Algebraic Topology
Cambridge Part III, Michaelmas 2022
Taught by Jacob Rasmussen
Notes taken by Leonard Tomczak

Contents

0 Homotopies 2
0.1 Homotopy Groups 3
1 Singular Homology 5
1.1 Definition of Homology 5
1.2 Subcomplexes, Quotient Complexes and Direct Sums 7
1.3 Homotopy Invariance 9
1.4 Subdivision 13
1.5 Excision and Collapsing a Pair 18
2 Cellular Homology 22
2.1 Degrees of Maps $f: S^{n} \rightarrow S^{n}$ 22
2.2 The Cellular Chain Complex 25
2.3 Homology with Coefficients 31
3 Cohomology and Products 35
3.1 Cohomology 35
3.2 Cup Product 38
3.3 Exterior Products 43
4 Vector Bundles 49
4.1 Definitions and Examples 49
4.2 The Thom Isomorphism 54
5 Manifolds 60
5.1 Definitions and Fundamental Class 60
5.2 Poincare Duality 61
Bibliography 68

0 Homotopies

Conventions:

- space means topological space,
- map means continuous map unless otherwise stated,
- $\operatorname{Map}(X, Y):=\{f: X \rightarrow Y \mid f$ continuous $\}$ where X, Y are spaces.

Some spaces:

- $I=[0,1]$,
- $I^{n}=I \times \cdots \times I$ closed n-cube,
- $D^{n}=\left\{v \in \mathbb{R}^{n} \mid\|v\| \leq 1\right\}$ closed n-dimensional disk,
- $S^{n-1}=\partial D^{n}=\left\{v \in \mathbb{R}^{n} \mid\|v\|=1\right\}$.

Note that $D^{n} \cong I^{n}, S^{n-1} \subseteq D^{n}, D^{n} / S^{n-1} \cong S^{n}$.
Definition. If $f_{0}, f_{1}: X \rightarrow Y$ are continuous maps, f_{0} is homotopic to f_{1}, written $f_{0} \sim f_{1}$, if there exists a continuous map $H: X \times I \rightarrow Y$ with $H(x, 0)=f_{0}(x)$ and $H(x, 1)=f_{1}(x)$ for all $x \in X$. H is called a homotopy.

Think: $f_{t}(x)=H(x, t), f_{t}: X \rightarrow Y, t \mapsto f_{t}$ is a path from f_{0} to f_{1} in $\operatorname{Map}(X, Y)$.

Examples.

1. $\operatorname{id}_{\mathbb{R}^{n}} \sim 0_{\mathbb{R}^{n}}$.
2. $A_{n}: S^{n} \rightarrow S^{n}, v \mapsto-v$ antipodal map. $A_{1} \sim \operatorname{id}_{S^{1}}$ via $f_{t}(z)=e^{i \pi t} z$, but $A_{2} \nsim \mathrm{id}_{S^{2}}$ (proven later).

Lemma 0.1. Homotopy is an equivalence relation.

Definition.

$$
\begin{aligned}
{[X, Y] } & :=\operatorname{Map}(X, Y) / \sim \\
& =\{\text { homotopy classes of maps } X \rightarrow Y\} \\
" & =\{\text { path components of } \operatorname{Map}(X, Y)\} "
\end{aligned}
$$

Lemma 0.2. If $f_{0}, f_{1}: X \rightarrow Y, f_{0} \sim f_{1}$ via f_{t} and $g_{0}, g_{1}: Y \rightarrow Z, g_{0} \sim g_{1}$ via g_{t}, then $g_{0} \circ f_{0} \sim g_{1} \circ f_{1}$ via $g_{t} \circ f_{t}$.

Example. $f: X \rightarrow \mathbb{R}^{n}$, then $f=\operatorname{id}_{\mathbb{R}^{n}} \circ f \sim 0_{\mathbb{R}^{n}} \circ f=0_{X}$, so $\left[X, \mathbb{R}^{n}\right]$ has only one element.
Definition. A space Y is contractible if $\mathrm{id}_{Y} \sim c_{p}$ where $c_{p}: Y \rightarrow Y, y \mapsto p$ is the constant map with image $p \in Y$.
Proposition 0.3. Y is contractible iff $[X, Y]$ has one element for all (non-empty) X.
Proof. \Rightarrow : as in the example with \mathbb{R}^{n}.
\Leftarrow : Take $X=Y$. Since $[X, Y]$ has only one element, the homotopy classes of id_{Y} and c_{p} are equal, i.e. $\operatorname{id}_{Y} \sim c_{p}$ (for any $p \in Y$).

Definition. Spaces X and Y are homotopy equivalent, written $X \sim Y$, if there exist maps $f: X \rightarrow Y, g: Y \rightarrow X$ such that $f \circ g \sim \operatorname{id}_{Y}, g \circ f \sim \operatorname{id}_{X}$.

Examples.

- $\mathbb{R}^{n} \sim\{0\}$.
- Y is contractible iff $Y \sim\{*\}$.
- $\mathbb{R}^{n} \backslash\{0\} \sim S^{n-1}$.

Basic questions of Algebraic Topology:

1. Given spaces X and Y, is $X \sim Y$?
2. What is $[X, Y]$?

Definition. A pair of spaces (X, A) is a space X and a subset $A \subseteq X$. A map of pairs is $f:(X, A) \rightarrow(Y, B)$ is a continuous map $f: X \rightarrow Y$ such that $f(A) \subseteq B$.
Maps of pairs $f_{0}, f_{1}:(X, A) \rightarrow(Y, B)$ are homotopic, written $f_{0} \sim f_{1}$, if $f_{0}, f_{1}: X \rightarrow Y$ are homotopic via a map of pairs $H:(X \times I, A \times I) \rightarrow(Y, B)$. Write $[(X, A),(Y, B)]$ for the set of equivalence classes of maps of pairs $(X, A) \rightarrow(Y, B)$.

0.1 Homotopy Groups

Definition. If X is a space and $p \in X$, the n-th homotopy group is

$$
\pi_{n}(X, p)=\left[\left(I^{n}, \delta I^{n}\right),(X, p)\right]=\left[\left(D^{n}, S^{n-1}\right),(X, p)\right]=\left[\left(S^{n}, *\right),(X, p)\right] .
$$

(if $n=0$ take the last set as the definition)

Proposition 0.4.

1. The group structure for $n \geq 1$ is given as follows: For $\varphi, \psi:\left(I^{n}, \partial I^{n}\right) \rightarrow(X, p)$ let $[\varphi] \cdot[\psi]=[\varphi \cdot \psi]$ where

$$
\varphi \cdot \psi:\left(I^{n}, \partial I^{n}\right) \rightarrow(X, p),\left(t_{1}, \ldots, t_{n}\right) \mapsto \begin{cases}\varphi\left(2 t_{1}, t_{2}, \ldots, t_{n}\right) & 0 \leq t_{1} \leq \frac{1}{2} \\ \psi\left(2 t_{1}-1, t_{2}, \ldots, t_{n}\right) & \frac{1}{2} \leq t_{1} \leq 1\end{cases}
$$

Then:

- $\pi_{0}(X, p)=\{$ path components of $X\}$,
- $\pi_{1}(X, p)$ is a group,
- $\pi_{n}(X, p)$ is an abelian group for $n>1$.

2. Functoriality: If $f:(X, p) \rightarrow(Y, q)$ is a map of pairs, it induces $f_{*}: \pi_{n}(X, p) \rightarrow$ $\pi_{n}(Y, q)$ by $f_{*}([\varphi])=[f \circ \varphi]$. This satisfies $(f \circ g)_{*}=f_{*} \circ g_{*}$
3. Homotopy invariance: If $f_{0}, f_{1}:(X, p) \rightarrow(Y, q)$ are homotopic as maps of pairs, then $f_{0 *}=f_{1 *}$.

Group structure for $n=2$

$$
\pi_{n} \text { is abelian for } n=2
$$

Theorem 0.5. $\pi_{1}\left(S^{n}, *\right)= \begin{cases}\mathbb{Z} & n=1, \\ 0 & \text { otherwise. }\end{cases}$
But $\pi_{n}\left(S^{k}\right)$ is very complicated in general, e.g.:

$$
\begin{array}{c|c|c|c|c|c|c|c|c|c|c}
n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline \pi_{n}\left(S^{2}\right) & 0 & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} / 2 & \mathbb{Z} / 2 & \mathbb{Z} / 12 & \mathbb{Z} / 2 & \mathbb{Z} / 2 & \mathbb{Z} / 3 & \mathbb{Z} / 15
\end{array}
$$

This is why we study homology instead of homotopy groups in this course.

1 Singular Homology

1.1 Definition of Homology

Definition. The standard k-simplex is $\Delta^{k}:=\left\{\left(t_{0}, \ldots, t_{k}\right) \in \mathbb{R}^{k+1} \mid \sum t_{i}=1, t_{i} \geq 0\right\}$.
For $I \subseteq\{0, \ldots, k\}$, we associate a face $f_{I}=\left\{t \in \Delta^{k} \mid t_{i}=0\right.$ for $\left.i \notin I\right\}$. There is an obvious inclusion map $F_{I}: \Delta^{|I|-1} \rightarrow \Delta^{k}$ with image f_{I}.

We will write $I=i_{0} \cdots i_{k}$ if $I=\left\{i_{0}, \ldots, i_{k}\right\}$ and $i_{0}<i_{1}<\cdots<i_{k}$.
Recall that a (\mathbb{Z}-graded) chain complex $(C \bullet, d)$ over a commutative ring R consists of R-modules $C_{k}, k \in \mathbb{Z}$ and homomorphisms $d_{k}: C_{k} \rightarrow C_{k-1}$ such that $d_{k} \circ d_{k+1}=0$ for all k.

The k-th homology group of such a chain complex is the quotient $H_{k}\left(C_{\bullet}\right)=\operatorname{ker} d_{k} / \operatorname{Im} d_{k+1}$.
Elements of ker d are called cycles, and elements of Im d boundaries.
Definition. The chain complex $S_{\bullet}\left(\Delta^{n}\right)$ of the n-simplex is given by $S_{k}\left(\Delta^{n}\right)=\left\langle f_{I}\right| I \subseteq$ $\{0, \ldots, n\},|I|=k+1\rangle$. For $k>0$ the boundary map is given by

$$
d\left(f_{I}\right)=\sum_{j=0}^{k}(-1)^{j} f_{I \backslash\left\{i_{j}\right\}}
$$

where $I=i_{0} \cdots i_{k}$ and we set $d\left(f_{I}\right)=0$ if $I=i_{0}$.
It is easy to see that $d^{2}=0$, so this is indeed a chain complex.
The following is tru ${ }^{17}$

$$
H_{i}\left(S_{\bullet}\left(\Delta^{n}\right)\right) \cong \begin{cases}\mathbb{Z} & \text { if } i=0 \\ 0 & \text { otherwise }\end{cases}
$$

Definition. The reduced chain complex associated to Δ^{n} is the chain complex $\left(\widetilde{S}_{\bullet}\left(\Delta^{n}\right), d\right)$ with $\widetilde{S}_{k}\left(\Delta^{n}\right)=S_{k}\left(\Delta^{n}\right)$ for $k \neq-1$ and $\widetilde{S}_{-1}\left(\Delta^{n}\right)=\left\langle f_{\emptyset}\right\rangle$. The differential is defined using the formula above above, now including $k=0$, i.e. $d f_{\{i\}}=f_{\emptyset}$.
Then one has $H_{*}\left(\tilde{S}_{\bullet}\left(\Delta^{n}\right)\right)=0$.

[^0]Definition. For a space X its singular chain complex $\left(C_{\bullet}(X), d\right)$ is defined by $C_{k}(X)=$ $\left\langle\sigma: \Delta^{k} \rightarrow X\right\rangle$ for $k \geq 0$ and $C_{k}(X)=0$ for $k<0$. For $\sigma: \Delta^{k} \rightarrow X$ the differential $d \sigma$ is given by

$$
d \sigma=\sum_{j=0}^{k}(-1)^{j} \sigma \circ F_{\hat{\jmath}}
$$

where $F_{\hat{\jmath}}=F_{\{0, \ldots, k\} \backslash\{j\}}: \Delta^{k-1} \rightarrow \Delta^{k}$ is the inclusion onto the j-th face.
Note that if $\sigma: \Delta^{k} \rightarrow X$, then we obtain a map $\phi_{\sigma}: S \bullet\left(\Delta^{k}\right) \rightarrow C \bullet(X)$ by $f_{I} \mapsto \sigma \circ F_{I}$. By definition of d this satisfies $d_{C} \circ \phi_{\sigma}=\phi_{\sigma} \circ d_{S}$. From this one easily deduces that $d_{C}^{2}=0$.
Definition. $H_{i}(X)=H_{i}\left(C_{\bullet}(X)\right)$ is the i-th singular homology group of X.
Example: Let $X=\{*\}$ be a one-point space. Then for $k \geq 0, C_{k}(X)=\left\langle\sigma_{k}\right\rangle$ where $\sigma_{k}: \Delta^{k} \rightarrow X$ is the unique map. For $k>0$ we have $\bar{d} \sigma_{k}=\sum_{j=0}^{k}(-1)^{j} \sigma_{k-1}=$ $\left\{\begin{array}{ll}\sigma_{k-1} & \text { if } k \text { is even, } \\ 0 & \text { if } k \text { is odd. }\end{array}\right.$ For $k=0$ we get $d \sigma_{0}=0$, thus

$$
H_{k}(X) \cong \begin{cases}\mathbb{Z} & \text { if } k=0 \\ 0 & \text { otherwise }\end{cases}
$$

Definition. The reduced singular chain complex of X is defined by

$$
\widetilde{C}_{k}(X)= \begin{cases}C_{k}(X) & k \neq-1 \\ \left\langle\sigma_{\emptyset}\right\rangle & k=-1\end{cases}
$$

with $d \sigma=\sigma_{\emptyset}$ if $\sigma: \Delta^{0} \rightarrow X$ and $d \sigma_{\emptyset}=0$
Exercise: $\widetilde{H}_{k}(\{*\})=0$ for all k.

Examples.

- $\Delta^{0}=\{*\}$, so elements of $\operatorname{Map}\left(\Delta^{0}, X\right)$ correspond to points in X.
- $\Delta^{1} \cong I$, via (say) $f_{0} \mapsto 0, f_{1}, \mapsto 1$ and then extended linearly. Then elements of $\operatorname{Map}\left(\Delta^{1}, X\right)$ correspond to paths $\gamma:[0,1] \rightarrow X$ with $d \gamma=\sigma_{\gamma(1)}-\sigma_{\gamma(0)}$
Example: $X=S^{1}, \gamma:[0,1] \rightarrow S^{1}, t \mapsto e^{2 \pi i t}$, then $d \gamma=0$, so γ is a cycle. Define $\gamma_{ \pm}: I \rightarrow S^{1}, t \mapsto e^{ \pm \pi i t}$. Then $d \gamma_{ \pm}=\sigma_{-1}-\sigma_{1}$, so $\gamma_{+}-\gamma_{-}$is a cycle in C_{1}.
Claim: $[\gamma]=\left[\gamma_{+}-\gamma_{-}\right]$. Consider $\tau: \Delta^{2} \rightarrow S^{1}$ given by $\tau(p)=e^{2 \pi i \varphi(p)}$ where $\varphi: \Delta^{2} \rightarrow I$ is the affine linear map given by $f_{0} \mapsto 0, f_{1} \mapsto 1, f_{2} \mapsto \frac{1}{2}$. Then $d \tau=\tau \circ F_{\hat{0}}-\tau \circ F_{\hat{1}}+\tau \circ F_{\hat{2}}=\gamma_{-}-\gamma_{+}+\gamma$.
Proposition 1.1. If X is path connected, then $H_{0}(X) \cong \mathbb{Z}=\left\langle\sigma_{p}\right\rangle$ for any $p \in X$.

The map φ

Proof. $C_{-1}(X)=0$, so ker $d_{0}=C_{0}(X)$.

$$
\begin{aligned}
\operatorname{Im} d_{1} & =\operatorname{span}\{d \gamma \mid \gamma: I \rightarrow X\} \\
& =\operatorname{span}\left\{\sigma_{p}-\sigma_{p^{\prime}} \mid p, p^{\prime} \text { joined by a path in } X\right\} \\
& =\operatorname{span}\left\{\sigma_{p}-\sigma_{p^{\prime}} \mid p, p^{\prime} \in X\right\}
\end{aligned}
$$

Then $H_{0}(X)=\operatorname{ker} d_{0} / \operatorname{Im} d_{1} \cong \mathbb{Z}$ via $\sum a_{i} \sigma_{p_{i}} \mapsto \sum a_{i}$.

1.2 Subcomplexes, Quotient Complexes and Direct Sums

Definition. Suppose (C, d) is a chain complex over R. A subcomplex of (C, d) consists of submodules $A_{i} \subseteq C_{i}$ for all i such that $d\left(A_{i}\right) \subseteq A_{i-1}$. Then $A=\bigoplus_{i} A_{i}$ is a again a chain complex with the differential being the restriction of d.
Given a subcomplex A of C, we can form the quotient $(C / A, d)$ where $C / A=\bigoplus_{i} C_{i} / A_{i}$.
Example. If $A \subseteq X$ is a subspace, then $C_{\bullet}(A)$ is a subcomplex of $C_{\bullet}(X)$.
Definition. If (X, A) is a pair of spaces, then $C_{\bullet}(X, A)=C_{\bullet}(X) / C_{\bullet}(A)$ is the singular chain complex of (X, A).

Definition. If $\left(C_{\alpha}, d_{\alpha}\right)_{\alpha \in A}$ are chain complexes, then their direct sum is $\left(\bigoplus_{\alpha} C_{\alpha}, \bigoplus_{\alpha} d_{\alpha}\right)$ is also a chain complex.

Easy exercise: $H_{*}\left(\bigoplus_{\alpha} C_{\alpha}\right)=\bigoplus_{\alpha} H_{*}\left(C_{\alpha}\right)$.
Proposition 1.2. $H_{*}(X)=\bigoplus_{\alpha} H_{*}\left(X_{\alpha}\right)$ where the X_{α} are the path-components of X
Proof. Since Δ^{k} is (path-)connected, we have $\operatorname{Map}\left(\Delta^{k}, X\right)=\coprod_{\alpha} \operatorname{Map}\left(\Delta^{k}, X_{\alpha}\right)$, so $C_{k}(X)=$ $\bigoplus_{\alpha} C_{k}\left(X_{\alpha}\right)$ and this decomposition respects d, so we have a direct sum of chain complexes.

Definition. If (C, d) and $\left(C^{\prime}, d^{\prime}\right)$ are chain complex over R, a chain map $f:(C, d) \rightarrow$ $\left(C^{\prime}, d^{\prime}\right)$ is a collection of R-linear maps $f_{i}: C_{i} \rightarrow C^{\prime}$ such that $d_{i}^{\prime} \circ f_{i}=f_{i-1} \circ d_{i}$, in other words $d^{\prime} f=f d$ where $f=\bigoplus_{i} f_{i}$.

Notation. We denote categories as follows:

$$
\left\{\begin{array}{c}
\text { Objects } \\
\text { Morphisms }
\end{array}\right\}
$$

Note that a chain map $f:(C, d) \rightarrow\left(C^{\prime}, d^{\prime}\right)$ induces a map $f_{*}: H_{*}(C) \rightarrow H_{*}\left(C^{\prime}\right)$. So taking homology gives a functor:

$$
\begin{aligned}
& H_{*}:\left\{\begin{array}{c}
\text { chain complexes over } R \\
\text { chain maps }
\end{array}\right\} \longrightarrow\left\{\begin{array}{c}
\text { (graded) } R \text {-modules } \\
\text { (graded) } R \text {-linear maps }
\end{array}\right\} \\
&(C, d) \longmapsto H_{*}(C) \\
& f: C \rightarrow C^{\prime} \longmapsto f_{*}: H_{*}(C) \rightarrow H_{*}\left(C^{\prime}\right)
\end{aligned}
$$

Definition. If $f: X \rightarrow Y$ is a continuous map, define $f_{\#}: C_{\bullet}(X) \rightarrow C \bullet(Y)$ by $\operatorname{Map}\left(\Delta^{*}, X\right) \ni \sigma \mapsto f_{\#}(\sigma)=f \circ \sigma$.
Lemma 1.3. $f_{\#}$ is a chain map.
Proof. $d\left(f_{\#}(\sigma)\right)=d(f \circ \sigma)=\sum_{j=0}^{k}(-1)^{j} f \circ \sigma \circ F_{\hat{\jmath}}=f_{\#}\left(\sum_{j=0}^{k}(-1)^{j} \sigma \circ F_{\hat{\jmath}}\right)=f_{\#} d \sigma$
So we get a functor

$$
\begin{aligned}
\left\{\begin{array}{c}
\text { spaces } \\
\text { continuous maps }
\end{array}\right\} & \longrightarrow\left\{\begin{array}{c}
\text { chain complexes over } \mathbb{Z} \\
\text { chain maps }
\end{array}\right\} \\
X & \longmapsto\left(C_{\bullet}(X), d\right) \\
f & \longmapsto f_{\#}
\end{aligned}
$$

Composing the functors we get the singular homology functor:

$$
\begin{aligned}
\left\{\begin{array}{c}
\text { spaces } \\
\text { continuous maps }
\end{array}\right\} & \longrightarrow\left\{\begin{array}{c}
\text { graded } \mathbb{Z} \text {-modules } \\
\text { graded linear maps }
\end{array}\right\} \\
X & \longmapsto H_{*}(X) \\
f: X \rightarrow Y & \longmapsto f_{*}: H_{*}(X) \rightarrow H_{*}(Y)
\end{aligned}
$$

Suppose $f:(X, A) \rightarrow(Y, B)$. Then $f_{\#}: C_{\bullet}(X) \rightarrow C \bullet(Y)$. If $\sigma: \Delta^{k} \rightarrow A$, then $f \circ \sigma:$ $\Delta^{k} \rightarrow B$, so $f_{\#}\left(C_{\bullet}(A)\right) \subseteq C_{\bullet}(B)$. Thus $f_{\#}$ descends to a map $f_{\#}: C \cdot(X, A) \rightarrow C \cdot(Y, B)$. Hence we get functors:

$$
\left\{\begin{array}{c}
\text { pairs of spaces } \\
\text { maps of pairs }
\end{array}\right\} \xrightarrow{C \cdot(-,-)}\left\{\begin{array}{c}
\text { chain complexes over } \mathbb{Z} \\
\text { chain maps }
\end{array}\right\} \xrightarrow{H_{*}}\left\{\begin{array}{c}
\mathbb{Z} \text {-modules } \\
\mathbb{Z} \text {-linear maps }
\end{array}\right\}
$$

1.3 Homotopy Invariance

Goal: We want to prove that homotopic maps of spaces induce the same maps on homology.
Definition. Suppose $g_{0}, g_{1}: C \rightarrow C^{\prime}$ are maps of chain complexes (over some ring R). g_{0} is chain homotopic to g_{1}, written $g_{0} \sim g_{1}$, if there are R-linear maps $h_{i}: C_{i} \rightarrow C_{i+1}^{\prime}$ such that $d^{\prime} h+h d=g_{1}-g_{0}$ where $h=\oplus h_{i}$.
Chain complexes C, C^{\prime} are chain homotopy equivalent, written $C \sim C^{\prime}$, if there are chain maps $f: C \rightarrow C^{\prime}, g: C^{\prime} \rightarrow C$ such that $f \circ g \sim 1_{C^{\prime}}, g \circ f \sim 1_{C}$.

Lemma 1.4. Chain homotopy and chain homotopy equivalence are equivalence relations.
Proposition 1.5. If $g_{0}, g_{1}: C \rightarrow C^{\prime}$ are chain maps with $g_{0} \sim g_{1}$, then

$$
g_{0 *}=g_{1 *}: H_{*}(C) \rightarrow H_{*}\left(C^{\prime}\right)
$$

Proof. Suppose the $g_{0} \sim g_{1}$ via h. If $[x] \in H_{*}(C), d x=0$, so

$$
g_{1 *}[x]-g_{0 *}[x]=\left[g_{1}(x)-g_{0}(x)\right]=\left[d^{\prime} h(x)+h d(x)\right]=\left[d^{\prime} h(x)\right]=0 .
$$

Corollary 1.6. If $C \sim C^{\prime}$, then $H_{*}(C) \cong H_{*}\left(C^{\prime}\right)$.
Idea behind the definition of chain homotopy: Suppose $f_{0}, f_{1}: X \rightarrow Y, f_{0} \sim f_{1}$ via $H: X \times I \rightarrow Y$. Let $g_{0}(\sigma)=f_{0 *}(\sigma), g_{1}(\sigma)=f_{1 *}(\sigma)$. Want $h(\sigma)=" H(\sigma \times I) "$.

Idea for the chain homotopy
Recall if $\sigma: \Delta^{k} \rightarrow X$, there is a chain map $\varphi_{\sigma}: S_{\bullet}\left(\Delta^{k}\right) \rightarrow C \bullet(X), f_{I} \mapsto \sigma \circ F_{I}$.
Define $c_{0}, c_{1}: \Delta^{n} \mapsto \Delta^{n} \times I$ by $c_{i}(x)=(x, i), i=0,1$. From this we get $\varphi_{c_{0}}, \varphi_{c_{1}}$: $S_{\bullet}\left(\Delta^{n}\right) \rightarrow C_{\bullet}\left(\Delta^{n} \times I\right)$.

Definition. If $X \subseteq \mathbb{R}^{N}$ is convex and $v_{0}, \ldots, v_{k} \in X$, define a k-simplex in X by

$$
\begin{aligned}
{\left[v_{0}, \ldots, v_{k}\right]: \Delta^{k} } & \longrightarrow X, \\
\left(t_{i}\right)_{i} & \longmapsto \sum_{i} t_{i} v_{i}
\end{aligned}
$$

$\left[v_{0}, \ldots, v_{k}\right]$ is the linear simplex determined by v_{0}, \ldots, v_{k}.
Note that $\left[v_{0}, \ldots, v_{k}\right] \circ F_{\hat{\jmath}}=\left[v_{0} \ldots \widehat{v_{j}} \ldots v_{k}\right]\left(\right.$ omit $\left.v_{j}\right)$, so that

$$
d\left[v_{0} \ldots v_{k}\right]=\sum_{j}(-1)^{j}\left[v_{0} \ldots \widehat{v_{j}} \ldots v_{k}\right]
$$

To avoid lots of indices, we use the following notation: If $f_{i} \in \Delta^{n}, i=0, \ldots, n$, write $i=f_{i} \times 0, i^{\prime}=f_{i} \times 1 \in \Delta^{n} \times I$.

Notational warning: In the following we will use I for two different things: An index set or the interval $[0,1]$. Whenever it is used for $[0,1]$ it occurs only in the form $\Delta^{n} \times I$, so this will hopefully cause no confusion.

Definition. The universal chain homotopy $U_{n}: S_{\bullet}\left(\Delta^{n}\right) \rightarrow C_{\bullet+1}\left(\Delta^{n} \times I\right)$ is given by

$$
U_{n}\left(f_{I}\right)=\sum_{j^{\prime}=0}^{k}(-1)^{j^{\prime}}\left[i_{0} \ldots i_{j^{\prime}} i_{j^{\prime}}^{\prime} i_{j^{\prime}+1}^{\prime} \ldots i_{k}^{\prime}\right]
$$

where $I=i_{0} \ldots i_{k}$.
U_{n} "breaks up" $\Delta^{n} \times I$ into simplices. For example, for $n=1$ we have $U_{1}\left(f_{01}\right)=\left[00^{\prime} 1^{\prime}\right]-$ [011'].

$$
n=1
$$

Proposition 1.7. $d U_{n}+U_{n} d=\varphi_{c_{1}}-\varphi_{c_{0}}$.
Proof. Let $I=i_{0} \ldots i_{k}$. What terms appear in $\left(d U_{n}+U_{n} d\right)\left(f_{I}\right)$?

$$
\left(d U_{n}+U_{n} d\right)\left(f_{I}\right)=\sum_{j<j^{\prime}} m_{j j^{\prime}}\left[i_{0} \ldots \widehat{i_{j}} \ldots i_{j^{\prime}} i_{j^{\prime}}^{\prime} \ldots i_{k}^{\prime}\right]
$$

$$
\begin{aligned}
& +\sum_{j^{\prime}<j} n_{j j^{\prime}}\left[i_{0} \ldots i_{j^{\prime}} i_{j^{\prime}}^{\prime} \ldots{\hat{i_{j}}}_{\prime}^{k-1} i_{k}^{\prime}\right] \\
& +\sum_{j=0}^{k-1} r_{j}\left[i_{0} \ldots i_{j} i_{j+1}^{\prime} \ldots i_{k}^{\prime}\right] \\
& +a\left[i_{0} \ldots i_{k}\right]+b\left[i_{0}^{\prime} \ldots i_{k}^{\prime}\right]
\end{aligned}
$$

We have

$$
\begin{aligned}
m_{j j^{\prime}} & =\underbrace{(-1)^{j}(-1)^{j^{\prime}-1}}_{\begin{array}{c}
\text { delete } i_{j} \\
\text { split at } j^{\prime}
\end{array}}+\underbrace{(-1)^{j^{\prime}}(-1)^{j}}_{\begin{array}{c}
\text { split at } j^{\prime} \\
\text { delete } i_{j}
\end{array}}=0, \\
n_{j j^{\prime}} & =\underbrace{(-1)^{j^{\prime}}(-1)^{j+1}}_{\begin{array}{c}
\text { delete } i_{j} \\
\text { split at } j^{\prime}
\end{array}(-1)^{j}(-1)^{j^{\prime}}}=0, \\
r_{j} & =\underbrace{(-1)^{j}(-1)^{j+1}}_{\begin{array}{c}
\text { split at } j^{\prime} \\
\text { delete } i_{j}^{\prime}
\end{array}}+\underbrace{(-1)^{j+1}(-1)^{j+1}}_{\begin{array}{c}
\text { split at } j \\
\text { delete } i_{j}^{\prime} \\
\text { deletet } i_{j}+1
\end{array}}=0, \\
a & =\underbrace{(-1)^{k}(-1)^{k+1}}_{\begin{array}{l}
\text { split at } k \\
\text { delete } i_{k}^{\prime}
\end{array}}=-1, \\
b & =\underbrace{(-1)^{0}(-1)^{0}}_{\begin{array}{c}
\text { split at } 0 \\
\text { delete } i_{0}
\end{array}}=1 .
\end{aligned}
$$

So

$$
\left(d U_{n}+U_{n} d\right)\left(f_{I}\right)=\left[i_{0}^{\prime} \ldots i_{k}^{\prime}\right]-\left[i_{0} \ldots i_{k}\right]=\varphi_{c_{0}}\left(f_{I}\right)-\varphi_{c_{1}}\left(f_{I}\right) .
$$

Let $i_{0} \ldots i_{k}=I \subseteq\{0, \ldots, n\}$. This gives a chain map $\varphi_{I}: S_{\bullet}\left(\Delta^{k}\right) \rightarrow S_{\bullet}\left(\Delta^{n}\right)$ with $\varphi\left(f_{J}\right)=$ $f_{i_{0} i_{j_{1}} \ldots i_{j_{l}}}$ where $J=j_{0} \ldots j_{l}$. (i.e. the J-face of Δ^{k} gets mapped to the corresponding face of the I-face of Δ^{n}).
Let $\varphi_{\hat{\jmath}}=\varphi_{\{0, \ldots, n\} \backslash\{j\}}: S_{\bullet}\left(\Delta^{n-1}\right) \rightarrow S_{\bullet}\left(\Delta^{n}\right)$ and $f_{\text {top }}^{n}=f_{0 \ldots n} \in S_{n}\left(\Delta^{n}\right)$ (i.e. top face, the whole simplex). Then $d f_{\text {top }}^{n}=\sum_{j}(-1)^{j} \varphi_{\jmath}\left(f_{\text {top }}^{n-1}\right)$.
Lemma 1.8 (Naturality of U_{n}). The following square commutes:

where $\overline{F_{I}}: \Delta^{k} \times I \rightarrow \Delta^{n} \times I,(x, t) \mapsto\left(F_{I}(x), t\right)$.

Proof. Immediate by writing out the maps.
Now suppose that $f_{0}, f_{1}: X \rightarrow Y$ are homotopic via $H: X \times I \rightarrow Y$. Given $\sigma: \Delta^{n} \rightarrow X$, define $H_{\sigma}: \Delta^{n} \times I \rightarrow Y$ by $(x, t) \mapsto H(\sigma(x), t)$. Observe that $H_{\sigma \circ F_{I}}=H_{\sigma} \circ \overline{F_{I}}$.
Define $h: C_{\bullet}(X) \rightarrow C_{\bullet}+1(Y)$ by $h(\sigma)=H_{\sigma \#}\left(U_{n}\left(f_{\text {top }}^{n}\right)\right)$ if $\sigma: \Delta^{n} \rightarrow X$.
Theorem 1.9. $d h+h d=f_{1 \#}-f_{0 \#}$, so $f_{0 \#} \sim f_{1 \#}$.
Proof. Let $\sigma: \Delta^{n} \rightarrow X$. Then

$$
\begin{aligned}
h d(\sigma) & =h\left(\sum_{j}(-1)^{j} \sigma \circ F_{\hat{\jmath}}\right) \\
& =\sum_{j}(-1)^{j} H_{\sigma F_{\jmath} \#} U_{n-1}\left(f_{\text {top }}^{n-1}\right) \\
& =\sum_{j}(-1)^{j} H_{\sigma \#} \overline{F_{\hat{\jmath}}} U_{n-1}\left(f_{\text {top }}^{n-1}\right) \\
& =\sum_{j}(-1)^{j} H_{\sigma \#} U_{n}\left(\varphi_{\hat{\jmath}}\left(f_{\text {top }}^{n-1}\right)\right) \\
& =H_{\sigma \#} U_{n}\left(\sum_{j}(-1)^{j} \varphi_{\jmath}\left(f_{\text {top }}^{n-1}\right)\right) \\
& =H_{\sigma \#} U_{n}\left(d f_{\text {top }}^{n}\right)
\end{aligned}
$$

We also have $d h(\sigma)=d H_{\sigma \#}\left(U_{n}\left(f_{\text {top }}^{n}\right)\right)=H_{\sigma \#}\left(d U_{n}\left(f_{\text {top }}^{n}\right)\right)$. Thus

$$
\begin{aligned}
(h d+d h)(\sigma) & =H_{\sigma \#}\left(U_{n}\left(d f_{\text {top }}^{n}+d U_{n}\left(f_{\text {top }}^{n}\right)\right)\right) \\
& =H_{\sigma \#}\left(\varphi_{c_{1}}\left(f_{\text {top }}^{n}\right)-\varphi_{c_{0}}\left(f_{\text {top }}^{n}\right)\right) \\
& =H_{\sigma \#}\left(c_{1} \circ F_{\{0, \ldots, n\}}-c_{0} \circ F_{\{0, \ldots, n\}}\right) \\
& =H_{\sigma \#}\left(c_{1}\right)-H_{\sigma \#}\left(c_{0}\right) \\
& =f_{1 \#}(\sigma)-f_{0 \#}(\sigma)
\end{aligned}
$$

Corollary 1.10. If $f_{0}, f_{1}: X \rightarrow Y$ are homotopic, then $f_{0 *}=f_{1 *}$.
Corollary 1.11. If $f: X \rightarrow Y$ is a homotopy equivalence, then $f_{*}: H_{*}(X) \rightarrow H_{*}(Y)$ is an isomorphism.
Corollary 1.12. If X is contractible, then

$$
H_{i}(X) \cong \begin{cases}\mathbb{Z} & i=0, \\ 0 & i \neq 0\end{cases}
$$

1.4 Subdivision

1.4.1 Some Homological Algebra

Lemma 1.13 (Snake Lemma/Long exact sequence of Homology). Let

$$
0 \rightarrow A \xrightarrow{\iota} B \xrightarrow{\pi} C \rightarrow 0
$$

be a short exact sequence (SES) of chain complexes. Then there is a long exact sequence (LES)in homology:

$$
\cdots \rightarrow H_{i+1}(C) \xrightarrow{\partial} H_{i}(A) \xrightarrow{\iota_{*}} H_{i}(B) \xrightarrow{\pi_{*}} H_{i}(C) \xrightarrow{\partial} H_{i-1}(C) \rightarrow \cdots
$$

Proof. ∂ is defined as follows: Let $[c] \in H_{i}(C)$, so $c \in C_{i}$ and $d c=0$. Then there is a $b \in B_{i}$ such that $\pi(b)=c$. As $\pi(d b)=d(\pi b)=d c=0$, we have $d b \in \operatorname{ker} \pi$, so there is $a \in A_{i-1}$ with $\iota(a)=d b$. Then $\iota(d a)=d \iota(a)=d(d b)=0$, so $d a=0$ as ι is injective. Define $\partial[a]=[c] \in H_{i-1}(A)$. That this is well-defined and gives the exact sequence is a straightforward diagram chase...

Corollary 1.14 (LES of a pair). Let (X, A) be a pair of spaces. Then there is a long exact sequence:

$$
\cdots \rightarrow H_{i+1}(X, A) \xrightarrow{\partial} H_{i}(A) \xrightarrow{\iota_{*}} H_{i}(X) \xrightarrow{\pi_{*}} H_{i}(X, A) \xrightarrow{\partial} H_{i-1}(A) \rightarrow \cdots
$$

Example. For $p \in X$, we have $H_{i}(\{p\})=0$ for $i \neq 0$ and $H_{i}(\{p\})=\mathbb{Z}$ for $i=0$ in which case it is generated by $\left[\sigma_{p}\right]$ where $\sigma_{p}: \Delta^{0} \rightarrow X, * \mapsto p$. So the LES of the pair $(X,\{p\})$ is:

$$
\cdots \rightarrow 0=H_{i+1}(\{p\}) \rightarrow H_{i+1}(X) \rightarrow H_{i+1}(X,\{p\}) \rightarrow H_{i}(\{p\})=0 \rightarrow \cdots
$$

for $i>0$. Hence $H_{i+1}(X) \rightarrow H_{i+1}(X,\{p\})$ is an isomorphism. At $i=0$ we have:

$$
0=H_{1}(\{p\}) \rightarrow H_{1}(X) \rightarrow H_{1}(X,\{p\}) \xrightarrow{\partial_{1}} \underbrace{H_{0}(\{p\})}_{\cong \mathbb{Z}} \stackrel{i{ }_{*}}{\rightarrow} H_{0}(X) \rightarrow H_{0}(X,\{p\}) \rightarrow 0
$$

Note that $i_{*}\left(n\left[\sigma_{p}\right]\right)=n\left[\sigma_{p}\right] \neq 0$ for $n \neq 0$, so i_{*} is injective and thus $\partial_{1}=0$. Hence also $H_{1}(X) \rightarrow H_{1}(X,\{p\})$ is an isomorphism. We know that $H_{0}(X)=\bigoplus_{\alpha} \mathbb{Z}$ where α runs through the set of path components of X and i_{*} maps onto the factor \mathbb{Z} corresponding to the path component of p, hence $H_{0}(X)=H_{0}(X,\{p\}) \oplus\left\langle\left[\sigma_{p}\right]\right\rangle$. This discussion gives:

Corollary 1.15. For $A=\{p\}$ a point in X we have

$$
H_{i}(X) \cong \begin{cases}H_{i}(X, p) & i>0 \\ H_{0}(X, p) \oplus \mathbb{Z} & i=0\end{cases}
$$

Lemma 1.16. $\widetilde{H}_{i}(X) \cong H_{i}(X, p)$ for all $i \geq 0$.

Proof. Define $\widetilde{C}_{\bullet}(X, p)=\widetilde{C}_{\bullet}(X) / \widetilde{C}_{\bullet}(p) \cong C_{\bullet}(X) / C_{\bullet}(p)=C_{\bullet}(X, p)$, i.e. $\widetilde{H}_{*}(X, p)=$ $H_{*}(X, p)$. We have a SES

$$
0 \rightarrow \widetilde{C}_{\bullet}(p) \rightarrow \widetilde{C}_{\bullet}(X) \rightarrow \widetilde{C}_{\bullet}(X, p) \rightarrow 0
$$

which gives a LES

$$
\cdots \rightarrow \widetilde{H}_{i}(p) \rightarrow \widetilde{H}_{i}(X) \rightarrow \widetilde{H}_{i}(X, p) \rightarrow \widetilde{H}_{i-1}(p) \rightarrow \ldots
$$

We know $\widetilde{H}_{*}(p)=0$, so $\widetilde{H}_{i}(X) \cong \widetilde{H}_{i}(X, p) \cong H_{i}(X, p)$.

1.4.2 Subdivision

Suppose $\mathcal{U}=\left\{U_{\alpha} \mid \alpha \in A\right\}$ is an open cover of X. Define

$$
\left.C_{k}^{\mathcal{U}}(X)=\langle\sigma| \sigma: \Delta^{k} \rightarrow X \text { such that } \operatorname{im} \sigma \in U_{\alpha} \text { for some } \alpha\right\rangle .
$$

If $\operatorname{im} \sigma \in U_{\alpha}$, then $\operatorname{im} \sigma \circ F_{\hat{\jmath}} \subseteq U_{\alpha}$, so $d \sigma \in C_{k-1}^{\mathcal{U}}(X)$, i.e. $C_{*}^{\mathcal{U}}(X)$ is a subcomplex of $C_{*}(X)$.
Let $i: C_{*}^{\mathcal{U}}(X) \rightarrow C_{*}(X)$ be the inclusion.
Lemma 1.17 (Subdivision lemma). If \mathcal{U} is an open cover of X, then

$$
i_{*}: H_{*}^{U}(X) \rightarrow H_{*}(X)
$$

is an isomorphism.
Proof (idea only). (1) Define natural maps $B_{n}: S_{*}\left(\Delta^{n}\right) \rightarrow C_{*}\left(\Delta^{n}\right), H_{n}: C_{*}\left(\Delta^{n}\right) \rightarrow$ $C_{*+1}\left(\Delta^{n}\right) . B_{n}$ is defined inductively via barycentric subdivision. They satifsy $d H_{n}+$ $H_{n} d=B_{n}-\varphi_{\mathrm{id}_{\Delta^{n}}}$.

Barycentric subdivision of Δ^{n} for $n=1,2$.
(2) Use B_{n}, H_{n} to define $B: C_{*}(X) \rightarrow C_{*}(X), H: S_{*}(X) \rightarrow C_{*}(X)$ with $d H+H d=$ $B-\mathrm{id}_{C_{*}(X)}$.
(3) If $c \in C_{k}(X)$ and \mathcal{U} is an open cover of X, then there exists N such that $B^{N} c \in$ $C_{*}^{\mathcal{U}}(X)$, so $[c]=\left[B^{N} c\right]$, so i_{*} is surjective. And similarly one shows that i_{*} is injective.
See handout for the details.

1.4.3 Mayer-Vietoris Sequence

Suppose $U_{1}, U_{2} \subseteq X$ are open, $U_{1} \cup U_{2}=X$, so $\left\{U_{1}, U_{2}\right\}=\mathcal{U}$ is an open cover of X. We then have a commutative diagram of inclusions:

Proposition 1.18. There is a SES

$$
0 \rightarrow C_{*}\left(U_{1} \cap U_{2}\right) \xrightarrow{i} C_{*}\left(U_{1}\right) \oplus C_{*}\left(U_{2}\right) \xrightarrow{j} C_{*}^{\mathcal{U}}(X) \rightarrow 0
$$

where $i=\left[\begin{array}{c}i_{1 \#} \\ i_{2 \#}\end{array}\right], j=\left[j_{1 \#}-j_{2 \#}\right]$.
Proof. It is clear that $i_{1 \#}, i_{2 \#}$ are injective, so i is injective.
Exactness at $C_{*}\left(U_{1}\right) \oplus C_{*}\left(U_{2}\right)$: We have $j \circ i=j_{1 \#} i_{1 \#}-j_{2 \#} i_{2 \#}=0$. Suppose $j(a, b)=0$, $a=\sum a_{i} \sigma_{i}, a_{i} \neq 0, \sigma_{i} \neq \sigma_{j}$ for $i \neq j, \operatorname{im} \sigma_{i} \subseteq U_{1}$ and similarly $b=\sum b_{j} \tau_{j}$. But if $j(a, b)=0$, then $\sum a_{i} \sigma_{i}=\sum b_{j} \tau_{j}$ which can only happen if (after reordering indices) if $a_{i}=b_{i}, \sigma_{i}=\tau_{i}$, so im $\sigma_{i} \subseteq U_{1} \cap U_{2}$, so if $c=\sum a_{i} \sigma_{i} \in C_{*}\left(U_{1} \cap U_{2}\right)$, then $i(c)=(a, b)$.
Exactness at $C_{*}^{\mathcal{U}}(X)$: If $c \in C_{k}^{\mathcal{U}}(X)$, we can write $c=\sum a_{i} \sigma_{i}+\sum b_{j} \tau_{j}$ where $\operatorname{im} \sigma_{i} \subseteq$ $U_{1}, \operatorname{im} \tau_{j} \subseteq U_{2}$, so $c=j(a,-b)$ and j is surjective.

By the Subdivision Lemma we have $H_{*}^{u}(X)=H_{*}(X)$, hence we obtain:
Corollary 1.19 (Mayer-Vietoris Sequence). If $U_{1}, U_{2} \subseteq X$ are open, $U_{1} \cup U_{2}=X$, there is a LES

$$
\ldots \xrightarrow{\partial} H_{i}\left(U_{1} \cap U_{2}\right) \xrightarrow{i} H_{i}\left(U_{1}\right) \oplus H_{i}\left(U_{2}\right) \xrightarrow{j} H_{i}(X) \xrightarrow{\partial} H_{i-1}\left(U_{1} \cap U_{2}\right) \rightarrow \ldots
$$

Note that

$$
0 \rightarrow \widetilde{C}_{*}\left(U_{1} \cap U_{2}\right) \xrightarrow{i} \widetilde{C}_{*}\left(U_{1}\right) \oplus \widetilde{C}_{*}\left(U_{2}\right) \xrightarrow{j} \widetilde{C}_{*}^{\mathcal{U}}(X) \rightarrow 0
$$

is also exact: It only differs from the non-reduced complex in degree -1 where the sequence becomes

$$
0 \rightarrow \mathbb{Z} \xrightarrow{\left[\begin{array}{l}
1 \\
1
\end{array}\right]} \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{\left[\begin{array}{ll}
1 & -1
\end{array}\right]} \mathbb{Z} \rightarrow 0
$$

Hence we also get a reduced version of the Mayer-Vietoris sequence:

$$
\ldots \xrightarrow{\partial} \widetilde{H}_{i}\left(U_{1} \cap U_{2}\right) \xrightarrow{i} \widetilde{H}_{i}\left(U_{1}\right) \oplus \widetilde{H}_{i}\left(U_{2}\right) \xrightarrow{j} \widetilde{H}_{i}(X) \xrightarrow{\partial} \widetilde{H}_{i-1}\left(U_{1} \cap U_{2}\right) \rightarrow \ldots
$$

1.4.4 Homology of S^{n}

Proposition 1.20.

$$
\widetilde{H}_{i}\left(S^{n}\right) \cong \begin{cases}\mathbb{Z} & i=n, \\ 0 & i \neq n\end{cases}
$$

Proof. By induction on n. If $n=0$, we have $S^{0}=\{ \pm 1\}$, so

$$
H_{*}\left(S^{0}\right)=H_{*}(\{1\}) \oplus H_{*}(\{-1\})= \begin{cases}\mathbb{Z} \oplus \mathbb{Z} & i=0 \\ 0 & i \neq 0\end{cases}
$$

and therefore $\widetilde{H}_{i}\left(S^{0}\right) \cong \begin{cases}\mathbb{Z} & i=0, \\ 0 & i \neq 0 .\end{cases}$
In general, let $U_{+}=S^{n} \backslash\{(-1,0, \ldots, 0)\}, U_{-}=S^{n} \backslash\{1,0, \ldots, 0\}$. Note that $U_{ \pm} \cong \mathbb{R}^{n} \cong$ $D^{n \circ}$ by stereographic projection, so contractible, while $U_{+} \cap U_{-}=S^{n} \backslash\{(\pm 1,0, \ldots, 0)\} \cong$ $I^{\circ} \times S^{n-1}$ is homotopic to S^{n-1} via

$$
\begin{aligned}
p: U_{+} \cap U_{-} & \longrightarrow S^{n-1}, \\
\left(x_{1}, \ldots, x_{n+1}\right) & \longmapsto \frac{1}{\sqrt{x_{2}^{2}+\cdots+x_{n+1}^{2}}}\left(x_{2}, x_{3}, \ldots, x_{n+1}\right) .
\end{aligned}
$$

The MV-sequence is

$$
\cdots \rightarrow \widetilde{H}_{i}\left(U_{1}\right) \oplus \widetilde{H}_{i}\left(U_{2}\right) \rightarrow \widetilde{H}_{i}\left(S^{n}\right) \xrightarrow{\partial} \widetilde{H}_{i-1}\left(U_{+} \cap U_{-}\right) \rightarrow \widetilde{H}_{i-1}\left(U_{+}\right) \oplus \widetilde{H}_{i-1}\left(U_{-}\right) \rightarrow \ldots
$$

As the $U_{ \pm}$are contractible we get that ∂ is an isomorphism. Hence $\widetilde{H}_{i}\left(S^{n}\right) \xrightarrow{\partial} \widetilde{H}_{i-1}\left(U_{+} \cap\right.$ $\left.U_{i}\right) \xrightarrow{p_{*}} \widetilde{H}_{i-1}\left(S^{n-1}\right)$ is an isomorphism. By induction we are done.

Define $\left[S^{n}\right]$, the preferred generator of $\widetilde{H}_{n}\left(S^{n}\right) \cong \mathbb{Z}$, by $\left[S^{0}\right]=\left[\sigma_{1}-\sigma_{-1}\right]$ and then inductively by $p_{*}\left(\partial\left[S^{n}\right]\right)=\left[S^{n-1}\right]$ where $p_{*} \circ \partial$ is the isomorphism $\widetilde{H}_{i}\left(S^{n}\right) \xrightarrow{\partial} \widetilde{H}_{i-1}\left(U_{+} \cap\right.$ $\left.U_{-}\right) \xrightarrow{p_{*}} \widetilde{H}_{i-1}\left(S^{n-1}\right)$.

Lemma 1.21 (Naturality of the connecting homomorphism). Suppose

is a commuting diagram of chain complexes with exact rows. Then we have commuting diagram of LES

$$
\begin{aligned}
\ldots \longrightarrow H_{i}(B) & H_{i}(C) \xrightarrow{\partial} H_{i-1}(A) \longrightarrow \cdots \\
\left.\right|^{f_{B *}} & \mid f_{C *}
\end{aligned}
$$

Proof. Straightforward diagram chase.
Example. Suppose $f: X \rightarrow Y, Y=U_{1} \cup U_{2}, U_{i} \subseteq Y$ open. Let $V_{i}=f^{-1}\left(U_{i}\right)$, so $X=V_{1} \cup V_{2}, V_{i} \subseteq X$ open. Then $f_{\#}$ induces a map of SES

and hence we get a corresponding map of MV sequences.
Example. Define $r_{n}: S^{n} \rightarrow S^{n},\left(x_{1}, \ldots, x_{n+1}\right) \mapsto\left(x_{1}, \ldots, x_{n},-x_{n+1}\right)$. Let $S^{n}=U_{+} \cup U_{-}$ as before. Then $r: U_{+} \rightarrow U_{+}, U_{-} \rightarrow U_{-}$.
Proposition 1.22. $r_{n *}: \widetilde{H}_{n}\left(S^{n}\right) \rightarrow \widetilde{H}_{n}\left(S^{n}\right)$ maps $\left[S^{n}\right]$ to $-\left[S^{n}\right]$.
Proof. By induction on n. For $n=0$ we have $\left[S^{0}\right]=\left[\sigma_{1}-\sigma_{-1}\right]$, so $r_{0 *}\left[S^{0}\right]=\left[r_{0} \sigma_{1}-\right.$ $\left.r_{0} \sigma_{-1}\right]=\left[\sigma_{-1}-\sigma_{1}\right]=-\left[S^{0}\right]$ since $r_{0}(\pm 1)=\mp 1$.

In general, r_{n} induces a map of MV sequences $\left(S^{n}, U_{+}, U_{-}\right) \rightarrow\left(S^{n}, U_{+}, U_{-}\right)$:

The homotopy equivalence

$$
\begin{aligned}
p: U_{+} \cap U_{-} & \longrightarrow S^{n-1}, \\
\left(x_{1}, \ldots, x_{n+1}\right) & \longmapsto \frac{1}{\sqrt{x_{2}^{2}+\cdots+x_{n+1}^{2}}}\left(x_{2}, \ldots, x_{n+1}\right),
\end{aligned}
$$

satisfies $p \circ r_{n}=r_{n-1} \circ p$. So we get a commuting diagram where all maps are isomorphisms:

From induction hypothesis we then get $r_{n *}\left[S^{n}\right]=-\left[S^{n}\right]$.
Corollary 1.23. If $n \geq 1$ and $v \in S^{n}$, let $r_{v}: S^{n} \rightarrow S^{n}$ be reflection across the plane perpendicular to v. Then $r_{v *}\left[S^{n}\right]=-\left[S^{n}\right]$.

Proof. S^{n} is path connected, so if γ is a path from v to $e_{n+1}, r_{\gamma(v)}$ is a homotopy from r_{v} to $r_{e_{n+1}}=r_{n}$, so $r_{v *}=r_{n *}$.

1.5 Excision and Collapsing a Pair

Definition. Suppose $A \subseteq Z . A$ is a deformation retract of Z if there exists a map $p:(Z, A) \rightarrow(A, A)$ such that $p \circ i=1_{(A, A)}$ and $i \circ p:(Z, A) \rightarrow(Z, A) \sim 1_{(Z, A)}$ as a map of pairs where $i:(A, A) \rightarrow(Z, A)$ is the inclusion.
Note that if A is a deformation retract of Z, then in particular $Z \sim A$.
Example. $Y \times 0$ is a deformation retract of $Y \times D^{n \circ}$.
Definition. A pair (X, A) is a good pair if there exists $U \subseteq X$ open such that $A \subseteq U, A$ is a deformation retract of U and $\bar{A} \subseteq U$.

Examples.

- $X=S^{2}, A=\{n, s\}$ is a good pair,
- $Y=T^{2}=S^{1} \times S^{1}, B=S^{1} \times 1 \subseteq Y$ is a good pair.
- More generally, if M is a manifold, N is a submanifold, then (M, N) is a good pair.
- (\mathbb{R}, \mathbb{Q}) is not a good pair.

Theorem 1.24. Suppose (X, A) is a good pair, and $\pi:(X, A) \rightarrow(X / A, A / A)$ the quotient map. Then

$$
\pi_{*}: H_{*}(X, A) \rightarrow H_{*}(X / A, A / A) \simeq \widetilde{H}_{*}(X / A)
$$

is an isomorphism.

Examples.

- $X=S^{2}, A=\{n, s\}, Z=X / A$. By the Theorem $\widetilde{H}_{*}(Z) \simeq H_{*}(X, A)$. We compute

$$
Z=S^{2} /\{n, s\}
$$

$H_{*}(X, A)$ using the LES of the pair (X, A). Note that

$$
\widetilde{H}_{*}\left(S^{2}\right)=\left\{\begin{array}{ll}
\mathbb{Z} & *=2, \\
0 & * \neq 2,
\end{array} \quad \widetilde{H}_{*}(A)= \begin{cases}\mathbb{Z} & *=0 \\
0 & * \neq 0\end{cases}\right.
$$

So the LES is

$$
0 \rightarrow \mathbb{Z} \rightarrow \tilde{H}_{2}(X, A) \rightarrow 0 \rightarrow 0 \rightarrow \tilde{H}_{1}(X, A) \rightarrow \mathbb{Z} \rightarrow 0 \rightarrow \widetilde{H}_{0}(X, A) \rightarrow 0
$$

Therefore $\widetilde{H}_{*}(Z)= \begin{cases}\mathbb{Z} & *=1,2, \\ 0 & * \neq 1,2 .\end{cases}$

- $Y=S^{1} \times S^{1}, B=S^{1} \times 1$. Note that $Y / B \cong Z$. For example $Z=\left(S^{1} \times[-1,1]\right) /\left(S^{1} \times\right.$

$$
Y / B \cong Z
$$

S^{0}), and we have quotient maps $S^{1} \times[-1,1] \rightarrow S^{2} \rightarrow Z$ and $S^{1} \times[-1,1] \rightarrow T^{2} \rightarrow Z$. Since we know $H_{*}(B)$ and $H_{*}(Z) \simeq H_{*}(Y, B)$, we can determine $H_{*}(Y)$: We get the LES

$$
0 \rightarrow \widetilde{H}_{2}\left(T^{2}\right) \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \xrightarrow{i_{1 *}} \widetilde{H}_{1}\left(T^{2}\right) \rightarrow \mathbb{Z} \rightarrow 0 \rightarrow \widetilde{H}_{0}\left(T^{2}\right) \rightarrow 0
$$

Here $i_{1}: S^{1} \rightarrow Y$ is the inclusion on the first factor. It has the retract $\pi_{1}: T^{2} \rightarrow S^{1}$, i.e. $\pi_{1} \circ i_{1}=\operatorname{id}_{S^{1}}$, hence $\pi_{1 *} \circ i_{1 *}=\operatorname{id}_{H_{*}\left(S^{1}\right)}$, so $i_{1 *}$ is injective. From this we deduce that $\widetilde{H}_{2}\left(T^{2}\right) \cong \mathbb{Z}$ and $\widetilde{H}_{1}\left(T^{2}\right) \cong \mathbb{Z} \oplus \mathbb{Z}$. Exercise: $H^{1}\left(T^{2}\right)$ is generated by $i_{1 *}\left[S^{1}\right]=\left[S^{1}\right] \times 1, i_{2 *}\left[S^{1}\right]=1 \times\left[S^{1}\right]$
Lemma 1.25 (Five Lemma). Suppose

is a commuting diagram of R-modules with exact rows. If $f_{i \pm 1}, f_{i \pm 2}$ are isomorphisms, then also f_{i} is an isomorphism.

Proof. Straightforward diagram chase.
Suppose $\mathcal{U}=\left\{U_{j} \mid j \in J\right\}$ is an open cover of X. If $A \subseteq X, \mathcal{U}_{A}:=\left\{U_{j} \cap A \mid j \in J\right\}$ is an open cover of A and $C_{*}^{\mathcal{U}_{A}}(A) \subseteq C_{*}^{\mathcal{U}}(X)$. Define $C_{*}^{\mathcal{U}}(X, A):=C_{*}^{\mathcal{U}}(X) / C_{*}^{\mathcal{U}_{A}}(A)$. The map $i: C_{*}^{\mathcal{U}}(X) \rightarrow C_{*}(X)$ induces $i: C_{*}^{\mathcal{U}}(X, A) \rightarrow C_{*}(X, A)$.

Lemma 1.26. $i_{*}: H_{*}^{u}(X, A) \rightarrow H_{*}(X, A)$ is an isomorphism.
Proof. There is a commutative diagram of SES's:

So we get a commutative diagram of LES's:

The four red arrows are isomorphisms by the subdivision lemma, so the blue one also is.

Theorem 1.27 (Excision). Suppose $B \subseteq A \subseteq X, \bar{B} \subseteq \operatorname{Int} A$, and let $j:(X \backslash B, A \backslash B) \rightarrow$ (X, A) be the inclusion. Then

$$
j_{*}: H_{*}(X \backslash B, A \backslash B) \rightarrow H_{*}(X, A)
$$

is an isomorphism
Proof. $\bar{B} \subseteq \operatorname{Int} A$, so $\mathcal{U}=\{\operatorname{Int} A, X \backslash \bar{B}\}$ is an open cover of X. Notation: If $\sigma: \Delta^{k} \rightarrow X$, write $\sigma \triangleleft \mathcal{U}$ if $\operatorname{im} \sigma \subseteq U$ for some $U \in \mathcal{U}$.

Then

$$
\begin{aligned}
C_{*}^{\mathcal{U}}(X) & =\langle\sigma \mid \sigma \triangleleft \mathcal{U}\rangle \\
& =\langle\sigma \mid \sigma \triangleleft \mathcal{U}, \operatorname{im} \sigma \cap B=\emptyset\rangle \oplus\langle\sigma| \sigma \triangleleft \mathcal{U} \text { and } \operatorname{im} \sigma \cap B \neq \emptyset\rangle \\
& =C_{*}^{\mathcal{U}}(X \backslash B) \oplus M_{B}
\end{aligned}
$$

where $M_{B}=\langle\sigma| \operatorname{im} \sigma \subseteq A$ and $\left.\operatorname{im} \sigma \cap B \neq \emptyset\right\rangle$. Similarly $C_{*}^{\mathcal{U}_{A}}(A)=C_{*}^{\mathcal{U}_{A \backslash B}}(A \backslash B) \oplus M_{B}$. Now if $C^{\prime} \subseteq C$, then the inclusion $C / C^{\prime} \rightarrow(C \oplus M) /\left(C^{\prime} \oplus M\right)$ is an isomorphism. So taking $C=C_{*}^{\mathcal{U}}(X \backslash B), C^{\prime}=C_{*}^{\mathcal{U}_{A \backslash B}}(A \backslash B)$ we get that $j_{\#}: C_{*}^{\mathcal{U}}(X \backslash B) / C_{*}^{\mathcal{U}_{A} \backslash B}(A \backslash$ $B) \rightarrow C_{*}^{\mathcal{u}}(X) / C_{*}^{\mathcal{U}_{A}}(A)$ is an isomorphism, i.e. $j_{\#}: C_{*}^{\mathcal{u}}(X \backslash B, A \backslash B) \cong C_{*}^{\mathcal{u}}(X, A)$, so $j_{*}: H_{*}^{U}(X \backslash B, A \backslash B) \cong H_{*}^{U}(X, A)$.
There is a commuting square

The vertical maps and top map are isomorphisms, thus so is the bottom map.
Proposition 1.28 (LES of a triple). Suppose $Z \subseteq Y \subseteq X$. Then there is a LES:

$$
\ldots \xrightarrow{\partial} H_{*}(Y, Z) \xrightarrow{j_{1 *}} H_{*}(X, Z) \xrightarrow{j_{2 *}} H_{*}(X, Y) \xrightarrow{\partial} H_{*-1}(Y, Z) \rightarrow \ldots
$$

where $j_{1}:(Y, Z) \rightarrow(X, Z), j_{2}:(X, Z) \rightarrow(X, Y)$ are inclusions.

Proof. There is a short exact sequence

$$
0 \rightarrow C_{*}(Y, Z) \rightarrow C_{*}(X, Z) \rightarrow C_{*}(X, Y) \rightarrow 0
$$

and the sequence in the claim is the associated long exact sequence.
Lemma 1.29. If A is a deformation retract of $U, U \subseteq X$ and $j:(X, A) \rightarrow(X, U)$ the inclusion, then $j_{*}: H_{*}(X, A) \rightarrow H_{*}(X, U)$ is an isomorphism.

Proof. Let $i: A \rightarrow U$ be the inclusion. By definition it is a homotopy equivalence, hence $i_{*}: H_{*}(A) \rightarrow H_{*}(U)$ is an isomorphism and so the LES of the pair (U, A) shows that $H_{*}(U, A)=0$. Then the LES of the triple (X, U, A) gives

$$
0=H_{*}(U, A) \rightarrow H_{*}(X, A) \xrightarrow{j_{*}} H_{*}(X, U) \rightarrow H_{*-1}(U, A)=0,
$$

so j_{*} is an isomorphism.
Proof of Theorem 1.24. There is a commutative diagram

The maps j_{*} are isomorphisms by excision, the i_{*} are isomorphisms by the lemma (exercise: A / A is deformation retract of U / A). $\pi_{1 *}$ is induced by a homeomorphism $(X-A, U-A) \rightarrow$ $(X / A-A / A, U / A-A / A)$, hence an isomorphism. Then $\pi_{2 *}$ is an isomorphism and finally also $\pi_{3 *}$ is an isomorphism.

Definition. A space X is an n-manifold if it is metrizable (in particular Hausdorff and first-countable) and every $x \in X$ has an open neighborhood U_{x} homeomorphic to \mathbb{R}^{n}.
Proposition 1.30. If X is an n-manifold and $x \in X$, then

$$
H_{*}(X, X \backslash x) \cong \begin{cases}\mathbb{Z} & *=n \\ 0 & * \neq n\end{cases}
$$

Proof. Choose $U_{x} \subseteq X$ as above with $U_{x} \cong \mathbb{R}^{n}, x \mapsto 0$. Then by excision and Lemma 1.29;

$$
H_{*}(X, X \backslash p) \cong H_{*}\left(D^{n}, D^{n} \backslash 0\right) \cong H_{*}\left(D^{n}, S^{n-1}\right)
$$

The LES of $\left(D^{n}, S^{n-1}\right)$ yields $\widetilde{H}_{*}\left(D^{n}, S^{n-1}\right)=\widetilde{H}_{*-1}\left(S^{n-1}\right)$ and we are done.
Corollary 1.31. If M and N are m and n-manifolds resp. and $M \cong N$, then $n=m$.

2 Cellular Homology

2.1 Degrees of Maps $f: S^{n} \rightarrow S^{n}$

Recall that $H_{n}\left(S^{n}\right) \cong \mathbb{Z}(n>0)$. It is generated by [S^{n}]. So if $f: S^{n} \rightarrow S^{n}$, then $f_{*}\left[S^{n}\right]=k\left[S^{n}\right]$ for some (unique) $k \in \mathbb{Z}$.

Definition. If $f: S^{n} \rightarrow S^{n}$ with $f_{*}\left[S^{n}\right]=k\left[S^{n}\right], k=: \operatorname{deg} f$ is the degree of f.

Properties:

(1) $\left(1_{S^{n}}\right)_{*}=1_{H_{*}\left(S^{n}\right)}$, so $\operatorname{deg} 1_{S^{n}}=1$
(2) If $f_{0}, f_{1}: S^{n} \rightarrow S^{n}$ are homotopic, then $f_{0 *}=f_{1 *}$, so $\operatorname{deg} f_{0}=\operatorname{deg} f_{1}$.
(3) If $f, g: S^{n} \rightarrow S^{n}$, then $\operatorname{deg} f \operatorname{deg} g=\operatorname{deg}(f \circ g)$.
(4) If $f: S^{n} \rightarrow S^{n}$ is a homeomorphism, then $\operatorname{deg} f= \pm 1$. We say f is orientation preserving if $\operatorname{deg} f=1$, otherwise orientation reversing.
(5) If $r_{v}: S^{n} \rightarrow S^{n}$ is the reflection in v^{\perp}, then $\operatorname{deg} r_{v}=-1$ (Corollary 1.23)
(6) If $A: S^{n} \rightarrow S^{n}, x \mapsto-x$ is the antipodal map, then $A=r_{e_{1}} \circ r_{e_{2}} \circ \cdots \circ r_{e_{n+1}}$, so $\operatorname{deg} A=(-1)^{n+1}$. In particular $A \nsim 1_{S^{n}}$ if n is even.

2.1.1 Local Degree

Let $p \in S^{n}$. Then $S^{n}-p \cong D^{n \circ}$ is contractible, so $\pi_{*}: \widetilde{H}_{n}\left(S^{n}\right) \rightarrow H_{n}\left(S^{n}, S^{n}-p\right)$ is an isomorphism.Define $\left[S^{n}, S^{n}-p\right] \in H_{n}\left(S^{n}, S^{n}-p\right)$ as the image of $\left[S^{n}\right]$ under π_{*}.
If $U \subseteq S^{n}$ is open, $p \in U$, let $B=S^{n} \backslash U$. B is closed and $\bar{B} \subseteq \operatorname{Int}\left(S^{n}-p\right)$. Then $\left(S^{n}-B, S^{n}-p-B\right)=(U, U-p)$, so by excision

$$
j_{*}: H_{n}(U, U-p) \rightarrow H_{n}\left(S^{n}, S^{n}-p\right)
$$

is an isomorphism. Define $[U, U-p]$ to be the preimage of $\left[S^{n}, S^{n}-p\right]$ under j_{*}.
Observe: If $p \in U^{\prime} \subseteq U$, we have a commutative diagram:

So $\left[U^{\prime}, U^{\prime}-p\right]$ gets mapped to $[U, U-p]$ under ι_{*}.
Suppose $f: S^{n} \rightarrow S^{n}$ and $f^{-1}(p)=\left\{q_{1}, \ldots, q_{r}\right\}$ is finite. As S^{n} is Hausdorff, we can find $U_{i} \subseteq S^{n}$ open such that $q_{i} \in U_{i}$ and $U_{i} \cap U_{j}=\emptyset$ for $i \neq j$. Then $f:\left(U_{i}, U_{i}-q_{i}\right) \rightarrow$ $\left(S^{n}, S^{n}-p\right)$. Then $f_{*}\left[U_{i}, U_{i}-q_{i}\right]=k\left[S^{n}, S^{n}-p\right]$ for some $k \in \mathbb{Z}$.

Definition. Under the above hypotheses we define $\operatorname{deg}_{q_{i}} f:=k$ to be the local degree of f at q_{i}.

Lemma 2.1. The definition of the local degree does not depend on the choice of U_{i}.
Proof. Suppose $q_{i} \in U_{i}^{\prime} \subseteq U_{i}$ and $q_{i} \in U_{i}^{\prime}$. Then

commutes. We have $i_{*}\left[U_{i}^{\prime}, U_{i}^{\prime}-q_{i}\right]=\left[U_{i}, U_{i}-q_{i}\right]$, so $\operatorname{deg} f_{*}=\operatorname{deg} f_{*}^{\prime}$. In general, given open sets U_{i}, U_{i}^{\prime} containing q_{i}, consider $U_{i} \cap U_{i}^{\prime} \subseteq U_{i}, U_{i}^{\prime}$ and use above to see that the degrees defined using $U_{i}, U_{i}^{\prime}, U_{i} \cap U_{i}^{\prime}$ are all the same.

Let $V=\coprod_{i} U_{i} \subseteq S^{n}$. By excision we have an isomorphism $j_{*}: H_{n}\left(V, V-f^{-1}(p) \xrightarrow{\simeq}\right.$ $H_{n}\left(S^{n}, S^{n}-f^{-1}(p)\right)$. We also know that $H_{n}\left(V, V-f^{-1}(p)\right)=\bigoplus_{i=1}^{r} H_{n}\left(U_{i}, U_{i}-q\right) \simeq \mathbb{Z}^{r}$ and the $\left[U_{i}, U_{i}-q_{i}\right]$ form a basis of this group.

Lemma 2.2. The map

$$
\widetilde{H}_{n}\left(S^{n}\right) \rightarrow H_{n}\left(S^{n}, S^{n}-f^{-1}(p)\right) \cong \bigoplus_{i=1}^{r} H_{n}\left(U_{i}, U_{i}-q_{i}\right)
$$

is given by $\left[S^{n}\right] \mapsto \sum_{i=1}^{r}\left[U_{i}, U_{i}-q_{i}\right]$.
Proof. There is a commutative diagram:

$$
\begin{aligned}
& H_{n}\left(S^{n}, S^{n}-f^{-1}(p)\right) \longrightarrow H_{n}\left(S^{n}, S^{n}-q_{j}\right) \\
& \simeq \uparrow \simeq \uparrow \\
& H_{n}\left(V, V-f^{-1}(p)\right) \longrightarrow H_{n}\left(V, V-q_{j}\right) \longrightarrow H_{n}\left(U_{j}, U_{j}-q_{j}\right)
\end{aligned}
$$

The vertical maps are isomorphisms, so the diagram still commutes if we reverse those
arrows. Now consider the following diagram:

Here π_{j} is the projection onto the j-th component. The diagram is still commutative (exercise: check the bottom triangle). Then $\alpha\left(\left[S^{n}\right]\right)=j_{*}^{-1}\left[S^{n}, S^{n}-p\right]=\left[U_{j}, U_{j}-q_{j}\right]$, so $\pi_{j} \beta\left[S^{n}\right]=\alpha\left[S^{n}\right]=\left[U_{j}, U_{j}-q_{j}\right]$, hence $\beta\left[S^{n}\right]=\sum_{j}\left[U_{j}, U_{j}-q_{j}\right]$.

Theorem 2.3. Suppose $f: S^{n} \rightarrow S^{n}, f^{-1}(p)=\left\{q_{1}, \ldots, q_{r}\right\}$ as above. Then $\operatorname{deg} f=$ $\sum_{i=1}^{r} \operatorname{deg}_{q_{i}} f$.

Proof. We have a commutative diagram:

Following the different paths, we see that the image of $\left[S^{n}\right]$ in $H_{n}\left(S^{n}, S^{n}-p\right)$ is both $\operatorname{deg} f\left[S^{n}, S^{n}-p\right]$ and $\sum f_{i *}\left[U_{i}, U_{i}-q_{i}\right]=\left(\sum \operatorname{deg}_{q_{i}} f\right)\left[S^{n}, S^{n}-p\right]$, so the result follows.

Example. Let $f: S^{1} \rightarrow S^{1}, z \mapsto z^{n}$. Then $f^{-1}(1)=\left\{1, \omega, \ldots, \omega^{n-1}\right\}$ where $\omega=e^{2 \pi i / n}$. Consider the homeomorphism $\varphi_{k}: S^{1} \rightarrow S^{1}, z \mapsto \omega^{k} z$. Note that $\varphi_{k} \sim 1_{S^{1}}$. Let $U_{k}=$ $\phi_{k}\left(U_{0}\right)$ where U_{0} is a small neighborhood of 1 . Then $\varphi_{k *}\left[U_{0}, U_{0}-1\right]=\left[U_{k}, U_{k}-\omega^{k}\right]$ and $f \circ \varphi_{k}=f$, so $f_{*}\left[U_{k}, U_{k}-\omega_{k}\right]=f_{*}\left(\varphi_{k *}\left[U_{0}, U_{0}-1\right]\right)=f_{*}\left[U_{0}, U_{0}-1\right]$. So $\operatorname{deg}_{\omega^{k}} f=\operatorname{deg}_{1} f=1$ (the last equality is an exercise). Therefore $\operatorname{deg} f=\sum_{i=0}^{n-1} 1=n$.

2.1.2 Some Intuition

If $f: S^{n} \rightarrow X$, then $f_{*}\left[S^{n}\right] \in H_{n}(X)$ and if $f_{0} \sim f_{1}$, then $f_{0 *}\left[S^{n}\right]=f_{1 *}\left[S^{n}\right]$. This can be used to define the "Hurewicz homomorphism":

$$
\Phi: \pi_{n}(X, *) \longrightarrow H_{n}(X),
$$

$$
f \longmapsto f_{*}\left[S^{n}\right]
$$

In general, this map is quite far from being an isomorphism. Example: $H_{2}\left(T^{2}\right) \simeq \mathbb{Z}$. But if $f: S^{2} \rightarrow T^{2}$, we can factor it through the universal covering $\pi: \mathbb{R}^{2} \rightarrow T^{2}$, i.e. $f=\widehat{f} \circ \pi$ for some $\widehat{f}: S^{2} \rightarrow \mathbb{R}^{2}$. Then $f_{*}\left[S^{2}\right]=\pi_{*} \widehat{f}_{*}\left[S^{2}\right]=\pi_{*}(0)=0$, since $H_{2}\left(\mathbb{R}^{2}\right)=0$.
Better model: If M is a closed (i.e. without boundary and compact) connected n-manifold, we will show $H_{n}(M) \simeq \mathbb{Z}=\langle[M]\rangle$ such that the image of $[M]$ under $H_{n}(M) \rightarrow H_{n}(M, M-$ $*) \simeq \mathbb{Z}$ is a generator. So if $f: M \rightarrow X$, we can consider $f_{*}[M] \in H_{n}(X)$. If W^{n+1} is a compact $n+1$-manifold, $\partial W=\coprod_{i=1}^{k} M_{i}$. Then $i: \partial W \rightarrow W$ induces $i_{*}: H_{n}(\partial W) \rightarrow$ $H_{n}(W)$ with $[\partial W]=\sum_{i=1}^{k}\left[M_{i}\right] \mapsto 0$. So if $f: W \rightarrow X$, then $f_{*}\left(\sum_{i}\left[M_{i}\right]\right)=0$.

This is still not an accurate model for H_{n}, but much better.

2.2 The Cellular Chain Complex

Definition. Suppose $B \subseteq Y, f: B \rightarrow X$. Then $X \cup_{f} Y:=(X \amalg Y) / \sim$, where \sim is the smallest equivalence relation containing $b \sim f(b)$ for all $b \in B$, is the space obtained by attaching (or gluing) Y to X along f.

If $(Y, B)=\left(D^{k}, S^{k-1}\right)$, say $X \cup_{f} D^{k}$ is obtained by attaching a k-cell to X.

Attaching a 1 - and a 2 -cell
Definition. A finite cell complex (fcc) of dimension n is a space X equipped with closed subsets $\emptyset=X_{-1} \subseteq X_{0} \subseteq X_{1} \subseteq \ldots \subseteq X_{n}$, such that for each k, X_{k} is obtained by attaching finitely many k-cells to X_{k-1}, i.e. $X_{k} \cong X_{k-1} \cup_{F} \coprod_{\alpha \in A_{k}} D^{k}$ where $F: \coprod_{\alpha \in A_{k}} S^{k-1} \rightarrow$ $X_{k-1}, F=\coprod_{\alpha \in A_{k}} f_{\alpha}, f_{\alpha}: S^{k-1} \rightarrow X_{k-1}$.
X_{k} is the k-skeleton of X.
If we drop the finiteness conditions, $X=\bigcup_{k=0}^{\infty} X_{k}$ and $U \subseteq X$ is open iff $U \cap X_{k}$ is open for all k, then this is called a CW-complex.

Examples.

(1) If X is a graph with v vertices and e edges, then X is a fcc with $v 0$-cells and e 1-cells.
(2) If X is a fcc with one 0 -cell and one k-cell, then $X \cong D^{k} / S^{k-1} \cong S^{k}$.
(3) If X is a simplicial chain complex, $|X|$ is a fcc with one k-cell for each k-dimensional face of X.
(4) T^{2} is a fcc with one 0 -cell P, two 1-cells e_{1}, e_{2} and one 2 -cell f.

Cell structure of T^{2}

Definition. If $\left(X_{i}, x_{i}\right), i \in I$ are pointed spaces, their wedge product is

$$
\bigvee_{i \in I}\left(X_{i}, x_{i}\right):=\coprod_{i \in I} X_{i} /\left(\coprod_{i} x_{i}\right) .
$$

$$
S^{2} \vee S^{2}
$$

If X is a fcc with one 0 -cell and $r k$-cells, then $X \simeq \bigvee_{i=1}^{r} S^{k}$.

2.2.1 Projectives Spaces

Definition. The n-dimensional complex projective space is $\mathbb{C P}^{n}=\left(\mathbb{C}^{n+1}-0\right) / \mathbb{C}^{*}$.
The n-dimensional real projective space is $\mathbb{R} \mathbb{P}^{n}=\left(\mathbb{R}^{n+1}-0\right) / \mathbb{R}^{*}$.
Note that $\mathbb{C}^{*}=\mathbb{R}_{>0} \times S^{1}$ and $\left(\mathbb{C}^{n+1}-0\right) / \mathbb{R}_{>0} \simeq S^{2 n+1}$, so $\mathbb{C P}^{n} \cong S^{2 n+1} / S^{1}$ where $\lambda \in S^{1}$ acts on $z \in S^{2 n+1}$ by $\lambda \cdot z=\lambda z$ (inside \mathbb{C}^{n+1}).
Similarly, $\mathbb{R P}^{n}=S^{n} /(\mathbb{Z} / 2)$.
Definition. The Hopf map $p_{n}: S^{2 n+1} \rightarrow \mathbb{C} \mathbb{P}^{n}$ is the projection.
Proposition 2.4. $\mathbb{C P}^{n} \simeq \mathbb{C P}^{n-1} \cup_{p_{n-1}} D^{2 n}$ where $p_{n-1}: S^{2 n-1} \rightarrow \mathbb{C} \mathbb{P}^{n-1}$ is the Hopf map.

Proof. We have maps

$$
\begin{aligned}
i_{1}: \mathbb{C P}^{n-1} & \longrightarrow \mathbb{C P}^{n} \\
{[z] } & \longmapsto[z: 0] \\
i_{2}: D^{2 n}=\left\{z \in \mathbb{C}^{n}:\|z\| \leq 1\right\} & \longrightarrow \mathbb{C P}^{n} \\
z & \longmapsto\left[z: \sqrt{1-\|z\|^{2}}\right]
\end{aligned}
$$

Then $\left.i_{2}\right|_{S^{2 n-1}}=i_{1} \circ p_{n-1}$. So i_{1}, i_{2} glue to give $i: \mathbb{C P} \mathbb{P}^{n-1} \cup_{p_{n-1}} D^{2 n} \rightarrow \mathbb{C P}^{n} . i$ is a bijection. Indeed, the inverse is given by

$$
\left[z_{0}: \cdots: z_{n}\right] \mapsto \begin{cases}\left(z_{0}, \ldots, z_{n-1}\right) \in D^{2 n} & \text { if } z_{n} \in \mathbb{R}_{>0},\|z\|=1 \\ {\left[z_{0}: \cdots: z_{n-1}\right] \in \mathbb{C P}^{n-1}} & \text { if } z_{n}=0\end{cases}
$$

Since the spaces are compact Hausdorff, it follows that i is a homeomorphism.
Consequence: By induction $\mathbb{C P}^{n}$ is a fcc with one cell of dimension $2 i$ for $0 \leq i \leq n$ and no other cells ${ }^{1}$ For example, $\mathbb{C P}^{1} \simeq S^{2}$.
The same argument shows $\mathbb{R P}^{n} \cong \mathbb{R} \mathbb{P}^{n-1} \cup_{p_{n-1}} D^{n}$. So $\mathbb{R} \mathbb{P}^{n}$ is a fcc with 1 cell of dimension i for $0 \leq i \leq n$.

Proposition 2.5.

$$
H_{*}\left(\mathbb{C P}^{n}\right)= \begin{cases}\mathbb{Z} & *=0,2, \ldots, 2 n \\ 0 & \text { otherwise }\end{cases}
$$

Proof. The quotient $\mathbb{C P}^{n} / \mathbb{C P}^{n-1}$ is a cell complex with one 0 -cell (image of $\mathbb{C P}^{n-1}$) and one $2 n$-cell (image of $D^{2 n}$), so $\mathbb{C P}^{n} / \mathbb{C P}^{n-1} \cong S^{2 n}$. Hence

$$
H_{*}\left(\mathbb{C P}^{n}, \mathbb{C P}^{n-1}\right) \simeq \widetilde{H}_{*}\left(S^{2 n}\right)= \begin{cases}\mathbb{Z} & *=2 n \\ 0 & \text { otherwise }\end{cases}
$$

By induction we have $H_{*}\left(\mathbb{C P}^{n-1}\right)=0$ for odd $*$, hence the LES of $\left(\mathbb{C P}^{n}, \mathbb{C P}^{n-1}\right)$ gives us SES

$$
0 \rightarrow H_{i}\left(\mathbb{C P}^{n-1}\right) \rightarrow H_{i}\left(\mathbb{C P}^{n}\right) \rightarrow \widetilde{H}_{i}\left(S^{2 n}\right) \rightarrow 0
$$

Hence

$$
H_{*}\left(\mathbb{C P}^{n}\right) \cong H_{*}\left(\mathbb{C P}^{n-1}\right) \oplus \widetilde{H}_{*}\left(S^{2 n}\right)
$$

and the claim then follows by induction.
For $H_{*}\left(\mathbb{R P}^{n}\right)$ we need to work a little bit harder, we will compute it in the next section.

[^1]Sadly this doesn't work for $\mathbb{R} \mathbb{P}^{n}$.

2.2.2 Homology of Cell Complexes

Observation: In the LES of $\left(D^{k}, S^{k-1}\right)$, the map $H_{k}\left(D^{k}, S^{k-1}\right) \rightarrow \widetilde{H}_{k-1}\left(S^{k-1}\right)$ is an isomorphism as $\widetilde{H}_{*}\left(D^{k}\right)=0$. Define $\left[D^{k}, S^{k-1}\right]$ as the preimage of $\left[S^{k-1}\right]$.
Suppose X is a fcc. Let A_{k} be the set of k-cells of $X, X_{k}=X_{k-1} \cup_{\amalg f_{\alpha}} \amalg_{\alpha \in A_{k}} D^{k}$ with $f_{\alpha}: S^{k-1} \rightarrow X_{k-1}$. Let $U_{k-1}=X_{k-1} \bigcup_{\amalg f_{\alpha}}\left(\amalg_{\alpha \in A_{k}} D^{k}-0\right)$. Since S^{k-1} is a deformation retract of $D^{k}-0, X_{k-1}$ is also a deformation retract of U_{k-1}. Hence $\left(X_{k}, X_{k-1}\right)$ is a good pair. Furthermore, $X_{k} / X_{k-1} \simeq \coprod_{\alpha \in A_{k}} D^{k} / \coprod_{\alpha \in A_{k}} S^{k-1} \cong \bigvee_{\alpha \in A_{k}} S^{k} \stackrel{2}{2}^{2}$

So

$$
H_{k}\left(X_{k}, X_{k-1}\right) \simeq H_{k}\left(\coprod_{\alpha \in A_{k}} D^{k}, \coprod_{\alpha \in A_{k}} S^{k-1}\right) \simeq \bigoplus_{\alpha \in A_{k}} H_{k}\left(D^{k}, S^{k-1}\right) .
$$

Then $H_{k}\left(X_{k}, X_{k-1}\right)=\bigoplus_{\alpha \in A_{k}} e_{\alpha} \mathbb{Z}$ where $e_{\alpha}=i_{\alpha *}\left[D^{k}, S^{k-1}\right]$ where $i_{\alpha}:\left(D^{k}, S^{k-1}\right) \rightarrow$ (X_{k}, X_{k-1}).
Let $p_{\beta}: \bigvee_{\alpha \in A_{k}} S^{k} \rightarrow \bigvee_{\alpha \in A_{k}} S^{k} / \bigvee_{\alpha \neq \beta} S^{k} \simeq S^{k}$. Then $p_{\beta *}$ is the projection onto the factor corresponding to $\left\langle e_{\beta}\right\rangle$.
Let $d_{k}: H_{k}\left(X_{k}, X_{k-1}\right) \rightarrow H_{k-1}\left(X_{k-1}, X_{k-2}\right)$ be the boundary map in the long exact sequence of the triple (X_{k}, X_{k-1}, X_{k-2}).
Lemma 2.6. $d_{k}=\left(\pi_{k-1}\right)_{*} \circ \partial_{k}$ where $\partial_{k}: H_{k}\left(X_{k}, X_{k-1}\right) \rightarrow H_{k-1}\left(X_{k-1}\right)$ is the boundary in the LES of the pair $\left(X_{k}, X_{k-1}\right)$ and $\pi_{k-1}:\left(X_{k-1}, \emptyset\right) \rightarrow\left(X_{k-1}, X_{k-2}\right)$.

Proof. Look at the construction of d_{k}, ∂_{k} in the Snake Lemma.
Corollary 2.7. $d_{k} \circ d_{k+1}=0$.
Proof. $d_{k} \circ d_{k+1}=\left(\pi_{k-1}\right)_{*} \circ \partial_{k} \circ \pi_{k *} \circ \partial_{k+1}$ and $\partial_{k} \circ \pi_{k *}=0$ as they are two consecutive maps in the LES of $\left(X_{k}, X_{k-1}\right)$.

Definition 2.8. If X is a $f c c$, $\left(C_{*}^{\text {cell }}(X), d^{\text {cell }}\right)=\left(\oplus_{k} H_{k}\left(X_{k}, X_{k-1}\right), \oplus_{k} d_{k}\right)$ is the cellular chain complex of X.
Theorem 2.9. $H_{*}^{\text {cell }}(X):=H_{*}\left(C_{*}^{\text {cell }}(X)\right) \simeq H_{*}(X)$.
How to compute $H_{*}^{\text {cell }}(X)$: We have $C_{k}^{\text {cell }}(X)=H_{k}\left(X_{k}, X_{k-1}\right)=\left\langle e_{\alpha} \mid \alpha \in A_{k}\right\rangle$ and:
Proposition 2.10. $d_{k}^{\text {cell }}: C_{k}^{\text {cell }}(X) \rightarrow C_{k-1}^{\text {cell }}(X)$ is given by

$$
d_{k}^{\text {cell }}\left(e_{\alpha}\right)=\sum_{\beta \in A_{k-1}} n_{\alpha \beta} e_{\beta},
$$

[^2]where $n_{\alpha \beta}=\operatorname{deg} p_{\beta} \circ f_{\alpha}$ where
$$
p_{\beta} \circ f_{\alpha}: S^{k-1} \rightarrow X_{k-1} \rightarrow X_{k-1} / X_{k-2} \simeq \bigvee_{\beta \in A_{k-1}} S^{k-1} \xrightarrow{p_{\beta}} S^{k-1}
$$

Proof. $d_{k}\left(e_{\alpha}\right)=\left(\pi_{k-1}\right)_{*} \circ \partial_{k}\left(i_{\alpha *}\left[D^{k}, S^{k-1}\right]\right)$. By naturality of the connecting homomorphism this is $\left.\left(\pi_{k-1}\right)_{*} \circ i_{\alpha *}\left(\partial_{k}\left[D^{k}, S^{k-1}\right]\right)=\left(\pi_{k-1}\right)_{*} i_{\alpha *}\left[S^{k-1}\right]\right)=f_{\alpha *}\left[S^{k-1}\right]$. The coefficient of e_{β} in $f_{\alpha *}\left[S^{k-1}\right]$ is the coefficient of $\left[S^{k-1}\right]$ in $\left(p_{\beta} \circ f_{\alpha}\right)_{*}\left[S^{k-1}\right]$ this is $\operatorname{deg}\left(p_{\beta} \circ f_{\alpha}\right)$.

Examples.

- $\mathbb{C P}^{n}$ has one cell of dimension $2 i$ for $0 \leq i \leq n$, so

$$
C_{*}^{\text {cell }}\left(\mathbb{C P}^{n}\right)=\left(C_{2 n}^{\text {cell }}\left(\mathbb{C P}^{n}\right)=\mathbb{Z} \rightarrow 0 \rightarrow \mathbb{Z} \rightarrow 0 \rightarrow \cdots \rightarrow 0 \rightarrow \mathbb{Z}=C_{0}^{\text {cell }}\left(\mathbb{C P}^{n}\right)\right)
$$

The boundary maps are 0 . So

$$
H_{*}\left(\mathbb{C P}^{n}\right) \simeq H_{*}^{\text {cell }}\left(\mathbb{C P}^{n}\right)=C_{*}^{\text {cell }}\left(\mathbb{C P}^{n}\right)= \begin{cases}\mathbb{Z} & *=0,2, \ldots, 2 n, \\ 0 & \text { otherwise }\end{cases}
$$

as we already knew.

- $\mathbb{R P}^{n}$ has one cell of dimension k for all $0 \leq k \leq n$, so $C_{k}^{\text {cell }}\left(\mathbb{R} \mathbb{P}^{n}\right)=\left\langle e_{k}\right\rangle$. Then

$$
C_{*}^{\text {cell }}=\mathbb{Z} \xrightarrow{d_{n}} \mathbb{Z} \xrightarrow{d_{n-1}} \mathbb{Z} \rightarrow \cdots \rightarrow \mathbb{Z} \xrightarrow{d_{1}} \mathbb{Z}
$$

where $d_{k} e_{k}=n_{k} e_{k-1}$ with $n_{k}=\operatorname{deg} g_{k}$,

$$
g_{k}: S^{k-1} \xrightarrow{f_{k}} \mathbb{R P}^{k-1} \xrightarrow{\pi} \mathbb{R}^{k-1} / \mathbb{R} \mathbb{P}^{k-2} \simeq S^{k-1} .
$$

Given $p \in S^{k-1}$, not coming from \mathbb{R}^{k-2}, it has two preimages in S^{k-1}, q and $A q$ where $A: S^{k-1} \rightarrow S^{k-1}$ is the antipodal map. Note that $g_{k}=g_{k} \circ A$, so $\operatorname{deg}_{A q} g_{k}=$ $\operatorname{deg}_{q} g_{k} \operatorname{deg} A=(-1)^{k} \operatorname{deg}_{q} g_{k}=:(-1)^{k} \alpha,\left.g_{k}\right|_{U}$ is a homeomorphism (where U is a small neighborhood of q), so $\operatorname{deg}_{q} g_{k}= \pm 1=\alpha$. So $\operatorname{deg} g_{k}=\operatorname{deg}_{q} g_{k}+\operatorname{deg}_{A q} g_{k}=$ $\alpha+(-1)^{k} \alpha= \begin{cases} \pm 2 & k \text { even, } \\ 0 & k \text { odd } .\end{cases}$

Summary:

- Suppose n is even. Then:

$$
C_{*}^{\text {cell }}\left(\mathbb{R} \mathbb{P}^{n}\right)=\mathbb{Z} \xrightarrow{ \pm 2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{ \pm 2} \mathbb{Z} \rightarrow \cdots \rightarrow \mathbb{Z} \xrightarrow{0} \mathbb{Z}
$$

So $H_{*}\left(\mathbb{R}^{n}\right)=H_{*}^{\text {cell }}\left(\mathbb{R P}^{n}\right)= \begin{cases}\mathbb{Z} / 2 & *=1,3,5, \ldots, n-1 \\ \mathbb{Z} & *=0, \\ 0 & \text { otherwise. }\end{cases}$

- Suppose n is odd. Then:

$$
\begin{aligned}
& \quad C_{*}^{\text {cell }}\left(\mathbb{R} \mathbb{P}^{n}\right)=\mathbb{Z} \xrightarrow{0} \mathbb{Z} \stackrel{ \pm 2}{\longrightarrow} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \rightarrow \cdots \rightarrow \mathbb{Z} \xrightarrow{0} \mathbb{Z} \\
& H_{*}\left(\mathbb{R} \mathbb{P}^{n}\right)=H_{*}^{\text {cell }}\left(\mathbb{R} \mathbb{P}^{n}\right)= \begin{cases}\mathbb{Z} / 2 & *=1,3,5, \ldots, n-2 \\
\mathbb{Z} & *=0, n, \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

We now turn to the proof of the theorem.
Lemma 2.11. Suppose X is a fcc with one 0 -cell, and all other cells have dimension $\leq M$ and $\geq m$. Then $\widetilde{H}_{*}(X)=0$ if $*<m$ or $*>M$.

Proof. By induction on $M-m$. If $M-m=0$, then X has one cell dimension 0 and all other cells of dimension $m=M$, so $X \simeq \bigvee_{\alpha \in A} S^{m}$, and therefore $\widetilde{H}_{*}(X)=0$ for $* \neq m$.

Now suppose the claim is true for $M-m<k$. If X has cells of dimension $\leq m+k$ and $\geq m$, then X_{m+k-1} has cells of dimension between m and $m+k-1$, so the induction hypothesis applies to $X_{m+k-1} .\left(X, X_{m+k-1}\right)$ is a good pair with $X / X_{m+k-1}=\bigvee_{\alpha \in A} S^{m+k}$, so $H_{*}\left(X, X_{m+k-1}\right)=0$ unless $*=m+k$ and $\widetilde{H}_{*}\left(X_{m+k-1}\right)=0$ unless $m \leq * \leq m+k-1$. Then consider the LES of the pair:

$$
\widetilde{H}_{*}\left(X_{m+k-1}\right) \rightarrow \widetilde{H}_{*}(X) \rightarrow H_{*}\left(X, X_{m+k-1}\right)
$$

The two outer groups are 0 unless $m \leq * \leq m+k$.
Lemma 2.12. If X is a fcc, then $\left(X, X_{k}\right)$ is a good pair.
Proof. "Annoying but not terribly hard exercise"
Corollary 2.13. If X is a fcc, then $H_{k}\left(X_{k+1}\right) \simeq H_{k}(X)$.
Proof. From the LES of (X, X_{k+1}) we get

$$
H_{k+1}\left(X, X_{k+1}\right) \rightarrow H_{k}\left(X_{k+1}\right) \rightarrow H_{k}(X) \rightarrow H_{k}\left(X, X_{k+1}\right) .
$$

We have $H_{k}\left(X, X_{k+1}\right) \simeq \widetilde{H}_{k}\left(X / X_{k+1}\right) . X / X_{k+1}$ has one 0-cell (image of X_{k+1}), and all other cells have dimension $\geq k+2$, so by the lemma $\widetilde{H}_{k}\left(X / X_{k+1}\right)=\widetilde{H}_{k+1}\left(X / X_{k+1}\right)=0$, and our result follows.

Proof of Theorem 2.9. Consider the following commutative diagram:

The horizontal sequence in the middle is the cellular chain complex. The diagonal sequences are parts of long exact sequences of pairs.

So π_{k}, π_{k-1} are injections, i is a surjection. So now we have $\operatorname{ker} d_{k}=\operatorname{ker} \partial_{k}=\operatorname{im} \pi_{k} \cong$ $H_{k}\left(X_{k}\right)$. Under this isomorphism, $\operatorname{im} d_{k+1} \leftrightarrow \operatorname{im} \partial_{k+1}$, so $H_{k}^{\text {cell }}(X)=\left(\operatorname{ker} d_{k}\right) /\left(\operatorname{im} d_{k+1}\right) \simeq$ $H_{k}\left(X_{k}\right) / \operatorname{im} \partial_{k+1} \simeq H_{k}\left(X_{k+1}\right) \cong H_{k}(X)$ by the corollary.

2.3 Homology with Coefficients

Definition. If G is a \mathbb{Z}-module, then $C_{*}(X ; G):=C_{*}(X) \otimes G$ is the singular chain complex with coefficients in $G . H_{*}(X ; G)$ is its homology.

Note: If $f, g: C \rightarrow C^{\prime}$ are chain homotopic via h, then $f \otimes 1, g \otimes 1: C \otimes M \rightarrow C^{\prime} \otimes M$ are chain homotopic via $h \otimes 1$.
Example. Let $C=C_{*}^{\text {cell }}\left(\mathbb{R} \mathbb{P}^{3}\right)=(\mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z})$, so $H_{*}(C)=(\mathbb{Z}, 0, \mathbb{Z} / 2, \mathbb{Z})$.
Then $C_{*} \otimes \mathbb{Q}=(\mathbb{Q} \xrightarrow{0} \mathbb{Q} \xrightarrow{2} \mathbb{Q} \xrightarrow{0} \mathbb{Q})$, so

$$
H_{*}\left(C_{*} \otimes \mathbb{Q}\right)=(\mathbb{Q}, 0,0, \mathbb{Q})=H_{*}(C) \otimes \mathbb{Q} .
$$

And $C_{*} \otimes \mathbb{Z} / 2=(\mathbb{Z} / 2 \xrightarrow{0} \mathbb{Z} / 2 \xrightarrow{0} \mathbb{Z} / 2 \xrightarrow{0} \mathbb{Z} / 2)$, so

$$
H_{*}\left(C_{*} \otimes \mathbb{Z} / 2\right)=(\mathbb{Z} / 2, \mathbb{Z} / 2, \mathbb{Z} / 2, \mathbb{Z} / 2) \neq H_{*}(C) \otimes \mathbb{Z} / 2 .
$$

2.3.1 Euler Characteristic

Suppose C is a finite dimensional chain complex over a field. Let $c_{k}=\operatorname{dim} C_{k}$.

Definition. The Euler characteristic of C is $\chi(C):=\sum_{k}(-1)^{k} c_{k}$.
Let $h_{k}=\operatorname{dim} H_{k}(C)$.
Theorem 2.14. $\chi(C)=\chi\left(H_{*}(C)\right)=\sum_{k}(-1)^{k} h_{k}$.
Proof. Let $z_{k}=\operatorname{dim} \operatorname{ker} d_{k}, b_{k}=\operatorname{dimim} d_{k}$, so $c_{k}=z_{k}+b_{k}$ and $h_{k}=z_{k}-b_{k+1}$. Then $\chi(C)=\sum_{k}(-1)^{k}\left(z_{k}+b_{k}\right)=\sum_{k}(-1)^{k}\left(z_{k}-b_{k+1}\right)=\chi(H(C))$.

2.3.2 Eilenberg-Steenrod Axioms

Definition. An ordinary homology theory with coefficients in G (abelian group) is a functor

$$
\left\{\begin{array}{c}
\text { pairs of spaces } \\
\text { maps of pairs }
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { graded } \mathbb{Z} \text {-modules } \\
\text { graded homomorphisms }
\end{array}\right\}
$$

satisfying:
(i) Homotopy invariance: If $f_{0}, f_{1}:(X, A) \rightarrow(Y, B), f_{0} \sim f_{1}$ as maps of pairs, then $f_{0 *}=f_{1 *}$
(ii) LES of a pair: There is a LES

$$
\ldots \rightarrow H_{k}(A) \rightarrow H_{k}(X) \rightarrow H_{k}(X, A) \rightarrow H_{k-1}(A) \rightarrow \ldots
$$

where $H_{k}(X)=H_{k}(X, \emptyset)$. A map $(X, A) \rightarrow(Y, B)$ induces a map of LES (naturality).
(iii) Excision: If $\bar{B} \subseteq \operatorname{Int} A$, then $i_{*}: H_{*}(X \backslash B, A \backslash B) \rightarrow H_{*}(X, A)$ is an isomorphism.
(iv) Dimension axiom: $H_{*}(\{\bullet\})= \begin{cases}G & *=0, \\ 0 & * \neq 0 .\end{cases}$

Theorem 2.15. If X is a fcc and H_{*} is any functor satisfying these axioms, then $H_{*}(X) \simeq$ $H_{*}\left(C_{*}^{\text {cell }}(X) \otimes G\right)$. In particular, if $H_{*}(X ; G)$ satisfies these axioms, then $H_{*}(X ; G) \cong$ $H_{*}\left(C_{*}^{\text {cell }}(X) \otimes G\right)$.

Proof idea. Go through the proof of Theorem 2.9 and the construction of $H_{*}^{\text {cell }}(X)$ to see that we only ever used these axioms (for the computation of $H_{*}\left(S^{n}\right)$ we used the MV-sequence which can be deduced from the axioms).

2.3.3 More Algebra - The Universal Coefficient Theorem

Definition. If M is an R-module, a free resolution of M is a free chain complex A over R such that
(1) $A_{k}=0$ for $k<0$,
(2) $H_{*}(A)= \begin{cases}M & *=0, \\ 0 & * \neq 0 .\end{cases}$

Examples.

- If $a \in R$ is not a zero divisor, then $0 \rightarrow R \xrightarrow{a} R \rightarrow 0$ is a free resolution of $R /(a)$.
- $R=\mathbb{C}[x, y]$. Then $R \xrightarrow{\left[\begin{array}{c}y \\ -x\end{array}\right]} R^{2} \xrightarrow{\left[\begin{array}{ll}x & y\end{array}\right]} R$ is a free resolution of $R /(x, y)$.

Definition. If M, N are R-modules, then $\operatorname{Tor}_{i}(M, N):=H_{i}(A \otimes N)$ where A is a free resolution of M.
Tor ${ }_{i}$ measures the failure of $H_{*}(A \otimes M) \stackrel{?}{=} H_{*}(A) \otimes M$.
This is well-defined due to the following fact: Any two free resolutions of M are chain homotopic.

Exercise: $\operatorname{Tor}_{0}(M, N) \simeq M \otimes N$.
Examples. $R=\mathbb{Z}$. Then $\mathbb{Z} \xrightarrow{a} \mathbb{Z}$ is a free resolution of $\mathbb{Z} /(a)$, so

$$
\operatorname{Tor}_{*}(\mathbb{Z} / a, \mathbb{Z})= \begin{cases}\mathbb{Z} / a & *=0 \\ 0 & * \neq 0\end{cases}
$$

And

$$
\operatorname{Tor}_{*}(\mathbb{Z} / a, \mathbb{Z} / b)=H_{*}(\mathbb{Z} / b \xrightarrow{a} \mathbb{Z} / b)= \begin{cases}\mathbb{Z} /(a, b) & *=0,1 \\ 0 & * \neq 0,1\end{cases}
$$

E.g. $\operatorname{Tor}_{1}(\mathbb{Z} / 2, \mathbb{Z} / 2)=\mathbb{Z} / 2$ accounts for the extra $\mathbb{Z} / 2$ in $H_{*}\left(C_{*}^{\text {cell }}\left(\mathbb{R} \mathbb{P}^{3}\right)\right)$.

Definition. A chain complex is short injective if for some $k \in \mathbb{Z}$,
(1) $C_{*}=0$ for $* \neq k, k+1$ and C_{k}, C_{k+1} are free.
(2) $d: C_{k+1} \rightarrow C_{k}$ is injective.

So C is a shifted free resolution of $H_{*}(C)=H_{k}(C)$.
Theorem 2.16. A free chain complex over a PID is a direct sum of short injective complexes.

Proof. Fact: If R is a PID, a submodule of a free module over R is free.
For each $k \in \mathbb{Z}$ we have a SES

$$
0 \rightarrow \operatorname{ker} d_{k} \rightarrow C_{k} \xrightarrow{d_{k}} \operatorname{im} d_{k} \rightarrow 0 .
$$

By the fact, $\operatorname{im} d_{k}$ is free. Thus, the sequence splits and we get $C_{k}=\operatorname{ker} d_{k} \oplus B_{k}$ where $d_{k}: B_{k} \xrightarrow{\simeq} \operatorname{im} d_{k}$. Since $d^{2}=0, \operatorname{im} d_{k} \subseteq \operatorname{ker} d_{k-1}=: Z_{k-1}$, so $C_{*}=\bigoplus_{k}\left(B_{k} \xrightarrow{d_{k}} Z_{k-1}\right)$.

Corollary 2.17. If two free chain complexes over a PID have isomorphic homology, they are chain homotopy equivalent.

Proof. By the theorem, a chain complex over a PID is a direct sum of free resolutions of its homologies, so the claim follows the fact that any two free resolutions of the same module are chain homotopy equivalent.

Corollary 2.18. If C is a chain complex over a field \mathbb{F}, then $C \sim\left(H_{*}(C), 0\right)$.
Proof. $H_{*}(C)$ is free over \mathbb{F} since every module over \mathbb{F} is free, and the previous corollary applies.

Corollary 2.19 (Universal Coefficient Theorem). If C is a free chain complex over a PID, then
$H_{k}(C \otimes N)=\left(H_{k}(C) \otimes N\right) \oplus \operatorname{Tor}_{1}\left(H_{k-1}(C), N\right)=\operatorname{Tor}_{0}\left(H_{k}(C), N\right) \oplus \operatorname{Tor}_{1}\left(H_{k-1}(C), N\right)$.
Proof. C is a direct sum of short injective complexes (and both sides commute with direct sums in C), so it suffices to check the claim for a short injective complex, where it is the definition of Tor.

So $H_{*}(X ; G)$ is determined by $H_{*}(X)$.

3 Cohomology and Products

3.1 Cohomology

Definition. If M, N are R-modules, then $\operatorname{Hom}(M, N)$ is the R module of R-linear maps $M \rightarrow N$. If $f: M_{1} \rightarrow M_{2}$ is R-linear, we get an R-linear map $f^{*}: \operatorname{Hom}\left(M_{2}, N\right) \rightarrow$ $\operatorname{Hom}\left(M_{1}, N\right), \alpha \mapsto \alpha \circ f$.

So we have a contravariant functor

$$
\left\{\begin{array}{c}
R \text {-modules } \\
R \text {-linear maps }
\end{array}\right\} \xrightarrow{\operatorname{Hom}(-, N)}\left\{\begin{array}{c}
R \text {-modules } \\
R \text {-linear maps }
\end{array}\right\}
$$

If (C, d) is a chain complex over R, then define $\left(\operatorname{Hom}(C, N), d^{*}\right)$ by $\operatorname{Hom}(C, N)=\bigoplus_{k} \operatorname{Hom}\left(C_{k}, N\right), d_{k}^{*}$: $\operatorname{Hom}\left(C_{k-1}, N\right) \rightarrow \operatorname{Hom}\left(C_{k}, N\right)$. We say $\left(\operatorname{Hom}(C, N), d^{*}\right)$ is a cochain complex and d^{*} raises homological degree by 1.

So there is a contravariant functor

$$
\begin{aligned}
&\left\{\begin{array}{c}
\text { chain complexes over } R \\
\text { chain maps }
\end{array}\right\} \longrightarrow\left\{\begin{array}{c}
\text { cochain complexes over } R \\
\text { cochain maps }
\end{array}\right\} \\
&(C, d) \longmapsto\left(\operatorname{Hom}(C, N), d^{*}\right) \\
& f: C \rightarrow C^{\prime} \longmapsto f^{*}: \operatorname{Hom}\left(C^{\prime}, N\right) \rightarrow \operatorname{Hom}(C, N)
\end{aligned}
$$

If $\left(C, d^{*}\right)$ is a cochain complex, its k-th cohomology is $H^{k}(C)=\operatorname{ker} d_{k}^{*} / \operatorname{im} d_{k-1}^{*}$
Definition. If X is a space, its singular cochain complex with coefficients in G is $\left(C^{*}(X ; G), d^{*}\right)$ where $C^{*}(X ; G)=\operatorname{Hom}\left(C_{*}(X), G\right)$ and its k-th singular cohomology is $H^{k}(X ; G)=$ $H^{k}\left(C^{*}(X ; G)\right)$. Similarly we define the cochain complex and cohomology of a pair of spaces.

If $f: X \rightarrow Y$, then we get the cochain map $f^{\#}: C^{k}(Y ; G) \rightarrow C^{k}(X ; G)$ given by $f^{\#}(\alpha)(\sigma)=\alpha\left(f_{\#}(\sigma)\right)=\alpha(f \circ \sigma)$ for $\sigma: \Delta^{k} \rightarrow X$. This induces a map $f^{*}: H^{k}(Y ; G) \rightarrow$ $H^{k}(X ; G)$.
Hence we get a contravariant functor

$$
H^{*}(-,-; G):\left\{\begin{array}{c}
\text { pairs of spaces } \\
\text { maps of pairs }
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { graded } \mathbb{Z} \text {-modules } \\
\mathbb{Z} \text {-linear maps }
\end{array}\right\}
$$

It is the composition of the following functors:

$$
\left.\begin{array}{rl}
\left\{\begin{array}{c}
\text { pairs of spaces } \\
\text { maps of pairs }
\end{array}\right\} \xrightarrow{C_{*}}\left\{\begin{array}{c}
\text { chain complexes } \\
\text { chain maps }
\end{array}\right\} \\
\not{ }^{\text {Hom }(-, G)}
\end{array}\right\}
$$

Dual to chain homotopies we have:
Definition. If C, C^{\prime} are cochain complexes (over R), $f, g: C \rightarrow C^{\prime}$ cochain maps, we say f and g are cochain homotopic if $f-g=d^{*} h+h d^{*}$ where $h: C^{k} \rightarrow C^{\prime k-1}$ is R-linear. h is a cochain homotopy.

Lemma 3.1. Cochain homotopic maps induce the same map on cohomology.
Lemma 3.2. If $f, g: C \rightarrow C^{\prime}$ are maps of chain complexes and $f \sim g$ via h, then $f^{*}, g^{*}: \operatorname{Hom}\left(C^{\prime} ; N\right) \rightarrow \operatorname{Hom}(C ; N)$ are cochain homotopic via h^{*}.

3.1.1 Eilenberg-Steenrod Axioms for Cohomology

Note that $C^{k}(X, Y ; G)=\left\{f: C_{k}(X) \rightarrow G \mid f\right.$ is \mathbb{Z}-linear, $f(\sigma)=0$ if im $\left.\sigma \subseteq A\right\}$.
For convenience we will drop the G in $H^{*}(X, G), H^{*}(X, A ; G)$ in the following.
H^{*} satisfies the dual version of the Eilenberg-Steenrod axioms:
(i) Homtopy invariance: If $f_{0}, f_{1}:(X, A) \rightarrow(Y, B)$ with $f_{0} \sim f_{1}$ as maps of pairs, then $f_{0}^{*}=f_{1}^{*}: H^{*}(Y, B) \rightarrow H^{*}(X, A)$.
Proof. $f_{0 \#}, f_{1 \#}$ are chain homotopic, hence $f_{0}^{\#}, f_{1}^{\#}$ are cochain homotopic, hence $f_{0}^{*}=f_{0}^{1}$.
(ii) LES of pair: We have a SES of cochain complexes

$$
0 \rightarrow C^{*}(X, A) \rightarrow C^{*}(X) \rightarrow C^{*}(A) \rightarrow 0 .
$$

The associated LES is

$$
\ldots \rightarrow H^{k}(X, A) \rightarrow H^{k}(X) \rightarrow H^{k}(A) \xrightarrow{\delta} H^{k+1}(X, A) \rightarrow \ldots
$$

A map of pairs induces a map of LES's in cohomology.
(iii) Excision: If $B \subseteq A \subseteq X, \bar{B} \subseteq A^{\circ}$, then

$$
i^{*}: H^{*}(X, A) \rightarrow H^{*}(X-B, A-B)
$$

is an isomorphism.

Proof. $i_{\#}: C_{*}(X-B, A-B) \rightarrow C_{*}(X, A)$ induces an isomorphism on homology (ordinary excision). Since $C_{*}(X, A), C_{*}(X-B, A-B)$ are free, $i_{\#}$ is a chain homotopy equivalence (Sheet 1, Exercise 11). So $i \neq$ is cochain homotopy equivalence and thus i^{*} an isomorphism.
(iv) Dimension: $H^{*}(\{\bullet\} ; G)= \begin{cases}G & *=0, \\ 0 & * \neq 0\end{cases}$

Theorem 3.3. Any functor satisfying these axioms is given by

$$
H_{\text {cell }}^{*}(X ; G)=H^{*}\left(\operatorname{Hom}\left(C_{*}^{\text {cell }}(X) ; G\right)\right)
$$

when X is a finite cell complex.
Short proof that $H^{*}(X ; G) \cong H_{\text {cell }}^{*}(X ; G)$ if X is a fcc:
$C_{*}(X), C_{*}^{\text {cell }}(X)$ are free chain complexes with the same homology over the PID \mathbb{Z}, so they are homotopy equivalent by Corollary 2.17 , so $C^{*}(X ; G), C_{\text {cell }}^{*}(X ; G)$ are homotopy equivalent.
Example. We compute $H_{\text {cell }}^{*}\left(\mathbb{R P}^{3}\right)$. Recall that

$$
C_{*}^{\text {cell }}\left(\mathbb{R} \mathbb{P}^{3}\right)=(\mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z}) .
$$

Therefore

$$
C_{\text {cell }}^{*}\left(\mathbb{R} \mathbb{P}^{3}\right)=(\mathbb{Z} \stackrel{0}{\leftarrow} \mathbb{Z} \stackrel{2}{\leftarrow} \mathbb{Z} \stackrel{0}{\leftarrow} \mathbb{Z}),
$$

so

$$
H_{\mathrm{cell}}^{*}\left(\mathbb{R P}^{3}\right)= \begin{cases}\mathbb{Z} & *=0,3 \\ \mathbb{Z} / 2 & *=2 \\ 0 & \text { otherwise }\end{cases}
$$

3.1.2 Ext and the Universal Coefficient Theorems

Definition. If M, N are R-modules, then $\operatorname{Ext}^{i}(M, N)=H^{i}(\operatorname{Hom}(A, N))$ where A is a free resolution of M.
Again this is well-defined since any two free resolutions of the same module are chain homotopy equivalent.
Example. We compute $\operatorname{Ext}^{*}(\mathbb{Z} / n, \mathbb{Z})$ for $n \neq 0 . A=(\mathbb{Z} \xrightarrow{n} \mathbb{Z})$ is a free resolution of \mathbb{Z} / n, and $\operatorname{Hom}(A, \mathbb{Z})=\mathbb{Z} \stackrel{n}{\leftarrow} \mathbb{Z}$, so

$$
\operatorname{Ext}^{i}(\mathbb{Z} / n, \mathbb{Z})= \begin{cases}\mathbb{Z} / n & *=1 \\ 0 & \text { otherwise }\end{cases}
$$

Similarly,

$$
\operatorname{Ext}^{i}(\mathbb{Z} / n, \mathbb{Z} / n)= \begin{cases}\mathbb{Z} / n & *=0,1 \\ 0 & \text { otherwise }\end{cases}
$$

Theorem 3.4 (Universal Coefficient Theorem). Suppose X is a finite cell complex. Then

$$
H^{k}(X ; G) \cong \operatorname{Hom}\left(H_{k}(X) ; G\right) \oplus \operatorname{Ext}^{1}\left(H_{k-1}(X) ; G\right)
$$

Proof. Split $C_{*}^{\text {cell }}(X)$ into a direct sum of short injective complexes and use definition of Ext.

Example. If X is a fcc, $H_{k}(X)=\mathbb{Z}^{b_{k}} \oplus T_{k}$ by structure theorem for finitely generated abelian groups where T_{k} is finite. b_{k} is called the k-th Betti number of X. We get $H^{k}(X, \mathbb{Z}) \cong \mathbb{Z}^{b_{k}} \oplus T_{k-1}$.

3.1.3 Pairing

Suppose C is a chain complex over R. There is a bilinear pairing $\langle\rangle:, \operatorname{Hom}\left(C_{k} ; N\right) \times C_{k} \rightarrow$ $N,\langle\alpha, c\rangle=\alpha(c)$.

Lemma 3.5. This descends to a pairing

$$
\begin{aligned}
H^{k}(\operatorname{Hom}(C, N)) \times H_{k}(C) & \longrightarrow N \\
([\alpha],[c]) & \longmapsto\langle[\alpha],[c]\rangle:=\alpha(c)
\end{aligned}
$$

Proof. We need to check that this is well-defined. For $\beta \in \operatorname{Hom}(C, N), b \in C$ we have:

$$
\begin{aligned}
\left\langle\alpha+d^{*} \beta, c+d b\right\rangle & =\alpha(c)+\alpha(d b)+d^{*} \beta(c+d b) \\
& =\alpha(c)+d^{*} \alpha(b)+\beta(d(c+d b)) \\
& =\alpha(c)=\langle\alpha, c\rangle
\end{aligned}
$$

3.2 Cup Product

Let R be a commutative ring.
Definition. If $\alpha \in C^{k}(X ; R), \beta \in C^{l}(X ; R)$, then $\alpha \smile \beta \in C^{k+l}(X ; R)$ is given by

$$
\alpha \smile \beta(\sigma)=\alpha\left(\sigma \circ F_{0 \ldots k}\right) \beta\left(\sigma \circ F_{k \ldots k+l}\right)
$$

for $\sigma: \Delta^{k+l} \rightarrow X$.
Lemma 3.6. \smile makes $C^{*}(X ; R)$ into a (noncommutative) ring with identity $1 \in C^{0}(X ; R)$ where $1\left(\sigma_{p}\right)=1 \in R$.

Proof. We must check
(1) $(\alpha \smile \beta) \smile \gamma=\alpha \smile(\beta \smile \gamma)$,
(2) $\left(\alpha_{1}+\alpha_{2}\right) \smile \beta=\alpha_{1} \smile \beta+\alpha_{2} \smile \beta$,
(3) $\alpha \smile\left(\beta_{1}+\beta_{2}\right)=\alpha \smile \beta_{1}+\alpha \smile \beta_{2}$,
(4) $\alpha \smile 1=\alpha=1 \smile \alpha$.

These are all easy.
Lemma 3.7. If $\alpha \in C^{k}(X ; R), \beta \in C^{l}(X ; R)$, then

$$
d^{*}(\alpha \smile \beta)=\left(d^{*} \alpha\right) \smile \beta+(-1)^{k} \alpha \smile\left(d^{*} \beta\right)
$$

Proof. Let $\sigma: \Delta^{k+l+1} \rightarrow X$. Then:

$$
\begin{aligned}
d^{*}(\alpha \cup \beta)(\sigma)=\alpha \smile \beta(d \sigma)= & \alpha \smile \beta\left(\sum_{j=0}^{k+l+1}(-1)^{j} \sigma \circ F_{\hat{\jmath}}\right) \\
= & \sum_{j=0}^{k+l+1}(-1)^{j} \alpha\left(\sigma \circ F_{\hat{\jmath}} \circ F_{0 \ldots k}\right) \beta\left(\sigma \circ F_{\hat{\jmath}} \circ F_{k \ldots k+l}\right) \\
= & \sum_{j=0}^{k+1}(-1)^{j} \alpha\left(\sigma \circ F_{0 \ldots \hat{\jmath} \ldots k+1}\right) \beta\left(\sigma \circ F_{k+1 \ldots k+l+1}\right) \\
& +\sum_{j=k}^{k+l+1}(-1)^{j} \alpha\left(\sigma \circ F_{0 \ldots k}\right) \beta\left(\sigma \circ F_{k \ldots \hat{\jmath} \ldots k+l+1}\right) \\
& =\left(d^{*} \alpha\right) \smile \beta(\sigma)+(-1)^{k}\left(\alpha \smile d^{*} \beta\right)(\sigma)
\end{aligned}
$$

(Note that here different F_{I} map between different simplices)
Corollary 3.8. \smile descends to give a map

$$
\begin{aligned}
\smile: H^{k}(X ; R) \times H^{l}(X ; R) & \longrightarrow H^{k+l}(X ; R) \\
{[\alpha] \times[\beta] } & \longmapsto[\alpha \smile \beta]
\end{aligned}
$$

This makes $H^{*}(X ; R)$ into a ring with unit $[1] \in H^{0}(X ; R)$.
Proof. We check that this is well-defined. First note that if $[\alpha] \in H^{k}(X ; R),[\beta] \in$ $H^{l}(X ; R)$, then $d^{*} \alpha=0=d^{*} \beta$, so $d^{*}(\alpha \smile \beta)=d^{*} \alpha \smile \beta+(-1)^{k} \alpha \smile d^{*} \beta=0$, so $[\alpha \cup \beta] \in H^{k+l}(X ; R)$. Now let $\alpha^{\prime}=\alpha+d^{*} a, \beta^{\prime}=\beta+d^{*} b$ with $a \in C^{k}(X ; R), b \in C^{l}(X ; R)$. Then

$$
\begin{aligned}
\alpha^{\prime} \smile \beta^{\prime} & =\alpha \smile \beta+\left(d^{*} a\right) \smile \beta+\left(\alpha+d^{*} a\right) \smile d^{*} b \\
& =\alpha \smile \beta+\left(d^{*} a\right) \smile \beta \pm\left(\alpha+d^{*} a\right) \smile d^{*}\left(\left(\alpha+d^{*} a\right) \cup b\right)
\end{aligned}
$$

Hence $\left[\alpha^{\prime} \smile \beta^{\prime}\right]=[\alpha \smile \beta]$. Hence \smile is well-defined on cohomology.
Note that for $\tau: \Delta^{1} \rightarrow X$, we have $d^{*} 1(\tau)=1(d \tau)=1\left(\sigma_{\tau(1)}-\sigma_{\tau(0)}\right)=1-1=0$, so $d^{*} 1=0$, so 1 defines a class in $H^{0}(X ; R)$.

Proposition 3.9. If $f: X \rightarrow Y$, then $f^{*}: H^{*}(Y ; R) \rightarrow H^{*}(X ; R)$ is a ring homomorphism, i.e. $f^{*}(\alpha \cup \beta)=f^{*}(\alpha) \cup f^{*}(\beta)$ and $f^{*}(1)=1$.

Proof. Consider $f^{\#}: C^{*}(Y ; R) \rightarrow C^{*}(X ; R)$. Then

$$
\begin{aligned}
f^{\#}(\alpha \smile \beta)(\sigma) & =\alpha \smile \beta(f \circ \sigma) \\
& =\alpha\left(f \circ \sigma \circ F_{0 \ldots k}\right) \beta\left(f \circ \sigma \circ F_{k \ldots k+l}\right) \\
& =f^{\#}(\alpha)\left(\sigma \circ F_{0 \ldots k}\right) f^{\#}(\beta)\left(\sigma \circ F_{k \ldots k+l}\right) \\
& =f^{\#}(\alpha) \smile f^{\#}(\beta)(\sigma)
\end{aligned}
$$

Notation: If $a \in H^{k}(X ; R)$, we write $|a|:=k$.
Proposition 3.10. $H^{*}(X ; R)$ is graded commutative, i.e. $a \smile b=(-1)^{|a||b|} b \smile a$ (But this is totally false for chains).
We use a chain map $r: C_{*}(X) \rightarrow C_{*}(X)$ defined as follows. Let $\rho_{n}: \Delta^{n} \rightarrow \Delta^{n}$ be the linear map defined by $e_{i} \mapsto e_{n-i}$. Let $\varepsilon(j)=\frac{j(j+1)}{2}=\sum_{i=0}^{j} i$, so that $\operatorname{det} \rho_{j}=(-1)^{\varepsilon(j)}$. Define $r_{j}: C_{j}(X) \rightarrow C_{j}(X)$ by $r_{j}(\sigma)=(-1)^{\varepsilon(j)} \sigma \circ \rho_{j}$. Note that r also induces a map $r: C_{*}(X, A) \rightarrow C_{*}(X, A)$ for $A \subseteq X$.

Theorem 3.11. (1) $r: C_{*}(X) \rightarrow C_{*}(X)$ is a chain map.
(2) $r \sim 1_{C_{*}(X)}$.

Proof of the proposition using the theorem. Dualizing r gives $r^{*}: C^{*}(X ; R) \rightarrow C^{*}(X ; R)$ and $r^{*} \sim 1_{C^{*}(X)}$. So $\left[r^{*}(\alpha)\right]=[\alpha]$. By definition of r, we have

$$
(-1)^{\varepsilon(|\alpha|+|\beta|)} r^{*}(\alpha \smile \beta)=(-1)^{\varepsilon(|\alpha|)}(-1)^{\varepsilon(|\beta|)} r^{*}(\beta) \smile r^{*}(\alpha),
$$

hence

$$
\begin{aligned}
{[\alpha \smile \beta]=\left[r^{*}(\alpha \smile \beta)\right] } & =(-1)^{\varepsilon(|\alpha|+|\beta|)}(-1)^{\varepsilon(|\alpha|)}(-1)^{\varepsilon(|\beta|)}\left[r^{*}(\beta) \smile r^{*}(\alpha)\right] \\
& =(-1)^{|\alpha| \beta \mid}[\beta] \smile[\alpha] .
\end{aligned}
$$

Proof of the theorem. (1) Let $\sigma: \Delta^{n} \rightarrow X$. We have $\rho_{n} \circ F_{\widehat{\jmath}}=F_{\widehat{n-j}} \circ \rho_{n-1}$, so

$$
\begin{aligned}
d(r(\sigma)) & =(-1)^{\varepsilon(n)} \sum_{j}(-1)^{j} \sigma \circ \rho_{n} \circ F_{\widehat{\jmath}} \\
& =(-1)^{\varepsilon(n)} \sum_{j}(-1)^{j} \sigma \circ F_{\widehat{n-j}} \circ \rho_{n-1} \\
& =(-1)^{n}(-1)^{\varepsilon(n)} \sum_{j}(-1)^{n-j} \sigma \circ F_{\widehat{n-j}} \circ \rho_{n-1}
\end{aligned}
$$

$$
\begin{aligned}
& =(-1)^{\varepsilon(n-1)} \sum_{j}(-1)^{j} \sigma \circ F_{\widehat{\jmath}} \circ \rho_{n-1} \\
& =r_{n-1}(d \sigma)
\end{aligned}
$$

(2) One can write down an explicit chain homotopy, this is done e.g. in Hat02. We do it in a different way:
$C_{*}(X)$ is free, so it suffices to show that $r_{*}: H_{*}(X) \rightarrow H_{*}(X)$ is the identity on $H_{*}(X)$. Observations:
(i) If $f: X \rightarrow Y, f_{\#} \circ r(\sigma)=(-1)^{\varepsilon(|\sigma|)} f \circ \sigma \circ p_{|\sigma|}=r \circ f_{\#}(\sigma)$, so $f_{*} r_{*}=r_{*} f_{*}$.
(ii) There is a commutative diagram of SES:

This induces a map between the LES of (X, A), hence we see that $r_{*} \partial=\partial r_{*}$ where ∂ is the boundary map in the LES.

Notation: $R_{n}(X, A)$ is the statement $\left(r_{*}\right)_{n}=1_{H_{n}(X, A)}$.
(iii) If $f_{*}: H_{n}(X, A) \rightarrow H_{n}(Y, B)$ is injective, then $R_{n}(Y, B) \Longrightarrow R_{n}(X, A)$.

If $g_{*}: H_{n}(X, A) \rightarrow H_{n}(Y, B)$ is surjective, then $R_{n}(X, A) \Longrightarrow R_{n}(Y, B)$.
Both statements follow from (i).
We now prove the claim in several steps:
(A) $R_{0}(X)$ holds. Indeed, if $[\sigma] \in H_{0}(X)$, then $r(\sigma)=\sigma$.
(B) By Observation (2), the following square commutes:

So $R_{n-1}\left(S^{n-1}\right) \Longrightarrow R_{n}\left(D^{n}, S^{n-1}\right)$. From the isomorphisms

$$
H_{n}\left(D^{n}, S^{n-1}\right) \xrightarrow{p_{*}} H_{n}\left(D^{n} / S^{n-1}, S^{n-1} / S^{n-1}\right) \stackrel{\simeq}{\leftarrow} H_{n}\left(S^{n}\right)
$$

we also get $R_{n}\left(D^{n}, S^{n-1}\right) \Longrightarrow R_{n}\left(S^{n}\right)$.
Hence by induction on n, we get that $R_{n}\left(D^{n}, S^{n-1}\right)$ and $R_{n}\left(S^{n}\right)$ are true for all n.
(C) $H_{n}\left(\coprod_{k=1}^{r} D^{n}, \coprod_{k=1}^{r} S^{n-1}\right)=\bigoplus_{k=1}^{r} H_{n}\left(D^{n}, S^{n-1}\right)$. Hence $R_{n}\left(\amalg D^{n}, \amalg S^{n-1}\right)$.
(D) If X is an fcc, then $R_{*}(X)$. Proof: We show $R_{*}\left(X_{k}\right)$ holds for all k by induction. Base case $R_{*}\left(X_{0}\right)=R_{0}\left(x_{0}\right)$ holds by (A). Suppose $R_{*}\left(X_{k-1}\right)$ and then consider the LES of $\left(X_{k}, X_{k-1}\right)$:

$$
0 \rightarrow H_{k}\left(X_{k}\right) \rightarrow H_{k}\left(X_{k}, X_{k-1}\right) \rightarrow H_{k-1}\left(X_{k-1}\right) \rightarrow H_{k-1}\left(X_{k}\right) \rightarrow 0
$$

and

$$
0 \rightarrow H_{i}\left(X_{k-1}\right) \rightarrow H_{i}\left(X_{k}\right) \rightarrow 0
$$

for $i<k-1$.
The map $F_{*}: H_{*}\left(\amalg D^{k}, \amalg S^{k-1}\right) \rightarrow H_{*}\left(X_{k}, X_{k-1}\right)$ is an isomorphism where F is the attaching map. By (B), $R_{*}\left(X_{k}, X_{k-1}\right)$ holds, hence $R_{k}\left(X_{k}\right)$ by (3) (a). By induction, $R_{*}\left(X_{k-1}\right)$ holds, hence $R_{i}\left(X_{k}\right)$ holds for $i<k$ by (3) (b). Hence $R_{*}\left(X_{k}\right)$.
(E) For any X and $x \in H_{*}(X)$, there exists an fcc Y and $f: Y \rightarrow X$ with $f_{*}(y)=x$ (Sheet 2, Exercise 6). Then $r_{*}(x)=r_{*}\left(f_{*}(y)\right)=f_{*}\left(r_{*}(y)\right)=f_{*}(y)=x$.

Pairs: Recall $C^{*}(X, A) \subseteq C^{*}(X)$. Let $\alpha \in C^{k}(X, A), \beta \in C^{l}(X)$. If $\operatorname{im} \sigma \subseteq A$, then $\operatorname{im} \sigma \circ F_{0 \ldots k} \subseteq A$, so

$$
(\alpha \smile \beta)(\sigma)=\alpha\left(\sigma \circ F_{0 \ldots k}\right) \beta\left(\sigma \circ F_{k \ldots k+l}\right)=0 \beta(\ldots)=0,
$$

i.e. $\alpha \smile \beta \in C^{*}(X, A)$.

So \smile defines a map $H^{*}(X, A) \times H^{*}(X) \rightarrow H^{*}(X, A)$. More generally, \smile defines $H^{*}(X, A) \times$ $H^{*}(X, B) \rightarrow H^{*}(X, A \cup B)$ (using subdivision lemma, see example sheet).

Examples.

(1) If X is path connected, $H_{0}(X)=\mathbb{Z}$, so $H^{0}(X) \simeq \operatorname{Hom}\left(H_{0}(X), \mathbb{Z}\right)=\mathbb{Z}$ (as $H_{-1}(X)=$ 0 using UCT) and $H^{0}(X)=\langle 1\rangle$.
(2) We compute the cohomology ring of S^{n} for $n>0$. Recall that

$$
H_{*}\left(S^{n}\right)= \begin{cases}\mathbb{Z} & *=0, n \\ 0 & \text { otherwise }\end{cases}
$$

$H_{*}\left(S^{n}\right)$ is free over \mathbb{Z}, so by the UCT

$$
H^{*}\left(S^{n}\right)=\operatorname{Hom}\left(H_{*}\left(S^{n}\right), \mathbb{Z}\right)= \begin{cases}\mathbb{Z} & *=0, n \\ 0 & \text { otherwise }\end{cases}
$$

We know $H^{0}\left(S^{n}\right)=\langle 1\rangle$. Let a be a generator of $H^{n}\left(S^{n}\right)$. Then

$$
1 \cup 1=1, a \cup 1=a=1 \cup a .
$$

And $a \cup a \in H^{2 n}\left(S^{n}\right)=0$, so $H^{*}\left(S^{n}\right)=\mathbb{Z}[a] / a^{2}$ with $|a|=n$.
(3) If X is path connected, $p \in X$, then $\iota_{*}: H_{0}(p) \xrightarrow{\simeq} H_{0}(X)$, so $\mathbb{Z} \simeq H^{0}(X) \rightarrow H^{0}(p) \simeq$ \mathbb{Z} is an isomorphism, so

$$
H^{*}(X, p)=\operatorname{ker}\left(H^{*}(X) \rightarrow H^{*}(p)\right)=\bigoplus_{i>0} H^{i}(X)
$$

is an ideal in $H^{*}(X)$.
(4) $H^{*}(X \amalg Y)=H^{*}(X) \oplus H^{*}(Y)$ (direct product of rings). Proof: $C_{*}(X \amalg Y)=$ $C_{*}(X) \oplus C_{*}(Y)$, so $C^{*}(X \amalg Y)=C^{*}(X) \oplus C^{*}(Y)$. It is easy to see that this decomposition respects both d^{*} and \smile, hence the claim.
(5) Suppose $\left(X, p_{X}\right),\left(Y, p_{Y}\right)$ are good pairs and X, Y are path-connected. By collapsing a pair, $\pi^{*}: H^{*}(X \vee Y, p) \rightarrow H^{*}\left(X \amalg Y, p_{X} \amalg p_{Y}\right)$ is an isomorphism. We have

$$
H^{*}\left(X \amalg Y, p_{X} \amalg p_{Y}\right)=H^{*}\left(X, p_{X}\right) \oplus H^{*}\left(Y, p_{Y}\right) \subseteq H^{*}(X) \oplus H^{*}(Y)
$$

So

$$
H^{i}(X \vee Y)= \begin{cases}H^{i}(X) \oplus H^{i}(Y) & i>0 \\ \langle 1\rangle \simeq \mathbb{Z} & i=0\end{cases}
$$

The multiplication is given by $\left(a_{1}, a_{2}\right) \smile\left(b_{1}, b_{2}\right)=\left(a_{1} \smile b_{1}, a_{2} \smile b_{2}\right)$ if $\left|a_{i}\right|,\left|b_{i}\right|>0$. Example: Let a_{n} denote a generator of $H^{n}\left(S^{n}\right)$. Then $H^{*}\left(S^{2} \vee S^{2} \vee S^{4}\right)=\left\langle 1, a, a^{\prime}, b\right\rangle$ where

$$
\begin{aligned}
a=\left(a_{2}, 0,0\right), a^{\prime} & =\left(0, a_{2}, 0\right) \in H^{2}\left(S^{2}\right) \oplus H^{2}\left(S^{2}\right) \oplus H^{2}\left(S^{4}\right) \cong \mathbb{Z}^{2} \\
b & =\left(0,0, a_{4}\right) \in H^{4}\left(S^{2}\right) \oplus H^{4}\left(S^{2}\right) \oplus H^{4}\left(S^{4}\right) \cong \mathbb{Z}
\end{aligned}
$$

We have $a \smile a^{\prime}=\left(a_{2}, 0,0\right)\left(0, a_{2}, 0\right)=(0,0,0)=0$. So there are no interesting cup products.

3.3 Exterior Products

Setup: Let (X, A) be a pair of spaces, Y a space. Let

$$
\begin{aligned}
& \pi_{1}:(X \times Y, A \times Y) \rightarrow(X, A) \\
& \pi_{2}: X \times Y \rightarrow Y
\end{aligned}
$$

be the projections.
Definition. If $a \in H^{k}(X, A), b \in H^{l}(Y)$, their exterior product is

$$
a \times b=\pi_{1}^{*}(a) \smile \pi_{2}^{*}(b) \in H^{k+l}(X \times Y, A \times Y)
$$

Remark: If C, C^{\prime} are graded groups/rings, their product (resp. tensor product) is given by $\left(C \times C^{\prime}\right)_{n}=\bigoplus_{k+l=n} C_{k} \times C_{l}^{\prime}$ (resp. $\left.\left(C \otimes C^{\prime}\right)_{n}=\bigoplus_{k+l=n} C_{k} \otimes C_{l}^{\prime}\right)$.

Observations:
(1) $H^{*}(X, A) \times H^{*}(Y) \rightarrow H^{*}(X \times Y, A \times Y),(a, b) \mapsto a \times b$ is bilinear, so it extends to $\Phi: H^{*}(X, A) \otimes H^{*}(Y) \rightarrow H^{*}(X \times Y, A \times Y)$.
(2) We have $\left(a_{1} \times b_{1}\right) \smile\left(a_{2} \times b_{2}\right)=(-1)^{\left|b_{1}\right|\left|a_{2}\right|}\left(a_{1} \smile a_{2}\right) \times\left(b_{1} \smile b_{2}\right)$. Proof:

$$
\begin{aligned}
\left(a_{1} \times b_{1}\right) \smile\left(a_{2} \times b_{2}\right) & =\pi_{1}^{*}\left(a_{1}\right) \smile \pi_{2}^{*}\left(b_{1}\right) \smile \pi_{1}^{*}\left(a_{2}\right) \smile \pi_{2}^{*}\left(b_{2}\right) \\
& =(-1)^{\left|b_{1}\right|\left|a_{2}\right|} \pi_{1}^{*}\left(a_{1}\right) \smile \pi_{1}^{*}\left(a_{2}\right) \smile \pi_{2}^{*}\left(b_{1}\right) \smile \pi_{2}^{*}\left(b_{2}\right) \\
& =(-1)^{\left|b_{1}\right|\left|a_{2}\right|} \pi_{1}^{*}\left(a_{1} \smile a_{2}\right) \smile \pi_{2}^{*}\left(b_{1} \smile b_{2}\right) \\
& =(-1)^{\left|b_{1}\right|\left|a_{2}\right|}\left(a_{1} \smile a_{2}\right) \times\left(b_{1} \smile b_{2}\right)
\end{aligned}
$$

Theorem 3.12. If $H^{*}(Y ; R)$ is free over R, then

$$
\Phi: H^{*}(X, A ; R) \otimes H^{*}(Y ; R) \rightarrow H^{*}(X \times Y, A \times Y ; R)
$$

is an isomorphism.
Note that the hypothesis of the theorem is always satisfied if e.g. R is a field.

Consequences:

(1) This lets us compute $H^{*}(X \times Y ; R)$ from $H^{*}(X ; R), H^{*}(Y ; R)$ if $H^{*}(Y ; R)$ is free.
(2) It also tells us the ring structure on $H^{*}(X \times Y ; R)$ (by Observation (2) above).

Examples.

- Consider $T^{2}=S^{1} \times S^{1}$. We have $H^{*}\left(S^{1}\right)=\left\langle 1, a_{1}\right\rangle \cong \mathbb{Z} \oplus \mathbb{Z}$. Then

$$
\left(H^{*}\left(S^{1}\right) \otimes H^{*}\left(S^{1}\right)\right)_{n} \cong \begin{cases}\mathbb{Z} & n=2 \\ \mathbb{Z}^{2} & n=1 \\ \mathbb{Z} & n=1\end{cases}
$$

Since $H^{*}\left(S^{1}\right)$ is free, we get $H^{*}\left(T^{2}\right)=H^{*}\left(S^{1}\right) \otimes H^{*}\left(S^{1}\right)$ and we obtain generators:

$$
H^{*}\left(S^{1} \times S^{1}\right)= \begin{cases}\mathbb{Z}=\left\langle a_{1} \times a_{1}\right\rangle=\langle c\rangle & *=2, \\ \mathbb{Z}^{2}=\left\langle a_{1} \times 1,1 \times a_{1}\right\rangle=\langle a, b\rangle & *=1, \\ \mathbb{Z}=\langle 1 \times 1\rangle=\langle 1\rangle & *=0\end{cases}
$$

Then $a^{2}=\left(1_{1} \times 1\right) \smile\left(a_{1} \times 1\right)=-\left(a_{1}^{2} \times 1\right)=0$ as $H^{2}\left(S^{1}\right)=0$. Similarly, $b^{2}=0$. We have $a \smile b=\left(a_{1} \times 1\right) \smile\left(1 \times a_{1}\right)=\left(a_{1} \times a_{1}\right)=c$ and $b \smile a=-a \smile b=-c$.
In other words, we get $H^{*}\left(T^{2}\right)=\wedge^{*}\left\langle\alpha_{1}, \alpha_{2}\right\rangle$ with $\alpha_{1}=a_{1}, \alpha_{2}=b$ and $\alpha_{i} \alpha_{j}=-\alpha_{j} \alpha_{i}$. More generally $H^{*}\left(T^{n}\right)=H^{*}\left(S^{1}\right) \otimes \cdots \otimes H^{*}\left(S^{1}\right)(n$ times $) \simeq \bigwedge^{*}\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle$ with $\alpha_{i}=1 \times 1 \times \cdots \times a_{1} \times \cdots \times 1$.

- Similarly, we calculate the cohomology ring of $S^{2} \times S^{2}$. $H^{*}\left(S^{2}\right)$ is free, so $H^{*}\left(S^{2} \times\right.$ $\left.S^{2}\right)=H^{*}\left(S^{2}\right) \otimes H^{*}\left(S^{2}\right)$. Let $a=a_{2} \times 1, b=1 \times a_{2}, c=a_{2} \times a_{2}$. Then

$$
H^{*}\left(S^{2} \times S^{2}\right)= \begin{cases}\langle c\rangle=\mathbb{Z} & *=4 \\ \langle a, b\rangle=\mathbb{Z}^{2} & *=2 \\ \langle 1\rangle=\mathbb{Z} & *=0\end{cases}
$$

Again we have $a^{2}=0=b^{2}, a \smile b=c$, but now $b \smile a=a \smile b=c$.
Corollary 3.13. $S^{2} \times S^{2} \nsim S^{2} \vee S^{2} \vee S^{4}$, even though $H_{*}\left(S^{2} \times S^{2}\right) \simeq H_{*}\left(S^{2} \vee S^{2} \vee S^{4}\right)$. Proof. We have $H^{*}\left(S^{2} \times S^{2}\right) \nsucceq H^{*}\left(S^{2} \vee S^{2} \vee S^{4}\right)$ as rings. For example, if $a, b \in$ $H^{2}\left(S^{2} \vee S^{2} \vee S^{4}\right)$, then $a \smile b=0$, but this is not true in $H^{*}\left(S^{2} \times S^{2}\right)$.

Proof of Theorem 3.12. We drop the R in $H^{*}(-; R)$.
We have two contravariant functors

$$
\bar{h}, \underline{h}:\left\{\begin{array}{c}
\text { pairs of spaces } \\
\text { maps of pairs }
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { graded } \mathbb{Z} \text {-modules } \\
\text { graded } \mathbb{Z} \text {-linear amps }
\end{array}\right\}
$$

defined by

$$
\begin{aligned}
\bar{h}(X, A) & =H^{*}(X \times Y, A \times Y), \\
f:(X, A) \rightarrow\left(X^{\prime}, A^{\prime}\right) & \mapsto \bar{f}^{*}=\left(f \times \operatorname{id}_{Y}\right)^{*}: H^{*}\left(X^{\prime} \times Y, A^{\prime} \times Y\right) \rightarrow H^{*}(X \times Y, A \times Y)
\end{aligned}
$$

and

$$
\begin{aligned}
\underline{h}(X, A) & =H^{*}(X, A) \otimes H^{*}(Y), \\
f:(X, A) \rightarrow\left(X^{\prime}, A^{\prime}\right) & \mapsto \underline{f}^{*}=f^{*} \otimes \operatorname{id}_{H^{*}(Y)}: \underline{h}\left(X^{\prime}, A^{\prime}\right) \rightarrow \underline{h}(X, A) .
\end{aligned}
$$

\bar{h}, \underline{h} satisfy all Eilenberg-Steenrod axioms for cohomology except the dimension axiom (so they are generalized cohomology theories). They are:
(1) Homotopy invariance: Let $f_{0} \sim f_{1}:(X, A) \rightarrow\left(X^{\prime}, A^{\prime}\right)$. Then $f_{0}^{*}=f_{1}^{*}$, hence $\underline{f}_{0}^{*}=\underline{f}_{1}^{*}$. Also $f_{0} \times 1_{Y} \sim f_{1} \times 1_{Y}$, so $\bar{f}_{0}^{*}=\left(f_{0} \times 1_{Y}\right)^{*}=\left(f_{1} \times 1_{Y}\right)^{*}=\bar{f}_{1}^{*}$.
(2) LES of a pair: For \bar{h} this is just the LES of $(X \times Y, A \times Y)$. For \underline{h} : $H^{*}(Y)$ is free by hypothesis, the LES of (X, A) stays exact after tensoring with $H^{*}(Y)$.
(3) Excision: If $\bar{B} \subseteq \operatorname{Int} A \subseteq A \subseteq X$, then $\bar{i}^{*}: \bar{h}(X, A) \rightarrow \bar{h}(X-B, A-B)$ is an isomorphism (excision for $B \times Y \subseteq A \times Y \subseteq X \times Y)$. And $\underline{i}^{*}: \underline{h}(X, A) \rightarrow \underline{h}(X-$ $B, A-B$) is an isomorphism (excision for $B \subseteq A \subseteq X$).
Properties (1),(2),(3) imply that \bar{h}, \underline{h} satisfy (4)"Collapsing a pair", i.e. if (X, A) is a good pair, then $\underline{h}(\pi), \bar{h}(\pi)$ are isomorphisms where $\pi:(X, A) \rightarrow(X / A, A / A)$ is the quotient map.

Lemma 3.14. Φ commutes with the induced maps and boundary map in the LES of a pair.

Proof. Suppose $f: X_{1} \rightarrow X_{2}$. Let $F=f \times 1_{Y}: X_{1} \times Y \rightarrow X_{2} \times Y$. Then

$$
\begin{aligned}
\bar{f}^{*}(\Phi(a \otimes b)) & =F^{*}(a \times b) \\
& =F^{*}\left(\pi_{1}^{*}(a) \smile \pi_{2}^{*}(b)\right) \\
& =F^{*} \pi_{1}^{*}(a) \smile F^{*} \pi_{2}^{*}(b) \\
& =\left(\pi_{1} \circ F\right)^{*}(a) \smile\left(\pi_{2} \circ F\right)^{*}(b) \\
& =\left(f \circ \pi_{1}\right)^{*}(a) \smile\left(\pi_{2}\right)^{*}(b) \\
& =\pi_{1}^{*} f^{*}(a) \smile \pi_{2}^{*} b \\
& =f^{*}(a) \times b \\
& =\Phi\left(\underline{f}^{*}(a \otimes b)\right)
\end{aligned}
$$

For boundary see Sheet 3, Exercise 2.
We now prove the theorem in the case where X is a fcc. We proceed in several steps.
Let $P(X, A)$ be the statement that $\Phi: \underline{h}(X, A) \rightarrow \bar{h}(X, A)$ is an isomorphism.
(A) $P(\{\bullet\}), P\left(S^{0}\right)$ hold.

Proof. The map

$$
H^{*}(\{\bullet\}) \otimes H^{*}(Y)=\underline{h}(\{\bullet\}) \rightarrow \bar{h}(\{\bullet\})=H^{*}(\{\bullet\} \times Y)
$$

is given by

$$
\begin{aligned}
\mathbb{Z} \otimes H^{*}(Y) & \longrightarrow H^{*}(Y) \\
1 \otimes b & \longmapsto 1 \times b=\pi_{1}^{*}(1) \smile b=1 \smile b=b
\end{aligned}
$$

so it is an isomorphism. For S^{0}, use $H^{*}(X \amalg Y)=H^{*}(X) \oplus H^{*}(Y)$ (Exercise).
(B) If $X_{1} \sim X_{2}$, then $P\left(X_{1}\right) \Leftrightarrow P\left(X_{2}\right)$.

Proof. If $f: X_{1} \rightarrow X_{2}$ is a homotopy equivalence, then by the lemma there is a commuting square:

Then $\underline{f}^{*}, \bar{f}^{*}$ are isomorphisms, so Φ_{1} is an isomorphism iff Φ_{2} is.
(C) If two of $P(X), P(A), P(X, A)$ hold, so does the third.

Proof. By Lemma, we have a commuting map of LESs:

So the claim follows from the Five Lemma.
(D) If (X, A) is a good pair, then $P(X, A) \Leftrightarrow P(X / A)$.

Proof. As in (B) we deduce that $P(X, A) \Leftrightarrow P(X / A, A / A)$ using (4) Collapsing a pair. $P(A / A)$ holds by (A), so $P(X / A, A / A) \Leftrightarrow P(X / A)$ by (C)
(E) $P\left(S^{n}\right)$ and $P\left(D^{n}, S^{n-1}\right)$ hold.

Proof. We induct on n. The case $n=0$ is (A). $D^{n} \sim\{\bullet\}$, so $P\left(D^{n}\right)$ holds by (B). So if $P\left(S^{n-1}\right)$ is true, then so is $P\left(D^{n}, S^{n-1}\right)$ by (C), hence $P\left(S^{n}\right)$ holds by (D).
(F) $P(X) \Longrightarrow P\left(X \cup_{f} D^{n}\right)$.

Proof. $\left(X \cup_{f} D^{n}\right) / X \simeq S^{n}$, so $P\left(X \cup_{f} D^{n}, X\right)$ holds by (D) and (E). So by (C) we get $P(X) \Longrightarrow P\left(X \cup_{f} D^{n}\right)$.

Using (F) and induction, $P(X)$ holds for any fcc X.
Example. Let Σ_{2} be the surface of genus 2 . Let A be a closed curve in Σ_{2} as in the figure

$$
\Sigma_{2} \rightarrow \Sigma_{2} / A \cong T^{2} \vee T^{2}
$$

such that $\Sigma_{2} / A \cong T^{2} \wedge T^{2}$. Let $\pi: \Sigma_{2} \rightarrow \Sigma_{2} / A$ be the quotient map. Recall from Sheet 1, Exercise 5 that

$$
H_{*}\left(\Sigma_{2}\right)= \begin{cases}\mathbb{Z} & *=0,2 \\ \mathbb{Z}^{4} & *=1 \\ 0 & \text { otherwise }\end{cases}
$$

Furthermore we know $H_{2}\left(T^{2} \vee T^{2}\right)=\mathbb{Z} \oplus \mathbb{Z}$. On H_{2} the map $\pi_{*}: \mathbb{Z} \rightarrow \mathbb{Z} \oplus \mathbb{Z}$ is given by $1 \mapsto(1,1)$. And on $H_{1}, \pi_{*}: \mathbb{Z}^{4}=H_{1}\left(\Sigma_{2}\right) \rightarrow H_{1}\left(T^{2} \vee T^{2}\right)$ is an isomorphism. $H_{*}\left(\Sigma_{2}\right)$ and
$H_{*}\left(T^{2} \vee T^{2}\right)$ are free over \mathbb{Z}, so by the UCT we have $H^{*}\left(\Sigma_{2}\right)=\operatorname{Hom}\left(H_{*}\left(\Sigma_{2}\right), \mathbb{Z}\right)$, same for $T^{2} \vee T^{2}$ and π^{*} is dual to π_{*}. So on H^{2}, π^{*} is given by $\left[\begin{array}{ll}1 & 1\end{array}\right]: H^{2}\left(T^{2} \vee T^{2}\right)=\mathbb{Z} \oplus \mathbb{Z} \rightarrow$ $\mathbb{Z}=H^{2}\left(\Sigma_{2}\right)$.

Let $\left\langle a_{1}^{\prime}, b_{1}^{\prime}\right\rangle \oplus\left\langle a_{2}^{\prime}, b_{2}^{\prime}\right\rangle=H^{1}\left(T^{2}\right) \oplus H^{1}\left(T^{2}\right)$. Let $a_{i}=\pi^{*}\left(a_{i}^{\prime}\right), b_{i}=\pi^{*}\left(b_{i}^{\prime}\right)$, so that $H^{1}\left(\Sigma_{2}\right)=$ $\left\langle a_{1}, b_{1}, a_{2}, b_{2}\right\rangle$. Let $c_{i}=a_{i}^{\prime} \smile b_{1}^{\prime}, i=1,2$, be generators of the two factors $H^{2}\left(T^{2}\right)$ in $H^{2}\left(T^{2} \vee T^{2}\right)$ and let $c=\pi^{*}\left(c_{1}\right)=\pi^{*}\left(c_{2}\right)$, so that $H^{2}\left(\Sigma_{2}\right)=\langle c\rangle$.

Then we have the following cup products:

$$
\begin{aligned}
a_{i} \smile b_{j} & =\pi^{*}\left(a_{i}^{\prime}\right) \smile \pi^{*}\left(b_{j}^{\prime}\right) \\
& =\pi^{*}\left(a_{i}^{\prime} \smile b_{j}^{\prime}\right) \\
& =\pi^{*}\left(\delta_{i j} c_{i}\right)=\delta_{i j} c
\end{aligned}
$$

and similarly $a_{i} \smile a_{j}=0, b_{i} \smile b_{j}=0$.
More generally, the same argument shows that $H^{1}\left(\Sigma_{g}\right)=\left\langle a_{i}, b_{i}\right\rangle_{i=1}^{g}$, with

$$
a_{i} \smile b_{j}=\delta_{i j} c, \quad a_{i} \smile a_{j}=b_{i} \smile b_{j}=0
$$

where $\langle c\rangle=H^{2}\left(\Sigma_{g}\right)=\mathbb{Z}$.

4 Vector Bundles

4.1 Definitions and Examples

Definition. An n-dimensional real vector bundle (E, B, π) consists of two spaces E (total space), B (base) and a map $\pi: E \rightarrow B$ such that:
(1) $\pi^{-1}(b)$ carries the structure of a real n-dimensional real vector space for each $b \in B$.
(2) There is an open cover $\left\{U_{\alpha} \mid \alpha \in A\right\}$ of B and homeomorphisms $f_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow$ $U_{\alpha} \times \mathbb{R}^{n}$ such that

(b) $\pi_{2} \circ f_{\alpha}: \pi^{-1}(b) \rightarrow \mathbb{R}^{n}$ is an isomorphism of vector spaces for all $b \in U_{\alpha}$.

The f_{α} are local trivializations.
Similar one defines complex n-dimensional vector bundles.
Definition. A morphism $f:(E, B, \pi) \rightarrow\left(E^{\prime}, B^{\prime}, \pi^{\prime}\right)$ is a commuting square

such that $\left.f_{E}\right|_{\pi^{-1}(b)}: \pi^{-1}(b) \rightarrow\left(\pi^{\prime}\right)^{-1}(f(b))$ is a linear map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
E is a subbundle of E^{\prime} if there is an injective morphism

so that $\pi^{-1}(b)$ is a linear subspace of $\left(\pi^{\prime}\right)^{-1}(b)$.
Definition. A section s of E is a continuous map $s: B \rightarrow E$ with $\pi \circ s=1_{B}$. s is non-vanishing if $s(b) \neq 0$ for all b.

The map $s_{0}: B \rightarrow E, b \mapsto 0$ is the 0 -section. To check that s_{0} is continuous it is enough to check that $f_{\alpha} \circ s_{0}$ is continuous for all $\alpha \in A$ which is clearly the case.

Examples.

(1) $E=B \times \mathbb{R}^{n}$ is an n-dimensional real vector bundle over $B, f=1_{B \times \mathbb{R}^{n}}: E \rightarrow B \times \mathbb{R}^{n}$ is a local (here global) trivialization. $B \times \mathbb{R}^{n}$ is the n-dimensional trivial bundle on B.

In general, $\pi: E \rightarrow B$ is trivial if there is a bundle isomorphism $f: E \rightarrow B \times \mathbb{R}^{n}$.
Proposition 4.1. E is trivial iff there exist sections $s_{1}, \ldots, s_{n}: B \rightarrow E$ such that $\left\{s_{1}(b), \ldots, s_{n}(b)\right\}$ is a basis for $\pi^{-1}(b)$ for all $b \in B$.
(2) $M=[0,1] \times \mathbb{R} / \sim$ where \sim is the smallest equivalence relation with $(0, x) \sim(1,-x)$. There is a natural projection $\pi: M \rightarrow S^{1}=[0,1] / \sim$ where $0 \sim 1$. This is a 1 -dimensional vector bundle over S^{1}, called the Möbius bundle.

Möbius bundle
A section $s: S^{1} \rightarrow M$ is given by a continuous map $f:[0,1] \rightarrow \mathbb{R}$ with $f(0)=-f(1)$. Then $f(t)=0$ for some $t \in[0,1]$, so $s(t)=0$, so s is not a non-vanishing section. So M is non-trivial.
(3) The tautological bundle $\tau_{\mathbb{R} \mathbb{P}^{n}}=\left\{([z], v) \in \mathbb{R}^{n} \times \mathbb{R}^{n+1} \mid v \in\langle z\rangle\right\}$. Then there is a projection $\pi: \tau_{\mathbb{R}^{n}} \rightarrow \mathbb{R P}^{n}$ and $\pi^{-1}([z])=\langle z\rangle \subseteq \mathbb{R}^{n+1}$.
The open subsets $U_{i}=\left\{[z] \in \mathbb{R}^{n} \mid z_{i} \neq 0\right\}, i=0, \ldots, n$ cover $\tau_{\mathbb{R} \mathbb{P}^{p}}$. The maps $f_{i}: \pi^{-1}\left(U_{i}\right) \rightarrow U_{i} \times \mathbb{R},([z], v) \mapsto\left([z], v_{i}\right)$ are local trivializations.
We have $\mathbb{R P}^{1} \simeq S^{1}$ and $\tau_{\mathbb{R} \mathbb{P}^{1}} \simeq M$ is non-trivial.
Similarly one can define the complex tautological bundle $\tau_{\mathbb{C P}}$.
(4) $T S^{n}=\left\{(x, v) \in \mathbb{S}^{n} \times \mathbb{R}^{n+1} \mid\langle v, x\rangle=0\right\}$ is the tangent bundle of S^{n}. Let $\pi: T S^{n} \rightarrow$ S^{n} be the natural map. Then $\pi^{-1}(x)=x^{\perp} \simeq \mathbb{R}^{n}$. Let $U_{i}=\left\{x \in S^{n} \mid x_{i} \neq 0\right\}$.

Local trivializations are given by $f_{i}: \pi^{-1}\left(U_{i}\right) \rightarrow U_{i} \times \mathbb{R}^{n},(x, v) \mapsto\left(x, \pi_{\widehat{\imath}} v\right)$ where $\pi_{\widehat{\imath}}$ is the projection dropping the i-th coordinate.
$T S^{1}$ has a non-vanishing section $s(x, y)=((x, y),(-y, x))$, so $T S^{1}$ is trivial. But $T S^{2 n}$ has no non-vanishing section (Sheet 1, Exercise 8), so $T S^{2 n}$ is not trivial.

More generally, any smooth manifold has a tangent bundle.

4.1.1 Pullbacks

If $\pi: E \rightarrow B$ is an n-dimensional real vector bundle and $g: B^{\prime} \rightarrow B$ is continuous, let

$$
g^{*}(E)=\left\{\left(b^{\prime}, b, v\right) \in B^{\prime} \times B \times E \mid g\left(b^{\prime}\right)=\pi(v)=b\right\}
$$

We equip $g^{*}(E)$ with the subspace topology in $B^{\prime} \times B \times E$. Let $\pi_{g}: g^{*}(E) \rightarrow B^{\prime}$, $\left(b^{\prime}, b, v\right) \mapsto b^{\prime}$. Then

$$
\pi_{g}^{-1}\left(b^{\prime}\right)=\left\{\left(b^{\prime}, g(b), v\right) \mid \pi(v)=g(b)\right\}=\pi^{-1}(g(b))
$$

has a vector space vector space structure. If $f_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{n}$ is a local trivialization for E, let $V_{\alpha}=g^{-1}\left(U_{\alpha}\right)$ and $f_{\alpha}^{\prime}: \pi_{g}^{-1}\left(V_{\alpha}\right) \rightarrow V_{\alpha} \times \mathbb{R}^{n},\left(b^{\prime}, b, v\right) \mapsto\left(b^{\prime}, \pi_{2}\left(f_{\alpha}(v)\right)\right)$. This gives a local trivialization for $g^{*} E$.

Definition. The vector bundle $g^{*} E$ is the pullback of E by g.
Lemma 4.2. $(g \circ f)^{*} E=f^{*}\left(g^{*} E\right)$
Definition. If $A \subseteq B, i: A \hookrightarrow B$ is the inclusion, then $\left.E\right|_{A}:=i^{*}(E)$ is the restriction of E to A.

If $s: B \rightarrow E$ is a section, then $g^{*} s: B^{\prime} \rightarrow g^{*} E, b^{\prime} \mapsto\left(b^{\prime}, g\left(b^{\prime}\right), s\left(g\left(b^{\prime}\right)\right)\right)$ is a section of $g^{*}(E)$.

Example: $\left.\tau_{\mathbb{R} \mathbb{P}^{n}}\right|_{\mathbb{R P}^{1}} \simeq \tau_{\mathbb{R} \mathbb{P}^{1}}$ has no non-vanishing section, so $\tau_{\mathbb{R} \mathbb{P}^{n}}$ has no non-vanishing section, so $\tau_{\mathbb{R} \mathbb{P}^{n}}$ is non-trivial.

4.1.2 Products

If $\pi: E \rightarrow B, \pi^{\prime}: E^{\prime} \rightarrow B^{\prime}$ are vector bundles of dimension n, n^{\prime}, their product is $\pi \times \pi^{\prime}: E \times E^{\prime} \rightarrow B \times B^{\prime}$. The fibre $\left(\pi \times \pi^{\prime}\right)^{-1}\left(b, b^{\prime}\right)=\pi^{-1}(b) \times \pi^{-1}\left(b^{\prime}\right)$ is a vector space of dimension $n+n^{\prime}$. If $f_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{n}, f_{\beta}^{\prime}:\left(\pi^{\prime-1}\right)\left(U_{\beta}\right) \rightarrow U_{\beta} \times \mathbb{R}^{n}$ are local trivializations, then

$$
f_{\alpha} \times f_{\beta}^{\prime}:\left(\pi \times \pi^{\prime}\right)^{-1}\left(U_{\alpha} \times U_{\beta}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{n} \times U_{\beta} \times \mathbb{R}^{n^{\prime}} \simeq U_{\alpha} \times U_{\beta} \times \mathbb{R}^{n+n^{\prime}}
$$

is a local trivialization for $E \times E^{\prime}$ over $U_{\alpha} \times U_{\beta}$.
Definition. If $B=B^{\prime}, E \oplus E^{\prime}=\Delta^{*}\left(E \times E^{\prime}\right)$, where $\Delta: B \rightarrow B \times B, b \mapsto(b, b)$ is the diagonal, is the Whitney sum of E and E^{\prime}

4.1.3 Partitions of Unity

Notation: If $\varphi: B \rightarrow \mathbb{R}, \operatorname{set} \operatorname{supp} \varphi=\overline{\{b \in B \mid \varphi(b) \neq 0\}}$.
Definition. If $\mathcal{U}=\left\{U_{\alpha} \mid \alpha \in A\right\}$ is an open cover of B, a partition of unity (PoU) subordinate to \mathcal{U} is a family of functions $\varphi_{i}: B \rightarrow \mathbb{R}, i \in \mathbb{N}_{0}$ such that
(1) $0 \leq \varphi_{i}(b) \leq 1$ for all $b \in B$,
(2) $\left\{i \mid \varphi_{i}(b) \neq 0\right\}$ is finite for all b,
(3) $\operatorname{supp} \varphi_{i} \subseteq U_{\alpha_{i}}$ for some $\alpha_{i} \in A$,
(4) $\sum_{i \geq 0} \varphi_{i}(b)=1$ for all b.

Definition. B admits PoU if for every open cover \mathcal{U} there is a partition of unity subordinate to \mathcal{U}.

Remark: If B is compact or metrizable, then B admits PoU. More generally B admits PoU if it is paracompact and Hausdorff.
Theorem 4.3. Suppose B admits $P o U$ and $\pi: E \rightarrow B \times I$ is a vector bundle. Then $\left.\left.E\right|_{B \times 0} \simeq E\right|_{B \times 1}$.
Lemma 4.4. If $\left.E\right|_{B \times\left[0, \frac{1}{2}\right]}$ and $\left.E\right|_{B \times\left[\frac{1}{2}, 1\right]}$ are trivial, then E is trivial.
Proof. Exercise.
Lemma 4.5. For each $b \in B, b$ has an open neighborhood U_{b} such that $\left.E\right|_{U_{b} \times I}$ is trivial.
Proof. E is locally trivial, so for each $t \in I$ we can find open neighborhoods U_{t} of b in B and I_{t} of t in I such that $\left.E\right|_{U_{t} \times I_{t}}$ is trivial. $\left\{I_{t} \mid t \in I\right\}$ is an open cover of the compact set I, so let $\left\{I_{t_{0}}, \ldots, I_{t_{n}}\right\}$ be a finite subcover. Then there exist $0=s_{0}<s_{1}<\cdots<s_{n}=1$ such that $\left[s_{i}, s_{i+1}\right] \subseteq I_{t_{k}}$ for some k. So $\left.E\right|_{U_{t_{k}} \times\left[s_{i}, s_{i+1}\right]}$ is trivial. Let $U_{b}=\bigcap_{k=0}^{n} U_{t_{k}}$. It is an open neighborhood of b and $\left.U\right|_{U_{b} \times\left[s_{i}, s_{i+1}\right]}$ is trivial for all i. By the previous lemma and induction $\left.E\right|_{U_{b} \times\left[0, s_{i}\right]}$ is trivial for all $i=0, \ldots, n$.

Proof of Theorem 4.3. For each $b \in B$, let U_{b} be an open neighborhood of b as in the Lemma and pick a PoU $\left\{\varphi_{i}\right\}_{i \in \mathbb{N}}$ subordinate to $\left\{U_{b} \mid b \in B\right\}$. For $i \in \mathbb{N}$ let $b_{i} \in B$ such that $\operatorname{supp} \varphi_{i} \subseteq U_{b_{i}}$.
For $k \in \mathbb{N}_{0}$ define $\psi_{k}: B \rightarrow I$ by $\psi_{k}(b)=\sum_{i=1}^{k} \varphi_{i}(b)$. Then let

$$
\begin{aligned}
g_{k}: B & \longrightarrow B \times I, \\
b & \longmapsto\left(b, \psi_{k}(b)\right)
\end{aligned}
$$

and define

$$
E_{k}=g_{k}^{*}(E)=\left\{\left(b, g_{k}(b), v\right) \in B \times(B \times I) \times E \mid \pi(v)=\left(b, \psi_{k}(b)\right)\right\} .
$$

Let $f_{b}: \pi^{-1}\left(U_{b} \times I\right) \rightarrow U_{b} \times I \times \mathbb{R}^{n}$ be a trivialization. Define $\beta_{k}: E_{k-1} \rightarrow E_{k}$ by

$$
\beta_{k}\left(\left(b, g_{k}(b), v\right)\right)= \begin{cases}\left(b, g_{k}(b), v\right) & b \notin U_{b_{k}}, \\ \left(b, f_{b_{k}}^{-1}\left(b, g_{k}(b), v^{\prime}\right)\right) & b \in U_{b_{k}}\end{cases}
$$

where $f_{b_{k}}(v)=\left(b, g_{k-1}(b), v^{\prime}\right) . \beta_{k}$ is an isomorphism.
Then $\cdots \circ \beta_{3} \circ \beta_{2} \circ \beta_{1}$ is the desired isomorphism $\left.\left.E\right|_{B \times 0} \rightarrow E\right|_{B \times 1}$.
Corollary 4.6. Suppose $\pi: E \rightarrow B$ is a vector bundle, $g_{0}, g_{1}: B^{\prime} \rightarrow B, g_{0} \sim g_{1}$ via $h: B^{\prime} \times I \rightarrow B$ and that B^{\prime} admits PoU. Then

$$
g_{0}^{*}(E)=\left.\left.h^{*}(E)\right|_{B^{\prime} \times 0} \simeq h^{*}(E)\right|_{B^{\prime} \times 1}=g_{1}^{*}(E) .
$$

Corollary 4.7. If B is contractible and admits PoU, then every vector bundle $\pi: E \rightarrow B$ is trivial.

Proof. $1_{B} \sim c_{B, p}$, so $E=\left(1_{B}\right)^{*}(E) \simeq\left(c_{B, p}\right)^{*}(E)=B \times \pi^{-1}(p)$ is trivial.

4.1.4 Riemannian metrics

Definition. Suppose $\pi: E \rightarrow B$ is a real (resp. complex) vector bundle. A Riemannian (resp. Hermitian) metric on E is a continuous map $g: E \oplus E \rightarrow \mathbb{R}$ (resp. $E \oplus E \rightarrow \mathbb{C}$) such that $\left.g\right|_{\pi_{E \oplus E^{(b)}}^{-1}}$ is an inner product (resp. Hermitian inner product) on $\pi_{E}^{-1}(b)$ for all $b \in B$.

Example. $\left.\tau_{\mathbb{R} \mathbb{P}^{n}}=\{([z], v)) \in \mathbb{R}^{n} \times \mathbb{R}^{n+1} \mid v \in\langle z\rangle\right\}$ has a natural Riemannian metric given by $g\left(\left[z, v_{1}\right],\left[z, v_{2}\right]\right)=\left\langle v_{1}, v_{2}\right\rangle_{\mathbb{R}^{n+1}}$. Similarly, $\tau_{\mathbb{C P}^{n}}$ has a natural Hermitian metric.
Definition. Suppose E is a vector bundle with Riemannian metric g. The unit disk and the unit sphere bundles of E are given by:

$$
\begin{aligned}
D_{g}(E) & =\{v \in E \mid\langle v, v\rangle \leq 1\}, \\
S_{g}(E) & =\{v \in E \mid\langle v, v\rangle=1\} .
\end{aligned}
$$

Note: $D_{g}(E), S_{g}(E)$ are not vector bundles, they are fibre bundles.
Exercise: If g, g^{\prime} are two Riemannian metrics on E, then by radial projection on fibres we get commutative diagrams:

So we drop g from the notation and write $S(E), D(E)$.

Examples.

- $S\left(\tau_{\mathbb{R}^{n}}\right)=\{([z], v) \mid v \in\langle z\rangle,\|v\|=1\}$. We can identify this with S^{n}, via

$$
S^{n} \ni v \mapsto([v], v) \in S\left(\tau_{\mathbb{R} \mathbb{P}^{n}}\right) .
$$

Under this identification, the projection $\pi: S\left(\tau^{n}\right) \rightarrow \mathbb{R P}^{n}$ is just the natural projection $S^{n} \rightarrow \mathbb{R P}^{n}$.

Similarly, $S\left(\tau_{\mathbb{C P}^{n}}\right)=S^{2 n-1}$.

- If $\pi: E \rightarrow B$ is trivial with trivialization $f: E \rightarrow B \times \mathbb{R}^{n}$, then E has a Riemannian metric given by $g\left(v_{1}, v_{2}\right)=\left\langle\pi_{2}\left(f\left(v_{1}\right)\right), \pi_{2}\left(f\left(v_{2}\right)\right)\right\rangle$. So $S\left(B \times \mathbb{R}^{n}\right)=B \times S^{n-1}$.
Therefore $\tau_{\mathbb{R} \mathbb{P}^{n}}, \tau_{\mathbb{C P}^{n}}$ are non-trivial, since $\mathbb{R}^{P^{n}} \times S^{0} \neq S^{n}, \mathbb{C P}^{n} \times S^{1} \neq S^{2 n-1}$.
Proposition 4.8. If B admits PoU and $\pi: E \rightarrow B$ is a real vector bundle, then E has a Riemannian metric.

Proof. By the second example above, B has admits a Riemannian metric over any trivialized open subset of E, then patch them together using a PoU.

4.2 The Thom Isomorphism

Let $\pi: E \rightarrow B$ be an n-dimensional vector bundle. If $b \in B$, let $E_{b}=\pi^{-1}(b)$ be the fibre of E over b. There is an inclusion $i_{b}: E_{b} \hookrightarrow E$. Let $s_{0}: B \rightarrow E$ be the 0 -section.
Define $E^{\sharp}=E \backslash \operatorname{im} s_{0}, E_{b}^{\sharp}=E_{b} \backslash 0$. Then

$$
H_{*}\left(E_{b}, E_{b}^{\sharp}\right) \simeq H_{*}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-0\right)= \begin{cases}\mathbb{Z} & *=n, \\ 0 & \text { otherwise }\end{cases}
$$

is free. Fix a ring R. By the UCT, we have

$$
H^{*}\left(E_{b}, E_{b}^{\sharp}, R\right)= \begin{cases}R & *=n, \\ 0 & \text { otherwise } .\end{cases}
$$

Definition. $U \in H^{n}\left(E, E^{\sharp} ; R\right)$ is an R-Thom class (or R-orientation) for E if $i_{b}^{*}(U)$ generates $H^{n}\left(E_{b}, E_{b}^{\sharp} ; R\right)$ for all $b \in B$.
From now on, we assume R-coefficients.
Example. Let $E=B \times \mathbb{R}^{n}$ be the trivial bundle. Then

$$
H^{*}\left(E, E^{\sharp}\right)=H^{*}\left(B \times \mathbb{R}^{n}, B \times\left(\mathbb{R}^{n}-0\right)\right) \simeq H^{*}(B) \otimes H^{*}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-0\right), 1
$$

[^3]i.e. we have an isomorphism
$$
H^{k-n}(B) \stackrel{\simeq}{\leftrightharpoons} H^{k}\left(E, E^{\sharp}\right), a \mapsto a \times U=\pi_{1}^{*}(a) \smile \pi_{2}^{*}(U),
$$
where U is a generator of $H^{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-0\right) \simeq R$. For $k=0$, we get $H^{0}(B) \simeq H^{n}\left(E, E^{\sharp}\right)$ via $r \mapsto r \times U$. Let $\left(B_{i}\right)_{i \in I}$ be the path components of B. Then $H^{0}(B)=\prod_{i \in I} H^{0}\left(B_{i}\right)$. Let $r=\left(r_{i}\right)_{i \in I} \in H^{0}(B)$.
If $b \in B_{i}, i_{b}^{*}(r \times u)=r_{i} U \in H^{*}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-0\right)$. So $r \times U$ is a Thom class iff r_{i} generates $H^{0}\left(B_{i}\right) \simeq R$ for all i. In particular, if $R=\mathbb{Z} / 2$, there is a unique Thom class. If $R=\mathbb{Z}$, there are $2^{\# \pi_{0}(B)}$ Thom classes (choose $r_{i}= \pm 1$).

If $f: B^{\prime} \rightarrow B$, there is a morphism $F: f^{*}(E) \rightarrow E$ over $f: B^{\prime} \rightarrow B$, given by $\left(b^{\prime}, b, v\right) \mapsto v$. Note that $F\left(\operatorname{im} s_{0}^{\prime}\right)=\operatorname{im} s_{0}$, so we get a map of pairs $F:\left(f^{*}(E), f^{*}(E)^{\sharp}\right) \rightarrow\left(E, E^{\sharp}\right)$.

Lemma 4.9. If U is an R-Thom class for E, then $F^{*}(U)$ is an R-Thom class for $f^{*} E$.
Proof. Let $b^{\prime} \in B^{\prime}, b=f(b)$ and $j=\left.F\right|_{f^{*}(E)_{b^{\prime}}}$. There is a commutative square:

The bottom map is an isomorphism and $i_{b^{\prime}}^{*}\left(F^{*}(U)\right)=j^{*}\left(i_{b}^{*}(U)\right)$. Since $i_{b}^{*}(U)$ generates $H^{n}\left(E_{b}, E_{b}^{\sharp}\right), i_{b^{\prime}}^{*}\left(F^{*}(U)\right)$ generates $H^{n}\left(f^{*}(E)_{b^{\prime}}, f^{*}(E)_{b^{\prime}}^{\sharp}\right)$, so $F^{*}(u)$ is a TC.

Lemma 4.10. Suppose $B=B_{1} \cup B_{2}, U \in H^{n}\left(E, E^{\sharp}\right)$. For $k=1,2$, let $i_{k}: B_{k} \rightarrow B$ be the inclusion. Then if $i_{1}^{*}(U), i_{2}^{*}(U)$ are $T C$'s for $\left.E\right|_{B_{1}},\left.E\right|_{B_{2}}$, then U is a TC for E.

Proof. Obvious.
Theorem 4.11 (Thom isomorphism). If $\pi: E \rightarrow B$ is an n-dimensional real vector bundle, then:
(a) E has a unique $\mathbb{Z} / 2$ Thom class.
(b) If E has an R-Thom class U, the map

$$
\begin{aligned}
\Phi: H^{*}(B ; R) & \longrightarrow H^{*+n}\left(E, E^{\sharp} ; R\right), \\
a & \longmapsto \pi^{*}(a) \smile U
\end{aligned}
$$

is an isomorphism, called the Thom isomorphism.
Proof. We assume that B is compact.

Step 1 The theorem holds if $E=B \times \mathbb{R}^{n}$ is trivial. This is the example we did before.
Step 2 Suppose $V_{1}, V_{2} \subseteq B$ are open. Let $E_{i}=\left.E\right|_{V_{i}}, E_{\cap}=\left.E\right|_{V_{1} \cap V_{2}}, E \cup=\left.E\right|_{V_{1} \cup V_{2}}$. If the theorem holds for E_{1}, E_{2} and E_{\cap}, then it holds for E_{\cup}.

Proof. For (a) consider $\mathbb{Z} / 2$ coefficients.
The MV sequence is

$$
H^{n-1}\left(E_{\cap}, E_{\cap}^{\sharp}\right) \rightarrow H^{n}\left(E_{\cup}, E_{\cup}^{\sharp}\right) \xrightarrow{i} H^{n}\left(E_{1}, E_{1}^{\sharp}\right) \oplus H^{n}\left(E_{2}, E_{2}^{\sharp}\right) \xrightarrow{j} H^{n}\left(E_{\cap}, E_{\cap}^{\sharp}\right),
$$

where

$$
i=\left[\begin{array}{l}
i_{1}^{*} \\
i_{2}^{*}
\end{array}\right], j=\left[j_{1}^{*}-j_{2}^{*}\right]
$$

Let $U_{i} \in H^{n}\left(E_{i}, E_{i}^{\sharp}\right)$ be the unique $\mathbb{Z} / 2$ Thom class for E_{i}. By the first lemma, $j_{i}^{*}\left(U_{i}\right)$ is a TC for E_{\cap}. By uniqueness,

$$
j_{1}^{*}\left(U_{1}\right)=j_{2}^{*}\left(U_{2}\right)=U_{\cap}
$$

is the unique $\mathbb{Z} / 2-\mathrm{TC}$ for E_{\cap}, so $\left(U_{1}, U_{2}\right) \in \operatorname{ker} j=\operatorname{im} i$, hence $\left(U_{1}, U_{2}\right)=i\left(U_{\cup}\right)$ for some $U_{\cup} \in H^{n}\left(E_{\cup}, E_{\cup}^{\sharp}\right)$. Then $i_{i}^{*}\left(U_{\cup}\right)=U_{i}$, so by Lemma 4.10, U_{\cup} is a TC for E_{\cup}. It is unique, since if $U_{\cup}^{\prime} \in H^{n}\left(E_{\cup}, E_{\cup}^{\sharp}\right)$ is a TC, then $i\left(U_{\cup}^{\prime}\right)=\left(U_{1}, U_{2}\right)$ by the first lemma and uniqueness for E_{i}. Since ker $i \subseteq H^{n-1}\left(E_{n}, E_{n}^{\sharp}\right) \simeq H^{-1}\left(V_{1} \cap V_{2}\right)=0$ (by (b)), we get $U_{\cup}=U_{\cup}^{\prime}$.

For (b), we have a commuting diagram of MV sequences

By hypothesis, $\Phi_{1}, \Phi_{2}, \Phi_{\cap}$ are all isomorphisms, so Φ_{\cup} is an isomorphism by the Five Lemma.

Step $3 B$ is compact, so it has a finite open cover $\left\{V_{1}, \ldots, V_{r}\right\}$ such that $\left.E\right|_{V_{i}}$ is trivial. Let $W_{k}=\bigcup_{i=1}^{k} V_{i}$. By Step 1, the theorem holds for W_{1}. If the theorem holds for W_{k}, it holds for W_{k+1} by Step 2, hence it holds for $B=W_{r}$ by induction.

4.2.1 The Gysin Sequence

Suppose $\pi: E \rightarrow B$ has an R-Thom class U. Note that $E^{\sharp}=E \backslash$ im $s_{0} \sim S(E)$. Also $\pi: E \rightarrow B$ is a homotopy equivalence with homotopy inverse $s_{0}: B \rightarrow E$. The LES of
$\left(E, E^{\sharp}\right)$ is

α is defined in such a way that the diagram commutes, so for $a \in H^{*-n}(B)$, we have:

$$
\begin{aligned}
\alpha(a)=s_{0}^{*}\left(j^{*}(\Phi(a))\right) & =s_{0}^{*} j^{*}\left(\pi^{*} a \smile U\right) \\
& =s_{0}^{*}\left(\pi^{*} a \smile j^{*} U\right) \\
& =\left(s_{0}^{*} \pi^{*} a\right) \smile s_{0}^{*} j^{*}(U) \\
& =a \smile s_{0}^{*} j^{*}(U) .
\end{aligned}
$$

Definition. If $\pi: E \rightarrow B$ is an R-oriented n-dimensional real vector bundle with $T C U$, its Euler class is $e(E)=s_{0}^{*} j^{*}(U) \in H^{n}(B)$.

Theorem 4.12 (Gysin sequence). There is a LES

$$
\cdots \rightarrow H^{*-n}(B) \xrightarrow{\alpha} H^{*}(B) \xrightarrow{\pi^{*}} H^{*}(S(E)) \rightarrow H^{*-n+1}(B) \rightarrow \cdots
$$

where $\alpha(a)=a \smile e(E)$.
Proposition 4.13. Properties of the Euler class:
(1) If $f: B^{\prime} \rightarrow B$, then $f^{*}(E)$ is oriented and $e\left(f^{*}(E)\right)=f^{*}(e(E))$.
(2) If E is trivial and $n>0$, then $e(E)=0$.
(3) $e\left(E_{1} \oplus E_{2}\right)=e\left(E_{1}\right) \smile e\left(E_{2}\right)$.
(4) If E has a non-vanishing section, then $e(E)=0$.

Proof.
(1) There is a commuting diagram:

By Lemma 4.9, $F^{*}(U)$ is an orientation on $f^{*}(E)$, so

$$
e\left(f^{*}(E)\right)=s_{0}^{\prime} j^{\prime *} F *(U)=f^{*} s_{0}^{*} j^{*}(U)=f^{*}(e(E))
$$

(2) This is true if $B=\{\bullet\}$, since $H^{n}(\{\cdot\})=0$. In general E is trivial, iff $E=f^{*}\left(E_{\bullet}\right)$ where $f: B \rightarrow\{\bullet\}$ and $E_{\bullet}=\mathbb{R}^{n}$, so $e(E)=f^{*}\left(e\left(E_{\bullet}\right)\right)=f^{*}(0)=0$.
(3) Is on Example sheet 4.
(4) If s is a non-vanishing section, $\langle s\rangle$ is a trivial bundle and $E=\langle s\rangle \oplus\langle s\rangle^{\perp}$, so

$$
e(E)=e(\langle s\rangle) \smile e\left(\langle s\rangle^{\perp}\right)=0 \smile e\left(\langle s\rangle^{\perp}\right)=0
$$

Theorem 4.14.

$$
H^{*}\left(\mathbb{R} \mathbb{P}^{n} ; \mathbb{Z} / 2\right) \simeq \mathbb{Z} / 2[X] /\left(X^{n+1}\right)
$$

where $x=e\left(\tau_{\mathbb{R} \mathbb{P}^{n}}\right) \in H^{1}\left(\mathbb{R} \mathbb{P}^{n} ; \mathbb{Z} / 2\right)$.
By Theorem 4.11, every vector bundle is $\mathbb{Z} / 2$-orientable, so $e\left(\tau_{\mathbb{R P}}{ }^{n}\right)$ exists.
Proof. $\mathbb{Z} / 2$-coefficients everyhwere.
We have $S\left(\tau_{\mathbb{R P}^{n}}\right)=S^{n}$, so the Gysin sequence is

$$
\cdots \rightarrow H^{k-1}\left(\mathbb{R}^{n}\right) \xrightarrow{\alpha} H^{k}\left(\mathbb{R}^{n}\right) \rightarrow H^{k}\left(S^{n}\right) \rightarrow H^{k}\left(\mathbb{R} \mathbb{P}^{n}\right) \rightarrow \cdots
$$

Claim: $\alpha=\cdot \smile x$ is an isomorphism for $1 \leq k \leq n$. Proof:

- $k=1$ and $n>1$. The Gysin sequence is:

$$
0 \rightarrow H^{0}\left(\mathbb{R} \mathbb{P}^{n}\right) \rightarrow H^{0}\left(S^{n}\right) \rightarrow H^{0}\left(\mathbb{R}^{n}\right) \xrightarrow{\alpha} H^{1}\left(\mathbb{R} \mathbb{P}^{n}\right) \rightarrow H^{1}\left(S^{n}\right)=0
$$

Clearly, $\pi^{*}: H^{0}\left(\mathbb{R}^{n}\right) \rightarrow H^{0}\left(S^{n}\right)$ is an isomorphism, so the map $H^{0}\left(S^{n}\right) \rightarrow H^{0}\left(\mathbb{R} \mathbb{P}^{n}\right)$ is the zero map. It follows that α is an isomorphism.

- $1<k<n$. We get:

$$
0=H^{k-1}\left(S^{n}\right) \rightarrow H^{k-1}\left(\mathbb{R P}^{n}\right) \xrightarrow{\alpha} H^{k}\left(\mathbb{R}^{n} \mathbb{P}^{n}\right) \rightarrow H^{k}\left(S^{n}\right)=0
$$

So again α is an isomorphism.

- $k=n$. Then

$$
0=H^{n-1}\left(S^{n}\right) \rightarrow H^{n-1}\left(\mathbb{R}^{p}\right) \xrightarrow{\alpha} H^{n}\left(\mathbb{R}^{n}\right) \rightarrow H^{n}\left(S^{n}\right) \rightarrow H^{n}\left(\mathbb{R} \mathbb{P}^{n}\right) \rightarrow 0
$$

Since $H^{n}\left(S^{n}\right) \rightarrow H^{n}\left(\mathbb{R} \mathbb{P}^{n}\right)$ is surjective and both groups are $\mathbb{Z} / 2$, it must be an isomorphism. Then $H^{n}\left(\mathbb{R} \mathbb{P}^{n} \rightarrow H^{n}\left(S^{n}\right)\right.$ must be the zero map, hence α is an isomorphism.

So by induction, the claim implies that x^{k} generates $H^{k}\left(\mathbb{R} \mathbb{P}^{n} ; \mathbb{Z} / 2\right) \simeq \mathbb{Z} / 2$ for $0 \leq k \leq n$ and $x^{n+1} \in H^{n+1}\left(\mathbb{R P}^{n}\right)=0$.

Similarly, $\tau_{\mathbb{C P}^{n}}$ is a complex vector bundle, so its underlying real vector bundle is \mathbb{Z} orientable (Sheet 3, Exercise 10). The same arguments show that

$$
H^{*}\left(\mathbb{C P}^{n} ; \mathbb{Z}\right) \simeq \mathbb{Z}[X] /\left(X^{n+1}\right)
$$

where $x=e\left(\tau_{\mathbb{C P}^{n}}\right) \in H^{2}\left(\mathbb{C P}^{n} ; \mathbb{Z}\right)$.
Corollary 4.15. $\pi_{3}\left(S^{2}\right) \neq 0$.
Proof. Let $h: S^{3} \rightarrow S^{2} \cong \mathbb{C P}^{1}$ be the Hopf map. Then $\mathbb{C P}^{2}=S^{2} \cup_{h} D^{4}$, if the class of h were 0 in $\pi_{3}\left(S^{2}\right)$, we would get $\mathbb{C P}^{2} \sim S^{2} \vee S^{4}$. But $H^{*}\left(S^{2} \vee S^{4}\right) \not \not H^{*}\left(\mathbb{C P}^{2}\right)$ as graded rings, for example if $x \in H^{2}\left(S^{2} \vee S^{4}\right)$, then $x \smile x=0$.
Hence the Hopf map is a non-trivial element in $\pi_{3}\left(S^{2}\right)$.

4.2.2 Comments on Orientability

(1) Every E is $\mathbb{Z} / 2$ orientable.
(2) For $p \neq 2, E$ is \mathbb{Z} / p-orientable iff E is \mathbb{Z}-orientable (If so, we just say E is orientable).
(3) $\tau_{\mathbb{R P}^{1}}=M$ is not \mathbb{Z}-orientable. Indeed, we have

$$
H^{*}\left(M, M^{\sharp}\right)=H^{*}(D(M), S(M)) \simeq H^{*}(\bar{M}, \partial \bar{M})
$$

where \bar{M} is the closed Möbius band. Then $H^{2}(\bar{M}, \partial \bar{M})=\mathbb{Z} / 2 \not \approx \mathbb{Z}=H^{1}\left(S^{1}\right)$, so the Thom isomorphism with \mathbb{Z} coefficients is false.
(4) There is a homomorphism $\varphi: \pi_{1}(B) \rightarrow \mathbb{Z} / 2$ such that: For $\gamma: S^{1} \rightarrow B, \varphi([\gamma])=0$ iff $\gamma^{*}(E)$ is orientable. So if $\pi_{1}(B)=1$, then any $\pi: E \rightarrow B$ is orientable. See Example Sheet 4.

5 Manifolds

5.1 Definitions and Fundamental Class

Definition. A n-manifold is a second countable Hausdorff space M with an open cover $\left\{U_{\alpha} \mid \alpha \in A\right\}$ and homeomorphisms $\varphi_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}^{n}$. The transition functions $\psi_{\alpha \beta}=$ $\varphi_{\alpha} \circ \varphi_{\beta}^{-1}: \varphi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \varphi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right)$ are homeomorphisms. M is smooth if the φ_{α} can be chosen so that $\psi_{\alpha \beta}$ are diffeomorphisms.

We call a manifold M closed if it is compact and has no boundary. Since our definition of a manifold doesn't allow for a boundary, closed just means compact.
A smooth manifold has a tangent bundle $\pi: T M \rightarrow M$.
Notation: If $A \subseteq M$ is compact, write $(M \mid A)=(M, M-A)$. If $B \subseteq A$, we get an inclusion of pairs

$$
i:(M \mid A)=(M, M-A) \rightarrow(M, M-B)=(M \mid B) .
$$

If $w \in H_{*}(M \mid A)$, then we set $\left.w\right|_{B}:=i_{*}(w)$.
If $x \in M, x \in U_{\alpha} \simeq \mathbb{R}^{n}$ for some α. By excision, we have:

$$
H_{*}(M \mid x) \simeq H_{*}\left(U_{\alpha} \mid x\right) \stackrel{\varphi_{\alpha *}}{\simeq} H_{*}\left(\mathbb{R}^{n} \mid \varphi_{\alpha}(x)\right)=H_{*}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-\varphi_{\alpha}(x)\right)= \begin{cases}\mathbb{Z} & *=n, \\ 0 & \text { otherwise } .\end{cases}
$$

Now fix any ring R. Then $H_{*}(M \mid x ; R) \simeq \begin{cases}R & *=n, \\ 0 & \text { otherwise. }\end{cases}$
Definition. An R-fundamental class for $(M \mid A)$ is a class $w \in H_{n}(M \mid A ; R)$ such that $\left.w\right|_{x}$ generates $H_{n}(M \mid x)$ for all $x \in A$.

This is an analogue of the Thom class.
Theorem 5.1. If $A \subseteq M$ is compact, $(M \mid A)$ has a unique $\mathbb{Z} / 2$-fundamental class.
Proof. The proof is very similar to the proof of the Thom isomorphism theorem. See the handout on the Moodle page.

A fundamental class for $(M \mid M)=(M, \emptyset)$ will be written as $[M] \in H_{n}(M)$.
We say M is orientable if it has a \mathbb{Z}-fundamental class.

Proposition 5.2. A smooth manifold M is orientable iff $T M$ is orientable.
Definition. A subset $N \subseteq M$ is a k-dimensional (smooth) submanifold of an n-manifold M, if for every $x \in N$, there is a (smooth) chart $\varphi_{x}: U_{x} \rightarrow \mathbb{R}^{n}$ such that $\varphi_{x}\left(U_{x} \cap N\right)=$ $\mathbb{R}^{k} \times 0 \subseteq \mathbb{R}^{n}$.

Note that if $N \subseteq M$ is a smooth submanifold, then $T N$ is a subbundle of $\left.T M\right|_{N}$.
Definition. Let $N \subseteq M$ be a smooth submanifold. Then $\nu_{M / N}=\left.T N^{\perp} \subseteq T M\right|_{N}$ is the normal bundle of N in M (for some fixed choice of Riemannian metric).

So we have $\left.T M\right|_{N}=\nu_{M / N} \oplus T N$.
Theorem 5.3 (Tubular Neighborhood Theorem). If $N \subseteq M$ is a closed smooth submanifold, there is an open neighborhood $V \subseteq M$ of N with $(\nu, N) \simeq\left(\nu_{M / N}, s_{0}(N)\right)$.
Lemma 5.4. Suppose $E=E_{1} \oplus E_{2}$ is orientable. Then E_{1} is orientable iff E_{2} is.

Proof. Exercise.
Proof of Proposition 5.2 (Idea only). If $\gamma: S^{1} \rightarrow M$ is an embedding, let $V(\gamma)$ be a tubular neighborhood. Then

$$
\begin{aligned}
M \text { is orientable } & \Longleftrightarrow V(\gamma) \text { is orientable for all } \gamma \\
& \Longleftrightarrow \nu_{M / \gamma} \text { is orientable for all } \gamma \\
& \left.\Longleftrightarrow T M\right|_{\gamma} \text { is orientable for all } \gamma \\
& \Longleftrightarrow T M \text { is orientable. }
\end{aligned}
$$

Corollary 5.5. If M is orientable, then a closed smooth submanifold $N \subseteq M$ is orientable iff $\nu_{M / N}$ is.

5.2 Poincare Duality

From now on, we work with coefficients in a field \mathbb{F}, i.e. $H^{k}(X)=H^{k}(X ; \mathbb{F})$. By the UCT we get $\left.H^{k}(X) \simeq \operatorname{Hom}\left(H_{k}(X), \mathbb{F}\right)\right\}^{1}$ hence by dualizing we get an isomorphism ${ }^{2}$

$$
\operatorname{Hom}\left(H^{k}(X), \mathbb{F}\right) \underset{\varphi}{\simeq} H_{k}(X)
$$

where $\langle a, \varphi(\alpha)\rangle=\alpha(a)$. Here $\langle-,-\rangle: H^{k}(X) \times H_{k}(X) \rightarrow \mathbb{F}$ is the pairing induced by $H^{k}(X) \simeq \operatorname{Hom}\left(H_{k}(X), \mathbb{F}\right)$.

If $a \in H^{k}(X)$, we have a map $a \smile-: H^{l}(X) \rightarrow H^{k+l}(X)$ given by the cup product.

[^4]Definition. The cap product $-\frown a: H_{k+l}(X) \rightarrow H_{l}(X)$ is the dual of $a \smile-$, i.e. for $x \in H_{k+l}(X), b \in H^{l}(X)$ we have:

$$
\langle b, x \frown a\rangle=\langle a \smile b, x\rangle .
$$

5.2.1 Intersection Pairing

Suppose M is an \mathbb{F}-oriented n-manifold with fundamental class $[M] \in H_{n}(M)$.
Definition. The intersection pairing $(-,-): H^{k}(M) \times H^{n-k}(M) \rightarrow \mathbb{F}$ is the bilinear pairing given by

$$
(a, b)=\langle a \smile b,[M]\rangle
$$

It satisfies $(b, a)=(-1)^{|b||a|}(a, b)=(-1)^{k(n-k)}(a, b)$.
If $a \in H^{k}(M)$, then $(a,-) \in \operatorname{Hom}\left(H^{n-k}(M), \mathbb{F}\right)$.
Definition. The (algebraic) Poincare Dual of $a \in H^{k}(M)$ is

$$
\operatorname{PD}(a)=\varphi((a,-))=[M] \frown a \in H_{n-k}(M) .
$$

So $\langle b, \operatorname{PD}(a)\rangle=(a, b)=\langle a \smile b,[M]\rangle$.

5.2.2 Geometric Poincare Dual

Theorem 5.6. If M is a connected n-manifold and $x \in M$, the map

$$
H_{n}(M) \rightarrow H_{n}(M \mid x)=H_{n}(M, M-x) \simeq \mathbb{F}
$$

is injective. So if M is \mathbb{F}-oriented, then $H_{n}(M)=\langle[M]\rangle \simeq \mathbb{F}$ and $H^{n}(M)=\left\langle[M]^{*}\right\rangle \simeq \mathbb{F}$ where $[M]^{*} \in H^{n}(M)$ is defined so that $\left\langle[M]^{*},[M]\right\rangle=1 \in \mathbb{F}$.

Proof. See Moodle handout.
Assume $i: N \hookrightarrow M$ is a k-dimensional smooth closed connected \mathbb{F}-oriented submanifold and $x \in N$. Let V be a tubular neighborhood of N. Let $\nu=\nu_{M / N}$ be the normal bundle. There is a commutative diagram:

Since N is connected, $H^{k}(N) \simeq \mathbb{F}=\left\langle[N]^{*}\right\rangle$. Hence $H^{n}\left(\nu, \nu^{\sharp}\right)=\left\langle U \smile \pi^{*}[N]^{*}\right\rangle \simeq \mathbb{F}$ where $U \in H^{n-k}\left(\nu, \nu^{\sharp}\right)$ is an orientation for $\nu_{M / N}$. Then $H_{n}\left(\nu, \nu^{\sharp}\right) \simeq \mathbb{F}$

Now $i_{*}: H_{n}\left(\nu, \nu^{\#}\right) \rightarrow H_{n}(M \mid N) \simeq \mathbb{F}$ is an isomorphism by Excision. Also $j_{x *}$: $H_{n}(M) \rightarrow H_{n}(M \mid x) \simeq \mathbb{F}$ is an isomorphism, so $j_{*}: H_{n}(M) \rightarrow H_{n}(M \mid N)$ is an isomorphism.
So $i_{*}^{-1} j_{*}[M]$ generates $H_{n}\left(\nu, \nu^{\sharp}\right) \simeq \mathbb{F}$. So

$$
\left\langle U \smile \pi^{*}[N]^{*}, i_{*}^{-1} j_{*}[M]\right\rangle=: c \in \mathbb{F}^{*} .
$$

Remark by L.T.: Lots of missing inclusions etc., in the following...
Definition. $U_{M / N}:=c^{-1} U$ is the orientation on $\nu_{M / N}$ induced by $[N]$ and $[M]$. It satisfies

$$
\left\langle U_{M / N} \smile \pi^{*}[N]^{*}, i_{*}^{-1} j_{*}[M]\right\rangle=1 .
$$

Definition. $\operatorname{pd}(N):=j^{*}\left(i^{*}\right)^{-1}\left(U_{M / N}\right) \in H^{n-k}(M)$ is the geometric Poincare dual of N.
Proposition 5.7. If $a \in H^{k}(M)$, then

$$
\langle\operatorname{pd}(N) \smile a,[M]\rangle=\left\langle a, i_{*}[N]\right\rangle,
$$

i.e. $\operatorname{PD}(\operatorname{pd}(N))=i_{*}[N]$.

Lemma 5.8. Let $i: V \rightarrow M$ be the inclusion. Then

$$
i^{*}(a)=\left\langle a, i_{*}[N]\right\rangle \pi^{*}[N]^{*} .
$$

Proof. $\pi: V \rightarrow N$ is a homotopy equivalence, so $H^{k}(V)$ is generated by $\pi^{*}[N]^{*}$. So it is enough to check that $\left\langle i^{*}(a),[N]\right\rangle=\left\langle\left\langle a, i_{*}[N]\right\rangle \pi^{*}[N]^{*},[N]\right\rangle$ (exercise).

Proof of Proposition 5.7. If $b \in H^{l}(M \mid N)$, then $j^{*}(b \smile a)=j^{*}(b) \smile a$. So

$$
\begin{aligned}
\langle\operatorname{pd}(N) \smile a,[M]\rangle & =\left\langle\left(i^{*}\right)^{-1}\left(U_{M / N}\right) \smile a, j_{*}[M]\right\rangle \\
& =\left\langle U_{M / N} \smile i^{*}(a), i_{*}^{-1}\left(j_{*}[M]\right)\right\rangle \\
& =\left\langle U_{M / N} \smile\left\langle a, i_{*}[N]\right\rangle \pi^{*}[N]^{*}, i_{*}^{-1} j_{*}[M]\right\rangle \\
& =\left\langle a, i_{*}[N]\right\rangle \cdot\left\langle U_{M / N} \smile \pi^{*}[N]^{*}, i_{*}^{-1} j_{*}[M]\right\rangle \\
& =\left\langle a, i_{*}[N]\right\rangle
\end{aligned}
$$

Next we will show that PD is an isomorphism by considering the diagonal $\Delta: M \rightarrow M \times M$.

5.2.3 Homology of Products and Proof of Poincare Duality

Note that $\operatorname{Hom}(A \otimes B, \mathbb{F}) \simeq \operatorname{Hom}(A, \mathbb{F}) \otimes \operatorname{Hom}(B, \mathbb{F})$, hence

$$
\begin{aligned}
H_{*}(X \times Y) & \simeq \operatorname{Hom}\left(H^{*}(X \times Y), \mathbb{F}\right) \\
& \simeq \operatorname{Hom}\left(H^{*}(X) \otimes H^{*}(Y), \mathbb{F}\right) \\
& \simeq H_{*}(X) \otimes H_{*}(Y)
\end{aligned}
$$

Under this isomorphism $\alpha \otimes \beta \in H_{*}(X) \otimes H_{*}(Y)$ corresponds to $\alpha \times \beta \in H_{*}(X \times Y)$ where $\alpha \times \beta$ is defined by

$$
\langle a \times b, \alpha \times \beta\rangle=\langle a, \alpha\rangle\langle b, \beta\rangle .
$$

Lemma 5.9.

$$
\left(z_{1} \times z_{2}\right) \frown\left(a_{1} \times a_{2}\right)=(-1)^{\left|a_{2}\right|\left(\left|z_{1}\right|-\left|a_{1}\right|\right)}\left(z_{1} \frown a_{1}\right) \times\left(z_{2} \frown a_{2}\right)
$$

Proof. We have to check that $\left\langle b_{1} \times b_{2}\right.$, LHS $\rangle=\left\langle b_{1} \times b_{2}\right.$, RHS \rangle (exercise).
Lemma 5.10. If X is path-connected, $p \in X$, so $H_{0}(X)=\langle[p]\rangle$, and $a \in H^{k}(X), \alpha \in$ $H_{k}(X)$, then

$$
\alpha \frown a=\langle a, \alpha\rangle[p] .
$$

Proof. $\langle 1, \alpha \frown a\rangle=\langle a \smile 1, \alpha\rangle=\langle a, \alpha\rangle$ and $\langle 1,[p]\rangle=1$.
Lemma 5.11. Let $\Delta: X \rightarrow X \times X$ be the diagonal. Then $\Delta^{*}(a \times b)=a \smile b$ for $a, b \in H^{*}(X)$.

Proof. Let $\pi_{1}, \pi_{2}: X \times X \rightarrow X$ be the projections. Then

$$
\Delta^{*}(a \times b)=\Delta^{*}\left(\pi_{1} * a \smile \pi_{2}^{*} b\right)=\Delta^{*} \pi_{1}^{*} a \smile \Delta^{*} \pi_{2}^{*} b=a \smile b .
$$

Now let M again be a closed, connected, oriented n-manifold. We orient $M \times M$ by $[M \times M]=[M] \times[M]$. Let $\widetilde{U}=\operatorname{pd}(\Delta) \in H^{n}(M \times M)$.
Proposition 5.12. $\langle\widetilde{U},[M] \times[p]\rangle=(-1)^{n}$.
Proof.

$$
\begin{aligned}
\left\langle\widetilde{U} \smile\left(1 \times[M]^{*}\right),[M] \times[M]\right\rangle & =(-1)^{n}\left\langle\left(1 \times[M]^{*}\right) \smile \widetilde{U},[M] \times[M]\right\rangle \\
& =(-1)^{n}\left\langle\widetilde{U},([M] \times[M]) \frown\left(1 \times[M]^{*}\right)\right\rangle \\
& =(-1)^{n}\left\langle\widetilde{U},([M] \frown 1) \times\left([M] \frown[M]^{*}\right)\right\rangle \\
& =(-1)^{n}\langle\widetilde{U},[M] \times[p]\rangle
\end{aligned}
$$

On the other hand, since $\widetilde{U}=\operatorname{pd}(\Delta)$, we have by Proposition 5.7 .

$$
\begin{aligned}
\left\langle\widetilde{U} \smile\left(1 \times[M]^{*}\right),[M] \times[M]\right\rangle & =\left\langle 1 \times[M]^{*},[\Delta]\right\rangle \\
& =\left\langle\pi_{2}^{*}[M]^{*}, \Delta_{*}[M]\right\rangle \\
& =\left\langle[M]^{*}, \pi_{2 *} \Delta_{*}[M]\right\rangle \\
& =\left\langle[M]^{*},[M]\right\rangle \\
& =1
\end{aligned}
$$

The claim follows.

Proposition 5.13.

$$
\widetilde{U} \smile(a \times b)=(-1)^{|a||b|} \widetilde{U} \smile(b \times a)
$$

Proof. Let V be a tubular neighborhood of Δ in $M \times M$. We have a commutative diagram:

Let $\pi: V \rightarrow \Delta$ be the projection in the normal bundle, so π and j_{Δ} are homotopy inverses. Hence

$$
\begin{aligned}
U \smile i^{\prime *}(a \times b) & =U \smile \pi^{*} j_{\Delta}^{*} i^{\prime *}(a \times b) \\
& =U \smile \pi^{*} \Delta^{*}(a \times b) \\
& =U \smile \pi^{*}(a \smile b) \\
& =(-1)^{|a||b|} U \smile \pi^{*}(b \smile b) \\
& =(-1)^{|a||b|} U \smile i^{\prime *}(b \times a)
\end{aligned}
$$

Now apply $j^{*}\left(i^{*}\right)^{-1}$ to both sides.
Proposition 5.14. For $a \in H^{k}(M), y \in H_{k}(M)$ we have

$$
\langle\widetilde{U}, \operatorname{PD}(a) \times y\rangle=(-1)^{n(n-|a|)}\langle a, y\rangle
$$

Proof.

$$
\begin{aligned}
\langle\widetilde{U}, \operatorname{PD}(a) \times y\rangle & =\langle\widetilde{U},([M] \frown a) \times(y \frown 1)\rangle \\
& =(-1)^{0}\langle\widetilde{U},([M] \times y) \frown(a \times 1)\rangle=\langle(a \times 1) \smile \widetilde{U},[M] \times y\rangle \\
& =\langle(1 \times a) \smile \widetilde{U},[M] \times y\rangle=\langle\widetilde{U},([M] \times y) \frown(1 \times a)\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =(-1)^{n|a|}\langle\widetilde{U},([M] \frown 1) \times(y \frown a)\rangle=(-1)^{n|a|}\langle\widetilde{U},[M] \times[p]\rangle\langle a, y\rangle \\
& =(-1)^{n}(-1)^{n|a|}\langle a, y\rangle \\
& =(-1)^{n(n-|a|)}\langle a, y\rangle .
\end{aligned}
$$

Theorem 5.15 (Poincare duality). PD : $H^{k}(M) \rightarrow H_{n-k}(M)$ is an isomorphism.
Proof. If $0 \neq a \in H^{k}(M)$, choose $y \in H_{k}(M)$ with $\langle a, y\rangle \neq 0$. Then $\operatorname{PD}(a) \times y \neq 0$, so $\operatorname{PD}(a) \neq 0$. Hence PD is injective. Applying this twice we get

$$
\operatorname{dim} H^{k}(M) \leq \operatorname{dim} H_{n-k}(M)=\operatorname{dim} H^{n-k}(M) \leq H_{k}(M),
$$

hence $H^{k}(M)$ and $H_{n-k}(M)$ have the same (finite) dimension, so PD is an isomorphism.

Corollary 5.16. $(-,-)$ is nondegenerate, i.e. if $0 \neq a \in H^{k}(M)$, there exists $b \in$ $H^{n-k}(M)$ such that $(a, b) \neq 0$.
If $\left\{a_{i}\right\}$ is a basis for $H^{*}(M)$, let $\left\{b_{i}\right\}$ be the dual basis w.r.t. $(-,-)$, i.e. $\left(a_{i}, b_{j}\right)=\delta_{i j}$.
Then $\left\langle b_{j}, \operatorname{PD}\left(a_{i}\right)\right\rangle=\left(a_{i}, b_{j}\right)=\delta_{i j}$, so $\operatorname{PD}\left(a_{i}\right)=b_{i}^{*}$ and $\left\langle a_{i}, \operatorname{PD}\left(b_{j}\right)\right\rangle=\left(b_{j}, a_{i}\right)=(-1)^{\left|a_{i}\right|\left|b_{j}\right|} \delta_{i j}$, hence $\operatorname{PD}\left(b_{j}\right)=(-1)^{\left|a_{i}\right|\left|b_{i}\right|} a_{i}^{*}$.
Corollary 5.17. $\widetilde{U}=\sum_{i}(-1)^{\left|a_{i}\right|} a_{i} \times b_{i}$.
Proof.

$$
\begin{aligned}
\left\langle\widetilde{U}, a_{i}^{*} \times b_{j}^{*}\right\rangle & =(-1)^{\left|a_{i}\right|\left(n-\left|a_{i}\right|\right)}\left\langle\widetilde{U}, \mathrm{PD}\left(b_{i}\right) \times \operatorname{PD}\left(a_{j}\right)\right\rangle \\
& =(-1)^{s}\left\langle b_{i}, \operatorname{PD}\left(a_{j}\right)\right\rangle=(-1)^{s}\left(a_{j}, b_{i}\right)=(-1)^{s} \delta_{i j}
\end{aligned}
$$

where $s=\left|a_{i}\right|\left(n-\left|a_{i}\right|\right)+n\left|a_{i}\right| \equiv\left|a_{i}\right| \bmod 2$.

5.2.4 Intersection Pairing on Homology

Definition. If $N_{1}, N_{2} \hookrightarrow M$ are smooth submanifolds, then N_{1} is transverse to N_{2}, written $N_{1} \pitchfork N_{2}$, if $\left.T N_{1}\right|_{x}+\left.T N_{2}\right|_{x}=\left.T M\right|_{x}$ for all $x \in N_{1} \cap N_{2}$.

If If $N_{1}, N_{2} \hookrightarrow M$ are smooth transverse submanifolds, then:
(1) $N_{1} \cap N_{2}$ is a smooth submanifold of dimension $\operatorname{dim} N_{1}+\operatorname{dim} N_{2}-\operatorname{dim} M$,
(2) $\left.T\left(N_{1} \cap N_{2}\right)\right|_{x}=\left.\left.T N_{1}\right|_{x} \cap T N_{2}\right|_{x}$,
(3) $\nu_{M / N_{1} \cap N_{2}}=\nu_{M / N_{1}} \oplus \nu_{M / N_{2}}$,
(4) $\operatorname{pd}\left(N_{1} \cap N_{2}\right)=\operatorname{pd}\left(N_{1}\right) \smile \operatorname{pd}\left(N_{2}\right)$.

Definition.

$$
\left[N_{1}\right] \cdot\left[N_{2}\right]:=\left(\operatorname{pd}\left(N_{1}\right), \operatorname{pd}\left(N_{2}\right)\right)=\left\langle\operatorname{pd}\left(N_{1}\right) \smile \operatorname{pd}\left(N_{2}\right),[M]\right\rangle=\left\langle\operatorname{pd}\left(N_{1} \cap N_{2}\right),[M]\right\rangle
$$

is the number of points in $N_{1} \cap N_{2}$, counted with intersection sign.
Let $j: N_{1} \hookrightarrow M$ be the inclusion.

Proposition 5.18.

$$
j^{*}\left(\operatorname{pd}\left(N_{2}\right)\right)=\operatorname{pd}_{N_{1}}\left(N_{1} \cap N_{2}\right)
$$

Proof. $\nu_{N_{1} / N_{1} \cap N_{2}} \simeq \nu_{M / N}$, so $U_{N_{1} / N_{1} \cap N_{2}}=j^{*} U_{M / N}$.
Proposition 5.19. Suppose $\pi: E \rightarrow M$ is an oriented vector bundle, $s: M \rightarrow E a$ section, $s \pitchfork s_{0}$. Then

$$
e(E)=\operatorname{pd}_{M}\left(s \cap s_{0}\right)=\operatorname{pd}_{M}\left(s^{-1}(0)\right) .
$$

Proof. $\left(i^{*}\right)^{-1}\left(U_{E}\right)=\operatorname{pd}_{E}\left(s_{0}\right)=\operatorname{pd}_{E}(s)$ since $s \sim s_{0}$, so $\left.e(E)=s_{0}^{*}\left(i^{*}\right)^{-1}\left(U_{E}\right)\right)=s_{0}^{*}\left(\operatorname{pd}_{E}(s)\right)=$ $\operatorname{pd}_{M}\left(s_{0} \cap s\right)$.

Corollary 5.20. $\langle e(T M),[M]\rangle=\chi(M)$.
Proof. In $M \times M$, we have $\nu_{M \times M / \Delta} \simeq T M$, so $\langle e(T M),[M]\rangle=\Delta \cdot \Delta=(\widetilde{U}, \widetilde{U})=\chi(M)$. For the last equality, recall that $\widetilde{U}=\sum_{i}(-1)^{\left|a_{i}\right|} a_{i} \times b_{i}=\sum_{i}(-1)^{\left|b_{i}\right|} b_{i} \times a_{i}$.

Bibliography

[Hat02] Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.
[Rot88] Joseph J. Rotman. An introduction to algebraic topology. Vol. 119. Graduate Texts in Mathematics. Springer-Verlag, New York, 1988.

[^0]: ${ }^{1}$ Remark by L.T.: See e.g. Rot88 Corollary 7.18]

[^1]: ${ }^{1}$ This gives rise to the funny-looking formula

 $$
 " \frac{\mathbb{C}^{n+1}-0}{\mathbb{C}-0}=\mathbb{C}^{0}+\mathbb{C}^{1}+\cdots+\mathbb{C}^{n "}
 $$

[^2]: ${ }^{2}$ Remark by L.T.: Here and in the following, the homeomorphism $D^{k} / S^{k-1} \cong S^{k}$ should probably be chosen such that $\left[D^{k}, S^{k-1}\right.$] corresponds to $\left[S^{k}\right]$ under $H_{k}\left(D^{k}, S^{k-1}\right) \cong H_{k}\left(D^{k} / S^{k-1}\right) \cong H_{k}\left(S^{k}\right)$.

[^3]: ${ }^{1}$ Remark by L.T.: In the lecture this was justified by saying that $H^{*}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-0\right)$ is free, but this is not the hypothesis in our Künneth formula. There we required that the factor with the non-relative cohomology $H^{*}(B)$ was free. However, it should still be fine, see e.g. Hat02. Theorem 3.18] for the case of CW-complexes.

[^4]: ${ }^{1}$ Remark by L.T.: Our UCT only gives this in the case where X is a fcc. But it is still true, see e.g. Hat02 Theorem 3.2]
 ${ }^{2}$ Remark by L.T.: Only if H^{k}, H_{k} are finite-dimensional...

