subspace topology. We define an atlas on S™. Let Uy = S™\{(0,...,0,£1)}.
Define ¢4 : Uy — R" by

1

—(T1,...,T).
1:F$n+1( )

O+ (X1, Tpy1) =

This defines a smooth structure on S™.

1.2 Tangent spaces

Fix an n-manifold and point p € X.

Definition. A curve based at p is a smooth map of the form ~ : I — X sending 0 — p,
where I C R is an open neighborhood of 0. Say two curves 1,72 (based at p) agree to first
order if there exists a chart ¢ around p such that

(¢ 071)'(0) = (¢ 272)'(0)
We write w}, for the map v+~ (p o~)'(0).
Lemma 1.1. If v1, 72 satisfy 73 (1) = 75 (72), then for all charts ¢ around p we have

Wg(%) = Wg(w)
Proof. Clear, using chain rule and inserting transition maps. O

Corollary 1.2. Agreement to first order is an equivalence relation.

Definition. The tangent space to X at p, denoted T, X, is

{curves based at p}/agreement to first order.

Proposition 1.3. T, X is naturally an n-dimensional R-vector space.

Proof. Given a chart ¢ about p, the map 7} : {curves at p} — R™ factors through 7, X
and thus induces an injection 7, X — R". It is easily seen to be surjective. This bijection
defines a vector space structure on 7, X. Different charts give rise to different bijections
but they are related by a linear automorphism of R™, hence they all induce the same vector
space structure on 1), M. [

Definition. Given a chart ¢ about p with coordinates x1,...,xy, define 8%1 € T, X to be

(m5)"L(e;) where e; € R™ is the i-th standard basis vector. We will often abbreviate this

by Oy, or 0;.

Warning. 0., depends on the choice of the whole coordinate system zy,...,z,, not just
XTy.



Lemma 1.4. On chart overlaps we have

0 " Ox;
dy Z 8yj

J=1

0

pal‘j

Here giyﬂp = a%ixj = (Y (Y(p) + te;))'(0) where p,% are charts inducing the local

coordinates xj, ;.

Proof. We have

1.3 Derivatives

Fix manifolds X,Y and a smooth map F': X — Y.

Definition. The derivative of F' at p € X is the map DypF : T)X — Tp,)Y defined by
[v] = [Foy]. Sometimes we will write it as Fy,called pushforward by F' on tangent vectors.

Lemma 1.5. The map D,F is well-defined and linear.

Proof. Let ¢, be charts about p, resp. F(p). We have wlf(p)(F o) = (o Fon)(0) =
(o Fopt)o(pov))(0) =T} (v) where T is the derivative of 1) o F o p~1 at ¢(p).

T,X 225 Tpy X

l”f’(p lﬂﬁ(m

Rdim X T Rdim Y



Suppose that {;}, {y;} are coordinates associated to ¢ resp. 1. Then 1po Fop~! expresses

the y; as functions of the x; via F', so T' = %

‘ and
ilp

DyF(9s,) = Dr((n) " (e0)) = (wh,)) " (Tes) = Zmﬁ(m)—l(gi’;\p@)-

J

Remarks.

(i) For X = R™ Y = R™, the new notion of derivative coincides with the standard one
from multivariable calculus.

(i) Given f: X — R, we have Dy f(d,) = 2L

»
(iii) We can write
[v] = Do(9:)

where t is the parameter of ~.

Lemma 1.6 (Chain Rule). Suppose we have smooth maps
x5Ly Sz
Then Dyp(G o F) = Dp,)G o DyF.

Proof. By definition. O

1.4 Immersions, Submersions and local Diffeomorphisms

Definition. A smooth map F : X — 'Y is a immersion/submersion/local diffeomorphism
(at p € X) if DyF is injective/surjective/bijective for all ¢ € X (resp. only at ¢ =p).

Say p is a regular point of F' if D F is surjective (i.e. F is a submersion at p) and a
critical point otherwise. Say that ¢ € Y is a regular value if all p € F~1(q) are regular
and otherwise critical value.

Lemma 1.7. F is a local diffeomeorphism at p (in the sense of the definition above) iff
there are open neighborhoods U of p, V' of F(p) such that F|y : U — V is a diffeomorphism.

Proof. “<” is obvious from the chain rule.

“=" Pick charts ¢ : A — B, : C' — D about p, F(p). By shrinking ¢, WLOG F(A) C C.
Now consider ¢po Fop™! : B — D. This is a sooth map between open subsets of Euclidean
space with invertible derivative at ¢(p). By the inverse function theorem there exist open
neighborhoods B’ C B of ¢(p) and D’ C D of 1(F(p)) such that (po Fop™1)|p : B’ — D’
has a smooth inverse H. Now set U = o~ 5"V = ¢~1(D'). Then F|y : U — V has smooth
inverse ¢! o H o 1. O



Notice: We could have chosen ¢ o F' as . W.r.t. the charts v o F),¢) the map F' looks like
the identity in local coordinates.

Proposition 1.8. Suppose F' is an immersion at p. Given local coordinates x1,...,Tyn
on X about p, there exist local coordinates yi,...,ym on Y about F(p) w.r.t. which F
looks like R" = R™ x 0 — R" x R™™" = R™. Similarly, if F' is a submersion of p, then
given coordinates y about F(p) there exist coordinates x about p w.r.t. which F looks like
R™ — R"/(0 x R*™™) = R™.

Proof. Exercise. O

1.5 Submanifolds

Fix an n-manifold X.

Definition. A subset Z C X is a submanifold of codimension k if for all p € Z there exist
local coordinates x1, . ..,xy, on X about p such that Z is given locally by x1 = --- = xp, = 0.
(Formally: on the domain of the chart Z = {x1 = --- = x, =0} ).

Z is a properly embedded submanifold if the same holds for allp € X (not merelyp € Z).

E.g. 0 x R C R? is a properly embedded submanifold. 0 x R* C R? is a submanifold but
not properly embedded.

Given a codimension k submanifold Z C X,

e Equip Z with the subspace topology (automatically Hausdorff and 2nd-countable
because X is)

e For p € Z can choose local coordinates z1,...,2z, on X as in the definition. Then
ZTk41,-- -, Ty define a chart on Z about p.

e Transition functions are smooth since original transition functions on X were smooth.

Proposition 1.9. A codimension k submanifold Z C X is naturally an (n — k)-manifold.
The inclusion map ¢ : Z — X is a smooth immersion and a homeomorphism onto its
image. Composition with v gives a bijection

smooth maps to X}

LO—
{smooth maps to Z} — {*"70 image C 7

Definition. A map F : Y — X is an embedding if it is a smooth immersion and a
homeomorphism onto its image.

Lemma 1.10. The image of an embedding F' : Y — X is a submanifold of X and F
mduces a diffeomorphism from Y to that submanifold.

So: Submanifolds <+ images of embeddings.



Example. The inclusion S™ < R"*! is an embedding. So S™ is a submanifold of R"*!
and the induced manifold structure agrees with the one we already defined.

Proposition 1.11. If F': X — Y is a smooth map, and q € Y is a reqular value, then
F~Y(q) is a submanifold of X of codimension dimY .

Proof. Take a point p € F~!(q). Since q is a regular value, F is a submersion at p, so there
exist local coordinates z; on X about p and y; on Y about ¢ such that yo F' = (z1,...,2y,)
where m = dimY. By translating the y-coords we may assume that y(q) = 0. Let U be
an open neighborhood of p on which the z-coordinates and y o I’ are defined. On U we
have UNFY(q) =UN(yo F)™1(0) ={x €U : 71 = --- =z, = 0}, so the x; give the
required chart about p. O

Example. Consider F : R""! — R,y — ||y||>. This is smooth and DF|, = (2y1 ... 2yn+1)
which is non-zero (hence surjective) everywhere except at 0. So for all A € Ryg is a
codimension 1 submanifold of R"*!, in particular S™ = F~!(1) is a submanifold.

Theorem 1.12 (Sard’s theorem). The set of critical values of a smooth map F': X —Y
has measure 0 in Y (i.e. for any chart ¢ : S — T on 'Y, ¢({critical values} NS) C T C
RIMY has Lebesgue-measure 0).

Corollary 1.13. The set of reqular values is dense in'Y .

Warning. This only concerns regular values, e.g. if dim X < dimY there are no regular
points.

Definition. Submanifolds Y,Z C X are transverse if for allp € Y N Z we have

T,Y +T,Z = T, X.

Theorem 1.14. If Y, Z are submanifolds of X of codimensions k,l, intersecting trans-
versely, then' Y N Z then is a submanifold of codimension k + 1.

Proof. Pick p € Y N Z. Since Y, Z are submanifolds, there exist coordinates y1,...,Yyn,
Z1y...,2n about p such that Y = {y1 = -+ = yx},Z = {z1 = -+ = 27 = 0}. Let U
be an open neighborhood of p on which y and z are defined. Consider F : U — RF*!
given by (y1,...,Yk,21,-..,2). Y and Z being transverse at p is equivalent to D,F

being surjective. So there exist local coordinates z1,...,z, on U about p such that
TL =Yl Tk = Yk, Thpl = 21, -,k = 2. Then in these coordinates, Y N Z = {z; =
o =g = O} O



2 Vector bundles and tensors

2.1 Vector bundles

Definition. A vector bundle of rank k over a manifold B consists of the following infor-
mation:

e A manifold F,

e A smooth map 7 : E — B,

e An open cover (Uy)aca of B

e For each a € A a diffeomorphism @, : 71 (Uy) — Uy X RF such that
— pryo®, =7 on 7w 1(U,)

— For alla, B € A the map ®5o®, ' : (UyNUg)xRF — (UaNUg) xR¥ has the form
(b,v) = (b, ggav) for some (necessarily smooth) map gga : Uy N Ug — GLi(R)

E is called the total space, w the projection, B the base space, ®, the local trivial-
izations and g.p the transition functions.The fibres 71(b) are denoted by E.

Via each ®,, the fibres Ej, carry the structure of a k-dimensional vector space, independent
of the local trivialization chosen.

Examples.

(i) The trivial bundle (of rank k over B) has E = B x RF as the total space with the
obvious projection E — B and global trivialization ® : F — B x R*.

(ii) The tautological bundle over RP™ is the line bundle (i.e. rank 1 vector bundle) over
RP™ given by:

E ={(p,v) € RP" x R | v lies on the line described by p}

It is a submanifold of RP" x R"*!. Define 7 by 7(p,v) = p.

Open cover: U; = {[zg : ---: 2] | i # 0}. & : 7 1(U;) = U; x R is given by ([zo :
i)y (Yos -5 Yn)) > ([0 -+ 2 @), i), On Uy NU; we have ®; 0 @5 ([wg @ -+ -
xn),t) = ®;([z], t(xo/mi, . .., xn/2s)) = ([2], taj/25), so gjs = xj/x; € R* = GL1(R)

(iii) The tautological complex line bundle over CP™.

(iv) The tangent bundle of an n-manifold X is given by



e Total space: T'X = |—|p€ y IpX. This is a manifold via a pseudo-atlas: Given
a coordinate patch U on X with coordinates x; we get a pseudo-chart ¢ :
Uper T,X — U x R™ given by (p, > a;i0,) = (p,(a1,...,a,)). These make
TX into a manifold.

e Projection 7 : (p,v) — p.
e The pseudo-charts give the local trivializations.

Definition. A section of a vector bundle m : E — B is a smooth map s : B — E such
that wo s =idp.

Examples.
(i) Every vector bundle has a zero section given by s(b) = 0 for all b € B.
(ii) A vector field on X is a section of the tangent bundle T'X

Definition. Given vector bundles m; : E; — B; (i = 1,2) and a smooth map F : By — B,
a morphism of vector bundles Fy — FEs covering F' is a smooth map G : E1 — FE» such
that mo 0o G = F oy and for all p € By the restricted map Gy, : (E1)p — (EQ)F(p) 1s linear.

If By = By = B, an isomorphism of vector bundles over B is a morphism covering idp
with a two-sided inverse. FEquivalently, a diffeomorphism of the total space that induces
linear isomorphisms (E1)p — (E2)p.

Example. Consider S' = {¢"? | # € R} C C. The vector field dp is defined and non-zero
in each fibre. So we get an isomorphism
S'xR— TS

(€, a) — (¢, ady)
So T'S! is trivial (i.e. isomorphic to the trivial bundle).

For the trivial bundle of rank k over some (fixed) base we also write R

Remark. A morphism G : B x R — FE (covering the identity) is the same thing as a
section s of E. More generally, a morphism G x R¥ — FE is the same as a k-tuple of
sections. The morphism is an isomorphism iff the sections form a basis in each fibre.

Definition. Given a vector bundle 7 : E — B of rank k, a subbundle of rank [ is a subset
F C E such that B can be covered by local trivializations @, : 7T_1(Ua) — U, x RF under
which FON1~Y(Uy) = Uy x (R x {0}). This is naturally a vector bundle of rank . Similarly
we can define quotient bundle E/F of rank k —1 and we have morphisms F — E — E/F.

Example. Ogpn(—1) (the tautological bundle) is (by construction) a subbundle of R
over RP". We get the Euler sequence Ogpn(—1) — R"™ — R"™! /Oppn (1) = TRP™(—1).

10



2.2 Vector bundles by gluing

To define a vector bundle over B (of rank k) it suffices to give an open cover {U,} of B
and for all o, 8 a smooth map gga : Uy N Ug — GLi(R) satisfying

(i) gaa = constant map with value idgs.

(i) gya = 9y898a for all a, B, (cocycle condition)
Note that from (i) and (ii) it follows that g,5 = gﬁ_(i
Given this data, define

E=11,UaxR¥/((b ,v) ~ (b ,gsa(b)v)
eUq €U,

7 : E — B is the obvious map. There are identifications 771 (Uy,) = U, x R¥. These define
pseudo-charts and trivializations.

Example. For r € Z can define a line bundle Ogpn on RP™ to be trivialized over the

(r)
Ui = {[z] | ®; # 0} with transition functions gj = (x ) . Note that Orpn(—1) is the

tautological bundle.

Proposition 2.1. If 7 : E — B is a vector bundle of rank k, trivialized over {Uy} with
transition functions gg., then

(a) The ggo satisfy (i) and (ii) above.

(b) E is isomorphic to the bundle constructed above.

Proof. (a) The gs, are defined via ®3®, !, so (i) and (ii) are immediate.

(b) The trivializations of E and their inverses define diffeomorphisms E =5 [[, Uy x RF /~.
This is linear on fibres, hence a bundle isomorphism. O

Corollary 2.2. Two bundles are isomorphic iff they can be trivialized over a common
open cover with the same transition functions.

Proof. If both can be trivialized over {U,} with transition functions gg,, then they are
both isomorphic to the above construction. Converse is clear. 0

Example. Define the Mébius line bundle M — RP! to be trivialized over Uy, U; with
gio = s1gn (060)

Claim: This is isomorphic to Ogp1 (—1). Suffices to show we can modify the trivializations
of M to make the transition function become i—l instead of sign £L O. Let’s rescale the
trivialization ®; of M by a smooth map v; : U; — R = GL;(R). Excplicitly, consider the

trivialization

(p,v) = (P, ¥i(p) pra(Pi(p,v)))

11



This changes g1 to %gm. Left to choose g, 11 such that ¥y /19 = |x1]/|zo|. One choice

. z? i
— [ SE b = ] Fo
that works is ¢ = P Yo \/;

Definition. Given a vector bundle m : E — B and a smooth map F : B’ — B the pullback
bundle F*E defined as follows: Suppose E is trivialized over {U,} with transition functions
9o, then F*E is trivialized over {F~1(Uy)} with transition functions F*gga = gga o F.
The fibre (F*E)p is Epgy-

Example. Consider the Hopf map H : $?"*! — CP". Claim: H*Ocpn(—1) is trivial.
Proof: It is trivialized by the section S***1 3 p — p € line through p.

Definition. Given a vector bundle m : E — B, the dual bundle EV — B has total space
HpeB(Ep)v trivialized over {Uy} with transition functions (g,ga)_l

If F is trivialized over U C B by a fibrewise basis of sections o1, ..., 0. Then the fibrewise
dual basis o, ..., 0} give smooth sections of EY which trivialize it over U.

2.3 Cotangent bundle

Fix a n-manifold X.

Definition. The cotangent bundle of X, denoted T*X is the dual of the tangent bundle.
The fibre of p is T, X, the cotangent space at p.

Dual to the picture of T, X' via curves R — X we can describe T, X via functions X — R:
Say that functions fi, fo about p agree to first order it D, fi = D, fa

Proposition 2.3. There is a natural isomorphism

{functions about p}/a%fset"g&ifo =T, X

Proof. Define the map e : {functions about p} — T, X, f — ([y] = (fo7)'(0)) = Dpf. In
local coordinates: f— (> a0z, — > aig—f). We see that e(z;) are the dual basis to 9,

T

so e is surjective and by definition e(f1) = e(f2) iff f1, fo agree to first order about p. [

So for any smooth function f : U — R we get an element of 77X at each p € U. This is
denoted d, f.

Lemma 2.4. The d,f define a smooth section of T*X, denoted df, the differential of f.
Proof. We have df =) g—idwi. We saw above that the dxz; are fibrewise dual to the 0,

so the dx; are smooth. So df is a smooth linear combination of smooth sections, hence
smooth itself. O

Note, by construction df (v) = directional derivative of f in direction v.

12



Definition. A section of T*X is a 1-form.
Unwarning! dz; only depends on z;, not the other x; (unlike 0,).

Definition. Given a smooth map F : X — Y. The map (DpF)" : T},
called pullback by F', denoted F*.

Y = TiX s

Lemma 2.5. Giwven F' : X — Y and a smooth function g on Y, we have F x dg =
d(Fxg):=d(goF).

Proof. Given [y] € T, X, we have (F*dg)[y] = dg(DpF[]) = dg([[Fo7]) = (go Fo7)'(0) =
d(g o F)[v). O

2.4 Multilinear algebra

See handout.

2.5 Tensors and forms

We can apply any functorial operations to transition functions of existing bundles to build
new ones.

Example. Dual bundle above.

Example. Given vector bundles E, F' — B, trivialized over {U, } with transition functions
9Ba, hga, can define E @ F — B with fibres E, @ F), trivialized over {U,} with transition
functions ggo ® hga-

Similarly can define £ ® F.

Given a smooth map F': X — Y, DF defines a section of T*X ® F*TY . For each p € X,
D,F € HomR(TpX, TF(p)Y) = T;X & TF(p)Y.

Similarly can take tensor or exterior powers of a given vector bundle.

Definition. A tensor (field) of type (p,q) on X is a section of (TX)®P @ (T*X)®1. An
r-form is a section of \"T*X. The space of r-forms on an open set U C X is denoted
Q" (U).

Examples. A tensor of type
e (0,0) is a section of R, i.e. a smooth function (or scalar field).
e (1,0) is a vector field.

e (0,q) is something which “eats ¢ vectors multilinearly and spits out a number”.

13



2.6 Index notation

From now on, indices on local coordinates will be superscripts: z!,..., 2"

A section T of TX @ T*X @ TX (a specific kind of tensor of type (2,1)) can be written
in local coordinates x* uniquely as

T = ZT@'“& ® d’ ® Ok
Z'7j7k
for locally defined smooth functions T’ ZJ k

Horizontal position of indices refer to the ordering of tensor factors. Vertical position
denotes TX vs T*X. We will often use summation convention where repeated indices
once up and once down are summed over, e.g.

T = lekaz &® da? ® O
Often we just write Tijk for T'.

Tensor product corresponds to juxtaposition, e.g.
T %0, @ dod @ 9)) @ (Syndrt @ de™) = T%.%8;,,0; ® do! @ 9y, ® da' @ da™
J J

or (T®S) . =T S

J sm
Contraction corresponds to summation. E.g. contraction of third factor of T" with second
factor of S is

Tij kSlm d:L‘m(ak) 0; ® da? ® drt = Tij kSlkﬁi & da? ® dxl,
8777.

k

i.e. the result is Tiijlk =>4 Tiijlk.

Similarly, in local coordinates x* an r-form o can be written uniquely as
ZOé]deI = Zoquil Ao Adat
I

where the sum is over multi-indices I = (i1 < g < -+ < iy).

Given r vectors v(y), ..., v(,), we can feed them to a to give the number
7:O' iO’ s
Z z—:(a)oqv(l;l) ...v(r)( )
I
ogES,

This is equivalent to viewing « as the tensor
Z e(0)ardz’e® @ - - - @ da'e

I
O'EST

14



of type (0,7) and contracting with v(y),...,v(.
Warning. Some people include the factor %

We can refer to the components of this tensor as «;,.;, (this is the coefficient of dz’ ®
- ®dz"). When the ij form a multi-index I, i.e. i1 < g --- < i, this agrees with a;.

Example. On R? we view dz! A do? as dz' ® do? — do? ® dz'. A general 2-form looks
like apoda! A da? = al-jd:vi ® dzJ where g = —ag9 and a1 = agy = 0.

In summation convention, it is correct to say a = ail,,.irdxil ® -+ ® dz' but NOT
a =g, i, dz"™ A--- Adz' (the last sum would be 7la).

If o = ay A Ay, then a(v) = det(az(v(;))-

2.7 Pushforward and pullback

Fix manifolds X,Y and a smooth map F': X — Y.

e Given p € X and a tensor of type (r,0) at p (i.e. an element of (7,X)®"). We can
push this forward to (Tp(p)Y)@”" by applying D,F on each tensor factor. Denoted
F..

e Given p € X and a tensor of type (0,7) at F(p), we can pullback to (T;X)@" using
((DpF)Y)®". We can do the same for r-forms at F'(p) using A"(D,F)". Denoted F*

e Given a tensor T of type (0,7) on Y can pull back to a tensor F*T on X by (F*T'), =
F*(Tp(y)). Similarly for r-forms.

Summary: Can pushforward “up” tensors at a point and can pullback “down” tensors or
forms at a point or across the whole manifold.

If F' is a diffeomorphism, then can pushforward or pullback any tensor over the whole
manifold, e.g. let T' be of type (1,1) on X. Then

(FT)q = F*(TFfl(q))

where we apply Dp-1(q)F on the T'X factor and (Dy(F~1))Y on the T*X factor.

In this setting F, = (F~1)* and vice versa.

15



3 Differential forms

3.1 Exterior derivative

Take a 1-form o = a;dz® on X. Let us try to differentiate naively. We get:

O

5 d]®d:c

Suppose we change to different local coords y*. Then o = o/ dy’ = o, gy] dz?, so aj = o gi/]
Hence

ooy | , 0 , 0y oo, yF 0%y
* dad i J i 9% J J
Omjdx ®dx—8$j <a18$)da@ ®dx 927 D ——dr? @ dz’ '+« k@ e -dx ® da’
2 aZk
Y J
Oid ® dy” +ak8 T -dx ® dx'

Definition. The exterior derivative da s %dxj A dx' = doy; A dxt. By the above calcu-
lation this is well-defined (independent of local coordinates).

More general, given a p-form o = ayda’ we define do := dagAda’ = 86” dzd Ndx!. Again,
this is well-defined.

Proposition 3.1. d satisfies the following:
(i) It is R-linear.
(ii) It agrees with the differential on 0-forms.
(iii) d? = 0.
(iv) It commutes with pullback, i.e. F*(da) = d(F*a).
(v) Graded Leibniz rule: Given a p-form and a q-form [:

dlaAB) = (da) NS+ (=1)Pa A (dB)

Proof. (i) and (ii) are immediate from the definition.

(iii) Let o = aydx!. We have

d%:d(?‘”dﬂm >—£gf da® A dad A da! =0
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2

since 821%; - is symmetric in 7, k, but dz® A dad is antisymmetric.

(iv) Write o locally as aydy’. Then
F*(do) = F*(day Ady™ A --- A dy')
= F «x (dag) A F*(dy™) A --- A F*(dy'™)
= d((F*ap)d(F*y") A--- ANd(F*y')
=d(F*a)
using (iii) and (v) (we sum over multi-indices iy < --- < ip).
(v) Let a = aydx!, 3 = Bydz’. Then
d(a A B) = d(asBydaxt A da?)
= d(arBy) Adz! A dx?!
= (dag)By A dx' Adx? + ardBy Ada A da?
= (dag)By Adx' Adx? + (—1)P(ar Adz?)(dBy A dz?)
= (da) A+ (-1)PandpB
O
Definition. A form « is closed if da = 0, exact if there exists B such that o = dB. We
write Z"(X), B"(X) C Q"(X) for the spaces of closed resp. exact r-forms.

Aside: The exteriors derivative is the unique map Q*(X) — Q**1(X) satisfying the prop-
erties in the proposition.

3.2 De Rham cohomology

Since d? = 0, we have B"(X) C Z"(X).

Definition. The r-th de Rham cohomology group of X, denoted H} (X), is Z"(X)/B"(X).
Note that Hjp (X) =0 for r > dim X or r < 0.

Example. (trivial cases)

(i) Hiz(X) = Z°X)/B°%(X) = {functions f : df = 0}/0 = {locally constant functions},
S0 HgR(X> — R{components of X}

R r=0,

(i) H3R<poim>:{o o
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Example. Let X = S'. We know that

R r=0,
HgR(Sl) = ? r= 17
0 r#0,1.

A 1-form on S! can be written uniquely as f(6)df. All 1-forms are closed. Define a map

I:9YSYH — R,
2w
f(0)do — f(6)do
0

This is linear and non-zero, hence surjective. Claim: ker I = B'(S'). Proof: If fdf = dg,
then f = %, so I(fdf) = g(2m) — g(0) = 0. Conversely, if I(fdf) = 0, define g(f) =
foe f(t)dt. Then we have fdf = dg. Thus we get an isomorphism I : H};(S') ~ R.

Proposition 3.2. If F': X =Y is smooth, then F™* induces a linear map F* : Hi (Y) —
Hir(X).

Proof. Immediate from the fact that d commutes with pullback. O
E.g. consider F : St — St given by € +— ¢™?. The map F* : Hlz(S') — Hlg(S!) is
multiplication by n.

Proposition 3.3. Wedge product of forms descends to Hjp(X). This makes Hjp(X)

mto a unital, graded-commutative associative algebra.

Proof. Given [a], [f] € Hji(X), we need to show that d(a A 5) = 0 and [« A 5] depends
only on [ and [B]. d(aAB) = 0 follows from the Leibniz rule. If o/ = a+dv, 5/ = S+ dJ,
then o/ A = aAB+aAds+(dy)AB+(dy) A(dS) = anB+d((—1)IMans+yAB+yA(dS)),
so [a A (] only depends on the classes. O

Since ™ commutes with A and F*1 = 1, the map F* : H3p(Y) — Hjp(X) is a unital
algebra homomorphism.

Proposition 3.4 (Homotopy invariance). If Fy, F1 : X — Y are smoothly homotopic.,
then the maps F, Ff : Hip (Y) — Hip(X) are equal.

Proof. See Section [5.3 O
Corollary 3.5. If [': X — Y is a homotopy equivalence, then F* : Hip (Y) — Hip(X)
is an isomorphism.

Example. Hj;(R") = Hjg(point).

18



3.3 Orientations

Definition. An orientation of a n-dimensional vector space is a non-zero element of \" V
modulo positive rescalings.

An orientation of a vector bundle E — X of rank k is a nowhere-zero section of /\k E,
modulo rescaling by positive smooth functions. E is orientable if there exists an orientation
for it, and oriented if it is equipped with a choice of orientation.

Note: E is orientable iff /\k FE is trivial. E.g. any trivial bundle is orientable. The tauto-
logical bundle over RP" is not orientable.

Definition. A manifold X is orientable/oriented if TX — X is.
E.g. S™ is orientable for all n. RP" is orientable iff n is odd.
Definition. A wvolume form on n-manifold X is a nowhere-zero n-form.

A volume form w defines an orientation (basis ey, ..., e, for T, X is positively oriented iff
w(e1,...,e,) > 0) and conversely an orientation defines a volume form modulo rescaling
by positive smooth functions.

3.4 Partitions of unity

Definition. Given an open over {U,} of X, a partition of unity subordinate to the cover
is a collection of smooth functions {ps : X — R>} such

e supp po C Uy

e locally finite: For all p € X there exists an open neighborhood V' of p such that on
V' all but finitely many po are = 0.

hd Za pa = ]‘
Lemma 3.6. For any open cover {Uy} of X, there exists a partition of unity subordinate
to it.

3.5 Integration

Fix an oriented n-manifold X and a compactly supported n-form w on X.
Definition. The integral of w over X, denoted fX w, is defined as follows:

e Cover X by coordinate patches U, with coordinates z*,. WLOG these are positively
oriented, i.e. 01 N -+ A\ Ogn represents the orientation.

n

o Pick a subordinate partition of unity {pa}. Write pow = f/alphada:}x A ANdal.
Define [y w =13, [gn fadzl .. dal.
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Lemma 3.7. The integral wa 1s well-defined.

Proof. Suppose we cover X by patches Vjz with coords yé, ..., y5. Take a partition of
unity og subordinate to this cover. Locally write ogw = ggdyé A+ Ndyg. We want to
show Y, [gn fadzl ... dal = > 25 Jn glgdyé ...dyj. On overlaps U, N V3 we have

oﬁfadx(lx N Ndxg, = ogpaw = paggdyé A= ANdyg.

So o5fa = pagp det(

det(22) = | det(

oy’ . . .
azf ). Since both y and x are oriented in the same way, we have

8yj
&vi)" So
> fadx;...dxgzz/ ogfadzl ... dzh
a Rn n
J
_Z/ Pagp det( a—ﬂ)d xl .. da?

= Z/ pagsdyy ... dy}

a,f R
=> / pagpdys - .. dyj

5 TR

O

Note: Since w is compactly supported and partitions of unity are locally finite, all sums
appearing are actually finite.

3.6 Stokes’s Theorem

Definition. A (smooth) n-manifold-with-boundary X is defined in the same way as an
ordinary n-manifold, except the codomain of each chart o : U — V may be an open set in
R"™ or in R>q X R L. Givenp € X and a chart o : U — V at p, say p is in the boundary,
0X, if VCRso x R" ! and ¢(p) € {0} x R*"L. Otherwise p is in the interior X°.

The notion of boundary /interior is independent of the chart.
Examples.
(i) An ordinary n-manifold X is a manifold-with-boundary with 0X = (.

(ii) The closed ball X = {p € R" | ||p|| < 1} is a manifold-with-boundary with 0X =
§"~tand X° = {p| |pll <1}.
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(iii) If X is a m-w-b and Y is an ordinary manifold, then X x Y is a manifold with
boundary. Then X X Y is a manifold-with-boundary. 9(X x Y) = (0X) x Y and
(X xY)=X°xY.

If both X and Y are manifolds-with-boundary, then in general X x Y is a manifold-
with-corners.

Definition. If X is an oriented n-manifold with boundary, then 0X is oriented as follows.
Given p € 90X, pick ox € N\"T,X representing the orientation of X. Pick a vector
n € T, X transverse to 0X and pointing outwards. Orient 0X at p by the unique opx €
AT TL,0X < A" TLX satisfying ox =n A ogx .

Theorem 3.8 (Stokes’s Theorem). Given an oriented n-manifold-with-boundary X, and
a compactly supported (n — 1)-form w on X, we have

/dw:/ w::/ 7w
X X X

Proof. Step 1: Cover X by coordinate patches and pick a subordinate partition of unity

Po- Then
o= DITEESS / o)

So it suffices to prove the result when X is a coordinate patch. WLOG X = R>¢ x R*1,

and

Step 2: Take w =Y, widz' A A dz A --- A dz™. Want to show that

1 Ow;
(—1) ' dat . da™ = / w
/RZOXRnl ; 8$Z 8(R20XRW‘71)

The left side is

/ ( awidﬂ) de'Q-udl’n'i‘Z/ ( awl:da:i> dat ... dat ... da"
Rn—1 0 aﬂf i>2 RZOXRn—2 — 00 8,’1,‘1

= / —widz? ... dz"™
Rnfl

Orientation of 9(R>o x R"™1) is —d,2 A+ - -Adyn. So the right side above is exactly this. [

Historical fact: Stokes put this theorem as a problem in the Cambridge exam (basically
Part III).

Example. X = {z € R?: ||z|| < a}. Area of X =

1
/ dr A dy = / —d(xdy — ydx)
X x 2
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3.7 Applications of Stokes

Proposition 3.9 (Integration by parts). Given an oriented n-manifold-with-boundary X,
a (p—1)-form o on X and an (n—p)-form B such that at least one is compactly supported,
we have

/(da)/\ﬁz oz/\,@+(—1)p/a/\(dﬁ)
X 0X

X

Proof. By the Leibniz rule d(a A ) = (da) A B+ (—1)P"ta Adf. Integrating and applying
Stokes gives
/ a/\B:/(da)/\ﬂ—i-(—l)pl/ aNdB
X X X
O

Proposition 3.10. If X is a compact oriented n-manifold (without boundary), then in-
tegration over X defines a linear map

/ L Hin (X) = R.
X

Corollary 3.11. If X is a compact, orientable n-manifold, then HYy(X) # 0.
Proof. Fix an orientation on X and choose a volume form w representing this orientation.

Then w integrates to a positive number in every chart, hence [ w # 0and thus 0 # [w] €
Hlx(X). O
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4 Connections on vector bundles

Notation and terminology:
e Given a vector bundle E — B, an E-valued r-form is a section of E®@ \" T*B.
e Given a vector space V', a V-valued r-form is V-valued r-form.

o ()'(FE) is the space of E-valued r-forms. We write I'(E) for the space of sections of
E (ie. QE))

e Write gl(k,R) for the space of k x k-real matrices.

4.1 Connections

Fix a rank k vector bundle 7 : F — B. Given a section s, we can view it locally under each
trivialization ®, as an R¥-valued function which we will denote by v, (= pryo®, 0 |y, ).
The naive derivative is dv,, which we can view as a local E-valued 1-form via ®_!. Under
a different trivialization ®5, s becomes vg = ggovo. Taking the naive derivative and
transferring the answer to the a-trivialization gives

gﬁ_;d(gﬁava) = gg; (dgﬁa)va + dvg

So the answer is trivialization-dependent via the action of the gl(k,R)-valued 1-form
-1
gﬁadgﬁa oN Vg
Definition. A connection A on E comprises a gl(k,R)-valued 1-form A, on U, for each
trivialization ®4, : 71 (Uy) = Uy x R¥ such that on overlaps we have
Ao = ggaAsgpa + Gpadgsa ()

Given a connection A on E, the covariant derivative of a section s is the E-valued 1-form
dAs given under ®n by dvg + Agvq.-

By the calculations with the naive derivative, this is well-defined (i.e. consistent on over-
laps). The section s is horizontal or covariantly constant if ds =0

The A, are the local connection 1-forms. Note that the zero section is always horizontal.
But non-zero horizontal sections may not exist, even locally.
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Example (Trivial connection). Suppose £ — B admits a global trivialization ®,. We
can define a connection A by A, = 0, then defining A, for all other trivializations by (x).
A section is horizontal iff it is locally constant under .

Lemma 4.1. Given a connection A on E — B, the covariant derivative
dA :T(E) — QYE)

is R-linear and satisfies the Leibniz-rule d(fs) = fd*s + s @ df.

Conversely, any R-linear map T'(E) — QYE) satisfying this, arises from a unique con-
nection in this way.

Proof. R-linearity os obvious. We can check Leibniz under trivializations:
LHS = d(fva) + a0 fra = Vo @ df + fdva + fAva = f(dva + Aa“a) +va ®df = RHS
The converse is on sheet 3. 0

Example. Given a submanifold i : X — RY, *TRY has a standard trivialization and
hence a trivial connection Ag. Now consider

orthogonal projection

D(TX) = D TRY) 22 ol *TRY) QOY(TX)

It is clearly R-linear and inherits the Leibniz rule from d“°. So it corresponds to a unique
connection on T'X.

Lemma 4.2. Any vector bundle admits a connection.

Proof. Trivialize E over U, with transition functions gg, as usual. Pick a partition of
unity po subordinate to this cover. Now define

Ag = Z Pvg;idgva
Y

It remains to prove that this satisfies the transformation law (x). We have
T5aApg8a =D P1950(9+509:8) 950
gl
=D 1% ldlg35960) ~ 9164950)
gl
=D r9raddra = Y Pr95ad9sa
v v

= Aa - g/g,idgﬁoc
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4.2 Connections vs End(F)

Fix rank k vector bundle E — B. Let p : GL(k,R) — GL(gl(k,R)) be the representation
p(A)(M) = AMA~! for A € GL(k,R) and M € gl(k,R).

Definition. End(E) is the vector bundle over B of rank k? with total space
] End(2)
beB

If E is trivialized over Uy with transition functions gga, then End(E) is trivialized over
the same sets with transition functions p(gsa)-

A section M of End(E) is locally a gl(k, R)-valued function M, such that Mg = ggaMaggi.
Equivalently End(E) = E® EV.

Lemma 4.3. Given a connection A on E, and a section A of Q' (End(FE)), there exists
a connection A+ A, defined locally by Ay, + An. Conversely, every connection A" on E
can be written uniquely as A+ A for some A. Hence the set of connections on E is an
affine space for Q' (End(FE)).

Proof. Just prove that everything is compatible with the transition functions.

Ao+ Do = 950 AsGpa + 504980 + 90808955 = 9ga(As + Ag)gsa + 5ad9sa

For the other direction, verify that A’ — A transforms correctly, i.e. like a section of
QY (End(E)). n

4.3 Curvature algebraically

Definition. The exterior covariant derivative is the unique R-linear map d* : Q*(E) —
Q*TY(E) satisfying the Leibniz rule

dA(s @w) = (ds) Aw + 5 ® dw

for sections s of E and forms w. Locally in trivializations, an E-valued p-form o becomes
an R*-valued p-form o, then dAo is given by dog + Ao N\ 0g.-
Warning. (d4)? # 0 in general.

Proposition 4.4. There exists a unique End(E)-valued 2-form F' on B such that for all
FE-valued forms o:
(@20 =F Ao.

Proof. Locally in a trivialization (d)2c is given by

d(dog + Aa Noo) + Ag A (dog + Aa N oo) = (dAg) AN oo — Ag Ndog + Aq ANdog + Aq N Aa N 0g
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=F,Nog

where F, = dAy,+ Aq A Aq. Then one can check that this transforms like a End(E)-valued
2-form. ]

Definition. F' is the curvature of A. A is flat if F = 0.
Examples.

(i) Trivial connections are flat. Conversely, if A is flat, then it is locally trivial.

(ii) Consider R?> — R x S' with a connection A given by A, = f <(1) 01> dr +

g <(1] _01) df under the standard trivialization. Then

1 0 0 -1 0 -1
Fa_dAa—irAa/\Aa_(O _1>df/\dx+<l O>dg/\d9+2fg<_1 O)da:/\d@

of (10 dg (0 —1 01
(5o B) s 0) (o))
4.4 Parallel transport

Fix E — [0,1] with connection .A.

Lemma 4.5. Given vy € Ey, there exists a unique horizontal section s with s(0) = vy.
This s depends linearly on vy.

Proof. Locally in trivializations the condition that s is horizontal says dv, + Aqve = 0
(). We have A, = M,dt for some gl(k, R)-valued function M, where ¢ is the coordinate
on [0,1]. Then () < % + Mav, = 0. This is a linear ODE. By standard ODE theory
solutions exist locally and are unique (locally, hence globally). The solution depends
linearly on the initial condition. Left to prove global existence: Local existence says that
for all p € [0, 1] there exists a fibrewise basis of horizontal sections locally about p. By
compactness of [0,1] there exist 0 = a9 < a1 < --- < ay = 1 such that on [a;,a;y1]
we have such a local fibrewise basis s},...,s¥. Write vy = Zle )\ojsé(()). Then define
s on [ag,a1] by >, )\ojsg. Now write s(ay) = Z?Zl Aljsg(()) and extend s to [a1,as] as
s(ay) = Z?:l )\Us%. Then keep going. O

Definition. The linear map Ey — Ep, vy — s(1) is the parallel transport of vy along
0,1] (w.r.t. A).

Now go back to general vector bundles E — B with connection A. Suppose v : [0,1] — B
is a path. Then v*A, defines a connection on v¥, denoted v*A.

26



Definition. Given a vector vg € E ), the unique horizontal section s of v*E starting at
vg is the horizontal lift of v to E (starting at vo). The vector s(1) € E,(1) is the parallel
transport of vg along y. Doing this for all vy gives a linear map Py : E ) — Ey1). If v
is a loop, i.e. v(0) = (1), then P, : E ) — E,) is the monodromy or holonomy of A
around 7.

Examples.

(i) Consider T'S? with the “orthogonal projection” connection. Given path ~ on S? and
vy € TW(O)SQ, the horizontal lift is the map v : [0,1] — T'S? such that

v(t) € Ty4)S? for all ¢.

e ¥(t) in R3 is orthogonal to T,Y(t)S2, so that the orthogonal projection to T’ S?
is 0

(ii) Returning to R? — R x S' with connection A, = f <(1) _01> dz +g <(1) _01> dg.

Consider v(t) = (¢,0). Horizontal lift v of v starting at v satisfies v+ f ((1) _01> v=

Y
0. So v(t) = <€0 60)\) vo where \ = fot f(z,0)dz. Similarly, the monodromy
cosp singp

around (t) = (0, 27t) is <_ sing cosp

> where ¢ = f027r g(0,0)db.

4.5 Curvature geometrically

Fix E — B, with connection A. Fix also a point p € B, a trivialization ®, around p, and
local coordinates ! about p.

Let A, = A;dx®. where the A; are gl(k, R)-valued functions. Similarly let F, = F,yda:i ®
dz?. WLOG p = (0,...,0). For a,b € R small, let v1(t) = ate;,V2(t) = ae; + btej in =
coordinates. Then let 3, v4 be the other two sides of the rectangle.

Proposition 4.6. Letting P, = Py, Py, Py, P,, € End(E,) we have

*Pyyp
0a0b

la=b=0 = —Fi;(p)

Proof. For formal proof see Sheet 3. We will give an intuitive sketch proof ignoring analysis
details, but these details can be filled in (e.g. see Nicolaescu Proposition 3.3.14).

Parallel transport in the 2? direction satisfies © = —A;v, so Py, = [—aA;(p)+... where ...

means higher order terms which will wash out. Similarly P,, = I —bA;(y1(1))+---=1—
0A; )

b(Aj(p)+agt(p))+.... So PyoP, =I—aA;(p)—bA;(p)+abA;(p)Ai(p) —abg‘;} (p)+....
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Similarly P,, o Py, = I +aA;(p) +bA;(p) + ab gg;; (p) + abA;Ai(p) +.... So

A, OA;
Pypy=1+ab “(p) — == (p) + A;(p)Ai(p) — Ai(p)A;(p) | +al...) +b(...)+
oxd ox
So
2P, OA; DA,

Sadh la=b=0 = 90 (p) — D (p) + A;(p)Ai(p) — Ai(p)Aj(p) = —Fi;(p)

O]

Corollary 4.7. If v € E, is such that F(p)v # 0 in E, ® /\2 T, B, then there does no
exist a local horizontal section s about p with s(p) = v.

Proof. If such an s exists, then Py, (v) = s(v1(1)), similarly for the other paths, so P, ;(v) =
s(p) = v for all a,b. So by the Proposition for all i,j we have —F;;(p)v = 0, hence
F(p)v=0. O

Example. Consider R — R? with A, = Cz'dz?. Let v1,...,v4 be as before. Then

—id = — _ ,—Cab _ —Cab PPap) 3o
P, =id= Py, = P, and P,, = e . Hence P, = e “%. Then 5 5>la=b=0=—C.

So Fjs = C which is of course also clear from F = Cdz! Adz? = dA, + Ay A A,.

Explicitly, if s were a local horizontal section about p, given by v, in our trivialization,

then we would have dvg + Aqve = 0, i.e. dvg +Calvadz? = 0, i.e. % =0, CB%T% = —Czlv,.
Hence 0 = % = —Cwv,. If C' # 0, then the only horizontal local section is 0.

Example. Consider R — S with 4, = Cdf. Local horizontal sections exist and have
the form v, = Ke~. This extends to a global section if C'= 0. If C' # 0, then this does
not extend, due to the presence of non-trivial monodromy e~27¢,

Summary. Curvature is the local obstruction from the existence of horizontal sections,
monodromy is the global obstruction.
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5 Flows and Lie derivatives

5.1 Flows

Fix a manifold X and a vector field v on X. Given a point p € X, can try to flow along
v from p, i.e. solve the ODE 4(t) = v(y(t)) and v(0) = p. By standard ODE theory,
solutions exist locally and are unique. Solutions are called integral curves of v.

Definition (Non-standard). A flow domain is an open neighborhood U of X x 0 in X xR
such that for all p € X the set U N (p x R) is connected.

Definition. A local flow of v comprises a flow domain U and a smooth map ® : U — X
such that

o (I)(—,O) = idx.
. %(I)(p, t) =v(®(p,t)) for all (p,t) € U.
We write ®(p) for ®(p,t).

Previous ODE discussion plus smooth dependence on initial conditions, tells us that ocal
flows exist and are unique in the sense that if (U;, ®1) and (Uz, ®2) are local flows, then
®; = P on U; NUs.

A vector field is complete if it has a global flow, i.e. one with U = X x R. Not all vector
fields are complete, e.g. 20, on R. But if v is compactly supported, then v is complete.
(Idea: for each p € X, there exists U, neighborhood of p and ¢, > 0 such that a flow exists
on Uy, X (—¢&p,€p). By compactness, get local flow on U = X X (—¢, ¢) for some € > 0. Can
then define a global flow by ® = (®*/N)N for n. > 0.)

Lemma 5.1. If ® is a local flow of v, then ®5tt = &% o ®! whenever this makes sense.
So in particular (PYN)N = & when this makes sense, and ®~ = (d¥)~1,

Proof. Fix p € X, fix t. Let ¢ € ®!(p). Then 71(s) := ®*T(p), v2(s) = ®* o ®!(p). These
two curves both satisfy 4; = v o; and 7;(0) = ¢. So by uniqueness of solutions to ODEs
get y1 = 2. 0

5.2 Lie Derivatives

Fix X and v, and let ® be a local flow of v.

29



Definition. For a tensor or form T on X, its Lie derivative is
L,T = £| —o(®N)*T
ST At

Lemma 5.2. We have

Proof. We have

4
dt

d

* d * * *
J n=o (@I = g (91)(81)T = (@)L, T

(T =
Lemma 5.3. For a function f we have
Lyf =df(v).

Lyo = ( 199 + v >d:cj.

v —L 4+ a——
ox* " Oxd

For a 1-form o we have

Proof. At each point p we have L, f = %|t:0f(<1>t(p)) = df(%h:o(l)t(p)) = df (v).
We have

d t\*
Lya = &|t:0(<13 ) o

= %h:ﬂ(ai o CI)t)d(:L"i o <I>t)
= (Lya;)dz’ + a;d(Lyxh)
6042-
oxJ
— (v dai a-%
OxJ T Ot

dzt + aidvi

:’Uj

)dat

Lemma 5.4. For a 1-form a and a vector field w we have
d(ew')(v) = Ly(aiw') = (Lya)w' + a;(Low)’
For any tensors S, T we have

L,(S®T)=(L,S)@T+ S® (L,T)
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Proof. Pullback by ®' commutes with contraction and with ®. Then proceed as in the
proof of the ordinary Leibniz rule. O

Corollary 5.5. For a vector field w we have

Proof. By first part of the previous lemma, for any 1-form a we have £, (q;w?) = (L,a);w'+
a;(L,w)?, so we get by the lemma before

O(cw?) 0oy OvT\ ,
J — J I % . )
v = (v B +a 8xi> w' + o (Lyw)
Hence 5 5 Bud
.00y w* 0oy ;0v) i
vlw ad + v ozi@ =vw 9 + ajw 92 + ai(Lyw)
and thus .y y
. i i 2% i
a;(Lyw)' = v oy 9 a;w R
This holds for all «, so ‘
(Low) = Ujaw‘ o ov'
R OxJ”
O
Definition. The Lie bracket of v and w is
[v,w] == Loyw = —Ly0.

This operation makes the I'(T'X) into a Lie algebra, i.e. a vector space equipped with a
bilinear operation [-, -] satisfying

e [v,v] =0 for all v (alternating)

o [u,[v,w]] + [v, [w,u]] + [w, [u,v]] =0 for all u,v,w (Jacobi identity)
Lemma 5.6. If F': X — Y is a diffeomorphism, then for any vector field v on Y, and
any tensor T' on'Y , we have

F*(L,T) = Lp+n(F*T)
Proof. We have
* * d t\*
F*(L,T)=F %h:o(@ T

d
= —|jmoF*(®N)*T
Jpli=oF (@)

31



d * * X\ — *
= =0 F* (@) (F) 7 P T
= %]tzg(F_l o ®' o F)*F*T

But F~1o®to F is a flow of F*v. O

5.3 Homotopy invariance of de Rham cohomology

Definition. Given an r-form « and a vector field v, the (r—1) form tya or vaa is defined
to by

(@i iy =V iy iy

The Lie derivative and exterior derivative are related as follows:

Proposition 5.7 (Cartan’s magic formula). For a vector field v, an r-form o, we have
Ly = (diyar) + tyda

Proof. Example Sheet 3. O

Proof of Proposition[3.4] (Homotopy Invariance of de Rham cohomology). Let F : [0,1] x

X — Y be a homotopy between Fy, Fy. Write F; for F(t,—). Let i, : X — [0,1] x X

be the inclusion z — (t,z). Note that iy = ®' 0 ig where ®! is the flow of 9;. Note that
F;, = F oi;. For any form « on Y we have

1
d
Fla—Fja= —Ff adt
1¢ o0& /0 dt t &
Ld
= /0 a(F o Pt o i0) " adt
1 d .
= io— (®°)" F*adt
| i@
1
= z(”;/ (®Y)* Lo, (F*a)dt
0
Now suppose « is closed. By Cartan’s magic formula we have
Ly(F*a) =d(tg,F*a) +0

So
1
Fra— Fla=i / (®1)* (15, F*0)dt
0

1
_ / i d(1o, o) dt
0
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1
:d/ iy, F*adt
0

So Fi'a— Fja is exact and thus Fpy, F induce the same map on de Rham cohomology. [

33



6 Foliation and Frobenius integrability

6.1 Foliations
If F: X —Y is a submersion, then X decomposes into slices F~!(q) which are submani-
folds of dimension dim X — dimY.

A k-foliation on X is a local decomposition of X into k-dimensional slices, but the slices
need not globally form submanifolds.

Example. Consider X = T? = R?/Z2. For any a € R, we can locally slice X into lines
of slope a. If « is irrational, then the slices do not globally form submanifolds.

Definition. An atlas on X is k-foliated if the transition functions g o oot are locally
of the form R x R"F 5 (z,y) — (C(z,y),1n(y)) € RF x R"*. Two k-foliated atlases are
equivalent if their union is k-foliated, and a k-foliation is an equivalence class of k-foliated
atlases. We will usually write associated local coordinates as ', ..., z% y', ... y"*. Slices
are given locally by y = const.

Example. If FF : X — Y is a submersion, then foliated charts correspond to local
coordinates on X in which F' corresponds to projection onto the last n — k components.

6.2 Distributions

Fix an n-manifold X.
Definition. A k-plane distribution on X is a rank k subbundle D of TX.

Example. (9,,0,) and (9, + y9., 8,) each define a 2-plane distribution on R3. Note that
(Og, 0y) = kerdz and (0, + y0z, 0y) = ker(dz — ydx).

In general a k-plane distribution can be written locally as the kernel as the kernel of n —k
1-forms.

Example. If X is equipped with a k-foliation, with foliated coordinates x, y as usual, then
(Op1y ..y Opr) = ﬂ?;lk ker dy® is a k-plane distribution. It describes the tangent spaces to
the slices.

Definition. A k-plane distribution D is integrable if it arises from a k-foliation in this
way
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If £ = 1, then every distribution is integrable: Locally D = (v) for some vector field v,
then X is foliated by integral curves of v.

6.3 Frobenius integrability

Theorem 6.1 (Frobenius integrability). A distribution D on X is integrable iff D is
closed under [-,-], i.e. for all vector fields v,w tangent to D, [v,w] is also tangent to D.

Proof. Both conditions are local, so it suffices to work near a point p. If D is integrable
with local foliated coordinates z,y, then D = (9,1,...,0,%). Can easily check by hand
that for any smooth coefficients f?, ¢, [f'0,:,¢70,] € D.

Conversely, suppose D is closed under [-,-]. We want to show that there exist local coordi-
nates x, y such that D = (9,1, ...,0,%). First choose local coordinates st o skt ek
about p such that D = (9,1,...,04) at p. WLOG p corresponds to s = 0,¢t = 0. Locally
there exist uniquely determined smooth functions a;; such that v; := 0y + > a0, lies
in D. Let ®! be the flow of v;. Now define F' : open neighborhood of 0 in R — X by
F(z,y) = <I>°"f1 0---0 @ik(s = 0,t = y). This has F(0) = p and DoF(0,:) = v; = 04 and
DoF'(0yi) = 0. So DoF is an isomorphism, hence I' defines a parametrization near p. It
suffices to show that 9,: = v;. Suppose the ®; all commute, then for each i we would have

d 1 i k
Opi = %|h=0q)910 07BN (0,y)
d i 1 — k
= Jplh=0® TOT @ @ (0,y)
7 _— k
= (VBT - D, BT (0,y))
:Ui

so we would be done.

Left to show: @fi o@}’?j = @;i o@fi for all ¢, 7, i.e. that [v;,v;] = 0 for all ¢, j. We know that
D is closed under [-, ], so there exist b;; such that [v;,v;] = >, bijiv;. Equate coefficients
of Oy to get all b;;; = 0. O

Example. Consider D = (9, + y9.,d,) on R3. This is not closed under [,] since [0, +
y0,,0y] = —0; ¢ D. So D is not integrable.

By hand: If D were tangent to a surface f = const, then we would have % +y% = % =

So 0= g:gy—l—%—i—ygjgz = %. Then also % = —y% =0 and so df =0. So {f = const}

is not a surface!
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7 Connections on vector bundles with extra
structure

7.1 Connections on T'X

Suppose A is a connection on E = TX — X. Given local coordinates z',..., 2" on X, we
get a trivialization of E by 0,1,...,0;». Call this a coordinate trivialization. We typically
write the induced local connection 1-form as I" f kdmk where i, j are the matrix indices on

al(n,R). So for a vector field v we have (d4v)! = dv’ + Fijkvjda:k.

Warning. The Fijk do not transform like a tensor of type (1,2). But the space of
connections on F is an affine space for QY(End E) =T(EQ EV@T*X) =T(TX @ T*X ®
T*X), i.e. the space of tensors of type (1,2).

Definition. The solder form 6 is the E-valued 1-form that corresponds to the fibrewise
identity map under EQT*X =TX @ T*X = End(TX).

The torsion T of A is the E-valued 2-form d*0. A is torsion-free if T = 0.

In a coordinate trivialization § = e; ® de', so T = d(e; ® da') + Ay A (e; ® dat) =
Fjikej ® dzF A dat.

So A is torsion-free iff Fijk = Fikj.
Proposition 7.1 ((First) Bianchi identity). dAT = F A 6.

Proof. We have dAT = (d*)%0 = F A 6. O

Definition. A curve v in X is a geodesic (w.r.t. A) if 4 is covariantly constant as a
section of v*T'X. This is equivalent to the geodesic equation

¥+ T3 =0,

Note that

e A connection on T'X induces connections on 7*X and all bundles of tensors and
forms. If we had taken the covariant derivative of 6 as a tensor of type (1,1), we
would have got 0 automatically.
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e The curvature of A is an End(E)-valued 2-form, which we can view as a tensor of
type (1, 3) Fijkl that is antisymmetric in k, [.

e Often d? or A itself is called V and the contraction of d* with a vector or vector
field v is written V,,.

7.2 Orthogonal vector bundles

Fix a vector bundle £ — B.

Definition. An inner product on E is a section of (EV)®2 which is fibrewise symmetric
and positive definite.

Lemma 7.2. E admits an inner product.
Proof. Define locally and glue using a partition of unity. O

Definition. An orthogonal vector bundle is a vector bundle equipped with an inner prod-

uct g. A trivialization ®,, is orthogonal if under ®., g becomes the standard inner product
on RF.

Note: Transition functions between orthogonal trivializations take values in O(k).
Fix an orthogonal vector bundle (E, g) — B.

Lemma 7.3. E can be covered by orthogonal trivializations.

Proof. We can locally trivialize E by sections s1,...,Sk. Apply Gram-Schmidt fibrewise
to make the s; orthonormal. The corresponding trivialization is then orthogonal. O

Definition. A connection A on E is orthogonal if g is covariantly constant w.r.t. to the
induced connection on (EV)®2.

Lemma 7.4. E admits an orthogonal connection, and the space of orthogonal connections
on E is an affine space for Q*(o(E)) C QY(End(E)) where o(E) < End(E) is the bundle

of skew-adjoint endomorphisms of E

Lemma 7.5. If A is an orthogonal connection on (E,g), then its curvature is an o(E)-
valued 2-form.
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8 Riemannian geometry

8.1 Riemannian metrics

Fix an n-manifold X.

Definition. A (Riemannian) metric on X is an inner product on TX. A Riemannian
manifold is a pair (X, g) where X is a manifold and g is a Riemannian metric on X.

Since every vector bundle admits an inner product, every manifold admits a Riemannian
metric.

Given a Riemannian metric g;;, we write g for the dual metric on 7*X. This satisfies
(and is defined by) ¢/ = ¢’* and g¥g;, = & We denote contraction with g;; or g”/ by
raising or lowering indices, e.g. gyT", = T,%, or ¢g**S;; = Skj.

A section T% of End(TX) lies in o(TX) iff T%gix = —T%gji, i.e. Tyj = —Tjr. When

writing coordinate expressions, we use dz'dz’ to mean w, e.g. the standard

Riemannian metric on R” is ggua = >, (dz?)?

8.2 The Levi-Civita connection

Fix a Riemannian manifold (X, g).

Theorem 8.1 (Fundamental theorem of Riemannian geometry). There exists a unique
torsion-free orthogonal connection on T X .

Proof. We will prove the more generally statement that the map {orthogonal connections} —
Q2(TX) sending a connection to its torsion, is a bijection.

Fix an arbitrary orthogonal connection Ag. Any other orthogonal connection A can be
written uniquely as Ag + A for an o(F)-valued 1-form A. We will show that the map
QLo(E)) — Q*(TX), A+~ Tyo1n — T4, is a bijection. This map sends A to A A6, i.e
Aikj - Aljk (If Ay is locally Fijk,‘then Ao + A is Fijk + Aijk, s0 (Tag+n — TAO)ijk =
T+ A) — T+ A) = % = T)).

It is induced by the bundle morphism F : o(TX)®@T*X — TX @ A2T* X given by wedging
with 6. So it suffices to show that F' is an isomorphism which we can do fibrewise.
Note both bundles have rank n(}) since o(TX) @ T*X = {A;k | Aijr = —Aji} and
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TXRNT*X = {T”Jk : T’;k = —Tikj}. So it is enough to show that A — A A# is injective,
i.e. that if Aijk satisfies Ajjr = —Aj, and Aijk = Aikj (A € ker), then A = 0. But if
A satisfies these two conditions, then Ayjp = —Ajip = —Ajri = Apjs = Apij = —Digj =
—Ajjk. O

Definition. This is the Levi-Civita connection on (X, g). Its components Fijk are called
Christoffel symbols.

The explicit coordinate expressions are

1
= (0j9ik + Orgji — 9i9jk) -

Lijr = 5

Proposition 8.2. If.: X — RY is an embedding, then
o X inherits a metric 1*ggucl, hence has an induced Levi-Civita connection.
o TX carries the ”orthogonally project from *TRYN 7 connection.

The connections coincide.

Proof. Example Sheet 4. O

8.3 The Riemann tensor

Fix (X, g).

Definition. The curvature of the Levi-Civita connection V is the Riemann tensor Rijkl'
This is an o(T X)-valued 2-form, viewed as a tensor of type (1,3).

The Riemann tensor has the following properties:
° Rijkl = —Rijkl since it is a 2-form.
o Rijn = —Rjip since it takes values in o(7T'X).
e First Bianchi identity RAG = dVT =0, i.e. R\, + R'yyi + Ry = 0.

e Second Bianchi d®*V R = (.

8.4 Hodge theory

Let (X, g) be an oriented Riemannian manifold. The dual metric g/ gives an inner product
on T*X and induces inner products on APT*X for all p. Explicitly, if a',...,a" is a local
fibrewise orthonormal basis of 1-forms, then the ! = a'' A --- A o' are a fibrewise
orthonormal basis of p-forms.
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In particular, there is a distinguished unit volume form w.
Given a p-form f there exists a unique (n — p)-form x4 such that for all p-forms «
axf = (a,fw
E.g. xa! = +£a’ where J = {1,...,n}\ I.
Definition. The map
x: QP(X) — Q"P(X)
1s the Hodge star operator.

By considering its action on the of, can see that it is a fibrewise isometry and %> =

(=12 idon )

Example. Take R? with the standard metric and orientation. Then w = da! A d2? A da3,
so xdz' = dx? A dx3, *(dx?® A dx®) = dz' and cyclically.

Now assume X is compact. Define an inner product on QF(X) by (o, 8)x = [y (o, f)w =
Jx a A xB. For (p—1)-form «, p-form 3 we have

(da, B)x = /X (da) A +B
:/ d(o A #B) — (1)L A dx B
X

= (—1)p/XaAd*ﬂ
= (o, (~1)Px1dxpB)x

So the operator § : QP — QP~1(X) given by (—1)? ¥~ ! dx is adjoint to d.

Definition 8.3. This § is the codifferential. A form « is coclosed if da = 0, coexact if
46 such that o = 0.

NB: § = (—1)"*+7*+1 x dx and the definition of § also makes sense for non-compact X.
Notice 62 = — s« 1d s« 1dx = —x % = 0.

Definition. The Laplace-Beltrami operator A : QP(X) — QP(X) is defined by do + dd =
(d+0)%

A form « is harmonic if Ao = 0. This is equivalent to « being closed and coclosed (Sheet
4). We denote the space of harmonic forms by HP(X).

Theorem 8.4. The map

HP(X) — HiR(X)
a— [a]

18 an isomorphism, i.e. every cohomology class has a unique harmonic representative.

40



Idea: HP(X) = ker A = kerd Nkerd = kerd N (imd)* = kerd/imd = Hi; (X)

Theorem 8.5 (Hodge decomposition). The space HP(X) is finite-dimensional and we
have orthogonal decompositions

OP(X) = HP(X) @& d6QP(X) & 6dOP(X)
= HP(X) ® 6QP~1(X) @ 6PH(X)

Proof. See Section 10.4.3 in Nicolaescu. O
Proof of Theorem[8.]). 1t suffices to show that
kerd = HP(X) @ dP1(X)

LHSDRHS: harmonic and exact forms are both closed.

LHSCRHS: by Hodge decomposition RHS = (im §)*, so it suffices to prove (ker d,im &) =
0. Given «a € ker d, we have for all 3, (o, 03) = (da, 5) = 0. O
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9 Lie groups and principal bundles

9.1 Lie groups and Lie algebras

Definition. A Lie group is a manifold G equipped with a group structure such that mul-
tiplication and inversion m : G X G — G, i : G — G are smooth.

An embedded Lie subgroup of G is a submanifold H that is also a subgroup. The restric-
tions of the operations from G to h make H into a Lie group.

Examples. GL(n,R) is a Lie group. SL(n,R),O(n), SO(n) are embedded Lie subgroups.
Similarly SL(n,C),U(n),SU(n) are embedded Lie subgroups of GL(n,C).

Definition. For each g € G we get diffeomorphisms Lg, R4, Cy : G — G defined by
Ly(h) = gh, Rg(h) = hg,Cy(h) = ghg™" for all h.

A tensor T is left/right/conjugation invariant iff (Lg)T = T for all g etc. It is bi-
invariant if it is both left and right invariant.

Lemma 9.1. For any h € G, the map

{left-invariant tensor field of type (p,q)} — {tensors of type (p,q) at h}
T+—> Th

s an isomorphism. Similarly for right-invariant.
Proof. The inverse map is define by Ty = (Lp,-1)«Th. O

Definition. The Lie algebra g of a Lie group G is T.G.
Examples.
e gl(n,R) = {n x n matrices}.
e sl(n,R)={A€gl(n,R)|trA= Dydet A= 0}
e o(n)={Acgl(nR)| AT + A =0}.
For £ € g let /¢ denote the corresponding left-invariant vector field, i.e. f¢(g) = (Lg)«&.

Lemma 9.2. The Lie bracket of left-invariant vector fields is left-invariant.
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Proof. Given left-invariant vector fields v, w, we have for all g € G that
(Lg)«[v; w] = [(Lg)xv, (Lg)sw] = [0, w]
where we used the diffeomorphism-invariance of the Lie derivative. O

Definition. The Lie bracket on g is defined by [{,n] = ¢ where ( is the unique element
of g such that [l¢, €] = {¢. It inherits alternating, bilinear, Jacobi from the Lie bracket of
vector fields.

9.2 Lie group actions

Definition. An action of G on a manifold X is smooth if the action map o : Gx X — X
is smooth. Similarly for right actions.

E.g. GL(n, R) acting on R™, G acting on itself by conjugation, O(n) acting on S"~! C R".

Example. The adjoint action/representation of G on g is
Adg(‘f) = (Cg)*f-

Definition. Given a smooth left action of G on X, the infinitesimal action of £ € g on
xe X is

§-X = D(e,g)a(fvo) = [V(t)x]

where v is any curve representing £. Similarly for right actions but with [zy(t)].

9.3 Principal bundles

Fix a Lie group G.

Definition. A (principal) G-bundle P over B is defined the same way as a vector bun-
dle except trivializations are ®, : 7 (Uy) — Ua x G and on overlaps ®s®;1 (b, g) =
(b, 98a(b)g) for (necessarily smooth) maps ggo : Uo NUg = G.

Example. Given a rank k vector bundle £ — B, its frame bundle F(E) — B is the
principal GL(k,R)-bundle with F(E); := {ordered bases in E;}. Similarly, if £ has an
inner product, can consider the orthonormal frame bundle Fy(E), which is a principal
O(k)-bundle.

Note that

e Many definitions transfer from vector bundles, e.g. sections, constructions by gluing
etc.

e P admits a right G-action, defined in trivializations, i.e. ®,(b,z)g := ®.(b, 2g).

43



e Sections s over U C B correspond to trivializations ® over U:
— Given ®, define s by s(b) = ®~1(b,e)
— Given s, define ® by ®(s(b)g) = (b, g).

9.4 Connections

Fix a principal G-bundle P — B. Write R, : P — P for the right action of g.
Definition. A connection on P is a g-valued 1-form A on P, satisfying:

e A(p-§) =& forpe P{ g

o RpA=Ad, 1 A (A is equivariant).

Given a local section s, (or equivalently a trivialization ®,), the local connection 1-form
A, is sk A.
Lemma 9.3. On overlaps we have A, = Adg,Eal Ag + (Lgﬁ—y;)*dgga.

Conversely, given A, transforming this way, they arise from a unique connection A on P.
Proof. Sheet 4. O

N.B. If P = F(FE), then a connection on P is equivalent to a connection on E.

Definition. The curvature of A is the g-valued 2-form F on P given by F = dA+%[.A/\A]
where [(32; & ® ai) A (32515 @ By)] = 225 (€, m5] @ (cu A By).
A is flat if F = 0.
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