Algebraic Topology Cambridge Part III, Michaelmas 2022

Cambridge Part III, Michaelmas 2022 Taught by Jacob Rasmussen Notes taken by Leonard Tomczak

Contents

0	Homotopies							
	0.1	Homotopy Groups	3					
1	Sing	ular Homology	5					
	1.1	Definition of Homology	5					
	1.2	Subcomplexes, Quotient Complexes and Direct Sums	7					
	1.3	1.0	9					
	1.4		13					
	1.5	Excision and Collapsing a Pair	18					
2	Cellu	ılar Homology	22					
	2.1	Degrees of Maps $f: S^n \to S^n$	22					
	2.2		25					
	2.3	Homology with Coefficients	31					
3	Coh	omology and Products	35					
	3.1		35					
	3.2		38					
	3.3	Exterior Products	43					
4	Vect	cor Bundles	19					
	4.1		49					
	4.2	*	54					
5	Man	ifolds	50					
•	5.1		60					
	5.2		61					
Bil	Bibliography							

0 Homotopies

Conventions:

- *space* means topological space,
- map means continuous map unless otherwise stated,
- $Map(X, Y) := \{f : X \to Y \mid f \text{ continuous}\}$ where X, Y are spaces.

Some spaces:

- I = [0, 1],
- $I^n = I \times \cdots \times I$ closed *n*-cube,
- $D^n = \{v \in \mathbb{R}^n \mid ||v|| \le 1\}$ closed *n*-dimensional disk,
- $S^{n-1} = \partial D^n = \{ v \in \mathbb{R}^n \mid ||v|| = 1 \}.$

Note that $D^n \cong I^n$, $S^{n-1} \subseteq D^n$, $D^n/S^{n-1} \cong S^n$.

Definition. If $f_0, f_1 : X \to Y$ are continuous maps, f_0 is homotopic to f_1 , written $f_0 \sim f_1$, if there exists a continuous map $H : X \times I \to Y$ with $H(x,0) = f_0(x)$ and $H(x,1) = f_1(x)$ for all $x \in X$. H is called a homotopy.

Think: $f_t(x) = H(x,t), f_t: X \to Y, t \mapsto f_t$ is a path from f_0 to f_1 in Map(X, Y).

Examples.

- 1. $\operatorname{id}_{\mathbb{R}^n} \sim 0_{\mathbb{R}^n}$.
- 2. $A_n: S^n \to S^n, v \mapsto -v$ antipodal map. $A_1 \sim \mathrm{id}_{S^1}$ via $f_t(z) = e^{i\pi t} z$, but $A_2 \not\sim \mathrm{id}_{S^2}$ (proven later).

Lemma 0.1. Homotopy is an equivalence relation.

Definition.

$$[X, Y] := \operatorname{Map}(X, Y) / \sim$$

= {homotopy classes of maps $X \to Y$ }
" = {path components of Map(X, Y)}"

Lemma 0.2. If $f_0, f_1 : X \to Y$, $f_0 \sim f_1$ via f_t and $g_0, g_1 : Y \to Z, g_0 \sim g_1$ via g_t , then $g_0 \circ f_0 \sim g_1 \circ f_1$ via $g_t \circ f_t$.

Example. $f : X \to \mathbb{R}^n$, then $f = \mathrm{id}_{\mathbb{R}^n} \circ f \sim 0_{\mathbb{R}^n} \circ f = 0_X$, so $[X, \mathbb{R}^n]$ has only one element.

Definition. A space Y is contractible if $id_Y \sim c_p$ where $c_p : Y \to Y, y \mapsto p$ is the constant map with image $p \in Y$.

Proposition 0.3. Y is contractible iff [X, Y] has one element for all (non-empty) X.

Proof. \Rightarrow : as in the example with \mathbb{R}^n .

 \Leftarrow : Take X = Y. Since [X, Y] has only one element, the homotopy classes of id_Y and c_p are equal, i.e. $id_Y \sim c_p$ (for any $p \in Y$).

Definition. Spaces X and Y are homotopy equivalent, written $X \sim Y$, if there exist maps $f: X \to Y, g: Y \to X$ such that $f \circ g \sim id_Y, g \circ f \sim id_X$.

Examples.

- $\mathbb{R}^n \sim \{0\}.$
- Y is contractible iff $Y \sim \{*\}$.
- $\mathbb{R}^n \setminus \{0\} \sim S^{n-1}$.

Basic questions of Algebraic Topology:

- 1. Given spaces X and Y, is $X \sim Y$?
- 2. What is [X, Y]?

Definition. A pair of spaces (X, A) is a space X and a subset $A \subseteq X$. A map of pairs is $f: (X, A) \to (Y, B)$ is a continuous map $f: X \to Y$ such that $f(A) \subseteq B$.

Maps of pairs $f_0, f_1 : (X, A) \to (Y, B)$ are homotopic, written $f_0 \sim f_1$, if $f_0, f_1 : X \to Y$ are homotopic via a map of pairs $H : (X \times I, A \times I) \to (Y, B)$. Write [(X, A), (Y, B)] for the set of equivalence classes of maps of pairs $(X, A) \to (Y, B)$.

0.1 Homotopy Groups

Definition. If X is a space and $p \in X$, the n-th homotopy group is

$$\pi_n(X,p) = [(I^n, \delta I^n), (X,p)] = [(D^n, S^{n-1}), (X,p)] = [(S^n, *), (X,p)].$$

(if n = 0 take the last set as the definition)

Proposition 0.4.

1. The group structure for $n \ge 1$ is given as follows: For $\varphi, \psi : (I^n, \partial I^n) \to (X, p)$ let $[\varphi] \cdot [\psi] = [\varphi \cdot \psi]$ where

$$\varphi \cdot \psi : (I^n, \partial I^n) \to (X, p), (t_1, \dots, t_n) \mapsto \begin{cases} \varphi(2t_1, t_2, \dots, t_n) & 0 \le t_1 \le \frac{1}{2}, \\ \psi(2t_1 - 1, t_2, \dots, t_n) & \frac{1}{2} \le t_1 \le 1 \end{cases}$$

Then:

- $\pi_0(X, p) = \{ path \ components \ of \ X \},\$
- $\pi_1(X,p)$ is a group,
- $\pi_n(X,p)$ is an abelian group for n > 1.
- 2. Functoriality: If $f : (X, p) \to (Y, q)$ is a map of pairs, it induces $f_* : \pi_n(X, p) \to \pi_n(Y, q)$ by $f_*([\varphi]) = [f \circ \varphi]$. This satisfies $(f \circ g)_* = f_* \circ g_*$
- 3. Homotopy invariance: If $f_0, f_1 : (X, p) \to (Y, q)$ are homotopic as maps of pairs, then $f_{0*} = f_{1*}$.

Group structure for n = 2

 π_n is abelian for n=2

Theorem 0.5. $\pi_1(S^n, *) = \begin{cases} \mathbb{Z} & n = 1, \\ 0 & otherwise. \end{cases}$

But $\pi_n(S^k)$ is very complicated in general, e.g.:

This is why we study *homology* instead of homotopy groups in this course.

1 Singular Homology

1.1 Definition of Homology

Definition. The standard k-simplex is $\Delta^k := \{(t_0, \ldots, t_k) \in \mathbb{R}^{k+1} \mid \sum t_i = 1, t_i \ge 0\}.$

For $I \subseteq \{0, \ldots, k\}$, we associate a face $f_I = \{t \in \Delta^k \mid t_i = 0 \text{ for } i \notin I\}$. There is an obvious inclusion map $F_I : \Delta^{|I|-1} \to \Delta^k$ with image f_I .

We will write $I = i_0 \cdots i_k$ if $I = \{i_0, \dots, i_k\}$ and $i_0 < i_1 < \cdots < i_k$.

Recall that a (\mathbb{Z} -graded) chain complex (C_{\bullet}, d) over a commutative ring R consists of R-modules $C_k, k \in \mathbb{Z}$ and homomorphisms $d_k : C_k \to C_{k-1}$ such that $d_k \circ d_{k+1} = 0$ for all k.

The k-th homology group of such a chain complex is the quotient $H_k(C_{\bullet}) = \ker d_k / \operatorname{Im} d_{k+1}$.

Elements of ker d are called *cycles*, and elements of Im d boundaries.

Definition. The chain complex $S_{\bullet}(\Delta^n)$ of the n-simplex is given by $S_k(\Delta^n) = \langle f_I | I \subseteq \{0, \ldots, n\}, |I| = k + 1 \rangle$. For k > 0 the boundary map is given by

$$d(f_I) = \sum_{j=0}^k (-1)^j f_{I \setminus \{i_j\}}$$

where $I = i_0 \cdots i_k$ and we set $d(f_I) = 0$ if $I = i_0$.

It is easy to see that $d^2 = 0$, so this is indeed a chain complex.

The following is true¹:

$$H_i(S_{\bullet}(\Delta^n)) \cong \begin{cases} \mathbb{Z} & \text{if } i = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Definition. The reduced chain complex associated to Δ^n is the chain complex $(\widetilde{S}_{\bullet}(\Delta^n), d)$ with $\widetilde{S}_k(\Delta^n) = S_k(\Delta^n)$ for $k \neq -1$ and $\widetilde{S}_{-1}(\Delta^n) = \langle f_{\emptyset} \rangle$. The differential is defined using the formula above above, now including k = 0, i.e. $df_{\{i\}} = f_{\emptyset}$.

Then one has $H_*(\tilde{S}_{\bullet}(\Delta^n)) = 0.$

¹Remark by L.T.: See e.g. [Rot88, Corollary 7.18]

Definition. For a space X its singular chain complex $(C_{\bullet}(X), d)$ is defined by $C_k(X) = \langle \sigma : \Delta^k \to X \rangle$ for $k \ge 0$ and $C_k(X) = 0$ for k < 0. For $\sigma : \Delta^k \to X$ the differential $d\sigma$ is given by

$$d\sigma = \sum_{j=0}^{k} (-1)^j \sigma \circ F_j$$

where $F_{\hat{j}} = F_{\{0,\dots,k\}\setminus\{j\}} : \Delta^{k-1} \to \Delta^k$ is the inclusion onto the *j*-th face.

Note that if $\sigma : \Delta^k \to X$, then we obtain a map $\phi_{\sigma} : S_{\bullet}(\Delta^k) \to C_{\bullet}(X)$ by $f_I \mapsto \sigma \circ F_I$. By definition of d this satisfies $d_C \circ \phi_{\sigma} = \phi_{\sigma} \circ d_S$. From this one easily deduces that $d_C^2 = 0$.

Definition. $H_i(X) = H_i(C_{\bullet}(X))$ is the *i*-th singular homology group of X.

Example: Let $X = \{*\}$ be a one-point space. Then for $k \ge 0$, $C_k(X) = \langle \sigma_k \rangle$ where $\sigma_k : \Delta^k \to X$ is the unique map. For k > 0 we have $d\sigma_k = \sum_{j=0}^k (-1)^j \sigma_{k-1} = \begin{cases} \sigma_{k-1} & \text{if } k \text{ is even,} \\ 0 & \text{if } k \text{ is odd.} \end{cases}$ For k = 0 we get $d\sigma_0 = 0$, thus

$$H_k(X) \cong \begin{cases} \mathbb{Z} & \text{if } k = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Definition. The reduced singular chain complex of X is defined by

$$\widetilde{C}_k(X) = \begin{cases} C_k(X) & k \neq -1, \\ \langle \sigma_{\emptyset} \rangle & k = -1. \end{cases}$$

with $d\sigma = \sigma_{\emptyset}$ if $\sigma : \Delta^0 \to X$ and $d\sigma_{\emptyset} = 0$ Exercise: $\widetilde{H}_k(\{*\}) = 0$ for all k.

Examples.

- $\Delta^0 = \{*\}$, so elements of $Map(\Delta^0, X)$ correspond to points in X.
- $\Delta^1 \cong I$, via (say) $f_0 \mapsto 0, f_1, \mapsto 1$ and then extended linearly. Then elements of $\operatorname{Map}(\Delta^1, X)$ correspond to paths $\gamma : [0, 1] \to X$ with $d\gamma = \sigma_{\gamma(1)} \sigma_{\gamma(0)}$

Example: $X = S^1, \gamma : [0, 1] \to S^1, t \mapsto e^{2\pi i t}$, then $d\gamma = 0$, so γ is a cycle. Define $\gamma_{\pm} : I \to S^1, t \mapsto e^{\pm \pi i t}$. Then $d\gamma_{\pm} = \sigma_{-1} - \sigma_1$, so $\gamma_+ - \gamma_-$ is a cycle in C_1 .

Claim: $[\gamma] = [\gamma_+ - \gamma_-]$. Consider $\tau : \Delta^2 \to S^1$ given by $\tau(p) = e^{2\pi i \varphi(p)}$ where $\varphi : \Delta^2 \to I$ is the affine linear map given by $f_0 \mapsto 0, f_1 \mapsto 1, f_2 \mapsto \frac{1}{2}$. Then $d\tau = \tau \circ F_0 - \tau \circ F_1 + \tau \circ F_2 = \gamma_- - \gamma_+ + \gamma$.

Proposition 1.1. If X is path connected, then $H_0(X) \cong \mathbb{Z} = \langle \sigma_p \rangle$ for any $p \in X$.

The map φ

Proof. $C_{-1}(X) = 0$, so ker $d_0 = C_0(X)$.

 $\operatorname{Im} d_1 = \operatorname{span} \{ d\gamma \mid \gamma : I \to X \}$ = span{ $\sigma_p - \sigma_{p'} \mid p, p' \text{ joined by a path in } X \}$ = span{ $\sigma_p - \sigma_{p'} \mid p, p' \in X \}$

Then $H_0(X) = \ker d_0 / \operatorname{Im} d_1 \cong \mathbb{Z}$ via $\sum a_i \sigma_{p_i} \mapsto \sum a_i$.

1.2 Subcomplexes, Quotient Complexes and Direct Sums

Definition. Suppose (C, d) is a chain complex over R. A subcomplex of (C, d) consists of submodules $A_i \subseteq C_i$ for all i such that $d(A_i) \subseteq A_{i-1}$. Then $A = \bigoplus_i A_i$ is a again a chain complex with the differential being the restriction of d.

Given a subcomplex A of C, we can form the quotient (C/A, d) where $C/A = \bigoplus_i C_i/A_i$.

Example. If $A \subseteq X$ is a subspace, then $C_{\bullet}(A)$ is a subcomplex of $C_{\bullet}(X)$.

Definition. If (X, A) is a pair of spaces, then $C_{\bullet}(X, A) = C_{\bullet}(X)/C_{\bullet}(A)$ is the singular chain complex of (X, A).

Definition. If $(C_{\alpha}, d_{\alpha})_{\alpha \in A}$ are chain complexes, then their direct sum is $(\bigoplus_{\alpha} C_{\alpha}, \bigoplus_{\alpha} d_{\alpha})$ is also a chain complex.

Easy exercise: $H_*(\bigoplus_{\alpha} C_{\alpha}) = \bigoplus_{\alpha} H_*(C_{\alpha}).$

Proposition 1.2. $H_*(X) = \bigoplus_{\alpha} H_*(X_{\alpha})$ where the X_{α} are the path-components of X

Proof. Since Δ^k is (path-)connected, we have $\operatorname{Map}(\Delta^k, X) = \coprod_{\alpha} \operatorname{Map}(\Delta^k, X_{\alpha})$, so $C_k(X) = \bigoplus_{\alpha} C_k(X_{\alpha})$ and this decomposition respects d, so we have a direct sum of chain complexes.

Definition. If (C, d) and (C', d') are chain complex over R, a chain map $f : (C, d) \to (C', d')$ is a collection of R-linear maps $f_i : C_i \to C'$ such that $d'_i \circ f_i = f_{i-1} \circ d_i$, in other words d'f = fd where $f = \bigoplus_i f_i$.

Notation. We denote categories as follows:

$$\left\{\begin{array}{c} \text{Objects} \\ \text{Morphisms} \end{array}\right\}$$

Note that a chain map $f: (C,d) \to (C',d')$ induces a map $f_*: H_*(C) \to H_*(C')$. So taking homology gives a functor:

$$H_*: \left\{ \begin{array}{c} \text{chain complexes over } R \\ \text{chain maps} \end{array} \right\} \longrightarrow \left\{ \begin{array}{c} (\text{graded}) \ R\text{-modules} \\ (\text{graded}) \ R\text{-linear maps} \end{array} \right.$$
$$(C,d) \longmapsto H_*(C)$$
$$f: C \to C' \longmapsto f_*: H_*(C) \to H_*(C')$$

) }

Definition. If $f : X \to Y$ is a continuous map, define $f_{\#} : C_{\bullet}(X) \to C_{\bullet}(Y)$ by $\operatorname{Map}(\Delta^*, X) \ni \sigma \mapsto f_{\#}(\sigma) = f \circ \sigma$.

Lemma 1.3. $f_{\#}$ is a chain map.

Proof.
$$d(f_{\#}(\sigma)) = d(f \circ \sigma) = \sum_{j=0}^{k} (-1)^{j} f \circ \sigma \circ F_{\hat{j}} = f_{\#} \left(\sum_{j=0}^{k} (-1)^{j} \sigma \circ F_{\hat{j}} \right) = f_{\#} d\sigma$$

So we get a functor

$$\left\{ \begin{array}{c} \text{spaces} \\ \text{continuous maps} \end{array} \right\} \longrightarrow \left\{ \begin{array}{c} \text{chain complexes over } \mathbb{Z} \\ \text{chain maps} \end{array} \right\}$$
$$X \longmapsto (C_{\bullet}(X), d) \\f \longmapsto f_{\#}$$

Composing the functors we get the singular homology functor:

$$\left\{\begin{array}{c} \text{spaces}\\ \text{continuous maps} \end{array}\right\} \longrightarrow \left\{\begin{array}{c} \text{graded } \mathbb{Z}\text{-modules}\\ \text{graded linear maps} \end{array}\right\}$$
$$X \longmapsto H_*(X)$$
$$f: X \to Y \longmapsto f_*: H_*(X) \to H_*(Y)$$

Suppose $f : (X, A) \to (Y, B)$. Then $f_{\#} : C_{\bullet}(X) \to C_{\bullet}(Y)$. If $\sigma : \Delta^k \to A$, then $f \circ \sigma : \Delta^k \to B$, so $f_{\#}(C_{\bullet}(A)) \subseteq C_{\bullet}(B)$. Thus $f_{\#}$ descends to a map $f_{\#} : C_{\bullet}(X, A) \to C_{\bullet}(Y, B)$. Hence we get functors:

$$\left\{\begin{array}{c} \text{pairs of spaces} \\ \text{maps of pairs} \end{array}\right\} \xrightarrow[]{C_{\bullet}(-,-)} \left\{\begin{array}{c} \text{chain complexes over } \mathbb{Z} \\ \text{chain maps} \end{array}\right\} \xrightarrow[]{H_*} \left\{\begin{array}{c} \mathbb{Z}\text{-modules} \\ \mathbb{Z}\text{-linear maps} \end{array}\right\}$$

1.3 Homotopy Invariance

Goal: We want to prove that homotopic maps of spaces induce the same maps on homology.

Definition. Suppose $g_0, g_1 : C \to C'$ are maps of chain complexes (over some ring R). g_0 is chain homotopic to g_1 , written $g_0 \sim g_1$, if there are R-linear maps $h_i : C_i \to C'_{i+1}$ such that $d'h + hd = g_1 - g_0$ where $h = \oplus h_i$.

Chain complexes C, C' are chain homotopy equivalent, written $C \sim C'$, if there are chain maps $f: C \to C', g: C' \to C$ such that $f \circ g \sim 1_{C'}, g \circ f \sim 1_C$.

Lemma 1.4. Chain homotopy and chain homotopy equivalence are equivalence relations. **Proposition 1.5.** If $g_0, g_1 : C \to C'$ are chain maps with $g_0 \sim g_1$, then

$$g_{0*} = g_{1*} : H_*(C) \to H_*(C').$$

Proof. Suppose the $g_0 \sim g_1$ via h. If $[x] \in H_*(C)$, dx = 0, so

$$g_{1*}[x] - g_{0*}[x] = [g_1(x) - g_0(x)] = [d'h(x) + hd(x)] = [d'h(x)] = 0.$$

L	_	_

Corollary 1.6. If $C \sim C'$, then $H_*(C) \cong H_*(C')$.

Idea behind the definition of chain homotopy: Suppose $f_0, f_1 : X \to Y, f_0 \sim f_1$ via $H: X \times I \to Y$. Let $g_0(\sigma) = f_{0*}(\sigma), g_1(\sigma) = f_{1*}(\sigma)$. Want $h(\sigma) = "H(\sigma \times I)"$.

Idea for the chain homotopy

Recall if $\sigma : \Delta^k \to X$, there is a chain map $\varphi_{\sigma} : S_{\bullet}(\Delta^k) \to C_{\bullet}(X), f_I \mapsto \sigma \circ F_I$. Define $c_0, c_1 : \Delta^n \mapsto \Delta^n \times I$ by $c_i(x) = (x, i), i = 0, 1$. From this we get $\varphi_{c_0}, \varphi_{c_1} : S_{\bullet}(\Delta^n) \to C_{\bullet}(\Delta^n \times I)$. **Definition.** If $X \subseteq \mathbb{R}^N$ is convex and $v_0, \ldots, v_k \in X$, define a k-simplex in X by

$$[v_0, \dots, v_k] : \Delta^k \longrightarrow X,$$
$$(t_i)_i \longmapsto \sum_i t_i v_i,$$

 $[v_0, \ldots, v_k]$ is the linear simplex determined by v_0, \ldots, v_k .

Note that $[v_0, \ldots, v_k] \circ F_j = [v_0 \ldots \widehat{v_j} \ldots v_k]$ (omit v_j), so that

$$d[v_0 \dots v_k] = \sum_j (-1)^j [v_0 \dots \widehat{v_j} \dots v_k].$$

To avoid lots of indices, we use the following notation: If $f_i \in \Delta^n$, i = 0, ..., n, write $i = f_i \times 0, i' = f_i \times 1 \in \Delta^n \times I$.

Notational warning: In the following we will use I for two different things: An index set or the interval [0, 1]. Whenever it is used for [0, 1] it occurs only in the form $\Delta^n \times I$, so this will hopefully cause no confusion.

Definition. The universal chain homotopy $U_n: S_{\bullet}(\Delta^n) \to C_{\bullet+1}(\Delta^n \times I)$ is given by

$$U_n(f_I) = \sum_{j'=0}^k (-1)^{j'} [i_0 \dots i_{j'} i'_{j'} i'_{j'+1} \dots i'_k]$$

where $I = i_0 \dots i_k$.

 U_n "breaks up" $\Delta^n \times I$ into simplices. For example, for n = 1 we have $U_1(f_{01}) = [00'1'] - [011']$.

Proposition 1.7. $dU_n + U_n d = \varphi_{c_1} - \varphi_{c_0}$.

Proof. Let $I = i_0 \dots i_k$. What terms appear in $(dU_n + U_n d)(f_I)$?

$$(dU_n + U_n d)(f_I) = \sum_{j < j'} m_{jj'} [i_0 \dots \widehat{i_j} \dots i_{j'} i'_{j'} \dots i'_k]$$

$$+ \sum_{j' < j} n_{jj'} [i_0 \dots i_{j'} i'_{j'} \dots \hat{i_j}' \dots i'_k] + \sum_{j=0}^{k-1} r_j [i_0 \dots i_j i'_{j+1} \dots i'_k] + a[i_0 \dots i_k] + b[i'_0 \dots i'_k]$$

We have

$$\begin{split} m_{jj'} &= \underbrace{(-1)^{j}(-1)^{j'-1}}_{\text{delete } i_{j}} + \underbrace{(-1)^{j'}(-1)^{j}}_{\text{split at } j'} = 0, \\ \text{split at } j' &= \underbrace{(-1)^{j}(-1)^{j'}}_{\text{delete } i_{j}} + \underbrace{(-1)^{j'}(-1)^{j+1}}_{\text{split at } j'} = 0, \\ r_{j} &= \underbrace{(-1)^{j}(-1)^{j+1}}_{\text{delete } i_{j}'} + \underbrace{(-1)^{j+1}(-1)^{j+1}}_{\text{delete } i_{j}'} = 0, \\ r_{j} &= \underbrace{(-1)^{j}(-1)^{j+1}}_{\text{delete } i_{j}'} + \underbrace{(-1)^{j+1}(-1)^{j+1}}_{\text{delete } i_{j+1}'} = 0, \\ a &= \underbrace{(-1)^{k}(-1)^{k+1}}_{\text{delete } i_{k}'} = -1, \\ split \text{ at } k \\ delete i_{k}'} &= 1. \\ split \text{ at } 0 \\ delete i_{0} &= 1. \\ \end{split}$$

 So

$$(dU_n + U_n d)(f_I) = [i'_0 \dots i'_k] - [i_0 \dots i_k] = \varphi_{c_0}(f_I) - \varphi_{c_1}(f_I).$$

Let $i_0 \ldots i_k = I \subseteq \{0, \ldots, n\}$. This gives a chain map $\varphi_I : S_{\bullet}(\Delta^k) \to S_{\bullet}(\Delta^n)$ with $\varphi(f_J) = f_{i_{j_0}i_{j_1}\ldots i_{j_l}}$ where $J = j_0 \ldots j_l$. (i.e. the *J*-face of Δ^k gets mapped to the corresponding face of the *I*-face of Δ^n).

Let $\varphi_{\hat{j}} = \varphi_{\{0,\dots,n\}\setminus\{j\}} : S_{\bullet}(\Delta^{n-1}) \to S_{\bullet}(\Delta^n)$ and $f_{\text{top}}^n = f_{0\dots n} \in S_n(\Delta^n)$ (i.e. top face, the whole simplex). Then $df_{\text{top}}^n = \sum_j (-1)^j \varphi_{\hat{j}}(f_{\text{top}}^{n-1})$.

Lemma 1.8 (Naturality of U_n). The following square commutes:

$$S_{\bullet}(\Delta^{k}) \xrightarrow{\varphi_{I}} S_{\bullet}(\Delta^{n})$$

$$\downarrow_{U_{k}} \qquad \qquad \downarrow_{U_{n}}$$

$$C_{\bullet+1}(\Delta^{k} \times I) \xrightarrow{\overline{F_{I}}_{\#}} C_{\bullet+1}(\Delta^{n} \times I)$$

where $\overline{F_I}: \Delta^k \times I \to \Delta^n \times I, (x,t) \mapsto (F_I(x), t).$

Proof. Immediate by writing out the maps.

Now suppose that $f_0, f_1 : X \to Y$ are homotopic via $H : X \times I \to Y$. Given $\sigma : \Delta^n \to X$, define $H_{\sigma} : \Delta^n \times I \to Y$ by $(x, t) \mapsto H(\sigma(x), t)$. Observe that $H_{\sigma \circ F_I} = H_{\sigma} \circ \overline{F_I}$. Define $h : C_{\bullet}(X) \to C_{\bullet+1}(Y)$ by $h(\sigma) = H_{\sigma \#}(U_n(f_{top}^n))$ if $\sigma : \Delta^n \to X$.

Theorem 1.9. $dh + hd = f_{1\#} - f_{0\#}$, so $f_{0\#} \sim f_{1\#}$.

Proof. Let $\sigma : \Delta^n \to X$. Then

$$hd(\sigma) = h\left(\sum_{j} (-1)^{j} \sigma \circ F_{j}\right)$$
$$= \sum_{j} (-1)^{j} H_{\sigma F_{j} \#} U_{n-1}(f_{\text{top}}^{n-1})$$
$$= \sum_{j} (-1)^{j} H_{\sigma \#} \overline{F_{j}}_{\#} U_{n-1}(f_{\text{top}}^{n-1})$$
$$= \sum_{j} (-1)^{j} H_{\sigma \#} U_{n}(\varphi_{j}(f_{\text{top}}^{n-1}))$$
$$= H_{\sigma \#} U_{n}\left(\sum_{j} (-1)^{j} \varphi_{j}(f_{\text{top}}^{n-1})\right)$$
$$= H_{\sigma \#} U_{n}(df_{\text{top}}^{n})$$

We also have $dh(\sigma) = dH_{\sigma\#}(U_n(f_{top}^n)) = H_{\sigma\#}(dU_n(f_{top}^n))$. Thus

$$(hd + dh)(\sigma) = H_{\sigma\#}(U_n(df_{top}^n + dU_n(f_{top}^n)))$$

= $H_{\sigma\#}(\varphi_{c_1}(f_{top}^n) - \varphi_{c_0}(f_{top}^n))$
= $H_{\sigma\#}(c_1 \circ F_{\{0,...,n\}} - c_0 \circ F_{\{0,...,n\}})$
= $H_{\sigma\#}(c_1) - H_{\sigma\#}(c_0)$
= $f_{1\#}(\sigma) - f_{0\#}(\sigma)$

Corollary 1.10. If $f_0, f_1 : X \to Y$ are homotopic, then $f_{0*} = f_{1*}$.

Corollary 1.11. If $f: X \to Y$ is a homotopy equivalence, then $f_*: H_*(X) \to H_*(Y)$ is an isomorphism.

Corollary 1.12. If X is contractible, then

$$H_i(X) \cong \begin{cases} \mathbb{Z} & i = 0, \\ 0 & i \neq 0. \end{cases}$$

1.4 Subdivision

1.4.1 Some Homological Algebra

Lemma 1.13 (Snake Lemma/Long exact sequence of Homology). Let

$$0 \to A \xrightarrow{\iota} B \xrightarrow{\pi} C \to 0$$

be a short exact sequence (SES) of chain complexes. Then there is a long exact sequence (LES) in homology:

$$\cdots \to H_{i+1}(C) \xrightarrow{\partial} H_i(A) \xrightarrow{\iota_*} H_i(B) \xrightarrow{\pi_*} H_i(C) \xrightarrow{\partial} H_{i-1}(C) \to \cdots$$

Proof. ∂ is defined as follows: Let $[c] \in H_i(C)$, so $c \in C_i$ and dc = 0. Then there is a $b \in B_i$ such that $\pi(b) = c$. As $\pi(db) = d(\pi b) = dc = 0$, we have $db \in \ker \pi$, so there is $a \in A_{i-1}$ with $\iota(a) = db$. Then $\iota(da) = d\iota(a) = d(db) = 0$, so da = 0 as ι is injective. Define $\partial[a] = [c] \in H_{i-1}(A)$. That this is well-defined and gives the exact sequence is a straightforward diagram chase...

Corollary 1.14 (LES of a pair). Let (X, A) be a pair of spaces. Then there is a long exact sequence:

$$\cdots \to H_{i+1}(X,A) \xrightarrow{\partial} H_i(A) \xrightarrow{\iota_*} H_i(X) \xrightarrow{\pi_*} H_i(X,A) \xrightarrow{\partial} H_{i-1}(A) \to \cdots$$

Example. For $p \in X$, we have $H_i(\{p\}) = 0$ for $i \neq 0$ and $H_i(\{p\}) = \mathbb{Z}$ for i = 0 in which case it is generated by $[\sigma_p]$ where $\sigma_p : \Delta^0 \to X, * \mapsto p$. So the LES of the pair $(X, \{p\})$ is:

$$\dots \to 0 = H_{i+1}(\{p\}) \to H_{i+1}(X) \to H_{i+1}(X, \{p\}) \to H_i(\{p\}) = 0 \to \dots$$

for i > 0. Hence $H_{i+1}(X) \to H_{i+1}(X, \{p\})$ is an isomorphism. At i = 0 we have:

$$0 = H_1(\{p\}) \to H_1(X) \to H_1(X, \{p\}) \xrightarrow{\partial_1} \underbrace{H_0(\{p\})}_{\cong \mathbb{Z}} \xrightarrow{i_*} H_0(X) \to H_0(X, \{p\}) \to 0$$

Note that $i_*(n[\sigma_p]) = n[\sigma_p] \neq 0$ for $n \neq 0$, so i_* is injective and thus $\partial_1 = 0$. Hence also $H_1(X) \to H_1(X, \{p\})$ is an isomorphism. We know that $H_0(X) = \bigoplus_{\alpha} \mathbb{Z}$ where α runs through the set of path components of X and i_* maps onto the factor \mathbb{Z} corresponding to the path component of p, hence $H_0(X) = H_0(X, \{p\}) \oplus \langle [\sigma_p] \rangle$. This discussion gives:

Corollary 1.15. For $A = \{p\}$ a point in X we have

$$H_i(X) \cong \begin{cases} H_i(X,p) & i > 0, \\ H_0(X,p) \oplus \mathbb{Z} & i = 0 \end{cases}$$

Lemma 1.16. $\widetilde{H}_i(X) \cong H_i(X, p)$ for all $i \ge 0$.

Proof. Define $\widetilde{C}_{\bullet}(X,p) = \widetilde{C}_{\bullet}(X)/\widetilde{C}_{\bullet}(p) \cong C_{\bullet}(X)/C_{\bullet}(p) = C_{\bullet}(X,p)$, i.e. $\widetilde{H}_{*}(X,p) = H_{*}(X,p)$. We have a SES

$$0 \to \widetilde{C}_{\bullet}(p) \to \widetilde{C}_{\bullet}(X) \to \widetilde{C}_{\bullet}(X,p) \to 0$$

which gives a LES

$$\dots \to \widetilde{H}_i(p) \to \widetilde{H}_i(X) \to \widetilde{H}_i(X, p) \to \widetilde{H}_{i-1}(p) \to \dots$$

We know $\widetilde{H}_*(p) = 0$, so $\widetilde{H}_i(X) \cong \widetilde{H}_i(X, p) \cong H_i(X, p)$.

1.4.2 Subdivision

Suppose $\mathcal{U} = \{U_{\alpha} \mid \alpha \in A\}$ is an open cover of X. Define

 $C_k^{\mathcal{U}}(X) = \langle \sigma \mid \sigma : \Delta^k \to X \text{ such that im } \sigma \in U_\alpha \text{ for some } \alpha \rangle.$

If $\operatorname{im} \sigma \in U_{\alpha}$, then $\operatorname{im} \sigma \circ F_{\hat{j}} \subseteq U_{\alpha}$, so $d\sigma \in C_{k-1}^{\mathcal{U}}(X)$, i.e. $C_{*}^{\mathcal{U}}(X)$ is a subcomplex of $C_{*}(X)$. Let $i: C_{*}^{\mathcal{U}}(X) \to C_{*}(X)$ be the inclusion.

Lemma 1.17 (Subdivision lemma). If \mathcal{U} is an open cover of X, then

$$i_*: H^{\mathcal{U}}_*(X) \to H_*(X)$$

is an isomorphism.

Proof (idea only). (1) Define natural maps $B_n : S_*(\Delta^n) \to C_*(\Delta^n), H_n : C_*(\Delta^n) \to C_{*+1}(\Delta^n)$. B_n is defined inductively via barycentric subdivision. They satisfy $dH_n + H_n d = B_n - \varphi_{\mathrm{id}_{\Delta^n}}$.

Barycentric subdivision of Δ^n for n = 1, 2.

- (2) Use B_n, H_n to define $B : C_*(X) \to C_*(X), H : S_*(X) \to C_*(X)$ with $dH + Hd = B \mathrm{id}_{C_*(X)}$.
- (3) If $c \in C_k(X)$ and \mathcal{U} is an open cover of X, then there exists N such that $B^N c \in C^{\mathcal{U}}_*(X)$, so $[c] = [B^N c]$, so i_* is surjective. And similarly one shows that i_* is injective.

See handout for the details.

1.4.3 Mayer-Vietoris Sequence

Suppose $U_1, U_2 \subseteq X$ are open, $U_1 \cup U_2 = X$, so $\{U_1, U_2\} = \mathcal{U}$ is an open cover of X. We then have a commutative diagram of inclusions:

Proposition 1.18. There is a SES

$$0 \to C_*(U_1 \cap U_2) \xrightarrow{i} C_*(U_1) \oplus C_*(U_2) \xrightarrow{j} C^{\mathcal{U}}_*(X) \to 0$$

where $i = \begin{bmatrix} i_{1\#} \\ i_{2\#} \end{bmatrix}$, $j = \begin{bmatrix} j_{1\#} - j_{2\#} \end{bmatrix}$.

Proof. It is clear that $i_{1\#}, i_{2\#}$ are injective, so *i* is injective.

Exactness at $C_*(U_1) \oplus C_*(U_2)$: We have $j \circ i = j_{1\#}i_{1\#} - j_{2\#}i_{2\#} = 0$. Suppose j(a, b) = 0, $a = \sum a_i \sigma_i, a_i \neq 0, \sigma_i \neq \sigma_j$ for $i \neq j$, im $\sigma_i \subseteq U_1$ and similarly $b = \sum b_j \tau_j$. But if j(a, b) = 0, then $\sum a_i \sigma_i = \sum b_j \tau_j$ which can only happen if (after reordering indices) if $a_i = b_i, \sigma_i = \tau_i$, so im $\sigma_i \subseteq U_1 \cap U_2$, so if $c = \sum a_i \sigma_i \in C_*(U_1 \cap U_2)$, then i(c) = (a, b).

Exactness at $C^{\mathcal{U}}_*(X)$: If $c \in C^{\mathcal{U}}_k(X)$, we can write $c = \sum a_i \sigma_i + \sum b_j \tau_j$ where $\operatorname{im} \sigma_i \subseteq U_1, \operatorname{im} \tau_j \subseteq U_2$, so c = j(a, -b) and j is surjective. \Box

By the Subdivision Lemma we have $H^{\mathcal{U}}_*(X) = H_*(X)$, hence we obtain:

Corollary 1.19 (Mayer-Vietoris Sequence). If $U_1, U_2 \subseteq X$ are open, $U_1 \cup U_2 = X$, there is a LES

$$\dots \xrightarrow{\partial} H_i(U_1 \cap U_2) \xrightarrow{i} H_i(U_1) \oplus H_i(U_2) \xrightarrow{j} H_i(X) \xrightarrow{\partial} H_{i-1}(U_1 \cap U_2) \to \dots$$

Note that

$$0 \to \widetilde{C}_*(U_1 \cap U_2) \xrightarrow{i} \widetilde{C}_*(U_1) \oplus \widetilde{C}_*(U_2) \xrightarrow{j} \widetilde{C}^{\mathcal{U}}_*(X) \to 0$$

is also exact: It only differs from the non-reduced complex in degree -1 where the sequence becomes

$$0 \to \mathbb{Z} \xrightarrow{\begin{bmatrix} 1 \\ 1 \end{bmatrix}} \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{\begin{bmatrix} 1 & -1 \end{bmatrix}} \mathbb{Z} \to 0$$

Hence we also get a reduced version of the Mayer-Vietoris sequence:

$$\dots \xrightarrow{\partial} \widetilde{H}_i(U_1 \cap U_2) \xrightarrow{i} \widetilde{H}_i(U_1) \oplus \widetilde{H}_i(U_2) \xrightarrow{j} \widetilde{H}_i(X) \xrightarrow{\partial} \widetilde{H}_{i-1}(U_1 \cap U_2) \to \dots$$

1.4.4 Homology of S^n

Proposition 1.20.

$$\widetilde{H}_i(S^n) \cong \begin{cases} \mathbb{Z} & i = n, \\ 0 & i \neq n \end{cases}$$

Proof. By induction on n. If n = 0, we have $S^0 = \{\pm 1\}$, so

$$H_*(S^0) = H_*(\{1\}) \oplus H_*(\{-1\}) = \begin{cases} \mathbb{Z} \oplus \mathbb{Z} & i = 0, \\ 0 & i \neq 0, \end{cases}$$

and therefore $\widetilde{H}_i(S^0) \cong \begin{cases} \mathbb{Z} & i = 0, \\ 0 & i \neq 0. \end{cases}$

In general, let $U_+ = S^n \setminus \{(-1, 0, \dots, 0)\}, U_- = S^n \setminus \{1, 0, \dots, 0\}$. Note that $U_{\pm} \cong \mathbb{R}^n \cong D^{n\circ}$ by stereographic projection, so contractible, while $U_+ \cap U_- = S^n \setminus \{(\pm 1, 0, \dots, 0)\} \cong I^{\circ} \times S^{n-1}$ is homotopic to S^{n-1} via

$$p: U_+ \cap U_- \longrightarrow S^{n-1},$$

$$(x_1, \dots, x_{n+1}) \longmapsto \frac{1}{\sqrt{x_2^2 + \dots + x_{n+1}^2}} (x_2, x_3, \dots, x_{n+1}).$$

The MV-sequence is

$$\cdots \to \widetilde{H}_i(U_1) \oplus \widetilde{H}_i(U_2) \to \widetilde{H}_i(S^n) \xrightarrow{\partial} \widetilde{H}_{i-1}(U_+ \cap U_-) \to \widetilde{H}_{i-1}(U_+) \oplus \widetilde{H}_{i-1}(U_-) \to \dots$$

As the U_{\pm} are contractible we get that ∂ is an isomorphism. Hence $\widetilde{H}_i(S^n) \xrightarrow{\partial} \widetilde{H}_{i-1}(U_+ \cap U_i) \xrightarrow{p_*} \widetilde{H}_{i-1}(S^{n-1})$ is an isomorphism. By induction we are done.

Define $[S^n]$, the preferred generator of $\widetilde{H}_n(S^n) \cong \mathbb{Z}$, by $[S^0] = [\sigma_1 - \sigma_{-1}]$ and then inductively by $p_*(\partial[S^n]) = [S^{n-1}]$ where $p_* \circ \partial$ is the isomorphism $\widetilde{H}_i(S^n) \xrightarrow{\partial} \widetilde{H}_{i-1}(U_+ \cap U_-) \xrightarrow{p_*} \widetilde{H}_{i-1}(S^{n-1})$.

Lemma 1.21 (Naturality of the connecting homomorphism). Suppose

is a commuting diagram of chain complexes with exact rows. Then we have commuting diagram of LES

$$\dots \longrightarrow H_i(B) \longrightarrow H_i(C) \xrightarrow{\partial} H_{i-1}(A) \longrightarrow \dots$$
$$\downarrow_{f_{B*}} \qquad \qquad \downarrow_{f_{C*}} \qquad \qquad \downarrow_{f_{A*}}$$
$$\dots \longrightarrow H_i(B') \longrightarrow H_i(C') \xrightarrow{\partial'} H_{i-1}(A') \longrightarrow \dots$$

Proof. Straightforward diagram chase.

Example. Suppose $f : X \to Y$, $Y = U_1 \cup U_2$, $U_i \subseteq Y$ open. Let $V_i = f^{-1}(U_i)$, so $X = V_1 \cup V_2$, $V_i \subseteq X$ open. Then $f_{\#}$ induces a map of SES

and hence we get a corresponding map of MV sequences.

Example. Define $r_n: S^n \to S^n, (x_1, \ldots, x_{n+1}) \mapsto (x_1, \ldots, x_n, -x_{n+1})$. Let $S^n = U_+ \cup U_-$ as before. Then $r: U_+ \to U_+, U_- \to U_-$.

Proposition 1.22. $r_{n*}: \widetilde{H}_n(S^n) \to \widetilde{H}_n(S^n) \mod [S^n]$ to $-[S^n]$.

Proof. By induction on *n*. For n = 0 we have $[S^0] = [\sigma_1 - \sigma_{-1}]$, so $r_{0*}[S^0] = [r_0\sigma_1 - r_0\sigma_{-1}] = [\sigma_{-1} - \sigma_1] = -[S^0]$ since $r_0(\pm 1) = \pm 1$.

In general, r_n induces a map of MV sequences $(S^n, U_+, U_-) \to (S^n, U_+, U_-)$:

$$\begin{array}{cccc} 0 & \longrightarrow & \widetilde{H}_{*}(S^{n}) & \stackrel{\partial}{\longrightarrow} & \widetilde{H}_{*-1}(U_{+} \cap U_{-}) & \longrightarrow & 0 \\ & & & & \downarrow^{r_{n*}} & & \downarrow^{r_{n*}} \\ 0 & \longrightarrow & \widetilde{H}_{*}(S^{n}) & \stackrel{\partial}{\longrightarrow} & \widetilde{H}_{*-1}(U_{+} \cap U_{-}) & \longrightarrow & 0 \end{array}$$

The homotopy equivalence

$$p: U_+ \cap U_- \longrightarrow S^{n-1},$$

$$(x_1, \dots, x_{n+1}) \longmapsto \frac{1}{\sqrt{x_2^2 + \dots + x_{n+1}^2}} (x_2, \dots, x_{n+1}),$$

satisfies $p \circ r_n = r_{n-1} \circ p$. So we get a commuting diagram where all maps are isomorphisms:

$$\widetilde{H}_{*}(S^{n}) \xrightarrow{\partial} \widetilde{H}_{*-1}(U_{+} \cap U_{-}) \xrightarrow{p_{*}} H_{*-1}(S^{n-1}) \\
\downarrow^{r_{n_{*}}} \qquad \downarrow^{r_{n_{*}}} \qquad \downarrow^{r_{n-1}} \\
\widetilde{H}_{*}(S^{n}) \xrightarrow{\partial} \widetilde{H}_{*-1}(U_{+} \cap U_{-}) \xrightarrow{p_{*}} \widetilde{H}_{*-1}(S^{n-1})$$

From induction hypothesis we then get $r_{n*}[S^n] = -[S^n]$.

Corollary 1.23. If $n \ge 1$ and $v \in S^n$, let $r_v : S^n \to S^n$ be reflection across the plane perpendicular to v. Then $r_{v*}[S^n] = -[S^n]$.

Proof. S^n is path connected, so if γ is a path from v to e_{n+1} , $r_{\gamma(v)}$ is a homotopy from r_v to $r_{e_{n+1}} = r_n$, so $r_{v*} = r_{n*}$.

1.5 Excision and Collapsing a Pair

Definition. Suppose $A \subseteq Z$. A is a deformation retract of Z if there exists a map $p: (Z, A) \to (A, A)$ such that $p \circ i = 1_{(A,A)}$ and $i \circ p: (Z, A) \to (Z, A) \sim 1_{(Z,A)}$ as a map of pairs where $i: (A, A) \to (Z, A)$ is the inclusion.

Note that if A is a deformation retract of Z, then in particular $Z \sim A$.

Example. $Y \times 0$ is a deformation retract of $Y \times D^{n\circ}$.

Definition. A pair (X, A) is a good pair if there exists $U \subseteq X$ open such that $A \subseteq U$, A is a deformation retract of U and $\overline{A} \subseteq U$.

Examples.

- $X = S^2, A = \{n, s\}$ is a good pair,
- $Y = T^2 = S^1 \times S^1, B = S^1 \times 1 \subseteq Y$ is a good pair.
- More generally, if M is a manifold, N is a submanifold, then (M, N) is a good pair.
- (\mathbb{R}, \mathbb{Q}) is not a good pair.

Theorem 1.24. Suppose (X, A) is a good pair, and $\pi : (X, A) \to (X/A, A/A)$ the quotient map. Then

$$\pi_*: H_*(X, A) \to H_*(X/A, A/A) \simeq H_*(X/A)$$

is an isomorphism.

Examples.

• $X = S^2, A = \{n, s\}, Z = X/A$. By the Theorem $\widetilde{H}_*(Z) \simeq H_*(X, A)$. We compute

$$Z = S^2 / \{n, s\}$$

 $H_*(X, A)$ using the LES of the pair (X, A). Note that

$$\widetilde{H}_*(S^2) = \begin{cases} \mathbb{Z} & *=2, \\ 0 & *\neq 2, \end{cases} \qquad \qquad \widetilde{H}_*(A) = \begin{cases} \mathbb{Z} & *=0, \\ 0 & *\neq 0. \end{cases}$$

So the LES is

$$0 \to \mathbb{Z} \to \widetilde{H}_2(X, A) \to 0 \to 0 \to \widetilde{H}_1(X, A) \to \mathbb{Z} \to 0 \to \widetilde{H}_0(X, A) \to 0$$

Therefore $\widetilde{H}_*(Z) = \begin{cases} \mathbb{Z} & * = 1, 2, \\ 0 & * \neq 1, 2. \end{cases}$

• $Y = S^1 \times S^1, B = S^1 \times 1$. Note that $Y/B \cong Z$. For example $Z = (S^1 \times [-1, 1])/(S^1 \times$

 $Y/B \cong Z$

 S^0), and we have quotient maps $S^1 \times [-1, 1] \to S^2 \to Z$ and $S^1 \times [-1, 1] \to T^2 \to Z$. Since we know $H_*(B)$ and $H_*(Z) \simeq H_*(Y, B)$, we can determine $H_*(Y)$: We get the LES

$$0 \to \widetilde{H}_2(T^2) \to \mathbb{Z} \to \mathbb{Z} \xrightarrow{i_{1*}} \widetilde{H}_1(T^2) \to \mathbb{Z} \to 0 \to \widetilde{H}_0(T^2) \to 0$$

Here $i_1: S^1 \to Y$ is the inclusion on the first factor. It has the retract $\pi_1: T^2 \to S^1$, i.e. $\pi_1 \circ i_1 = \operatorname{id}_{S^1}$, hence $\pi_{1*} \circ i_{1*} = \operatorname{id}_{H_*(S^1)}$, so i_{1*} is injective. From this we deduce that $\widetilde{H}_2(T^2) \cong \mathbb{Z}$ and $\widetilde{H}_1(T^2) \cong \mathbb{Z} \oplus \mathbb{Z}$. Exercise: $H^1(T^2)$ is generated by $i_{1*}[S^1] = [S^1] \times 1, i_{2*}[S^1] = 1 \times [S^1]$

Lemma 1.25 (Five Lemma). Suppose

$$\dots \longrightarrow A_{i+2} \longrightarrow A_{i+1} \longrightarrow A_i \longrightarrow A_{i-1} \longrightarrow A_{i-2} \longrightarrow \dots$$
$$\downarrow f_{i+2} \qquad \qquad \downarrow f_{i+1} \qquad \qquad \downarrow f_i \qquad \qquad \downarrow f_{i-1} \qquad \qquad \downarrow f_{i-2} \\\dots \longrightarrow B_{i+2} \longrightarrow B_{i+1} \longrightarrow B_i \longrightarrow B_{i-1} \longrightarrow B_{i-2} \longrightarrow \dots$$

is a commuting diagram of R-modules with exact rows. If $f_{i\pm 1}, f_{i\pm 2}$ are isomorphisms, then also f_i is an isomorphism.

Proof. Straightforward diagram chase.

Suppose $\mathcal{U} = \{U_j \mid j \in J\}$ is an open cover of X. If $A \subseteq X$, $\mathcal{U}_A := \{U_j \cap A \mid j \in J\}$ is an open cover of A and $C^{\mathcal{U}_A}_*(A) \subseteq C^{\mathcal{U}}_*(X)$. Define $C^{\mathcal{U}}_*(X,A) := C^{\mathcal{U}}_*(X)/C^{\mathcal{U}_A}_*(A)$. The map $i : C^{\mathcal{U}}_*(X) \to C_*(X)$ induces $i : C^{\mathcal{U}}_*(X,A) \to C_*(X,A)$.

Lemma 1.26. $i_*: H^{\mathcal{U}}_*(X, A) \to H_*(X, A)$ is an isomorphism.

Proof. There is a commutative diagram of SES's:

So we get a commutative diagram of LES's:

$$\begin{aligned} H^{\mathcal{U}_A}_*(A) & \longrightarrow H^{\mathcal{U}}_*(X) & \longrightarrow H^{\mathcal{U}}_*(X,A) & \longrightarrow H^{\mathcal{U}_A}_{*-1}(A) & \longrightarrow H^{\mathcal{U}}_{*-1}(X) \\ & \downarrow_{i_*} & \downarrow_{i_*} & \downarrow_{i_*} & \downarrow_{i_*} & \downarrow_{i_*} \\ & H_*(A) & \longrightarrow H_*(X) & \longrightarrow H_*(X,A) & \longrightarrow H_{*-1}(A) & \longrightarrow H_{*-1}(X) \end{aligned}$$

The four red arrows are isomorphisms by the subdivision lemma, so the blue one also is. $\hfill\square$

Theorem 1.27 (Excision). Suppose $B \subseteq A \subseteq X$, $\overline{B} \subseteq \text{Int } A$, and let $j : (X \setminus B, A \setminus B) \rightarrow (X, A)$ be the inclusion. Then

$$j_*: H_*(X \setminus B, A \setminus B) \to H_*(X, A)$$

is an isomorphism

Proof. $\overline{B} \subseteq \text{Int } A$, so $\mathcal{U} = \{\text{Int } A, X \setminus \overline{B}\}$ is an open cover of X. Notation: If $\sigma : \Delta^k \to X$, write $\sigma \triangleleft \mathcal{U}$ if im $\sigma \subseteq U$ for some $U \in \mathcal{U}$.

Then

$$C^{\mathcal{U}}_*(X) = \langle \sigma \mid \sigma \triangleleft \mathcal{U} \rangle$$

= $\langle \sigma \mid \sigma \triangleleft \mathcal{U}, \text{ im } \sigma \cap B = \emptyset \rangle \oplus \langle \sigma \mid \sigma \triangleleft \mathcal{U} \text{ and } \text{ im } \sigma \cap B \neq \emptyset \rangle$
= $C^{\mathcal{U}}_*(X \setminus B) \oplus M_B$

where $M_B = \langle \sigma \mid \text{im } \sigma \subseteq A \text{ and } \text{im } \sigma \cap B \neq \emptyset \rangle$. Similarly $C_*^{\mathcal{U}_A}(A) = C_*^{\mathcal{U}_A \setminus B}(A \setminus B) \oplus M_B$. Now if $C' \subseteq C$, then the inclusion $C/C' \to (C \oplus M)/(C' \oplus M)$ is an isomorphism. So taking $C = C_*^{\mathcal{U}}(X \setminus B), C' = C_*^{\mathcal{U}_A \setminus B}(A \setminus B)$ we get that $j_{\#} : C_*^{\mathcal{U}}(X \setminus B)/C_*^{\mathcal{U}_A \setminus B}(A \setminus B) \to C_*^{\mathcal{U}}(X)/C_*^{\mathcal{U}_A}(A)$ is an isomorphism, i.e. $j_{\#} : C_*^{\mathcal{U}}(X \setminus B, A \setminus B) \cong C_*^{\mathcal{U}}(X, A)$, so $j_* : H_*^{\mathcal{U}}(X \setminus B, A \setminus B) \cong H_*^{\mathcal{U}}(X, A)$.

There is a commuting square

$$H^{\mathcal{U}}_{*}(X \setminus B, A \setminus B) \xrightarrow{j_{*}} H^{\mathcal{U}}_{*}(X, A)$$
$$\downarrow^{i_{*}} \qquad \qquad \qquad \downarrow^{i_{*}}$$
$$H_{*}(X \setminus B, A \setminus B) \xrightarrow{j_{*}} H_{*}(X, A)$$

The vertical maps and top map are isomorphisms, thus so is the bottom map.

Proposition 1.28 (LES of a triple). Suppose $Z \subseteq Y \subseteq X$. Then there is a LES:

$$\dots \xrightarrow{\partial} H_*(Y,Z) \xrightarrow{j_{1*}} H_*(X,Z) \xrightarrow{j_{2*}} H_*(X,Y) \xrightarrow{\partial} H_{*-1}(Y,Z) \to \dots$$

where $j_1: (Y, Z) \to (X, Z), j_2: (X, Z) \to (X, Y)$ are inclusions.

Proof. There is a short exact sequence

$$0 \to C_*(Y, Z) \to C_*(X, Z) \to C_*(X, Y) \to 0$$

and the sequence in the claim is the associated long exact sequence.

Lemma 1.29. If A is a deformation retract of U, $U \subseteq X$ and $j : (X, A) \to (X, U)$ the inclusion, then $j_*: H_*(X, A) \to H_*(X, U)$ is an isomorphism.

Proof. Let $i: A \to U$ be the inclusion. By definition it is a homotopy equivalence, hence $i_*: H_*(A) \to H_*(U)$ is an isomorphism and so the LES of the pair (U, A) shows that $H_*(U, A) = 0$. Then the LES of the triple (X, U, A) gives

$$0 = H_*(U, A) \to H_*(X, A) \xrightarrow{j_*} H_*(X, U) \to H_{*-1}(U, A) = 0$$

so j_* is an isomorphism.

Proof of Theorem 1.24. There is a commutative diagram

$$H_*(X - A, U - A) \xrightarrow{j_*} H_*(X, U) \xleftarrow{i_*} H_*(X, A)$$

$$\downarrow^{\pi_{1*}} \qquad \qquad \downarrow^{\pi_{2*}} \qquad \qquad \downarrow^{\pi_{3*}}$$

$$H_*(X/A - A/A, U/A - A/A) \xrightarrow{j_*} H_*(X/A, U/A) \xleftarrow{i_*} H_*(X/A, A/A)$$

The maps j_* are isomorphisms by excision, the i_* are isomorphisms by the lemma (exercise: A/A is deformation retract of U/A). π_{1*} is induced by a homeomorphism $(X-A, U-A) \rightarrow$ (X/A - A/A, U/A - A/A), hence an isomorphism. Then π_{2*} is an isomorphism and finally also π_{3*} is an isomorphism.

Definition. A space X is an n-manifold if it is metrizable (in particular Hausdorff and first-countable) and every $x \in X$ has an open neighborhood U_x homeomorphic to \mathbb{R}^n .

Proposition 1.30. If X is an n-manifold and $x \in X$, then

$$H_*(X, X \setminus x) \cong \begin{cases} \mathbb{Z} & * = n, \\ 0 & * \neq n. \end{cases}$$

Proof. Choose $U_x \subseteq X$ as above with $U_x \cong \mathbb{R}^n, x \mapsto 0$. Then by excision and Lemma 1.29:

$$H_*(X, X \setminus p) \cong H_*(D^n, D^n \setminus 0) \cong H_*(D^n, S^{n-1}).$$

The LES of (D^n, S^{n-1}) yields $\widetilde{H}_*(D^n, S^{n-1}) = \widetilde{H}_{*-1}(S^{n-1})$ and we are done.

Corollary 1.31. If M and N are m and n-manifolds resp. and $M \cong N$, then n = m.

2 Cellular Homology

2.1 Degrees of Maps $f: S^n \to S^n$

Recall that $H_n(S^n) \cong \mathbb{Z}$ (n > 0). It is generated by $[S^n]$. So if $f : S^n \to S^n$, then $f_*[S^n] = k[S^n]$ for some (unique) $k \in \mathbb{Z}$.

Definition. If $f: S^n \to S^n$ with $f_*[S^n] = k[S^n]$, $k =: \deg f$ is the degree of f.

Properties:

- (1) $(1_{S^n})_* = 1_{H_*(S^n)}$, so deg $1_{S^n} = 1$
- (2) If $f_0, f_1: S^n \to S^n$ are homotopic, then $f_{0*} = f_{1*}$, so deg $f_0 = \deg f_1$.
- (3) If $f, g: S^n \to S^n$, then deg $f \deg g = \deg(f \circ g)$.
- (4) If $f: S^n \to S^n$ is a homeomorphism, then deg $f = \pm 1$. We say f is orientation preserving if deg f = 1, otherwise orientation reversing.
- (5) If $r_v: S^n \to S^n$ is the reflection in v^{\perp} , then deg $r_v = -1$ (Corollary 1.23)
- (6) If $A: S^n \to S^n, x \mapsto -x$ is the antipodal map, then $A = r_{e_1} \circ r_{e_2} \circ \cdots \circ r_{e_{n+1}}$, so $\deg A = (-1)^{n+1}$. In particular $A \not\sim 1_{S^n}$ if n is even.

2.1.1 Local Degree

Let $p \in S^n$. Then $S^n - p \cong D^{n^\circ}$ is contractible, so $\pi_* : \widetilde{H}_n(S^n) \to H_n(S^n, S^n - p)$ is an isomorphism. Define $[S^n, S^n - p] \in H_n(S^n, S^n - p)$ as the image of $[S^n]$ under π_* .

If $U \subseteq S^n$ is open, $p \in U$, let $B = S^n \setminus U$. B is closed and $\overline{B} \subseteq \text{Int}(S^n - p)$. Then $(S^n - B, S^n - p - B) = (U, U - p)$, so by excision

$$j_*: H_n(U, U-p) \to H_n(S^n, S^n-p)$$

is an isomorphism. Define [U, U - p] to be the preimage of $[S^n, S^n - p]$ under j_* .

Observe: If $p \in U' \subseteq U$, we have a commutative diagram:

So [U', U' - p] gets mapped to [U, U - p] under ι_* .

Suppose $f: S^n \to S^n$ and $f^{-1}(p) = \{q_1, \ldots, q_r\}$ is finite. As S^n is Hausdorff, we can find $U_i \subseteq S^n$ open such that $q_i \in U_i$ and $U_i \cap U_j = \emptyset$ for $i \neq j$. Then $f: (U_i, U_i - q_i) \to (S^n, S^n - p)$. Then $f_*[U_i, U_i - q_i] = k[S^n, S^n - p]$ for some $k \in \mathbb{Z}$.

Definition. Under the above hypotheses we define $\deg_{q_i} f := k$ to be the local degree of f at q_i .

Lemma 2.1. The definition of the local degree does not depend on the choice of U_i .

Proof. Suppose $q_i \in U'_i \subseteq U_i$ and $q_i \in U'_i$. Then

$$H_n(U_i, U_i - q_i) \xrightarrow{f_*} H_n(S^n, S^n - p)$$

$$i_* \uparrow \qquad f'_* \rightarrow H_n(U'_i, U'_i - q_i)$$

commutes. We have $i_*[U'_i, U'_i - q_i] = [U_i, U_i - q_i]$, so deg $f_* = \deg f'_*$. In general, given open sets U_i, U'_i containing q_i , consider $U_i \cap U'_i \subseteq U_i, U'_i$ and use above to see that the degrees defined using $U_i, U'_i, U_i \cap U'_i$ are all the same.

Let $V = \coprod_i U_i \subseteq S^n$. By excision we have an isomorphism $j_* : H_n(V, V - f^{-1}(p) \xrightarrow{\simeq} H_n(S^n, S^n - f^{-1}(p))$. We also know that $H_n(V, V - f^{-1}(p)) = \bigoplus_{i=1}^r H_n(U_i, U_i - q) \simeq \mathbb{Z}^r$ and the $[U_i, U_i - q_i]$ form a basis of this group.

Lemma 2.2. The map

$$\widetilde{H}_n(S^n) \to H_n(S^n, S^n - f^{-1}(p)) \cong \bigoplus_{i=1}^r H_n(U_i, U_i - q_i)$$

is given by $[S^n] \mapsto \sum_{i=1}^r [U_i, U_i - q_i].$

Proof. There is a commutative diagram:

$$H_n(S^n, S^n - f^{-1}(p)) \longrightarrow H_n(S^n, S^n - q_j)$$

$$\cong \uparrow \qquad \cong \uparrow$$

$$H_n(V, V - f^{-1}(p)) \longrightarrow H_n(V, V - q_j) \xrightarrow{\simeq} H_n(U_j, U_j - q_j)$$

The vertical maps are isomorphisms, so the diagram still commutes if we reverse those

arrows. Now consider the following diagram:

Here π_j is the projection onto the *j*-th component. The diagram is still commutative (exercise: check the bottom triangle). Then $\alpha([S^n]) = j_*^{-1}[S^n, S^n - p] = [U_j, U_j - q_j]$, so $\pi_j\beta[S^n] = \alpha[S^n] = [U_j, U_j - q_j]$, hence $\beta[S^n] = \sum_j [U_j, U_j - q_j]$.

Theorem 2.3. Suppose $f: S^n \to S^n$, $f^{-1}(p) = \{q_1, \ldots, q_r\}$ as above. Then deg $f = \sum_{i=1}^r \deg_{q_i} f$.

Proof. We have a commutative diagram:

$$H_n(S^n) \xrightarrow{f_*} H_n(S^n)$$

$$\downarrow \qquad \qquad \downarrow$$

$$H_n(S^n, S^n - f^{-1}(p)) \xrightarrow{f_*} H_n(S^n, S^n - p)$$

$$\downarrow^{j_*^{-1}} \xrightarrow{\oplus f_{i_*}}$$

$$\bigoplus H_n(U_i, U_i - q_i)$$

Following the different paths, we see that the image of $[S^n]$ in $H_n(S^n, S^n - p)$ is both $\deg f[S^n, S^n - p]$ and $\sum f_{i*}[U_i, U_i - q_i] = (\sum \deg_{q_i} f)[S^n, S^n - p]$, so the result follows. \Box

Example. Let $f: S^1 \to S^1, z \mapsto z^n$. Then $f^{-1}(1) = \{1, \omega, \dots, \omega^{n-1}\}$ where $\omega = e^{2\pi i/n}$. Consider the homeomorphism $\varphi_k: S^1 \to S^1, z \mapsto \omega^k z$. Note that $\varphi_k \sim 1_{S^1}$. Let $U_k = \phi_k(U_0)$ where U_0 is a small neighborhood of 1. Then $\varphi_{k*}[U_0, U_0 - 1] = [U_k, U_k - \omega^k]$ and $f \circ \varphi_k = f$, so $f_*[U_k, U_k - \omega_k] = f_*(\varphi_{k*}[U_0, U_0 - 1]) = f_*[U_0, U_0 - 1]$. So $\deg_{\omega^k} f = \deg_1 f = 1$ (the last equality is an exercise). Therefore $\deg f = \sum_{i=0}^{n-1} 1 = n$.

2.1.2 Some Intuition

If $f: S^n \to X$, then $f_*[S^n] \in H_n(X)$ and if $f_0 \sim f_1$, then $f_{0*}[S^n] = f_{1*}[S^n]$. This can be used to define the "Hurewicz homomorphism":

$$\Phi: \pi_n(X, *) \longrightarrow H_n(X),$$

$$f \longmapsto f_*[S^n]$$

In general, this map is quite far from being an isomorphism. Example: $H_2(T^2) \simeq \mathbb{Z}$. But if $f: S^2 \to T^2$, we can factor it through the universal covering $\pi: \mathbb{R}^2 \to T^2$, i.e. $f = \hat{f} \circ \pi$ for some $\hat{f}: S^2 \to \mathbb{R}^2$. Then $f_*[S^2] = \pi_* \hat{f}_*[S^2] = \pi_*(0) = 0$, since $H_2(\mathbb{R}^2) = 0$.

Better model: If M is a closed (i.e. without boundary and compact) connected n-manifold, we will show $H_n(M) \simeq \mathbb{Z} = \langle [M] \rangle$ such that the image of [M] under $H_n(M) \to H_n(M, M - *) \simeq \mathbb{Z}$ is a generator. So if $f: M \to X$, we can consider $f_*[M] \in H_n(X)$. If W^{n+1} is a compact n + 1-manifold, $\partial W = \coprod_{i=1}^k M_i$. Then $i: \partial W \to W$ induces $i_*: H_n(\partial W) \to H_n(W)$ with $[\partial W] = \sum_{i=1}^k [M_i] \mapsto 0$. So if $f: W \to X$, then $f_*(\sum_i [M_i]) = 0$.

This is still not an accurate model for H_n , but much better.

2.2 The Cellular Chain Complex

Definition. Suppose $B \subseteq Y$, $f: B \to X$. Then $X \cup_f Y := (X \amalg Y) / \sim$, where \sim is the smallest equivalence relation containing $b \sim f(b)$ for all $b \in B$, is the space obtained by attaching (or gluing) Y to X along f.

If $(Y, B) = (D^k, S^{k-1})$, say $X \cup_f D^k$ is obtained by attaching a k-cell to X.

Attaching a 1- and a 2-cell

Definition. A finite cell complex (fcc) of dimension n is a space X equipped with closed subsets $\emptyset = X_{-1} \subseteq X_0 \subseteq X_1 \subseteq \ldots \subseteq X_n$, such that for each k, X_k is obtained by attaching finitely many k-cells to X_{k-1} , i.e. $X_k \cong X_{k-1} \cup_F \coprod_{\alpha \in A_k} D^k$ where $F : \coprod_{\alpha \in A_k} S^{k-1} \to X_{k-1}$, $F = \coprod_{\alpha \in A_k} f_{\alpha}$, $f_{\alpha} : S^{k-1} \to X_{k-1}$.

 X_k is the k-skeleton of X.

If we drop the finiteness conditions, $X = \bigcup_{k=0}^{\infty} X_k$ and $U \subseteq X$ is open iff $U \cap X_k$ is open for all k, then this is called a CW-complex.

Examples.

- (1) If X is a graph with v vertices and e edges, then X is a fcc with v 0-cells and e 1-cells.
- (2) If X is a fcc with one 0-cell and one k-cell, then $X \cong D^k/S^{k-1} \cong S^k$.

- (3) If X is a simplicial chain complex, |X| is a fcc with one k-cell for each k-dimensional face of X.
- (4) T^2 is a fcc with one 0-cell P, two 1-cells e_1, e_2 and one 2-cell f.

Cell structure of T^2

Definition. If $(X_i, x_i), i \in I$ are pointed spaces, their wedge product is

If X is a fcc with one 0-cell and r k-cells, then $X \simeq \bigvee_{i=1}^{r} S^{k}$.

2.2.1 Projectives Spaces

Definition. The *n*-dimensional complex projective space is $\mathbb{CP}^n = (\mathbb{C}^{n+1} - 0)/\mathbb{C}^*$.

The *n*-dimensional real projective space is $\mathbb{RP}^n = (\mathbb{R}^{n+1} - 0)/\mathbb{R}^*$.

Note that $\mathbb{C}^* = \mathbb{R}_{>0} \times S^1$ and $(\mathbb{C}^{n+1} - 0)/\mathbb{R}_{>0} \simeq S^{2n+1}$, so $\mathbb{CP}^n \cong S^{2n+1}/S^1$ where $\lambda \in S^1$ acts on $z \in S^{2n+1}$ by $\lambda \cdot z = \lambda z$ (inside \mathbb{C}^{n+1}).

Similarly, $\mathbb{RP}^n = S^n/(\mathbb{Z}/2)$.

Definition. The Hopf map $p_n: S^{2n+1} \to \mathbb{CP}^n$ is the projection.

Proposition 2.4. $\mathbb{CP}^n \simeq \mathbb{CP}^{n-1} \cup_{p_{n-1}} D^{2n}$ where $p_{n-1} : S^{2n-1} \to \mathbb{CP}^{n-1}$ is the Hopf map.

Proof. We have maps

$$i_1: \mathbb{CP}^{n-1} \longrightarrow \mathbb{CP}^n$$
$$[z] \longmapsto [z:0]$$
$$i_2: D^{2n} = \{ z \in \mathbb{C}^n : \|z\| \le 1 \} \longrightarrow \mathbb{CP}^n$$
$$z \longmapsto [z: \sqrt{1 - \|z\|^2}]$$

Then $i_2|_{S^{2n-1}} = i_1 \circ p_{n-1}$. So i_1, i_2 glue to give $i : \mathbb{CP}^{n-1} \cup_{p_{n-1}} D^{2n} \to \mathbb{CP}^n$. *i* is a bijection. Indeed, the inverse is given by

$$[z_0:\dots:z_n] \mapsto \begin{cases} (z_0,\dots,z_{n-1}) \in D^{2n} & \text{if } z_n \in \mathbb{R}_{>0}, \|z\| = 1, \\ [z_0:\dots:z_{n-1}] \in \mathbb{CP}^{n-1} & \text{if } z_n = 0. \end{cases}$$

Since the spaces are compact Hausdorff, it follows that i is a homeomorphism.

Consequence: By induction \mathbb{CP}^n is a fcc with one cell of dimension 2i for $0 \le i \le n$ and no other cells.¹ For example, $\mathbb{CP}^1 \simeq S^2$.

The same argument shows $\mathbb{RP}^n \cong \mathbb{RP}^{n-1} \cup_{p_{n-1}} D^n$. So \mathbb{RP}^n is a fcc with 1 cell of dimension i for $0 \leq i \leq n$.

Proposition 2.5.

$$H_*(\mathbb{CP}^n) = \begin{cases} \mathbb{Z} & * = 0, 2, \dots, 2n, \\ 0 & otherwise. \end{cases}$$

Proof. The quotient $\mathbb{CP}^n/\mathbb{CP}^{n-1}$ is a cell complex with one 0-cell (image of \mathbb{CP}^{n-1}) and one 2*n*-cell (image of D^{2n}), so $\mathbb{CP}^n/\mathbb{CP}^{n-1} \cong S^{2n}$. Hence

$$H_*(\mathbb{CP}^n,\mathbb{CP}^{n-1})\simeq \widetilde{H}_*(S^{2n}) = \begin{cases} \mathbb{Z} & *=2n, \\ 0 & \text{otherwise.} \end{cases}$$

By induction we have $H_*(\mathbb{CP}^{n-1}) = 0$ for odd *, hence the LES of $(\mathbb{CP}^n, \mathbb{CP}^{n-1})$ gives us SES

$$0 \to H_i(\mathbb{CP}^{n-1}) \to H_i(\mathbb{CP}^n) \to \widetilde{H}_i(S^{2n}) \to 0.$$

Hence

$$H_*(\mathbb{CP}^n) \cong H_*(\mathbb{CP}^{n-1}) \oplus \widetilde{H}_*(S^{2n})$$

and the claim then follows by induction.

For $H_*(\mathbb{RP}^n)$ we need to work a little bit harder, we will compute it in the next section.

$$\frac{\mathbb{C}^{n+1}-0}{\mathbb{C}-0} = \mathbb{C}^0 + \mathbb{C}^1 + \dots + \mathbb{C}^n,$$

Sadly this doesn't work for \mathbb{RP}^n .

¹This gives rise to the funny-looking formula

2.2.2 Homology of Cell Complexes

Observation: In the LES of (D^k, S^{k-1}) , the map $H_k(D^k, S^{k-1}) \to \widetilde{H}_{k-1}(S^{k-1})$ is an isomorphism as $\widetilde{H}_*(D^k) = 0$. Define $[D^k, S^{k-1}]$ as the preimage of $[S^{k-1}]$.

Suppose X is a fcc. Let A_k be the set of k-cells of X, $X_k = X_{k-1} \cup_{\coprod f_{\alpha}} \coprod_{\alpha \in A_k} D^k$ with $f_{\alpha} : S^{k-1} \to X_{k-1}$. Let $U_{k-1} = X_{k-1} \cup_{\coprod f_{\alpha}} (\coprod_{\alpha \in A_k} D^k - 0)$. Since S^{k-1} is a deformation retract of $D^k - 0$, X_{k-1} is also a deformation retract of U_{k-1} . Hence (X_k, X_{k-1}) is a good pair. Furthermore, $X_k/X_{k-1} \simeq \coprod_{\alpha \in A_k} D^k/\coprod_{\alpha \in A_k} S^{k-1} \cong \bigvee_{\alpha \in A_k} S^k$.²

So

$$H_k(X_k, X_{k-1}) \simeq H_k\big(\prod_{\alpha \in A_k} D^k, \prod_{\alpha \in A_k} S^{k-1}\big) \simeq \bigoplus_{\alpha \in A_k} H_k(D^k, S^{k-1}).$$

Then $H_k(X_k, X_{k-1}) = \bigoplus_{\alpha \in A_k} e_{\alpha} \mathbb{Z}$ where $e_{\alpha} = i_{\alpha*}[D^k, S^{k-1}]$ where $i_{\alpha} : (D^k, S^{k-1}) \to (X_k, X_{k-1}).$

Let $p_{\beta} : \bigvee_{\alpha \in A_k} S^k \to \bigvee_{\alpha \in A_k} S^k / \bigvee_{\alpha \neq \beta} S^k \simeq S^k$. Then $p_{\beta*}$ is the projection onto the factor corresponding to $\langle e_{\beta} \rangle$.

Let $d_k : H_k(X_k, X_{k-1}) \to H_{k-1}(X_{k-1}, X_{k-2})$ be the boundary map in the long exact sequence of the triple (X_k, X_{k-1}, X_{k-2}) .

Lemma 2.6. $d_k = (\pi_{k-1})_* \circ \partial_k$ where $\partial_k : H_k(X_k, X_{k-1}) \to H_{k-1}(X_{k-1})$ is the boundary in the LES of the pair (X_k, X_{k-1}) and $\pi_{k-1} : (X_{k-1}, \emptyset) \to (X_{k-1}, X_{k-2})$.

Proof. Look at the construction of d_k, ∂_k in the Snake Lemma.

Corollary 2.7. $d_k \circ d_{k+1} = 0$.

Proof. $d_k \circ d_{k+1} = (\pi_{k-1})_* \circ \partial_k \circ \pi_{k*} \circ \partial_{k+1}$ and $\partial_k \circ \pi_{k*} = 0$ as they are two consecutive maps in the LES of (X_k, X_{k-1}) .

Definition 2.8. If X is a fcc, $(C_*^{cell}(X), d^{cell}) = (\bigoplus_k H_k(X_k, X_{k-1}), \bigoplus_k d_k)$ is the cellular chain complex of X.

Theorem 2.9. $H_*^{\text{cell}}(X) := H_*(C_*^{\text{cell}}(X)) \simeq H_*(X).$

How to compute $H^{\text{cell}}_*(X)$: We have $C^{\text{cell}}_k(X) = H_k(X_k, X_{k-1}) = \langle e_\alpha \mid \alpha \in A_k \rangle$ and:

Proposition 2.10. $d_k^{\text{cell}}: C_k^{\text{cell}}(X) \to C_{k-1}^{\text{cell}}(X)$ is given by

$$d_k^{\text{cell}}(e_\alpha) = \sum_{\beta \in A_{k-1}} n_{\alpha\beta} e_\beta,$$

²Remark by L.T.: Here and in the following, the homeomorphism $D^k/S^{k-1} \cong S^k$ should probably be chosen such that $[D^k, S^{k-1}]$ corresponds to $[S^k]$ under $H_k(D^k, S^{k-1}) \cong H_k(D^k/S^{k-1}) \cong H_k(S^k)$.

where $n_{\alpha\beta} = \deg p_{\beta} \circ f_{\alpha}$ where

$$p_{\beta} \circ f_{\alpha} : S^{k-1} \to X_{k-1} \to X_{k-1}/X_{k-2} \simeq \bigvee_{\beta \in A_{k-1}} S^{k-1} \xrightarrow{p_{\beta}} S^{k-1}.$$

Proof. $d_k(e_\alpha) = (\pi_{k-1})_* \circ \partial_k(i_{\alpha*}[D^k, S^{k-1}])$. By naturality of the connecting homomorphism this is $(\pi_{k-1})_* \circ i_{\alpha*}(\partial_k[D^k, S^{k-1}]) = (\pi_{k-1})_*i_{\alpha*}[S^{k-1}]) = f_{\alpha*}[S^{k-1}]$. The coefficient of e_β in $f_{\alpha*}[S^{k-1}]$ is the coefficient of $[S^{k-1}]$ in $(p_\beta \circ f_\alpha)_*[S^{k-1}]$ this is $\deg(p_\beta \circ f_\alpha)$. \Box

Examples.

• \mathbb{CP}^n has one cell of dimension 2i for $0 \le i \le n$, so

$$C^{\text{cell}}_*(\mathbb{CP}^n) = (C^{\text{cell}}_{2n}(\mathbb{CP}^n) = \mathbb{Z} \to 0 \to \mathbb{Z} \to 0 \to \dots \to 0 \to \mathbb{Z} = C^{\text{cell}}_0(\mathbb{CP}^n))$$

The boundary maps are 0. So

$$H_*(\mathbb{CP}^n) \simeq H^{\operatorname{cell}}_*(\mathbb{CP}^n) = C^{\operatorname{cell}}_*(\mathbb{CP}^n) = \begin{cases} \mathbb{Z} & * = 0, 2, \dots, 2n, \\ 0 & \text{otherwise} \end{cases}$$

as we already knew.

• \mathbb{RP}^n has one cell of dimension k for all $0 \leq k \leq n$, so $C_k^{\text{cell}}(\mathbb{RP}^n) = \langle e_k \rangle$. Then

$$C^{\text{cell}}_* = \mathbb{Z} \xrightarrow{d_n} \mathbb{Z} \xrightarrow{d_{n-1}} \mathbb{Z} \to \dots \to \mathbb{Z} \xrightarrow{d_1} \mathbb{Z}$$

where $d_k e_k = n_k e_{k-1}$ with $n_k = \deg g_k$,

$$g_k: S^{k-1} \xrightarrow{f_k} \mathbb{RP}^{k-1} \xrightarrow{\pi} \mathbb{RP}^{k-1} / \mathbb{RP}^{k-2} \simeq S^{k-1}$$

Given $p \in S^{k-1}$, not coming from \mathbb{RP}^{k-2} , it has two preimages in S^{k-1} , q and Aqwhere $A: S^{k-1} \to S^{k-1}$ is the antipodal map. Note that $g_k = g_k \circ A$, so $\deg_{Aq} g_k = \deg_q g_k \deg A = (-1)^k \deg_q g_k =: (-1)^k \alpha$. $g_k|_U$ is a homeomorphism (where U is a small neighborhood of q), so $\deg_q g_k = \pm 1 = \alpha$. So $\deg_g g_k = \deg_q g_k + \deg_{Aq} g_k = (-1)^k \alpha$.

$$\alpha + (-1)^k \alpha = \begin{cases} \pm 2 & k \text{ even,} \\ 0 & k \text{ odd.} \end{cases}$$

Summary:

- Suppose n is even. Then:

$$C^{\text{cell}}_*(\mathbb{RP}^n) = \mathbb{Z} \xrightarrow{\pm 2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{\pm 2} \mathbb{Z} \to \dots \to \mathbb{Z} \xrightarrow{0} \mathbb{Z}$$

So $H_*(\mathbb{RP}^n) = H^{\text{cell}}_*(\mathbb{RP}^n) = \begin{cases} \mathbb{Z}/2 & * = 1, 3, 5, \dots, n-1\\ \mathbb{Z} & * = 0, \\ 0 & \text{otherwise.} \end{cases}$

- Suppose n is odd. Then:

$$C^{\text{cell}}_{*}(\mathbb{RP}^{n}) = \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{\pm 2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \to \dots \to \mathbb{Z} \xrightarrow{0} \mathbb{Z}$$
$$H_{*}(\mathbb{RP}^{n}) = H^{\text{cell}}_{*}(\mathbb{RP}^{n}) = \begin{cases} \mathbb{Z}/2 & * = 1, 3, 5, \dots, n-2\\ \mathbb{Z} & * = 0, n, \\ 0 & \text{otherwise} \end{cases}$$

We now turn to the proof of the theorem.

Lemma 2.11. Suppose X is a fcc with one 0-cell, and all other cells have dimension $\leq M$ and $\geq m$. Then $\widetilde{H}_*(X) = 0$ if * < m or * > M.

Proof. By induction on M - m. If M - m = 0, then X has one cell dimension 0 and all other cells of dimension m = M, so $X \simeq \bigvee_{\alpha \in A} S^m$, and therefore $\widetilde{H}_*(X) = 0$ for $* \neq m$.

Now suppose the claim is true for M - m < k. If X has cells of dimension $\leq m + k$ and $\geq m$, then X_{m+k-1} has cells of dimension between m and m + k - 1, so the induction hypothesis applies to X_{m+k-1} . (X, X_{m+k-1}) is a good pair with $X/X_{m+k-1} = \bigvee_{\alpha \in A} S^{m+k}$, so $H_*(X, X_{m+k-1}) = 0$ unless * = m + k and $\widetilde{H}_*(X_{m+k-1}) = 0$ unless $m \leq * \leq m + k - 1$. Then consider the LES of the pair:

$$H_*(X_{m+k-1}) \to H_*(X) \to H_*(X, X_{m+k-1})$$

The two outer groups are 0 unless $m \leq * \leq m + k$.

Lemma 2.12. If X is a fcc, then (X, X_k) is a good pair.

Proof. "Annoying but not terribly hard exercise"

Corollary 2.13. If X is a fcc, then $H_k(X_{k+1}) \simeq H_k(X)$.

Proof. From the LES of (X, X_{k+1}) we get

$$H_{k+1}(X, X_{k+1}) \to H_k(X_{k+1}) \to H_k(X) \to H_k(X, X_{k+1}).$$

We have $H_k(X, X_{k+1}) \simeq \widetilde{H}_k(X/X_{k+1})$. X/X_{k+1} has one 0-cell (image of X_{k+1}), and all other cells have dimension $\geq k+2$, so by the lemma $\widetilde{H}_k(X/X_{k+1}) = \widetilde{H}_{k+1}(X/X_{k+1}) = 0$, and our result follows.

Proof of Theorem 2.9. Consider the following commutative diagram:

The horizontal sequence in the middle is the cellular chain complex. The diagonal sequences are parts of long exact sequences of pairs.

So π_k, π_{k-1} are injections, *i* is a surjection. So now we have ker $d_k = \ker \partial_k = \operatorname{im} \pi_k \cong H_k(X_k)$. Under this isomorphism, $\operatorname{im} d_{k+1} \leftrightarrow \operatorname{im} \partial_{k+1}$, so $H_k^{\operatorname{cell}}(X) = (\ker d_k)/(\operatorname{im} d_{k+1}) \simeq H_k(X_k)/\operatorname{im} \partial_{k+1} \simeq H_k(X_{k+1}) \cong H_k(X)$ by the corollary. \Box

2.3 Homology with Coefficients

Definition. If G is a \mathbb{Z} -module, then $C_*(X;G) := C_*(X) \otimes G$ is the singular chain complex with coefficients in G. $H_*(X;G)$ is its homology.

Note: If $f, g: C \to C'$ are chain homotopic via h, then $f \otimes 1, g \otimes 1: C \otimes M \to C' \otimes M$ are chain homotopic via $h \otimes 1$.

Example. Let $C = C_*^{\text{cell}}(\mathbb{RP}^3) = (\mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z})$, so $H_*(C) = (\mathbb{Z}, 0, \mathbb{Z}/2, \mathbb{Z})$.

Then $C_* \otimes \mathbb{Q} = (\mathbb{Q} \xrightarrow{0} \mathbb{Q} \xrightarrow{2} \mathbb{Q} \xrightarrow{0} \mathbb{Q})$, so

 $H_*(C_*\otimes\mathbb{Q})=(\mathbb{Q},0,0,\mathbb{Q})=H_*(C)\otimes\mathbb{Q}.$

And $C_* \otimes \mathbb{Z}/2 = (\mathbb{Z}/2 \xrightarrow{0} \mathbb{Z}/2 \xrightarrow{0} \mathbb{Z}/2 \xrightarrow{0} \mathbb{Z}/2)$, so

$$H_*(C_* \otimes \mathbb{Z}/2) = (\mathbb{Z}/2, \mathbb{Z}/2, \mathbb{Z}/2, \mathbb{Z}/2) \neq H_*(C) \otimes \mathbb{Z}/2.$$

2.3.1 Euler Characteristic

Suppose C is a finite dimensional chain complex over a field. Let $c_k = \dim C_k$.

Definition. The Euler characteristic of C is $\chi(C) := \sum_{k} (-1)^{k} c_{k}$.

Let $h_k = \dim H_k(C)$.

Theorem 2.14. $\chi(C) = \chi(H_*(C)) = \sum_k (-1)^k h_k.$

Proof. Let $z_k = \dim \ker d_k, b_k = \dim \operatorname{im} d_k$, so $c_k = z_k + b_k$ and $h_k = z_k - b_{k+1}$. Then $\chi(C) = \sum_k (-1)^k (z_k + b_k) = \sum_k (-1)^k (z_k - b_{k+1}) = \chi(H(C))$.

2.3.2 Eilenberg-Steenrod Axioms

Definition. An ordinary homology theory with coefficients in G (abelian group) is a functor

$$\left\{\begin{array}{c} pairs \ of \ spaces \\ maps \ of \ pairs \end{array}\right\} \rightarrow \left\{\begin{array}{c} graded \ \mathbb{Z}\text{-}modules \\ graded \ homomorphisms \end{array}\right\}$$

satisfying:

- (i) Homotopy invariance: If $f_0, f_1 : (X, A) \to (Y, B), f_0 \sim f_1$ as maps of pairs, then $f_{0*} = f_{1*}$
- (ii) LES of a pair: There is a LES

$$\dots \to H_k(A) \to H_k(X) \to H_k(X, A) \to H_{k-1}(A) \to \dots$$

where $H_k(X) = H_k(X, \emptyset)$. A map $(X, A) \to (Y, B)$ induces a map of LES (naturality).

(iii) Excision: If $\overline{B} \subseteq \text{Int } A$, then $i_* : H_*(X \setminus B, A \setminus B) \to H_*(X, A)$ is an isomorphism.

(iv) Dimension axiom: $H_*(\{\bullet\}) = \begin{cases} G & *=0, \\ 0 & *\neq 0. \end{cases}$

Theorem 2.15. If X is a fcc and H_* is any functor satisfying these axioms, then $H_*(X) \simeq H_*(C^{\text{cell}}_*(X) \otimes G)$. In particular, if $H_*(X;G)$ satisfies these axioms, then $H_*(X;G) \cong H_*(C^{\text{cell}}_*(X) \otimes G)$.

Proof idea. Go through the proof of Theorem 2.9 and the construction of $H^{\text{cell}}_*(X)$ to see that we only ever used these axioms (for the computation of $H_*(S^n)$ we used the MV-sequence which can be deduced from the axioms).

2.3.3 More Algebra - The Universal Coefficient Theorem

Definition. If M is an R-module, a free resolution of M is a free chain complex A over R such that

(1) $A_k = 0$ for k < 0,

(2)
$$H_*(A) = \begin{cases} M & *=0, \\ 0 & *\neq 0. \end{cases}$$

Examples.

• If $a \in R$ is not a zero divisor, then $0 \to R \xrightarrow{a} R \to 0$ is a free resolution of R/(a).

•
$$R = \mathbb{C}[x, y]$$
. Then $R \xrightarrow{\begin{bmatrix} y \\ -x \end{bmatrix}} R^2 \xrightarrow{\begin{bmatrix} x & y \end{bmatrix}} R$ is a free resolution of $R/(x, y)$.

Definition. If M, N are R-modules, then $\text{Tor}_i(M, N) := H_i(A \otimes N)$ where A is a free resolution of M.

Tor_i measures the failure of $H_*(A \otimes M) \stackrel{?}{=} H_*(A) \otimes M$.

-

This is well-defined due to the following fact: Any two free resolutions of M are chain homotopic.

Exercise: $\operatorname{Tor}_0(M, N) \simeq M \otimes N$.

Examples. $R = \mathbb{Z}$. Then $\mathbb{Z} \xrightarrow{a} \mathbb{Z}$ is a free resolution of $\mathbb{Z}/(a)$, so

$$\operatorname{Tor}_*(\mathbb{Z}/a,\mathbb{Z}) = \begin{cases} \mathbb{Z}/a & *=0, \\ 0 & *\neq 0. \end{cases}$$

And

$$\operatorname{Tor}_*(\mathbb{Z}/a, \mathbb{Z}/b) = H_*(\mathbb{Z}/b \xrightarrow{a} \mathbb{Z}/b) = \begin{cases} \mathbb{Z}/(a, b) & * = 0, 1, \\ 0 & * \neq 0, 1. \end{cases}$$

E.g. $\operatorname{Tor}_1(\mathbb{Z}/2, \mathbb{Z}/2) = \mathbb{Z}/2$ accounts for the extra $\mathbb{Z}/2$ in $H_*(C^{\operatorname{cell}}_*(\mathbb{RP}^3))$.

Definition. A chain complex is short injective if for some $k \in \mathbb{Z}$,

- (1) $C_* = 0$ for $* \neq k, k+1$ and C_k, C_{k+1} are free.
- (2) $d: C_{k+1} \to C_k$ is injective.

So C is a shifted free resolution of $H_*(C) = H_k(C)$.

Theorem 2.16. A free chain complex over a PID is a direct sum of short injective complexes.

Proof. Fact: If R is a PID, a submodule of a free module over R is free.

For each $k \in \mathbb{Z}$ we have a SES

$$0 \to \ker d_k \to C_k \xrightarrow{d_k} \operatorname{im} d_k \to 0.$$

By the fact, im d_k is free. Thus, the sequence splits and we get $C_k = \ker d_k \oplus B_k$ where $d_k : B_k \xrightarrow{\simeq} \operatorname{im} d_k$. Since $d^2 = 0$, im $d_k \subseteq \ker d_{k-1} =: Z_{k-1}$, so $C_* = \bigoplus_k (B_k \xrightarrow{d_k} Z_{k-1})$. \Box

Corollary 2.17. If two free chain complexes over a PID have isomorphic homology, they are chain homotopy equivalent.

Proof. By the theorem, a chain complex over a PID is a direct sum of free resolutions of its homologies, so the claim follows the fact that any two free resolutions of the same module are chain homotopy equivalent. \Box

Corollary 2.18. If C is a chain complex over a field \mathbb{F} , then $C \sim (H_*(C), 0)$.

Proof. $H_*(C)$ is free over \mathbb{F} since every module over \mathbb{F} is free, and the previous corollary applies.

Corollary 2.19 (Universal Coefficient Theorem). If C is a free chain complex over a PID, then

 $H_k(C \otimes N) = (H_k(C) \otimes N) \oplus \operatorname{Tor}_1(H_{k-1}(C), N) = \operatorname{Tor}_0(H_k(C), N) \oplus \operatorname{Tor}_1(H_{k-1}(C), N).$

Proof. C is a direct sum of short injective complexes (and both sides commute with direct sums in C), so it suffices to check the claim for a short injective complex, where it is the definition of Tor.

So $H_*(X;G)$ is determined by $H_*(X)$.

3 Cohomology and Products

3.1 Cohomology

Definition. If M, N are R-modules, then $\operatorname{Hom}(M, N)$ is the R module of R-linear maps $M \to N$. If $f : M_1 \to M_2$ is R-linear, we get an R-linear map $f^* : \operatorname{Hom}(M_2, N) \to \operatorname{Hom}(M_1, N), \alpha \mapsto \alpha \circ f$.

So we have a contravariant functor

$$\left\{\begin{array}{c} R\text{-modules} \\ R\text{-linear maps} \end{array}\right\} \xrightarrow{\text{Hom}(-,N)} \left\{\begin{array}{c} R\text{-modules} \\ R\text{-linear maps} \end{array}\right\}$$

If (C, d) is a chain complex over R, then define $(\text{Hom}(C, N), d^*)$ by $\text{Hom}(C, N) = \bigoplus_k \text{Hom}(C_k, N), d_k^*$: Hom $(C_{k-1}, N) \to \text{Hom}(C_k, N)$. We say $(\text{Hom}(C, N), d^*)$ is a cochain complex and d^* raises homological degree by 1.

So there is a contravariant functor

$$\left\{ \begin{array}{c} \text{chain complexes over } R \\ \text{chain maps} \end{array} \right\} \longrightarrow \left\{ \begin{array}{c} \text{cochain complexes over } R \\ \text{cochain maps} \end{array} \right\}$$
$$(C,d) \longmapsto (\text{Hom}(C,N),d^*)$$
$$f: C \to C' \longmapsto f^*: \text{Hom}(C',N) \to \text{Hom}(C,N)$$

If (C, d^*) is a cochain complex, its k-th cohomology is $H^k(C) = \ker d_k^* / \operatorname{im} d_{k-1}^*$

Definition. If X is a space, its singular cochain complex with coefficients in G is $(C^*(X;G), d^*)$ where $C^*(X;G) = \text{Hom}(C_*(X),G)$ and its k-th singular cohomology is $H^k(X;G) =$ $H^k(C^*(X;G))$. Similarly we define the cochain complex and cohomology of a pair of spaces.

If $f : X \to Y$, then we get the cochain map $f^{\#} : C^k(Y;G) \to C^k(X;G)$ given by $f^{\#}(\alpha)(\sigma) = \alpha(f_{\#}(\sigma)) = \alpha(f \circ \sigma)$ for $\sigma : \Delta^k \to X$. This induces a map $f^* : H^k(Y;G) \to H^k(X;G)$.

Hence we get a contravariant functor

$$H^*(-,-;G): \left\{ \begin{array}{c} \text{pairs of spaces} \\ \text{maps of pairs} \end{array} \right\} \longrightarrow \left\{ \begin{array}{c} \text{graded } \mathbb{Z}\text{-modules} \\ \mathbb{Z}\text{-linear maps} \end{array} \right\}$$

It is the composition of the following functors:

$$\left\{ \begin{array}{c} \text{pairs of spaces} \\ \text{maps of pairs} \end{array} \right\} \xrightarrow{C_*} \left\{ \begin{array}{c} \text{chain complexes} \\ \text{chain maps} \end{array} \right\} \\ & \downarrow^{\text{Hom}(-,G)} \\ \left\{ \begin{array}{c} \text{cochain complexes} \\ \text{cochain maps} \end{array} \right\} \xrightarrow{H^*} \left\{ \begin{array}{c} \mathbb{Z}\text{-modules} \\ \mathbb{Z}\text{-linear maps} \end{array} \right\}$$

Dual to chain homotopies we have:

Definition. If C, C' are cochain complexes (over R), $f, g: C \to C'$ cochain maps, we say f and g are cochain homotopic if $f - g = d^*h + hd^*$ where $h: C^k \to C'^{k-1}$ is R-linear. h is a cochain homotopy.

Lemma 3.1. Cochain homotopic maps induce the same map on cohomology.

Lemma 3.2. If $f,g: C \to C'$ are maps of chain complexes and $f \sim g$ via h, then $f^*, g^*: \operatorname{Hom}(C'; N) \to \operatorname{Hom}(C; N)$ are cochain homotopic via h^* .

3.1.1 Eilenberg-Steenrod Axioms for Cohomology

Note that $C^k(X,Y;G) = \{f: C_k(X) \to G \mid f \text{ is } \mathbb{Z}\text{-linear}, f(\sigma) = 0 \text{ if } \text{im } \sigma \subseteq A\}.$

For convenience we will drop the G in $H^*(X,G), H^*(X,A;G)$ in the following.

 H^* satisfies the dual version of the Eilenberg-Steenrod axioms:

(i) Homtopy invariance: If $f_0, f_1 : (X, A) \to (Y, B)$ with $f_0 \sim f_1$ as maps of pairs, then $f_0^* = f_1^* : H^*(Y, B) \to H^*(X, A)$.

Proof. $f_{0\#}, f_{1\#}$ are chain homotopic, hence $f_0^{\#}, f_1^{\#}$ are cochain homotopic, hence $f_0^* = f_0^1$.

(ii) LES of pair: We have a SES of cochain complexes

$$0 \to C^*(X, A) \to C^*(X) \to C^*(A) \to 0.$$

The associated LES is

$$\dots \to H^k(X, A) \to H^k(X) \to H^k(A) \xrightarrow{\delta} H^{k+1}(X, A) \to \dots$$

A map of pairs induces a map of LES's in cohomology.

(iii) Excision: If $B \subseteq A \subseteq X$, $\overline{B} \subseteq A^{\circ}$, then

$$i^*: H^*(X, A) \to H^*(X - B, A - B)$$

is an isomorphism.

Proof. $i_{\#}: C_*(X - B, A - B) \to C_*(X, A)$ induces an isomorphism on homology (ordinary excision). Since $C_*(X, A), C_*(X - B, A - B)$ are free, $i_{\#}$ is a chain homotopy equivalence (Sheet 1, Exercise 11). So $i^{\#}$ is cochain homotopy equivalence and thus i^* an isomorphism.

(iv) Dimension:
$$H^*(\{\bullet\}; G) = \begin{cases} G & *=0, \\ 0 & *\neq 0 \end{cases}$$

Theorem 3.3. Any functor satisfying these axioms is given by

$$H^*_{\operatorname{cell}}(X;G) = H^*(\operatorname{Hom}(C^{\operatorname{cell}}_*(X);G))$$

when X is a finite cell complex.

Short proof that $H^*(X;G) \cong H^*_{cell}(X;G)$ if X is a fcc:

 $C_*(X), C_*^{\text{cell}}(X)$ are free chain complexes with the same homology over the PID \mathbb{Z} , so they are homotopy equivalent by Corollary 2.17, so $C^*(X;G), C^*_{\text{cell}}(X;G)$ are homotopy equivalent.

Example. We compute $H^*_{\text{cell}}(\mathbb{RP}^3)$. Recall that

$$C^{\text{cell}}_*(\mathbb{RP}^3) = (\mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z}).$$

Therefore

$$C^*_{\text{cell}}(\mathbb{RP}^3) = (\mathbb{Z} \stackrel{0}{\leftarrow} \mathbb{Z} \stackrel{2}{\leftarrow} \mathbb{Z} \stackrel{0}{\leftarrow} \mathbb{Z}),$$

 \mathbf{SO}

$$H^*_{\text{cell}}(\mathbb{RP}^3) = \begin{cases} \mathbb{Z} & * = 0, 3, \\ \mathbb{Z}/2 & * = 2, \\ 0 & \text{otherwise} \end{cases}$$

3.1.2 Ext and the Universal Coefficient Theorems

Definition. If M, N are R-modules, then $\text{Ext}^i(M, N) = H^i(\text{Hom}(A, N))$ where A is a free resolution of M.

Again this is well-defined since any two free resolutions of the same module are chain homotopy equivalent.

Example. We compute $\operatorname{Ext}^*(\mathbb{Z}/n, \mathbb{Z})$ for $n \neq 0$. $A = (\mathbb{Z} \xrightarrow{n} \mathbb{Z})$ is a free resolution of \mathbb{Z}/n , and $\operatorname{Hom}(A, \mathbb{Z}) = \mathbb{Z} \xleftarrow{n} \mathbb{Z}$, so

$$\operatorname{Ext}^{i}(\mathbb{Z}/n,\mathbb{Z}) = \begin{cases} \mathbb{Z}/n & * = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Similarly,

$$\operatorname{Ext}^{i}(\mathbb{Z}/n, \mathbb{Z}/n) = \begin{cases} \mathbb{Z}/n & * = 0, 1, \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 3.4 (Universal Coefficient Theorem). Suppose X is a finite cell complex. Then

$$H^k(X;G) \cong \operatorname{Hom}(H_k(X);G) \oplus \operatorname{Ext}^1(H_{k-1}(X);G)$$

Proof. Split $C^{\text{cell}}_*(X)$ into a direct sum of short injective complexes and use definition of Ext.

Example. If X is a fcc, $H_k(X) = \mathbb{Z}^{b_k} \oplus T_k$ by structure theorem for finitely generated abelian groups where T_k is finite. b_k is called the *k*-th Betti number of X. We get $H^k(X,\mathbb{Z}) \cong \mathbb{Z}^{b_k} \oplus T_{k-1}$.

3.1.3 Pairing

Suppose C is a chain complex over R. There is a bilinear pairing $\langle , \rangle : \text{Hom}(C_k; N) \times C_k \to N, \langle \alpha, c \rangle = \alpha(c).$

Lemma 3.5. This descends to a pairing

$$H^{k}(\operatorname{Hom}(C, N)) \times H_{k}(C) \longrightarrow N$$
$$([\alpha], [c]) \longmapsto \langle [\alpha], [c] \rangle := \alpha(c)$$

Proof. We need to check that this is well-defined. For $\beta \in \text{Hom}(C, N), b \in C$ we have:

$$\langle \alpha + d^*\beta, c + db \rangle = \alpha(c) + \alpha(db) + d^*\beta(c + db)$$

= $\alpha(c) + d^*\alpha(b) + \beta(d(c + db))$
= $\alpha(c) = \langle \alpha, c \rangle$

3.2 Cup Product

Let R be a commutative ring.

Definition. If $\alpha \in C^k(X; R), \beta \in C^l(X; R)$, then $\alpha \smile \beta \in C^{k+l}(X; R)$ is given by

$$\alpha \smile \beta(\sigma) = \alpha(\sigma \circ F_{0...k})\beta(\sigma \circ F_{k...k+l}),$$

for $\sigma: \Delta^{k+l} \to X$.

Lemma 3.6. \smile makes $C^*(X; R)$ into a (noncommutative) ring with identity $1 \in C^0(X; R)$ where $1(\sigma_p) = 1 \in R$.

Proof. We must check

(1) $(\alpha \smile \beta) \smile \gamma = \alpha \smile (\beta \smile \gamma),$

(2) $(\alpha_1 + \alpha_2) \smile \beta = \alpha_1 \smile \beta + \alpha_2 \smile \beta$, (3) $\alpha \smile (\beta_1 + \beta_2) = \alpha \smile \beta_1 + \alpha \smile \beta_2$, (4) $\alpha \smile 1 = \alpha = 1 \smile \alpha$.

These are all easy.

Lemma 3.7. If $\alpha \in C^k(X; R), \beta \in C^l(X; R)$, then $d^*(\alpha \smile \beta) = (d^*\alpha) \smile \beta + (-1)^k \alpha \smile (d^*\beta)$

Proof. Let $\sigma : \Delta^{k+l+1} \to X$. Then:

$$\begin{aligned} d^*(\alpha \cup \beta)(\sigma) &= \alpha \smile \beta(d\sigma) = \alpha \smile \beta\Big(\sum_{j=0}^{k+l+1} (-1)^j \sigma \circ F_j\Big) \\ &= \sum_{j=0}^{k+l+1} (-1)^j \alpha(\sigma \circ F_j \circ F_{0\dots k}) \beta(\sigma \circ F_j \circ F_{k\dots k+l}) \\ &= \sum_{j=0}^{k+1} (-1)^j \alpha(\sigma \circ F_{0\dots j\dots k+1}) \beta(\sigma \circ F_{k+1\dots k+l+1}) \\ &+ \sum_{j=k}^{k+l+1} (-1)^j \alpha(\sigma \circ F_{0\dots k}) \beta(\sigma \circ F_{k\dots j\dots k+l+1}) \\ &= (d^*\alpha) \smile \beta(\sigma) + (-1)^k (\alpha \smile d^*\beta)(\sigma) \end{aligned}$$

(Note that here different F_I map between different simplices)

Corollary 3.8. \smile descends to give a map

$$\smile: H^{k}(X; R) \times H^{l}(X; R) \longrightarrow H^{k+l}(X; R)$$
$$[\alpha] \times [\beta] \longmapsto [\alpha \smile \beta]$$

This makes $H^*(X; R)$ into a ring with unit $[1] \in H^0(X; R)$.

Proof. We check that this is well-defined. First note that if $[\alpha] \in H^k(X; R), [\beta] \in H^l(X; R)$, then $d^*\alpha = 0 = d^*\beta$, so $d^*(\alpha \smile \beta) = d^*\alpha \smile \beta + (-1)^k \alpha \smile d^*\beta = 0$, so $[\alpha \cup \beta] \in H^{k+l}(X; R)$. Now let $\alpha' = \alpha + d^*a, \beta' = \beta + d^*b$ with $a \in C^k(X; R), b \in C^l(X; R)$. Then

$$\begin{aligned} \alpha' \smile \beta' &= \alpha \smile \beta + (d^*a) \smile \beta + (\alpha + d^*a) \smile d^*b \\ &= \alpha \smile \beta + (d^*a) \smile \beta \pm (\alpha + d^*a) \smile d^*((\alpha + d^*a) \cup b) \end{aligned}$$

Hence $[\alpha' \smile \beta'] = [\alpha \smile \beta]$. Hence \smile is well-defined on cohomology.

Note that for $\tau : \Delta^1 \to X$, we have $d^*1(\tau) = 1(d\tau) = 1(\sigma_{\tau(1)} - \sigma_{\tau(0)}) = 1 - 1 = 0$, so $d^*1 = 0$, so 1 defines a class in $H^0(X; R)$.

Proposition 3.9. If $f : X \to Y$, then $f^* : H^*(Y; R) \to H^*(X; R)$ is a ring homomorphism, *i.e.* $f^*(\alpha \cup \beta) = f^*(\alpha) \cup f^*(\beta)$ and $f^*(1) = 1$.

Proof. Consider $f^{\#}: C^*(Y; R) \to C^*(X; R)$. Then

$$f^{\#}(\alpha \smile \beta)(\sigma) = \alpha \smile \beta(f \circ \sigma)$$

= $\alpha(f \circ \sigma \circ F_{0...k})\beta(f \circ \sigma \circ F_{k...k+l})$
= $f^{\#}(\alpha)(\sigma \circ F_{0...k})f^{\#}(\beta)(\sigma \circ F_{k...k+l})$
= $f^{\#}(\alpha) \smile f^{\#}(\beta)(\sigma)$

Notation: If $a \in H^k(X; R)$, we write |a| := k.

Proposition 3.10. $H^*(X; R)$ is graded commutative, i.e. $a \smile b = (-1)^{|a||b|} b \smile a$ (But this is totally false for chains).

We use a chain map $r: C_*(X) \to C_*(X)$ defined as follows. Let $\rho_n: \Delta^n \to \Delta^n$ be the linear map defined by $e_i \mapsto e_{n-i}$. Let $\varepsilon(j) = \frac{j(j+1)}{2} = \sum_{i=0}^j i$, so that det $\rho_j = (-1)^{\varepsilon(j)}$. Define $r_j: C_j(X) \to C_j(X)$ by $r_j(\sigma) = (-1)^{\varepsilon(j)} \sigma \circ \rho_j$. Note that r also induces a map $r: C_*(X, A) \to C_*(X, A)$ for $A \subseteq X$.

Theorem 3.11. (1) $r: C_*(X) \to C_*(X)$ is a chain map.

(2)
$$r \sim 1_{C_*(X)}$$
.

Proof of the proposition using the theorem. Dualizing r gives $r^* : C^*(X; R) \to C^*(X; R)$ and $r^* \sim 1_{C^*(X)}$. So $[r^*(\alpha)] = [\alpha]$. By definition of r, we have

$$(-1)^{\varepsilon(|\alpha|+|\beta|)}r^*(\alpha \smile \beta) = (-1)^{\varepsilon(|\alpha|)}(-1)^{\varepsilon(|\beta|)}r^*(\beta) \smile r^*(\alpha),$$

hence

$$\begin{split} [\alpha \smile \beta] &= [r^*(\alpha \smile \beta)] = (-1)^{\varepsilon(|\alpha| + |\beta|)} (-1)^{\varepsilon(|\alpha|)} (-1)^{\varepsilon(|\beta|)} [r^*(\beta) \smile r^*(\alpha)] \\ &= (-1)^{|\alpha||\beta|} [\beta] \smile [\alpha]. \end{split}$$

Proof of the theorem. (1) Let $\sigma: \Delta^n \to X$. We have $\rho_n \circ F_{\widehat{j}} = F_{\widehat{n-j}} \circ \rho_{n-1}$, so

$$d(r(\sigma)) = (-1)^{\varepsilon(n)} \sum_{j} (-1)^{j} \sigma \circ \rho_{n} \circ F_{\widehat{j}}$$

= $(-1)^{\varepsilon(n)} \sum_{j} (-1)^{j} \sigma \circ F_{\widehat{n-j}} \circ \rho_{n-1}$
= $(-1)^{n} (-1)^{\varepsilon(n)} \sum_{j} (-1)^{n-j} \sigma \circ F_{\widehat{n-j}} \circ \rho_{n-1}$

$$= (-1)^{\varepsilon(n-1)} \sum_{j} (-1)^{j} \sigma \circ F_{\widehat{j}} \circ \rho_{n-1}$$
$$= r_{n-1}(d\sigma)$$

(2) One can write down an explicit chain homotopy, this is done e.g. in [Hat02]. We do it in a different way:

 $C_*(X)$ is free, so it suffices to show that $r_*: H_*(X) \to H_*(X)$ is the identity on $H_*(X)$. Observations:

- (i) If $f: X \to Y$, $f_{\#} \circ r(\sigma) = (-1)^{\varepsilon(|\sigma|)} f \circ \sigma \circ p_{|\sigma|} = r \circ f_{\#}(\sigma)$, so $f_*r_* = r_*f_*$.
- (ii) There is a commutative diagram of SES:

$$0 \longrightarrow C_*(A) \longrightarrow C_*(X) \longrightarrow C_*(X,A) \longrightarrow 0$$
$$\downarrow^r \qquad \qquad \downarrow^r \qquad \qquad \downarrow^r \\ 0 \longrightarrow C_*(A) \longrightarrow C_*(X) \longrightarrow C_*(X,A) \longrightarrow 0$$

This induces a map between the LES of (X, A), hence we see that $r_*\partial = \partial r_*$ where ∂ is the boundary map in the LES.

Notation: $R_n(X, A)$ is the statement $(r_*)_n = 1_{H_n(X, A)}$.

(iii) If $f_*: H_n(X, A) \to H_n(Y, B)$ is injective, then $R_n(Y, B) \implies R_n(X, A)$. If $g_*: H_n(X, A) \to H_n(Y, B)$ is surjective, then $R_n(X, A) \implies R_n(Y, B)$. Both statements follow from (i).

We now prove the claim in several steps:

- (A) $R_0(X)$ holds. Indeed, if $[\sigma] \in H_0(X)$, then $r(\sigma) = \sigma$.
- (B) By Observation (2), the following square commutes:

$$\begin{array}{ccc} H_n(D^n, S^{n-1}) & \xrightarrow{\partial} & \widetilde{H}_{n-1}(S^{n-1}) \\ & & & & \downarrow^{r_*} \\ & & & \downarrow^{r_*} \\ H_n(D^n, S^{n-1}) & \xrightarrow{\partial} & \widetilde{H}_{n-1}(S^{n-1}) \end{array}$$

So $R_{n-1}(S^{n-1}) \implies R_n(D^n, S^{n-1})$. From the isomorphisms

$$H_n(D^n, S^{n-1}) \xrightarrow{p_*} H_n(D^n/S^{n-1}, S^{n-1}/S^{n-1}) \xleftarrow{\simeq} H_n(S^n)$$

we also get $R_n(D^n, S^{n-1}) \implies R_n(S^n)$.

Hence by induction on n, we get that $R_n(D^n, S^{n-1})$ and $R_n(S^n)$ are true for all n.

- (C) $H_n(\coprod_{k=1}^r D^n, \coprod_{k=1}^r S^{n-1}) = \bigoplus_{k=1}^r H_n(D^n, S^{n-1}).$ Hence $R_n(\coprod D^n, \coprod S^{n-1}).$
- (D) If X is an fcc, then $R_*(X)$. Proof: We show $R_*(X_k)$ holds for all k by induction. Base case $R_*(X_0) = R_0(x_0)$ holds by (A). Suppose $R_*(X_{k-1})$ and then consider the LES of (X_k, X_{k-1}) :

$$0 \to H_k(X_k) \to H_k(X_k, X_{k-1}) \to H_{k-1}(X_{k-1}) \to H_{k-1}(X_k) \to 0$$

and

$$0 \to H_i(X_{k-1}) \to H_i(X_k) \to 0$$

for i < k - 1.

The map $F_* : H_*(\coprod D^k, \coprod S^{k-1}) \to H_*(X_k, X_{k-1})$ is an isomorphism where F is the attaching map. By (B), $R_*(X_k, X_{k-1})$ holds, hence $R_k(X_k)$ by (3) (a). By induction, $R_*(X_{k-1})$ holds, hence $R_i(X_k)$ holds for i < k by (3) (b). Hence $R_*(X_k)$.

(E) For any X and $x \in H_*(X)$, there exists an fcc Y and $f: Y \to X$ with $f_*(y) = x$ (Sheet 2, Exercise 6). Then $r_*(x) = r_*(f_*(y)) = f_*(r_*(y)) = f_*(y) = x$.

Pairs: Recall $C^*(X, A) \subseteq C^*(X)$. Let $\alpha \in C^k(X, A), \beta \in C^l(X)$. If $\operatorname{im} \sigma \subseteq A$, then $\operatorname{im} \sigma \circ F_{0\dots k} \subseteq A$, so

$$(\alpha \smile \beta)(\sigma) = \alpha(\sigma \circ F_{0...k})\beta(\sigma \circ F_{k...k+l}) = 0\beta(...) = 0,$$

i.e. $\alpha \smile \beta \in C^*(X, A)$.

So \smile defines a map $H^*(X, A) \times H^*(X) \to H^*(X, A)$. More generally, \smile defines $H^*(X, A) \times H^*(X, B) \to H^*(X, A \cup B)$ (using subdivision lemma, see example sheet).

Examples.

- (1) If X is path connected, $H_0(X) = \mathbb{Z}$, so $H^0(X) \simeq \operatorname{Hom}(H_0(X), \mathbb{Z}) = \mathbb{Z}$ (as $H_{-1}(X) = 0$ using UCT) and $H^0(X) = \langle 1 \rangle$.
- (2) We compute the cohomology ring of S^n for n > 0. Recall that

$$H_*(S^n) = \begin{cases} \mathbb{Z} & * = 0, n, \\ 0 & \text{otherwise.} \end{cases}$$

 $H_*(S^n)$ is free over \mathbb{Z} , so by the UCT

$$H^*(S^n) = \operatorname{Hom}(H_*(S^n), \mathbb{Z}) = \begin{cases} \mathbb{Z} & * = 0, n, \\ 0 & \text{otherwise.} \end{cases}$$

We know $H^0(S^n) = \langle 1 \rangle$. Let a be a generator of $H^n(S^n)$. Then

$$1 \cup 1 = 1, a \cup 1 = a = 1 \cup a.$$

And $a \cup a \in H^{2n}(S^n) = 0$, so $H^*(S^n) = \mathbb{Z}[a]/a^2$ with |a| = n.

(3) If X is path connected, $p \in X$, then $\iota_* : H_0(p) \xrightarrow{\simeq} H_0(X)$, so $\mathbb{Z} \simeq H^0(X) \to H^0(p) \simeq \mathbb{Z}$ is an isomorphism, so

$$H^*(X,p) = \ker \left(H^*(X) \to H^*(p) \right) = \bigoplus_{i>0} H^i(X)$$

is an ideal in $H^*(X)$.

- (4) $H^*(X \amalg Y) = H^*(X) \oplus H^*(Y)$ (direct product of rings). Proof: $C_*(X \amalg Y) = C_*(X) \oplus C_*(Y)$, so $C^*(X \amalg Y) = C^*(X) \oplus C^*(Y)$. It is easy to see that this decomposition respects both d^* and \smile , hence the claim.
- (5) Suppose $(X, p_X), (Y, p_Y)$ are good pairs and X, Y are path-connected. By collapsing a pair, $\pi^* : H^*(X \lor Y, p) \to H^*(X \amalg Y, p_X \amalg p_Y)$ is an isomorphism. We have

$$H^*(X \amalg Y, p_X \amalg p_Y) = H^*(X, p_X) \oplus H^*(Y, p_Y) \subseteq H^*(X) \oplus H^*(Y).$$

 So

$$H^{i}(X \lor Y) = \begin{cases} H^{i}(X) \oplus H^{i}(Y) & i > 0\\ \langle 1 \rangle \simeq \mathbb{Z} & i = 0 \end{cases}$$

The multiplication is given by $(a_1, a_2) \smile (b_1, b_2) = (a_1 \smile b_1, a_2 \smile b_2)$ if $|a_i|, |b_i| > 0$. Example: Let a_n denote a generator of $H^n(S^n)$. Then $H^*(S^2 \lor S^2 \lor S^4) = \langle 1, a, a', b \rangle$ where

$$a = (a_2, 0, 0), a' = (0, a_2, 0) \in H^2(S^2) \oplus H^2(S^2) \oplus H^2(S^4) \cong \mathbb{Z}^2,$$

$$b = (0, 0, a_4) \in H^4(S^2) \oplus H^4(S^2) \oplus H^4(S^4) \cong \mathbb{Z}.$$

We have $a \smile a' = (a_2, 0, 0)(0, a_2, 0) = (0, 0, 0) = 0$. So there are no interesting cup products.

3.3 Exterior Products

Setup: Let (X, A) be a pair of spaces, Y a space. Let

$$\pi_1 : (X \times Y, A \times Y) \to (X, A),$$

$$\pi_2 : X \times Y \to Y$$

be the projections.

Definition. If $a \in H^k(X, A), b \in H^l(Y)$, their exterior product is

$$a \times b = \pi_1^*(a) \smile \pi_2^*(b) \in H^{k+l}(X \times Y, A \times Y).$$

Remark: If C, C' are graded groups/rings, their product (resp. tensor product) is given by $(C \times C')_n = \bigoplus_{k+l=n} C_k \times C'_l$ (resp. $(C \otimes C')_n = \bigoplus_{k+l=n} C_k \otimes C'_l$). Observations:

(1) $H^*(X, A) \times H^*(Y) \to H^*(X \times Y, A \times Y), (a, b) \mapsto a \times b$ is bilinear, so it extends to $\Phi: H^*(X, A) \otimes H^*(Y) \to H^*(X \times Y, A \times Y).$

(2) We have
$$(a_1 \times b_1) \smile (a_2 \times b_2) = (-1)^{|b_1||a_2|} (a_1 \smile a_2) \times (b_1 \smile b_2)$$
. Proof:

$$(a_1 \times b_1) \smile (a_2 \times b_2) = \pi_1^*(a_1) \smile \pi_2^*(b_1) \smile \pi_1^*(a_2) \smile \pi_2^*(b_2)$$

= $(-1)^{|b_1||a_2|} \pi_1^*(a_1) \smile \pi_1^*(a_2) \smile \pi_2^*(b_1) \smile \pi_2^*(b_2)$
= $(-1)^{|b_1||a_2|} \pi_1^*(a_1 \smile a_2) \smile \pi_2^*(b_1 \smile b_2)$
= $(-1)^{|b_1||a_2|} (a_1 \smile a_2) \times (b_1 \smile b_2)$

Theorem 3.12. If $H^*(Y; R)$ is free over R, then

$$\Phi: H^*(X, A; R) \otimes H^*(Y; R) \to H^*(X \times Y, A \times Y; R)$$

is an isomorphism.

Note that the hypothesis of the theorem is always satisfied if e.g. R is a field.

Consequences:

- (1) This lets us compute $H^*(X \times Y; R)$ from $H^*(X; R), H^*(Y; R)$ if $H^*(Y; R)$ is free.
- (2) It also tells us the ring structure on $H^*(X \times Y; R)$ (by Observation (2) above).

Examples.

• Consider $T^2 = S^1 \times S^1$. We have $H^*(S^1) = \langle 1, a_1 \rangle \cong \mathbb{Z} \oplus \mathbb{Z}$. Then

$$(H^*(S^1) \otimes H^*(S^1))_n \cong \begin{cases} \mathbb{Z} & n = 2, \\ \mathbb{Z}^2 & n = 1, \\ \mathbb{Z} & n = 1. \end{cases}$$

Since $H^*(S^1)$ is free, we get $H^*(T^2) = H^*(S^1) \otimes H^*(S^1)$ and we obtain generators:

$$H^*(S^1 \times S^1) = \begin{cases} \mathbb{Z} = \langle a_1 \times a_1 \rangle = \langle c \rangle & * = 2, \\ \mathbb{Z}^2 = \langle a_1 \times 1, 1 \times a_1 \rangle = \langle a, b \rangle & * = 1, \\ \mathbb{Z} = \langle 1 \times 1 \rangle = \langle 1 \rangle & * = 0. \end{cases}$$

Then $a^2 = (1_1 \times 1) \smile (a_1 \times 1) = -(a_1^2 \times 1) = 0$ as $H^2(S^1) = 0$. Similarly, $b^2 = 0$. We have $a \smile b = (a_1 \times 1) \smile (1 \times a_1) = (a_1 \times a_1) = c$ and $b \smile a = -a \smile b = -c$.

In other words, we get $H^*(T^2) = \bigwedge^* \langle \alpha_1, \alpha_2 \rangle$ with $\alpha_1 = a_1, \alpha_2 = b$ and $\alpha_i \alpha_j = -\alpha_j \alpha_i$. More generally $H^*(T^n) = H^*(S^1) \otimes \cdots \otimes H^*(S^1)$ (*n* times) $\simeq \bigwedge^* \langle \alpha_1, \ldots, \alpha_n \rangle$ with $\alpha_i = 1 \times 1 \times \cdots \times a_1 \times \cdots \times 1$. • Similarly, we calculate the cohomology ring of $S^2 \times S^2$. $H^*(S^2)$ is free, so $H^*(S^2 \times S^2) = H^*(S^2) \otimes H^*(S^2)$. Let $a = a_2 \times 1, b = 1 \times a_2, c = a_2 \times a_2$. Then

$$H^*(S^2 \times S^2) = \begin{cases} \langle c \rangle = \mathbb{Z} & * = 4, \\ \langle a, b \rangle = \mathbb{Z}^2 & * = 2, \\ \langle 1 \rangle = \mathbb{Z} & * = 0. \end{cases}$$

Again we have $a^2 = 0 = b^2, a \smile b = c$, but now $b \smile a = a \smile b = c$. **Corollary 3.13.** $S^2 \times S^2 \not\sim S^2 \lor S^2 \lor S^4$, even though $H_*(S^2 \times S^2) \simeq H_*(S^2 \lor S^2 \lor S^4)$. *Proof.* We have $H^*(S^2 \times S^2) \not\simeq H^*(S^2 \lor S^2 \lor S^4)$ as rings. For example, if $a, b \in H^2(S^2 \lor S^2 \lor S^4)$, then $a \smile b = 0$, but this is not true in $H^*(S^2 \times S^2)$.

Proof of Theorem 3.12. We drop the R in $H^*(-; R)$.

We have two contravariant functors

$$\overline{h}, \underline{h}: \left\{ \begin{array}{c} \text{pairs of spaces} \\ \text{maps of pairs} \end{array} \right\} \rightarrow \left\{ \begin{array}{c} \text{graded } \mathbb{Z}\text{-modules} \\ \text{graded } \mathbb{Z}\text{-linear amps} \end{array} \right\}$$

defined by

$$\overline{h}(X,A) = H^*(X \times Y, A \times Y),$$

$$f: (X,A) \to (X',A') \mapsto \overline{f}^* = (f \times \operatorname{id}_Y)^* : H^*(X' \times Y, A' \times Y) \to H^*(X \times Y, A \times Y)$$

and

$$\underline{h}(X,A) = H^*(X,A) \otimes H^*(Y),$$

$$f: (X,A) \to (X',A') \mapsto \underline{f}^* = f^* \otimes \operatorname{id}_{H^*(Y)} : \underline{h}(X',A') \to \underline{h}(X,A).$$

 $\overline{h}, \underline{h}$ satisfy all Eilenberg-Steenrod axioms for cohomology except the dimension axiom (so they are generalized cohomology theories). They are:

- (1) Homotopy invariance: Let $f_0 \sim f_1 : (X, A) \rightarrow (X', A')$. Then $f_0^* = f_1^*$, hence $\underline{f}_0^* = \underline{f}_1^*$. Also $f_0 \times 1_Y \sim f_1 \times 1_Y$, so $\overline{f}_0^* = (f_0 \times 1_Y)^* = (f_1 \times 1_Y)^* = \overline{f}_1^*$.
- (2) LES of a pair: For \overline{h} this is just the LES of $(X \times Y, A \times Y)$. For \underline{h} : $H^*(Y)$ is free by hypothesis, the LES of (X, A) stays exact after tensoring with $H^*(Y)$.
- (3) Excision: If $\overline{B} \subseteq \text{Int } A \subseteq A \subseteq X$, then $\overline{i}^* : \overline{h}(X, A) \to \overline{h}(X B, A B)$ is an isomorphism (excision for $B \times Y \subseteq A \times Y \subseteq X \times Y$). And $\underline{i}^* : \underline{h}(X, A) \to \underline{h}(X B, A B)$ is an isomorphism (excision for $B \subseteq A \subseteq X$).

Properties (1),(2),(3) imply that $\overline{h}, \underline{h}$ satisfy (4) "Collapsing a pair", i.e. if (X, A) is a good pair, then $\underline{h}(\pi), \overline{h}(\pi)$ are isomorphisms where $\pi : (X, A) \to (X/A, A/A)$ is the quotient map.

Lemma 3.14. Φ commutes with the induced maps and boundary map in the LES of a pair.

Proof. Suppose $f: X_1 \to X_2$. Let $F = f \times 1_Y : X_1 \times Y \to X_2 \times Y$. Then

$$\overline{f}^{*}(\Phi(a \otimes b)) = F^{*}(a \times b)$$

$$= F^{*}(\pi_{1}^{*}(a) \smile \pi_{2}^{*}(b))$$

$$= F^{*}\pi_{1}^{*}(a) \smile F^{*}\pi_{2}^{*}(b)$$

$$= (\pi_{1} \circ F)^{*}(a) \smile (\pi_{2} \circ F)^{*}(b)$$

$$= (f \circ \pi_{1})^{*}(a) \smile (\pi_{2})^{*}(b)$$

$$= \pi_{1}^{*}f^{*}(a) \smile \pi_{2}^{*}b$$

$$= f^{*}(a) \times b$$

$$= \Phi(\underline{f}^{*}(a \otimes b))$$

For boundary see Sheet 3, Exercise 2.

We now prove the theorem in the case where X is a fcc. We proceed in several steps. Let P(X, A) be the statement that $\Phi : \underline{h}(X, A) \to \overline{h}(X, A)$ is an isomorphism.

(A) $P(\{\bullet\}), P(S^0)$ hold.

Proof. The map

$$H^*(\{\bullet\}) \otimes H^*(Y) = \underline{h}(\{\bullet\}) \to \overline{h}(\{\bullet\}) = H^*(\{\bullet\} \times Y)$$

is given by

$$\begin{split} \mathbb{Z}\otimes H^*(Y) &\longrightarrow H^*(Y), \\ 1\otimes b &\longmapsto 1\times b = \pi_1^*(1) \smile b = 1 \smile b = b \end{split}$$

so it is an isomorphism. For S^0 , use $H^*(X \amalg Y) = H^*(X) \oplus H^*(Y)$ (Exercise). \Box

(B) If $X_1 \sim X_2$, then $P(X_1) \Leftrightarrow P(X_2)$.

Proof. If $f: X_1 \to X_2$ is a homotopy equivalence, then by the lemma there is a commuting square:

$$\underbrace{\underline{h}(X_2) \xrightarrow{\underline{f}^*} \underline{h}(X_1)}_{\begin{array}{c} & \downarrow \Phi_2 \\ & \overline{h}(X_2) \xrightarrow{\overline{f}^*} \overline{h}(X_1) \end{array}$$

Then $\underline{f}^*, \overline{f}^*$ are isomorphisms, so Φ_1 is an isomorphism iff Φ_2 is. \Box (C) If two of P(X), P(A), P(X, A) hold, so does the third.

Proof. By Lemma, we have a commuting map of LESs:

So the claim follows from the Five Lemma.

(D) If (X, A) is a good pair, then $P(X, A) \Leftrightarrow P(X/A)$.

Proof. As in (B) we deduce that $P(X, A) \Leftrightarrow P(X/A, A/A)$ using (4) Collapsing a pair. P(A|A) holds by (A), so $P(X|A, A|A) \Leftrightarrow P(X|A)$ by (C)

(E) $P(S^n)$ and $P(D^n, S^{n-1})$ hold.

Proof. We induct on n. The case n = 0 is (A). $D^n \sim \{\bullet\}$, so $P(D^n)$ holds by (B). So if $P(S^{n-1})$ is true, then so is $P(D^n, S^{n-1})$ by (C), hence $P(S^n)$ holds by (D).

(F) $P(X) \implies P(X \cup_f D^n).$

Proof. $(X \cup_f D^n)/X \simeq S^n$, so $P(X \cup_f D^n, X)$ holds by (D) and (E). So by (C) we get $P(X) \implies P(X \cup_f D^n)$.

Using (F) and induction, P(X) holds for any fcc X.

Example. Let Σ_2 be the surface of genus 2. Let A be a closed curve in Σ_2 as in the figure

 $\Sigma_2 \to \Sigma_2 / A \cong T^2 \vee T^2$

such that $\Sigma_2/A \cong T^2 \wedge T^2$. Let $\pi : \Sigma_2 \to \Sigma_2/A$ be the quotient map. Recall from Sheet 1, Exercise 5 that

$$H_*(\Sigma_2) = \begin{cases} \mathbb{Z} & * = 0, 2, \\ \mathbb{Z}^4 & * = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Furthermore we know $H_2(T^2 \vee T^2) = \mathbb{Z} \oplus \mathbb{Z}$. On H_2 the map $\pi_* : \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z}$ is given by $1 \mapsto (1,1)$. And on $H_1, \pi_* : \mathbb{Z}^4 = H_1(\Sigma_2) \to H_1(T^2 \vee T^2)$ is an isomorphism. $H_*(\Sigma_2)$ and

 $H_*(T^2 \vee T^2)$ are free over \mathbb{Z} , so by the UCT we have $H^*(\Sigma_2) = \operatorname{Hom}(H_*(\Sigma_2), \mathbb{Z})$, same for $T^2 \vee T^2$ and π^* is dual to π_* . So on H^2 , π^* is given by $\begin{bmatrix} 1 & 1 \end{bmatrix} : H^2(T^2 \vee T^2) = \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z} = H^2(\Sigma_2)$.

Let $\langle a'_1, b'_1 \rangle \oplus \langle a'_2, b'_2 \rangle = H^1(T^2) \oplus H^1(T^2)$. Let $a_i = \pi^*(a'_i), b_i = \pi^*(b'_i)$, so that $H^1(\Sigma_2) = \langle a_1, b_1, a_2, b_2 \rangle$. Let $c_i = a'_i \smile b'_1$, i = 1, 2, be generators of the two factors $H^2(T^2)$ in $H^2(T^2 \lor T^2)$ and let $c = \pi^*(c_1) = \pi^*(c_2)$, so that $H^2(\Sigma_2) = \langle c \rangle$.

Then we have the following cup products:

$$a_i \smile b_j = \pi^*(a'_i) \smile \pi^*(b'_j)$$
$$= \pi^*(a'_i \smile b'_j)$$
$$= \pi^*(\delta_{ij}c_i) = \delta_{ij}c$$

and similarly $a_i \smile a_j = 0, b_i \smile b_j = 0.$

More generally, the same argument shows that $H^1(\Sigma_g) = \langle a_i, b_i \rangle_{i=1}^g$, with

$$a_i \smile b_j = \delta_{ij}c, \ a_i \smile a_j = b_i \smile b_j = 0$$

where $\langle c \rangle = H^2(\Sigma_g) = \mathbb{Z}$.

4 Vector Bundles

4.1 Definitions and Examples

Definition. An n-dimensional real vector bundle (E, B, π) consists of two spaces E (total space), B (base) and a map $\pi : E \to B$ such that:

- (1) $\pi^{-1}(b)$ carries the structure of a real n-dimensional real vector space for each $b \in B$.
- (2) There is an open cover $\{U_{\alpha} \mid \alpha \in A\}$ of B and homeomorphisms $f_{\alpha} : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{n}$ such that

$$(a) \begin{array}{c} \pi^{-1}(U_{\alpha}) \xrightarrow{f_{\alpha}} U_{\alpha} \times \mathbb{R}^{n} \\ \downarrow_{\pi} \qquad \qquad \downarrow_{\pi_{1}} \quad commutes, \\ U_{\alpha} \xrightarrow{\operatorname{id}_{U_{\alpha}}} U_{\alpha} \end{array}$$

(b) $\pi_2 \circ f_\alpha : \pi^{-1}(b) \to \mathbb{R}^n$ is an isomorphism of vector spaces for all $b \in U_\alpha$.

The f_{α} are local trivializations.

Similar one defines complex n-dimensional vector bundles.

Definition. A morphism $f: (E, B, \pi) \to (E', B', \pi')$ is a commuting square

$$E \xrightarrow{f_E} E' \\ \downarrow^{\pi} \qquad \downarrow^{\pi'} \\ B \xrightarrow{f_B} B'$$

such that $f_E|_{\pi^{-1}(b)}: \pi^{-1}(b) \to (\pi')^{-1}(f(b))$ is a linear map $\mathbb{R}^n \to \mathbb{R}^m$.

E is a subbundle of E' if there is an injective morphism

$$E \xrightarrow{f_E} E' \\ \downarrow^{\pi} \qquad \downarrow^{\pi'} \\ B \xrightarrow{1_B} B'$$

so that $\pi^{-1}(b)$ is a linear subspace of $(\pi')^{-1}(b)$.

Definition. A section s of E is a continuous map $s : B \to E$ with $\pi \circ s = 1_B$. s is non-vanishing if $s(b) \neq 0$ for all b.

The map $s_0: B \to E, b \mapsto 0$ is the 0-section. To check that s_0 is continuous it is enough to check that $f_\alpha \circ s_0$ is continuous for all $\alpha \in A$ which is clearly the case.

Examples.

(1) $E = B \times \mathbb{R}^n$ is an *n*-dimensional real vector bundle over B, $f = 1_{B \times \mathbb{R}^n} : E \to B \times \mathbb{R}^n$ is a local (here global) trivialization. $B \times \mathbb{R}^n$ is the *n*-dimensional trivial bundle on B.

In general, $\pi: E \to B$ is trivial if there is a bundle isomorphism $f: E \to B \times \mathbb{R}^n$.

Proposition 4.1. *E* is trivial iff there exist sections $s_1, \ldots, s_n : B \to E$ such that $\{s_1(b), \ldots, s_n(b)\}$ is a basis for $\pi^{-1}(b)$ for all $b \in B$.

(2) $M = [0,1] \times \mathbb{R}/\sim$ where \sim is the smallest equivalence relation with $(0,x) \sim (1,-x)$. There is a natural projection $\pi : M \to S^1 = [0,1]/\sim$ where $0 \sim 1$. This is a 1-dimensional vector bundle over S^1 , called the *Möbius bundle*.

Möbius bundle

A section $s: S^1 \to M$ is given by a continuous map $f: [0,1] \to \mathbb{R}$ with f(0) = -f(1). Then f(t) = 0 for some $t \in [0,1]$, so s(t) = 0, so s is not a non-vanishing section. So M is non-trivial.

(3) The tautological bundle $\tau_{\mathbb{RP}^n} = \{([z], v) \in \mathbb{RP}^n \times \mathbb{R}^{n+1} \mid v \in \langle z \rangle\}$. Then there is a projection $\pi : \tau_{\mathbb{RP}^n} \to \mathbb{RP}^n$ and $\pi^{-1}([z]) = \langle z \rangle \subseteq \mathbb{R}^{n+1}$.

The open subsets $U_i = \{[z] \in \mathbb{RP}^n \mid z_i \neq 0\}, i = 0, \ldots, n \text{ cover } \tau_{\mathbb{RP}^n}$. The maps $f_i : \pi^{-1}(U_i) \to U_i \times \mathbb{R}, ([z], v) \mapsto ([z], v_i)$ are local trivializations.

We have $\mathbb{RP}^1 \simeq S^1$ and $\tau_{\mathbb{RP}^1} \simeq M$ is non-trivial.

Similarly one can define the complex tautological bundle $\tau_{\mathbb{CP}^n}$.

(4) $TS^n = \{(x, v) \in \mathbb{S}^n \times \mathbb{R}^{n+1} \mid \langle v, x \rangle = 0\}$ is the tangent bundle of S^n . Let $\pi : TS^n \to S^n$ be the natural map. Then $\pi^{-1}(x) = x^{\perp} \simeq \mathbb{R}^n$. Let $U_i = \{x \in S^n \mid x_i \neq 0\}$.

Local trivializations are given by $f_i : \pi^{-1}(U_i) \to U_i \times \mathbb{R}^n, (x, v) \mapsto (x, \pi_i v)$ where π_i is the projection dropping the *i*-th coordinate.

 TS^1 has a non-vanishing section s(x, y) = ((x, y), (-y, x)), so TS^1 is trivial. But TS^{2n} has no non-vanishing section (Sheet 1, Exercise 8), so TS^{2n} is not trivial.

More generally, any smooth manifold has a tangent bundle.

4.1.1 Pullbacks

If $\pi: E \to B$ is an *n*-dimensional real vector bundle and $g: B' \to B$ is continuous, let

$$g^*(E) = \{ (b', b, v) \in B' \times B \times E \mid g(b') = \pi(v) = b \}.$$

We equip $g^*(E)$ with the subspace topology in $B' \times B \times E$. Let $\pi_g : g^*(E) \to B'$, $(b', b, v) \mapsto b'$. Then

$$\pi_g^{-1}(b') = \{(b',g(b),v) \mid \pi(v) = g(b)\} = \pi^{-1}(g(b))$$

has a vector space vector space structure. If $f_{\alpha} : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{n}$ is a local trivialization for E, let $V_{\alpha} = g^{-1}(U_{\alpha})$ and $f'_{\alpha} : \pi^{-1}_{g}(V_{\alpha}) \to V_{\alpha} \times \mathbb{R}^{n}$, $(b', b, v) \mapsto (b', \pi_{2}(f_{\alpha}(v)))$. This gives a local trivialization for $g^{*}E$.

Definition. The vector bundle g^*E is the pullback of E by g.

Lemma 4.2. $(g \circ f)^* E = f^*(g^* E)$

Definition. If $A \subseteq B$, $i : A \hookrightarrow B$ is the inclusion, then $E|_A := i^*(E)$ is the restriction of E to A.

If $s: B \to E$ is a section, then $g^*s: B' \to g^*E, b' \mapsto (b', g(b'), s(g(b')))$ is a section of $g^*(E)$.

Example: $\tau_{\mathbb{RP}^n}|_{\mathbb{RP}^1} \simeq \tau_{\mathbb{RP}^1}$ has no non-vanishing section, so $\tau_{\mathbb{RP}^n}$ has no non-vanishing section, so $\tau_{\mathbb{RP}^n}$ is non-trivial.

4.1.2 Products

If $\pi : E \to B, \pi' : E' \to B'$ are vector bundles of dimension n, n', their product is $\pi \times \pi' : E \times E' \to B \times B'$. The fibre $(\pi \times \pi')^{-1}(b, b') = \pi^{-1}(b) \times \pi^{-1}(b')$ is a vector space of dimension n + n'. If $f_{\alpha} : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{n}, f'_{\beta} : (\pi'^{-1})(U_{\beta}) \to U_{\beta} \times \mathbb{R}^{n}$ are local trivializations, then

$$f_{\alpha} \times f_{\beta}' : (\pi \times \pi')^{-1} (U_{\alpha} \times U_{\beta}) \to U_{\alpha} \times \mathbb{R}^{n} \times U_{\beta} \times \mathbb{R}^{n'} \simeq U_{\alpha} \times U_{\beta} \times \mathbb{R}^{n+n'}$$

is a local trivialization for $E \times E'$ over $U_{\alpha} \times U_{\beta}$.

Definition. If B = B', $E \oplus E' = \Delta^*(E \times E')$, where $\Delta : B \to B \times B$, $b \mapsto (b, b)$ is the diagonal, is the Whitney sum of E and E'

4.1.3 Partitions of Unity

Notation: If $\varphi : B \to \mathbb{R}$, set $\operatorname{supp} \varphi = \overline{\{b \in B \mid \varphi(b) \neq 0\}}$.

Definition. If $\mathcal{U} = \{U_{\alpha} \mid \alpha \in A\}$ is an open cover of B, a partition of unity (PoU) subordinate to \mathcal{U} is a family of functions $\varphi_i : B \to \mathbb{R}$, $i \in \mathbb{N}_0$ such that

- (1) $0 \leq \varphi_i(b) \leq 1$ for all $b \in B$,
- (2) $\{i \mid \varphi_i(b) \neq 0\}$ is finite for all b,
- (3) supp $\varphi_i \subseteq U_{\alpha_i}$ for some $\alpha_i \in A$,
- (4) $\sum_{i>0} \varphi_i(b) = 1$ for all b.

Definition. B admits PoU if for every open cover \mathcal{U} there is a partition of unity subordinate to \mathcal{U} .

Remark: If B is compact or metrizable, then B admits PoU. More generally B admits PoU if it is paracompact and Hausdorff.

Theorem 4.3. Suppose B admits PoU and $\pi : E \to B \times I$ is a vector bundle. Then $E|_{B\times 0} \simeq E|_{B\times 1}$.

Lemma 4.4. If $E|_{B\times[0,\frac{1}{2}]}$ and $E|_{B\times[\frac{1}{2},1]}$ are trivial, then E is trivial.

Proof. Exercise.

Lemma 4.5. For each $b \in B$, b has an open neighborhood U_b such that $E|_{U_b \times I}$ is trivial.

Proof. E is locally trivial, so for each $t \in I$ we can find open neighborhoods U_t of b in B and I_t of t in I such that $E|_{U_t \times I_t}$ is trivial. $\{I_t \mid t \in I\}$ is an open cover of the compact set I, so let $\{I_{t_0}, \ldots, I_{t_n}\}$ be a finite subcover. Then there exist $0 = s_0 < s_1 < \cdots < s_n = 1$ such that $[s_i, s_{i+1}] \subseteq I_{t_k}$ for some k. So $E|_{U_{t_k} \times [s_i, s_{i+1}]}$ is trivial. Let $U_b = \bigcap_{k=0}^n U_{t_k}$. It is an open neighborhood of b and $U|_{U_b \times [s_i, s_{i+1}]}$ is trivial for all i. By the previous lemma and induction $E|_{U_b \times [0, s_i]}$ is trivial for all $i = 0, \ldots, n$.

Proof of Theorem 4.3. For each $b \in B$, let U_b be an open neighborhood of b as in the Lemma and pick a PoU $\{\varphi_i\}_{i\in\mathbb{N}}$ subordinate to $\{U_b \mid b \in B\}$. For $i \in \mathbb{N}$ let $b_i \in B$ such that supp $\varphi_i \subseteq U_{b_i}$.

For $k \in \mathbb{N}_0$ define $\psi_k : B \to I$ by $\psi_k(b) = \sum_{i=1}^k \varphi_i(b)$. Then let

$$g_k : B \longrightarrow B \times I,$$
$$b \longmapsto (b, \psi_k(b))$$

and define

$$E_k = g_k^*(E) = \{ (b, g_k(b), v) \in B \times (B \times I) \times E \mid \pi(v) = (b, \psi_k(b)) \}.$$

Let $f_b: \pi^{-1}(U_b \times I) \to U_b \times I \times \mathbb{R}^n$ be a trivialization. Define $\beta_k: E_{k-1} \to E_k$ by

$$\beta_k((b, g_k(b), v)) = \begin{cases} (b, g_k(b), v) & b \notin U_{b_k}, \\ (b, f_{b_k}^{-1}(b, g_k(b), v')) & b \in U_{b_k} \end{cases}$$

where $f_{b_k}(v) = (b, g_{k-1}(b), v')$. β_k is an isomorphism.

Then $\cdots \circ \beta_3 \circ \beta_2 \circ \beta_1$ is the desired isomorphism $E|_{B\times 0} \to E|_{B\times 1}$.

Corollary 4.6. Suppose $\pi : E \to B$ is a vector bundle, $g_0, g_1 : B' \to B$, $g_0 \sim g_1$ via $h: B' \times I \to B$ and that B' admits PoU. Then

$$g_0^*(E) = h^*(E)|_{B' \times 0} \simeq h^*(E)|_{B' \times 1} = g_1^*(E).$$

Corollary 4.7. If B is contractible and admits PoU, then every vector bundle $\pi : E \to B$ is trivial.

Proof.
$$1_B \sim c_{B,p}$$
, so $E = (1_B)^*(E) \simeq (c_{B,p})^*(E) = B \times \pi^{-1}(p)$ is trivial.

4.1.4 Riemannian metrics

Definition. Suppose $\pi : E \to B$ is a real (resp. complex) vector bundle. A Riemannian (resp. Hermitian) metric on E is a continuous map $g : E \oplus E \to \mathbb{R}$ (resp. $E \oplus E \to \mathbb{C}$) such that $g|_{\pi_{E \oplus E}^{-1}(b)}$ is an inner product (resp. Hermitian inner product) on $\pi_{E}^{-1}(b)$ for all $b \in B$.

Example. $\tau_{\mathbb{RP}^n} = \{([z], v)) \in \mathbb{RP}^n \times \mathbb{R}^{n+1} \mid v \in \langle z \rangle\}$ has a natural Riemannian metric given by $g([z, v_1], [z, v_2]) = \langle v_1, v_2 \rangle_{\mathbb{R}^{n+1}}$. Similarly, $\tau_{\mathbb{CP}^n}$ has a natural Hermitian metric.

Definition. Suppose E is a vector bundle with Riemannian metric g. The unit disk and the unit sphere bundles of E are given by:

$$D_g(E) = \{ v \in E \mid \langle v, v \rangle \le 1 \},\$$

$$S_g(E) = \{ v \in E \mid \langle v, v \rangle = 1 \}.$$

Note: $D_q(E), S_q(E)$ are not vector bundles, they are fibre bundles.

Exercise: If g, g' are two Riemannian metrics on E, then by radial projection on fibres we get commutative diagrams:

So we drop g from the notation and write S(E), D(E).

Examples.

• $S(\tau_{\mathbb{RP}^n}) = \{([z], v) \mid v \in \langle z \rangle, \|v\| = 1\}$. We can identify this with S^n , via $S^n \ni v \mapsto ([v], v) \in S(\tau_{\mathbb{RP}^n}).$

Under this identification, the projection $\pi: S^{(\tau^n)} \to \mathbb{RP}^n$ is just the natural projection $S^n \to \mathbb{RP}^n$.

Similarly, $S(\tau_{\mathbb{CP}^n}) = S^{2n-1}$.

• If $\pi: E \to B$ is trivial with trivialization $f: E \to B \times \mathbb{R}^n$, then E has a Riemannian metric given by $g(v_1, v_2) = \langle \pi_2(f(v_1)), \pi_2(f(v_2)) \rangle$. So $S(B \times \mathbb{R}^n) = B \times S^{n-1}$.

Therefore $\tau_{\mathbb{RP}^n}, \tau_{\mathbb{CP}^n}$ are non-trivial, since $\mathbb{RP}^n \times S^0 \not\cong S^n, \mathbb{CP}^n \times S^1 \not\cong S^{2n-1}$.

Proposition 4.8. If B admits PoU and $\pi : E \to B$ is a real vector bundle, then E has a Riemannian metric.

Proof. By the second example above, B has admits a Riemannian metric over any trivialized open subset of E, then patch them together using a PoU.

4.2 The Thom Isomorphism

Let $\pi: E \to B$ be an *n*-dimensional vector bundle. If $b \in B$, let $E_b = \pi^{-1}(b)$ be the fibre of *E* over *b*. There is an inclusion $i_b: E_b \hookrightarrow E$. Let $s_0: B \to E$ be the 0-section.

Define $E^{\sharp} = E \setminus \operatorname{im} s_0, E_b^{\sharp} = E_b \setminus 0$. Then

$$H_*(E_b, E_b^{\sharp}) \simeq H_*(\mathbb{R}^n, \mathbb{R}^n - 0) = \begin{cases} \mathbb{Z} & * = n, \\ 0 & \text{otherwise} \end{cases}$$

is free. Fix a ring R. By the UCT, we have

$$H^*(E_b, E_b^{\sharp}, R) = \begin{cases} R & * = n, \\ 0 & \text{otherwise} \end{cases}$$

Definition. $U \in H^n(E, E^{\sharp}; R)$ is an *R*-Thom class (or *R*-orientation) for *E* if $i_b^*(U)$ generates $H^n(E_b, E_b^{\sharp}; R)$ for all $b \in B$.

From now on, we assume R-coefficients.

Example. Let $E = B \times \mathbb{R}^n$ be the trivial bundle. Then

$$H^*(E, E^{\sharp}) = H^*(B \times \mathbb{R}^n, B \times (\mathbb{R}^n - 0)) \simeq H^*(B) \otimes H^*(\mathbb{R}^n, \mathbb{R}^n - 0), 1$$

¹Remark by L.T.: In the lecture this was justified by saying that $H^*(\mathbb{R}^n, \mathbb{R}^n - 0)$ is free, but this is not the hypothesis in our Künneth formula. There we required that the factor with the non-relative cohomology $H^*(B)$ was free. However, it should still be fine, see e.g. [Hat02, Theorem 3.18] for the case of CW-complexes.

i.e. we have an isomorphism

$$H^{k-n}(B) \xrightarrow{\simeq} H^k(E, E^{\sharp}), a \mapsto a \times U = \pi_1^*(a) \smile \pi_2^*(U),$$

where U is a generator of $H^n(\mathbb{R}^n, \mathbb{R}^n - 0) \simeq R$. For k = 0, we get $H^0(B) \simeq H^n(E, E^{\sharp})$ via $r \mapsto r \times U$. Let $(B_i)_{i \in I}$ be the path components of B. Then $H^0(B) = \prod_{i \in I} H^0(B_i)$. Let $r = (r_i)_{i \in I} \in H^0(B)$.

If $b \in B_i$, $i_b^*(r \times u) = r_i U \in H^*(\mathbb{R}^n, \mathbb{R}^n - 0)$. So $r \times U$ is a Thom class iff r_i generates $H^0(B_i) \simeq R$ for all *i*. In particular, if $R = \mathbb{Z}/2$, there is a unique Thom class. If $R = \mathbb{Z}$, there are $2^{\#\pi_0(B)}$ Thom classes (choose $r_i = \pm 1$).

If $f: B' \to B$, there is a morphism $F: f^*(E) \to E$ over $f: B' \to B$, given by $(b', b, v) \mapsto v$. Note that $F(\operatorname{im} s'_0) = \operatorname{im} s_0$, so we get a map of pairs $F: (f^*(E), f^*(E)^{\sharp}) \to (E, E^{\sharp})$.

Lemma 4.9. If U is an R-Thom class for E, then $F^*(U)$ is an R-Thom class for f^*E .

Proof. Let $b' \in B'$, b = f(b) and $j = F|_{f^*(E)_{b'}}$. There is a commutative square:

$$\begin{array}{ccc} f^*(E) & \stackrel{F}{\longrightarrow} E \\ i_{b'} \uparrow & i_b \uparrow \\ f^*(E)_{b'} & \stackrel{j}{\longrightarrow} E_b \end{array}$$

The bottom map is an isomorphism and $i_{b'}^*(F^*(U)) = j^*(i_b^*(U))$. Since $i_b^*(U)$ generates $H^n(E_b, E_b^{\sharp})$, $i_{b'}^*(F^*(U))$ generates $H^n(f^*(E)_{b'}, f^*(E)_{b'}^{\sharp})$, so $F^*(u)$ is a TC.

Lemma 4.10. Suppose $B = B_1 \cup B_2$, $U \in H^n(E, E^{\sharp})$. For k = 1, 2, let $i_k : B_k \to B$ be the inclusion. Then if $i_1^*(U), i_2^*(U)$ are TC's for $E|_{B_1}, E|_{B_2}$, then U is a TC for E.

Proof. Obvious.

Theorem 4.11 (Thom isomorphism). If $\pi : E \to B$ is an n-dimensional real vector bundle, then:

- (a) E has a unique $\mathbb{Z}/2$ Thom class.
- (b) If E has an R-Thom class U, the map

$$\Phi: H^*(B; R) \longrightarrow H^{*+n}(E, E^{\sharp}; R),$$
$$a \longmapsto \pi^*(a) \smile U$$

is an isomorphism, called the Thom isomorphism.

Proof. We assume that B is compact.

Step 1 The theorem holds if $E = B \times \mathbb{R}^n$ is trivial. This is the example we did before.

Step 2 Suppose $V_1, V_2 \subseteq B$ are open. Let $E_i = E|_{V_i}, E_{\cap} = E|_{V_1 \cap V_2}, E_{\cup} = E|_{V_1 \cup V_2}$. If the theorem holds for E_1, E_2 and E_{\cap} , then it holds for E_{\cup} .

Proof. For (a) consider $\mathbb{Z}/2$ coefficients.

The MV sequence is

$$H^{n-1}(E_{\cap}, E_{\cap}^{\sharp}) \to H^n(E_{\cup}, E_{\cup}^{\sharp}) \xrightarrow{i} H^n(E_1, E_1^{\sharp}) \oplus H^n(E_2, E_2^{\sharp}) \xrightarrow{j} H^n(E_{\cap}, E_{\cap}^{\sharp}),$$

where

$$i = \begin{bmatrix} i_1^* \\ i_2^* \end{bmatrix}, j = \begin{bmatrix} j_1^* - j_2^* \end{bmatrix}$$

Let $U_i \in H^n(E_i, E_i^{\sharp})$ be the unique $\mathbb{Z}/2$ Thom class for E_i . By the first lemma, $j_i^*(U_i)$ is a TC for E_{\cap} . By uniqueness,

$$j_1^*(U_1) = j_2^*(U_2) = U_{\cap}$$

is the unique $\mathbb{Z}/2$ -TC for E_{\cap} , so $(U_1, U_2) \in \ker j = \operatorname{im} i$, hence $(U_1, U_2) = i(U_{\cup})$ for some $U_{\cup} \in H^n(E_{\cup}, E_{\cup}^{\sharp})$. Then $i_i^*(U_{\cup}) = U_i$, so by Lemma 4.10, U_{\cup} is a TC for E_{\cup} . It is unique, since if $U'_{\cup} \in H^n(E_{\cup}, E_{\cup}^{\sharp})$ is a TC, then $i(U'_{\cup}) = (U_1, U_2)$ by the first lemma and uniqueness for E_i . Since $\ker i \subseteq H^{n-1}(E_n, E_n^{\sharp}) \simeq H^{-1}(V_1 \cap V_2) = 0$ (by (b)), we get $U_{\cup} = U'_{\cup}$.

For (b), we have a commuting diagram of MV sequences

$$\begin{array}{cccc} H^*(V_1 \cup V_2) & \longrightarrow & H^*(V_1) \oplus H^*(V_2) & \longrightarrow & H^*(V_1 \cap V_2) \\ & & \downarrow \Phi_{\cup} & & \downarrow \Phi_{\cap} \\ H^{*+n}(E_{\cup}, E_{\cup}^{\sharp}) & \longrightarrow & H^{*+n}(E_1, E_1^{\sharp}) \oplus H^{*+n}(E_2, E_2^{\sharp}) & \longrightarrow & H^{*+n}(E_{\cap}, E_{\cap}^{\sharp}) \end{array}$$

By hypothesis, $\Phi_1, \Phi_2, \Phi_{\cap}$ are all isomorphisms, so Φ_{\cup} is an isomorphism by the Five Lemma.

Step 3 *B* is compact, so it has a finite open cover $\{V_1, \ldots, V_r\}$ such that $E|_{V_i}$ is trivial. Let $W_k = \bigcup_{i=1}^k V_i$. By Step 1, the theorem holds for W_1 . If the theorem holds for W_k , it holds for W_{k+1} by Step 2, hence it holds for $B = W_r$ by induction.

4.2.1 The Gysin Sequence

Suppose $\pi : E \to B$ has an *R*-Thom class *U*. Note that $E^{\sharp} = E \setminus \operatorname{im} s_0 \sim S(E)$. Also $\pi : E \to B$ is a homotopy equivalence with homotopy inverse $s_0 : B \to E$. The LES of

 (E, E^{\sharp}) is

$$\begin{array}{ccc} H^*(E, E^{\sharp}) & \stackrel{j^*}{\longrightarrow} & H^*(E) & \longrightarrow & H^*(E^{\sharp}) & \longrightarrow & H^{*+1}(E, E^{\sharp}) \\ & & & \Phi \uparrow \simeq & & \simeq s_0^* \downarrow \uparrow \pi^* \simeq & \simeq \uparrow & & & \Phi \uparrow \simeq \\ & & & & H^{*-n}(B) & \stackrel{\alpha}{\longrightarrow} & H^*(B) & \longrightarrow & H^*(S(E)) & \longrightarrow & H^{*-n+1}(B) \end{array}$$

 α is defined in such a way that the diagram commutes, so for $a \in H^{*-n}(B)$, we have:

$$\begin{aligned} \alpha(a) &= s_0^*(j^*(\Phi(a))) = s_0^*j^*(\pi^*a \smile U) \\ &= s_0^*(\pi^*a \smile j^*U) \\ &= (s_0^*\pi^*a) \smile s_0^*j^*(U) \\ &= a \smile s_0^*j^*(U). \end{aligned}$$

Definition. If $\pi : E \to B$ is an *R*-oriented *n*-dimensional real vector bundle with *TCU*, its Euler class is $e(E) = s_0^* j^*(U) \in H^n(B)$.

Theorem 4.12 (Gysin sequence). There is a LES

$$\cdots \to H^{*-n}(B) \xrightarrow{\alpha} H^*(B) \xrightarrow{\pi^*} H^*(S(E)) \to H^{*-n+1}(B) \to \cdots$$

where $\alpha(a) = a \smile e(E)$.

Proposition 4.13. Properties of the Euler class:

- (1) If $f: B' \to B$, then $f^*(E)$ is oriented and $e(f^*(E)) = f^*(e(E))$.
- (2) If E is trivial and n > 0, then e(E) = 0.
- (3) $e(E_1 \oplus E_2) = e(E_1) \smile e(E_2).$
- (4) If E has a non-vanishing section, then e(E) = 0.

Proof.

(1) There is a commuting diagram:

$$\begin{array}{ccc} (B, \emptyset) & \xrightarrow{s_0} & (E, \emptyset) & \xrightarrow{j} & (E, E^{\sharp}) \\ f \uparrow & F \uparrow & F \uparrow \\ (B', \emptyset) & \xrightarrow{s'_0} & (f^*E, \emptyset) & \xrightarrow{j'} & (f^*E, (f^*E)^{\sharp}) \end{array}$$

By Lemma 4.9, $F^*(U)$ is an orientation on $f^*(E)$, so

$$e(f^*(E)) = s'_0 j'^* F * (U) = f^* s_0^* j^*(U) = f^*(e(E))$$

- (2) This is true if $B = \{\bullet\}$, since $H^n(\{\cdot\}) = 0$. In general E is trivial, iff $E = f^*(E_{\bullet})$ where $f: B \to \{\bullet\}$ and $E_{\bullet} = \mathbb{R}^n$, so $e(E) = f^*(e(E_{\bullet})) = f^*(0) = 0$.
- (3) Is on Example sheet 4.
- (4) If s is a non-vanishing section, $\langle s \rangle$ is a trivial bundle and $E = \langle s \rangle \oplus \langle s \rangle^{\perp}$, so

$$e(E) = e(\langle s \rangle) \smile e(\langle s \rangle^{\perp}) = 0 \smile e(\langle s \rangle^{\perp}) = 0$$

Theorem 4.14.

$$H^*(\mathbb{RP}^n;\mathbb{Z}/2)\simeq \mathbb{Z}/2[X]/(X^{n+1})$$

where $x = e(\tau_{\mathbb{RP}^n}) \in H^1(\mathbb{RP}^n; \mathbb{Z}/2).$

By Theorem 4.11, every vector bundle is $\mathbb{Z}/2$ -orientable, so $e(\tau_{\mathbb{RP}^n})$ exists.

Proof. $\mathbb{Z}/2$ -coefficients everyhwere.

We have $S(\tau_{\mathbb{RP}^n}) = S^n$, so the Gysin sequence is

$$\cdots \to H^{k-1}(\mathbb{R}\mathbb{P}^n) \xrightarrow{\alpha} H^k(\mathbb{R}\mathbb{P}^n) \to H^k(S^n) \to H^k(\mathbb{R}\mathbb{P}^n) \to \cdots$$

Claim: $\alpha = \cdot \smile x$ is an isomorphism for $1 \le k \le n$. Proof:

• k = 1 and n > 1. The Gysin sequence is:

$$0 \to H^0(\mathbb{R}\mathbb{P}^n) \to H^0(S^n) \to H^0(\mathbb{R}\mathbb{P}^n) \xrightarrow{\alpha} H^1(\mathbb{R}\mathbb{P}^n) \to H^1(S^n) = 0$$

Clearly, $\pi^* : H^0(\mathbb{RP}^n) \to H^0(S^n)$ is an isomorphism, so the map $H^0(S^n) \to H^0(\mathbb{RP}^n)$ is the zero map. It follows that α is an isomorphism.

• 1 < k < n. We get:

$$0=H^{k-1}(S^n)\to H^{k-1}(\mathbb{R}\mathbb{P}^n)\xrightarrow{\alpha} H^k(\mathbb{R}\mathbb{P}^n)\to H^k(S^n)=0$$

So again α is an isomorphism.

• k = n. Then

$$0 = H^{n-1}(S^n) \to H^{n-1}(\mathbb{R}\mathbb{P}^n) \xrightarrow{\alpha} H^n(\mathbb{R}\mathbb{P}^n) \to H^n(S^n) \to H^n(\mathbb{R}\mathbb{P}^n) \to 0$$

Since $H^n(S^n) \to H^n(\mathbb{RP}^n)$ is surjective and both groups are $\mathbb{Z}/2$, it must be an isomorphism. Then $H^n(\mathbb{RP}^n \to H^n(S^n)$ must be the zero map, hence α is an isomorphism.

So by induction, the claim implies that x^k generates $H^k(\mathbb{RP}^n; \mathbb{Z}/2) \simeq \mathbb{Z}/2$ for $0 \le k \le n$ and $x^{n+1} \in H^{n+1}(\mathbb{RP}^n) = 0$. Similarly, $\tau_{\mathbb{CP}^n}$ is a complex vector bundle, so its underlying real vector bundle is \mathbb{Z} orientable (Sheet 3, Exercise 10). The same arguments show that

$$H^*(\mathbb{CP}^n;\mathbb{Z})\simeq\mathbb{Z}[X]/(X^{n+1})$$

where $x = e(\tau_{\mathbb{CP}^n}) \in H^2(\mathbb{CP}^n; \mathbb{Z}).$

Corollary 4.15. $\pi_3(S^2) \neq 0.$

Proof. Let $h: S^3 \to S^2 \cong \mathbb{CP}^1$ be the Hopf map. Then $\mathbb{CP}^2 = S^2 \cup_h D^4$, if the class of h were 0 in $\pi_3(S^2)$, we would get $\mathbb{CP}^2 \sim S^2 \vee S^4$. But $H^*(S^2 \vee S^4) \ncong H^*(\mathbb{CP}^2)$ as graded rings, for example if $x \in H^2(S^2 \vee S^4)$, then $x \smile x = 0$.

Hence the Hopf map is a non-trivial element in $\pi_3(S^2)$.

4.2.2 Comments on Orientability

- (1) Every E is $\mathbb{Z}/2$ orientable.
- (2) For $p \neq 2$, E is \mathbb{Z}/p -orientable iff E is \mathbb{Z} -orientable (If so, we just say E is orientable).
- (3) $\tau_{\mathbb{RP}^1} = M$ is not \mathbb{Z} -orientable. Indeed, we have

$$H^*(M, M^{\sharp}) = H^*(D(M), S(M)) \simeq H^*(\overline{M}, \partial \overline{M})$$

where \overline{M} is the closed Möbius band. Then $H^2(\overline{M}, \partial \overline{M}) = \mathbb{Z}/2 \not\cong \mathbb{Z} = H^1(S^1)$, so the Thom isomorphism with \mathbb{Z} coefficients is false.

(4) There is a homomorphism $\varphi : \pi_1(B) \to \mathbb{Z}/2$ such that: For $\gamma : S^1 \to B$, $\varphi([\gamma]) = 0$ iff $\gamma^*(E)$ is orientable. So if $\pi_1(B) = 1$, then any $\pi : E \to B$ is orientable. See Example Sheet 4.

5 Manifolds

5.1 Definitions and Fundamental Class

Definition. A n-manifold is a second countable Hausdorff space M with an open cover $\{U_{\alpha} \mid \alpha \in A\}$ and homeomorphisms $\varphi_{\alpha} : U_{\alpha} \to \mathbb{R}^{n}$. The transition functions $\psi_{\alpha\beta} = \varphi_{\alpha} \circ \varphi_{\beta}^{-1} : \varphi_{\beta}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\alpha}(U_{\alpha} \cap U_{\beta})$ are homeomorphisms. M is smooth if the φ_{α} can be chosen so that $\psi_{\alpha\beta}$ are diffeomorphisms.

We call a manifold M closed if it is compact and has no boundary. Since our definition of a manifold doesn't allow for a boundary, closed just means compact.

A smooth manifold has a tangent bundle $\pi: TM \to M$.

Notation: If $A \subseteq M$ is compact, write $(M \mid A) = (M, M - A)$. If $B \subseteq A$, we get an inclusion of pairs

$$i: (M \mid A) = (M, M - A) \to (M, M - B) = (M \mid B).$$

If $w \in H_*(M \mid A)$, then we set $w|_B := i_*(w)$.

If $x \in M$, $x \in U_{\alpha} \simeq \mathbb{R}^n$ for some α . By excision, we have:

$$H_*(M \mid x) \simeq H_*(U_\alpha \mid x) \stackrel{\varphi_{\alpha^*}}{\simeq} H_*(\mathbb{R}^n \mid \varphi_\alpha(x)) = H_*(\mathbb{R}^n, \mathbb{R}^n - \varphi_\alpha(x)) = \begin{cases} \mathbb{Z} & * = n, \\ 0 & \text{otherwise.} \end{cases}$$

Now fix any ring R. Then $H_*(M \mid x; R) \simeq \begin{cases} R & * = n, \\ 0 & \text{otherwise.} \end{cases}$

Definition. An *R*-fundamental class for (M | A) is a class $w \in H_n(M | A; R)$ such that $w|_x$ generates $H_n(M | x)$ for all $x \in A$.

This is an analogue of the Thom class.

Theorem 5.1. If $A \subseteq M$ is compact, $(M \mid A)$ has a unique $\mathbb{Z}/2$ -fundamental class.

Proof. The proof is very similar to the proof of the Thom isomorphism theorem. See the handout on the Moodle page. \Box

A fundamental class for $(M \mid M) = (M, \emptyset)$ will be written as $[M] \in H_n(M)$.

We say M is *orientable* if it has a \mathbb{Z} -fundamental class.

Proposition 5.2. A smooth manifold M is orientable iff TM is orientable.

Definition. A subset $N \subseteq M$ is a k-dimensional (smooth) submanifold of an n-manifold M, if for every $x \in N$, there is a (smooth) chart $\varphi_x : U_x \to \mathbb{R}^n$ such that $\varphi_x(U_x \cap N) = \mathbb{R}^k \times 0 \subseteq \mathbb{R}^n$.

Note that if $N \subseteq M$ is a smooth submanifold, then TN is a subbundle of $TM|_N$.

Definition. Let $N \subseteq M$ be a smooth submanifold. Then $\nu_{M/N} = TN^{\perp} \subseteq TM|_N$ is the normal bundle of N in M (for some fixed choice of Riemannian metric).

So we have $TM|_N = \nu_{M/N} \oplus TN$.

Theorem 5.3 (Tubular Neighborhood Theorem). If $N \subseteq M$ is a closed smooth submanifold, there is an open neighborhood $V \subseteq M$ of N with $(\nu, N) \simeq (\nu_{M/N}, s_0(N))$.

Lemma 5.4. Suppose $E = E_1 \oplus E_2$ is orientable. Then E_1 is orientable iff E_2 is.

Proof. Exercise.

Proof of Proposition 5.2 (Idea only). If $\gamma: S^1 \to M$ is an embedding, let $V(\gamma)$ be a tubular neighborhood. Then

$$\begin{split} M \text{ is orientable} &\iff V(\gamma) \text{ is orientable for all } \gamma \\ &\iff \nu_{M/\gamma} \text{ is orientable for all } \gamma \\ &\iff TM|_{\gamma} \text{ is orientable for all } \gamma \\ &\iff TM \text{ is orientable.} \end{split}$$

Corollary 5.5. If M is orientable, then a closed smooth submanifold $N \subseteq M$ is orientable iff $\nu_{M/N}$ is.

5.2 Poincare Duality

From now on, we work with coefficients in a field \mathbb{F} , i.e. $H^k(X) = H^k(X; \mathbb{F})$. By the UCT we get $H^k(X) \simeq \operatorname{Hom}(H_k(X), \mathbb{F})$, hence by dualizing we get an isomorphism²

$$\operatorname{Hom}(H^k(X),\mathbb{F}) \xrightarrow{\simeq}_{\varphi} H_k(X)$$

where $\langle a, \varphi(\alpha) \rangle = \alpha(a)$. Here $\langle -, - \rangle : H^k(X) \times H_k(X) \to \mathbb{F}$ is the pairing induced by $H^k(X) \simeq \operatorname{Hom}(H_k(X), \mathbb{F}).$

If $a \in H^k(X)$, we have a map $a \smile -: H^l(X) \to H^{k+l}(X)$ given by the cup product.

¹Remark by L.T.: Our UCT only gives this in the case where X is a fcc. But it is still true, see e.g. [Hat02, Theorem 3.2]

²Remark by L.T.: Only if H^k, H_k are finite-dimensional...

Definition. The cap product $- \frown a : H_{k+l}(X) \to H_l(X)$ is the dual of $a \smile -$, i.e. for $x \in H_{k+l}(X), b \in H^l(X)$ we have:

$$\langle b, x \frown a \rangle = \langle a \smile b, x \rangle$$

5.2.1 Intersection Pairing

Suppose M is an \mathbb{F} -oriented n-manifold with fundamental class $[M] \in H_n(M)$.

Definition. The intersection pairing (-,-): $H^k(M) \times H^{n-k}(M) \to \mathbb{F}$ is the bilinear pairing given by

$$(a,b) = \langle a \smile b, [M] \rangle$$

It satisfies $(b, a) = (-1)^{|b||a|}(a, b) = (-1)^{k(n-k)}(a, b).$

If $a \in H^k(M)$, then $(a, -) \in \operatorname{Hom}(H^{n-k}(M), \mathbb{F})$.

Definition. The (algebraic) Poincare Dual of $a \in H^k(M)$ is

$$PD(a) = \varphi((a, -)) = [M] \frown a \in H_{n-k}(M).$$

So $\langle b, PD(a) \rangle = (a, b) = \langle a \smile b, [M] \rangle$.

5.2.2 Geometric Poincare Dual

Theorem 5.6. If M is a connected n-manifold and $x \in M$, the map

$$H_n(M) \to H_n(M \mid x) = H_n(M, M - x) \simeq \mathbb{F}$$

is injective. So if M is \mathbb{F} -oriented, then $H_n(M) = \langle [M] \rangle \simeq \mathbb{F}$ and $H^n(M) = \langle [M]^* \rangle \simeq \mathbb{F}$ where $[M]^* \in H^n(M)$ is defined so that $\langle [M]^*, [M] \rangle = 1 \in \mathbb{F}$.

Proof. See Moodle handout.

Assume $i : N \hookrightarrow M$ is a k-dimensional smooth closed connected \mathbb{F} -oriented submanifold and $x \in N$. Let V be a tubular neighborhood of N. Let $\nu = \nu_{M/N}$ be the normal bundle. There is a commutative diagram:

$$(M, \emptyset) \xrightarrow{j} (M \mid N) \xleftarrow{i} (V \mid N) \xrightarrow{\simeq} (\nu, \nu^{\sharp})$$

$$(M \mid x)$$

Since N is connected, $H^k(N) \simeq \mathbb{F} = \langle [N]^* \rangle$. Hence $H^n(\nu, \nu^{\sharp}) = \langle U \smile \pi^*[N]^* \rangle \simeq \mathbb{F}$ where $U \in H^{n-k}(\nu, \nu^{\sharp})$ is an orientation for $\nu_{M/N}$. Then $H_n(\nu, \nu^{\sharp}) \simeq \mathbb{F}$

Now $i_*: H_n(\nu, \nu^{\#}) \to H_n(M \mid N) \simeq \mathbb{F}$ is an isomorphism by Excision. Also $j_{x*}: H_n(M) \to H_n(M \mid x) \simeq \mathbb{F}$ is an isomorphism, so $j_*: H_n(M) \to H_n(M \mid N)$ is an isomorphism.

So $i_*^{-1} j_*[M]$ generates $H_n(\nu, \nu^{\sharp}) \simeq \mathbb{F}$. So

$$\langle U \smile \pi^*[N]^*, i_*^{-1} j_*[M] \rangle =: c \in \mathbb{F}^*.$$

Remark by L.T.: Lots of missing inclusions etc., in the following...

Definition. $U_{M/N} := c^{-1}U$ is the orientation on $\nu_{M/N}$ induced by [N] and [M]. It satisfies

$$\langle U_{M/N} \smile \pi^*[N]^*, i_*^{-1} j_*[M] \rangle = 1$$

Definition. $pd(N) := j^*(i^*)^{-1}(U_{M/N}) \in H^{n-k}(M)$ is the geometric Poincare dual of N.

Proposition 5.7. If $a \in H^k(M)$, then

$$\langle \mathrm{pd}(N) \smile a, [M] \rangle = \langle a, i_*[N] \rangle,$$

i.e. $PD(pd(N)) = i_*[N].$

Lemma 5.8. Let $i: V \to M$ be the inclusion. Then

$$i^*(a) = \langle a, i_*[N] \rangle \pi^*[N]^*.$$

Proof. $\pi: V \to N$ is a homotopy equivalence, so $H^k(V)$ is generated by $\pi^*[N]^*$. So it is enough to check that $\langle i^*(a), [N] \rangle = \langle \langle a, i_*[N] \rangle \pi^*[N]^*, [N] \rangle$ (exercise).

Proof of Proposition 5.7. If $b \in H^{l}(M \mid N)$, then $j^{*}(b \smile a) = j^{*}(b) \smile a$. So

$$\begin{split} \langle \mathrm{pd}(N) \smile a, [M] \rangle &= \langle (i^*)^{-1} (U_{M/N}) \smile a, j_*[M] \rangle \\ &= \langle U_{M/N} \smile i^*(a), i_*^{-1} (j_*[M]) \rangle \\ &= \langle U_{M/N} \smile \langle a, i_*[N] \rangle \pi^*[N]^*, i_*^{-1} j_*[M] \rangle \\ &= \langle a, i_*[N] \rangle \cdot \langle U_{M/N} \smile \pi^*[N]^*, i_*^{-1} j_*[M] \rangle \\ &= \langle a, i_*[N] \rangle \end{split}$$

Next we will show that PD is an isomorphism by considering the diagonal $\Delta: M \to M \times M$.

5.2.3 Homology of Products and Proof of Poincare Duality

Note that $\operatorname{Hom}(A \otimes B, \mathbb{F}) \simeq \operatorname{Hom}(A, \mathbb{F}) \otimes \operatorname{Hom}(B, \mathbb{F})$, hence

$$H_*(X \times Y) \simeq \operatorname{Hom}(H^*(X \times Y), \mathbb{F})$$
$$\simeq \operatorname{Hom}(H^*(X) \otimes H^*(Y), \mathbb{F})$$
$$\simeq H_*(X) \otimes H_*(Y)$$

Under this isomorphism $\alpha \otimes \beta \in H_*(X) \otimes H_*(Y)$ corresponds to $\alpha \times \beta \in H_*(X \times Y)$ where $\alpha \times \beta$ is defined by

$$\langle a \times b, \alpha \times \beta \rangle = \langle a, \alpha \rangle \langle b, \beta \rangle.$$

Lemma 5.9.

$$(z_1 \times z_2) \frown (a_1 \times a_2) = (-1)^{|a_2|(|z_1| - |a_1|)} (z_1 \frown a_1) \times (z_2 \frown a_2)$$

Proof. We have to check that $\langle b_1 \times b_2, \text{LHS} \rangle = \langle b_1 \times b_2, \text{RHS} \rangle$ (exercise).

Lemma 5.10. If X is path-connected, $p \in X$, so $H_0(X) = \langle [p] \rangle$, and $a \in H^k(X), \alpha \in H_k(X)$, then

$$\alpha \frown a = \langle a, \alpha \rangle [p].$$

 $\textit{Proof.} \ \langle 1, \alpha \frown a \rangle = \langle a \smile 1, \alpha \rangle = \langle a, \alpha \rangle \text{ and } \langle 1, [p] \rangle = 1.$

Lemma 5.11. Let $\Delta : X \to X \times X$ be the diagonal. Then $\Delta^*(a \times b) = a \smile b$ for $a, b \in H^*(X)$.

Proof. Let $\pi_1, \pi_2: X \times X \to X$ be the projections. Then

$$\Delta^*(a \times b) = \Delta^*(\pi_1 * a \smile \pi_2^* b) = \Delta^* \pi_1^* a \smile \Delta^* \pi_2^* b = a \smile b.$$

Now let M again be a closed, connected, oriented *n*-manifold. We orient $M \times M$ by $[M \times M] = [M] \times [M]$. Let $\widetilde{U} = pd(\Delta) \in H^n(M \times M)$.

Proposition 5.12. $\langle \widetilde{U}, [M] \times [p] \rangle = (-1)^n$.

Proof.

$$\begin{split} \langle \widetilde{U} \smile (1 \times [M]^*), [M] \times [M] \rangle &= (-1)^n \langle (1 \times [M]^*) \smile \widetilde{U}, [M] \times [M] \rangle \\ &= (-1)^n \langle \widetilde{U}, ([M] \times [M]) \frown (1 \times [M]^*) \rangle \\ &= (-1)^n \langle \widetilde{U}, ([M] \frown 1) \times ([M] \frown [M]^*) \rangle \\ &= (-1)^n \langle \widetilde{U}, [M] \times [p] \rangle \end{split}$$

On the other hand, since $\widetilde{U} = pd(\Delta)$, we have by Proposition 5.7:

$$\begin{split} \langle \widetilde{U} \smile (1 \times [M]^*), [M] \times [M] \rangle &= \langle 1 \times [M]^*, [\Delta] \rangle \\ &= \langle \pi_2^*[M]^*, \Delta_*[M] \rangle \\ &= \langle [M]^*, \pi_{2*} \Delta_*[M] \rangle \\ &= \langle [M]^*, [M] \rangle \\ &= 1 \end{split}$$

The claim follows.

Proposition 5.13.

$$\widetilde{U} \smile (a \times b) = (-1)^{|a||b|} \widetilde{U} \smile (b \times a)$$

Proof. Let V be a tubular neighborhood of Δ in $M \times M$. We have a commutative diagram:

Let $\pi: V \to \Delta$ be the projection in the normal bundle, so π and j_{Δ} are homotopy inverses. Hence

$$U \smile i'^*(a \times b) = U \smile \pi^* j_\Delta^* i'^*(a \times b)$$

= $U \smile \pi^* \Delta^*(a \times b)$
= $U \smile \pi^*(a \smile b)$
= $(-1)^{|a||b|}U \smile \pi^*(b \smile b)$
= $(-1)^{|a||b|}U \smile i'^*(b \times a)$

Now apply $j^*(i^*)^{-1}$ to both sides.

Proposition 5.14. For $a \in H^k(M), y \in H_k(M)$ we have

$$\langle \widetilde{U}, \mathrm{PD}(a) \times y \rangle = (-1)^{n(n-|a|)} \langle a, y \rangle.$$

Proof.

$$\begin{split} \langle \widetilde{U}, \mathrm{PD}(a) \times y \rangle &= \langle \widetilde{U}, ([M] \frown a) \times (y \frown 1) \rangle \\ &= (-1)^0 \langle \widetilde{U}, ([M] \times y) \frown (a \times 1) \rangle = \langle (a \times 1) \smile \widetilde{U}, [M] \times y \rangle \\ &= \langle (1 \times a) \smile \widetilde{U}, [M] \times y \rangle = \langle \widetilde{U}, ([M] \times y) \frown (1 \times a) \rangle \end{split}$$

$$= (-1)^{n|a|} \langle \widetilde{U}, ([M] \frown 1) \times (y \frown a) \rangle = (-1)^{n|a|} \langle \widetilde{U}, [M] \times [p] \rangle \langle a, y \rangle$$
$$= (-1)^n (-1)^{n|a|} \langle a, y \rangle$$
$$= (-1)^{n(n-|a|)} \langle a, y \rangle.$$

Theorem 5.15 (Poincare duality). PD : $H^k(M) \to H_{n-k}(M)$ is an isomorphism.

Proof. If $0 \neq a \in H^k(M)$, choose $y \in H_k(M)$ with $\langle a, y \rangle \neq 0$. Then $PD(a) \times y \neq 0$, so $PD(a) \neq 0$. Hence PD is injective. Applying this twice we get

$$\dim H^k(M) \le \dim H_{n-k}(M) = \dim H^{n-k}(M) \le H_k(M),$$

hence $H^k(M)$ and $H_{n-k}(M)$ have the same (finite) dimension, so PD is an isomorphism.

Corollary 5.16. (-,-) is nondegenerate, i.e. if $0 \neq a \in H^k(M)$, there exists $b \in H^{n-k}(M)$ such that $(a,b) \neq 0$.

If $\{a_i\}$ is a basis for $H^*(M)$, let $\{b_i\}$ be the dual basis w.r.t. (-, -), i.e. $(a_i, b_j) = \delta_{ij}$. Then $\langle b_j, \text{PD}(a_i) \rangle = (a_i, b_j) = \delta_{ij}$, so $\text{PD}(a_i) = b_i^*$ and $\langle a_i, \text{PD}(b_j) \rangle = (b_j, a_i) = (-1)^{|a_i||b_j|} \delta_{ij}$, hence $\text{PD}(b_j) = (-1)^{|a_i||b_i|} a_i^*$.

Corollary 5.17. $\widetilde{U} = \sum_{i} (-1)^{|a_i|} a_i \times b_i$.

Proof.

$$\begin{split} \langle \widetilde{U}, a_i^* \times b_j^* \rangle &= (-1)^{|a_i|(n-|a_i|)} \langle \widetilde{U}, \mathrm{PD}(b_i) \times \mathrm{PD}(a_j) \rangle \\ &= (-1)^s \langle b_i, \mathrm{PD}(a_j) \rangle = (-1)^s (a_j, b_i) = (-1)^s \delta_{ij} \end{split}$$

where $s = |a_i|(n - |a_i|) + n|a_i| \equiv |a_i| \mod 2$.

Definition. If $N_1, N_2 \hookrightarrow M$ are smooth submanifolds, then N_1 is transverse to N_2 , written $N_1 \pitchfork N_2$, if $TN_1|_x + TN_2|_x = TM|_x$ for all $x \in N_1 \cap N_2$.

If If $N_1, N_2 \hookrightarrow M$ are smooth transverse submanifolds, then:

- (1) $N_1 \cap N_2$ is a smooth submanifold of dimension dim $N_1 + \dim N_2 \dim M$,
- (2) $T(N_1 \cap N_2)|_x = TN_1|_x \cap TN_2|_x$,
- (3) $\nu_{M/N_1 \cap N_2} = \nu_{M/N_1} \oplus \nu_{M/N_2},$
- (4) $\operatorname{pd}(N_1 \cap N_2) = \operatorname{pd}(N_1) \smile \operatorname{pd}(N_2).$

Definition.

$$[N_1] \cdot [N_2] := (\mathrm{pd}(N_1), \mathrm{pd}(N_2)) = \langle \mathrm{pd}(N_1) \smile \mathrm{pd}(N_2), [M] \rangle = \langle \mathrm{pd}(N_1 \cap N_2), [M] \rangle$$

is the number of points in $N_1 \cap N_2$, counted with intersection sign.

Let $j: N_1 \hookrightarrow M$ be the inclusion.

Proposition 5.18.

$$j^*(\mathrm{pd}(N_2)) = \mathrm{pd}_{N_1}(N_1 \cap N_2)$$

Proof. $\nu_{N_1/N_1 \cap N_2} \simeq \nu_{M/N}$, so $U_{N_1/N_1 \cap N_2} = j^* U_{M/N}$.

Proposition 5.19. Suppose $\pi : E \to M$ is an oriented vector bundle, $s : M \to E$ a section, $s \pitchfork s_0$. Then

$$e(E) = \mathrm{pd}_M(s \cap s_0) = \mathrm{pd}_M(s^{-1}(0)).$$

Proof. $(i^*)^{-1}(U_E) = \mathrm{pd}_E(s_0) = \mathrm{pd}_E(s)$ since $s \sim s_0$, so $e(E) = s_0^*(i^*)^{-1}(U_E) = s_0^*(\mathrm{pd}_E(s)) = \mathrm{pd}_M(s_0 \cap s)$.

Corollary 5.20. $\langle e(TM), [M] \rangle = \chi(M).$

Proof. In $M \times M$, we have $\nu_{M \times M/\Delta} \simeq TM$, so $\langle e(TM), [M] \rangle = \Delta \cdot \Delta = (\widetilde{U}, \widetilde{U}) = \chi(M)$. For the last equality, recall that $\widetilde{U} = \sum_{i} (-1)^{|a_i|} a_i \times b_i = \sum_{i} (-1)^{|b_i|} b_i \times a_i$.

Bibliography

- [Hat02] Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.
- [Rot88] Joseph J. Rotman. An introduction to algebraic topology. Vol. 119. Graduate Texts in Mathematics. Springer-Verlag, New York, 1988.