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0 Prelude: Cramer’s Model
Let π(x) be the number of primes ≤ x.

Conjecture. (Gauss) π(x) ∼ li(x).

Here li is the integral logarithm, defined by li(x) =
∫ x
2

dt
log t .

Probabilistic Motivation. Suppose that the “probability” that n is a prime is 1
logn .

We model this as follows: Let X1, X2, . . . be independent random variables where

X1 = 0,

X2 = 1,

Xn =

{
1 with probability 1/ log n,

0 otherwise.
for n ≥ 2

Then let Π(x) :=
∑

i≤xXi. Then

E[Π(x)] = 1 +
∑

3≤n≤x

1

log n
,

Var[Π(x)] =
∑
i≤x

Var[Xi] =
∑

3≤n≤x

1

log n
− 1

(log n)2
.

By comparing the sums with integrals we find that E[Π(x)] ∼ li(x) ∼ Var[Π(x)].

Furthermore, we have li(x) ∼ x
log x . There are several ways to see this:

1. Write li(x) =
∫ x
2

dt
log t =

∫ √
x

2 +
∫ x√

x
dt

log t = . . . , but using this we only get li(x) ≪ x
log x .

2. Apply L’Hôpital’s rule to limx→∞

∫ x
2

dt
log dt
x

log x
.

More generally, let lin(x) =
∫ x
2

dt
(log t)n . Then one similarly finds that lin(x) ∼ x

(log x)n .

We can find the asymptotics of li(x) using integration by parts:

li(x) =

∫ x

2

dy

log y
=

y

log y

∣∣∣x
2
+

∫ x

2

dy

(log y)2

=
x

log x
+
( x

log x

)2
+

∫ x

2

2dy

(log y)3
+O(1)

=
x

log x
+ · · ·+ (N − 1)!x

(log x)N
+ON

( x

(log x)N+1

)
Cramer’s model is so good, because it assumes the random variablesXn to be independent,
but e.g. the condition that n is prime is not independent from the condition that n+ 1 is
prime.
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Another key idea from probability theory used in analytic number theory is generating
functions!

Example. We sieve out primes p1, p2, . . . , pk of 1 + z + z2 + · · · = 1
1−z . For any prime p

we have 1 + zp + z2p + · · · = 1
1−zp , hence using the Inclusion-Exclusion principle we get

1

1− z
−
∑
i

1

1− zpi
+
∑
i<j

1

1− zpipj
+ · · ·+ (−1)k

1

1− zp1···pk
=

∑
p1,...,pk∤n

zn

for |z| < 1. If there were only finitely many primes p1, . . . , pk, then this would be z1. But
letting z → e2πi/(p1···pk) within |z| < 1 yields a contradiction.

Next we will talk more about generating functions.
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1 Generating Functions
Idea. Turn a sequence a0, a1, · · · ∈ C into a generating function, like

∑
n≥0 anz

n. Then
study the function to get information about the sequence.

Note. Power series
∑

n≥0 anz
n can be viewed either formally as elements in CJzK with its

z-adic topology, or as genuine functions on subsets of C where they converge. These views
are usually compatible, e.g. multipliying two power series formally and then evaluating
them gives the same value as first evaluating them and then multiplying the values.

Given a power series f =
∑

n≥0 anz
n we write [zn]f for the coefficient of zn, i.e. an.

Example. We prove that the number of odd partitions of a natural number n equals the
number of partitions into distinct parts. The latter is [zn](1 + z)(1 + z2)(1 + z3) · · · . The
former is [zn](1 + z + z2 + · · · )(1 + z3 + z6 + · · · ) · · · = [zn] 1

1−z
1

1−z3
· · · . In other words,

we want to prove that

1

1− z

1

1− z3
1

1− z5
· · · = (1 + z)(1 + z2)(1 + z3) · · · .

Indeed, we have ∏
k≥1

(1 + zk) =
∏
k≥1

(
1− z2k

1− zk

)
=
∏
k≥1

1

1− z2k−1
.

Note that this argument works purely formally in CJzK (or even ZJzK), we could also
interpret this as functions in {z ∈ C | |z| < 1}.

Example (Fibonacci numbers). Let Fn be the sequence defined by F0 = 0, F1 = 1 and
Fn+2 = Fn+1 + Fn for n ≥ 0. Then let f(z) =

∑
n≥0 Fnz

n. Then we can rewrite the

reccurence relation as f(z)− (0 + z) = f(z)z + f(z)z2, i.e.

f(z) =
z

1− z − z2
.

By writing out the partial fraction decomposition of the RHS, we obtain an explicit formula
for the Fn.

Some identities:

•
∑m

n=0

(
m
n

)
xn = (1 + x)m

•
∑

n≥0

(
n+m−1
m−1

)
zn = (1− z)−m. This follows from the m = 1 case and then differen-

tiating.

•
∑

n≥0 p(5n+4)zn = 5
∏

n≥1
(1−z5n)
(1−zn)6

where p(k) is the number of partitions of k. This

holds both formally in CJzK and analytically in |z| < 1.

Often we want to relate a sequence (an)n with its sequence of partial sums (AN )N given

by AN =
∑N

n=0 an. If f(z) =
∑

n≥0 anz
n, then it is easily seen that

∑
N≥0ANz

N = f(z)
1−z .
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Theorem 1.1 (Abel’s Limit Theorem). Let f(z) =
∑

n≥0 anz
n, AN =

∑N
n=0 an. Suppose

that AN → A. Then limz→1− f(z) = A.

Note that since an → 0, f(z) converges in {|z| < 1}.

Proof. Let ε > 0. We have
∑

N≥0ANz
N = f(z)

1−z for |z| < 1. Then

|f(z)−A| = |(1− z)
∑
N≥0

(AN −A)zN | ≤ |1− z|
( ∑

N<Mε

|(AN −A)zN |+ ε
∑

N≥Mε

|z|N
)

where Mε is chosen such that |AN −A| < ε for N ≥Mε. Then

|f(z)−A| ≤ |1− z|
∑

N<Mε

|AN −A||z|n + ε.

Letting z → 1 we see lim supz→1 |f(z)−A| ≤ ε.

The converse is not true, take e.g. an = (−1)n.

Theorem 1.2 (Tauber’s First Theorem). The converse holds as long as an = o(1/n) as
n→ ∞, i.e. if f(z) =

∑
n≥0 anz

n converges as z → 1, then
∑

n an converges.

Proof. Note that |1− zn| ≤ n|1− z| for |z| < 1. Then for z = 1− 1
N we have

|
N∑

n=0

an − f(z)| = |
N∑

n=0

an(1− zn)−
∞∑

n=N+1

anz
n| ≤

N∑
n=0

n|1− z||an|+
1

N

∑
n|an||z|n︸ ︷︷ ︸

≤ 1
N(1−|z|) supn>N n|an|

≤ 1

N

N∑
n=0

n|an|+ sup
n>N

n|an| <
ε

2
+
ε

2

for N large enough (for the first term use Cesaro-limit).

In fact, the following is true:

Theorem 1.3 (Tauber’s Second Theorem). The converse of Abel’s theorem holds if and

only if AN −
∑N−1

n=0 An

N → 0 as N → ∞.
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2 Smooth Sums
Theorem 2.1 (Abel’s Summation Formula). Suppose f(n) is continuously differentiable
and a0 = A0 = 0, then

N∑
n=1

anf(n) =
N∑

n=1

f(n)(A(n)−A(n− 1))

= A(N)f(N)−
N−1∑
n=1

A(n)(f(n+ 1)− f(n))

= A(N)f(N)−
N−1∑
n=1

∫ n+1

n
A(x)f ′(x)dx

= A(N)f(N)−
∫ N

1
A(x)f ′(x)dx

We can write
∑N

n=1 anf(n) =
∫ N
0 f(x)dA(x) (Riemann-Stieltjes Integral). Then Abel’s

summation formula is integration by parts for this integral.

Theorem 2.2 (Kronecker’s Lemma). Suppose f : [0,∞) → (0,∞) is decreasing to 0 and
differentiable. If

∑
n≥0 anf(n) converges, then f(N)

∑
n≤N an → 0 as N → ∞.

Example. Let µ be the Möbius function, i.e. µ(n) is the number of prime factors of

n if n is squarefree and 0 otherwise. Suppose that
∑

n≥1
µ(n)
n converges. Then we get

1
N

∑N
n=1 µ(n) → 0 as N → ∞ and this easily implies the Prime Number Theorem (but

the convergence of
∑

n≥1
µ(n)
n is not so easy).

Proof. Let ε > 0. Let A(N) =
∑N

n=1 an =
∑

n≤N anf(n)
1

f(n) and S(N) =
∑

n≤N anf(n).

Since S(N) → S, there exists N0 such that |S(N) − S| < ε for all N ≥ N0. By Abel
summation we have

|A(N)| =
∣∣∣∣S(N)

f(N)
+

∫ N

1
S(x)

f ′(x)

f(x)2
dx

∣∣∣∣
=

∣∣∣∣∫ N

0
(−S(N) + S(x))

f ′(x)

f(x)2
dx+

S(N)

f(0)

∣∣∣∣
≤
∣∣∣∣∫ N0

0
(−S(N) + S(x))

f ′(x)

f(x)2
dx

∣∣∣∣+ ∣∣∣∣∫ N

N0

(−S(N) + S(x))
f ′(x)

f(x)2
dx

∣∣∣∣+ ∣∣∣∣S(N)

f(0)

∣∣∣∣
≤ C + 2ε

∫ N

N0

∣∣∣∣ f ′(x)f(x)2

∣∣∣∣ dx
= C + 2ε

(
1

f(N)
− 1

f(N0)

)
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≤ 2ε

f(N)
+ C̃

Here C, C̃ > 0 are some constants (depending on N0). We then see that

lim sup
N→∞

|f(N)A(N)| ≤ 2ε,

so our claim follows.

Theorem 2.3 (Euler’s Summation Formula). For any function f with continuous deriva-
tive on [1, n] we have

N∑
n=1

f(n) =

∫ N

1
f(x)dx+

∫ N

1
{x}f ′(x)dx+ f(1).

Here {x} := x− ⌊x⌋ denotes the fractional part of x.

Proof. Let an = 1 in Abel’s summation formula. Then A(x) = ⌊x⌋, so

N∑
n=1

f(n) = Nf(N)−
∫ N

1
⌊x⌋f ′(x)dx

= Nf(N)−
∫ N

1
(x− {x})f ′(x)dx

= Nf(N)−
∫ N

1
xf ′(x)dx+

∫ N

1
{x}f ′(x)dx

=

∫ N

1
f(x)dx+

∫ N

1
{x}f ′(x)dx+ f(1).

Example. Take f(x) = 1
x . As

∫ N
1 {x} 1

x2dx converges as N → ∞, this shows that∑N
n=1

1
n − logN converges to a non-negative number, called Euler-Mascheroni constant.

An Appell sequence is a sequence of polynomials An such that degAn = n and A′
n(x) =

nAn−1(x). So

A0 = a0

A1 = a0x+ a1

A2 = a0x
2 + 2a1x+ a2

. . .

In general there are numbers a0, a1, . . . such that An =
∑n

k=0 ak
(
n
k

)
xn−k.
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Let G(x, z) =
∑∞

k=0Ak(x)
zk

k! be the (exponential) generating function of An(x). We then
have

∂

∂x
G(x, z) =

∞∑
k=1

Ak−1
zk

(k − 1)!
= zG(x, z).

From this we get G(x, z) = g(z)ezx for some power series g(z).

We want to find an Appell sequence B0, B1, . . . such that B0 = 1 and
∫ 1
0 Bi(x)dx = 0 for

i > 0, so
∫ 1
0 e

zxg(z)dx = 1 for all z, thus
[
g(z) e

zx

z

]1
0
= 1, i.e. g(z) e

z−1
z = 1, so g(z) = z

ez−1 ,

and then G(x, z) = zexz

ez−1 .

We have

B0 = 1,

B1(x) = x− 1

2
,

B2(x) = x2 − x+
1

6
,

B3(x) = x3 − 3

2
x2 +

1

2
x

Let Bk = Bk(0).

Theorem 2.4.

(i) Bn(x) =
∑n

k=0Bk

(
n
k

)
xn−k.

(ii) Bk(1) = Bk(0) for k ̸= 1. Also B1(0) = −1
2 , B1(1) =

1
2 .

(iii) B2k+1 = 0 for k ≥ 1.

(iv)
Bk+1(x+1)−Bk+1(x)

k+1 = xk for all k ≥ 0.

(v) Bk(1− x) = (−1)kBk(x) for all k

Proof.

(i)
∑

k,n≥0Bk(x)
zn

n! = zexz

ez−1 = z
ez−1e

xz =
(∑

k≥0Bk
zk

k!

)(∑
n≥0

(xz)k

k!

)
. Now compare

coefficients.

(ii) Follows from (iv), or directly Bk(1) has generating function ezz
ez−1 = z + z

ez−1 from

which our claim is immediate. Alternatively use
∫ 1
0 Bk(x)dx = 0.

(iii) Note that z
2 + z

ez−1 is even.

(iv) The exponential generating function of the LHS is e(x+1)z

ez−1 − exz

ez−1 = exz which is the
exponential generating function of the RHS.
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(v) For k odd this says Bk(1− x) + Bk(x) = 0 and for k even, Bk(1− x)− Bk(x) = 0.
For k = 0 this holds trivially, the general case follows by induction (using (ii) and
(iii)).

Some Bernoulli numbers:

n 0 1 2 4 6 8 10 12 14

Bn 1 −1
2

1
6 − 1

30
1
42 − 1

30
5
66 − 691

2730
7
6

We know that z
ez−1 has its smallest singularity at z = 2πi, hence

(2π)−1 = lim sup
k→∞

(Bk

k!

)1/k
.

We will get better bounds.

Theorem 2.5.
∑N

n=0 n
k =

Bk+1(N+1)−Bk+1(0)
k+1

Proof.
N∑

n=0

nk =
N∑

n=0

Bk+1(n+ 1)−Bk+1(n)

k + 1
=
Bk+1(N + 1)−Bk+1(0)

k + 1
.

Let Pk(x) =
1
k!Bk({x}). We can then rewrite Theorem 2.3 as:

N∑
n=1

f(n)−
∫ N

1
f(x)dx =

f(1) + f(N)

2
+

∫ N

1
P1(x)f

′(x)dx.

Note that since
∫ 1
0 Bk(t)dt = 0, we have

∫ x
0 Pk(t)dt =

1
k!

∫ {x}
0 Bk(t)dt =

1
(k+1)!(Bk+1({x})−

Bk+1(0)), so P
′
k+1 = Pk for all k. Therefore we have:∫ N

1
P1(x)f

′(x)dx = [P2f
′]N1 −

∫ N

1
P2(x)f

′′(x)dx

=
B2

2!
(f ′(N)− f ′(1))−

∫ N

1
P2(x)f

′′(x)dx

=
B2

2!
(f ′(N)− f ′(1))− [P3f

′′]N1 +

∫ N

1
P3(x)f

′′′(x)dx

=
B2

2!
(f ′(N)− f ′(1)) +

B4

4!
(f ′′′(N)− f ′′′(1))−

∫ N

1
P4(x)f

′′′′(x)dx.

To summarise:
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Theorem 2.6 (Euler-MacLaurin Summation). Let f ∈ C2r+1([1, N ]). Then:

N∑
n=1

f(n)−
∫ N

1
f(x)dx =

f(1) + f(N)

2
+
B2

2!
(f ′(N)− f ′(1)) +

B4

4!
(f ′′′(N)− f ′′′(1))+

· · ·+ B2r

(2r)!
(f (2r−1)(N)− f (2r−1)(1)) +

∫ N

1
P2r+1(x)f

(2r+1)(x)dx.

To bound the integral remainder term, we want bounds on P2r+1. The Fourier expansion
of P1(x) = {x} − 1

2 is given by

P1(x) = −
∞∑
n=1

sin(2πnx)

nπ
.

From this it easily follows that

P2k(x) = (−1)k−1
∞∑
n=1

2 cos(2nπx)

(2nπ)2k
,

P2k+1(x) = (−1)k−1
∞∑
n=1

2 sin(2nπx)

(2nπ)2k+1
.

Plugging in x = 0 into P2k(x), gives

B2k

(2k)!
= (−1)k−12(2π)−2k

∞∑
n=1

1

n2k

We also get the bound |Pk(x)| ≤ 4
(2π)k

for all x.

2.1 Analytic Continuation of ζ(s)

The Riemann ζ-function is defined by

ζ(s) =
∞∑
n=1

1

ns

for Re s > 1. We will usually write s = σ + it. The series defining ζ converges locally
uniformly in σ > 1.

Theorem 2.7. For Re s > 1,

ζ(s) =
s

s− 1
− s

∫ ∞

1

{x}
xs+1

dx.

Proof. ζ(s) −
∫∞
1 x−sdx =

∫∞
1

−s{x}
xs+1 dx + 1 by the Euler summation formula, and we are

done.
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Now the integral on the right converges for Re s > 0.

Theorem 2.8.

ζ(s) =
1

s− 1
+

1

2
+

s

12
− s(s+ 1)(s+ 2)

∫ ∞

1

2{x}3 − 3{x}2 + {x}
12xs+3

dx.

This extends ζ(s) to Re s > −2 and we get ζ(0) = −1
2 . More generally:

Theorem 2.9.

ζ(s) =
1

s− 1
+

1

2
+

r∑
k=1

B2k

2k

(
s+ 2k − 2

2k − 1

)
−
∫ ∞

1

B2r+1({x})
(
s+2r
2r+1

)
xs+2r+1

dx.

Proof. Let f(x) = x−s. Then f (k)(x) = (−s)(−s−1)...(−s−k)
xs+k =

(−1)k(s+k−1
k )k!

xs+k . So

ζ(s)−
∫ ∞

1

dx

xs
=

1

2
+

r∑
k=1

B2k

(2k)!
[f (2k−1)(x)]∞1 +

∫ ∞

1
P2r+1(x)f

(2r+1)(x)dx

=
1

2
+

r∑
k=1

B2k

2k

(
s+ 2k − 2

2k − 1

)
−
∫ ∞

1

B2r+1({x})
(
s+2r
2r+1

)
xs+2r+1

dx.

This shows that ζ extends analytically to C \ {1} with a simple pole of residue 1 at s = 1.

Theorem 2.10. Given an integer m ≥ 2, ζ(1−m) = −Bm
m .

Proof. Let r ≥ m/2 in the previous theorem. Then
(
1−m+2r
2r+1

)
= 0, so the integral term

vanishes and then

ζ(1−m) =
−1

m
+

1

2
+
B2

2

(
1−m

1

)
+
B4

4

(
3−m

3

)
+ . . .

=
−1

m
(B0 +B1

(
m

1

)
+B2

(
m

2

)
+ · · ·+Bm

(
m

m

)
)

=
−Bm

m
.

The last equality follows from
∑n−1

k=0 Bk

(
n
k

)
= 0 for n > 1.

The Bernoulli numbers appear both in ζ(2k) and in ζ(1 − 2k), this suggests there might
be a general connection between these values. This is indeed the case, and for this we
need the Gamma function.
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2.2 The Gamma Function

Euler’s definition of the Gamma function:

Γ(s) = lim
N→∞

N s (N − 1)!

s(s+ 1) . . . (s+N − 1)
.

We see that Γ(1) = 1. Also note that

sΓ(s) = lim
N→∞

sN

N + s
Γ(s) = Γ(s+ 1).

Theorem 2.11. For Re s > 0,

Γ(s) =

∫ ∞

0
e−tts−1dt.

Proof idea. Write e−t = limN→∞(1− t/N)N and integrate by parts. See notes for details.

Some more identities:

1

Γ(s)
= lim

N→∞

s

N s

N−1∏
n=1

s+ n

n

= lim
N→∞

se(
∑N−1

n=1
1
n
−logN)s

N−1∏
n=1

e−s/n(1 +
s

n
)

= seγs
∞∏
n=1

e−s/n
(
1 +

s

n

)
.

Theorem 2.12 (Complex Stirling Formula).

log Γ(s) = (s− 1

2
) log s− s+

1

2
log 2π +O(|s|−1)

uniformly in {| arg(s) + π| ≥ δ}.

Using the Gamma function we obtain another way of analytically continuing the Zeta
function.

Theorem 2.13.

ζ(s) =
1

Γ(s)

∫ ∞

0

xs−1dx

ex − 1

for Re s > 1.
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Proof.
∫∞
0 e−nxxs−1dx = Γ(s)

ns . Sum over these and we get

∞∑
n=1

Γ(s)

ns
=

∫ ∞

0

xs−1

ex − 1
dx.

Let G(s) =
∫∞
ε

xs−1

ex−1dx and F (s) =
∫ ε
0

xs−1

ex−1dx for some fixed ε > 0. Then G(s) is entire,
so only need to deal with F (s) in order to analytically continue ζ(s).

We have 1
ex−1 = 1

x − 1
2 −

∑∞
n=1

B2n
(2n)!x

2n−1. Then

F (s) =

∫ ε

0

xs−1

ex − 1
dx

= εs−1
( 1

s− 1
− ε

2s
−

∞∑
n=1

B2n

(2n)!

ε2n

2n+ s− 1

)
.

Now the RHS is analytic in C \ ({0, 1} ∪ {1 − 2n | n ≥ 1}). The poles at 0 and 1 − 2n
cancel with those of Γ, hence ζ(s) is analytic in C \ {1}.
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3 Dirichlet Series
Power series

∑
n≥0 are good for additive problems, since znzm = zn+m. For multiplicative

problems we replace zn by nz, so that nzmz = (nm)z. This leads to Dirichlet series.

A Dirichlet series is a series
∑ an

ns associated with a sequence an. If an = f(n) where

f : N → C is an arithmetical function, we write D(f, s) =
∑ f(n)

ns . As in the case of power
series, we can view Dirichlet series either as formal series or as analytic functions (where
they converge),.

Note that D(f, s) +D(g, s) = D(f + g, s) and D(f, s)D(g, s) = D(f ∗ g, s) where

(f ∗ g)(n) =
∑
d|n

f(d)g(n/d)

is the (Dirichlet) convolution of f and g.

We have g ∗ f = f ∗ g, f ∗ (g ∗ h) = (f ∗ g) ∗ h.

f is a multiplicative function if f(nm) = f(n)f(m) for n,m with (n,m) = 1. If f(nm) =
f(n)f(m) for all n,m, then f is completely multiplicative.

It is easily seen that the convolution of multiplicative functions is again multiplicative.
The set of multiplicative functions that are not constant 0 are an abelian group under ∗
with identity 1(n = 1) where D(1(n = 1), s) = 1.

The inverse f−1 of f can be easily determined recursively. To see that f−1 is again
multiplicative, note that if f and f ∗ g are multiplicative, then so is g (if not, pick a
minimal counterexample,...).

Nota that a multiplicative function is uniquely determined by its values on prime powers.

We define the Möbius function µ by µ(p) = 1 and µ(pk) = 0 for primes p and k ≥ 2 and
then extend multiplicatively.

We then have the identity
1 ∗ µ = 1(n = 1).

In other words ∑
d|n

µ(d) =

{
1 n = 1,

0 n > 1.

This can be seen e.g. from the inclusion exclusion principle or using the multiplicativity
it suffices to check it for prime powers in which case it is obvious.

This gives the following result.

Theorem 3.1 (Möbius inversion). For functions f, g : N → C we have g = 1 ∗ f iff
f = µ ∗ g. If this holds, then D(f, s)ζ(s) = D(g, s). In particular ζ(s)−1 = D(µ, s)

14



Theorem 3.2 (Euler Product). If f : N → C is multiplicative and f(1) = 1, then

D(f, s) =
∏
p

(1 +
f(p)

ps
+
f(p2)

p2s
+ . . . ).

E.g. ζ(s) =
∏

p(1− p−s)−1.

So far we only dealt with Dirichlet series formally, now we will care about convergence.

3.1 Convergence and Non-vanishing of Dirichlet Series

Theorem 3.3. D(f, s) converges absolutely iff
∑

m,p

∣∣∣f(pm)
pms

∣∣∣ converges.
Proof. D(f, s) converges absolutely iff its Euler product converges absolutely, and

∏
n(1+

an) converges absolutely iff
∑

n |an| converges.

In particular 1
ζ(s) =

∑
n≥1

µ(n)
ns converges absolutely for Re s > 1, so ζ(s) ̸= 0 in this

region. This also follows from the Euler product.

A general Dirichlet series has the form
∑

n≥1 ane
−λns with λn ↗ +∞.

E.g. taking λn = n gives
∑
an(e

−s)n =
∑
anz

n with z = e−s. And for λn = log n we get
ordinary Dirichlet series.

Note that
∑

n≥1 ane
−λns =

∫∞
0 e−stdA(t) when A(t) =

∑
λn≤t an.

Theorem 3.4. If a Dirichlet series
∑
an/n

s converges at s0 ∈ C, then it converges

uniformly in every angular sector |s−s0|
σ−σ0

≤ 1
cosϕ for every 0 ≤ ϕ < π/2.

Proof. By replacing an by ns0an we may assume s0 = 0, so
∑

n an converges. Let R(u) =∑
n>u an so that R(u) → 0 as u→ ∞.

N∑
n=M+1

an
ns

=

∫ N+

M

−1

xs
dR(x)

= [−R(x)/xs]N+

M +

∫ N+

M

s

xs+1
R(x)dx

=
R(M)

M s
− R(N)

N s
+ s

∫ N+

M

s

xs+1
R(x)dx

So ∣∣∣∣∣
N∑

n=M+1

an
ns

∣∣∣∣∣ ≤ ε+ ε+ ε

∣∣∣∣s ∫ ∞

M
x−(s+1)dx

∣∣∣∣

15



≤ 2ε+ ε(|s|/σ).

This shows that for a Dirichlet series f(s) =
∑

n ann
−s there exists a number σc ∈ R ∪

{±1}, called the abscissa of convergence of f , such that f(s) converges for Re s > σc and
diverges for Re s < σc. Similarly, there is the abscissa of absolute convergence σa which is
the abscissa of convergence of

∑
n |an|n−s.

Note that σc ≤ σa and σa − σc ≤ 1. Indeed, if
∑

n ann
−s converges for some s, then

|ann−s| < 1 for large n and then |ann−(s+δ+1)| < n−(1+δ) for large n, hence
∑

n ann
−(s+1+δ)

is absolutely convergent.

Theorem 3.5. If A(N) =
∑N

n=1 an = O(Nα+ε) for every ε > 0, then
∑∞

n=1 ann
−s =

s
∫∞
1

A(x)
xs+1dx converges for Re s > α.

Proof.

N∑
n=1

ann
−s =

∫ N+

1−
x−sdA(x) = [A(x)x−s]N1 −

∫ N+

1−
(−s)x−(s+1)A(x)dx

converges.

From the theorem we get

σc ≤ lim sup
x→∞

logA(x)

log x
.

If
∑
ann

−α converges, then by Kronecker’s Lemma N−α
∑N

n=1 an → 0, so
∑N

n=1 an =
O(Nα), so

σc = lim sup
x→∞

logA(x)

log x
.

Theorem 3.6 (Landau). If an ≥ 0, then σc is a singularity of f(s).

Theorem 3.7 (Ramanujan).

ζ(s)ζ(s− a)ζ(s− b)ζ(s− a− b)

ζ(2s− a− b)
=

∞∑
n=1

σa(n)σb(n)

ns
,

where σa(n) =
∑

d|n d
a and Re s > max{1,Re a+1,Re b+1,Re(a+ b) + 1}. In particular

ζ(s)4

ζ(2s)
=
∑
n≥1

d(n)2

ns
,

where d(n) =
∑

d|n 1 is the number of divisors of n.
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Proof. Let z = p−s. Then compare the Euler products. The LHS is

∏
p

1− pa+bz2

(1− z)(1− paz)(1− pbz)(1− pa+bz)

and the RHS∏
p

(∑
n≥0

σa(p
n)σb(p

n)zn
)
=
∏
p

(∑
n≥0

pa(n+1) − 1

pa − 1

pb(n+1) − 1

pb − 1
zn
)
.

It is now straightforward to verify these two are equal.

Corollary 3.8. For any 0 ̸= t ∈ R, we have ζ(1 + it) ̸= 0.

Proof. Suppose ζ(1 + it) = 0. Then also ζ(1− it) = 0. Let a = it, b = −it in the previous
theorem. Then

ζ(s)2ζ(s+ it)ζ(s− it)

ζ(2s)
=

∞∑
n=1

σit(n)σ−it(n)

ns
=

∞∑
n=1

|σit(n)|2

ns
.

Now at s = 1, the zeros at ζ(s + it) and ζ(1 − it) cancel the double pole of ζ(s)2, hence
the LHS has no poles in (−1,∞). The RHS is a Dirichlet series with non-negative real
coefficients, hence by Landau’s theorem it converges in (−1,∞). But this is clearly im-
possible.
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4 Primes in Arithmetic Progressions
Let G be a finite abelian group. Then a character χ of G is a homomorphism χ : G→ C×.
Let q ≥ 1 be an integer.A Dirichlet character χ : Z → C× mod q is a function of the form

χ(n) =

{
χ̃(n mod q) (q, n) = 1

0 (q, n) > 1

for some character χ̃ of (Z/qZ)×. The trivial character mod q is denoted χ0 (i.e. χ0(n) = 1
if (q, n) = 1).

We recall the following basic facts about characters:

Theorem 4.1.
q∑

n=1

χ(n) =

{
φ(q) χ = χ0,

0 χ ̸= χ0.

Theorem 4.2. ∑
χ

χ(n) =

{
φ(q) n ≡ 1 (mod q),

0 n ̸≡ 1 (mod q).

Corollary 4.3. If (a, q) = 1, then

∑
χ

χ(n)χ(a) =

{
φ(q) n ≡ a (mod q),

0 n ̸≡ a (mod q).

Here the sums run over all characters χ mod q.

Given a Dirichlet character χ mod q, the corresponding Dirichlet L-function (mod q) is
defined for Re s > 1 by

L(s, χ) =
∑
n≥1

χ(n)

ns
=
∏
p

(1− χ(p)p−s)−1.

Theorem 4.4 (Dirichlet’s Theorem). There exist infinitely many primes ≡ a (mod q)
where (a, q) = 1.

Proof. logL(s, χ) =
∑

p

∑
m≥1

χ(pm)
mpms . And

1

φ(q)

∑
χ

χ(a) logL(s, χ) =
1

φ(q)

∑
p

∑
m=1

1

mpms

(∑
χ

χ(pm)χ(a)

)

=
∑
p

∑
m=1

pm≡a mod q

1

mpsm

18



≤ C +
∑

p≡a mod q

1

ps
.

We have L(s, χ0) =
∏

p|q(1 − p−s)ζ(s), so limσ→1+ logL(σ, χ0) = ∞. So we only need to
prove that logL(s, χ) is bounded around s = 1 for χ ̸= χ0. This follows from the following
three theorems.

Theorem 4.5. For χ ̸= χ0,

L(s, χ) =
∞∑
n=1

χ(n)

ns
= s

∫ ∞

1

(∑
n≤x

χ(n)
)
x−s−1dx

converges for Re s > 0.

Proof. By Theorem 4.1, the partial sums
∑

n≤x χ(n) are bounded. Then the result follows
from Theorem 3.5.

Theorem 4.6. L(1, χ) ̸= 0 if χ ̸= χ, i.e. if χ is a complex character.

Proof. Let Z(s) =
∏

χ L(s, χ). Suppose that L(1, χ) = 0 for some χ ̸= χ̄. Then also
L(1, χ) = 0 and the double zero of L(s, χ)L(s, χ) cancels the pole of L(s, χ0) at s = 1
and we get Z(1) = 0. From the above expression with a = 1 it is easily seen that
1

φ(q)

∑
χ logL(s, χ) ≥ 0 for Re s > 1, hence |Z(s)| ≥ 1 for Re s > 1 which gives a contra-

diction.

We now give another proof of this which also includes the case where χ is a non-trivial
real character. For this we need:

Theorem 4.7.
Z(s) =

∏
p∤q

(1− p−s ordq p)−φ(q)/ ordq p

for Re s > 1.

Proof. Fix a prime p ∤ q and let r = ordq p. It suffices to prove that∏
χ

(1− χ(p)p−s) = (1− p−sr)φ(q)/r.

It is easy to see that as χ runs through the characters mod q, χ(p) takes on every r-th
root of unity exactly φ(q)/r times, hence∏

χ

(1− χ(p)p−s) =
∏
ζr=1

(1− ζp−s)φ(q)/r = (1− p−sr)φ(q)/r.
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Theorem 4.8. L(1, χ) ̸= 0 if χ ̸= χ0.

Proof. Suppose L(1, χ) = 0. Then this zero cancels the pole of L(s, χ0) at s = 1 in Z(s),
hence Z is holomorphic at 1 and thus holomorphic in Re s > 0. Now note that

Z(s) =
∏
p∤q

(1− p−s ordq p)−φ(q)/ ordq p =

∞∑
n=1

cn
ns

where all cn are real and non-negative. Hence by Landau’s theorem, the Dirichlet series
on the right must converge in (0,∞). Now note that for σ > 1, we have

Z(σ) ≥
∏
p∤q

(1− p−φ(q)σ)−1 =
∑

(n,q)=1

n−φ(q)σ.

Then it must be that the coefficients cn are greater than or equal to those on the RHS,
hence this inequality is also valid in (0,∞). But this is impossible as the series on the
RHS is divergent at σ = 1

φ(q) .

4.1 Gauss Sums

Now consider an odd prime p. Let χ be a non-trivial real character mod p. Then χ
is necessarily given by the Legendre symbol, i.e. χ(n) =

(
n
p

)
. We will prove directly

L(1, χ) ̸= 0 for χ.

Let ζ = exp(2πi/p). The Gauss sum is

Sp =

p−1∑
n=1

(
n

p

)
ζn =

p−1∑
k=0

ζk
2
.

One can show that S2
p = p

(−1
p

)
Now suppose L(1, χ) =

∑∞
n=1

(
n
p

)
n = 0.

Let

P =

∏
m∈F×

p \(F×
p )2(1− ζm)∏

r∈(F×
p )2(1− ζr)

Then

logP =

∞∑
n=1

1

n

(∑
r

ζrn −
∑
m

ζmn
)

=

∞∑
n=1

1

n

p−1∑
k=1

(
kn

p

)
ζk
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=
( ∞∑

n=1

(
n
p

)
n

)( p−1∑
k=1

(
k

p

)
ζk
)

= L(1, χ)Sp

So if L(1, χ) = 0, then P = 1. Let c be a quadratic non-residue mod p. Then

1 = P =
∏

r∈(F×
p )2

1− ζcr

1− ζr
.

In other words, ζ is a root of
∏

r
1−xcr

1−xr − 1 =: g(x). Since the minimal polynomial of ζ

over Q is 1+x+ · · ·+xp−1, there is f(x) ∈ Z[x] such that g(x) = f(x)(1+x+ · · ·+xp−1).

Now evaluate at x = 1. Then we get c
p−1
2 − 1 ≡ 0 mod p, hence c is a quadratic residue

mod p, a contradiction!

Now we consider Gauss sums not necessarily mod primes.

Theorem 4.9.

Sn :=

n−1∑
k=0

ζk
2
=

1 + (−i)n

1− i

√
n

where ζ = e2πi/n.

Gauss sums can be defined for any Dirichlet character. If χ is a character mod q (not
necessarily prime), then we let

τ(χ) =

q−1∑
n=1

χ(n)e(n/q),

where e(x) = exp(2πix). Note that this may be viewed as the discrete Fourier transform
χ̂(1) of χ. More generally, χ̂(r) =

∑q−1
n=1 χ(n)e(nr/q). It can also be viewed as a discrete

version of the Gamma function.

We say that the character χ mod q is primitive if it is not induced by any character χ′

mod d for some proper divisor d of q.

Theorem 4.10. |τ(χ)|2 = q if χ is primitive mod q.

Proof. For (r, q) = 1, we have

χ(r)χ̂(r) =
∑

χ(r)χ(n)e(rn/q)

=
∑

χ(rn)e(rn/q)

= τ(χ).
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And then in particular |χ̂(r)| = |τ(χ)|. If (r, q) > 1, then it is not difficult to see that
χ̂(r) = 0 using that χ is primitive. Now by Parseval we get

φ(q) =

q∑
n=1

|χ(n)|2 = 1

q

∑
|χ̂(r)|2 = φ(q)

q
|τ(χ)|2.

Contour γr

Proof of Theorem 4.9. Let

f(z) =

∑n−1
k=0 e((z + k)2/n)

e(z)− 1
.

Consider a parallellogram contour γr with center 0, two sides of length r tilted π/4 relative
to the x-axis, two sides parallel to x axis (of length 2a), as in the figure. Let

I(a; f) = lim
r→∞

∫ r

−r
f(a+ teπi/4)eπi/4dt

and

Iγr =

∫
γr

f(z)dz.

Take a = 1
2 . Then z = 0 is the only singularity of f in γr, so by the residue theorem,

Iγr = 2πiResz=0 f =

n−1∑
k=0

ζk
2
= Sn.

We want to compare I(12 ; f) with Iγr . Note that on the horizontal lines in γr, Re((z+k)
2)

will be small, hence |f(z)| will be small and the integral over this part goes to 0 as r → ∞.
Hence

Sn = lim
r→∞

Iγr = I(
1

2
; f)− I(−1

2
, f).
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Now we have:

f(z + 1)− f(z) =
e((z + n)2/n)− e(z2/n)

e(z)− 1
= e(z2/n)

e(2z)− 1

e(z)− 1
= e(z2/n)(e(z) + 1).

And therefore

Sn = I(
1

2
; f)− I(−1

2
, f) = I

(
− 1

2
; e
(z2
n

))
+ I
(
− 1

2
; e
(z2
n

+ z
))
.

Let g(z) = e(z2/n). Note that e
(
z2

n + z
)
= e
( (z+n/2)2

n

)
e(−n/4) = g(z + n/2)(−i)n. Since

g is entire we can translate the path of integration and get

Sn = I(0; g(z))(1 + (−i)n) = I(0; e(z2/n))(1 + (−i)n)

Now

I(0; e(z2/n)) =

∫ ∞

−∞
e−2πt2/neπi/4dt =

√
nI(0; e(z2)) =

√
n

S1
1 + (−i)1

.

Clearly S1 = 1, hence

Sn =
1 + (−i)n

1− i

√
n.

Note that the proof also gives the classical result∫ ∞

−∞
e−πt2dt = 1.

Alternatively one can prove Theorem 4.9 using the following facts:

Theorem 4.11. For a continuous function f of bounded variation on [0, 1], we have

1

2
(f(0) + f(1)) = lim

N→∞

N∑
j=−N

∫ 1

0
f(x)e−2πijxdx.

Now sum this to get:

Theorem 4.12 (Poisson Summation). For a continuous function f of bounded variation
on [0, n], we have

1

2
f(0) + f(1) + · · ·+ f(n− 1) +

1

2
f(n) = lim

N→∞

N∑
j=−N

∫ n

0
f(x)e−2πijxdx.

To get Theorem 4.9, apply this to f(x) = e(x2/n). See notes for details.
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Theorem 4.13. If χ is primitive mod q and χ(−1) = −1, then

L(1, χ) =
∞∑
n=1

χ(n)

n
=
iπ

q2
τ(χ)

q∑
m=1

mχ(m).

Proof. Let f(x) = 1
2 − {x}. Then

f(x) =

∞∑
n=1

sin(2nπx)

nπ

converges locally uniformly on (0, 1). Plug in x = m
q and note

∑
m=1 χ(m) cos(2mnπ/q) =

0. Then

i

q∑
m=1

χ(m)
(1
2
− m

q

)
=

∞∑
n=1

∑q
m=1 χ(m)e2mnπi/q

nπ

=

∞∑
n=1

χ(n)τ(χ)

nπ

= τ(χ)
∞∑
n=1

χ(n)

nπ
.

So

− i

q

q∑
m=1

mχ(m) = τ(χ)

∞∑
n=1

χ(n)

nπ
.

Now replace χ by χ. We have τ(χ) = χ(−1)τ(χ) and hence 1
τ(χ) = − τ(χ)

q .

Now suppose that q is prime and q ≡ 3 mod 4. Take χ to be the quadratic character.
Then τ(χ) = i

√
q by Theorem 4.9. Therefore

∞∑
n=1

(
n
q

)
n

= − π

q
√
q

q−1∑
m=1

m

(
m

q

)
.

The LHS can also be written as

lim
s→1+

∞∑
n=1

(
n

q

)
n−s = lim

s→1+

∏
p

(1−
(
p

q

)
p−s)−1.

This is clearly > 0. Hence
q−1∑
m=1

m

(
m

q

)
< 0,

i.e. the sum of the quadratic non-residues exceeds the sum of the quadratic residues.
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5 Chebychev’s Estimates
From now on, p will always denote a prime, so e.g.

∑
p≤x is the sum over all primes less

than or equal to x.

Theorem 5.1. There exist a, b > 0 such that a < π(x) log x
x < b for all x ≥ 2.

Proof. Note that vp(n!) =
∑∞

j=1⌊
n
pj
⌋, so

vp

((2n
n

))
=

∞∑
j=1

⌊
2n

pj

⌋
− 2

⌊
n

pj

⌋
.

All the terms in the sum are 0 or 1, and 1 only if { n
pj
} ≥ 1

2 . So(
2n

n

)
≤
∏
p≤2n

p(log 2n)/ log p = (2n)π(2n)

and also (
2n

n

)
≥

∏
n<p≤2n

p ≥ nπ(2n)−π(n).

But also
22n

2n+ 1
≤
(
2n

n

)
≤ 22n.

From this we get

π(2n) ≥ 2n log 2− log(2n+ 1)

log 2n
,

π(2n)− π(n) ≤ 2n log 2

log n
.

The first inequality immediately gives π(x) ≥ a x
log x for some a > 0. The second gives

π(x) ≤ π(
√
x) +

log
√
x/ log 2∑
j=1

π(x/2j−1)− π(x/2j) <
bx

log x
,

for some b > 0.

Chebychev showed that we can take a = 0.9219 . . . and b = 1.1053 . . . for x ≥ 30. This
was enough to show Bertrand’s Postulate: There is always a prime between n and 2n for
n ≥ 1.

Theorem 5.2. Let pn denote the n-th prime number. Then n log n≪ pn ≪ n log n.
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Proof. Substitute x = pn in the previous result. Then

a
pn

log pn
< π(pn) = n < b

pn
log pn

. (∗)

We get
n

b
<
n

b
log pn < pn <

( pn
log pn

)2
<
(n
a

)2
.

Hence log n≪ log pn ≪ log n. Substitute this back into (∗) to get the result.

Theorem 5.3.
∑

p≤x
log p
p = log x+O(1).

Proof. The Euler summation formula gives∑
n≤x

log n = x log x+−x+O(log x) = x log x+O(x).

But we also have ∑
n≤x

log n =
∑
p≤x

log p
∞∑
j=1

⌊
x

pj

⌋
.

The contribution from j = 1 is

x
∑
p≤x

log p

p
−
∑
p≤x

(log p)
{x
p

}
= x

∑
p≤x

log p

p
+O(π(x) log x)

and O(π(x) log x) = O(x) by Theorem 5.1. The remaining terms contribute at most

x
∑
n≤x

(log n)(n−2 + n−3 + . . . ) = x
∑
n≤x

log n

n2 − n
= O(x).

Hence the claim.

Theorem 5.4. There exists C such that∑
p≤x

1

p
= log log x+ C +O(1/ log x).

Proof. Apply Abel summation with an = logn
n if n is prime and an = 0 otherwise. Let

f(x) = 1/ log x. Then ∑
p≤x

1

p
=
A(x)

log x
−
∫ x

2

−A(x)
t(log t)2

dt

By Theorem 5.3, A(t) = log t+ η(t) where η(t) = O(1). So∑
p≤x

1

p
= 1 +

η(x)

log x
+

∫ x

2

dt

t log t
+

∫ x

2

η(t)

t(log t)2
dt

The result follows with C = 1− log log 2 +
∫∞
2

η(t)dt
t(log t)2

.
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Theorem 5.5. There exists a constant C ′ such that∏
p≤x

(
1− 1

p

)−1
= C ′ log x+O(1).

Proof. We have∏
p≤x

(
1− 1

p

)−1
=
∏
p≤x

exp
(
− log

(
1− 1

p

))
=
∏
p≤x

exp
(1
p
+

1

2p2
+

1

3p3
+ . . .

)
= exp

(∑
p≤x

1

p

)
exp

(∑
p≤x

( 1

2p2
+

1

3p3
+ . . .

))

Now D :=
∑∞

p=1

(
1

2p2
+ 1

3p3
+ . . .

)
<
∑∞

p=1
1

2p(p−1) converges and
∑

p>x
1

2p(p−1) = O(1/x).

Then by the previous theorem:∏
p≤x

(
1− 1

p

)−1
= exp(log log x+ C +O(1/ log x)) exp(D) exp(O(1/x))

Now the result easily follows.

Remark. Mertens showed C ′ = eγ where γ is the Euler Mascheroni constant.

Theorem 5.6. If the limit

lim
x→∞

π(x)
log x

x

exists, it must be 1.

Proof. Suppose the limit equals l. Use Abel summation with

an =

{
1 n prime,

0 otherwise

and f(x) = 1
x . Then ∑

p≤x

1

p
=
∑
n≤x

anf(n) =
π(x)

x
+

∫ x

2

π(x)

t2
dt.

Now the last integral is asymptotically∫ x

2

l t
log t + o(1)

t2
dt+O(1) =

∫ x

2

ldt

t log t
= l log log x+O(1)

But we already know that the sum is ∼ log log x, so l = 1.
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We define the Chebychev functions

θ(x) =
∑
p≤x

log p,

ψ(x) =
∑
pm≤x

log p.

We can write ψ(x) =
∑

n≤x Λ(n) where

Λ(n) =

{
log p n = pm,

0 otherwise

is the von Mangoldt function.

Theorem 5.7.

π(x) =
θ(x)

log x
+O

( x

log x2

)
.

So the Prime Number Theorem π(x) ∼ x/ log x is equivalent to ψ(x) ∼ x. Also ψ(x) ∼ x
iff x ∼ θ(x) as ψ(x) = θ(x) +O(

√
x).

Proof. Apply Abel summation with an = log n if n is prime and 0 otherwise, and f(x) =
1

log x . We get

π(x) =
∑
p≤x

1 =
θ(x)

log x
+

∫ x

2

θ(t)

t(log t)2
dt.

Since π(x) ≪ x
log x , we get θ(t) ≪ t. Furthermore,

∫ x
2

dt
(log t)2

∼ x
(log x)2

as in Chapter 0.

Given an arithmetic function f : N → C, we define f ′ : N → C by f ′(n) = f(n) log n. Note
that d

dsD(f, s) = −D(f ′, s). We also have f ′ + g′ = (f + g)′ and (f ∗ g)′ = f ′ ∗ g+ f ∗ (g′).
Indeed,

(f ∗ g)′(n) =
∑
d|n

f(d)g(n/d) log n =
∑
d|n

f(d)g(n/d)(log d+ log(n/d))

=
∑
d|n

f(d)g(n/d) log d+
∑
d|n

f(d)g(n/d) log(n/d))

= (f ′ ∗ g)(n) + (f ∗ g′)(n).

Theorem 5.8.
Λ ∗ 1 = 1′

Proof.

(Λ ∗ 1)(n) =
∑
d|n

Λ(d) =
∑
pm|n

log p = log n.
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Theorem 5.9 (Selberg’s Identity).

Λ(n) log n+
∑
d|n

Λ(d)Λ(n/d) =
∑
d|n

µ(d)(log(n/d))2.

Proof. From Λ ∗ 1 = 1′ we get

1′′ = Λ′ ∗ 1 + Λ ∗ 1′ = Λ′ ∗ 1 + Λ ∗ (Λ ∗ 1).

Convoluting with µ gives Λ′ + Λ ∗ Λ = µ ∗ 1′′ which is the claim.

Theorem 5.10.
∞∑
n=1

Λ(n)

ns
=

−ζ ′(s)
ζ(s)

.

Proof. The equation ζ(s)
∑∞

n=1
Λ(n)
ns = −ζ ′(s) is equivalent to 1 ∗ Λ = 1′. Alternatively

use the Euler product of ζ and write out (− log ζ(s))′.

Theorem 5.11. Let M(x) =
∑

n≤x µ(n). Suppose that M(x) = OA(x/(log x)
A) for all

A. Then ψ(x) = x+OA(x/(log x)
A) for all A.

Proof. From 1 ∗ Λ = 1′ we get Λ = µ ∗ 1′. Then

ψ(x) =
∑
n≤x

Λ(n) =
∑
n≤x

∑
d|n

µ(d) log(n/d)

=
∑
dn≤x

µ(d) log n =
∑
d≤

√
x

µ(d)
( ∑

n≤x/d

log n
)
+
∑
n≤

√
x

log n
( ∑

√
x<d≤x/n

µ(d)
)

=
∑
d≤

√
x

µ(d)
(x
d
log

x

d
− x

d
+O(log(x/d))

)
+
∑
n≤

√
x

log n

n
O
( x

(log x)A

)
=
∑
d≤

√
x

µ(d)
(x
d
log

x

d
− x

d
+O(log(x/d))

)
+
∑
n≤

√
x

1

n(log n)2
O
( x

(log x)A−3

)
=
∑
d≤

√
x

µ(d)
(x
d
log

x

d
− x

d
+O(log(x/d))

)
+O

( x

(log x)A−3

)

We have
∑

d≥1
µ(d)
d = 0 as this is lims→1+

1
ζ(s) = 0. Next consider x

∑
d≤

√
x

µ(d)
d log d. We

have ∑
d≥1

µ(n) log n

n
= lim

s→1

∑
d≥1

µ(n) log n

ns
= lim

s→1
(1/ζ(s))′ = 1.

We have to check how fast these sums are convergent.∑
n>y

µ(n)

n
log n =

∫ ∞

y

∑
y<n≤t

µ(n)
( log t− 1

t2

)
dt
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= O
( 1

(log t)A

)
Therefore:

ψ(x) = x
(
1− 0−

∑
d>

√
x

µ(d) log(x/d)

d
− µ(d)

d

)
+
∑
d≤

√
x

µ(d)O(log(x/d)) +O
( x

(log x)A−3

)
= x+O

( x

(log x)A−3

)
.
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6 Functional Equation for ζ
Theorem 6.1. The Riemann zeta function can be extended to a meromorphic function
on C and satisfies

ζ(s) = 2sπs−1 sin(πs/2)Γ(1− s)ζ(1− s).

Proof. We have

ζ(s) =
s

s− 1
− s

∫ ∞

1

{x}
xs+1

dx =
1

s− 1
+

1

2
+ s

∫ ∞

1

1
2 − {x}
xs+1

dx

which is valid in σ > −1. Note that

f(x) :=
1

2
− {x} =

∞∑
n=1

sin(2πnx)

nπ

is uniformely convergent for {x} ∈ [ε, 1− ε]. Also note that

1

s− 1
+

1

2
= s

∫ 1

0

1
2 − {x}
xs+1

dx

when −1 < σ < 0.

Hence

ζ(s) = s

∫ ∞

0

f(x)

xs+1
dx.

For −1 < σ < 0 we then have:

ζ(s) = s

∫ ∞

0

{x} − 1
2

xs+1
dx

= s

∫ ∞

0

∑∞
n=1

sin 2nπx
nπ

xs+1
dx =

s

π

∞∑
n=1

1

n

∫ ∞

0

sin 2nπx

xs+1
dx

=
s

π

∞∑
n=1

(2πn)s

n

∫ ∞

0

sinx

xs+1
dx

=
s

π
(2π)sζ(1− s)

∫ ∞

0

sinx

xs+1
dx

=
s

π
(2π)sζ(1− s)(−Γ(−s) sin(πs/2)) (∗)

=
s

π
(2π)s(−Γ(−s)) sin(πs/2)ζ(1− s)

= 2sπs−1Γ(1− s)) sin(πs/2)ζ(1− s)

That we can interchange integral and sum in the third equality is not completely obvious,
to see it split the integral up into {x} ∈ [ε, 1 − ε] and /∈ [ε, 1 − ε] and do some stuff, see
notes for details.

31



Proof of (∗): ∫ ∞

0

sinx

xs+1
dx =

1

2i

(∫ ∞

0

eiy

ys+1
dy −

∫ ∞

0

e−iy

ys+1
dy

)
Now consider a contour as follows: ε > 0, R > 0. Then go from ε to R, then on a quarter
circle from R to iR. Then to iε, and then along a small quarter circle back to ε. Integrate
eiz

zs+1 over this contour. We have∣∣∣∣∫ ε

iε

eiz

zs+1
dz

∣∣∣∣ ≤ C

∫ π/2

0

ε

εs+1
dt

ε→0−−−→ 0,∣∣∣∣∫ iR

R

eiz

zs+1
dz

∣∣∣∣ ≤ 1

Rs+1

∫ π/4

0
e−R sin θRdθ

≤ 1

Rs+1

∫ π/4

0
e−R 2

π
θRdθ

R→∞−−−−→ 0

Since the integral over the whole contour is 0, we get∫ ∞

0

eiy

ys+1
dy = −

∫ 0

∞

e−y

(iy)s+1
idy = i

∫ ∞

0

e−y

(iy)s+1
dy

Similarly, one shows by integrating over the mirrored contour in the lower half plane that∫ ∞

0

e−iy

ys+1
dy = i

∫ ∞

0

e−y

(−iy)s+1
dy

Therefore ∫ ∞

0

sinx

xs+1
dx =

1

2

(∫ ∞

0

e−y

(iy)s+1
dy −

∫ ∞

0

e−y

(−iy)s+1
dy

)
=

1

2
Γ(−s)(i−s−1 + (−i)−s−1)

=
1

2
Γ(−s)(e−siπ/2i−1 + (−i)−1esiπ/2)

= −Γ(−s) sin(πs/2).

Theorem 6.2. ζ ′(0) = −1
2 log(2π)

Proof. We have

ζ(s) =
1

s− 1
+ 1− s

∫ ∞

1

{t}
ts+1

dt =
1

s− 1
+ γ +O(s− 1).

Therefore lims→1+(ζ(s)(s−1))′ = γ. Now compare this with the other side of the functional
equation.

Remark. If ξ(s) = 1
2s(s− 1)π−s/2Γ(s/2)ζ(s), then ξ(s) = ξ(1− s).
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7 Perron’s Formula
Given a sequence an, we associate to it the Dirichlet series D(s) =

∑
ann

−s. How do we
get information about the an from properties of D? Let A∗(x) =

∑
n≤x an if x is not an

integer and A∗(x) =
∑

n<x an+
1
2ax if x is an integer. Let σc be the abscissa of convergence

of D.

Theorem 7.1 (Perron’s formula, ineffective version). If a > 0, a > σc, then for all x ≥ 0:

A∗(x) =
1

2πi

∫ a+i∞

a−i∞
D(s)

xs

s
ds :=

1

2πi
lim
T→∞

∫ a+iT

a−iT
D(s)

xs

s
ds.

Theorem 7.2 (Perron’s formula, effective version). If a > 0, a > σc, then for all x ≥ 0:

A∗(x) =
1

2πi

∫ a+iT

a−iT
D(s)

xs

s
ds+R(T )

where |R(T )| ≤ xa

T

∑∞
n=1

|an|
na| log x

n
| .

In the case D(s) = 1, this says

1

2πi
lim
T→∞

∫ a+iT

a−iT

xs

s
ds =


0 0 ≤ x < 1,
1
2 x = 1,

1 x > 1.

Note that since |xs/s| = xa/|s|, the integral does not converge absolutely.

Let IT =
∫ a+iT
a−iT

xs

s ds. Then we have IT = xs

s log x

∣∣a+iT

a−iT
+ 1

log x

∫ a+iT
a−iT

xs

s2
ds and this does

converge absolutely for T → ∞. We have
∣∣∣ xa±iT

(a±iT ) log x

∣∣∣ = xa
√
a2+T 2 log x

= O(xa/(T log x)) =

o(1).

We now prove Perron’s formula forD(s) = 1. Consider the following contour, the Bronwich
contour.

Suppose first that x > 1. Then on Γ1 we have |x|s > xa. The residue of xs

s2
at s = 0 is

log x. Then
1

2πi

∫ a+iT

a−iT

xs

s2
ds = log x− 1

2πi

∫
Γ1

xs

s2
ds.

Let ρ =
√
a2 + T 2 be the radius of the circle. Then on Γ1 we have |xs/s2| < |xa/ρ2|, hence

the integral on the RHS is O(1/ρ) = o(1) as T → ∞. Then we have

1

2πi

∫ a+iT

a−iT

xs

s
ds = O(xa/(T log x)) + 1 +O(1/T ) = o(1) + 1.

In the case x < 1 one similarly finds the claim by integrating over Γ2 instead of Γ1.
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Bronwich contour

The case x = 1 can be done directly.

The same argument shows the following more general version:

Theorem 7.3.

1

2πi

∫ a+i∞

a−i∞

xsdx

s(s+ 1) · · · (s+ k)
=

{
0 x ≤ 1,
1
k!

(
1− 1

x

)k
x ≥ 1.

Proof of Theorem 7.1 and Theorem 7.2. If a > σa, then we can just swap integral and sum
in
∫ a+i∞
a−i∞ D(s)x

s

s ds and the result follows from the special case D(s) = 1. For σc < a ≤ σa,
we need to do a bit more, see notes for details.

We now give a version of Perron’s formula that gets rid of the difficulty of non-absolute
convergence.

Let A1(x) =
∫ x
0 A(t)dt =

∑
n≤x an(x− n). Then we have:

Theorem 7.4. For any c > max(0, σa) and any x > 1,

A1(x) =
1

2πi

∫ c+i∞

c−i∞
D(s)

xs+1

s(s+ 1)
ds.

Proof. It is easy to see that the RHS is absolutely convergent, hence can swap sum and
integral and apply Theorem 7.4:

1

2πi

∫ c+i∞

c−i∞
D(s)

xs+1

s(s+ 1)
ds =

1

2πi

∞∑
n=1

an

∫ c+i∞

c−i∞

(
x
n

)s
x

s(s+ 1)
ds
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=
∑
n≤x

anx
(
1− n

x

)
= A1(x).

35



8 The Prime Number Theorem
Theorem 8.1. For Re s ≥ 1, we have ζ(s) ̸= 0.

Proof. For Re s > 1, this is easy. E.g. it follows from the convergence of the Euler product
or from 1

ζ(s) =
∑

n≥1
µ(n)
ns . So suppose s = 1+ it where 0 ̸= t ∈ R. We already proved this

case in Corollary 3.8. Here is another proof using the 3-4-1 trick. For Re s = σ > 1, we
have

log ζ(s) = −
∑
p

log(1− p−s) =
∑
p

∑
k≥1

1

kpks
.

And

log |ζ(s)| = Re log ζ(s) =
∑
p

∑
k≥1

cos(t log pk)

kpkσ
.

Now for θ ∈ R we have

3 + 4 cos θ + cos 2θ = 2(1 + cos θ)2 ≥ 0.

Hence
3 log |ζ(σ)|+ 4 log |ζ(σ + it)|+ log |ζ(σ + 2it)| ≥ 0

for any t ∈ R, σ > 1. Therefore

|ζ(σ)3ζ(σ + it)4ζ(σ + 2it)| ≥ 1.

Now let σ → 1+. Then ζ(1 + it) ̸= 0, otherwise the term ζ(σ + it)4 would dominate over
the triple pole of ζ(σ)3, contradicting the inequality above.

Yet another method: We have 0 ≤ (1 + pit + p−it)2 = 3 + 2pit + 2p−it + p2it + p−2it Now
consider

log |ζ(σ)3ζ(σ + it)2ζ(σ − it)2ζ(σ + 2it)ζ(σ − 2it)|.

Plan. Perron’s formula relates
∫ x
0 ψ(x)dt and

∫ c+i∞
c−i∞

xs+1

s(s+1)ds for c > 1. We want to shift
the integral contour to c = 1 and then calculate it. For this we need bounds on ζ.

Theorem 8.2. If log |t| ≥ 4 and σ ≥ 1− 2
log |t| , we have

ζ(s) < c log |t|

for some constant c.
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Proof. For σ > 1 we can write

ζ(s)−
N∑

n=1

1

ns
=
∑
n>N

1

ns
=

∫ ∞

N

1

t
d⌊t⌋ = t1−s

1− s

∣∣∣∞
N

−
∫ ∞

N
t−sd{t}

=
−N1−s

1− s
− 1

2
N−s + s

∫ ∞

N

f(x)

xs+1
dx

where f(x) = 1
2 − {x}. Now the RHS is also convergent in σ > 0, hence by the identity

theorem, the equality is also valid in this region. Then

|ζ(s)| ≤
N∑

n=1

1

nσ
+
N1−σ

|t|
+

1

2
N−σ +

1

2
|s| 1
σ

1

Nσ
.

Now put N = ⌊|t|⌋+ 1 and ρ = 1− 2
log |t| . Then

N∑
n=1

1

nσ
<

N∑
n=1

1

nρ
≤ 1 +

∫ N

1
t−ρdt =

N1−ρ

1− ρ
≪ log |t|.

Also N1−σ

|t| ≪ 1 and 1
2N

−σ ≪ 1. Finally for the last term:

1

2
|s|σ−1N−σ ≪ |t|N−σ ≪ |t||t|

2
log t

−1 ≪ 1.

Hence we get the bound
|ζ(s)| ≪ log |t|.

Theorem 8.3. We have
ζ(k)(s) < c(log |t|)k+1.

for all s with σ > 1− 1
log |t| and log |t− 1

4 | ≥ 4.

Proof. Let r = 1
log |t| . Then by Cauchy’s integral formula,

ζ(k)(s) =
k!

2πi

∫
|z|=r

ζ(s+ z)

zk+1
dz

Now s+ z is in the range of the previous theorem, so we get |ζ(s+ z)| ≪ log |t|. Now plug
this into the formula.

Theorem 8.4. We have ∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣≪ (log |t|)10

for σ ≥ 1 and t sufficiently large.
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Proof. Wlog 1 ≤ σ ≤ 2, because
∣∣∣ ζ′(s)ζ(s)

∣∣∣ = |
∑

n≥1 Λ(n)n
−s| ≤

∣∣∣ ζ′(2)ζ(2)

∣∣∣ for σ ≥ 2.

Let σ′ = σ + 1
(log |t|)10 . Recall from the 3-4-1 trick that

|ζ(σ′)3ζ(σ′ + it)4ζ(σ′ + 2it)| ≥ 1

Since |ζ(σ′ + 2it)| ≪ log |t| and ζ(σ′) ≪ (σ′ − 1)−1, we get

|ζ(σ′ + it)|4 ≫ (σ′ − 1)3

log |t|
≫ 1

(log |t|)31
.

Then
|ζ(σ′ + it)| ≫ (log |t|)−31/4.

Also |ζ(σ + it)− ζ(σ′ + it)| =
∣∣∣∫ σ′

σ ζ ′(u+ it)dt
∣∣∣≪ (σ′ − σ)(log |t|)2 = (log |t|)−8. Hence

|ζ(σ + it)| ≫ (log |t|)−31/4

and then ∣∣∣∣ζ ′ζ (s)
∣∣∣∣≪ (log |t|)2

(log |t|)−31/4
≪ (log |t|)10.

Theorem 8.5. ∫ x

0
ψ(u)du ∼ 1

2
x2.
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Proof. Consider the contour as in the figure. Let C be the left part of the contour. Choose

T and b so that there are no zeros of ζ in the interior of the contour. Let Φ(s) = ζ′(s)
ζ(s)

xs+1

s(s+1) .
Note that by the residue theorem

1

2πi

∫
C+L1+L2+Γ

Φ(s)ds =
1

2
x2.

Also
1

2πi

∫
Γ
Φ(s)ds = o(1) +

∫ x

0
ψ(u)du as N → ∞,

by the smoothed Perron’s formula, Theorem 7.4. So to prove the claim, we just have to
show that the integrals over L1, L2, C are o(x2).

We have ∣∣∣∣∫
Li

Φ(s)ds

∣∣∣∣ ≤ ∫
Li

|Φ(s)| ds ≤
∫
Li

c(logN)10max(1, xa+1)

N(N − 1)
ds

≤ (a− 1)
c(logN)10max(1, xa+1)

N(N − 1)

N→∞−−−−→ 0.

Now on the line segments from 1+ iT to 1+ iN and 1− iN to 1− iT , we have
∣∣∣Φ(1+it)

x2

∣∣∣ <
c(log |t|)10

|t|2 , so ∣∣∣∣∫ 1+iN

1+iT
+

∫ 1−iT

1−iN

∣∣∣∣ < ε

2
x2

for T sufficiently large. On the indented rectangle, the integral is bounded by

Mx2

(∫ T

−T
xb−1dt+ 2

∫ 1

b
xσ−1dσ

)

where M = sup
∣∣∣ ζ′ζ 1

s(s+1)

∣∣∣. This is
< x2M

(
2Txb−1 +

[
2

log x
e(σ−1) log x

]1
b

)
=Mx2

(
2Txb−1 +

2

log x
(1− xb−1)

)
= o(x2).

Remark by L.T.: The order in which we choose N,T, x seems somewhat problematic here.
For our bound on

∫
Li

Φ(s)ds we need x fixed. Then we choose N large enough, then we

choose T large enough. But then why is M2Txb−1 small? Also we might want to use an
effective version of Perron’s formula in the beginning to see how the o(1)-term depends on
x.

Theorem 8.6 (Prime Number Theorem).

ψ(x) ∼ x.
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And hence π(x) ∼ x
log x by Theorem 5.7.

Proof. ψ is increasing and so

1

h

∫ x

x−h
ψ(u)du < ψ(x) <

1

h

∫ x+h

x
ψ(u)du.

Therefore

x− 1

2
h+ o(x2/h) < ψ(x) < x+

1

2
h+ o(x2/h).

Now choose h = δx, so that

x(1− 1

2
δ + o(x/δ)) < ψ(x) < x(1 +

1

2
δ + o(x/δ)).

Then for large enough x,
x(1− δ) < ψ(x) < x(1 + δ).
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9 Hadamard’s Factorisation Theorem
An entire function f is of finite order if for some α ≥ 0, we have |f(z)| = O(e|z|

α
) as

|z| → ∞. The inf of such α is called the order of f .

Theorem 9.1 (Hadamard’s Factorisation Theorem). Suppose f is entire of order α,
f(0) ̸= 0. Then f(z) = eQ(z)P (z), where Q is a polynomial of degree ≤ ⌊α⌋, and

P (z) =

∞∏
n=1

(
1− z

ρn

)
exp

( ⌊α⌋∑
m=1

1

m

( z
ρn

)m)
where ρ1, ρ2, . . . is an enumeration of the zeros of f . The product converges locally uni-
formly in C. Moreover, for R > 1,

#{ρn | |ρn| ≤ R} ≪ε R
α+ε.

Conversely, given a sequence ρn satisfying this bound, the expression eQ(z)P (z) defines an
entire function of order ≤ α.

Define the primary factors E(u, 0) = 1 − u and E(u, k) = (1 − u) exp(u + u2

2 + · · · + uk

k )

for k ≥ 1. Then logE(u, k) = −uk+1

k+1 − uk+2

k+2 − . . . and for |u| < 1, | logE(u, k)| < |u|k+1

1−|u| .

So P (z) in the theorem can be written as
∏∞

n=1E(u/ρn, ⌊α⌋).

Theorem 9.2. Given any set {ρn}n∈N in C with no limit points, there is an entire function
with roots exactly the ρn.

Proof. Set rn = |ρn|. After reordering we may assume r1 ≤ r2 ≤ . . . . We can also assume

r1 ̸= 0. Let f(z) =
∏∞

n=1E( z
ρn
, n− 1). If |z| < rn

2 , then | logE(z/ρn, n− 1)| < (|z|/rn)n
1−(|z|/rn) <

1
2n−1 , hence for |z| ≤ R,

∑
rn>2R logE(z/ρn, n−1) is absolutely and uniformly convergent,

so f is analytic ain |z| ≤ R and its zeros in this region are precisely those of the remainding
product

∏
rn≤2RE(z/ρn, n− 1).

We see from the proof that we can replace n− 1 in E(z/ρn, n− 1) by an where an is such
that

∑
r−an−1
n converges.

Theorem 9.3 (Weierstraß Factorisation Theorem). Let f be entire with f(0) ̸= 0. Then
f(z) = f(0)eg(z)P (z) where P is a product of primary factors and g is entire.

Proof. Form P (z) as in Theorem 9.2 with the set of roots of f as the ρn (with multi-

plicities). Then f(z)
P (z) has no zeros, hence admits a logarithm. Alternatively, let ϕ(z) =

f ′(z)
f(z) − P ′(z)

P (z) . Then ϕ is entire, hence we can define g(z) =
∫ z
0 ϕ(t)dt.
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Proof of Theorem 9.1. Suppose first that f has no zeros. Then byWeierstraß we may write
f = eg where g is entire. Since |f(z)| ≪ e|z|

α+ε
for all ε > 0, we get eRe g(z) ≪ e|z|

α+ε
,

hence Re g(z) ≪ |z|α+ε. In fact |g(z)| ≪ |z|α + ε by the Borel-Caratheodory lemma. It
then follows from Liouville’s theorem that g is a polynomial of degree ≤ ⌊α⌋.

To also cover the case when f has zeros, we need some more results.

Theorem 9.4 (Borel-Caratheodory). Suppose f is analytic on |z| ≤ R such that f(0) = 0
and Re f(z) ≤M . Then for any r < R,

sup
|z|=r

|f(z)| ≤ 2r

R− r
M.

Proof. Let g(z) = f(z)
z(2M−f(z)) , so g is analytic on |z| ≤ R and satisfies |g(z)| ≤ 1

R on

|z| = R. By the maximum modulus principle, |g(z)| ≤ 1
R also for |z| = r. So R|f(z)| ≤

2Mr + r|f(z)| and the result follows.

Suppose f is analytic in |z| < R+ ε and f(0) ̸= 0. Then

|f(0)| ≤
( ∏

|ρn|<R

|ρn|
R

)
sup
|z|=R

|f(z)|.

This follows from Jensen’s formula:

Theorem 9.5 (Jensen). Suppose f is analytic in |z| < R + ε and f(z) ̸= 0 in R ≤ |z| ≤
R+ ε and f(0) ̸= 0. Then

1

2π

∫ 2π

0
log |f(Reiθ)|dθ = log |f(0)|+ log

Rn

|ρ1| · · · |ρn|
where ρ1, . . . , ρn denote the roots of f inside |z| < R with multiplicity.

Proof. Write f(z) = Cg1(z) · · · gn(z)F (z) where F has no zeros in |z| < R and gi(z) =
R(z−ρi)
R2−ρiz

and C is chosen so that F (0) = 1. Note that gi is analytic in |z| < R + ε. Then
logF (z)

z is analytic in |z| < R + ε, hence
∫
|z|=R

logF (z)
z dz = 0, so

∫ 2π
0 logF (Reiθ)idθ = 0.

Taking imaginary part of both sides gives the result for F in place of f . For |z| = R we

have |gi(z)| =
∣∣∣R(z−ρi)
R2−ρiz

∣∣∣ = 1. Also gi(0) =
ρi
R . Then the formula also holds for gi. It clearly

holds for the constant function C. It is easy to see that it then also holds for the product
f .

Theorem 9.6. Let f be entire, f(0) ̸= 0. Let n(r) denote the number of zeros of f in
|z| ≤ r. Then

1

2π

∫ 2π

0
log |f(Reiθ)|dθ − log |f(0)| = log

( Rn

r1 · · · rn

)
=

∫ R

0

n(r)

r
dr

where r1, . . . , rn are the zeros in |z| < R.
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Theorem 9.7. If f is of order α, then for α′ > α,
∑

n r
−α′
n converges.

Using this it is possible to complete the proof of Theorem 9.1, see notes for details.

9.1 Application to ζ(s)

Let ξ(s) = 1
2s(s − 1)π−s/2Γ(s/2)ζ(s) = (s − 1)π−s/2Γ(1 + s/2)ζ(s). This is an entire

function and log |ξ(s)| ≪ s log |s|, but not ≪ |s|. So from the Hadamard factorisation
theory,

∑ 1
|ρ| diverges where the sum runs over the roots of ξ (see notes for details).

Theorem 9.8.

ζ ′(s)

ζ(s)
= B − 1

s− 1
+

1

2
log π − 1

2

Γ′(1 + s/2)

Γ(1 + s/2)
+
∑
ρ

( 1

s− ρ
+

1

ρ

)
where the sum is taken over the zeros ρ of ζ in 0 < σ < 1.

In fact, B = −γ
2 − 1− 1

2 log 4π.

Proof. By Hadamard, ξ(s) = eA+Bs
∏

ρ

(
1− s

ρ

)
es/ρ. Now take logarithmic derivatives.
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