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0 Prelude: Cramer’'s Model

Let 7(x) be the number of primes < z.

Conjecture. (Gauss) 7(x) ~ li(z).

T _di

Here li is the integral logarithm, defined by li(z f Togi-
Probabilistic Motivation. Suppose that the “probability” that n is a prime is o
We model this as follows: Let X7, Xs,... be independent random variables where

)(1::07

X2 =4

X, — 1 with pr.obability 1/logn, forn > 2

0 otherwise.
Then let II(z) := >, X;. Then
1
E[II =1 —
M) =1+ 3 o
3<n<zx
1 1
Var|I1 = Var[X;] = )
ar([[(z)] Z ar[Xi] = > ogn ~ (og)?
i<z 3<n<lzx
By comparing the sums with integrals we find that E[II(z)] ~ li(x) ~ Var[II(x)].
Furthermore, we have li(x) ~ ﬁ. There are several ways to see this:
1. Write li(z) =[5 légt fQ\/E + f\% kfgtt = ..., but using this we only get li(z) < ;7.

2. Apply L’Hopital’s rule to limg_, o 221282

More generally, let li, (x f2 1og oy . Then one similarly finds that li,,(z) ~ 7(105’3&)71.

We can find the asymptotics of li(z) using integration by parts:
*d x vod
li(z) = / y_ Yy / v
o logy logylz ~ J, (logy)

x T \2 T 2dy
= 1
log * (logx) +/2 (logy)? +0(1)

__® Ly (N —1)lx o x )
~ logx (log )N N\ log z)N+T

Cramer’s model is so good, because it assumes the random variables X, to be independent,
but e.g. the condition that n is prime is not independent from the condition that n + 1 is
prime.



Another key idea from probability theory used in analytic number theory is gemerating
functions!

Example. We sieve out primes p1,ps,...,pp of 1+ 2z + 22+ -+ = ;L. For any prime p
1

we have 1 + 2P 4+ 2P + ... = 1=, hence using the Inclusion-Exclusion principle we get

1 1 1 1 .
1_Z_Zl—zpi+zl_zpmj+'“+<_1)1_Zp1-~~pk_ Z o
(2

<J A % )

for |z| < 1. If there were only finitely many primes p1, ..., p, then this would be z!. But
letting z — 7/ (P1Pk) within |z| < 1 yields a contradiction.

Next we will talk more about generating functions.



1 Generating Functions

Idea. Turn a sequence ag,aq,- - € C into a generating function, like Zn>0 anz". Then
study the function to get information about the sequence.

Note. Power series ), -, a,2" can be viewed either formally as elements in C[[z] with its
z-adic topology, or as genuine functions on subsets of C where they converge. These views
are usually compatible, e.g. multipliying two power series formally and then evaluating
them gives the same value as first evaluating them and then multiplying the values.

Given a power series f =) ., anz™ we write [2"]f for the coefficient of 2", i.e. ay,.

Example. We prove that the number of odd partitions of a natural number n equals the
number of partitions into distinct parts. The latter is [2"](1 4 2)(1 4 22)(1 4 23)---. The
former is [z"](1+z+ 22+ )1+ 28+ 25+ ) = [z"]i&- L5 ---. In other words,
we want to prove that

1 1 1
1—21—231—-25

= (14214214 23)---

Indeed, we have

% 1— 2% 1
1o+ =11 (7= ) =l ===
E>1 E>1 E>1

Note that this argument works purely formally in C[z] (or even Z[z]), we could also
interpret this as functions in {z € C | |z]| < 1}.

Example (Fibonacci numbers). Let F,, be the sequence defined by Fy = 0, F; = 1 and
Fhio = Fhy1 + F, for n > 0. Then let f(z) = ano F,z". Then we can rewrite the
reccurence relation as f(z) — (0 + 2) = f(2)z + f(2)2?, i.e.

z
By writing out the partial fraction decomposition of the RHS, we obtain an explicit formula
for the F,.

Some identities:
o oo (W)t = (L+a)m
® > >0 ("jn”jzl)z” = (1 — z)~™. This follows from the m = 1 case and then differen-
tiating.
® > 5op(n+4)2" =5]],5, % where p(k) is the number of partitions of k. This

holds both formally in C[z] and analytically in |z| < 1.

Often we want to relate a sequence (a,), with its sequence of partial sums (Ay)n given
by Ay = Zivzo an. If f(2) = 3,50 anz", then it is easily seen that > yvo Anz = 1)

1—z°




Theorem 1.1 (Abel’s Limit Theorem). Let f(2) =), 5¢an2", AN = Zgzo ap. Suppose
that Ay — A. Then lim,_,,- f(z) = A.

Note that since a, — 0, f(z) converges in {|z| < 1}.

Proof. Let € > 0. We have 5+ Ay = £ for |z| < 1. Then

1-z

FE = Al =11=2) Y (An = AN <1 =2 3 [(Av =)V +e D [2Y)

N>0 N<M. N>M.

where M, is chosen such that |Ay — A| < e for N > M,. Then

f(z) = Al < 1=z > |Ay — Allz[* +e.
N<M,

Letting z — 1 we see limsup,_,; [f(2) — 4| <e. O

The converse is not true, take e.g. a, = (—1)".

Theorem 1.2 (Tauber’s First Theorem). The converse holds as long as a,, = o(1/n) as
n — 00, i.e. if f(2) =), 50an2" converges as z — 1, then ) a, converges.

Proof. Note that |1 — 2" < n|l — 2| for |2| < 1. Then for z =1 — 3; we have

N N 00 N
1
Y an—f@I= 1Y an(t =" = Y anz"[ <Y nll = Hllan+ 1> nlaallzl”

1
SN(I—\2|) SupPn> N n|an\

N
1 € €
< Nn§:0n|an| +sl>lgn\an\ <3 + 3

for N large enough (for the first term use Cesaro-limit). O

In fact, the following is true:

Theorem 1.3 (Tauber’s Second Theorem). The converse of Abel’s theorem holds if and

N-1
onlyifAN—#%O as N — o0.



2 Smooth Sums

Theorem 2.1 (Abel’s Summation Formula). Suppose f(n) is continuously differentiable
and ag = Ag = 0, then

N N
S anf(m) = 3 Fm)(A(n) — A(n — 1))
n=1 n=1 Nt
— AN F(N) = S Am)(F(n+ 1) — F(m))
;__11 n+1
= A(N)F(N) - / A@)f(2)de
n=1“"

We can write ZnN:1 anf(n) = fON f(z)dA(x) (Riemann-Stieltjes Integral). Then Abel’s
summation formula is integration by parts for this integral.

Theorem 2.2 (Kronecker’s Lemma). Suppose f :[0,00) — (0,00) is decreasing to 0 and
differentiable. If 3, <o anf(n) converges, then f(N)3_, oy an — 0 as N — oo.

Example. Let pu be the Mdébius function, i.e. pu(n) is the number of prime factors of
n if n is squarefree and 0 otherwise. Suppose that Zn21 @ converges. Then we get
+ 27]:[:1 u(n) — 0 as N — oo and this easily implies the Prime Number Theorem (but
the convergence of >~ -, @ is not so easy).

Proof. Let & > 0. Let A(N) =30, an = X,y anf(n) iy and S(N) = 3, oy anf(n).
Since S(N) — S, there exists Ny such that |S(N) — S| < ¢ for all N > Ny. By Abel
summation we have

N s
A= |70+ [ s@1 ))de'

N "o
:/0 (~S(N) + () T2 S(N)‘

@) dx +

f(0)
< /ONO(—S(N)+S( ));(gl ’+‘/NJZ(_S(NHS(”:));;g)?dx‘+‘%‘
o

:C+25<f(1N)—f(1NO)>



2e ~
Fn te

Here C,C > 0 are some constants (depending on Np). We then see that

<

limsup |f(N)A(N)| < 2e,

N—oo
so our claim follows. O
Theorem 2.3 (Euler’s Summation Formula). For any function f with continuous deriva-
tive on [1,n] we have

N

N N
S )= [ sade+ [ ah @+ )

n=1
Here {z} := x — [z denotes the fractional part of z.

Proof. Let a, = 1 in Abel’s summation formula. Then A(z) = |z], so

N

N
>0 = NF0) - [ Lol (e

n=1

N
— NS(V) - / (& — (o)) f'(2)de
N N
= Nf(N) /1 xf'(:v)der/l {x}f’(x)d:c
N N
— [ @+ [ @+ 1),
1 1

O

Example. Take f(z) = 1. As le{x}m%da: converges as N — oo, this shows that

xr
27]2/:1 % —log N converges to a non-negative number, called Euler-Mascheroni constant.
An Appell sequence is a sequence of polynomials A,, such that deg A, = n and A/ (z) =
nA,—1(z). So

Ap = ag
A1 = agx + a1

Ay = apx?® + 2a12 + as

In general there are numbers ag, a1, ... such that A, =Y} ax(})z"".



Let G(z,2) = > 1, Ak(x)%lf be the (exponential) generating function of A, (). We then

have
—G (z,2) ZAk 1

From this we get G(z, z) = g(2)e** for some power series g(z).

= 2G(z, 2).

We want to find an Appell sequence By, B1, ... such that By = 1 and fo x)dx = 0 for
i >0, so fol e**g(z)dxr =1 for all z, thus [g(z)%} =1,ie. g(2)% =1 —1,50 g( )= £

a1
and then G(z,z2) = Ze_l.

We have
By =1,
1
Bi(z) =z — X
1
By(z) =a2? —z + &
1
Bs(x) = 2% — §$2 + 5%

Let By, = B (0).
Theorem 2.4.

(i) Bu(w) = Yo Bi(3)a" .

(ii) By(1) = Bg(0) for k # 1. Also B1(0) = —3, Bi(1) = 3.
(i7) Bogy1 =0 for k> 1.

(iv) Bk+1(m+klj-;Bk+l(z) — ok for all k > 0.

(v) Bp(1 —x) = (=1)*By(z) for all k
Proof.

Tz k k
coefﬁments.

(ii) Follows from (iv), or directly Bx(1) has generating function EZZ_ZI =z + &= from

which our claim is immediate. Alternatively use fol By(x)dx = 0.

(ili) Note that 2 + %5 is even.

e(z+1)z etz
e*—1 er—1

®Z which is the

(iv) The exponential generating function of the LHS is
exponential generating function of the RHS.



(v) For k odd this says By(1 — z) + Bg(x) = 0 and for k even, Bi(1 —z) — Bi(z) = 0.
For k = 0 this holds trivially, the general case follows by induction (using (ii) and

(iii)).

O
Some Bernoulli numbers:
n|0 1 2 4 6 8 10 12 14
11 11 1 5 691 7
Bn|l =5 § —3 22 ~30 6 230 &
We know that —*5 has its smallest singularity at z = 27, hence
Bp\1/k
(27r) ! = lim sup ( k) .
k—o00 k!
We will get better bounds.
Theorem 2.5. eryzo nk = Bk“(NZ{gl_B’““(O)
Proof.
N N
Sk =30 Biri(n+1) = Bep1(n) _ Bryi(N +1) = By (0)
k+1 k41 '
n=0 n=0
O

Let Py(z) = £ Bi({z}). We can then rewrite Theorem as:

N N
~ [ e = IR 4 [y oy
1 1

Note that since fo By (t)dt = 0, we have [ Py(t)dt = f{m}B (t)dt = (k+1) i (Br1({x})—
By41(0)), so Py, = P, for all k. Therefore we have:

/1NP1($)f()d:r—P2f /P

= %(f/(N) - f'(1)) —/1 Py(z) f"(z)dx
B ! N N "
= S = £ = (W + [ P o)
’ 1
N
= %(f’(]\f) _ f’(l)) + %(fl//(N) _ f”/(l)) _/1 P4(.Z‘)f””($)d$.

To summarise:



Theorem 2.6 (Euler-MacLaurin Summation). Let f € C*"T1([1, N]). Then:

/fdx_ D), B

B2T
T

S2((N) = F(1) + ZE (V) = £ ()+

N
GBI = W) + [ P )

To bound the integral remainder term, we want bounds on Ps,1. The Fourier expansion
of Pi(x) ={z} — 5 is given by

i sin(27nx)
— nm
From this it easily follows that
2 cos(2nmx)
1)kt
Poy.(z Z (2nm) (o \2k

P k-1 2sin(2nmx)
241 (@

277,71' (9m )2k

Plugging in = 0 into Poy(z), gives

Box k 1 —2k
(2k)! (-1 2(2 Z n2k

We also get the bound |Py(z)| <

@r )k for all x.

2.1 Analytic Continuation of ((s)

The Riemann (-function is defined by

o0

ORI

n=1

for Res > 1. We will usually write s = ¢ + it. The series defining ¢ converges locally
uniformly in o > 1.

Theorem 2.7. For Res > 1,

C(s):i—s G dzx.

s—1 1 s+l

Proof. ((s fl r %dx = floo ;‘Z{fl} dx + 1 by the Euler summation formula, and we are
done. O

10



Now the integral on the right converges for Re s > 0.

Theorem 2.8.
__ 1t 1 < 2a}’ —3{a}? +{a}
C(S) _1+2+12—8(8+1)(8+2)/1 192543
This extends ((s) to Res > —2 and we get ((0) = —%. More generally:
Theorem 2.9.
1 4 ng s+ 2k —2  Borr1({2}) (5121) ;
C( ) 2% — 1 - 1 rst2r+1 z-
_1\k(stk—1
Proof. Let f(z) = 2~°. Then f®)(z) = (_S)(_S;iz;c”(_s_k) - £S+,’§ )k!. So
Xdr 1 B ok (g / pler+)
el Py, 1) (2)d
- [ =g+ > Gl s (2) O ()
_ 1, Z Boy (s + 2k -2 /°° Bor1({2}) (5771 dx
2749k \ 2k -1 ) petar ‘

O]

This shows that ¢ extends analytically to C\ {1} with a simple pole of residue 1 at s = 1.

Theorem 2.10. Given an integer m > 2, ((1 —m) = %.

1—-m+2r

ot 1 ) = 0, so the integral term

Proof. Let r > m/2 in the previous theorem. Then (
vanishes and then

1 1 Byfl-m\ Bi(3-m
1—m)= — + -+ 2 24
(A =m) m+2+2<1>+4<3>+

::nl(Bo+Bl(”f> +BQ<T;) +"‘+Bm(2>)

The last equality follows from Zz;é Bi(}) =0 forn > 1. O
The Bernoulli numbers appear both in ((2k) and in (1 — 2k), this suggests there might

be a general connection between these values. This is indeed the case, and for this we
need the Gamma function.

11



2.2 The Gamma Function

Euler’s definition of the Gamma function:

— N s (N_l)!
D) = Jim N e G N =D

We see that I'(1) = 1. Also note that

r = li
5 (S) NgnooN—i-S

Theorem 2.11. For Res > 0,
o
I'(s) = / ettt
0

Proof idea. Write et = limy_,00(1 —t/N)" and integrate by parts. See notes for details.
O

Some more identities:

1 y e
—— = lim
INE) oot
N-—1
:]\}i_l;noose( —1 ;—ngs H e—s/n 1+
n=1
oo
= se’? H e s/ (1 + i) )
n
n=1

Theorem 2.12 (Complex Stirling Formula).
1 1 .
logT'(s) = (5—5)10g5—s+§10g277+0(|5| )

uniformly in {|arg(s) + w| > 0}.

Using the Gamma function we obtain another way of analytically continuing the Zeta

1 o0 g5~ ldg
Cls) = I'(s) /0 er —1

function.

Theorem 2.13.

for Res > 1.

12



Proof. fgoo e 5= 1dy = Y8 Gum over these and we get

nS
o
r o ,.s5—1
> M
ns o er—1
n=1

U
Let G(s) = [ Zj:lldx and F(s) = [§ %dw for some fixed € > 0. Then G(s) is entire,
so only need to deal with F(s) in order to analytically continue ((s).
We have 25 =1_-1_%5", gfl’)l!ar%*l. Then
e ,.5—1
F(s) = / Y dx
0 et —1
i~ 2n

—e( sy P )
s—1 2s n1(2n)!2n+s—1'

Now the RHS is analytic in C\ ({0,1} U{1 —2n | n > 1}). The poles at 0 and 1 — 2n
cancel with those of I, hence ((s) is analytic in C\ {1}.

13



3 Dirichlet Series

Power series ), - are good for additive problems, since 22" = 2" T™ For multiplicative
problems we replace z™ by n?, so that n*m?® = (nm)?. This leads to Dirichlet series.

A Dirichlet series is a series ) %% associated with a sequence a,. If a, = f(n) where

f : N — C is an arithmetical function, we write D(f,s) =" % As in the case of power
series, we can view Dirichlet series either as formal series or as analytic functions (where
they converge),.

Note that D(f,s)+ D(g,s) = D(f + g,s) and D(f,s)D(g,s) = D(f * g,s) where

(f#9)(n) = f(d)g(n/d)

din

is the (Dirichlet) convolution of f and g.

We have g* f = f*g, f+x(g*h) = (f*g)x*h.

f is a multiplicative function if f(nm) = f(n)f(m) for n,m with (n,m) = 1. If f(nm) =
f(n)f(m) for all n,m, then f is completely multiplicative.

It is easily seen that the convolution of multiplicative functions is again multiplicative.
The set of multiplicative functions that are not constant 0 are an abelian group under
with identity 1(n = 1) where D(1(n =1),s) = 1.

The inverse f~' of f can be easily determined recursively. To see that f~! is again
multiplicative, note that if f and f % g are multiplicative, then so is g (if not, pick a
minimal counterexample,...).

Nota that a multiplicative function is uniquely determined by its values on prime powers.

We define the Mébius function p by u(p) = 1 and p(p*) = 0 for primes p and k > 2 and
then extend multiplicatively.

We then have the identity
1lxp=1(n=1).

In other words
1 n=1
d) = ’
dzm:lu( ) {0 n > 1.

This can be seen e.g. from the inclusion exclusion principle or using the multiplicativity
it suffices to check it for prime powers in which case it is obvious.

This gives the following result.

Theorem 3.1 (Mébius inversion). For functions f,g : N — C we have g = 1 * f iff
f = p*g. If this holds, then D(f,s)((s) = D(g,s). In particular {(s)~! = D(u, s)

14



Theorem 3.2 (Euler Product). If f: N — C is multiplicative and f(1) =1, then

2
D(f.s) =[]+ f;@ + f;fs) +.0).

p

Eg. ((s) =[[,0—-p*)~".

So far we only dealt with Dirichlet series formally, now we will care about convergence.

3.1 Convergence and Non-vanishing of Dirichlet Series

Theorem 3.3. D(f,s) converges absolutely iff -, , ‘flgfz)

converges.

Proof. D(f,s) converges absolutely iff its Euler product converges absolutely, and [ [, (1+
a,) converges absolutely iff ) |ay| converges. O

In particular ﬁ = D n>1 £ T(ZZL) converges absolutely for Res > 1, so ((s) # 0 in this
region. This also follows from the Euler product.

A general Dirichlet series has the form Zn21 ane ?* with \, ~ +o0.

E.g. taking A\, = n gives > a,(e™%)" = > a,z" with z = e7*. And for \,, = logn we get
ordinary Dirichlet series.

Note that -, ane s = Jo e 'dA(t) when A(t) = > oa, <t An-

Theorem 3.4. If a Dirichlet series > an/n® converges at sg € C, then it converges

uniformly in every angular sector L‘:%fr(;' < colsd> for every 0 < ¢ < /2.

Proof. By replacing a,, by n*°a,, we may assume sy = 0, so ) a, converges. Let R(u) =
Y nsu Gn SO that R(u) — 0 as u — oo.

N N+

n -1
> oo Z/ — dR()
_ n xr

Nt s
~FR@ + [ R

R(M) R(N) N
:]\48_N5+8/ stR(a:)dyc
So
N, o
Z —|<ete+te s/ 2t gy
n M
n=M+1

15



<2 +¢(|s|/o).
0

This shows that for a Dirichlet series f(s) = )" a,n~° there exists a number o, € RU
{£1}, called the abscissa of convergence of f, such that f(s) converges for Res > 0. and
diverges for Re s < o.. Similarly, there is the abscissa of absolute convergence o, which is

the abscissa of convergence of ) |ap|[n™%.

Note that 0. < 0, and 04 — 0. < 1. Indeed, if ) a,n™° converges for some s, then
lann~%| < 1 for large n and then |a,n~(T0+D| < n=(149) for large n, hence 3", a,n~(+1+9)
is absolutely convergent.

Theorem 3.5. If A(N) = 2711\[:1 an = O(N**€) for every e > 0, then > o7 apn™® =
oo A(x)
sJ

L gerrdz converges for Res > a.

Proof.

N Nt N+
Zann_s = /1 e 5dA(z) = [A(z)z 5] —/1 (—8)z~ ) A(z)dx
n=1 -

converges. O

From the theorem we get

1
T—+00 10g x

If Y a,n™® converges, then by Kronecker’s Lemma N ¢ Zﬁ[:l ap, — 0, so 25:1 an =
O(N®), so
log A
0. = limsup L(x).
T—00 long

Theorem 3.6 (Landau). If a, > 0, then o. is a singularity of f(s).

Theorem 3.7 (Ramanujan).

C(s)¢(s —a)¢(s = b)¢(s —a—b) _ <~ 0a(n)on(n)
((2s —a—b) Z

n=1
where oq(n) =3 4, d* and Res > max{l,Rea+1,Reb+1,Re(a +b) + 1}. In particular

¢(s) _ 3 d(n)?

nS

)
n>1

where d(n) =}y, 1 is the number of divisors of n.

16



Proof. Let z = p~®. Then compare the Euler products. The LHS is

_ a+bz2

1—p
1} (1= 2)(1 —p22)(1 — pP2)(1 — potP2)

and the RHS

IT(Eeatmnens=”) = TL(E g )

n>0 p n>0

It is now straightforward to verify these two are equal. O
Corollary 3.8. For any 0 #t € R, we have {(1 + it) # 0.

Proof. Suppose ((1+it) = 0. Then also ((1 —it) = 0. Let a = it,b = —it in the previous
theorem. Then

C(8)%¢(s +it)((s — it) > oit(n |ozt
C(QS) =L Z

n=1

Now at s = 1, the zeros at ((s +it) and ((1 — it) cancel the double pole of ¢((s)?, hence
the LHS has no poles in (—1,00). The RHS is a Dirichlet series with non-negative real
coefficients, hence by Landau’s theorem it converges in (—1,00). But this is clearly im-
possible. ]

17



4 Primes in Arithmetic Progressions

Let G be a finite abelian group. Then a character x of G is a homomorphism y : G — C*.
Let ¢ > 1 be an integer.A Dirichlet character x : Z — C* mod ¢ is a function of the form

{m mod q) (g,n) =1

x(n) = 0 (¢;n) > 1

for some character x of (Z/qZ)*. The trivial character mod ¢ is denoted xq (i.e. xo(n) =1
if (g,n) =1).

We recall the following basic facts about characters:

L e(q) x=xo
> x(n) = {0 ’

X # Xo-

Theorem 4.1.

Theorem 4.2.

oy = Jeld) n=1 (modg),
ZX() {O n#Z1 (mod q).

Corollary 4.3. If (a,q) =1, then

v(q) — 4 $@ n=a (modg),
ZX:X( Jx(@) {O n#a (mod q).

Here the sums run over all characters y mod gq.

Given a Dirichlet character x mod ¢, the corresponding Dirichlet L-function (mod gq) is
defined for Res > 1 by

= X’r(zZL) =TI = xwp—)~".

n>1 p

Theorem 4.4 (Dirichlet’s Theorem). There exist infinitely many primes = a (mod q)
where (a,q) = 1.

Proof. log L(s,x) = >, > X(™) - And

m>1 mpms

L > X(a)log L(s, x) = (p(lq) > m;ms (Z x(pm)x(a)>

v(q) = .
>3 1
> — mps™m
p"™=a mod ¢q



<C+ Z is

p=a mod q p

We have Z(s, xo) = T,j,(1 ~ 7~*)¢(s). 50 lim,_, 1+ log L7, xo) = o0. So we only need to
prove that log L(s, x) is bounded around s = 1 for x # xo. This follows from the following
three theorems. O

Theorem 4.5. For x # xo,

L(s,x) = i XSZ) = 8/1 (Z X(n))x_s_ld:c
n=1

converges for Res > 0.

Proof. By Theorem the partial sums ) |, .. x(n) are bounded. Then the result follows
from Theorem [3.5 N O

Theorem 4.6. L(1,x) # 0 if x # X, i.e. if X is a complex character.

Proof. Let Z(s) = [[, L(s,x). Suppose that L(1,x) = 0 for some x # X. Then also
L(1,%X) = 0 and the double zero of L(s,x)L(s,X) cancels the pole of L(s,xo) at s = 1

and we get Z(1) = 0. From the above expression with a = 1 it is easily seen that
ﬁ >y log L(s,x) = 0 for Res > 1, hence |Z(s)| > 1 for Res > 1 which gives a contra-
diction. ]

We now give another proof of this which also includes the case where x is a non-trivial
real character. For this we need:

Theorem 4.7.
Z(s) = H(1 — psordap)=pla)/ ordep
plq
for Res > 1.

Proof. Fix a prime p { ¢ and let r = ord, p. It suffices to prove that

[T =xp)p~) = @ —pm)e@d/r,

X

It is easy to see that as y runs through the characters mod ¢, x(p) takes on every r-th
root of unity exactly ¢(q)/r times, hence

[[a—xwp) =[] Q- )¢/ =@ —p el

X ¢r=1
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Theorem 4.8. L(1,x) # 0 if x # Xo-

Proof. Suppose L(1,x) = 0. Then this zero cancels the pole of L(s, xo) at s = 1 in Z(s),
hence Z is holomorphic at 1 and thus holomorphic in Re s > 0. Now note that

Z(S) — H(l _pfsordqp)fgo(q)/ordqp _ Cn
Plq n=1

nS

where all ¢, are real and non-negative. Hence by Landau’s theorem, the Dirichlet series
on the right must converge in (0,00). Now note that for o > 1, we have

2(0) = [[a—p@7) = § el
pla

(n,q)=1

Then it must be that the coefficients ¢,, are greater than or equal to those on the RHS,
hence this inequality is also valid in (0,00). But this is impossible as the series on the

RHS is divergent at 0 = 20 O

4.1 Gauss Sums

Now consider an odd prime p. Let x be a non-trivial real character mod p. Then x
n

is necessarily given by the Legendre symbol, i.e. x(n) = (5). We will prove directly
L(1,x) # 0 for x.

Let ¢ = exp(2mi/p). The Gauss sum is

pt p—1
_ n __ k2
5-3 (5)e -2
n=1 k=0
One can show that SZ = p(_?l)
Now suppose L(1,x) =Y oo, (? —0.
Let N
pP— Hmng\(F;P(l —C )
[l emr2(1—¢7)
Then

n=1 r
00 p—1
1 kn
()¢
n=1 k=1 p
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So if L(1,x) =0, then P = 1. Let ¢ be a quadratic non-residue mod p. Then

1_<cr
1=pP=]] &

re(Fy )2

In other words, ¢ is a root of [[, =%+ — 1 =: g(z). Since the minimal polynomial of ¢

1—z"
over Qis 1+z+---+2P~1 there is f(x) € Z[x] such that g(z) = f(x)(1+z+---+aP~1).
Now evaluate at © = 1. Then we get ¢’ —1=0mod p, hence ¢ is a quadratic residue

mod p, a contradiction!

Now we consider Gauss sums not necessarily mod primes.

Theorem 4.9. .
n— .
L Z k2 . 1 + (—Z)n

where ( = 2™/,

Gauss sums can be defined for any Dirichlet character. If x is a character mod ¢ (not
necessarily prime), then we let

q—1

T(x) = > x(n)e(n/q),

n=1

where e(z) = exp(2miz). Note that this may be viewed as the discrete Fourier transform
X(1) of x. More generally, X(r) = ;11;11 x(n)e(nr/q). It can also be viewed as a discrete
version of the Gamma function.

We say that the character x mod ¢ is primitive if it is not induced by any character x’
mod d for some proper divisor d of q.

Theorem 4.10. |7(x)|? = q if x is primitive mod q.

Proof. For (r,q) = 1, we have
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And then in particular [X(r)| = |7(x)|- If (r,q) > 1, then it is not difficult to see that
X(r) = 0 using that x is primitive. Now by Parseval we get

ola) = > P = = SR = S”ff’|r<x>|“’.
n=1

Contour v,

Proof of Theorem[].9 Let

ig e((z + k)*/n)
z) = =k=0 .

Consider a parallellogram contour -, with center 0, two sides of length r tilted 7 /4 relative
to the z-axis, two sides parallel to x axis (of length 2a), as in the figure. Let

I(a; f) = lim fla+te™*)em/Adt

r—oo |_.

and

L, = /T f(z)dz.

Take a = % Then z = 0 is the only singularity of f in ,, so by the residue theorem,

n—1
I, =2miRes.—o f = »_ C* = S,.
k=0
We want to compare I(3; f) with I, . Note that on the horizontal lines in 7., Re((z+k)?)
will be small, hence |f(z)| will be small and the integral over this part goes to 0 as r — oco.

Hence
1 1

Su=lm L, = I(5: /)~ (=5, )

r—00 2’
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Now we have:

e((z+n)?/n) —e(2?/n)
e(z) —1

e(2z) —1
e(z) — 1

Fz+1) = f(z) = — e(z*/n) — e(22/n)(e(2) + 1).

And therefore

1 2 2

Su= 10 —1(=5.0) = 1( = ie(2)) +1( = gre(5 +2)).

Let g(z) = e(2?/n). Note that e(zn—2 +2) = e(%)e(—n/él) = g(z +n/2)(—i)". Since
g is entire we can translate the path of integration and get

Sn = 1(0;9(2)) (1 + (=)") = 1(0;e(2?/n)) (1 + (=i)")

He(/m) = [~ e BT s — an(ose(:) = e

Clearly S1 = 1, hence
A=)

S
" 1—1

Vn.

Note that the proof also gives the classical result

o0 2
/ e ™ dt = 1.
— 00

Alternatively one can prove Theorem [£.9] using the following facts:

Theorem 4.11. For a continuous function f of bounded variation on [0, 1], we have
1 Yoo
- -1 —2mijx
SUO+100) = Jim 3 | r@eizaa,

Now sum this to get:

Theorem 4.12 (Poisson Summation). For a continuous function f of bounded variation
on [0,n|, we have

L 0 1 1)+ = li SlA —2mijz g
SFO) + FQ) 4+ f(n - >+2f<n>—Ngnij_N/0 Flaye T .

To get Theorem apply this to f(z) = e(2?/n). See notes for details.
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L0 =3 M = 0 3 ().
n=1 m=1

Proof. Let f(z) =% — {z}. Then

2) = Z sin(i:wx)

n=1

converges locally uniformly on (0,1). Plugin = ™ and note >, x(m) cos(2mnn/q) =

q

0. Then
q .
1 m zq _ X(m)eZmnm/q
Pamy ) ==
m=1 n=1
X))
= nm
S X()
= T(><)nz1 o
; iy = X(n)
23 mm) = (0 3 N
m=1 n=1
Now replace x by Y. We have 7(x) = x(—1)7(x) and hence % = —%, O

Now suppose that ¢ is prime and ¢ = 3 mod 4. Take y to be the quadratic character.
Then 7(x) = i,/q by Theorem Therefore

00 2 q—1 m
9 (s)
The LHS can also be written as

lim i <Z> n~* = lim ,, (1- <§) =)L,

s—1t — s—1+

This is clearly > 0. Hence
q—1
S m <m) <o,
m=1 q

i.e. the sum of the quadratic non-residues exceeds the sum of the quadratic residues.
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5 Chebychev’s Estimates

From now on, p will always denote a prime, so e.g. >
than or equal to x.

p<z 18 the sum over all primes less

Theorem 5.1. There exist a,b > 0 such that a < % < b for all x > 2.

Proof. Note that vy(n!) = 3772, 5], so

2n > | 2n n
(G -2 5] 5]
All the terms in the sum are 0 or 1, and 1 only if {I%} > % So
2
( n) < H p(log2n)/logp _ <2n)71'(2n)
" p<an

and also

2n
> > 71'(27’1,)771'(71).

n<p<2n
2" (2 C g
2n+1 "\ n/ —

2nlog2 —log(2n + 1)

But also

From this we get

2n) >
m(2n) 2 log 2n ’
2nlog 2
7(2n) — m(n) < 282
logn
The first inequality immediately gives 7(x) > a75g7 for some a > 0. The second gives
log v/z/log 2 b
M) ST Y a2 - nlaf) <
for some b > 0. O

Chebychev showed that we can take a = 0.9219... and b = 1.1053... for z > 30. This
was enough to show Bertrand’s Postulate: There is always a prime between n and 2n for
n > 1.

Theorem 5.2. Let p, denote the n-th prime number. Then nlogn < p, < nlogn.
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Proof. Substitute x = p,, in the previous result. Then

lolg)pn <m(pn) =n< blogr;)n (%)
We get ) )
% < %logpn < pp < (éﬁ) < (Z) .

Hence logn < log p, < logn. Substitute this back into to get the result. O

Theorem 5.3. > _ == ogp _ Joga + O(1).

Proof. The Euler summation formula gives

Zlogn =zlogz + —z+ O(logz) = zlogz + O(x).

n<x

But we also have

S logn = Zlogpz { J

n<x p<lzx

The contribution from j =1 is

lo x lo
xz ip — Z(logp){;} = l’Z ip + O(n(z)log )

p<z p<z p<z

and O(m(z)logz) = O(z) by Theorem The remaining terms contribute at most

xZ(logn)(n_2+n . _.I‘Z logn = O(x).

n<x n<x

Hence the claim. O

Theorem 5.4. There exists C such that

1
Zf =loglogz + C + O(1/logx).

p<z

Proof. Apply Abel summation with a, = 10% if n is prime and a,, = 0 otherwise. Let

f(xz) =1/logz. Then

p logzx 5 t(logt)?

S1_AW [T Aw)

By Theorem A(t) = logt + n(t) where n(t) = O(1). So

1 n(z) /I di /“’” n(t)
g dt
Zp + log + 5 tlogt * 5 t(logt)?

p<z

The result follows with C'=1 — loglog 2 + f log(g O
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Theorem 5.5. There exists a constant C' such that

H (1 — }1))1 = C'logz + O(1).

p<z

Proof. We have

H(1—;)_1=Hexp(—1og(1—;))

p<z p<z
—Hexp(l—l- 1 + L + )
— - 72 73 PR
<s p  2p* 3p
1 1 1
*eXP(Z§>eXp<Z<@+3T,3+“'))

p<z p<z

Now D =372, (27% + # +.. ) <D0l m converges and > m =0(1/x).
Then by the previous theorem:

1\ -1
I1 (1 - 5) = exp(loglogz + C + O(1/ log z)) exp(D) exp(O(1/z))
p<zw
Now the result easily follows. O

Remark. Mertens showed C’ = ¢7 where + is the Euler Mascheroni constant.

Theorem 5.6. If the limit

. log
lim 7(x)
T—r00 €T

exists, it must be 1.

Proof. Suppose the limit equals [. Use Abel summation with

1 n prime,
an = .
0 otherwise

and f(z) = 1. Then
Z I Z _ m(x) T (x)
p<zx ;) B n<lx anf(n) - x " /; t2 .

Now the last integral is asymptotically

l] : 0(1) ldt

ogt

———dt+0(1) = = lloglogz + O(1
/2 t2 () /2 t]Ogt 8108 ()

But we already know that the sum is ~ loglogx, so l = 1. O
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We define the Chebychev functions

= logp,

p<x
- Y o
pm<zx
We can write ¢(z) =, ., A(n) where
1 =pm
A(n) _ ng n p "
0 otherwise

is the von Mangoldt function.

Theorem 5.7.

m(x) = b(x) +O( ° )

log = log 2

So the Prime Number Theorem 7(x) ~ x/log z is equivalent to ¢ (x) ~ z. Also ¢(x) ~ z

iff x ~0(x) as ¥(z) = 0(z) + O(Vx).

Proof Apply Abel summation with a,, = logn if n is prime and 0 otherwise, and f(z) =

We get
~Y - O(x) [ _0@)
@) =2 1= log +/2 t(logt)th

<z

log z”

Since 7(z) < we get 0(t) < t. Furthermore, [ i as in Chapter@ O

x
log z’ logt)2 ~ (log )

Given an arithmetic function f : N — C, we define f' : N — C by f’(n) = f(n)logn. Note

that %D(f,s) = —D(f',s). We also have f'"+¢ = (f+g) and (fxg) = f'xg+ f*(J).
Indeed,

(f*9)'(n)=>_ f(d)g(n/d)logn = f(d)g(n/d)(logd + log(n/d))

dln dln
—Zf g(n/d) logd—i-Zf g(n/d)log(n/d))
dn din

= (f'xg)(n) + (f*g)(n).

Theorem 5.8.
Ax1=1

Proof.

(A*1)( ZA Zlogp:logn.

din P n
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Theorem 5.9 (Selberg’s Identity).

logn+ZA A(n/d) = Zu Y(log(n/d))?

dn dn
Proof. From A x1 = 1" we get

"=ANs14+Ax1U"=ANx1+Ax(Ax1).
Convoluting with p gives A’ + A x A = p * 1” which is the claim. O

Theorem 5.10.

= A(n)  —C'(s)
; e Cs)

Proof. The equation ((s)> 0", ns = —((s) is equivalent to 1 x A = 1’. Alternatively
use the Euler product of { and write out (—log((s))’. O

Theorem 5.11. Let M(z) = >, ., p(n). Suppose that M(x) = Oa(z/(logz)?) for all
A. Then (x) = x + Oa(z/(logx)?) for all A.

Proof. From 1+ A =1" we get A = p* 1. Then

:ZA ZZM ) log(n/d)

n<z n<z din
= Z wu(d)logn = Z ,u(d)( Z 10gn) + Z logn( Z ,u(d))
dn<z d<yz n<z/d n<V@ Vr<d<z/n
= Z M(d)(% logg - 3 + O(log(x/d))) + Z loin0<<logxx),4>
d<v= n<yz
T r T 1 T
- S\fu(d) (3 log d d + O(log(x/d))) + n;/g n(log n)QO((Iog x)A*3)

- M(d) (d log = s E + O(log(x/d))) + 0(@)

S

We have 3~y “T) =0 as this is lim,_,;+ C(S) = 0. Next consider x2d<f 2d) 1og d. We

have 1 )1
Z Ogn s~>1z:'u = s%l(l/C( ))

d>1 d>1

We have to check how fast these sums are convergent.

ZM logn—/ Z 1Ogt_l)dt

n>y y<n<t
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Therefore:
a) = :z:(l oo Z w(d) lodg(l“/d) . ,u(dd)> I Z 11(d)O(log(z/d)) + O(W)
d>\/T A<V
=+ O<W>-
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6 Functional Equation for (

Theorem 6.1. The Riemann zeta function can be extended to a meromorphic function
on C and satisfies

C(s) = 257 L sin(ws/2)T(1 — 5)¢(1 — s).
Proof. We have

s {x} 1 1 {33}
C(8)25—1 s 1 xs‘*‘lx 5—1+2+S/1 xstl

which is valid in ¢ > —1. Note that

f(z) :=;{x}zzsm(§:m>
n=1

is uniformely convergent for {z} € [e,1 — £]. Also note that

11 L —{=
ey 2},
s—1 2 o astl

when —1 < o < 0.

Hence

o0 2
0o anl sin 2nmx Z / sin 2??,7T$

=5 . $s+1 st

_ ;:Ol (2?)5 /0 ij I

_ 2(2@ C(1—s) /Ooo o da

= 2(%)%(1 — §)(~T'(—s)sin(7s/2)) (*)
= = (2m)*(~D(=s)) sin(ms/2)(1 - s)

= 2°7°711(1 — ) sin(7s/2)¢(1 — s)

That we can interchange integral and sum in the third equality is not completely obvious,
to see it split the integral up into {z} € [¢,1 — €] and ¢ [e,1 — ¢] and do some stuff, see
notes for details.
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Proof of

> sinx 1 oo ey o0 e~y
/0 i = o </o s+l dy — /0 s+l dy)
Now consider a contour as follows: € > 0, R > 0. Then go from € to R, then on a quarter

circle from R to iR. Then to ¢e, and then along a small quarter circle back to €. Integrate
Ze:% over this contour. We have

e iz
e
dz
1
/ia 25F

iR eiz
/R Zs+1dz

/2 9 e—0
<C —dt =%,
0 €5+1

1 w/4 )
< / 6—Rsm0Rd9
0

1 /W/4 _R2¢ R—o0
< e BR0Rd) L2
Rs+1 0

Since the integral over the whole contour is 0, we get

Ooeiyd 0 ey ¥ .Ooe*yd
/0 yo+l y“/oo<z'y>s+” y”/@ (iy) 1Y

Similarly, one shows by integrating over the mirrored contour in the lower half plane that

ooe—z'y ) o'} e Y
o =i, g

*sinz 1 *  eY ey
MY Gy = 2 R R
/0 P 2(/0 (i)t /0 (—ig) 'L y)

Therefore

= T ()
= %F(_S)(efsm/Qifl + (_Z')flesiﬂ'/Q)

= —I'(—s)sin(mws/2).

O
Theorem 6.2. ¢'(0) = —3 log(2n)
Proof. We have
1  {t} 1
C(s) = H+1—s/1 prrdt=—7+7+0(s - 1)
Therefore lim,_,1+(¢(s)(s—1))" = . Now compare this with the other side of the functional
equation. ]

Remark. If £(s) = 1s(s — 1)m=*/2T(s/2)((s), then £(s) = £(1 — s).
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7 Perron’s Formula

Given a sequence a,, we associate to it the Dirichlet series D(s) = > a,n~*. How do we
get information about the a, from properties of D? Let A*(x) = ), _, ay if z is not an

integer and A*(z) = 3, _, an+3a, if 2 is an integer. Let o, be the abscissa of convergence
of D.

Theorem 7.1 (Perron’s formula, ineffective version). Ifa > 0,a > o., then for all x > 0:

A*(z) =

T 2mi

D(s)—ds := — lim D(s)—ds.

1 a+100 s 1 a+iT s
a S - 271 T—o0 a—iT S

—1300

Theorem 7.2 (Perron’s formula, effective version). If a > 0,a > o., then for all x > 0:

1 a+iT s
A¥(z) = — D(s)—ds+ R(T
@ =55 | D Tds+ RT)
where [R(T)| < 4 0 cfieg 2y
In the case D(s) = 1, this says
1 a+iT s 0 0=<=z<l,
—— lim —ds = % =1,
27TZ T—00 a—iT S
1 z>1

Note that since |x°/s| = x%/|s|, the integral does not converge absolutely.

T s |apiT T .
Let Iy = faa_t.lT “~ds. Then we have Iy = slf)gx}Z—ZT + loéx faa_t.} %ds and this does
converge absolutely for 7' — oo. We have | = fg[)ZITO | = \/anTaQ pr— O(z*/(Tlogz)) =

o(1).

We now prove Perron’s formula for D(s) = 1. Consider the following contour, the Bronwich
contour.

Suppose first that © > 1. Then on I'; we have |z|* > 2% The residue of i—; at s =0 is
log z. Then
1 a+iT s 1 s
— 2d8:10g$—‘/ %ds.
21t Jo_iT S 27t Jp, s

Let p = v/a2? + T2 be the radius of the circle. Then on I'y we have |z°/s?| < |2%/p?|, hence
the integral on the RHS is O(1/p) = o(1) as T'— oco. Then we have

1 a+iT s

50 ) gds:O(:r“/(Tlog:v))—i-l—i-O(l/T) =o(1)+1.

In the case z < 1 one similarly finds the claim by integrating over I's instead of I';.
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—
aeil

a-il

Bronwich contour

The case £ = 1 can be done directly.
The same argument shows the following more general version:

Theorem 7.3.

1/”‘”OO ridx _Jo r <1,
270 Jyioo S(s+1)---(s+k) %(1_%)’C x> 1.

Proof of Theorem [7.1) and Theorem[7.3. If a > o,, then we can just swap integral and sum
in f;ﬂm D(s)*% " ds and the result follows from the special case D(s) = 1. For 0. < a < 04,

100
we need to do a bit more, see notes for details. ]

We now give a version of Perron’s formula that gets rid of the difficulty of non-absolute
convergence.

Let Ay(z) =[5 A =D n<z an(z —n). Then we have:
Theorem 7.4. For any ¢ > max(0,0,) and any > 1,
1 c+100 I‘S+1
A = — D(s)———ds.
1) 27 /Cioo () s(s+1) s

Proof. 1t is easy to see that the RHS is absolutely convergent, hence can swap sum and
integral and apply Theorem
1 c+ioco s+ c+100 ac
L D(s)——ds = Z / ) g
271 J oy s(s+1) 27i o (s —|— 1)

C—100
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8 The Prime Number Theorem
Theorem 8.1. For Res > 1, we have ((s) # 0.

Proof. For Res > 1, this is easy. E.g. it follows from the convergence of the Euler product
or from ﬁ = Zn>1 fLS) So suppose s = 1+ it where 0 £ t € R. We already proved this
case in Corollary [3.8] Here is another proof using the 3-4-1 trick. For Res = o > 1, we

have

log ((s Zlog (1-— Z Z kpks

p k>1

And
1 k
log [((s)| = Relog((s) = ZZ‘% p)

Now for 6 € R we have

3+ 4cosf + cos 20 = 2(1 + cos )% > 0.

Hence
3log |¢(o)| + 4log |¢(o + it)| + log ¢ (o + 2it)] >0

for any t € R,0 > 1. Therefore

((0)3¢(o +it)* (o + 2it)| > 1.
Now let ¢ — 1. Then ((1 + it) # 0, otherwise the term (o + it)* would dominate over
the triple pole of ((c)3, contradicting the inequality above.

Yet another method: We have 0 < (1 + p* 4+ p~%)2 = 3 4 2p® + 2p~% 4 p?? + p=2i Now
consider
log [¢(0)3¢(o + it)2¢ (0 — it)*C(o + 2it)¢(o — 2it)|.
O

Plan. Perron’s formula relates fg z)dt and | Ctl;o sx;tl)ds for ¢ > 1. We want to shift

the integral contour to ¢ = 1 and then calculate it. For this we need bounds on (.

Theorem 8.2. Iflog|t| >4 and o > 1 — we have

lo gltl
¢(s) < clogl

for some constant c.
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Proof. For o > 1 we can write

N o] 1 [e'¢)
1 1 1 =% oo
- — = — = —d|t] = — t—%d{t
(=2 =X = [l =1 [ - [
n=1 n>N
—N'7s 1 >
——N"+s f(m)da:
1—s 2

where f(z) = % — {z}. Now the RHS is also convergent in o > 0, hence by the identity
theorem, the equality is also valid in this region. Then

N

1 Nie 11
D - N Y il
O e e TR L sl
n=1
Now put N = [|t|]|] +1and p=1— Then

log log[t]"

N N N 1—
1 1 N——°
E — E — / tPdt = < log |t|.
== 1 1=r
Also ¥ | | ? <« 1and N 7 <« 1. Finally for the last term:

1 2
§|s]cr_1N_U < [N < |t]|t|oer ! < 1.
Hence we get the bound

C(s)] < log [¢].

Theorem 8.3. We have

(M (s) < e(logle)*+.

for all s witha>1—wl|t‘ and log [t — 1| > 4.

Proof. Let r =

10g1| o Then by Cauchy’s integral formula,

k! C(s+2)
C(k) - AR
(s) /ZH :

2 Zk+1

Now s+ z is in the range of the previous theorem, so we get |((s+ z)| < log [t|. Now plug
this into the formula.

O
Theorem 8.4. We have

for o > 1 and t sufficiently large.
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¢'(s)
(s)

Let o/ =0 + W. Recall from the 3-4-1 trick that

Proof. Wlog 1 < o < 2, because

= |En21 An)n=%| < ‘%22))‘ for o > 2.

CC(o! + ity +2it) > 1
Since |¢(0’ + 2it)| < log|t| and ¢(¢’) < (¢! — 1)71, we get

(o' —1)3 1

/ it 4 .
e+ > T g™

Then
C(0" +it)| > (log [¢])~51/4.

Also [¢(o +it) — (o’ +it)| = f:/ ('(u+it)dt| < (¢! — o)(log|t])? = (log |[t|)~8. Hence

[¢(o +it)] > (log [t)) ="/

and then

(log t])?
(log [t[)=31/4

< (log |t])*°.

Theorem 8.5.

38



Proof. Consider the contour as in the figure. Let C' be the left part of the contour. Choose
T and b so that there are no zeros of ¢ in the interior of the contour. Let ®(s) = CC((SS)) s”(”;:)

Note that by the residue theorem

1 1
P ®(s)ds = —2°.
270 J Ot Ly + Lo+ 2
Also . .
— | ®(s)ds =o(1) —|—/ Y(u)du as N — oo,
2m Jr 0

by the smoothed Perron’s formula, Theorem [7.4] So to prove the claim, we just have to
show that the integrals over Ly, Lo, C are o(z?).

We have
loe N 10 1 a+1
/ O(s)ds| < / |D(s)|ds < / cllog N)~ max(1, 2 )ds
L L L; N(N —1)
10 a+1
<(a- 1)c(log NP max(1,z°) Nooo 0.
N(N —-1)

Now on the line segments from 1447 to 1+¢N and 1 —iN to 1 —<¢T, we have ‘qb(;“) <
C(loﬁ‘\él)m, 50

144N 1—iT
14T 1—iN

for T sufficiently large. On the indented rectangle, the integral is bounded by

T 1
Mz? / 207 dt + 2/ 2’ Ldo
-T b

where M = sup ‘C—/ﬁ‘ This is

€ 2
< =z
2

2 1
< .T2M<2T$b_1 4 |:e(0'—1)10ga::| ) — M.%'Q(QTZL'b_l 4
log b

s xb_l)) = o(z2).

Remark by L.T.: The order in which we choose N, T, z seems somewhat problematic here.
For our bound on [ L, ®(s)ds we need z fixed. Then we choose N large enough, then we

choose T large enough. But then why is M2Tzb~! small? Also we might want to use an
effective version of Perron’s formula in the beginning to see how the o(1)-term depends on
x. O

Theorem 8.6 (Prime Number Theorem).

U(x) ~ x.
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And hence 7(z) ~ 27 by Theorem

Proof. 1 is increasing and so

1 T 1 z+h
w [ vt <v@ < [ v

z—h

Therefore 1 )
x— §h +o(z?/h) < h(x) < x + §h + o(z%/h).

Now choose h = dx, so that
1 1
z(1— 5(5 +o(x/d)) < YP(x) < z(1+ 5(5 + o(z/9)).

Then for large enough x,
z(1—9) < ¢(x) < z(l+9).
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O Hadamard’s Factorisation Theorem

An entire function f is of finite order if for some @ > 0, we have |f(z)] = O(el*l") as
|z| = 00. The inf of such « is called the order of f.

Theorem 9.1 (Hadamard’s Factorisation Theorem). Suppose f is entire of order «,
f(0) #0. Then f(z) = e®E P(2), where Q is a polynomial of degree < |a, and

oo la]
Piz) =TT (1- p%) exp (Y ;(;)m)
n=1 m=1

where p1, pa,... is an enumeration of the zeros of f. The product converges locally uni-
formly in C. Moreover, for R > 1,

#{pn | |pn| < R} << R**=.

Conversely, given a sequence py, satisfying this bound, the expression eQ(Z)P(z) defines an
entire function of order < a.
k

. 2
Define the primary factors E(u,0) =1 —wu and E(u,k) = (1 —u)exp(u + % +--- + %)
wkt+1 uk+2 \u|k+1

for k£ > 1. Then log E(u,k) = =75 — 455 — ... and for |u| < 1, |log E(u, k)| < Tl -
So P(z) in the theorem can be written as [[,2 | E(u/pn, ]).

Theorem 9.2. Given any set {py }nen in C with no limit points, there is an entire function
with roots exactly the py,.

Proof. Set r, = |pp|. After reordering we may assume r; < 79 < .... We can also assume
r1 #0. Let f(z) =1[2, E(Z,n—1). If |2[ < %, then [log E(z/pp,n —1)| < % <
51, hence for |z| < R, > 1, >2r 108 E(2/pn,n—1) is absolutely and uniformly convergent,
so f is analytic ain |z| < R and its zeros in this region are precisely those of the remainding

product [[, —op E(2/pn,n —1). O

We see from the proof that we can replace n — 1 in F(z/pp,,n — 1) by a, where a,, is such
that Y7, %=1 converges.

Theorem 9.3 (Weierstrafl Factorisation Theorem). Let f be entire with f(0) # 0. Then
f(2) = f(0)e9P) P(2) where P is a product of primary factors and g is entire.

Proof. Form P(z) as in Theorem with the set of roots of f as the p, (with multi-

plicities). Then % has no zeros, hence admits a logarithm. Alternatively, let ¢(z) =
J;((ZZ)) - 1;((5)). Then ¢ is entire, hence we can define g(z) = [ ¢(t)dt. O
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Proof of Theorem[9.1] Suppose first that f has no zeros. Then by Weierstrafl we may write
f = €9 where g is entire. Since |f(z2)| < el?1*™ for all € > 0, we get eRe9(:) « el=*
hence Reg(z) < |2|*T¢. In fact |g(2)| < |2|* + € by the Borel-Caratheodory lemma. It
then follows from Liouville’s theorem that g is a polynomial of degree < |«].

To also cover the case when f has zeros, we need some more results. O

Theorem 9.4 (Borel-Caratheodory). Suppose f is analytic on |z| < R such that f(0) =0
and Re f(z) < M. Then for any r < R,

Proof. Let g(z) = %, so g is analytic on |z| < R and satisfies |g(z)| < % o

1

=

|z| = R. By the maximum modulus principle, |g(z)| <  also for |z| = r. So R|f(2)] <
2Mr + r|f(z)| and the result follows. O

Suppose f is analytic in |z| < R+ € and f(0) # 0. Then

sor< ((TT 20 sup 71

lon]<R |z|=R
This follows from Jensen’s formula:

Theorem 9.5 (Jensen). Suppose f is analytic in |z] < R+¢ and f(2) #0 in R < |z| <
R+¢ and f(0) #0. Then

n

1 /271’ "
— log | f(Re")|d8 = log|f(0)| 4+ log ———
o J, ‘0B RE O+ loe 1

where p1,...,pn denote the roots of f inside |z| < R with multiplicity.

Proof. Write f(z) = Cgi(z)---gn(2)F(z) where F has no zeros in |z| < R and g;(z) =
};(QZ:;;) and C' is chosen so that F'(0) = 1. Note that g; is analytic in |2|] < R+ ¢. Then
w is analytic in |z| < R + ¢, hence f‘z|:R Wdz =0, so f027r log F(Re®)idf = 0.

Taking imaginary part of both sides gives the result for F' in place of f. For |z|] = R we

have |g;(z)| = ‘i(gz:f’z) } = 1. Also g;(0) = %. Then the formula also holds for g;. It clearly
holds for the constant function C. It is easy to see that it then also holds for the product
f O

Theorem 9.6. Let f be entire, f(0) # 0. Let n(r) denote the number of zeros of f in
|z| <r. Then

n

1 27 . R R
27T/O log’ﬂReze)‘dG—log\f(Oﬂ:log <7’1'”7’n> :/0 ni”d?“

where r1,...,r, are the zeros in |z| < R.
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Theorem 9.7. If f is of order a, then for &' > «a, Y r,® converges.

Using this it is possible to complete the proof of Theorem [9.1] see notes for details.

9.1 Application to ((s)

Let £(s) = 1s(s — Da=5/2T(s/2)¢(s) = (s — 1)m%/?I'(1 + 5/2)¢(s). This is an entire
function and log |£(s)| < slog|s|, but not < [s|. So from the Hadamard factorisation
theory, > ﬁ diverges where the sum runs over the roots of £ (see notes for details).

Theorem 9.8.
¢'(s) B 1 1 1T(1+4s/2) 1 1
G =BT e T )

where the sum is taken over the zeros p of ( in 0 < o < 1.

In fact, B=—1 — 1 — 1 log4n.

Proof. By Hadamard, £(s) = eA15s Hp (1 - %)es/p. Now take logarithmic derivatives. [J
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