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0 Homotopies

Conventions:

• space means topological space,

• map means continuous map unless otherwise stated,

• Map(X,Y ) := {f : X → Y | f continuous} where X,Y are spaces.

Some spaces:

• I = [0, 1],

• In = I × · · · × I closed n-cube,

• Dn = {v ∈ Rn | ∥v∥ ≤ 1} closed n-dimensional disk,

• Sn−1 = ∂Dn = {v ∈ Rn | ∥v∥ = 1}.

Note that Dn ∼= In, Sn−1 ⊆ Dn, Dn/Sn−1 ∼= Sn.

Definition. If f0, f1 : X → Y are continuous maps, f0 is homotopic to f1, written
f0 ∼ f1, if there exists a continuous map H : X × I → Y with H(x, 0) = f0(x) and
H(x, 1) = f1(x) for all x ∈ X. H is called a homotopy.

Think: ft(x) = H(x, t), ft : X → Y , t 7→ ft is a path from f0 to f1 in Map(X,Y ).

Examples.

1. idRn ∼ 0Rn .

2. An : Sn → Sn, v 7→ −v antipodal map. A1 ∼ idS1 via ft(z) = eiπtz, but A2 ̸∼ idS2

(proven later).

Lemma 0.1. Homotopy is an equivalence relation.

Definition.

[X,Y ] := Map(X,Y )/ ∼
= {homotopy classes of maps X → Y }

“ = {path components of Map(X,Y )}”

Lemma 0.2. If f0, f1 : X → Y , f0 ∼ f1 via ft and g0, g1 : Y → Z, g0 ∼ g1 via gt, then
g0 ◦ f0 ∼ g1 ◦ f1 via gt ◦ ft.
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Example. f : X → Rn, then f = idRn ◦f ∼ 0Rn ◦ f = 0X , so [X,Rn] has only one
element.

Definition. A space Y is contractible if idY ∼ cp where cp : Y → Y, y 7→ p is the constant
map with image p ∈ Y .

Proposition 0.3. Y is contractible iff [X,Y ] has one element for all (non-empty) X.

Proof. ⇒: as in the example with Rn.

⇐: Take X = Y . Since [X,Y ] has only one element, the homotopy classes of idY and cp
are equal, i.e. idY ∼ cp (for any p ∈ Y ).

Definition. Spaces X and Y are homotopy equivalent, written X ∼ Y , if there exist
maps f : X → Y, g : Y → X such that f ◦ g ∼ idY , g ◦ f ∼ idX .

Examples.

• Rn ∼ {0}.

• Y is contractible iff Y ∼ {∗}.

• Rn \ {0} ∼ Sn−1.

Basic questions of Algebraic Topology:

1. Given spaces X and Y , is X ∼ Y ?

2. What is [X,Y ]?

Definition. A pair of spaces (X,A) is a space X and a subset A ⊆ X. A map of pairs is
f : (X,A)→ (Y,B) is a continuous map f : X → Y such that f(A) ⊆ B.

Maps of pairs f0, f1 : (X,A) → (Y,B) are homotopic, written f0 ∼ f1, if f0, f1 : X → Y
are homotopic via a map of pairs H : (X × I, A× I)→ (Y,B). Write [(X,A), (Y,B)] for
the set of equivalence classes of maps of pairs (X,A)→ (Y,B).

0.1 Homotopy Groups

Definition. If X is a space and p ∈ X, the n-th homotopy group is

πn(X, p) = [(In, δIn), (X, p)] = [(Dn, Sn−1), (X, p)] = [(Sn, ∗), (X, p)].

(if n = 0 take the last set as the definition)

Proposition 0.4.
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1. The group structure for n ≥ 1 is given as follows: For φ,ψ : (In, ∂In) → (X, p) let
[φ] · [ψ] = [φ · ψ] where

φ · ψ : (In, ∂In)→ (X, p), (t1, . . . , tn) 7→

{
φ(2t1, t2, . . . , tn) 0 ≤ t1 ≤ 1

2 ,

ψ(2t1 − 1, t2, . . . , tn)
1
2 ≤ t1 ≤ 1

Then:

• π0(X, p) = {path components of X},

• π1(X, p) is a group,

• πn(X, p) is an abelian group for n > 1.

2. Functoriality: If f : (X, p) → (Y, q) is a map of pairs, it induces f∗ : πn(X, p) →
πn(Y, q) by f∗([φ]) = [f ◦ φ]. This satisfies (f ◦ g)∗ = f∗ ◦ g∗

3. Homotopy invariance: If f0, f1 : (X, p) → (Y, q) are homotopic as maps of pairs,
then f0∗ = f1∗.

Group structure for n = 2

πn is abelian for n = 2

Theorem 0.5. π1(S
n, ∗) =

{
Z n = 1,

0 otherwise.

But πn(S
k) is very complicated in general, e.g.:

n 1 2 3 4 5 6 7 8 9 10

πn(S
2) 0 Z Z Z/2 Z/2 Z/12 Z/2 Z/2 Z/3 Z/15

This is why we study homology instead of homotopy groups in this course.
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1 Singular Homology

1.1 Definition of Homology

Definition. The standard k-simplex is ∆k := {(t0, . . . , tk) ∈ Rk+1 |
∑
ti = 1, ti ≥ 0}.

For I ⊆ {0, . . . , k}, we associate a face fI = {t ∈ ∆k | ti = 0 for i /∈ I}. There is an
obvious inclusion map FI : ∆|I|−1 → ∆k with image fI .

We will write I = i0 · · · ik if I = {i0, . . . , ik} and i0 < i1 < · · · < ik.

Recall that a (Z-graded) chain complex (C•, d) over a commutative ring R consists of
R-modules Ck, k ∈ Z and homomorphisms dk : Ck → Ck−1 such that dk ◦ dk+1 = 0 for all
k.

The k-th homology group of such a chain complex is the quotientHk(C•) = ker dk/ Im dk+1.

Elements of ker d are called cycles, and elements of Im d boundaries.

Definition. The chain complex S•(∆
n) of the n-simplex is given by Sk(∆

n) = ⟨fI | I ⊆
{0, . . . , n}, |I| = k + 1⟩. For k > 0 the boundary map is given by

d(fI) =
k∑

j=0

(−1)jfI\{ij}

where I = i0 · · · ik and we set d(fI) = 0 if I = i0.

It is easy to see that d2 = 0, so this is indeed a chain complex.

The following is true1:

Hi(S•(∆
n)) ∼=

{
Z if i = 0,

0 otherwise.

Definition. The reduced chain complex associated to ∆n is the chain complex (S̃•(∆
n), d)

with S̃k(∆
n) = Sk(∆

n) for k ̸= −1 and S̃−1(∆
n) = ⟨f∅⟩. The differential is defined using

the formula above above, now including k = 0, i.e. df{i} = f∅.

Then one has H∗(S̃•(∆
n)) = 0.

1Remark by L.T.: See e.g. [Rot88, Corollary 7.18]
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Definition. For a space X its singular chain complex (C•(X), d) is defined by Ck(X) =
⟨σ : ∆k → X⟩ for k ≥ 0 and Ck(X) = 0 for k < 0. For σ : ∆k → X the differential dσ is
given by

dσ =

k∑
j=0

(−1)jσ ◦ Fȷ̂

where Fȷ̂ = F{0,...,k}\{j} : ∆
k−1 → ∆k is the inclusion onto the j-th face.

Note that if σ : ∆k → X, then we obtain a map ϕσ : S•(∆
k)→ C•(X) by fI 7→ σ ◦FI . By

definition of d this satisfies dC ◦ ϕσ = ϕσ ◦ dS . From this one easily deduces that d2C = 0.

Definition. Hi(X) = Hi(C•(X)) is the i-th singular homology group of X.

Example: Let X = {∗} be a one-point space. Then for k ≥ 0, Ck(X) = ⟨σk⟩ where
σk : ∆k → X is the unique map. For k > 0 we have dσk =

∑k
j=0(−1)jσk−1 ={

σk−1 if k is even,

0 if k is odd.
For k = 0 we get dσ0 = 0, thus

Hk(X) ∼=

{
Z if k = 0,

0 otherwise.

Definition. The reduced singular chain complex of X is defined by

C̃k(X) =

{
Ck(X) k ̸= −1,
⟨σ∅⟩ k = −1.

with dσ = σ∅ if σ : ∆0 → X and dσ∅ = 0

Exercise: H̃k({∗}) = 0 for all k.

Examples.

• ∆0 = {∗}, so elements of Map(∆0, X) correspond to points in X.

• ∆1 ∼= I, via (say) f0 7→ 0, f1, 7→ 1 and then extended linearly. Then elements of
Map(∆1, X) correspond to paths γ : [0, 1]→ X with dγ = σγ(1) − σγ(0)
Example: X = S1, γ : [0, 1] → S1, t 7→ e2πit, then dγ = 0, so γ is a cycle. Define
γ± : I → S1, t 7→ e±πit. Then dγ± = σ−1 − σ1, so γ+ − γ− is a cycle in C1.

Claim: [γ] = [γ+ − γ−]. Consider τ : ∆2 → S1 given by τ(p) = e2πiφ(p) where
φ : ∆2 → I is the affine linear map given by f0 7→ 0, f1 7→ 1, f2 7→ 1

2 . Then
dτ = τ ◦ F0̂ − τ ◦ F1̂ + τ ◦ F2̂ = γ− − γ+ + γ.

Proposition 1.1. If X is path connected, then H0(X) ∼= Z = ⟨σp⟩ for any p ∈ X.
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The map φ

Proof. C−1(X) = 0, so ker d0 = C0(X).

Im d1 = span{dγ | γ : I → X}
= span{σp − σp′ | p, p′ joined by a path in X}
= span{σp − σp′ | p, p′ ∈ X}

Then H0(X) = ker d0/ Im d1 ∼= Z via
∑
aiσpi 7→

∑
ai.

1.2 Subcomplexes, Quotient Complexes and Direct Sums

Definition. Suppose (C, d) is a chain complex over R. A subcomplex of (C, d) consists of
submodules Ai ⊆ Ci for all i such that d(Ai) ⊆ Ai−1. Then A =

⊕
iAi is a again a chain

complex with the differential being the restriction of d.

Given a subcomplex A of C, we can form the quotient (C/A, d) where C/A =
⊕

iCi/Ai.

Example. If A ⊆ X is a subspace, then C•(A) is a subcomplex of C•(X).

Definition. If (X,A) is a pair of spaces, then C•(X,A) = C•(X)/C•(A) is the singular
chain complex of (X,A).

Definition. If (Cα, dα)α∈A are chain complexes, then their direct sum is (
⊕

αCα,
⊕

α dα)
is also a chain complex.

Easy exercise: H∗(
⊕

αCα) =
⊕

αH∗(Cα).

Proposition 1.2. H∗(X) =
⊕

αH∗(Xα) where the Xα are the path-components of X

Proof. Since ∆k is (path-)connected, we have Map(∆k, X) =
∐

αMap(∆k, Xα), so Ck(X) =⊕
αCk(Xα) and this decomposition respects d, so we have a direct sum of chain com-

plexes.

Definition. If (C, d) and (C ′, d′) are chain complex over R, a chain map f : (C, d) →
(C ′, d′) is a collection of R-linear maps fi : Ci → C ′ such that d′i ◦ fi = fi−1 ◦ di, in other
words d′f = fd where f =

⊕
i fi.
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Notation. We denote categories as follows:{
Objects

Morphisms

}
Note that a chain map f : (C, d) → (C ′, d′) induces a map f∗ : H∗(C) → H∗(C

′). So
taking homology gives a functor:

H∗ :

{
chain complexes over R

chain maps

}
−→

{
(graded) R-modules

(graded) R-linear maps

}
(C, d) 7−→ H∗(C)

f : C → C ′ 7−→ f∗ : H∗(C)→ H∗(C
′)

Definition. If f : X → Y is a continuous map, define f# : C•(X) → C•(Y ) by
Map(∆∗, X) ∋ σ 7→ f#(σ) = f ◦ σ.

Lemma 1.3. f# is a chain map.

Proof. d(f#(σ)) = d(f ◦ σ) =
∑k

j=0(−1)jf ◦ σ ◦ Fȷ̂ = f#
(∑k

j=0(−1)jσ ◦ Fȷ̂

)
= f#dσ

So we get a functor{
spaces

continuous maps

}
−→

{
chain complexes over Z

chain maps

}
X 7−→ (C•(X), d)

f 7−→ f#

Composing the functors we get the singular homology functor :{
spaces

continuous maps

}
−→

{
graded Z-modules
graded linear maps

}
X 7−→ H∗(X)

f : X → Y 7−→ f∗ : H∗(X)→ H∗(Y )

Suppose f : (X,A) → (Y,B). Then f# : C•(X) → C•(Y ). If σ : ∆k → A, then f ◦ σ :
∆k → B, so f#(C•(A)) ⊆ C•(B). Thus f# descends to a map f# : C•(X,A)→ C•(Y,B).
Hence we get functors:{

pairs of spaces
maps of pairs

}
C•(−,−)−−−−−→

{
chain complexes over Z

chain maps

}
H∗−−→

{
Z-modules

Z-linear maps

}
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1.3 Homotopy Invariance

Goal: We want to prove that homotopic maps of spaces induce the same maps on homology.

Definition. Suppose g0, g1 : C → C ′ are maps of chain complexes (over some ring R).
g0 is chain homotopic to g1, written g0 ∼ g1, if there are R-linear maps hi : Ci → C ′

i+1

such that d′h+ hd = g1 − g0 where h = ⊕hi.

Chain complexes C,C ′ are chain homotopy equivalent, written C ∼ C ′, if there are chain
maps f : C → C ′, g : C ′ → C such that f ◦ g ∼ 1C′ , g ◦ f ∼ 1C .

Lemma 1.4. Chain homotopy and chain homotopy equivalence are equivalence relations.

Proposition 1.5. If g0, g1 : C → C ′ are chain maps with g0 ∼ g1, then

g0∗ = g1∗ : H∗(C)→ H∗(C
′).

Proof. Suppose the g0 ∼ g1 via h. If [x] ∈ H∗(C), dx = 0, so

g1∗[x]− g0∗[x] = [g1(x)− g0(x)] = [d′h(x) + hd(x)] = [d′h(x)] = 0.

Corollary 1.6. If C ∼ C ′, then H∗(C) ∼= H∗(C
′).

Idea behind the definition of chain homotopy: Suppose f0, f1 : X → Y , f0 ∼ f1 via
H : X × I → Y . Let g0(σ) = f0∗(σ), g1(σ) = f1∗(σ). Want h(σ) = “H(σ × I)”.

Idea for the chain homotopy

Recall if σ : ∆k → X, there is a chain map φσ : S•(∆
k)→ C•(X), fI 7→ σ ◦ FI .

Define c0, c1 : ∆n 7→ ∆n × I by ci(x) = (x, i), i = 0, 1. From this we get φc0 , φc1 :
S•(∆

n)→ C•(∆
n × I).
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Definition. If X ⊆ RN is convex and v0, . . . , vk ∈ X, define a k-simplex in X by

[v0, . . . , vk] : ∆
k −→ X,

(ti)i 7−→
∑
i

tivi,

[v0, . . . , vk] is the linear simplex determined by v0, . . . , vk.

Note that [v0, . . . , vk] ◦ Fȷ̂ = [v0 . . . v̂j . . . vk] (omit vj), so that

d[v0 . . . vk] =
∑
j

(−1)j [v0 . . . v̂j . . . vk].

To avoid lots of indices, we use the following notation: If fi ∈ ∆n, i = 0, . . . , n, write
i = fi × 0, i′ = fi × 1 ∈ ∆n × I.

Notational warning: In the following we will use I for two different things: An index set
or the interval [0, 1]. Whenever it is used for [0, 1] it occurs only in the form ∆n × I, so
this will hopefully cause no confusion.

Definition. The universal chain homotopy Un : S•(∆
n)→ C•+1(∆

n × I) is given by

Un(fI) =
k∑

j′=0

(−1)j′ [i0 . . . ij′i′j′i′j′+1 . . . i
′
k]

where I = i0 . . . ik.

Un “breaks up” ∆n× I into simplices. For example, for n = 1 we have U1(f01) = [00′1′]−
[011′].

n = 1

Proposition 1.7. dUn + Und = φc1 − φc0.

Proof. Let I = i0 . . . ik. What terms appear in (dUn + Und)(fI)?

(dUn + Und)(fI) =
∑
j<j′

mjj′ [i0 . . . îj . . . ij′i
′
j′ . . . i

′
k]
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+
∑
j′<j

njj′ [i0 . . . ij′i
′
j′ . . . îj

′
. . . i′k]

+
k−1∑
j=0

rj [i0 . . . iji
′
j+1 . . . i

′
k]

+ a[i0 . . . ik] + b[i′0 . . . i
′
k]

We have

mjj′ = (−1)j(−1)j′−1︸ ︷︷ ︸
delete ij
split at j′

+(−1)j′(−1)j︸ ︷︷ ︸
split at j′

delete ij

= 0,

njj′ = (−1)j(−1)j′︸ ︷︷ ︸
delete ij
split at j′

+(−1)j′(−1)j+1︸ ︷︷ ︸
split at j′

delete i′j

= 0,

rj = (−1)j(−1)j+1︸ ︷︷ ︸
split at j
delete i′j

+(−1)j+1(−1)j+1︸ ︷︷ ︸
split at j + 1
delete ij+1

= 0,

a = (−1)k(−1)k+1︸ ︷︷ ︸
split at k
delete i′k

= −1,

b = (−1)0(−1)0︸ ︷︷ ︸
split at 0
delete i0

= 1.

So
(dUn + Und)(fI) = [i′0 . . . i

′
k]− [i0 . . . ik] = φc0(fI)− φc1(fI).

Let i0 . . . ik = I ⊆ {0, . . . , n}. This gives a chain map φI : S•(∆
k)→ S•(∆

n) with φ(fJ) =
fij0 ij1 ...ijl where J = j0 . . . jl. (i.e. the J-face of ∆

k gets mapped to the corresponding face
of the I-face of ∆n).

Let φȷ̂ = φ{0,...,n}\{j} : S•(∆
n−1) → S•(∆

n) and fntop = f0...n ∈ Sn(∆n) (i.e. top face, the

whole simplex). Then dfntop =
∑

j(−1)jφȷ̂(f
n−1
top ).

Lemma 1.8 (Naturality of Un). The following square commutes:

S•(∆
k) S•(∆

n)

C•+1(∆
k × I) C•+1(∆

n × I)

Uk

φI

Un

FI#

where FI : ∆k × I → ∆n × I, (x, t) 7→ (FI(x), t).
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Proof. Immediate by writing out the maps.

Now suppose that f0, f1 : X → Y are homotopic via H : X × I → Y . Given σ : ∆n → X,
define Hσ : ∆n × I → Y by (x, t) 7→ H(σ(x), t). Observe that Hσ◦FI

= Hσ ◦ FI .

Define h : C•(X)→ C•+1(Y ) by h(σ) = Hσ#(Un(f
n
top)) if σ : ∆n → X.

Theorem 1.9. dh+ hd = f1# − f0#, so f0# ∼ f1#.

Proof. Let σ : ∆n → X. Then

hd(σ) = h
(∑

j

(−1)jσ ◦ Fȷ̂

)
=

∑
j

(−1)jHσFȷ̂#Un−1(f
n−1
top )

=
∑
j

(−1)jHσ#Fȷ̂#Un−1(f
n−1
top )

=
∑
j

(−1)jHσ#Un(φȷ̂(f
n−1
top ))

= Hσ#Un

(∑
j

(−1)jφȷ̂(f
n−1
top )

)
= Hσ#Un(df

n
top)

We also have dh(σ) = dHσ#(Un(f
n
top)) = Hσ#(dUn(f

n
top)). Thus

(hd+ dh)(σ) = Hσ#(Un(df
n
top + dUn(f

n
top)))

= Hσ#(φc1(f
n
top)− φc0(f

n
top))

= Hσ#(c1 ◦ F{0,...,n} − c0 ◦ F{0,...,n})

= Hσ#(c1)−Hσ#(c0)

= f1#(σ)− f0#(σ)

Corollary 1.10. If f0, f1 : X → Y are homotopic, then f0∗ = f1∗.

Corollary 1.11. If f : X → Y is a homotopy equivalence, then f∗ : H∗(X) → H∗(Y ) is
an isomorphism.

Corollary 1.12. If X is contractible, then

Hi(X) ∼=

{
Z i = 0,

0 i ̸= 0.
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1.4 Subdivision

1.4.1 Some Homological Algebra

Lemma 1.13 (Snake Lemma/Long exact sequence of Homology). Let

0→ A
ι−→ B

π−→ C → 0

be a short exact sequence (SES) of chain complexes. Then there is a long exact sequence
(LES)in homology:

· · · → Hi+1(C)
∂−→ Hi(A)

ι∗−→ Hi(B)
π∗−→ Hi(C)

∂−→ Hi−1(C)→ · · ·

Proof. ∂ is defined as follows: Let [c] ∈ Hi(C), so c ∈ Ci and dc = 0. Then there is a
b ∈ Bi such that π(b) = c. As π(db) = d(πb) = dc = 0, we have db ∈ kerπ, so there is
a ∈ Ai−1 with ι(a) = db. Then ι(da) = dι(a) = d(db) = 0, so da = 0 as ι is injective.
Define ∂[a] = [c] ∈ Hi−1(A). That this is well-defined and gives the exact sequence is a
straightforward diagram chase...

Corollary 1.14 (LES of a pair). Let (X,A) be a pair of spaces. Then there is a long
exact sequence:

· · · → Hi+1(X,A)
∂−→ Hi(A)

ι∗−→ Hi(X)
π∗−→ Hi(X,A)

∂−→ Hi−1(A)→ · · ·

Example. For p ∈ X, we have Hi({p}) = 0 for i ̸= 0 and Hi({p}) = Z for i = 0 in which
case it is generated by [σp] where σp : ∆

0 → X, ∗ 7→ p. So the LES of the pair (X, {p}) is:

· · · → 0 = Hi+1({p})→ Hi+1(X)→ Hi+1(X, {p})→ Hi({p}) = 0→ · · ·

for i > 0. Hence Hi+1(X)→ Hi+1(X, {p}) is an isomorphism. At i = 0 we have:

0 = H1({p})→ H1(X)→ H1(X, {p})
∂1−→ H0({p})︸ ︷︷ ︸

∼=Z

i∗−→ H0(X)→ H0(X, {p})→ 0

Note that i∗(n[σp]) = n[σp] ̸= 0 for n ̸= 0, so i∗ is injective and thus ∂1 = 0. Hence also
H1(X) → H1(X, {p}) is an isomorphism. We know that H0(X) =

⊕
α Z where α runs

through the set of path components of X and i∗ maps onto the factor Z corresponding to
the path component of p, hence H0(X) = H0(X, {p})⊕ ⟨[σp]⟩. This discussion gives:

Corollary 1.15. For A = {p} a point in X we have

Hi(X) ∼=

{
Hi(X, p) i > 0,

H0(X, p)⊕ Z i = 0
.

Lemma 1.16. H̃i(X) ∼= Hi(X, p) for all i ≥ 0.

13



Proof. Define C̃•(X, p) = C̃•(X)/C̃•(p) ∼= C•(X)/C•(p) = C•(X, p), i.e. H̃∗(X, p) =
H∗(X, p). We have a SES

0→ C̃•(p)→ C̃•(X)→ C̃•(X, p)→ 0

which gives a LES

· · · → H̃i(p)→ H̃i(X)→ H̃i(X, p)→ H̃i−1(p)→ . . .

We know H̃∗(p) = 0, so H̃i(X) ∼= H̃i(X, p) ∼= Hi(X, p).

1.4.2 Subdivision

Suppose U = {Uα | α ∈ A} is an open cover of X. Define

CU
k (X) = ⟨σ | σ : ∆k → X such that imσ ∈ Uα for some α⟩.

If imσ ∈ Uα, then imσ◦Fȷ̂ ⊆ Uα, so dσ ∈ CU
k−1(X), i.e. CU

∗ (X) is a subcomplex of C∗(X).

Let i : CU
∗ (X)→ C∗(X) be the inclusion.

Lemma 1.17 (Subdivision lemma). If U is an open cover of X, then

i∗ : H
U
∗ (X)→ H∗(X)

is an isomorphism.

Proof (idea only). (1) Define natural maps Bn : S∗(∆
n) → C∗(∆

n), Hn : C∗(∆
n) →

C∗+1(∆
n). Bn is defined inductively via barycentric subdivision. They satifsy dHn+

Hnd = Bn − φid∆n .

Barycentric subdivision of ∆n for n = 1, 2.

(2) Use Bn, Hn to define B : C∗(X) → C∗(X), H : S∗(X) → C∗(X) with dH + Hd =
B − idC∗(X).

(3) If c ∈ Ck(X) and U is an open cover of X, then there exists N such that BNc ∈
CU
∗ (X), so [c] = [BNc], so i∗ is surjective. And similarly one shows that i∗ is injective.

See handout for the details.

14



1.4.3 Mayer-Vietoris Sequence

Suppose U1, U2 ⊆ X are open, U1 ∪ U2 = X, so {U1, U2} = U is an open cover of X. We
then have a commutative diagram of inclusions:

U1

U1 ∩ U2 X

U2

j1i1

i2 j1

Proposition 1.18. There is a SES

0→ C∗(U1 ∩ U2)
i−→ C∗(U1)⊕ C∗(U2)

j−→ CU
∗ (X)→ 0

where i =

[
i1#
i2#

]
, j =

[
j1# − j2#

]
.

Proof. It is clear that i1#, i2# are injective, so i is injective.

Exactness at C∗(U1)⊕C∗(U2): We have j ◦ i = j1#i1#− j2#i2# = 0. Suppose j(a, b) = 0,
a =

∑
aiσi, ai ̸= 0, σi ̸= σj for i ̸= j, imσi ⊆ U1 and similarly b =

∑
bjτj . But if

j(a, b) = 0, then
∑
aiσi =

∑
bjτj which can only happen if (after reordering indices) if

ai = bi, σi = τi, so imσi ⊆ U1 ∩ U2, so if c =
∑
aiσi ∈ C∗(U1 ∩ U2), then i(c) = (a, b).

Exactness at CU
∗ (X): If c ∈ CU

k (X), we can write c =
∑
aiσi +

∑
bjτj where imσi ⊆

U1, im τj ⊆ U2, so c = j(a,−b) and j is surjective.

By the Subdivision Lemma we have HU
∗ (X) = H∗(X), hence we obtain:

Corollary 1.19 (Mayer-Vietoris Sequence). If U1, U2 ⊆ X are open, U1 ∪ U2 = X, there
is a LES

. . .
∂−→ Hi(U1 ∩ U2)

i−→ Hi(U1)⊕Hi(U2)
j−→ Hi(X)

∂−→ Hi−1(U1 ∩ U2)→ . . .

Note that
0→ C̃∗(U1 ∩ U2)

i−→ C̃∗(U1)⊕ C̃∗(U2)
j−→ C̃U

∗ (X)→ 0

is also exact: It only differs from the non-reduced complex in degree −1 where the sequence
becomes

0→ Z

1
1


−−−→ Z⊕ Z

[
1 −1

]
−−−−−−→ Z→ 0

Hence we also get a reduced version of the Mayer-Vietoris sequence:

. . .
∂−→ H̃i(U1 ∩ U2)

i−→ H̃i(U1)⊕ H̃i(U2)
j−→ H̃i(X)

∂−→ H̃i−1(U1 ∩ U2)→ . . .

15



1.4.4 Homology of Sn

Proposition 1.20.

H̃i(S
n) ∼=

{
Z i = n,

0 i ̸= n

Proof. By induction on n. If n = 0, we have S0 = {±1}, so

H∗(S
0) = H∗({1})⊕H∗({−1}) =

{
Z⊕ Z i = 0,

0 i ̸= 0,

and therefore H̃i(S
0) ∼=

{
Z i = 0,

0 i ̸= 0.

In general, let U+ = Sn \ {(−1, 0, . . . , 0)}, U− = Sn \ {1, 0, . . . , 0}. Note that U± ∼= Rn ∼=
Dn◦ by stereographic projection, so contractible, while U+ ∩U− = Sn \ {(±1, 0, . . . , 0)} ∼=
I◦ × Sn−1 is homotopic to Sn−1 via

p : U+ ∩ U− −→ Sn−1,

(x1, . . . , xn+1) 7−→
1√

x22 + · · ·+ x2n+1

(x2, x3, . . . , xn+1).

The MV-sequence is

· · · → H̃i(U1)⊕ H̃i(U2)→ H̃i(S
n)

∂−→ H̃i−1(U+ ∩ U−)→ H̃i−1(U+)⊕ H̃i−1(U−)→ . . .

As the U± are contractible we get that ∂ is an isomorphism. Hence H̃i(S
n)

∂−→ H̃i−1(U+ ∩
Ui)

p∗−→ H̃i−1(S
n−1) is an isomorphism. By induction we are done.

Define [Sn], the preferred generator of H̃n(S
n) ∼= Z, by [S0] = [σ1 − σ−1] and then

inductively by p∗(∂[S
n]) = [Sn−1] where p∗ ◦ ∂ is the isomorphism H̃i(S

n)
∂−→ H̃i−1(U+ ∩

U−)
p∗−→ H̃i−1(S

n−1).

Lemma 1.21 (Naturality of the connecting homomorphism). Suppose

0 A B C 0

0 A′ B′ C ′ 0

fA fB fC

is a commuting diagram of chain complexes with exact rows. Then we have commuting
diagram of LES

. . . Hi(B) Hi(C) Hi−1(A) . . .

. . . Hi(B
′) Hi(C

′) Hi−1(A
′) . . .

fB∗

∂

fC∗ fA∗

∂′
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Proof. Straightforward diagram chase.

Example. Suppose f : X → Y , Y = U1 ∪ U2, Ui ⊆ Y open. Let Vi = f−1(Ui), so
X = V1 ∪ V2, Vi ⊆ X open. Then f# induces a map of SES

0 C∗(V1 ∩ V2) C∗(V1)⊕ C∗(V2) CV
∗ (X) 0

0 C∗(U1 ∩ U2) C∗(U1)⊕ C∗(U2) CU
∗ (Y ) 0

f# f# f#

and hence we get a corresponding map of MV sequences.

Example. Define rn : Sn → Sn, (x1, . . . , xn+1) 7→ (x1, . . . , xn,−xn+1). Let S
n = U+∪U−

as before. Then r : U+ → U+, U− → U−.

Proposition 1.22. rn∗ : H̃n(S
n)→ H̃n(S

n) maps [Sn] to −[Sn].

Proof. By induction on n. For n = 0 we have [S0] = [σ1 − σ−1], so r0∗[S
0] = [r0σ1 −

r0σ−1] = [σ−1 − σ1] = −[S0] since r0(±1) = ∓1.

In general, rn induces a map of MV sequences (Sn, U+, U−)→ (Sn, U+, U−):

0 H̃∗(S
n) H̃∗−1(U+ ∩ U−) 0

0 H̃∗(S
n) H̃∗−1(U+ ∩ U−) 0

∂

rn∗ rn∗

∂

The homotopy equivalence

p : U+ ∩ U− −→ Sn−1,

(x1, . . . , xn+1) 7−→
1√

x22 + · · ·+ x2n+1

(x2, . . . , xn+1),

satisfies p◦rn = rn−1◦p. So we get a commuting diagram where all maps are isomorphisms:

H̃∗(S
n) H̃∗−1(U+ ∩ U−) H∗−1(S

n−1)

H̃∗(S
n) H̃∗−1(U+ ∩ U−) H̃∗−1(S

n−1)

∂

rn∗

p∗

rn∗ rn−1

∂ p∗

From induction hypothesis we then get rn∗[S
n] = −[Sn].

Corollary 1.23. If n ≥ 1 and v ∈ Sn, let rv : Sn → Sn be reflection across the plane
perpendicular to v. Then rv∗[S

n] = −[Sn].

Proof. Sn is path connected, so if γ is a path from v to en+1, rγ(v) is a homotopy from rv
to ren+1 = rn, so rv∗ = rn∗.
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1.5 Excision and Collapsing a Pair

Definition. Suppose A ⊆ Z. A is a deformation retract of Z if there exists a map
p : (Z,A)→ (A,A) such that p ◦ i = 1(A,A) and i ◦ p : (Z,A)→ (Z,A) ∼ 1(Z,A) as a map
of pairs where i : (A,A)→ (Z,A) is the inclusion.

Note that if A is a deformation retract of Z, then in particular Z ∼ A.

Example. Y × 0 is a deformation retract of Y ×Dn◦.

Definition. A pair (X,A) is a good pair if there exists U ⊆ X open such that A ⊆ U , A
is a deformation retract of U and A ⊆ U .

Examples.

• X = S2, A = {n, s} is a good pair,

• Y = T 2 = S1 × S1, B = S1 × 1 ⊆ Y is a good pair.

• More generally, if M is a manifold, N is a submanifold, then (M,N) is a good pair.

• (R,Q) is not a good pair.

Theorem 1.24. Suppose (X,A) is a good pair, and π : (X,A)→ (X/A,A/A) the quotient
map. Then

π∗ : H∗(X,A)→ H∗(X/A,A/A) ≃ H̃∗(X/A)

is an isomorphism.

Examples.

• X = S2, A = {n, s}, Z = X/A. By the Theorem H̃∗(Z) ≃ H∗(X,A). We compute

Z = S2/{n, s}

H∗(X,A) using the LES of the pair (X,A). Note that

H̃∗(S
2) =

{
Z ∗ = 2,

0 ∗ ≠ 2,
H̃∗(A) =

{
Z ∗ = 0,

0 ∗ ≠ 0.

So the LES is

0→ Z→ H̃2(X,A)→ 0→ 0→ H̃1(X,A)→ Z→ 0→ H̃0(X,A)→ 0

18



Therefore H̃∗(Z) =

{
Z ∗ = 1, 2,

0 ∗ ≠ 1, 2.

• Y = S1×S1, B = S1×1. Note that Y/B ∼= Z. For example Z = (S1× [−1, 1])/(S1×

Y/B ∼= Z

S0), and we have quotient maps S1× [−1, 1]→ S2 → Z and S1× [−1, 1]→ T 2 → Z.
Since we know H∗(B) and H∗(Z) ≃ H∗(Y,B), we can determine H∗(Y ): We get the
LES

0→ H̃2(T
2)→ Z→ Z i1∗−−→ H̃1(T

2)→ Z→ 0→ H̃0(T
2)→ 0

Here i1 : S
1 → Y is the inclusion on the first factor. It has the retract π1 : T

2 → S1,
i.e. π1 ◦ i1 = idS1 , hence π1∗ ◦ i1∗ = idH∗(S1), so i1∗ is injective. From this we

deduce that H̃2(T
2) ∼= Z and H̃1(T

2) ∼= Z ⊕ Z. Exercise: H1(T 2) is generated by
i1∗[S

1] = [S1]× 1, i2∗[S
1] = 1× [S1]

Lemma 1.25 (Five Lemma). Suppose

. . . Ai+2 Ai+1 Ai Ai−1 Ai−2 . . .

. . . Bi+2 Bi+1 Bi Bi−1 Bi−2 . . .

fi+2 fi+1 fi fi−1 fi−2

is a commuting diagram of R-modules with exact rows. If fi±1, fi±2 are isomorphisms,
then also fi is an isomorphism.

Proof. Straightforward diagram chase.

Suppose U = {Uj | j ∈ J} is an open cover of X. If A ⊆ X, UA := {Uj ∩ A | j ∈ J} is an
open cover of A and CUA

∗ (A) ⊆ CU
∗ (X). Define CU

∗ (X,A) := CU
∗ (X)/CUA

∗ (A). The map
i : CU

∗ (X)→ C∗(X) induces i : CU
∗ (X,A)→ C∗(X,A).

Lemma 1.26. i∗ : H
U
∗ (X,A)→ H∗(X,A) is an isomorphism.

Proof. There is a commutative diagram of SES’s:

0 CUA
∗ (A) CU

∗ (X) CU
∗ (X,A) 0

0 C∗(A) C∗(X) C∗(X,A) 0

i i i
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So we get a commutative diagram of LES’s:

HUA
∗ (A) HU

∗ (X) HU
∗ (X,A) HUA

∗−1(A) HU
∗−1(X)

H∗(A) H∗(X) H∗(X,A) H∗−1(A) H∗−1(X)

i∗ i∗ i∗ i∗ i∗

The four red arrows are isomorphisms by the subdivision lemma, so the blue one also
is.

Theorem 1.27 (Excision). Suppose B ⊆ A ⊆ X, B ⊆ IntA, and let j : (X \B,A \B)→
(X,A) be the inclusion. Then

j∗ : H∗(X \B,A \B)→ H∗(X,A)

is an isomorphism

Proof. B ⊆ IntA, so U = {IntA,X \B} is an open cover of X. Notation: If σ : ∆k → X,
write σ ◁ U if imσ ⊆ U for some U ∈ U .

Then

CU
∗ (X) = ⟨σ | σ ◁ U⟩

= ⟨σ | σ ◁ U , imσ ∩B = ∅⟩ ⊕ ⟨σ | σ ◁ U and imσ ∩B ̸= ∅⟩
= CU

∗ (X \B)⊕MB

where MB = ⟨σ | imσ ⊆ A and imσ ∩B ̸= ∅⟩. Similarly CUA
∗ (A) = C

UA\B
∗ (A \B)⊕MB.

Now if C ′ ⊆ C, then the inclusion C/C ′ → (C ⊕M)/(C ′ ⊕M) is an isomorphism. So

taking C = CU
∗ (X \ B), C ′ = C

UA\B
∗ (A \ B) we get that j# : CU

∗ (X \ B)/C
UA\B
∗ (A \

B) → CU
∗ (X)/CUA

∗ (A) is an isomorphism, i.e. j# : CU
∗ (X \ B,A \ B) ∼= CU

∗ (X,A), so
j∗ : H

U
∗ (X \B,A \B) ∼= HU

∗ (X,A).

There is a commuting square

HU
∗ (X \B,A \B) HU

∗ (X,A)

H∗(X \B,A \B) H∗(X,A)

i∗

j∗

i∗

j∗

The vertical maps and top map are isomorphisms, thus so is the bottom map.

Proposition 1.28 (LES of a triple). Suppose Z ⊆ Y ⊆ X. Then there is a LES:

. . .
∂−→ H∗(Y,Z)

j1∗−−→ H∗(X,Z)
j2∗−−→ H∗(X,Y )

∂−→ H∗−1(Y, Z)→ . . .

where j1 : (Y,Z)→ (X,Z), j2 : (X,Z)→ (X,Y ) are inclusions.
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Proof. There is a short exact sequence

0→ C∗(Y,Z)→ C∗(X,Z)→ C∗(X,Y )→ 0

and the sequence in the claim is the associated long exact sequence.

Lemma 1.29. If A is a deformation retract of U , U ⊆ X and j : (X,A) → (X,U) the
inclusion, then j∗ : H∗(X,A)→ H∗(X,U) is an isomorphism.

Proof. Let i : A → U be the inclusion. By definition it is a homotopy equivalence, hence
i∗ : H∗(A) → H∗(U) is an isomorphism and so the LES of the pair (U,A) shows that
H∗(U,A) = 0. Then the LES of the triple (X,U,A) gives

0 = H∗(U,A)→ H∗(X,A)
j∗−→ H∗(X,U)→ H∗−1(U,A) = 0,

so j∗ is an isomorphism.

Proof of Theorem 1.24. There is a commutative diagram

H∗(X −A,U −A) H∗(X,U) H∗(X,A)

H∗(X/A−A/A,U/A−A/A) H∗(X/A,U/A) H∗(X/A,A/A)

j∗

π1∗ π2∗

i∗

π3∗

j∗ i∗

The maps j∗ are isomorphisms by excision, the i∗ are isomorphisms by the lemma (exercise:
A/A is deformation retract of U/A). π1∗ is induced by a homeomorphism (X−A,U−A)→
(X/A−A/A,U/A−A/A), hence an isomorphism. Then π2∗ is an isomorphism and finally
also π3∗ is an isomorphism.

Definition. A space X is an n-manifold if it is metrizable (in particular Hausdorff and
first-countable) and every x ∈ X has an open neighborhood Ux homeomorphic to Rn.

Proposition 1.30. If X is an n-manifold and x ∈ X, then

H∗(X,X \ x) ∼=

{
Z ∗ = n,

0 ∗ ≠ n.

Proof. Choose Ux ⊆ X as above with Ux
∼= Rn, x 7→ 0. Then by excision and Lemma 1.29:

H∗(X,X \ p) ∼= H∗(D
n, Dn \ 0) ∼= H∗(D

n, Sn−1).

The LES of (Dn, Sn−1) yields H̃∗(D
n, Sn−1) = H̃∗−1(S

n−1) and we are done.

Corollary 1.31. If M and N are m and n-manifolds resp. and M ∼= N , then n = m.
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2 Cellular Homology

2.1 Degrees of Maps f : Sn → Sn

Recall that Hn(S
n) ∼= Z (n > 0). It is generated by [Sn]. So if f : Sn → Sn, then

f∗[S
n] = k[Sn] for some (unique) k ∈ Z.

Definition. If f : Sn → Sn with f∗[S
n] = k[Sn], k =: deg f is the degree of f .

Properties:

(1) (1Sn)∗ = 1H∗(Sn), so deg 1Sn = 1

(2) If f0, f1 : S
n → Sn are homotopic, then f0∗ = f1∗, so deg f0 = deg f1.

(3) If f, g : Sn → Sn, then deg f deg g = deg(f ◦ g).

(4) If f : Sn → Sn is a homeomorphism, then deg f = ±1. We say f is orientation
preserving if deg f = 1, otherwise orientation reversing.

(5) If rv : Sn → Sn is the reflection in v⊥, then deg rv = −1 (Corollary 1.23)

(6) If A : Sn → Sn, x 7→ −x is the antipodal map, then A = re1 ◦ re2 ◦ · · · ◦ ren+1 , so
degA = (−1)n+1. In particular A ̸∼ 1Sn if n is even.

2.1.1 Local Degree

Let p ∈ Sn. Then Sn − p ∼= Dn◦ is contractible, so π∗ : H̃n(S
n) → Hn(S

n, Sn − p) is an
isomorphism.Define [Sn, Sn − p] ∈ Hn(S

n, Sn − p) as the image of [Sn] under π∗.

If U ⊆ Sn is open, p ∈ U , let B = Sn \ U . B is closed and B ⊆ Int(Sn − p). Then
(Sn −B,Sn − p−B) = (U,U − p), so by excision

j∗ : Hn(U,U − p)→ Hn(S
n, Sn − p)

is an isomorphism. Define [U,U − p] to be the preimage of [Sn, Sn − p] under j∗.

Observe: If p ∈ U ′ ⊆ U , we have a commutative diagram:

Hn(U,Up) Hn(S
n, Sn − p)

Hn(U
′, U ′ − p)

≃

≃ι∗
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So [U ′, U ′ − p] gets mapped to [U,U − p] under ι∗.

Suppose f : Sn → Sn and f−1(p) = {q1, . . . , qr} is finite. As Sn is Hausdorff, we can find
Ui ⊆ Sn open such that qi ∈ Ui and Ui ∩ Uj = ∅ for i ̸= j. Then f : (Ui, Ui − qi) →
(Sn, Sn − p). Then f∗[Ui, Ui − qi] = k[Sn, Sn − p] for some k ∈ Z.

Definition. Under the above hypotheses we define degqi f := k to be the local degree of
f at qi.

Lemma 2.1. The definition of the local degree does not depend on the choice of Ui.

Proof. Suppose qi ∈ U ′
i ⊆ Ui and qi ∈ U ′

i . Then

Hn(Ui, Ui − qi) Hn(S
n, Sn − p)

Hn(U
′
i , U

′
i − qi)

f∗

i∗
f ′
∗

commutes. We have i∗[U
′
i , U

′
i − qi] = [Ui, Ui − qi], so deg f∗ = deg f ′∗. In general, given

open sets Ui, U
′
i containing qi, consider Ui ∩ U ′

i ⊆ Ui, U
′
i and use above to see that the

degrees defined using Ui, U
′
i , Ui ∩ U ′

i are all the same.

Let V =
∐

i Ui ⊆ Sn. By excision we have an isomorphism j∗ : Hn(V, V − f−1(p)
≃−→

Hn(S
n, Sn − f−1(p)). We also know that Hn(V, V − f−1(p)) =

⊕r
i=1Hn(Ui, Ui − q) ≃ Zr

and the [Ui, Ui − qi] form a basis of this group.

Lemma 2.2. The map

H̃n(S
n)→ Hn(S

n, Sn − f−1(p)) ∼=
r⊕

i=1

Hn(Ui, Ui − qi)

is given by [Sn] 7→
∑r

i=1[Ui, Ui − qi].

Proof. There is a commutative diagram:

Hn(S
n, Sn − f−1(p)) Hn(S

n, Sn − qj)

Hn(V, V − f−1(p)) Hn(V, V − qj) Hn(Uj , Uj − qj)

≃ ≃

≃

The vertical maps are isomorphisms, so the diagram still commutes if we reverse those
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arrows. Now consider the following diagram:

H̃n(S
n)

Hn(S
n, Sn − f−1(p)) Hn(S

n, Sn − qj)

Hn(V, V − f−1(p)) Hn(V, V − qj) Hn(Uj , Uj − qj)

⊕
iHn(Ui, Ui − qi)

α

β

≃ ≃

≃

≃

πj

Here πj is the projection onto the j-th component. The diagram is still commutative
(exercise: check the bottom triangle). Then α([Sn]) = j−1

∗ [Sn, Sn − p] = [Uj , Uj − qj ], so
πjβ[S

n] = α[Sn] = [Uj , Uj − qj ], hence β[Sn] =
∑

j [Uj , Uj − qj ].

Theorem 2.3. Suppose f : Sn → Sn, f−1(p) = {q1, . . . , qr} as above. Then deg f =∑r
i=1 degqi f .

Proof. We have a commutative diagram:

Hn(S
n) Hn(S

n)

Hn(S
n, Sn − f−1(p)) Hn(S

n, Sn − p)

⊕
Hn(Ui, Ui − qi)

f∗

f∗

j−1
∗ ⊕fi∗

Following the different paths, we see that the image of [Sn] in Hn(S
n, Sn − p) is both

deg f [Sn, Sn−p] and
∑
fi∗[Ui, Ui−qi] = (

∑
degqi f)[S

n, Sn−p], so the result follows.

Example. Let f : S1 → S1, z 7→ zn. Then f−1(1) = {1, ω, . . . , ωn−1} where ω = e2πi/n.
Consider the homeomorphism φk : S1 → S1, z 7→ ωkz. Note that φk ∼ 1S1 . Let Uk =
ϕk(U0) where U0 is a small neighborhood of 1. Then φk∗[U0, U0 − 1] = [Uk, Uk − ωk] and
f◦φk = f , so f∗[Uk, Uk−ωk] = f∗(φk∗[U0, U0−1]) = f∗[U0, U0−1]. So degωk f = deg1 f = 1
(the last equality is an exercise). Therefore deg f =

∑n−1
i=0 1 = n.

2.1.2 Some Intuition

If f : Sn → X, then f∗[S
n] ∈ Hn(X) and if f0 ∼ f1, then f0∗[S

n] = f1∗[S
n]. This can be

used to define the “Hurewicz homomorphism”:

Φ : πn(X, ∗) −→ Hn(X),
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f 7−→ f∗[S
n]

In general, this map is quite far from being an isomorphism. Example: H2(T
2) ≃ Z. But

if f : S2 → T 2, we can factor it through the universal covering π : R2 → T 2, i.e. f = f̂ ◦ π
for some f̂ : S2 → R2. Then f∗[S

2] = π∗f̂∗[S
2] = π∗(0) = 0, since H2(R2) = 0.

Better model: IfM is a closed (i.e. without boundary and compact) connected n-manifold,
we will showHn(M) ≃ Z = ⟨[M ]⟩ such that the image of [M ] underHn(M)→ Hn(M,M−
∗) ≃ Z is a generator. So if f : M → X, we can consider f∗[M ] ∈ Hn(X). If Wn+1 is
a compact n + 1-manifold, ∂W =

∐k
i=1Mi. Then i : ∂W → W induces i∗ : Hn(∂W ) →

Hn(W ) with [∂W ] =
∑k

i=1[Mi] 7→ 0. So if f :W → X, then f∗(
∑

i[Mi]) = 0.

This is still not an accurate model for Hn, but much better.

2.2 The Cellular Chain Complex

Definition. Suppose B ⊆ Y , f : B → X. Then X ∪f Y := (X ⨿ Y )/ ∼, where ∼ is the
smallest equivalence relation containing b ∼ f(b) for all b ∈ B, is the space obtained by
attaching (or gluing) Y to X along f .

If (Y,B) = (Dk, Sk−1), say X ∪f Dk is obtained by attaching a k-cell to X.

Attaching a 1- and a 2-cell

Definition. A finite cell complex (fcc) of dimension n is a space X equipped with closed
subsets ∅ = X−1 ⊆ X0 ⊆ X1 ⊆ . . . ⊆ Xn, such that for each k, Xk is obtained by attaching
finitely many k-cells to Xk−1, i.e. Xk

∼= Xk−1 ∪F
∐

α∈Ak
Dk where F :

∐
α∈Ak

Sk−1 →
Xk−1, F =

∐
α∈Ak

fα, fα : Sk−1 → Xk−1.

Xk is the k-skeleton of X.

If we drop the finiteness conditions, X =
⋃∞

k=0Xk and U ⊆ X is open iff U ∩Xk is open
for all k, then this is called a CW-complex.

Examples.

(1) If X is a graph with v vertices and e edges, then X is a fcc with v 0-cells and e
1-cells.

(2) If X is a fcc with one 0-cell and one k-cell, then X ∼= Dk/Sk−1 ∼= Sk.
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(3) If X is a simplicial chain complex, |X| is a fcc with one k-cell for each k-dimensional
face of X.

(4) T 2 is a fcc with one 0-cell P , two 1-cells e1, e2 and one 2-cell f .

Cell structure of T 2

Definition. If (Xi, xi), i ∈ I are pointed spaces, their wedge product is∨
i∈I

(Xi, xi) :=
∐
i∈I

Xi/(
∐
i

xi).

S2 ∨ S2

If X is a fcc with one 0-cell and r k-cells, then X ≃
∨r

i=1 S
k.

2.2.1 Projectives Spaces

Definition. The n-dimensional complex projective space is CPn = (Cn+1 − 0)/C∗.

The n-dimensional real projective space is RPn = (Rn+1 − 0)/R∗.

Note that C∗ = R>0×S1 and (Cn+1−0)/R>0 ≃ S2n+1, so CPn ∼= S2n+1/S1 where λ ∈ S1

acts on z ∈ S2n+1 by λ · z = λz (inside Cn+1).

Similarly, RPn = Sn/(Z/2).

Definition. The Hopf map pn : S2n+1 → CPn is the projection.

Proposition 2.4. CPn ≃ CPn−1 ∪pn−1 D
2n where pn−1 : S2n−1 → CPn−1 is the Hopf

map.
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Proof. We have maps

i1 : CPn−1 −→ CPn

[z] 7−→ [z : 0]

i2 : D
2n = {z ∈ Cn : ∥z∥ ≤ 1} −→ CPn

z 7−→ [z :
√
1− ∥z∥2]

Then i2|S2n−1 = i1◦pn−1. So i1, i2 glue to give i : CPn−1∪pn−1D
2n → CPn. i is a bijection.

Indeed, the inverse is given by

[z0 : · · · : zn] 7→

{
(z0, . . . , zn−1) ∈ D2n if zn ∈ R>0, ∥z∥ = 1,

[z0 : · · · : zn−1] ∈ CPn−1 if zn = 0.

Since the spaces are compact Hausdorff, it follows that i is a homeomorphism.

Consequence: By induction CPn is a fcc with one cell of dimension 2i for 0 ≤ i ≤ n and
no other cells.1 For example, CP1 ≃ S2.

The same argument shows RPn ∼= RPn−1∪pn−1D
n. So RPn is a fcc with 1 cell of dimension

i for 0 ≤ i ≤ n.

Proposition 2.5.

H∗(CPn) =

{
Z ∗ = 0, 2, . . . , 2n,

0 otherwise.

Proof. The quotient CPn/CPn−1 is a cell complex with one 0-cell (image of CPn−1) and
one 2n-cell (image of D2n), so CPn/CPn−1 ∼= S2n. Hence

H∗(CPn,CPn−1) ≃ H̃∗(S
2n) =

{
Z ∗ = 2n,

0 otherwise.

By induction we have H∗(CPn−1) = 0 for odd ∗, hence the LES of (CPn,CPn−1) gives us
SES

0→ Hi(CPn−1)→ Hi(CPn)→ H̃i(S
2n)→ 0.

Hence
H∗(CPn) ∼= H∗(CPn−1)⊕ H̃∗(S

2n)

and the claim then follows by induction.

For H∗(RPn) we need to work a little bit harder, we will compute it in the next section.

1This gives rise to the funny-looking formula

“
Cn+1 − 0

C− 0
= C0 + C1 + · · ·+ Cn”.

Sadly this doesn’t work for RPn.
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2.2.2 Homology of Cell Complexes

Observation: In the LES of (Dk, Sk−1), the map Hk(D
k, Sk−1) → H̃k−1(S

k−1) is an
isomorphism as H̃∗(D

k) = 0. Define [Dk, Sk−1] as the preimage of [Sk−1].

Suppose X is a fcc. Let Ak be the set of k-cells of X, Xk = Xk−1 ∪∐ fα

∐
α∈Ak

Dk with

fα : Sk−1 → Xk−1. Let Uk−1 = Xk−1 ∪∐ fα (
∐

α∈Ak
Dk − 0). Since Sk−1 is a deformation

retract of Dk− 0, Xk−1 is also a deformation retract of Uk−1. Hence (Xk, Xk−1) is a good
pair. Furthermore, Xk/Xk−1 ≃

∐
α∈Ak

Dk/
∐

α∈Ak
Sk−1 ∼=

∨
α∈Ak

Sk.2

So

Hk(Xk, Xk−1) ≃ Hk

( ∐
α∈Ak

Dk,
∐

α∈Ak

Sk−1
)
≃

⊕
α∈Ak

Hk(D
k, Sk−1).

Then Hk(Xk, Xk−1) =
⊕

α∈Ak
eαZ where eα = iα∗[D

k, Sk−1] where iα : (Dk, Sk−1) →
(Xk, Xk−1).

Let pβ :
∨

α∈Ak
Sk →

∨
α∈Ak

Sk/
∨

α ̸=β S
k ≃ Sk. Then pβ∗ is the projection onto the factor

corresponding to ⟨eβ⟩.

Let dk : Hk(Xk, Xk−1) → Hk−1(Xk−1, Xk−2) be the boundary map in the long exact
sequence of the triple (Xk, Xk−1, Xk−2).

Lemma 2.6. dk = (πk−1)∗ ◦ ∂k where ∂k : Hk(Xk, Xk−1)→ Hk−1(Xk−1) is the boundary
in the LES of the pair (Xk, Xk−1) and πk−1 : (Xk−1, ∅)→ (Xk−1, Xk−2).

Proof. Look at the construction of dk, ∂k in the Snake Lemma.

Corollary 2.7. dk ◦ dk+1 = 0.

Proof. dk ◦ dk+1 = (πk−1)∗ ◦ ∂k ◦ πk∗ ◦ ∂k+1 and ∂k ◦ πk∗ = 0 as they are two consecutive
maps in the LES of (Xk, Xk−1).

Definition 2.8. If X is a fcc, (Ccell
∗ (X), dcell) = (

⊕
kHk(Xk, Xk−1),

⊕
k dk) is the cellular

chain complex of X.

Theorem 2.9. Hcell
∗ (X) := H∗(C

cell
∗ (X)) ≃ H∗(X).

How to compute Hcell
∗ (X): We have Ccell

k (X) = Hk(Xk, Xk−1) = ⟨eα | α ∈ Ak⟩ and:

Proposition 2.10. dcellk : Ccell
k (X)→ Ccell

k−1(X) is given by

dcellk (eα) =
∑

β∈Ak−1

nαβeβ,

2Remark by L.T.: Here and in the following, the homeomorphism Dk/Sk−1 ∼= Sk should probably be
chosen such that [Dk, Sk−1] corresponds to [Sk] under Hk(D

k, Sk−1) ∼= Hk(D
k/Sk−1) ∼= Hk(S

k).
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where nαβ = deg pβ ◦ fα where

pβ ◦ fα : Sk−1 → Xk−1 → Xk−1/Xk−2 ≃
∨

β∈Ak−1

Sk−1 pβ−→ Sk−1.

Proof. dk(eα) = (πk−1)∗ ◦ ∂k(iα∗[Dk, Sk−1]). By naturality of the connecting homomor-
phism this is (πk−1)∗ ◦ iα∗(∂k[Dk, Sk−1]) = (πk−1)∗iα∗[S

k−1]) = fα∗[S
k−1]. The coefficient

of eβ in fα∗[S
k−1] is the coefficient of [Sk−1] in (pβ ◦ fα)∗[Sk−1] this is deg(pβ ◦ fα).

Examples.

• CPn has one cell of dimension 2i for 0 ≤ i ≤ n, so

Ccell
∗ (CPn) = (Ccell

2n (CPn) = Z→ 0→ Z→ 0→ · · · → 0→ Z = Ccell
0 (CPn))

The boundary maps are 0. So

H∗(CPn) ≃ Hcell
∗ (CPn) = Ccell

∗ (CPn) =

{
Z ∗ = 0, 2, . . . , 2n,

0 otherwise

as we already knew.

• RPn has one cell of dimension k for all 0 ≤ k ≤ n, so Ccell
k (RPn) = ⟨ek⟩. Then

Ccell
∗ = Z dn−→ Z dn−1−−−→ Z→ · · · → Z d1−→ Z

where dkek = nkek−1 with nk = deg gk,

gk : Sk−1 fk−→ RPk−1 π−→ RPk−1/RPk−2 ≃ Sk−1.

Given p ∈ Sk−1, not coming from RPk−2, it has two preimages in Sk−1, q and Aq
where A : Sk−1 → Sk−1 is the antipodal map. Note that gk = gk ◦A, so degAq gk =

degq gk degA = (−1)k degq gk =: (−1)kα. gk|U is a homeomorphism (where U is a
small neighborhood of q), so degq gk = ±1 = α. So deg gk = degq gk + degAq gk =

α+ (−1)kα =

{
±2 k even,

0 k odd.

Summary:

– Suppose n is even. Then:

Ccell
∗ (RPn) = Z ±2−−→ Z 0−→ Z ±2−−→ Z→ · · · → Z 0−→ Z

So H∗(RPn) = Hcell
∗ (RPn) =


Z/2 ∗ = 1, 3, 5, . . . , n− 1

Z ∗ = 0,

0 otherwise.
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– Suppose n is odd. Then:

Ccell
∗ (RPn) = Z 0−→ Z ±2−−→ Z 0−→ Z→ · · · → Z 0−→ Z

H∗(RPn) = Hcell
∗ (RPn) =


Z/2 ∗ = 1, 3, 5, . . . , n− 2

Z ∗ = 0, n,

0 otherwise

We now turn to the proof of the theorem.

Lemma 2.11. Suppose X is a fcc with one 0-cell, and all other cells have dimension ≤M
and ≥ m. Then H̃∗(X) = 0 if ∗ < m or ∗ > M .

Proof. By induction on M −m. If M −m = 0, then X has one cell dimension 0 and all
other cells of dimension m =M , so X ≃

∨
α∈A S

m, and therefore H̃∗(X) = 0 for ∗ ≠ m.

Now suppose the claim is true for M −m < k. If X has cells of dimension ≤ m+ k and
≥ m, then Xm+k−1 has cells of dimension between m and m + k − 1, so the induction
hypothesis applies toXm+k−1. (X,Xm+k−1) is a good pair withX/Xm+k−1 =

∨
α∈A S

m+k,

so H∗(X,Xm+k−1) = 0 unless ∗ = m+ k and H̃∗(Xm+k−1) = 0 unless m ≤ ∗ ≤ m+ k− 1.
Then consider the LES of the pair:

H̃∗(Xm+k−1)→ H̃∗(X)→ H∗(X,Xm+k−1)

The two outer groups are 0 unless m ≤ ∗ ≤ m+ k.

Lemma 2.12. If X is a fcc, then (X,Xk) is a good pair.

Proof. “Annoying but not terribly hard exercise”

Corollary 2.13. If X is a fcc, then Hk(Xk+1) ≃ Hk(X).

Proof. From the LES of (X,Xk+1) we get

Hk+1(X,Xk+1)→ Hk(Xk+1)→ Hk(X)→ Hk(X,Xk+1).

We have Hk(X,Xk+1) ≃ H̃k(X/Xk+1). X/Xk+1 has one 0-cell (image of Xk+1), and all
other cells have dimension ≥ k+ 2, so by the lemma H̃k(X/Xk+1) = H̃k+1(X/Xk+1) = 0,
and our result follows.

Proof of Theorem 2.9. Consider the following commutative diagram:
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Hk(Xk+1, Xk) = 0

Hk(Xk−1) = 0 Hk(Xk+1)

Hk(Xk)

Hk+1(Xk+1, Xk) Hk(Xk, Xk−1) Hk−1(Xk−1, Xk−2)

Hk−1(Xk−1)

Hk−1(Xk−2) = 0

πk

i

dk+1

∂k+1

∂k

dk

πk−1

The horizontal sequence in the middle is the cellular chain complex. The diagonal se-
quences are parts of long exact sequences of pairs.

So πk, πk−1 are injections, i is a surjection. So now we have ker dk = ker ∂k = imπk ∼=
Hk(Xk). Under this isomorphism, im dk+1 ↔ im ∂k+1, so H

cell
k (X) = (ker dk)/(im dk+1) ≃

Hk(Xk)/ im ∂k+1 ≃ Hk(Xk+1) ∼= Hk(X) by the corollary.

2.3 Homology with Coefficients

Definition. If G is a Z-module, then C∗(X;G) := C∗(X) ⊗ G is the singular chain
complex with coefficients in G. H∗(X;G) is its homology.

Note: If f, g : C → C ′ are chain homotopic via h, then f ⊗ 1, g⊗ 1 : C ⊗M → C ′⊗M are
chain homotopic via h⊗ 1.

Example. Let C = Ccell
∗ (RP3) = (Z 0−→ Z 2−→ Z 0−→ Z), so H∗(C) = (Z, 0,Z/2,Z).

Then C∗ ⊗Q = (Q 0−→ Q 2−→ Q 0−→ Q), so

H∗(C∗ ⊗Q) = (Q, 0, 0,Q) = H∗(C)⊗Q.

And C∗ ⊗ Z/2 = (Z/2 0−→ Z/2 0−→ Z/2 0−→ Z/2), so

H∗(C∗ ⊗ Z/2) = (Z/2,Z/2,Z/2,Z/2) ̸= H∗(C)⊗ Z/2.

2.3.1 Euler Characteristic

Suppose C is a finite dimensional chain complex over a field. Let ck = dimCk.
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Definition. The Euler characteristic of C is χ(C) :=
∑

k(−1)kck.

Let hk = dimHk(C).

Theorem 2.14. χ(C) = χ(H∗(C)) =
∑

k(−1)khk.

Proof. Let zk = dimker dk, bk = dim im dk, so ck = zk + bk and hk = zk − bk+1. Then
χ(C) =

∑
k(−1)k(zk + bk) =

∑
k(−1)k(zk − bk+1) = χ(H(C)).

2.3.2 Eilenberg-Steenrod Axioms

Definition. An ordinary homology theory with coefficients in G (abelian group) is a
functor {

pairs of spaces
maps of pairs

}
→

{
graded Z-modules

graded homomorphisms

}
satisfying:

(i) Homotopy invariance: If f0, f1 : (X,A) → (Y,B), f0 ∼ f1 as maps of pairs, then
f0∗ = f1∗

(ii) LES of a pair: There is a LES

. . .→ Hk(A)→ Hk(X)→ Hk(X,A)→ Hk−1(A)→ . . .

where Hk(X) = Hk(X, ∅). A map (X,A)→ (Y,B) induces a map of LES (natural-
ity).

(iii) Excision: If B ⊆ IntA, then i∗ : H∗(X \B,A \B)→ H∗(X,A) is an isomorphism.

(iv) Dimension axiom: H∗({•}) =

{
G ∗ = 0,

0 ∗ ≠ 0.

Theorem 2.15. If X is a fcc and H∗ is any functor satisfying these axioms, then H∗(X) ≃
H∗(C

cell
∗ (X) ⊗ G). In particular, if H∗(X;G) satisfies these axioms, then H∗(X;G) ∼=

H∗(C
cell
∗ (X)⊗G).

Proof idea. Go through the proof of Theorem 2.9 and the construction of Hcell
∗ (X) to

see that we only ever used these axioms (for the computation of H∗(S
n) we used the

MV-sequence which can be deduced from the axioms).

2.3.3 More Algebra - The Universal Coefficient Theorem

Definition. If M is an R-module, a free resolution of M is a free chain complex A over
R such that

(1) Ak = 0 for k < 0,
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(2) H∗(A) =

{
M ∗ = 0,

0 ∗ ≠ 0.

Examples.

• If a ∈ R is not a zero divisor, then 0→ R
a−→ R→ 0 is a free resolution of R/(a).

• R = C[x, y]. Then R

 y
−x


−−−−→ R2

[
x y

]
−−−−−→ R is a free resolution of R/(x, y).

Definition. If M,N are R-modules, then Tori(M,N) := Hi(A ⊗ N) where A is a free
resolution of M .

Tori measures the failure of H∗(A⊗M)
?
= H∗(A)⊗M .

This is well-defined due to the following fact: Any two free resolutions of M are chain
homotopic.

Exercise: Tor0(M,N) ≃M ⊗N .

Examples. R = Z. Then Z a−→ Z is a free resolution of Z/(a), so

Tor∗(Z/a,Z) =

{
Z/a ∗ = 0,

0 ∗ ≠ 0.

And

Tor∗(Z/a,Z/b) = H∗(Z/b
a−→ Z/b) =

{
Z/(a, b) ∗ = 0, 1,

0 ∗ ≠ 0, 1.

E.g. Tor1(Z/2,Z/2) = Z/2 accounts for the extra Z/2 in H∗(C
cell
∗ (RP3)).

Definition. A chain complex is short injective if for some k ∈ Z,

(1) C∗ = 0 for ∗ ≠ k, k + 1 and Ck, Ck+1 are free.

(2) d : Ck+1 → Ck is injective.

So C is a shifted free resolution of H∗(C) = Hk(C).

Theorem 2.16. A free chain complex over a PID is a direct sum of short injective com-
plexes.

Proof. Fact: If R is a PID, a submodule of a free module over R is free.

For each k ∈ Z we have a SES

0→ ker dk → Ck
dk−→ im dk → 0.

By the fact, im dk is free. Thus, the sequence splits and we get Ck = ker dk ⊕ Bk where

dk : Bk
≃−→ im dk. Since d

2 = 0, im dk ⊆ ker dk−1 =: Zk−1, so C∗ =
⊕

k(Bk
dk−→ Zk−1).
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Corollary 2.17. If two free chain complexes over a PID have isomorphic homology, they
are chain homotopy equivalent.

Proof. By the theorem, a chain complex over a PID is a direct sum of free resolutions
of its homologies, so the claim follows the fact that any two free resolutions of the same
module are chain homotopy equivalent.

Corollary 2.18. If C is a chain complex over a field F, then C ∼ (H∗(C), 0).

Proof. H∗(C) is free over F since every module over F is free, and the previous corollary
applies.

Corollary 2.19 (Universal Coefficient Theorem). If C is a free chain complex over a
PID, then

Hk(C ⊗N) = (Hk(C)⊗N)⊕Tor1(Hk−1(C), N) = Tor0(Hk(C), N)⊕Tor1(Hk−1(C), N).

Proof. C is a direct sum of short injective complexes (and both sides commute with direct
sums in C), so it suffices to check the claim for a short injective complex, where it is the
definition of Tor.

So H∗(X;G) is determined by H∗(X).
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3 Cohomology and Products

3.1 Cohomology

Definition. If M,N are R-modules, then Hom(M,N) is the R module of R-linear maps
M → N . If f : M1 → M2 is R-linear, we get an R-linear map f∗ : Hom(M2, N) →
Hom(M1, N), α 7→ α ◦ f .

So we have a contravariant functor{
R-modules

R-linear maps

}
Hom(−,N)−−−−−−−→

{
R-modules

R-linear maps

}

If (C, d) is a chain complex overR, then define (Hom(C,N), d∗) by Hom(C,N) =
⊕

k Hom(Ck, N), d∗k :
Hom(Ck−1, N)→ Hom(Ck, N). We say (Hom(C,N), d∗) is a cochain complex and d∗ raises
homological degree by 1.

So there is a contravariant functor{
chain complexes over R

chain maps

}
−→

{
cochain complexes over R

cochain maps

}
(C, d) 7−→ (Hom(C,N), d∗)

f : C → C ′ 7−→ f∗ : Hom(C ′, N)→ Hom(C,N)

If (C, d∗) is a cochain complex, its k-th cohomology is Hk(C) = ker d∗k/ im d∗k−1

Definition. If X is a space, its singular cochain complex with coefficients inG is (C∗(X;G), d∗)
where C∗(X;G) = Hom(C∗(X), G) and its k-th singular cohomology is Hk(X;G) =
Hk(C∗(X;G)). Similarly we define the cochain complex and cohomology of a pair of
spaces.

If f : X → Y , then we get the cochain map f# : Ck(Y ;G) → Ck(X;G) given by
f#(α)(σ) = α(f#(σ)) = α(f ◦ σ) for σ : ∆k → X. This induces a map f∗ : Hk(Y ;G) →
Hk(X;G).

Hence we get a contravariant functor

H∗(−,−;G) :
{

pairs of spaces
maps of pairs

}
−→

{
graded Z-modules
Z-linear maps

}
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It is the composition of the following functors:{
pairs of spaces
maps of pairs

} {
chain complexes

chain maps

}

{
cochain complexes

cochain maps

} {
Z-modules

Z-linear maps

}
C∗

Hom(−,G)

H∗

Dual to chain homotopies we have:

Definition. If C,C ′ are cochain complexes (over R), f, g : C → C ′ cochain maps, we say
f and g are cochain homotopic if f − g = d∗h+ hd∗ where h : Ck → C ′k−1 is R-linear. h
is a cochain homotopy.

Lemma 3.1. Cochain homotopic maps induce the same map on cohomology.

Lemma 3.2. If f, g : C → C ′ are maps of chain complexes and f ∼ g via h, then
f∗, g∗ : Hom(C ′;N)→ Hom(C;N) are cochain homotopic via h∗.

3.1.1 Eilenberg-Steenrod Axioms for Cohomology

Note that Ck(X,Y ;G) = {f : Ck(X)→ G | f is Z-linear, f(σ) = 0 if imσ ⊆ A}.

For convenience we will drop the G in H∗(X,G), H∗(X,A;G) in the following.

H∗ satisfies the dual version of the Eilenberg-Steenrod axioms:

(i) Homtopy invariance: If f0, f1 : (X,A)→ (Y,B) with f0 ∼ f1 as maps of pairs, then
f∗0 = f∗1 : H∗(Y,B)→ H∗(X,A).

Proof. f0#, f1# are chain homotopic, hence f#0 , f
#
1 are cochain homotopic, hence

f∗0 = f10 .

(ii) LES of pair: We have a SES of cochain complexes

0→ C∗(X,A)→ C∗(X)→ C∗(A)→ 0.

The associated LES is

. . .→ Hk(X,A)→ Hk(X)→ Hk(A)
δ−→ Hk+1(X,A)→ . . .

A map of pairs induces a map of LES’s in cohomology.

(iii) Excision: If B ⊆ A ⊆ X, B ⊆ A◦, then

i∗ : H∗(X,A)→ H∗(X −B,A−B)

is an isomorphism.
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Proof. i# : C∗(X − B,A − B) → C∗(X,A) induces an isomorphism on homology
(ordinary excision). Since C∗(X,A), C∗(X −B,A−B) are free, i# is a chain homo-
topy equivalence (Sheet 1, Exercise 11). So i# is cochain homotopy equivalence and
thus i∗ an isomorphism.

(iv) Dimension: H∗({•};G) =

{
G ∗ = 0,

0 ∗ ≠ 0

Theorem 3.3. Any functor satisfying these axioms is given by

H∗
cell(X;G) = H∗(Hom(Ccell

∗ (X);G))

when X is a finite cell complex.

Short proof that H∗(X;G) ∼= H∗
cell(X;G) if X is a fcc:

C∗(X), Ccell
∗ (X) are free chain complexes with the same homology over the PID Z, so

they are homotopy equivalent by Corollary 2.17, so C∗(X;G), C∗
cell(X;G) are homotopy

equivalent.

Example. We compute H∗
cell(RP

3). Recall that

Ccell
∗ (RP3) = (Z 0−→ Z 2−→ Z 0−→ Z).

Therefore
C∗
cell(RP3) = (Z 0← Z 2← Z 0← Z),

so

H∗
cell(RP3) =


Z ∗ = 0, 3,

Z/2 ∗ = 2,

0 otherwise.

3.1.2 Ext and the Universal Coefficient Theorems

Definition. If M,N are R-modules, then Exti(M,N) = H i(Hom(A,N)) where A is a
free resolution of M .

Again this is well-defined since any two free resolutions of the same module are chain
homotopy equivalent.

Example. We compute Ext∗(Z/n,Z) for n ̸= 0. A = (Z n−→ Z) is a free resolution of Z/n,
and Hom(A,Z) = Z n← Z, so

Exti(Z/n,Z) =

{
Z/n ∗ = 1,

0 otherwise.

Similarly,

Exti(Z/n,Z/n) =

{
Z/n ∗ = 0, 1,

0 otherwise.
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Theorem 3.4 (Universal Coefficient Theorem). Suppose X is a finite cell complex. Then

Hk(X;G) ∼= Hom(Hk(X);G)⊕ Ext1(Hk−1(X);G).

Proof. Split Ccell
∗ (X) into a direct sum of short injective complexes and use definition of

Ext.

Example. If X is a fcc, Hk(X) = Zbk ⊕ Tk by structure theorem for finitely generated
abelian groups where Tk is finite. bk is called the k-th Betti number of X. We get
Hk(X,Z) ∼= Zbk ⊕ Tk−1.

3.1.3 Pairing

Suppose C is a chain complex over R. There is a bilinear pairing ⟨, ⟩ : Hom(Ck;N)×Ck →
N , ⟨α, c⟩ = α(c).

Lemma 3.5. This descends to a pairing

Hk(Hom(C,N))×Hk(C) −→ N

([α], [c]) 7−→ ⟨[α], [c]⟩ := α(c)

Proof. We need to check that this is well-defined. For β ∈ Hom(C,N), b ∈ C we have:

⟨α+ d∗β, c+ db⟩ = α(c) + α(db) + d∗β(c+ db)

= α(c) + d∗α(b) + β(d(c+ db))

= α(c) = ⟨α, c⟩

3.2 Cup Product

Let R be a commutative ring.

Definition. If α ∈ Ck(X;R), β ∈ C l(X;R), then α ⌣ β ∈ Ck+l(X;R) is given by

α ⌣ β(σ) = α(σ ◦ F0...k)β(σ ◦ Fk...k+l),

for σ : ∆k+l → X.

Lemma 3.6. ⌣ makes C∗(X;R) into a (noncommutative) ring with identity 1 ∈ C0(X;R)
where 1(σp) = 1 ∈ R.

Proof. We must check

(1) (α ⌣ β)⌣ γ = α ⌣ (β ⌣ γ),
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(2) (α1 + α2)⌣ β = α1 ⌣ β + α2 ⌣ β,

(3) α ⌣ (β1 + β2) = α ⌣ β1 + α ⌣ β2,

(4) α ⌣ 1 = α = 1⌣ α.

These are all easy.

Lemma 3.7. If α ∈ Ck(X;R), β ∈ C l(X;R), then

d∗(α ⌣ β) = (d∗α)⌣ β + (−1)kα ⌣ (d∗β)

Proof. Let σ : ∆k+l+1 → X. Then:

d∗(α ∪ β)(σ) = α ⌣ β(dσ) = α ⌣ β
( k+l+1∑

j=0

(−1)jσ ◦ Fȷ̂

)

=
k+l+1∑
j=0

(−1)jα(σ ◦ Fȷ̂ ◦ F0...k)β(σ ◦ Fȷ̂ ◦ Fk...k+l)

=
k+1∑
j=0

(−1)jα(σ ◦ F0...ȷ̂...k+1)β(σ ◦ Fk+1...k+l+1)

+
k+l+1∑
j=k

(−1)jα(σ ◦ F0...k)β(σ ◦ Fk...ȷ̂...k+l+1)

= (d∗α)⌣ β(σ) + (−1)k(α ⌣ d∗β)(σ)

(Note that here different FI map between different simplices)

Corollary 3.8. ⌣ descends to give a map

⌣: Hk(X;R)×H l(X;R) −→ Hk+l(X;R)

[α]× [β] 7−→ [α ⌣ β]

This makes H∗(X;R) into a ring with unit [1] ∈ H0(X;R).

Proof. We check that this is well-defined. First note that if [α] ∈ Hk(X;R), [β] ∈
H l(X;R), then d∗α = 0 = d∗β, so d∗(α ⌣ β) = d∗α ⌣ β + (−1)kα ⌣ d∗β = 0, so
[α∪β] ∈ Hk+l(X;R). Now let α′ = α+d∗a, β′ = β+d∗b with a ∈ Ck(X;R), b ∈ C l(X;R).
Then

α′ ⌣ β′ = α ⌣ β + (d∗a)⌣ β + (α+ d∗a)⌣ d∗b

= α ⌣ β + (d∗a)⌣ β ± (α+ d∗a)⌣ d∗((α+ d∗a) ∪ b)

Hence [α′ ⌣ β′] = [α ⌣ β]. Hence ⌣ is well-defined on cohomology.

Note that for τ : ∆1 → X, we have d∗1(τ) = 1(dτ) = 1(στ(1) − στ(0)) = 1 − 1 = 0, so
d∗1 = 0, so 1 defines a class in H0(X;R).
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Proposition 3.9. If f : X → Y , then f∗ : H∗(Y ;R) → H∗(X;R) is a ring homomor-
phism, i.e. f∗(α ∪ β) = f∗(α) ∪ f∗(β) and f∗(1) = 1.

Proof. Consider f# : C∗(Y ;R)→ C∗(X;R). Then

f#(α ⌣ β)(σ) = α ⌣ β(f ◦ σ)
= α(f ◦ σ ◦ F0...k)β(f ◦ σ ◦ Fk...k+l)

= f#(α)(σ ◦ F0...k)f
#(β)(σ ◦ Fk...k+l)

= f#(α)⌣ f#(β)(σ)

Notation: If a ∈ Hk(X;R), we write |a| := k.

Proposition 3.10. H∗(X;R) is graded commutative, i.e. a ⌣ b = (−1)|a||b|b ⌣ a (But
this is totally false for chains).

We use a chain map r : C∗(X) → C∗(X) defined as follows. Let ρn : ∆n → ∆n be the

linear map defined by ei 7→ en−i. Let ε(j) = j(j+1)
2 =

∑j
i=0 i, so that det ρj = (−1)ε(j).

Define rj : Cj(X) → Cj(X) by rj(σ) = (−1)ε(j)σ ◦ ρj . Note that r also induces a map
r : C∗(X,A)→ C∗(X,A) for A ⊆ X.

Theorem 3.11. (1) r : C∗(X)→ C∗(X) is a chain map.

(2) r ∼ 1C∗(X).

Proof of the proposition using the theorem. Dualizing r gives r∗ : C∗(X;R) → C∗(X;R)
and r∗ ∼ 1C∗(X). So [r∗(α)] = [α]. By definition of r, we have

(−1)ε(|α|+|β|)r∗(α ⌣ β) = (−1)ε(|α|)(−1)ε(|β|)r∗(β)⌣ r∗(α),

hence

[α ⌣ β] = [r∗(α ⌣ β)] = (−1)ε(|α|+|β|)(−1)ε(|α|)(−1)ε(|β|)[r∗(β)⌣ r∗(α)]

= (−1)|α||β|[β]⌣ [α].

Proof of the theorem. (1) Let σ : ∆n → X. We have ρn ◦ Fȷ̂ = F
n̂−j
◦ ρn−1, so

d(r(σ)) = (−1)ε(n)
∑

j
(−1)jσ ◦ ρn ◦ Fȷ̂

= (−1)ε(n)
∑

j
(−1)jσ ◦ F

n̂−j
◦ ρn−1

= (−1)n(−1)ε(n)
∑

j
(−1)n−jσ ◦ F

n̂−j
◦ ρn−1
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= (−1)ε(n−1)
∑

j
(−1)jσ ◦ Fȷ̂ ◦ ρn−1

= rn−1(dσ)

(2) One can write down an explicit chain homotopy, this is done e.g. in [Hat02]. We do
it in a different way:

C∗(X) is free, so it suffices to show that r∗ : H∗(X) → H∗(X) is the identity on
H∗(X). Observations:

(i) If f : X → Y , f# ◦ r(σ) = (−1)ε(|σ|)f ◦ σ ◦ p|σ| = r ◦ f#(σ), so f∗r∗ = r∗f∗.

(ii) There is a commutative diagram of SES:

0 C∗(A) C∗(X) C∗(X,A) 0

0 C∗(A) C∗(X) C∗(X,A) 0

r r r

This induces a map between the LES of (X,A), hence we see that r∗∂ = ∂r∗
where ∂ is the boundary map in the LES.

Notation: Rn(X,A) is the statement (r∗)n = 1Hn(X,A).

(iii) If f∗ : Hn(X,A)→ Hn(Y,B) is injective, then Rn(Y,B) =⇒ Rn(X,A).

If g∗ : Hn(X,A)→ Hn(Y,B) is surjective, then Rn(X,A) =⇒ Rn(Y,B).

Both statements follow from (i).

We now prove the claim in several steps:

(A) R0(X) holds. Indeed, if [σ] ∈ H0(X), then r(σ) = σ.

(B) By Observation (2), the following square commutes:

Hn(D
n, Sn−1) H̃n−1(S

n−1)

Hn(D
n, Sn−1) H̃n−1(S

n−1)

∂
≃

r∗ r∗

∂
≃

So Rn−1(S
n−1) =⇒ Rn(D

n, Sn−1). From the isomorphisms

Hn(D
n, Sn−1)

p∗−→ Hn(D
n/Sn−1, Sn−1/Sn−1)

≃←− Hn(S
n)

we also get Rn(D
n, Sn−1) =⇒ Rn(S

n).

Hence by induction on n, we get that Rn(D
n, Sn−1) and Rn(S

n) are true for
all n.
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(C) Hn(
∐r

k=1D
n,
∐r

k=1 S
n−1) =

⊕r
k=1Hn(D

n, Sn−1). Hence Rn(
∐
Dn,

∐
Sn−1).

(D) If X is an fcc, then R∗(X). Proof: We show R∗(Xk) holds for all k by induction.
Base case R∗(X0) = R0(x0) holds by (A). Suppose R∗(Xk−1) and then consider
the LES of (Xk, Xk−1):

0→ Hk(Xk)→ Hk(Xk, Xk−1)→ Hk−1(Xk−1)→ Hk−1(Xk)→ 0

and
0→ Hi(Xk−1)→ Hi(Xk)→ 0

for i < k − 1.

The map F∗ : H∗(
∐
Dk,

∐
Sk−1)→ H∗(Xk, Xk−1) is an isomorphism where F

is the attaching map. By (B), R∗(Xk, Xk−1) holds, hence Rk(Xk) by (3) (a).
By induction, R∗(Xk−1) holds, hence Ri(Xk) holds for i < k by (3) (b). Hence
R∗(Xk).

(E) For any X and x ∈ H∗(X), there exists an fcc Y and f : Y → X with f∗(y) = x
(Sheet 2, Exercise 6). Then r∗(x) = r∗(f∗(y)) = f∗(r∗(y)) = f∗(y) = x.

Pairs: Recall C∗(X,A) ⊆ C∗(X). Let α ∈ Ck(X,A), β ∈ C l(X). If imσ ⊆ A, then
imσ ◦ F0...k ⊆ A, so

(α ⌣ β)(σ) = α(σ ◦ F0...k)β(σ ◦ Fk...k+l) = 0β(...) = 0,

i.e. α ⌣ β ∈ C∗(X,A).

So⌣ defines a mapH∗(X,A)×H∗(X)→ H∗(X,A). More generally,⌣ definesH∗(X,A)×
H∗(X,B)→ H∗(X,A ∪B) (using subdivision lemma, see example sheet).

Examples.

(1) If X is path connected, H0(X) = Z, so H0(X) ≃ Hom(H0(X),Z) = Z (as H−1(X) =
0 using UCT) and H0(X) = ⟨1⟩.

(2) We compute the cohomology ring of Sn for n > 0. Recall that

H∗(S
n) =

{
Z ∗ = 0, n,

0 otherwise.

H∗(S
n) is free over Z, so by the UCT

H∗(Sn) = Hom(H∗(S
n),Z) =

{
Z ∗ = 0, n,

0 otherwise.

We know H0(Sn) = ⟨1⟩. Let a be a generator of Hn(Sn). Then

1 ∪ 1 = 1, a ∪ 1 = a = 1 ∪ a.

And a ∪ a ∈ H2n(Sn) = 0, so H∗(Sn) = Z[a]/a2 with |a| = n.
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(3) If X is path connected, p ∈ X, then ι∗ : H0(p)
≃−→ H0(X), so Z ≃ H0(X)→ H0(p) ≃

Z is an isomorphism, so

H∗(X, p) = ker
(
H∗(X)→ H∗(p)

)
=

⊕
i>0

H i(X)

is an ideal in H∗(X).

(4) H∗(X ⨿ Y ) = H∗(X) ⊕ H∗(Y ) (direct product of rings). Proof: C∗(X ⨿ Y ) =
C∗(X) ⊕ C∗(Y ), so C∗(X ⨿ Y ) = C∗(X) ⊕ C∗(Y ). It is easy to see that this
decomposition respects both d∗ and ⌣, hence the claim.

(5) Suppose (X, pX), (Y, pY ) are good pairs and X,Y are path-connected. By collapsing
a pair, π∗ : H∗(X ∨ Y, p)→ H∗(X ⨿ Y, pX ⨿ pY ) is an isomorphism. We have

H∗(X ⨿ Y, pX ⨿ pY ) = H∗(X, pX)⊕H∗(Y, pY ) ⊆ H∗(X)⊕H∗(Y ).

So

H i(X ∨ Y ) =

{
H i(X)⊕H i(Y ) i > 0,

⟨1⟩ ≃ Z i = 0.

The multiplication is given by (a1, a2)⌣ (b1, b2) = (a1 ⌣ b1, a2 ⌣ b2) if |ai|, |bi| > 0.

Example: Let an denote a generator of Hn(Sn). Then H∗(S2∨S2∨S4) = ⟨1, a, a′, b⟩
where

a = (a2, 0, 0), a
′ = (0, a2, 0) ∈ H2(S2)⊕H2(S2)⊕H2(S4) ∼= Z2,

b = (0, 0, a4) ∈ H4(S2)⊕H4(S2)⊕H4(S4) ∼= Z.

We have a ⌣ a′ = (a2, 0, 0)(0, a2, 0) = (0, 0, 0) = 0. So there are no interesting cup
products.

3.3 Exterior Products

Setup: Let (X,A) be a pair of spaces, Y a space. Let

π1 : (X × Y,A× Y )→ (X,A),

π2 : X × Y → Y

be the projections.

Definition. If a ∈ Hk(X,A), b ∈ H l(Y ), their exterior product is

a× b = π∗1(a)⌣ π∗2(b) ∈ Hk+l(X × Y,A× Y ).

Remark: If C,C ′ are graded groups/rings, their product (resp. tensor product) is given
by (C × C ′)n =

⊕
k+l=nCk × C ′

l (resp. (C ⊗ C ′)n =
⊕

k+l=nCk ⊗ C ′
l).

Observations:
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(1) H∗(X,A)×H∗(Y )→ H∗(X × Y,A× Y ), (a, b) 7→ a× b is bilinear, so it extends to
Φ : H∗(X,A)⊗H∗(Y )→ H∗(X × Y,A× Y ).

(2) We have (a1 × b1)⌣ (a2 × b2) = (−1)|b1||a2|(a1 ⌣ a2)× (b1 ⌣ b2). Proof:

(a1 × b1)⌣ (a2 × b2) = π∗1(a1)⌣ π∗2(b1)⌣ π∗1(a2)⌣ π∗2(b2)

= (−1)|b1||a2|π∗1(a1)⌣ π∗1(a2)⌣ π∗2(b1)⌣ π∗2(b2)

= (−1)|b1||a2|π∗1(a1 ⌣ a2)⌣ π∗2(b1 ⌣ b2)

= (−1)|b1||a2|(a1 ⌣ a2)× (b1 ⌣ b2)

Theorem 3.12. If H∗(Y ;R) is free over R, then

Φ : H∗(X,A;R)⊗H∗(Y ;R)→ H∗(X × Y,A× Y ;R)

is an isomorphism.

Note that the hypothesis of the theorem is always satisfied if e.g. R is a field.

Consequences:

(1) This lets us compute H∗(X × Y ;R) from H∗(X;R), H∗(Y ;R) if H∗(Y ;R) is free.

(2) It also tells us the ring structure on H∗(X × Y ;R) (by Observation (2) above).

Examples.

• Consider T 2 = S1 × S1. We have H∗(S1) = ⟨1, a1⟩ ∼= Z⊕ Z. Then

(H∗(S1)⊗H∗(S1))n ∼=


Z n = 2,

Z2 n = 1,

Z n = 1.

Since H∗(S1) is free, we get H∗(T 2) = H∗(S1)⊗H∗(S1) and we obtain generators:

H∗(S1 × S1) =


Z = ⟨a1 × a1⟩ = ⟨c⟩ ∗ = 2,

Z2 = ⟨a1 × 1, 1× a1⟩ = ⟨a, b⟩ ∗ = 1,

Z = ⟨1× 1⟩ = ⟨1⟩ ∗ = 0.

Then a2 = (11 × 1) ⌣ (a1 × 1) = −(a21 × 1) = 0 as H2(S1) = 0. Similarly, b2 = 0.
We have a ⌣ b = (a1 × 1)⌣ (1× a1) = (a1 × a1) = c and b ⌣ a = −a ⌣ b = −c.

In other words, we getH∗(T 2) =
∧∗⟨α1, α2⟩ with α1 = a1, α2 = b and αiαj = −αjαi.

More generally H∗(Tn) = H∗(S1) ⊗ · · · ⊗H∗(S1) (n times) ≃
∧∗⟨α1, . . . , αn⟩ with

αi = 1× 1× · · · × a1 × · · · × 1.
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• Similarly, we calculate the cohomology ring of S2 × S2. H∗(S2) is free, so H∗(S2 ×
S2) = H∗(S2)⊗H∗(S2). Let a = a2 × 1, b = 1× a2, c = a2 × a2. Then

H∗(S2 × S2) =


⟨c⟩ = Z ∗ = 4,

⟨a, b⟩ = Z2 ∗ = 2,

⟨1⟩ = Z ∗ = 0.

Again we have a2 = 0 = b2, a ⌣ b = c, but now b ⌣ a = a ⌣ b = c.

Corollary 3.13. S2×S2 ̸∼ S2∨S2∨S4, even though H∗(S
2×S2) ≃ H∗(S

2∨S2∨S4).

Proof. We have H∗(S2 × S2) ̸≃ H∗(S2 ∨ S2 ∨ S4) as rings. For example, if a, b ∈
H2(S2 ∨ S2 ∨ S4), then a ⌣ b = 0, but this is not true in H∗(S2 × S2).

Proof of Theorem 3.12. We drop the R in H∗(−;R).

We have two contravariant functors

h, h :

{
pairs of spaces
maps of pairs

}
→

{
graded Z-modules

graded Z-linear amps

}
defined by

h(X,A) = H∗(X × Y,A× Y ),

f : (X,A)→ (X ′, A′) 7→ f
∗
= (f × idY )

∗ : H∗(X ′ × Y,A′ × Y )→ H∗(X × Y,A× Y )

and

h(X,A) = H∗(X,A)⊗H∗(Y ),

f : (X,A)→ (X ′, A′) 7→ f∗ = f∗ ⊗ idH∗(Y ) : h(X
′, A′)→ h(X,A).

h, h satisfy all Eilenberg-Steenrod axioms for cohomology except the dimension axiom (so
they are generalized cohomology theories). They are:

(1) Homotopy invariance: Let f0 ∼ f1 : (X,A) → (X ′, A′). Then f∗0 = f∗1 , hence
f∗
0
= f∗

1
. Also f0 × 1Y ∼ f1 × 1Y , so f

∗
0 = (f0 × 1Y )

∗ = (f1 × 1Y )
∗ = f

∗
1.

(2) LES of a pair: For h this is just the LES of (X ×Y,A×Y ). For h: H∗(Y ) is free by
hypothesis, the LES of (X,A) stays exact after tensoring with H∗(Y ).

(3) Excision: If B ⊆ IntA ⊆ A ⊆ X, then i
∗
: h(X,A) → h(X − B,A − B) is an

isomorphism (excision for B × Y ⊆ A × Y ⊆ X × Y ). And i∗ : h(X,A) → h(X −
B,A−B) is an isomorphism (excision for B ⊆ A ⊆ X).

Properties (1),(2),(3) imply that h, h satisfy (4) “Collapsing a pair”, i.e. if (X,A) is a good
pair, then h(π), h(π) are isomorphisms where π : (X,A) → (X/A,A/A) is the quotient
map.
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Lemma 3.14. Φ commutes with the induced maps and boundary map in the LES of a
pair.

Proof. Suppose f : X1 → X2. Let F = f × 1Y : X1 × Y → X2 × Y . Then

f
∗
(Φ(a⊗ b)) = F ∗(a× b)

= F ∗(π∗1(a)⌣ π∗2(b))

= F ∗π∗1(a)⌣ F ∗π∗2(b)

= (π1 ◦ F )∗(a)⌣ (π2 ◦ F )∗(b)
= (f ◦ π1)∗(a)⌣ (π2)

∗(b)

= π∗1f
∗(a)⌣ π∗2b

= f∗(a)× b
= Φ(f∗(a⊗ b))

For boundary see Sheet 3, Exercise 2.

We now prove the theorem in the case where X is a fcc. We proceed in several steps.

Let P (X,A) be the statement that Φ : h(X,A)→ h(X,A) is an isomorphism.

(A) P ({•}), P (S0) hold.

Proof. The map

H∗({•})⊗H∗(Y ) = h({•})→ h({•}) = H∗({•} × Y )

is given by

Z⊗H∗(Y ) −→ H∗(Y ),

1⊗ b 7−→ 1× b = π∗1(1)⌣ b = 1⌣ b = b

so it is an isomorphism. For S0, use H∗(X ⨿ Y ) = H∗(X)⊕H∗(Y ) (Exercise).

(B) If X1 ∼ X2, then P (X1)⇔ P (X2).

Proof. If f : X1 → X2 is a homotopy equivalence, then by the lemma there is a
commuting square:

h(X2) h(X1)

h(X2) h(X1)

f∗

Φ2 Φ1

f
∗

Then f∗, f
∗
are isomorphisms, so Φ1 is an isomorphism iff Φ2 is.

(C) If two of P (X), P (A), P (X,A) hold, so does the third.
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Proof. By Lemma, we have a commuting map of LESs:

. . . h∗(X,A) h∗(X) h∗(A) h∗+1(X,A) . . .

. . . h
∗
(X,A) h

∗
(X) h

∗
(A) h

∗+1
(X,A) . . .

So the claim follows from the Five Lemma.

(D) If (X,A) is a good pair, then P (X,A)⇔ P (X/A).

Proof. As in (B) we deduce that P (X,A) ⇔ P (X/A,A/A) using (4) Collapsing a
pair. P (A/A) holds by (A), so P (X/A,A/A)⇔ P (X/A) by (C)

(E) P (Sn) and P (Dn, Sn−1) hold.

Proof. We induct on n. The case n = 0 is (A). Dn ∼ {•}, so P (Dn) holds by (B).
So if P (Sn−1) is true, then so is P (Dn, Sn−1) by (C), hence P (Sn) holds by (D).

(F) P (X) =⇒ P (X ∪f Dn).

Proof. (X ∪f Dn)/X ≃ Sn, so P (X ∪f Dn, X) holds by (D) and (E). So by (C) we
get P (X) =⇒ P (X ∪f Dn).

Using (F) and induction, P (X) holds for any fcc X.

Example. Let Σ2 be the surface of genus 2. Let A be a closed curve in Σ2 as in the figure

Σ2 → Σ2/A ∼= T 2 ∨ T 2

such that Σ2/A ∼= T 2 ∧ T 2. Let π : Σ2 → Σ2/A be the quotient map. Recall from Sheet
1, Exercise 5 that

H∗(Σ2) =


Z ∗ = 0, 2,

Z4 ∗ = 1,

0 otherwise.

Furthermore we know H2(T
2 ∨ T 2) = Z⊕ Z. On H2 the map π∗ : Z→ Z⊕ Z is given by

1 7→ (1, 1). And on H1, π∗ : Z4 = H1(Σ2)→ H1(T
2 ∨ T 2) is an isomorphism. H∗(Σ2) and
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H∗(T
2∨T 2) are free over Z, so by the UCT we have H∗(Σ2) = Hom(H∗(Σ2),Z), same for

T 2 ∨ T 2 and π∗ is dual to π∗. So on H2, π∗ is given by
[
1 1

]
: H2(T 2 ∨ T 2) = Z⊕ Z→

Z = H2(Σ2).

Let ⟨a′1, b′1⟩ ⊕ ⟨a′2, b′2⟩ = H1(T 2)⊕H1(T 2). Let ai = π∗(a′i), bi = π∗(b′i), so that H1(Σ2) =
⟨a1, b1, a2, b2⟩. Let ci = a′i ⌣ b′1, i = 1, 2, be generators of the two factors H2(T 2) in
H2(T 2 ∨ T 2) and let c = π∗(c1) = π∗(c2), so that H2(Σ2) = ⟨c⟩.

Then we have the following cup products:

ai ⌣ bj = π∗(a′i)⌣ π∗(b′j)

= π∗(a′i ⌣ b′j)

= π∗(δijci) = δijc

and similarly ai ⌣ aj = 0, bi ⌣ bj = 0.

More generally, the same argument shows that H1(Σg) = ⟨ai, bi⟩gi=1, with

ai ⌣ bj = δijc, ai ⌣ aj = bi ⌣ bj = 0

where ⟨c⟩ = H2(Σg) = Z.
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4 Vector Bundles

4.1 Definitions and Examples

Definition. An n-dimensional real vector bundle (E,B, π) consists of two spaces E (total
space), B (base) and a map π : E → B such that:

(1) π−1(b) carries the structure of a real n-dimensional real vector space for each b ∈ B.

(2) There is an open cover {Uα | α ∈ A} of B and homeomorphisms fα : π−1(Uα) →
Uα × Rn such that

(a)

π−1(Uα) Uα × Rn

Uα Uα

fα

π π1

idUα

commutes,

(b) π2 ◦ fα : π−1(b)→ Rn is an isomorphism of vector spaces for all b ∈ Uα.

The fα are local trivializations.

Similar one defines complex n-dimensional vector bundles.

Definition. A morphism f : (E,B, π)→ (E′, B′, π′) is a commuting square

E E′

B B′

fE

π π′

fB

such that fE |π−1(b) : π
−1(b)→ (π′)−1(f(b)) is a linear map Rn → Rm.

E is a subbundle of E′ if there is an injective morphism

E E′

B B′

fE

π π′

1B

so that π−1(b) is a linear subspace of (π′)−1(b).

Definition. A section s of E is a continuous map s : B → E with π ◦ s = 1B. s is
non-vanishing if s(b) ̸= 0 for all b.
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The map s0 : B → E, b 7→ 0 is the 0-section. To check that s0 is continuous it is enough
to check that fα ◦ s0 is continuous for all α ∈ A which is clearly the case.

Examples.

(1) E = B×Rn is an n-dimensional real vector bundle over B, f = 1B×Rn : E → B×Rn

is a local (here global) trivialization. B × Rn is the n-dimensional trivial bundle on
B.

In general, π : E → B is trivial if there is a bundle isomorphism f : E → B × Rn.

Proposition 4.1. E is trivial iff there exist sections s1, . . . , sn : B → E such that
{s1(b), . . . , sn(b)} is a basis for π−1(b) for all b ∈ B.

(2) M = [0, 1]×R/ ∼ where ∼ is the smallest equivalence relation with (0, x) ∼ (1,−x).
There is a natural projection π : M → S1 = [0, 1]/ ∼ where 0 ∼ 1. This is a
1-dimensional vector bundle over S1, called the Möbius bundle.

Möbius bundle

A section s : S1 →M is given by a continuous map f : [0, 1]→ R with f(0) = −f(1).
Then f(t) = 0 for some t ∈ [0, 1], so s(t) = 0, so s is not a non-vanishing section. So
M is non-trivial.

(3) The tautological bundle τRPn = {([z], v) ∈ RPn × Rn+1 | v ∈ ⟨z⟩}. Then there is a
projection π : τRPn → RPn and π−1([z]) = ⟨z⟩ ⊆ Rn+1.

The open subsets Ui = {[z] ∈ RPn | zi ̸= 0}, i = 0, . . . , n cover τRPn . The maps
fi : π

−1(Ui)→ Ui × R, ([z], v) 7→ ([z], vi) are local trivializations.

We have RP1 ≃ S1 and τRP1 ≃M is non-trivial.

Similarly one can define the complex tautological bundle τCPn .

(4) TSn = {(x, v) ∈ Sn×Rn+1 | ⟨v, x⟩ = 0} is the tangent bundle of Sn. Let π : TSn →
Sn be the natural map. Then π−1(x) = x⊥ ≃ Rn. Let Ui = {x ∈ Sn | xi ̸= 0}.
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Local trivializations are given by fi : π
−1(Ui)→ Ui × Rn, (x, v) 7→ (x, πı̂v) where πı̂

is the projection dropping the i-th coordinate.

TS1 has a non-vanishing section s(x, y) = ((x, y), (−y, x)), so TS1 is trivial. But
TS2n has no non-vanishing section (Sheet 1, Exercise 8), so TS2n is not trivial.

More generally, any smooth manifold has a tangent bundle.

4.1.1 Pullbacks

If π : E → B is an n-dimensional real vector bundle and g : B′ → B is continuous, let

g∗(E) = {(b′, b, v) ∈ B′ ×B × E | g(b′) = π(v) = b}.

We equip g∗(E) with the subspace topology in B′ × B × E. Let πg : g∗(E) → B′,
(b′, b, v) 7→ b′. Then

π−1
g (b′) = {(b′, g(b), v) | π(v) = g(b)} = π−1(g(b))

has a vector space vector space structure. If fα : π−1(Uα)→ Uα×Rn is a local trivialization
for E, let Vα = g−1(Uα) and f ′α : π−1

g (Vα) → Vα × Rn, (b′, b, v) 7→ (b′, π2(fα(v))). This
gives a local trivialization for g∗E.

Definition. The vector bundle g∗E is the pullback of E by g.

Lemma 4.2. (g ◦ f)∗E = f∗(g∗E)

Definition. If A ⊆ B, i : A ↪→ B is the inclusion, then E|A := i∗(E) is the restriction of
E to A.

If s : B → E is a section, then g∗s : B′ → g∗E, b′ 7→ (b′, g(b′), s(g(b′))) is a section of
g∗(E).

Example: τRPn |RP1 ≃ τRP1 has no non-vanishing section, so τRPn has no non-vanishing
section, so τRPn is non-trivial.

4.1.2 Products

If π : E → B, π′ : E′ → B′ are vector bundles of dimension n, n′, their product is
π × π′ : E ×E′ → B ×B′. The fibre (π × π′)−1(b, b′) = π−1(b)× π−1(b′) is a vector space
of dimension n + n′. If fα : π−1(Uα) → Uα × Rn, f ′β : (π′−1)(Uβ) → Uβ × Rn are local
trivializations, then

fα × f ′β : (π × π′)−1(Uα × Uβ)→ Uα × Rn × Uβ × Rn′ ≃ Uα × Uβ × Rn+n′

is a local trivialization for E × E′ over Uα × Uβ.

Definition. If B = B′, E ⊕ E′ = ∆∗(E × E′), where ∆ : B → B × B, b 7→ (b, b) is the
diagonal, is the Whitney sum of E and E′
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4.1.3 Partitions of Unity

Notation: If φ : B → R, set suppφ = {b ∈ B | φ(b) ̸= 0}.

Definition. If U = {Uα | α ∈ A} is an open cover of B, a partition of unity (PoU)
subordinate to U is a family of functions φi : B → R, i ∈ N0 such that

(1) 0 ≤ φi(b) ≤ 1 for all b ∈ B,

(2) {i | φi(b) ̸= 0} is finite for all b,

(3) suppφi ⊆ Uαi for some αi ∈ A,

(4)
∑

i≥0 φi(b) = 1 for all b.

Definition. B admits PoU if for every open cover U there is a partition of unity subor-
dinate to U .

Remark: If B is compact or metrizable, then B admits PoU. More generally B admits
PoU if it is paracompact and Hausdorff.

Theorem 4.3. Suppose B admits PoU and π : E → B × I is a vector bundle. Then
E|B×0 ≃ E|B×1.

Lemma 4.4. If E|B×[0, 1
2
] and E|B×[ 1

2
,1] are trivial, then E is trivial.

Proof. Exercise.

Lemma 4.5. For each b ∈ B, b has an open neighborhood Ub such that E|Ub×I is trivial.

Proof. E is locally trivial, so for each t ∈ I we can find open neighborhoods Ut of b in B
and It of t in I such that E|Ut×It is trivial. {It | t ∈ I} is an open cover of the compact set
I, so let {It0 , . . . , Itn} be a finite subcover. Then there exist 0 = s0 < s1 < · · · < sn = 1
such that [si, si+1] ⊆ Itk for some k. So E|Utk

×[si,si+1] is trivial. Let Ub =
⋂n

k=0 Utk . It
is an open neighborhood of b and U |Ub×[si,si+1] is trivial for all i. By the previous lemma
and induction E|Ub×[0,si] is trivial for all i = 0, . . . , n.

Proof of Theorem 4.3. For each b ∈ B, let Ub be an open neighborhood of b as in the
Lemma and pick a PoU {φi}i∈N subordinate to {Ub | b ∈ B}. For i ∈ N let bi ∈ B such
that suppφi ⊆ Ubi .

For k ∈ N0 define ψk : B → I by ψk(b) =
∑k

i=1 φi(b). Then let

gk : B −→ B × I,
b 7−→ (b, ψk(b))

and define

Ek = g∗k(E) = {(b, gk(b), v) ∈ B × (B × I)× E | π(v) = (b, ψk(b))}.
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Let fb : π
−1(Ub × I)→ Ub × I × Rn be a trivialization. Define βk : Ek−1 → Ek by

βk((b, gk(b), v)) =

{
(b, gk(b), v) b /∈ Ubk ,

(b, f−1
bk

(b, gk(b), v
′)) b ∈ Ubk

where fbk(v) = (b, gk−1(b), v
′). βk is an isomorphism.

Then · · · ◦ β3 ◦ β2 ◦ β1 is the desired isomorphism E|B×0 → E|B×1.

Corollary 4.6. Suppose π : E → B is a vector bundle, g0, g1 : B′ → B, g0 ∼ g1 via
h : B′ × I → B and that B′ admits PoU. Then

g∗0(E) = h∗(E)|B′×0 ≃ h∗(E)|B′×1 = g∗1(E).

Corollary 4.7. If B is contractible and admits PoU, then every vector bundle π : E → B
is trivial.

Proof. 1B ∼ cB,p, so E = (1B)
∗(E) ≃ (cB,p)

∗(E) = B × π−1(p) is trivial.

4.1.4 Riemannian metrics

Definition. Suppose π : E → B is a real (resp. complex) vector bundle. A Riemannian
(resp. Hermitian) metric on E is a continuous map g : E ⊕ E → R (resp. E ⊕ E → C)
such that g|π−1

E⊕E(b) is an inner product (resp. Hermitian inner product) on π−1
E (b) for all

b ∈ B.

Example. τRPn = {([z], v)) ∈ RPn × Rn+1 | v ∈ ⟨z⟩} has a natural Riemannian metric
given by g([z, v1], [z, v2]) = ⟨v1, v2⟩Rn+1 . Similarly, τCPn has a natural Hermitian metric.

Definition. Suppose E is a vector bundle with Riemannian metric g. The unit disk and
the unit sphere bundles of E are given by:

Dg(E) = {v ∈ E | ⟨v, v⟩ ≤ 1},
Sg(E) = {v ∈ E | ⟨v, v⟩ = 1}.

Note: Dg(E), Sg(E) are not vector bundles, they are fibre bundles.

Exercise: If g, g′ are two Riemannian metrics on E, then by radial projection on fibres we
get commutative diagrams:

Sg(E) Sg′(E)

B

≃

π π

Dg(E) Dg′(E)

B

≃

π π

So we drop g from the notation and write S(E), D(E).
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Examples.

• S(τRPn) = {([z], v) | v ∈ ⟨z⟩, ∥v∥ = 1}. We can identify this with Sn, via

Sn ∋ v 7→ ([v], v) ∈ S(τRPn).

Under this identification, the projection π : S(τn)→ RPn is just the natural projec-
tion Sn → RPn.

Similarly, S(τCPn) = S2n−1.

• If π : E → B is trivial with trivialization f : E → B×Rn, then E has a Riemannian
metric given by g(v1, v2) = ⟨π2(f(v1)), π2(f(v2))⟩. So S(B × Rn) = B × Sn−1.

Therefore τRPn , τCPn are non-trivial, since RPn × S0 ̸∼= Sn,CPn × S1 ̸∼= S2n−1.

Proposition 4.8. If B admits PoU and π : E → B is a real vector bundle, then E has a
Riemannian metric.

Proof. By the second example above, B has admits a Riemannian metric over any trivi-
alized open subset of E, then patch them together using a PoU.

4.2 The Thom Isomorphism

Let π : E → B be an n-dimensional vector bundle. If b ∈ B, let Eb = π−1(b) be the fibre
of E over b. There is an inclusion ib : Eb ↪→ E. Let s0 : B → E be the 0-section.

Define E♯ = E \ im s0, E
♯
b = Eb \ 0. Then

H∗(Eb, E
♯
b) ≃ H∗(Rn,Rn − 0) =

{
Z ∗ = n,

0 otherwise

is free. Fix a ring R. By the UCT, we have

H∗(Eb, E
♯
b, R) =

{
R ∗ = n,

0 otherwise.

Definition. U ∈ Hn(E,E♯;R) is an R-Thom class (or R-orientation) for E if i∗b(U)

generates Hn(Eb, E
♯
b;R) for all b ∈ B.

From now on, we assume R-coefficients.

Example. Let E = B × Rn be the trivial bundle. Then

H∗(E,E♯) = H∗(B × Rn, B × (Rn − 0)) ≃ H∗(B)⊗H∗(Rn,Rn − 0), 1

1Remark by L.T.: In the lecture this was justified by saying that H∗(Rn,Rn − 0) is free, but this is
not the hypothesis in our Künneth formula. There we required that the factor with the non-relative
cohomology H∗(B) was free. However, it should still be fine, see e.g. [Hat02, Theorem 3.18] for the
case of CW-complexes.
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i.e. we have an isomorphism

Hk−n(B)
≃−→ Hk(E,E♯), a 7→ a× U = π∗1(a)⌣ π∗2(U),

where U is a generator of Hn(Rn,Rn − 0) ≃ R. For k = 0, we get H0(B) ≃ Hn(E,E♯)
via r 7→ r × U . Let (Bi)i∈I be the path components of B. Then H0(B) =

∏
i∈I H

0(Bi).
Let r = (ri)i∈I ∈ H0(B).

If b ∈ Bi, i
∗
b(r × u) = riU ∈ H∗(Rn,Rn − 0). So r × U is a Thom class iff ri generates

H0(Bi) ≃ R for all i. In particular, if R = Z/2, there is a unique Thom class. If R = Z,
there are 2#π0(B) Thom classes (choose ri = ±1).

If f : B′ → B, there is a morphism F : f∗(E)→ E over f : B′ → B, given by (b′, b, v) 7→ v.
Note that F (im s′0) = im s0, so we get a map of pairs F : (f∗(E), f∗(E)♯)→ (E,E♯).

Lemma 4.9. If U is an R-Thom class for E, then F ∗(U) is an R-Thom class for f∗E.

Proof. Let b′ ∈ B′, b = f(b) and j = F |f∗(E)b′
. There is a commutative square:

f∗(E) E

f∗(E)b′ Eb

F

ib′

j

ib

The bottom map is an isomorphism and i∗b′(F
∗(U)) = j∗(i∗b(U)). Since i∗b(U) generates

Hn(Eb, E
♯
b), i

∗
b′(F

∗(U)) generates Hn(f∗(E)b′ , f
∗(E)♯b′), so F

∗(u) is a TC.

Lemma 4.10. Suppose B = B1 ∪ B2, U ∈ Hn(E,E♯). For k = 1, 2, let ik : Bk → B be
the inclusion. Then if i∗1(U), i∗2(U) are TC’s for E|B1 , E|B2, then U is a TC for E.

Proof. Obvious.

Theorem 4.11 (Thom isomorphism). If π : E → B is an n-dimensional real vector
bundle, then:

(a) E has a unique Z/2 Thom class.

(b) If E has an R-Thom class U , the map

Φ : H∗(B;R) −→ H∗+n(E,E♯;R),

a 7−→ π∗(a)⌣ U

is an isomorphism, called the Thom isomorphism.

Proof. We assume that B is compact.
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Step 1 The theorem holds if E = B × Rn is trivial. This is the example we did before.

Step 2 Suppose V1, V2 ⊆ B are open. Let Ei = E|Vi , E∩ = E|V1∩V2 , E∪ = E|V1∪V2 . If the
theorem holds for E1, E2 and E∩, then it holds for E∪.

Proof. For (a) consider Z/2 coefficients.

The MV sequence is

Hn−1(E∩, E
♯
∩)→ Hn(E∪, E

♯
∪)

i−→ Hn(E1, E
♯
1)⊕H

n(E2, E
♯
2)

j−→ Hn(E∩, E
♯
∩),

where

i =

[
i∗1
i∗2

]
, j =

[
j∗1 − j∗2

]
.

Let Ui ∈ Hn(Ei, E
♯
i ) be the unique Z/2 Thom class for Ei. By the first lemma,

j∗i (Ui) is a TC for E∩. By uniqueness,

j∗1(U1) = j∗2(U2) = U∩

is the unique Z/2-TC for E∩, so (U1, U2) ∈ ker j = im i, hence (U1, U2) = i(U∪) for

some U∪ ∈ Hn(E∪, E
♯
∪). Then i∗i (U∪) = Ui, so by Lemma 4.10, U∪ is a TC for E∪.

It is unique, since if U ′
∪ ∈ Hn(E∪, E

♯
∪) is a TC, then i(U ′

∪) = (U1, U2) by the first

lemma and uniqueness for Ei. Since ker i ⊆ Hn−1(En, E
♯
n) ≃ H−1(V1 ∩ V2) = 0 (by

(b)), we get U∪ = U ′
∪.

For (b), we have a commuting diagram of MV sequences

H∗(V1 ∪ V2) H∗(V1)⊕H∗(V2) H∗(V1 ∩ V2)

H∗+n(E∪, E
♯
∪) H∗+n(E1, E

♯
1)⊕H∗+n(E2, E

♯
2) H∗+n(E∩, E

♯
∩)

Φ∪ Φ1⊕Φ2 Φ∩

By hypothesis, Φ1,Φ2,Φ∩ are all isomorphisms, so Φ∪ is an isomorphism by the Five
Lemma.

Step 3 B is compact, so it has a finite open cover {V1, . . . , Vr} such that E|Vi is trivial. Let
Wk =

⋃k
i=1 Vi. By Step 1, the theorem holds for W1. If the theorem holds for Wk,

it holds for Wk+1 by Step 2, hence it holds for B =Wr by induction.

4.2.1 The Gysin Sequence

Suppose π : E → B has an R-Thom class U . Note that E♯ = E \ im s0 ∼ S(E). Also
π : E → B is a homotopy equivalence with homotopy inverse s0 : B → E. The LES of
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(E,E♯) is

H∗(E,E♯) H∗(E) H∗(E♯) H∗+1(E,E♯)

H∗−n(B) H∗(B) H∗(S(E)) H∗−n+1(B)

j∗

≃s∗0Φ ≃

α

π∗≃ ≃ Φ ≃

α is defined in such a way that the diagram commutes, so for a ∈ H∗−n(B), we have:

α(a) = s∗0(j
∗(Φ(a))) = s∗0j

∗(π∗a ⌣ U)

= s∗0(π
∗a ⌣ j∗U)

= (s∗0π
∗a)⌣ s∗0j

∗(U)

= a ⌣ s∗0j
∗(U).

Definition. If π : E → B is an R-oriented n-dimensional real vector bundle with TC U ,
its Euler class is e(E) = s∗0j

∗(U) ∈ Hn(B).

Theorem 4.12 (Gysin sequence). There is a LES

· · · → H∗−n(B)
α−→ H∗(B)

π∗
−→ H∗(S(E))→ H∗−n+1(B)→ · · ·

where α(a) = a ⌣ e(E).

Proposition 4.13. Properties of the Euler class:

(1) If f : B′ → B, then f∗(E) is oriented and e(f∗(E)) = f∗(e(E)).

(2) If E is trivial and n > 0, then e(E) = 0.

(3) e(E1 ⊕ E2) = e(E1)⌣ e(E2).

(4) If E has a non-vanishing section, then e(E) = 0.

Proof.

(1) There is a commuting diagram:

(B, ∅) (E, ∅) (E,E♯)

(B′, ∅) (f∗E, ∅) (f∗E, (f∗E)♯)

s0 j

s′0

f F

j′

F

By Lemma 4.9, F ∗(U) is an orientation on f∗(E), so

e(f∗(E)) = s′0j
′∗F ∗ (U) = f∗s∗0j

∗(U) = f∗(e(E))
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(2) This is true if B = {•}, since Hn({·}) = 0. In general E is trivial, iff E = f∗(E•)
where f : B → {•} and E• = Rn, so e(E) = f∗(e(E•)) = f∗(0) = 0.

(3) Is on Example sheet 4.

(4) If s is a non-vanishing section, ⟨s⟩ is a trivial bundle and E = ⟨s⟩ ⊕ ⟨s⟩⊥, so

e(E) = e(⟨s⟩)⌣ e(⟨s⟩⊥) = 0⌣ e(⟨s⟩⊥) = 0.

Theorem 4.14.
H∗(RPn;Z/2) ≃ Z/2[X]/(Xn+1)

where x = e(τRPn) ∈ H1(RPn;Z/2).

By Theorem 4.11, every vector bundle is Z/2-orientable, so e(τRPn) exists.

Proof. Z/2-coefficients everyhwere.

We have S(τRPn) = Sn, so the Gysin sequence is

· · · → Hk−1(RPn)
α−→ Hk(RPn)→ Hk(Sn)→ Hk(RPn)→ · · ·

Claim: α = ·⌣ x is an isomorphism for 1 ≤ k ≤ n. Proof:

• k = 1 and n > 1. The Gysin sequence is:

0→ H0(RPn)→ H0(Sn)→ H0(RPn)
α−→ H1(RPn)→ H1(Sn) = 0

Clearly, π∗ : H0(RPn)→ H0(Sn) is an isomorphism, so the mapH0(Sn)→ H0(RPn)
is the zero map. It follows that α is an isomorphism.

• 1 < k < n. We get:

0 = Hk−1(Sn)→ Hk−1(RPn)
α−→ Hk(RPn)→ Hk(Sn) = 0

So again α is an isomorphism.

• k = n. Then

0 = Hn−1(Sn)→ Hn−1(RPn)
α−→ Hn(RPn)→ Hn(Sn)→ Hn(RPn)→ 0

Since Hn(Sn) → Hn(RPn) is surjective and both groups are Z/2, it must be an
isomorphism. Then Hn(RPn → Hn(Sn) must be the zero map, hence α is an
isomorphism.

So by induction, the claim implies that xk generates Hk(RPn;Z/2) ≃ Z/2 for 0 ≤ k ≤ n
and xn+1 ∈ Hn+1(RPn) = 0.
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Similarly, τCPn is a complex vector bundle, so its underlying real vector bundle is Z-
orientable (Sheet 3, Exercise 10). The same arguments show that

H∗(CPn;Z) ≃ Z[X]/(Xn+1)

where x = e(τCPn) ∈ H2(CPn;Z).

Corollary 4.15. π3(S
2) ̸= 0.

Proof. Let h : S3 → S2 ∼= CP1 be the Hopf map. Then CP2 = S2 ∪h D4, if the class of h
were 0 in π3(S

2), we would get CP2 ∼ S2 ∨ S4. But H∗(S2 ∨ S4) ̸∼= H∗(CP2) as graded
rings, for example if x ∈ H2(S2 ∨ S4), then x ⌣ x = 0.

Hence the Hopf map is a non-trivial element in π3(S
2).

4.2.2 Comments on Orientability

(1) Every E is Z/2 orientable.

(2) For p ̸= 2, E is Z/p-orientable iff E is Z-orientable (If so, we just say E is orientable).

(3) τRP1 =M is not Z-orientable. Indeed, we have

H∗(M,M ♯) = H∗(D(M), S(M)) ≃ H∗(M,∂M)

where M is the closed Möbius band. Then H2(M,∂M) = Z/2 ̸∼= Z = H1(S1), so
the Thom isomorphism with Z coefficients is false.

(4) There is a homomorphism φ : π1(B) → Z/2 such that: For γ : S1 → B, φ([γ]) = 0
iff γ∗(E) is orientable. So if π1(B) = 1, then any π : E → B is orientable. See
Example Sheet 4.

59



5 Manifolds

5.1 Definitions and Fundamental Class

Definition. A n-manifold is a second countable Hausdorff space M with an open cover
{Uα | α ∈ A} and homeomorphisms φα : Uα → Rn. The transition functions ψαβ =
φα ◦φ−1

β : φβ(Uα ∩Uβ)→ φα(Uα ∩Uβ) are homeomorphisms. M is smooth if the φα can
be chosen so that ψαβ are diffeomorphisms.

We call a manifold M closed if it is compact and has no boundary. Since our definition of
a manifold doesn’t allow for a boundary, closed just means compact.

A smooth manifold has a tangent bundle π : TM →M .

Notation: If A ⊆ M is compact, write (M | A) = (M,M − A). If B ⊆ A, we get an
inclusion of pairs

i : (M | A) = (M,M −A)→ (M,M −B) = (M | B).

If w ∈ H∗(M | A), then we set w|B := i∗(w).

If x ∈M , x ∈ Uα ≃ Rn for some α. By excision, we have:

H∗(M | x) ≃ H∗(Uα | x)
φα∗≃ H∗(Rn | φα(x)) = H∗(Rn,Rn − φα(x)) =

{
Z ∗ = n,

0 otherwise.

Now fix any ring R. Then H∗(M | x;R) ≃

{
R ∗ = n,

0 otherwise.

Definition. An R-fundamental class for (M | A) is a class w ∈ Hn(M | A;R) such that
w|x generates Hn(M | x) for all x ∈ A.

This is an analogue of the Thom class.

Theorem 5.1. If A ⊆M is compact, (M | A) has a unique Z/2-fundamental class.

Proof. The proof is very similar to the proof of the Thom isomorphism theorem. See the
handout on the Moodle page.

A fundamental class for (M |M) = (M, ∅) will be written as [M ] ∈ Hn(M).

We say M is orientable if it has a Z-fundamental class.
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Proposition 5.2. A smooth manifold M is orientable iff TM is orientable.

Definition. A subset N ⊆M is a k-dimensional (smooth) submanifold of an n-manifold
M , if for every x ∈ N , there is a (smooth) chart φx : Ux → Rn such that φx(Ux ∩N) =
Rk × 0 ⊆ Rn.

Note that if N ⊆M is a smooth submanifold, then TN is a subbundle of TM |N .

Definition. Let N ⊆ M be a smooth submanifold. Then νM/N = TN⊥ ⊆ TM |N is the
normal bundle of N in M (for some fixed choice of Riemannian metric).

So we have TM |N = νM/N ⊕ TN .

Theorem 5.3 (Tubular Neighborhood Theorem). If N ⊆M is a closed smooth subman-
ifold, there is an open neighborhood V ⊆M of N with (ν,N) ≃ (νM/N , s0(N)).

Lemma 5.4. Suppose E = E1 ⊕ E2 is orientable. Then E1 is orientable iff E2 is.

Proof. Exercise.

Proof of Proposition 5.2 (Idea only). If γ : S1 →M is an embedding, let V (γ) be a tubu-
lar neighborhood. Then

M is orientable⇐⇒ V (γ) is orientable for all γ

⇐⇒ νM/γ is orientable for all γ

⇐⇒ TM |γ is orientable for all γ

⇐⇒ TM is orientable.

Corollary 5.5. IfM is orientable, then a closed smooth submanifold N ⊆M is orientable
iff νM/N is.

5.2 Poincare Duality

From now on, we work with coefficients in a field F, i.e. Hk(X) = Hk(X;F). By the UCT
we get Hk(X) ≃ Hom(Hk(X),F),1 hence by dualizing we get an isomorphism2

Hom(Hk(X),F) ≃−→
φ
Hk(X)

where ⟨a, φ(α)⟩ = α(a). Here ⟨−,−⟩ : Hk(X) × Hk(X) → F is the pairing induced by
Hk(X) ≃ Hom(Hk(X),F).

If a ∈ Hk(X), we have a map a ⌣ − : H l(X)→ Hk+l(X) given by the cup product.

1Remark by L.T.: Our UCT only gives this in the case where X is a fcc. But it is still true, see e.g.
[Hat02, Theorem 3.2]

2Remark by L.T.: Only if Hk, Hk are finite-dimensional...
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Definition. The cap product − ⌢ a : Hk+l(X) → Hl(X) is the dual of a ⌣ −, i.e. for
x ∈ Hk+l(X), b ∈ H l(X) we have:

⟨b, x ⌢ a⟩ = ⟨a ⌣ b, x⟩.

5.2.1 Intersection Pairing

Suppose M is an F-oriented n-manifold with fundamental class [M ] ∈ Hn(M).

Definition. The intersection pairing (−,−) : Hk(M) × Hn−k(M) → F is the bilinear
pairing given by

(a, b) = ⟨a ⌣ b, [M ]⟩

It satisfies (b, a) = (−1)|b||a|(a, b) = (−1)k(n−k)(a, b).

If a ∈ Hk(M), then (a,−) ∈ Hom(Hn−k(M),F).

Definition. The (algebraic) Poincare Dual of a ∈ Hk(M) is

PD(a) = φ((a,−)) = [M ]⌢ a ∈ Hn−k(M).

So ⟨b,PD(a)⟩ = (a, b) = ⟨a ⌣ b, [M ]⟩.

5.2.2 Geometric Poincare Dual

Theorem 5.6. If M is a connected n-manifold and x ∈M , the map

Hn(M)→ Hn(M | x) = Hn(M,M − x) ≃ F

is injective. So if M is F-oriented, then Hn(M) = ⟨[M ]⟩ ≃ F and Hn(M) = ⟨[M ]∗⟩ ≃ F
where [M ]∗ ∈ Hn(M) is defined so that ⟨[M ]∗, [M ]⟩ = 1 ∈ F.

Proof. See Moodle handout.

Assume i : N ↪→ M is a k-dimensional smooth closed connected F-oriented submanifold
and x ∈ N . Let V be a tubular neighborhood of N . Let ν = νM/N be the normal bundle.
There is a commutative diagram:

(M, ∅) (M | N) (V | N) (ν, ν♯)

(M | x)

j

jx

≃

i

Since N is connected, Hk(N) ≃ F = ⟨[N ]∗⟩. Hence Hn(ν, ν♯) = ⟨U ⌣ π∗[N ]∗⟩ ≃ F where
U ∈ Hn−k(ν, ν♯) is an orientation for νM/N . Then Hn(ν, ν

♯) ≃ F
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Now i∗ : Hn(ν, ν
#) → Hn(M | N) ≃ F is an isomorphism by Excision. Also jx∗ :

Hn(M) → Hn(M | x) ≃ F is an isomorphism, so j∗ : Hn(M) → Hn(M | N) is an
isomorphism.

So i−1
∗ j∗[M ] generates Hn(ν, ν

♯) ≃ F. So

⟨U ⌣ π∗[N ]∗, i−1
∗ j∗[M ]⟩ =: c ∈ F∗.

Remark by L.T.: Lots of missing inclusions etc., in the following...

Definition. UM/N := c−1U is the orientation on νM/N induced by [N ] and [M ]. It
satisfies

⟨UM/N ⌣ π∗[N ]∗, i−1
∗ j∗[M ]⟩ = 1.

Definition. pd(N) := j∗(i∗)−1(UM/N ) ∈ Hn−k(M) is the geometric Poincare dual of N .

Proposition 5.7. If a ∈ Hk(M), then

⟨pd(N)⌣ a, [M ]⟩ = ⟨a, i∗[N ]⟩,

i.e. PD(pd(N)) = i∗[N ].

Lemma 5.8. Let i : V →M be the inclusion. Then

i∗(a) = ⟨a, i∗[N ]⟩π∗[N ]∗.

Proof. π : V → N is a homotopy equivalence, so Hk(V ) is generated by π∗[N ]∗. So it is
enough to check that ⟨i∗(a), [N ]⟩ = ⟨⟨a, i∗[N ]⟩π∗[N ]∗, [N ]⟩ (exercise).

Proof of Proposition 5.7. If b ∈ H l(M | N), then j∗(b ⌣ a) = j∗(b)⌣ a. So

⟨pd(N)⌣ a, [M ]⟩ = ⟨(i∗)−1(UM/N )⌣ a, j∗[M ]⟩
= ⟨UM/N ⌣ i∗(a), i−1

∗ (j∗[M ])⟩
= ⟨UM/N ⌣ ⟨a, i∗[N ]⟩π∗[N ]∗, i−1

∗ j∗[M ]⟩
= ⟨a, i∗[N ]⟩ · ⟨UM/N ⌣ π∗[N ]∗, i−1

∗ j∗[M ]⟩
= ⟨a, i∗[N ]⟩

Next we will show that PD is an isomorphism by considering the diagonal ∆ :M →M×M .
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5.2.3 Homology of Products and Proof of Poincare Duality

Note that Hom(A⊗B,F) ≃ Hom(A,F)⊗Hom(B,F), hence

H∗(X × Y ) ≃ Hom(H∗(X × Y ),F)
≃ Hom(H∗(X)⊗H∗(Y ),F)
≃ H∗(X)⊗H∗(Y )

Under this isomorphism α⊗β ∈ H∗(X)⊗H∗(Y ) corresponds to α×β ∈ H∗(X×Y ) where
α× β is defined by

⟨a× b, α× β⟩ = ⟨a, α⟩⟨b, β⟩.

Lemma 5.9.

(z1 × z2)⌢ (a1 × a2) = (−1)|a2|(|z1|−|a1|)(z1 ⌢ a1)× (z2 ⌢ a2)

Proof. We have to check that ⟨b1 × b2,LHS⟩ = ⟨b1 × b2,RHS⟩ (exercise).

Lemma 5.10. If X is path-connected, p ∈ X, so H0(X) = ⟨[p]⟩, and a ∈ Hk(X), α ∈
Hk(X), then

α ⌢ a = ⟨a, α⟩[p].

Proof. ⟨1, α ⌢ a⟩ = ⟨a ⌣ 1, α⟩ = ⟨a, α⟩ and ⟨1, [p]⟩ = 1.

Lemma 5.11. Let ∆ : X → X × X be the diagonal. Then ∆∗(a × b) = a ⌣ b for
a, b ∈ H∗(X).

Proof. Let π1, π2 : X ×X → X be the projections. Then

∆∗(a× b) = ∆∗(π1 ∗ a ⌣ π∗2b) = ∆∗π∗1a ⌣ ∆∗π∗2b = a ⌣ b.

Now let M again be a closed, connected, oriented n-manifold. We orient M × M by
[M ×M ] = [M ]× [M ]. Let Ũ = pd(∆) ∈ Hn(M ×M).

Proposition 5.12. ⟨Ũ , [M ]× [p]⟩ = (−1)n.

Proof.

⟨Ũ ⌣ (1× [M ]∗), [M ]× [M ]⟩ = (−1)n⟨(1× [M ]∗)⌣ Ũ, [M ]× [M ]⟩

= (−1)n⟨Ũ , ([M ]× [M ])⌢ (1× [M ]∗)⟩

= (−1)n⟨Ũ , ([M ]⌢ 1)× ([M ]⌢ [M ]∗)⟩

= (−1)n⟨Ũ , [M ]× [p]⟩
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On the other hand, since Ũ = pd(∆), we have by Proposition 5.7:

⟨Ũ ⌣ (1× [M ]∗), [M ]× [M ]⟩ = ⟨1× [M ]∗, [∆]⟩
= ⟨π∗2[M ]∗,∆∗[M ]⟩
= ⟨[M ]∗, π2∗∆∗[M ]⟩
= ⟨[M ]∗, [M ]⟩
= 1

The claim follows.

Proposition 5.13.
Ũ ⌣ (a× b) = (−1)|a||b|Ũ ⌣ (b× a)

Proof. Let V be a tubular neighborhood of ∆ inM×M . We have a commutative diagram:

M

V M ×M

(V | ∆) (M ×M | ∆)

∆
j∆

i′

j′ j

i

Let π : V → ∆ be the projection in the normal bundle, so π and j∆ are homotopy inverses.
Hence

U ⌣ i′∗(a× b) = U ⌣ π∗j∗∆i
′∗(a× b)

= U ⌣ π∗∆∗(a× b)
= U ⌣ π∗(a ⌣ b)

= (−1)|a||b|U ⌣ π∗(b ⌣ b)

= (−1)|a||b|U ⌣ i′∗(b× a)

Now apply j∗(i∗)−1 to both sides.

Proposition 5.14. For a ∈ Hk(M), y ∈ Hk(M) we have

⟨Ũ ,PD(a)× y⟩ = (−1)n(n−|a|)⟨a, y⟩.

Proof.

⟨Ũ ,PD(a)× y⟩ = ⟨Ũ , ([M ]⌢ a)× (y ⌢ 1)⟩

= (−1)0⟨Ũ , ([M ]× y)⌢ (a× 1)⟩ = ⟨(a× 1)⌣ Ũ, [M ]× y⟩

= ⟨(1× a)⌣ Ũ, [M ]× y⟩ = ⟨Ũ , ([M ]× y)⌢ (1× a)⟩
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= (−1)n|a|⟨Ũ , ([M ]⌢ 1)× (y ⌢ a)⟩ = (−1)n|a|⟨Ũ , [M ]× [p]⟩⟨a, y⟩
= (−1)n(−1)n|a|⟨a, y⟩
= (−1)n(n−|a|)⟨a, y⟩.

Theorem 5.15 (Poincare duality). PD : Hk(M)→ Hn−k(M) is an isomorphism.

Proof. If 0 ̸= a ∈ Hk(M), choose y ∈ Hk(M) with ⟨a, y⟩ ≠ 0. Then PD(a) × y ̸= 0, so
PD(a) ̸= 0. Hence PD is injective. Applying this twice we get

dimHk(M) ≤ dimHn−k(M) = dimHn−k(M) ≤ Hk(M),

hence Hk(M) and Hn−k(M) have the same (finite) dimension, so PD is an isomorphism.

Corollary 5.16. (−,−) is nondegenerate, i.e. if 0 ̸= a ∈ Hk(M), there exists b ∈
Hn−k(M) such that (a, b) ̸= 0.

If {ai} is a basis for H∗(M), let {bi} be the dual basis w.r.t. (−,−), i.e. (ai, bj) = δij .

Then ⟨bj ,PD(ai)⟩ = (ai, bj) = δij , so PD(ai) = b∗i and ⟨ai,PD(bj)⟩ = (bj , ai) = (−1)|ai||bj |δij ,
hence PD(bj) = (−1)|ai||bi|a∗i .

Corollary 5.17. Ũ =
∑

i(−1)|ai|ai × bi.

Proof.

⟨Ũ , a∗i × b∗j ⟩ = (−1)|ai|(n−|ai|)⟨Ũ ,PD(bi)× PD(aj)⟩
= (−1)s⟨bi,PD(aj)⟩ = (−1)s(aj , bi) = (−1)sδij

where s = |ai|(n− |ai|) + n|ai| ≡ |ai| mod 2.

5.2.4 Intersection Pairing on Homology

Definition. If N1, N2 ↪→M are smooth submanifolds, then N1 is transverse to N2, writ-
ten N1 ⋔ N2, if TN1|x + TN2|x = TM |x for all x ∈ N1 ∩N2.

If If N1, N2 ↪→M are smooth transverse submanifolds, then:

(1) N1 ∩N2 is a smooth submanifold of dimension dimN1 + dimN2 − dimM ,

(2) T (N1 ∩N2)|x = TN1|x ∩ TN2|x,

(3) νM/N1∩N2
= νM/N1

⊕ νM/N2
,

(4) pd(N1 ∩N2) = pd(N1)⌣ pd(N2).
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Definition.

[N1] · [N2] := (pd(N1),pd(N2)) = ⟨pd(N1)⌣ pd(N2), [M ]⟩ = ⟨pd(N1 ∩N2), [M ]⟩

is the number of points in N1 ∩N2, counted with intersection sign.

Let j : N1 ↪→M be the inclusion.

Proposition 5.18.
j∗(pd(N2)) = pdN1

(N1 ∩N2)

Proof. νN1/N1∩N2
≃ νM/N , so UN1/N1∩N2

= j∗UM/N .

Proposition 5.19. Suppose π : E → M is an oriented vector bundle, s : M → E a
section, s ⋔ s0. Then

e(E) = pdM (s ∩ s0) = pdM (s−1(0)).

Proof. (i∗)−1(UE) = pdE(s0) = pdE(s) since s ∼ s0, so e(E) = s∗0(i
∗)−1(UE)) = s∗0(pdE(s)) =

pdM (s0 ∩ s).

Corollary 5.20. ⟨e(TM), [M ]⟩ = χ(M).

Proof. In M ×M , we have νM×M/∆ ≃ TM , so ⟨e(TM), [M ]⟩ = ∆ ·∆ = (Ũ , Ũ) = χ(M).

For the last equality, recall that Ũ =
∑

i(−1)|ai|ai × bi =
∑

i(−1)|bi|bi × ai.
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