
Advanced Probability
Cambridge Part III, Michaelmas 2022

Taught by Perla Sousi
Notes taken by Leonard Tomczak

Contents

1 Conditional Expectation 2
1.1 Some Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Conditional Expectation in the Discrete Case . . . . . . . . . . . . . . . . . 3
1.3 Conditional Expectation in General . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Discrete-time Martingales 9
2.1 Stopping Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Gambler’s Ruin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Martingale Convergence Theorem . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Doob’s Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Lp-convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Backwards martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Continuous-Time Processes 23
3.1 Convergence theorems and inequalities . . . . . . . . . . . . . . . . . . . . . 28
3.2 Kolmogorov’s continuity criterion . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Weak convergence 31
4.1 Tightness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Characteristic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Large deviations 37

6 Brownian motion 41
6.1 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3 Martingales for Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . 47
6.4 Transience and recurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.5 Donsker’s invariance principle . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Poisson Random Measures 53

1



1 Conditional Expectation

1.1 Some Recap

We recall some basic definitions:

A probability space is a triple (Ω,F ,P) where Ω is a set, F a σ-algebra on Ω and P a
probability measure on (Ω,F), i.e. a measure with total mass P(Ω) = 1.

If A,B ∈ F with P(B) > 0, then the conditional probability of A given B is P(A | B) :=
P(A∩B)
P(B) .

The Borel σ-algebra of R, denoted B(R) is the σ-algebra generated by the open subsets of
R.

A (real valued) random variable on Ω is a map X : Ω → R that is F − B-measurable, i.e.
X−1(B) ∈ F for all B ∈ B(R) (or equivalently just for all open subsets B ⊆ R).

If (Xi)i∈I is a collection of random variables on Ω, then the σ-algebra generated by the Xi

σ(Xi : i ∈ I) = σ({X−1
i (B) | i ∈ I,B ∈ B(R)})

is the smallest σ-algebra such that all (Xi)i∈I are measurable w.r.t. it.

Notation. If A ∈ F , we denote the indicator function for A by 1(A).

We finally recall the definition of the expectation of a random variable:

(1) For simple non-negative random variablesX, i.e. those of the formX =
∑n

i=1 ci1(Ai)
with Ai ∈ F , ci ≥ 0, define E[X] :=

∑n
i=1 ciP(Ai).

(2) If X ≥ 0 is any non-negative random variable, let Xn be a sequence of non-negative
simple random variables such that Xn ↗ X pointwise as n → ∞, e.g. one can take
Xn(ω) = min(2−n⌊2nX(ω)⌋, n) for all ω. Then define E[X] := limn→∞ E[Xn].

(3) Let X be any random variable. Let X+ = max(X, 0), X− = max(−X, 0) so that
X = X+ −X−. If at least one of E[X+] or E[X−] is finite, define E[X] := E[X+]−
E[X−].

X is integrable if E[|X|] <∞.

Let A ∈ F with P(A) > 0 and X integrable. Then define E[X | A] := E[X1(A)]
P(A) .
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1.2 Conditional Expectation in the Discrete Case

Let (Bi)i∈I be a countable collection of pairwise disjoint events Bi ∈ F such that
⋃
i∈I Bi =

Ω. Let G = σ((Bi)i∈I) be the σ-algebra generated by the Bi. One easily checks that

G = {
⋃
j∈J

Bj | J ⊆ I}.

Let X be an integrable random variable on Ω. We want to define the conditional expec-
tation E[X | G] = X ′ : Ω → R. We let

X ′ :=
∑
i∈I

E[X | Bi]1(Bi).

Here E[X | Bi] is defined as above in the case P(Bi) > 0. If P(Bi) = 0, we let E[X | Bi] = 0.

X ′ has the following properties:

(1) X ′ is G-measurable.

(2) For all A ∈ G, E[X1(A)] = E[X ′1(A)].

Both are immediate from the definition. In the general case we will use these properties
to define E[X | G]. Also note that

E[|X ′|] ≤
∑
i

E[|X|1(Bi)] = E[|X|] <∞,

so X ′ is also integrable.

1.3 Conditional Expectation in General

Theorem 1.1 (Conditional expectation). Let X be an integrable random variable on
(Ω,F ,P) and G ⊆ F a sub-σ-algebra. Then there exists an integrable random variable Y
satisfying:

(a) Y is G-measurable.

(b) For all A ∈ G, we have E[X1(A)] = E[Y 1(A)].

Moreover, if Y ′ also satisfies (a) and (b), then Y = Y ′ almost surely (a.s.).

We call Y a version of the conditional expectation of X given G and write Y = E[X | G]
a.s.

Remark. Instead of (b) we could have asked that E[XZ] = E[Y Z] for all bounded G-
measurable random variables Z.
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Proof. Uniqueness. Let Y ′ satisfy (a) and (b). Consider A = {Y > Y ′}. By (a), we
have A ∈ G, and by (b), E[(Y ′ − Y )1(A)] = 0, hence Y ≤ Y ′ a.s., and similarly Y ≥ Y ′

a.s.

Existence.

1. Assume first that X ∈ L2(F) = L2(Ω,F ,P). Recall that these L2 spaces are Hilbert
spaces. The space L2(G) = L2(Ω,G,P) is a closed subspace of L2(F). Hence L2(F) =
L2(G) + L2(G)⊥, so we can write X = Y + Z where Y ∈ L2(G) and Z ∈ L2(G). We
set E[X | G] = Y . Y is G-measurable by definition. For (b) let A ∈ G. Then
E[X1(A)] = E[Y 1(A)] + E[Z1(A)] = E[Y 1(A)] since 1(A) ∈ L(G) and Z ∈ L2(G)⊥.

Note that if X ≥ 0, then E[X | G] ≥ 0 a.s. Indeed, if A = {Y < 0}, then 0 ≤
E[X1(A)] = E[Y 1(A)] ≤ 0, so P(A) = 0, i.e. Y ≥ 0 a.s.

2. Assume X ≥ 0. Then let Xn = X ∧ n for all n. Note that Xn ∈ L2, so that
Yn := E[Xn | G] is defined by 1. Note that Xn ↗ X as n → ∞ a.s. By the
final remark in 1., Yn is a.s. increasing. Let Y = lim supn→∞ Yn. Since the Yn are G-
measurable, so is Y . By the a.s. increasing property of (Yn)n, we get Y = limn→∞ Yn
a.s. Let A ∈ G. Take the limit as n → ∞ in E[Yn1(A)] = E[Xn1(A)] and use the
monotone convergence theorem to get E[Y 1(A)] = E[X1(A)].

Taking A = Ω in particular shows that E[Y ] = E[X] <∞.

3. Let X be any integrable random variable. Write X = X+ −X− as usual and define
E[X | G] := E[X+ | G]− E[X− | G].

The second step shows that if X ≥ 0, but not necessarily integrable, we can still define
the conditional expectation Y satisfying (a) and (b), but it need not be integrable.

We extend the notion of independence to σ-algebras and random variables:

Definition. A sequence G1,G2, . . . of σ-algebras is called independent if for all i1, . . . , ik
distinct and Gi ∈ Gi, we have

P(Gi1 ∩ · · · ∩Gik) =
k∏
j=1

P(Gij ).

A random variable X is independent of a σ-algebra G if σ(X) and G are independent.

Notation. If G = σ(Z), we write E[X | G] = E[X | Z].

Some properties of conditional expectation:

Proposition 1.2. Let X ∈ L1(Ω,F ,P), G ⊆ F a sub-σ-algebra. Then

(1) E[E[X | G]] = E[X].
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(2) If X is G-measurable, then E[X | G] = X a.s.

(3) If X is independent of G, then E[X | G] = E[X].

(4) If X ≥ 0, then E[X | G] ≥ 0 a.s.

(5) E[X | G] is linear in X.

(6) |E[X | G]| ≤ E[|X| | G] a.s.

There are analogues of classical measure theory theorems for conditional expection. Let
Xn be a sequence of random variables.

Proposition 1.3 (Conditional monotone convergence). If Xn ≥ 0 and Xn ↗ X as
n→ ∞ a.s., then

E[Xn | G] ↗ E[X | G] a.s. as n→ ∞.

Proof. Yn = E[Xn | G] is a.s. increasing. Let Y = lim supYn. Then Y is G-measurable and
Y = limn→∞ Yn a.s. Clearly Y satisfies the properties defining E[X | G] (using monotone
convergence), so that E[X | G] = Y a.s.

Proposition 1.4 (Conditional Fatou). If Xn ≥ 0, then

E[lim infXn | G] ≤ lim inf E[Xn | G] a.s.

Proof. Note that infk≥nXk ↗ lim infXk as n → ∞. So by conditional monotone conver-
gence, limn→∞ E[infk≥nXk | G] = E[lim infXk | G]. For every n we have E[infk≥nEk |
G] ≤ E[Xk | G] a.s., so E[infk≥nEk | G] ≤ infk≥n E[Xk | G] a.s. Now take limits.

Proposition 1.5 (Conditional dominated convergence). Suppose Xn → X a.s., |Xn| ≤ Y
for all n where Y ∈ L1(Ω,F ,P). Then

E[Xn | G] → E[X | G] a.s. as n→ ∞.

Proof. Note that Xn+Y, Y −Xn ≥ 0 for all n, so by Fatou, E[X+Y | G] ≤ lim infn E[Xn+
Y | G] a.s., so lim inf E[Xn | G] ≥ E[X | G] a.s. Similarly lim supE[Xn | G] ≤ E[X | G]
a.s.

Proposition 1.6 (Conditional Jensen). Let X ∈ L1 and φ : R → (−∞,∞] be a convex
function such that φ(X) ≥ 0 or φ(X) is integrable. Then

E[φ(X) | G] ≥ φ(E[X | G]) a.s.

Proof. We can write φ(x) = supi∈N(aix+ bi) with ai, bi ∈ R. Then for all i ∈ N, φ(X) ≥
aiX + bi, so E[φ(X) | G] ≥ aiE[X | G] + bi a.s. Then by countability we get E[φ(X) | G] ≥
supi(aiE[X | G] + bi) = φ(E[X | G]) a.s.
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Consequence: For all p ∈ [1,∞), we have ∥E[X | G]∥p ≤ ∥X∥p. Indeed,

∥E[X | G]∥pp = E[|E[X | G]|p] ≤ E[E[|X|p | G]] = E[|X|p] = ∥X∥pp .

Proposition 1.7 (Tower property). Let H ⊆ G ⊆ F be sub-σ-algebras. Then

E[E[X | G] | H] = E[X | H] a.s.

Proof. We check that E[X | H] satisfies the defining properties of the conditional expec-
tation of E[X | G] given H. It is clearly H-measurable. Let A ∈ H. Then also A ∈ G and
so

E[E[X | H]1(A)] = E[X1(A)] = E[E[X | G]1(A)].

Proposition 1.8 (Take out what is known). Let X ∈ L1 and let Y be a bounded G-
measurable random variable. Then

E[XY | G] = Y E[X | G] a.s.

Proof. Y E[X | G] is clearly G-measurable. Let A ∈ G, then

E[Y E[X | G]1(A)] = E[E[X | G](Y 1(A))] = E[(XY )1(A)].

Theorem 1.9. Let X be an integrable random variable in (Ω,F ,P) and G,H ⊆ F sub-σ-
algebras. Assume that σ(X,G) is independent of H. Then

E[X | σ(G,H)] = E[X | G] a.s.

For the proof we recall some measure theory: A set A ⊆ P(Ω) is called a π-system if A is
closed under finite intersections.

Theorem 1.10 (Uniqueness of extension). Let µ and ν be two measures on the same
measurable space (E, E). If µ(E) = ν(E) <∞ and µ and ν agree on a π-system generating
E, then µ = ν.

Proof of Theorem 1.9. E[X | G] is obviously σ(G,H)-measurable. Let A ∈ σ(G,H). We
have to show that E[X1(A)] = E[E[X | G]1(A)]. By writingX = X+−X−, we may assume
X ≥ 0. Define the measures µ, ν by µ(A) = E[X1(A)] and ν(A) = E[E[X | G]1(A)] for
A ∈ σ(G,H). Let A = {A ∩ B | A ∈ G, B ∈ H}. Then A is a π-system generating
σ(G,H). By the theorem on uniqueness of extension, it is enough to check that µ = ν
on A and µ(Ω) = ν(Ω) < ∞. The latter is immediate from the integrability of X. Let
A ∩ B ∈ A where A ∈ G, B ∈ H. Then E[X1(A ∩ B)] = E[(X1(A))1(B)]. Now note that
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X1(A) is σ(X,G)-measurable, so E[(X1(A))1(B)] = E[X1(A)]P(B) since σ(X,H) and H
are independent. Then using the same reasoning again:

µ(A ∩B) = E[X1(A)]P(B) = E[E[X | G]1(A)]P(B) = E[E[X | G]1(A ∩B)] = ν(A ∩B).

Remark. If we only required that H is independent of X and independent of G, then the
statement would be false.

1.4 Examples

1.4.1 Gaussian Distribution

Definition. A random vector (X1, . . . , Xn) with values in Rn is called a Gaussian if for
all a1, . . . , an ∈ R,

∑n
i=1 aiXi has a Gaussian distribution.

Let (X,Y ) be a Gaussian vector in R2. We want to find E[X | Y ] = E[X | σ(Y )]. We
know that E[X | Y ] = f(Y ) a.s. for some function f as E[X | Y ] is Y -measurable. We try
f(Y ) = aY + b for some a, b ∈ R to be determined. Then f(Y ) is certainly Y -measurable.
Letting A = Ω in the definition of conditional expectation we get the condition

E[X] = aE[Y ] + b.

We also must have E[XY ] = E[f(Y )Y ] (first note that E[X(Y ∧n)] = E[f(Y )(Y ∧n)] and
the get it from dominated convergence). So Cov(X−f(Y ), Y ) = E[(X−f(Y ))Y ] = 0, i.e.

Cov(X,Y ) = aVar(Y ).

These two conditions determine a, b uniquely. We now have to check that for these values
we indeed have aY + b = f(Y ) = E[X | Y ]. Let Z be bounded and Y -measurable. Since
X − aY − b, Y are jointly Gaussian and Cov(X − aY − b, Y ) = 0, we get that X − f(Y )
is independent from Y , hence also independent from Z and thus E[(X − f(Y ))Z] =
E[X − f(Y )]E[Z] = 0. Therefore E[XZ] = E[f(Y )Z] and so indeed E[X | Y ] = f(Y ).

1.4.2 Conditional Density

Let (X,Y ) be a random variable in R2 with density fX,Y (x, y). If h : R → R is Borel
such that h(X) is integrable, we want to find E[h(X) | Y ]. Again, this is Y -measurable,
so E[h(X) | Y ] = φ(Y ) for some function φ. Let g be a bounded measurable function. We
want to determine φ such that E[h(X)g(Y )] = E[φ(Y )g(Y )]. We have

E[φ(Y )g(Y )] =

∫
R
φ(y)g(y)fY (y)dy,
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where fY is the density of Y , and

E[h(X)g(Y )] =

∫
R

∫
R
h(X)g(y)fX,Y (x, y)dxdy

=

∫
R
g(y)fY (y)

(∫
R
h(x)

fX,Y (x, y)

fY (y)
dx

)
dy

where we set 0/0 = 0. Hence we define φ(y) :=
∫
R h(x)

fX,Y (x,y)
fY (y) dx. We let fX|Y (x | y) :=

fX,Y (x,y)
fY (y) . Thus, for this φ we have E[h(X) | Y ] = φ(Y ).
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2 Discrete-time Martingales

We fix a probability space (Ω,F ,P) and a measurable space (E, E). Some preliminary
definitions:

A sequence (Xn)n≥0 of random variables (on Ω and taking values in E) is called a stochastic
process.

A filtration is an increasing family (Fn)n≥0 of sub-σ-algebras of F .

Given a process X = (Xn)n≥0, its natural filtration is defined to be FX
n = σ(Xk | k ≤ n).

A stochastic process (Xn)n≥0 is called adapted to the filtration (Fn)n≥0 if Xn is Fn-
measurable for all n. Clearly, (Xn)n≥0 is adapted to its natural filtration.

X = (Xn)n≥0 is called integrable if Xn is integrable for all n.

Definition. Let (Fn)n≥0 be a flitration on (Ω,F ,P). Let X = (Xn)n≥0 be an adapted and
integrable process. X is a

• martingale if E[Xn | Fm] = Xm a.s. for all n ≥ m.

• supermartingale if E[Xn | Fm] ≤ Xm a.s. for all n ≥ m.

• submartingale if E[Xn | Fm] ≥ Xm a.s. for all n ≥ m.

Remark. It follows from the tower property that if X is a martingale (or super-, sub-)
w.r.t. some filtration, then it is also a martingale (super, sub) w.r.t. its natural filtration
(FX

n ).

Example. Let (ξi)i be i.i.d. random variables with E[ξi] = 0 for all i. Let Xn =
∑n

i=1 ξi,
X0 = 0. Then X is a martingale. For example the simple random walk on Z is of this
form.

Example. Let (ξi)i be i.i.d. random variables with E[ξi] = 1 for all i. Let Xn =
∏n
i=1 ξi,

X0 = 1. Then Xn is a martingale.

2.1 Stopping Times

Definition. Let (Ω,F , (Fn)n,P) be a filtered probability space. A random variable T :
Ω → N0 ∪ {∞} is called a stopping time if for all n ∈ N, {T ≤ n} ∈ Fn.

Equivalently, for all n ∈ N, {T = n} ∈ Fn.
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Examples.

• Constant times T = n are stopping times.

• Let X = (Xn)n≥0 be an adapted stochastic process. Let A ∈ B(R). T = inf{n ≥
0 | Xn ∈ A}. Then the entrance time T = inf{n ≥ 0 | Xn ∈ A} is a stopping time.
Indeed, {T ≤ n} =

⋃n
k=0 {Xk ∈ A}︸ ︷︷ ︸

∈Fk

∈ Fn.

• In the situation of the previous example, LA = sup{n ≤ 100 | Xn ∈ A} is (in general)
not a stopping time.

Proposition 2.1. Let S, T, (Tn)n be stopping times. Then S ∨ T, S ∧ T, inf Tn,
supTn, lim inf Tn, lim supTn are also stopping times.

Definition. Let T be a stopping time. We define

FT = {A ∈ F | A ∩ {T ≤ t} ∈ Ft ∀t}.

Remark. If T is a constant stopping time T = t, then FT = Ft.

Given a stopping time T and a process Xn, we define XT by XT (ω) = XT (ω)(ω) when

T (ω) <∞. We define the stopped process XT by XT
t = XT∧t.

Proposition 2.2. Let S, T be stopping times and X = (Xn)n≥0 an adapted process. Then

(a) If S ≤ T , then FS ⊆ FT .

(b) XT 1(T <∞) is FT -measurable.

(c) XT is adapted.

(d) If X is integrable, then XT is integrable.

Proof.

(a) Immediate.

(b) Let A ∈ B(R). We have to show {XT 1(T < ∞) ∈ A} ∩ {T ≤ t} ∈ Ft for all t. We
have

{XT 1(T <∞) ∈ A} ∩ {T ≤ t} =

t⋃
s=0

{Xs ∈ A}︸ ︷︷ ︸
∈Fs⊆Ft

∩{T = s}︸ ︷︷ ︸
∈Fs

∈ Ft.

(c) XT
t = XT∧t is FT∧t-measurable by (b). From (a), FT∧t ⊆ Ft, so XT

t is Ft-
measurable.

(d)

E[|XT∧t|] =
t−1∑
s=0

E[|Xs|1(T = s)] + E[|Xt|1(T > t− 1)] ≤
t∑

s=0

E[|Xs|] <∞.

10



Theorem 2.3 (Optional Stopping Theorem (OST)). Let X = (Xn)n≥0 be a martingale.

(1) If T is a stopping time, then XT is also a martingale and E[XT∧t] = E[X0] for all t.

(2) If S ≤ T ≤ n are stopping times, then E[XT | FS ] = XS a.s. and E[XT ] = E[XS ].

(3) Let Y be an integrable random variable and |Xn| ≤ Y for all n. Let T be a stopping
time with P(T <∞) = 1. Then E[XT ] = E[Xn]

(4) Suppose there existsM such that |Xn+1−Xn| ≤M for all n a.s. (i.e. X has bounded
increments) and T is a stopping time with E[T ] <∞. Then E[XT ] = E[X0].

Proof.

(1) By Proposition 2.2, XT is again an integrable adapted process. By repeated use the
tower property it suffices to prove E[XT∧t | Ft−1] = XT∧(t−1) a.s. We have

E[XT∧t | Ft−1] = E

 t−1∑
s=0

Xs1(T = s)︸ ︷︷ ︸
Ft−1-measurable

| Ft−1

+ E

Xt 1(T > t− 1)︸ ︷︷ ︸
Ft−1-measurable

| Ft−1


=

t−1∑
s=0

Xs1(T = s) + 1(T > t− 1)E [Xt | Ft−1]

=
t−1∑
s=0

Xs1(T = s) + 1(T > t− 1)Xt−1

= XT∧(t−1).

(2) Let A ∈ FS . We need to show that E[XT 1(A)] = E[XS1(A)]. We have

XT = (XT −XT−1) + · · ·+ (XS+1 −XS) +XS

= XS +

n∑
k=0

(Xk+1 −Xk)1(S ≤ k < T )

So

E[XT 1(A)] = E[XS1(A)] +

n∑
k=0

E[(Xk+1 −Xk)1(S ≤ k < T )1(A)]

Now note that 1(A) · 1(S ≤ k) is Fk measurable and {T > k} ∈ Fk. So 1(A)1(S ≤
k < T ) is Fk-measurable. Since E[Xk+1 | Fk] = Xk, we then get E[(Xk+1−Xk)1(S ≤
k < T )1(A)] = 0 and hence E[XT 1(A)] = E[XS1(A)].

(3) Exercise.

11



(4) Exercise.

Proposition 2.4. Let X be a positive supermartingale and let T be a stopping time with
P(T <∞) = 1. Then E[XT ] ≤ E[X0].

Proof. The previous theorem also holds for supermartingale if we replace equalities by
suitable inequalities. Then apply Fatou’s lemma.

Example (Simple 1D random walk). Let (ξi)i be i.i.d. random variables taking±1 equally
likely. Let X0 = 0, and Xn =

∑n
i=1 ξi. Take Tx = inf{n ≥ 0 | Xn = x}. T1 is a stopping

time with P(T1 < ∞) = 1. For all t, E[XT1∧t] = E[X0] = 0 by the theorem. But
E[XT1 ] = 1, so we can’t (in general) get rid of the ∧t in part (1) of the theorem.

2.2 Gambler’s Ruin

Let a, b > 0 be integers. Consider again the simple random walk X as in the last example.
We let T = T−a ∧ Tb. We want to determine P(T−a < Tb), i.e. the probability that we
reach −a before b.

Note that |Xn+1 −Xn| = 1. We need to check that E[T ] <∞ in order to apply (4) of the
OST. Then we would get E[XT ] = E[X0] = 0. On the other hand, we have

E[XT ] = −aP(T−a < Tb) + bP(Tb < T−a).

Since also P(T−a < Tb) + P(Tb < T−a) = 1, we get

P(T−a < Tb) =
b

a+ b
.

We only have to establish E[T ] < ∞. For this, note that if ξi = 1 for a + b consecutive
i with n being the last such i, then T < n. Hence, we can bound T from above by the
first time there are a + b consecutive i’s with ξi = 1. We can further bound this by only
considering blocks 1, . . . , a+ b; a+ b+ 1, . . . , 2(a+ b); . . . . Note if I ⊆ N0 consists of a+ b
consecutive indices, then P(ξi = 1 for all i ∈ I) = 2−(a+b) =: p, hence

E[T ] ≤
∑
k=1

k(a+ p)(1− pk−1)p = (a+ b)2a+b.

2.3 Martingale Convergence Theorem

Theorem 2.5. Let X be a supermartingale bounded in L1, i.e. supn≥0 E[|Xn|] <∞. Then
Xn → X∞ a.s. as n→ ∞ for some X∞ ∈ L1(F∞) where F∞ = σ(Fn, n ≥ 0).
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Corollary 2.6. Let X be a positive supermartingale. Then X converges a.s. to an inte-
grable limit.

Proof. E[|Xn|] = E[Xn] ≤ E[X0] for all n. So the theorem applies.

Let x = (xn)n≥0 be a real sequence. Let a < b. Set T0(x) = 0 and inductively define

Sk+1(x) = inf{n ≥ Tk(x) | xn ≤ a},
Tk+1(x) = inf{n ≥ Sk+1(x) | xn ≥ b}.

Then define Nn([a, b], x) = sup{k ≥ 0 | Tk(x) ≤ n}. It is the number of “upcrossings” up
to time n. Let N([a, b], x) = sup{k ≥ 0 | Tk(x) < ∞} = supnNn([a, b], x). It is the total
number of upcrossings.

Lemma 2.7. A real sequence x = (xn)n converges in R ∪ {±∞} if and only if for all
a, b ∈ Q with a < b,

N([a, b], x) <∞.

Proof. “⇒” Suppose there exist a, b ∈ Q with a < b and N([a, b], x) = ∞. Then
lim inf xn ≤ a < b ≤ lim supxn, so x is not convergent.

“⇐” If x does not converge, then lim inf xn < lim supxn. Thus we find a, b ∈ Q s.t.
lim inf xn < a < b < lim supxn. Then it is easily seen that N([a, b], x) = ∞.

Theorem 2.8 (Doob’s Upcrossing Inequality). Let X be a supermartingale and a < b
with a, b ∈ R. Then

(b− a)E[Nn([a, b], X)] ≤ E[(Xn − a)−].

Proof of Theorem 2.5. We want to apply the lemma above. By the upcrossing inequality,

(b− a)E[Nn([a, b], X)] ≤ E[(Xn − a)−] ≤ |a|+ sup
n≥0

E[|Xn|] =: C.

As Nn([a, b], X) ↗ N([a, b], X) as n→ ∞, we get from monotone convergence

(b− a)E[N([a, b], X)] ≤ C

So N([a, b], X) < ∞ a.s. Let Ω0 =
⋂

a<b
a,b∈Q

{N([a, b], X) < ∞}. We get P(Ω0) = 1. By

Lemma 2.7, we can define

X∞ =

{
limn→∞Xn on Ω0,

0 on Ωc0.

ThenXn → X∞ a.s. as n→ ∞ andX∞ is F∞-measurable. Also E[|X∞|] = E[lim inf |Xn|] ≤
lim inf E[|Xn|] <∞, so X∞ ∈ L1(F∞).
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Proof of Theorem 2.8. Write Tk, Sk, N for Tk(X), Sk(X), Nn([a, b], X). One easily sees
that Tk, Sk are stopping times. By definition of Tk, Sk, we have XTk −XSk

≥ b − a. We
have

n∑
k=1

(XTk∧n −XSk∧n) =

N∑
k=1

(XTk −XSk
) +

n∑
k=N+1

(Xn −XSk∧n)1(N < n).

Note that SN+2 > n by definition, so this is

N∑
k=1

(XTk −XSk
) + (Xn −XSN+1

)1(SN+1 ≤ n).

Since Sk∧n ≤ Tk∧n, we get from the supermartingale version of the OST that E[XSk∧n] ≥
E[XTk∧n]. Then

0 ≥ E

[
n∑
k=1

(XTk∧n −XSk∧n)

]
= E

[
N∑
k=1

(XTk −XSk
) + (Xn −XSN+1

)1(SN+1 ≤ n)

]
≥ (b− a)E[N ] + E[(Xn −XSN+1

)1(SN+1 ≤ n)]

≥ (b− a)E[N ]− E[(Xn − a)−].

2.4 Doob’s Inequalities

Theorem 2.9 (Doob’s maximal inequality). Let X be a nonnegative submartingale. Let
X∗
n = sup0≤k≤nXk. For λ ≥ 0 we have

λP(X∗
n ≥ λ) ≤ E[Xn1(X

∗
n ≥ λ)] ≤ E[Xn].

Proof. Define the stopping time T = inf{k ≥ 0 | Xk ≥ λ}. The OST applied to T ∧n ≤ n
gives

E[Xn] ≥ E[XT∧n] = E[XT 1(T ≤ n)] + E[Xn1(T > n)]

Hence E[XT 1(T ≤ n)] ≤ E[Xn1(T ≤ n)]. Now note that {T ≤ n} = {X∗
n ≥ λ} and we get

λP(X∗
n ≥ λ) ≤ E[XT 1(T ≤ n) = E[Xn1(X

∗
n ≥ λ)] ≤ E[Xn].

Theorem 2.10 (Doob’s Lp inequality). Let X be a martingale or a nonnegative sub-
martingale. Let X∗

n = sup0≤k≤n |Xk|. For p > 1, we have

∥X∗
n∥p ≤

p

p− 1
∥Xn∥p

14



Proof. It suffices to prove the second case, since by Jensen, if X is a martingale, then |X|
is a nonnegative submartingale. For k ∈ N we have

E[(X∗
n ∧ k)p] = E

[∫ k

0
pxp−11(X∗

n ≥ x)dx

]
=

∫
Ω

∫ k

0
pxp−11(X∗

n(ω) ≥ x)dxdP

=

∫ k

0
pxp−1P(Xn ≥ x)dx

Theorem 2.9
≤

∫ k

0
pxp−2E[Xn1(X

∗
n ≥ x)]dx

=

∫ k

0
pxp−2

∫
Ω
Xn(ω)1(X

∗
n(ω) ≥ x)dPdx

=

∫
Ω
Xn(ω)(X

∗
n(ω) ∧ k)p−1 p

p− 1
dP

=
p

p− 1
E[Xn(X

∗
n ∧ k)p−1]

Hölder
≤ p

p− 1
∥Xn∥p ∥X

∗
n ∧ k∥

p−1
p .

Rearranging gives ∥X∗
n ∧ k∥p ≤

p
p−1 ∥Xn∥p. Now let k → ∞.

2.5 Lp-convergence

Theorem 2.11. Let X be a martingale, p > 1. TFAE:

1. X is bounded in Lp,

2. X converges a.s. and in Lp to some X∞ ∈ Lp.

3. There exists a random variable Z ∈ Lp such that Xn = E[Z | Fn] a.s.

Proof. “1. ⇒ 2.” If X is bounded in Lp, then also in L1 (e.g. by Jensen or Hölder). So
by Theorem 2.5 there exists X∞ ∈ Lp such that Xn → X∞ a.s. By Fatou, E[|X∞|p] ≤
lim inf E[|Xn|p] < ∞ since X is bounded in Lp. So X∞ ∈ Lp. By Doob’s Lp-inequality
we have ∥X∗

n∥p ≤ p
p−1 ∥Xn∥p. Letting n → ∞, we get ∥X∗

∞∥p ≤ p
p−1 supn ∥Xn∥p where

X∗
∞ = sup0≤k |Xk|. So X∗

∞ ∈ Lp. Since |Xn −X∞| ≤ 2X∗
∞, we get Xn → X∞ in Lp by

dominated convergence.

“2.⇒ 3.” Set Z = X∞. We have Z ∈ Lp. For m ≥ n, we have

∥Xn − E[X∞ | Fn]∥p = ∥E[Xm −X∞ | F − n]∥p ≤ ∥Xm −X∞∥p .

Letting m→ ∞ this goes to 0, so Xn = E[Z | Fn] a.s.

“3.⇒ 1.” Jensen.
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A martingale of the form Xn = E[Z | Fn] for some Z ∈ Lp is called a martingale closed in
Lp.

Corollary 2.12. Let p > 1, Z ∈ Lp, Xn = E[Z | Fn]. Then Xn → X∞ a.s. and in Lp
where X∞ = E[Z | F∞] a.s. and F∞ = σ(Fn : n ≥ 0).

Proof. We know from the theorem that Xn → X∞ a.s. and in Lp for some X∞ ∈ L∞.
We have to show X∞ = E[Z | F∞] a.s. We have to show E[X∞1(A)] = E[Z1(A)] for
all A ∈ F∞. Since

⋃
nFn is a π-system generating F∞, it suffices to prove this for

A ∈ FN for some N . Then E[Z1(A)] = E[XN1(A)] = E[Xn1(A)] for all n ≥ N . We have
E[Xn1(A)] → E[X∞1(A)] as n→ ∞. Then E[Z1(A)] = E[X∞1(A)].

For p = 1, we need another condition.

Definition. A collection of random variables (Xi)i∈I is called uniformly integrable (UI)
if supi∈I E[|Xi|1(|Xi| > α)] → 0 as α→ ∞.

Equivalently, (Xi)i∈I is UI if (Xi)i∈I if (Xi)i∈I is uniformly bounded in L1 and for all
ε > 0 there exists δ > 0 such that if P(A) < δ, then supi∈I E[|Xi|1(A)] ≤ ε.

Lemma 2.13. Given Xn, X ∈ L1 for n ≥ 1, we have

Xn
L1

−→ L ⇐⇒

{
Xn → X in probability and

(Xn) is uniformly integrable

Proof. See undergraduate probability lecture notes or book by Williams.

Note: If (Xn) is bounded in Lp with p > 1, then it is uniformly integrable.

Theorem 2.14. Suppose X ∈ L1. Then the family

{E[X | G] | G is a sub-σ-algebra of F}

us uniformly integrable.

Proof. We have to show that for all ε > 0 there exists K0 such that for all K ≥ K0,

sup
G

E[|E[X | G]|1(|E[X | G]| > K)] ≤ ε.

We have

E[|E[X | G]|1(|E[X | G]| > K) ≤ E[E[|X| | G]1(|E[X | G]| ≥ K︸ ︷︷ ︸
G-measurable

)

≤ E[|X| · 1(|E[X | G]| ≥ K)]
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If X ∈ L1, it is easy to check that for all ε > 0 there exists δ > 0 such that if P(A) < δ,
then E[|X|P(A)] ≤ ε. We have

P(|E[X | G]| ≥ K) ≤ 1

K
E[|X|]

by Markov. Thus we take K0 = E[|X|]
δ . Then for all K ≥ K0, we have P(|E[X | G]| ≥

K) ≤ δ and so

E[|E[X | G]| · 1(|E[X | G]| ≥ K)] ≤ E[|X| · 1(|E[X | G]| ≥ K)]

≤ ε.

Definition. (Xn)n≥0 is called a UI (uniformly integrable) martingale if it is a martingale
and (Xn)n≥0 is UI.

Theorem 2.15. Let X be a martingale. TFAE:

(1) X is UI.

(2) (Xn) converges a.s. and in L1 to some X∞.

(3) There exists Z ∈ L1 such that Xn = E[Z | Fn] a.s. for all n ≥ 0.

Proof. “(1) ⇒ (2)” Since X is bounded in L1, by the martingale convergence theorem we
get that Xn → X∞ a.s. as n→ ∞ for some X∞ ∈ L1. Then also Xn → X in probability,
hence in L1 by the lemma above.

“(2) ⇒ (3)” Set Z = X∞. We have to show Xn = E[X∞ | Fn]. The same proof as in
Theorem 2.11 works.

“(3) ⇒ (1)” Theorem 2.14.

Remark. As before, if Xn = E[Z | Fn] with Z ∈ L1, then X∞ = E[Z | F∞] a.s.

Example. Let X1, X2, . . . be i.i.d. such that P(X1 = 0) = P(X1 = 2) = 1
2 . Take Yn =

X1X2 · · ·Xn. Then (Yn) is a martingale. Then Yn → 0 a.s. as n → ∞. But E[Yn] = 1 for
all n, so it does not converge in L1 and it is not a UI martingale.

Let T be a stopping time and X a UI martingale. Then we can define

XT =

∞∑
n=0

Xn1(T = n) +X∞1(T = ∞)

Theorem 2.16. Let X be a UI martingale and S ≤ T be stopping times. Then

E[XT | FS ] = XS a.s.
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Proof. Xn converges to X∞ a.s. and in L1. It suffices to prove that XT = E[X∞ | FT ] a.s.
Indeed, then we would get (applying this also to S)

E[XT | FS ] = E[E[X∞ | FT ] | FS ] = E[X∞ | FS ] = XS .

First note that XT is in L1. Indeed, from Xn = E[X∞ | Fn] we get |Xn| ≤ E[|X∞| | Fn]
and then

E[|XT |] =
∞∑
n=0

E[|Xn| · 1(T = n)] + E[|X∞| · 1(T = ∞)]

≤
∞∑
n=0

E[E[|X∞| | Fn] · 1(T = n)] + E[|X∞| · 1(T = ∞)]

=
∞∑
n=0

E[|X∞| · 1(T = n)] + E[|X∞| · 1(T = ∞)]

= E[|X∞|].

Let A ∈ FT . We need to show E[X∞1(A)] = E[XT 1(A)]. Since A ∈ FT , we have
{T = n} ∩A ∈ Fn for all n, and then

E[XT 1(A)] =

∞∑
n=0

E[Xn · 1(T = n)1(A)] + E[X∞ · 1(T = ∞)1(A)]

=
∞∑
n=0

E[X∞ · 1(T = n)1(A)] + E[X∞ · 1(T = ∞)1(A)]

= E[X∞1(A)].

2.6 Backwards martingales

Suppose . . . ⊇ G−2 ⊆ G−1 ⊆ G0 is a decreasing family of sub-σ-algebras. We call (Xn)n≤0

a backwards martingale if X0 ∈ L1 and (Xn) is adapted to (Gn) and E[Xn+1 | Gn] = Xn

a.s. for all n ≤ −1. Note that in this case Xn = E[X0 | G0] a.s. for all n ≤ −1, so (Xn) is
UI by Theorem 2.14.

Theorem 2.17 (Backwards Martingale Convergence Theorem). Let X0 ∈ Lp, for some
p ≥ 1. Then (Xn) converges a.s. and in Lp as n→ −∞ to a random variable X−∞ which
satisfies X−∞ = E[X0 | G−∞] a.s. where G−∞ =

⋂
n≤0 GN .

Proof. Let a < b andN−n([a, b], X) be the number of upcrossings of [a, b] between times−n
and 0. Set Fk = G−n+k for 0 ≤ k ≤ n. This is an increasing filtration and (X−n+k)0≤k≤n
is a martingale w.r.t. (Fk). Then N−n([a, b], X) is the number of upcrossings of [a, b]
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by (X−n+k)0≤k≤n between times 0 and n. Doob’s upcrossing inequality for martingales,
Theorem 2.8, gives

(b− a)E[N−n([a, b], X)] ≤ E[(X0 − a)−].

Take the limit as n→ ∞ and use monotone convergence to get (b−a)E[N−∞([a, b], X)] <
∞. So in particular, N−∞([a, b], X) <∞ a.s. and so like before we get that Xn converges
a.s. as n→ −∞ to some X−∞. Then X−∞ is G−∞-measurable since the Gn are decreasing.
Since X0 ∈ Lp, we get Xn ∈ Lp for all n by Jensen. Then X−∞ ∈ Lp by Fatou. Next we
show Lp-convergence. We have

|Xn −X−∞|p = |E[Xn | Gn]− E[X−∞ | Gn]|p ≤ E[|X0 −X−∞|p | Gn].

By Theorem 2.14 this is a UI family. Then also |Xn−X−∞|p is UI and since it convergences
to 0 a.s., it also converges in L1 by Lemma 2.13. So Xn → X−∞ in Lp as n→ −∞.

Finally, we have to show X−∞ = E[X0 | G∞] a.s. We prove this using the definition of
conditional expectation. Let A ∈ G∞. Then A ∈ Gn and so E[X01(A)] = E[Xn1(A)] for
all n ≤ −1. Since Xn → X−∞ in L1, we get E[X01(A)] = E[X−∞1(A)].

2.7 Applications

2.7.1 Kolmogorov’s 0-1 Law

Theorem 2.18 (Kolmogorov’s 0-1 law). Let X1, X2, . . . be independent random variables
and define Fn = σ(Xk : k ≥ n) and F∞ =

⋂
n≥0Fn (the tail σ-algebra). Then F∞ is

trivial, i.e. for all A ∈ F∞, P(A) ∈ {0, 1}.

Proof. Let Gn = σ(Xk : k ≤ n). Let A ∈ F∞. Consider E[1(A) | Gn]. This is a martingale
(w.r.t. Gn) and as n → ∞ it converges a.s. to E[1(A) | G∞] where G∞ = σ(Gn : n ≥ 0).
Clearly, F∞ ⊆ G∞, so A ∈ G∞ and then E[1(A) | G∞] = 1(A) a.s. Since A ∈ F∞,
A ∈ Fn+1 = σ(Xk : k ≥ n + 1). Now Fn+1 is independent from Gn by assumption.
Hence E[1(A) | Gn] = E[1(A)] = P(A) a.s. So P(A) = 1(A) a.s., which can only happen if
P(A) ∈ {0, 1}.

2.7.2 Strong Law of Large Numbers

Theorem 2.19 (Strong law of large numbers). Let X1, X2, . . . be i.i.d. random variables
in L1 and set µ = E[X1]. Define S0 = 0 and Sn = X1 + · · ·+Xn. Then Sn

n → µ a.s. and
in L1 as n→ ∞.

Proof. Define Gn = σ(Sn, Sn+1, . . . ) = σ(Sn, Xn+1, . . . ). Set Fn = G−n and define Mn =
S−n

−n for n ≤ −1. We will prove that M is a backwards martingale w.r.t. F . Let m = −n.
Then

E[Mn+1 | Fn] = E
[ S−n−1

−n− 1

∣∣∣G−n

]
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= E
[ Sm−1

m− 1

∣∣∣Sm, Xm+1, . . .
]

= E
[Sm −Xm

m− 1

∣∣∣Sm, Xm+1, . . .
]

=
Sm
m− 1

− 1

m− 1
E[Xm | Sm, Xm+1, . . . ]

Theorem 1.9
=

Sm
m− 1

− 1

m− 1
E[Xm | Sm]

By symmetry (the Xn are i.i.d.), E[Xm | Sm] = E[Xk | Sm] for all k = 1, . . . ,m. So
mE[X1 | Sm] =

∑m
k=1 E[Xk | Sm] = E[Sm | Sm] = Sm, hence E[Xm | Sm] = Sm

m a.s., and
then

E[Mn+1 | Fn] =
Sm
m− 1

− 1

m− 1

Sm
m

=
Sm
m

=Mn a.s.

So by the convergence theorem we get that Sn
n converges a.s. and in L1 to a limit variable

Y . We have

Y = lim
n→∞

Sn
n

= lim
n→∞

Xk+1 + · · ·+Xn

n
,

so Y is σ(Xk, Xk+1, . . . )-measurable for all k. So Y is
⋂
k σ(Xk, Xk+1, . . . )-measurable.

This is the tail σ-algebra, hence trivial by Kolmogorov’s 0-1 law. Then there exists c ∈ R
such that P(Y = c) = 1. Since Sn

n → Y in L1 and E[Sn
n ] = µ, we get c = µ.

2.7.3 Kakutani’s Product Martingale Theorem

Theorem 2.20 (Kakutani’s product martingale theorem). Let X1, X2, . . . be independent
nonnegative random variables with E[Xn] = 1 for all n. DefineM0 = 1,Mn = X1X2 · · ·Xn

for n ∈ N. Then (Mn) converges a.s. to some M∞ as n → ∞. Set an = E[
√
Xn]. Then

0 < an ≤ 1 for all n.

(1) If
∏∞
n=1 an > 0, then Mn →M∞ in L1 and E[M∞] = 1.

(2) If
∏∞
n=1 an = 0, then M∞ = 0 a.s.

Proof. (Mn) is a martingale, nonnegative and E[Mn] = 1. So (Mn) is a martingale bounded
in L1, so Mn → M∞ a.s. as n → ∞ for some M∞. The inequality an ≤ 1 is immediate

from Cauchy-Schwarz. Set Nn =
√
X1···Xn

a1···an . N is a nonnegative martingale and E[Nn] = 1.

Hence again Nn → N∞ a.s. as n→ ∞ for some N∞. We have Mn = N2
n

(∏n
i=1 ai

)2 ≤ N2
n.

Note that E[N2
n] =

(∏n
i=1 ai

)−2
, so

sup
n≥0

E[N2
n] =

( ∞∏
i=1

ai

)−2
.

(1) If
∏
ai
> 0, then supn≥0 E[N2

n] <∞. We show that M is UI, then we get Mn →M∞
in L1 from Theorem 2.15. Note that Mk ≤ supn≥0Mn, so it is enough to prove that
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supn≥0Mn ∈ L1. We have

E[sup
k≤n

Mk] ≤ E[sup
k≤n

N2
k ]

2.10
≤ 4E[N2

n]

≤ 4 sup
n≥0

E[N2
n].

Thus by monotone convergence, E[supn≥0Mn] ≤ 4 supn≥0 E[N2
n] <∞.

(2) If
∏
ai = 0, then Mn = N2

n

(∏n
i=1 ai)

2 → 0 a.s. as the product goes to 0 and
Nn → N∞ a.s. as n→ ∞.

2.7.4 Radon-Nikodym Theorem

Theorem 2.21 (Radon-Nikodym). Let P and Q be probability measures on (Ω,F). Sup-
pose that F is countably generated, i.e. F = σ(Fn : n ∈ N) where Fn ⊆ Ω. TFAE:

(a) For all A ∈ F , if P(A) = 0, then Q(A) = 0 (i.e. Q is absolutely continuous w.r.t.
P, written Q ≪ P).

(b) For all ε > 0, there exists δ > 0 such that if A ∈ F with P(A) ≤ δ, then Q(A) ≤ ε.

(c) There exists a nonnegative random variable X such that Q(A) = E[X1(A)] for all
A ∈ F (expectation taken w.r.t. P).

X is called the Radon-Nikodym derivative of Q w.r.t. P, denoted X = dQ
dP a.s.

Remark. By scaling this extends to finite measures. It also extends to σ-finite measures
by splitting Ω into sets of finite measure. One can also lift the countably generated
assumption of F .

Proof. “(a) ⇒ (b)” Suppose (b) does not hold. Then there exists ε > 0 such that
for all n there is An ∈ F with P(An) ≤ 2−n and Q(An) ≥ ε. By Borel-Cantelli
P(An happens infinitely often) = 0. But Q(An i.o.) ≥ ε as {An i.o.} =

⋂
k

⋃
n≥k An.

This contradicts (a).

“(b) ⇒ (c)” Define Fn = σ(Fk : k ≤ n). Set An = {H1 ∩ · · · ∩Hn | Hi = Fi or Hi = F ci }.
The sets in An are disjoint and Fn = σ(An). Define

Xn(ω) =
∑
A∈An

Q(A)

P(A)
1(ω ∈ A),

where we set 0
0 = 0. Let B ∈ Fn. Then E[Xn1(B)] = Q(B) (the expectation is taken w.r.t.

P). Also E[Xn+11(B)] = Q(B) = E[Xn1(B)] and Xn is Fn-measurable, so E[Xn+1 | F ] =
Xn, so (Xn)n is a martingale. Also E[Xn] = Q(Ω) = 1. By the martingale convergence
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theorem, Xn → X∞ a.s. as n → ∞ for some X∞. We want L1-convergence, so we will
show that (Xn) is UI. So we want to show supn≥0 E[Xn1(Xn ≥ λ)] → 0 as λ → ∞. We

have E[Xn1(Xn ≥ λ)] = Q(Xn ≥ λ). By Markov we have P(Xn ≥ λ) ≤ E[Xn]
λ = 1

λ . Let
ε > 0. Take δ > 0 as in (b) and let λ0 = 1

δ . Then for λ ≥ λ0 we have P(Xn ≥ λ) ≤ δ and
thus Q(Xn ≥ λ) ≤ ε. So (Xn) is UI and so Xn → X∞ in L1. Then E[X∞] = 1 and for
all A ∈ Fn, Q(A) = E[Xn1(A)] = E[X∞1(A)]. So the probability measure Q̃, defined by
Q̃(B) = E[X∞1(B)] for B ∈ F , agrees with Q on the π-system

⋃
n≥0Fn that generates

F . Then Q̃ = Q on F .

“(c) ⇒ (a)” obvious.
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3 Continuous-Time Processes

So we considered a probability space (Ω,F ,P) with a sequence (Xn)n∈N0 of random vari-
ables. Now we want to study processes (Xt)t∈R+ where for each t ∈ R+, ω 7→ Xt(ω) is a
random variable. Again we define filtrations (Ft)t∈R+ as sub-σ-algebras satisfying Ft ⊆ Fs
for all t ≤ s. A function T : Ω → [0,∞] is called a stopping time if for all t ∈ [0,∞],
{T ≤ t} ∈ Ft.

In the case of discrete-time processes, TA = min{n ≥ 0 : Xn ∈ A} (where A ∈ B(R)) is a
stopping time as {TA ≤ n} =

⋃
k≤n{Xk ∈ A}.

Now for continuous-time processes, if we define TA = inf{t ≥ 0 : Xt ∈ A}, it is not so
clear wether {TA ≤ t} =

⋃
s≤t{Xs ∈ A} is in Ft and in fact this need not be the case, see

the example after Proposition 3.2.

For discrete-time processes, consider X : (ω, n) 7→ Xn(ω) as a map Ω×N0 → R. Then X
is measurable w.r.t. F ⊗ P(N0).

For continuous-time, the map Ω×R+ → R, (ω, t) 7→ Xt(ω) need not be measurable w.r.t.
F ⊗ B(R+).

To avoid these problems, we require our process to satisfy some regularity conditions:

Suppose X is continuous in t, i.e. for all ω, t 7→ Xt(ω) is continuous. Then we can write
Xt(ω) = limn→∞X2−n⌈2nt⌉(ω). Now for all n, (ω, t) 7→ X2−n⌈2nt⌉(ω) is measurable w.r.t.
F ⊗B(R+) as 2

−n⌈2nt⌉ takes on only countably many values. Then X is also measurable
as the limit of measurable functions. We can actually consider X which is only right
continuous. We will also require that the left limits limt→t−0

Xt(ω) exist for all ω.

We call functions f that are right continuous and whose left limit exist cadlag. We write
C(R+, E), D(R+, E) for the space of continuous/cadlag functions R+ → E for suitable
sets E (e.g. E = R). Continuous and cadlag functions are uniquely determined by their
values in a countable set. We endow these spaces with the product σ-algebra, i.e. the
smallest σ-algebra that makes the projections πt : f 7→ f(t) measurable for all t.

The stopped σ-algebra FT , where T is a stopping time, is FT = {A ∈ F : A ∩ {T ≤ t} ∈
Ft ∀t}. If X is cadlag, we define as before XT (ω) = XT (ω)(ω) when T (ω) < ∞ and the

stopped process XT
t = XT∧t.

Proposition 3.1. Let X be a cadlag adapted process and S, T stopping times. Then

(1) S ∧ T is a stopping time.
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(2) If S ≤ T , then FS ⊆ FT .

(3) XT 1(T <∞) is FT -measurable.

(4) XT is adapted.

Proof.

(1) Clear.

(2) Clear.

(3) We need to show that for all t, XT · 1(T ≤ t) is Ft-measurable. Let Tn = 2−n⌈2nT ⌉.
Then Tn ↘ T as n → ∞. Tn takes values in Dn = {k2−n:k∈N0} ∪ {∞}. Tn is a
stopping time:

{Tn ≤ t} = {⌈2nT ⌉ ≤ 2nt} = {T ≤ 2−n⌊2nt⌋} ∈ F2−n⌊2nt⌋ ⊆ Ft.

We have XT 1(T ≤ t) = XT 1(T < t) + Xt1(T = t). Clearly, Xt1(T = t) is Ft-
measurable. By the cadlag property and Tn ↘ T ,

XT 1(T < t) = lim
n→∞

XTn∧t1(T < t).

Now XTn∧t1(T < t) =
∑

d∈Dn,d≤tXd1(Tn = d) + Xt1(Tn > t)1(T < t). Again
Xt1(Tn > t)1(T < t) is Ft-measurable as Tn is a stopping time. Also each Xd1(Tn =
d) is Fd measurable and Fd ⊆ Ft, so we are done.

(4) By (3), XT∧t is FT∧t-measurable and FT∧t ⊆ FT .

Proposition 3.2. If X is a continuous adapted process and A a closed set in R, then

TA = inf{t ≥ 0 | Xt ∈ A}

is a stopping time.

Proof. We need to show that for all t, {TA ≤ t} ∈ Ft. We will prove {TA ≤ t} =
{infs∈Q,s≤t d(Xs, A) = 0}. From this the claim is immediate. Suppose TA = s ≤ t. Then
there is a sequence sn ↘ s as n → ∞ such that Xsn ∈ A for all n. By continuity,
Xsn → Xs as n → ∞. Then d(Xsn , A) = 0 for all n, and hence d(Xs, A) = 0. Let qn
be a sequence of rational numbers such that qn ↗ TA as n → ∞. Then qn ≤ t and
d(Xqn , A) → d(XTA , A) = 0. So infs∈Q,s≤t d(Xs, A) = 0.

Conversely, suppose infs∈Q,s≤t d(Xs, A) = 0. Then there is a sequence sn ∈ Q with sn ≤ t
and d(Xsn , A) → 0 as n → ∞. By passing to a subsequence we may assume that sn
converges to some s ≤ t. Then 0 = d(Xsn , A) → d(Xs, A) as n→ ∞, so d(Xs, A) = 0 and
then Xs ∈ A as A is closed. So TA ≤ s ≤ t.

24



Example. Let ξ = ±1 equally likely. Define X by

Xt =

{
t if 0 ≤ t ≤ 1,

1 + ξ · (t− 1) if t > 1.

Consider A = (1, 2), TA = inf{t ≥ 0 : Xt ∈ A}. Let Ft = σ(Xs : s ≤ t) be the natural
filtration. Then TA is not a stopping time as {TA ≤ 1} /∈ F1.

Definition. Let (Ft)t∈R+ be a filtration. Define

Ft+ =
⋂
s>t

Fs.

If Ft+ = Ft, we call F right-continuous.

Proposition 3.3. Let A be an open set, X a cadlac adapted process. Then TA = inf{t ≥
0 : Xt ∈ A} is an (Ft+)-stopping time.

Proof. We need to show that {TA ≤ t} ∈ Ft+ for all t. We have {TA ≤ t} =
⋂
n≥1{TA <

t + 1
n} and {TA < t + 1

n} =
⋃
s∈Q,s<t+ 1

n
{Xs ∈ A} since A is open and X is cadlag.

Since {Xs ∈ A} ∈ Ft+ 1
n

for s < t + 1
n , we get {TA ≤ t} ∈ Ft+ 1

n
for all n, hence

{TA ≤ t} ∈ Ft+.

Let X = (Xt)t∈R+ be a process. On the set of functions {f : R+ → E} (for us E = R) we
defined the product σ-algebra, i.e. the smallest σ-algebra for which all the projections are
measurable. Given A in this σ-algebra, we define µ(A) = P(X ∈ A). µ is called the law
of the process.

Given a finite subset J ⊆ R+, we define µJ to be the law of (Xt, t ∈ J). These are called
finite dimensional marginals. The family (µJ : J ⊆ R+, finite) uniquely determines the
law of the process. Indeed, {

⋂
s∈J{Xs ∈ As} : J ⊆ R+ finite, As ∈ B(R)} is a π-system

generating the product σ-algebra.

Definition. Let (Xt)t≥0, (X
′
t)t≥0 be processes on (Ω,F ,P). We say X ′ is a version of X

if Xt = X ′
t a.s. for all t.

If X ′ is a version of X, they both have the same finite dimensional marginals.

Example. Suppose Xt = 0 for all t ∈ [0, 1]. Let U ∼ U [0, 1] and define X ′
t = 1(U = t) for

t ∈ [0, 1]. Clearly X ′
t = 0 a.s. for all t, i.e. X ′ is a version of X. But

P(X ′
t = 0∀t) = 0 ̸= 1 = P(Xt = 0∀t).

The finite dimensional marginals are Dirac masses at 0.

Definition. Let (Ω,F , (Ft),P) be a filtered probability space. Define F̃ t = σ(Ft+,N )
where N is the set of measure-0 events of F . We say (Ft) satisfies the usual conditions
if F̃ t = Ft for all t.
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Theorem 3.4 (Martingale regularisation theorem). Let (Xt)t≥0 be an (Ft)-martingale.
Then there exists a cadlag martingale (X̃t) w.r.t. (F̃ t) such that Xt = E[X̃t | Ft] a.s. for
all t ≥ 0. If (Ft) satisfies the usual conditions, then X̃ is a cadlag version of X.

Lemma 3.5. Let f : Q+ → R be such that for all bounded I ⊆ Q+, a, b ∈ Q with a < b,
f is bounded on I and N([a, b], I, f) <∞ where

N([a, b], I, f) = sup{n ≥ 0 : ∃ 0 ≤ s1 < t1 < · · · < sn < tn ∈ I, f(si) < a, f(ti) > b∀i}

is the total number of upcrossings of [a, b] by f in I, then

lim
s↗t
s∈Q+

f(s), lim
s↘t
s∈Q+

f(s)

exist and are finite for all t ∈ R+.

Proof. Let sn ↘ t. Then (f(sn)) converges by Lemma 2.7 and the assumptions on f .
Mixing two such sequences show that the limit is independent of the sequence sn. Hence
lim s↘t

s∈Q+

f(s) exists. Similarly the other limit exists. The finiteness of the limits follows

from the boundedness of f .

Proof of Theorem 3.4. Overview:

(1) Goal. Define X̃t = lim s↘t
s∈Q+

Xs. So we want to prove the limit exists a.s. and is

finite.

(2) Show Xt = E[X̃t | Ft] a.s. for all t

(3) Martingale property of X̃

(4) Cadlag property of X̃.

Start with (1). Let I ⊆ Q+ be bounded. To check the conditions in Lemma 3.5, we first
want to show that P(supt∈I |Xt| < ∞) = 1. Let J = {j1 < · · · < jn} ⊆ I. Since (Xj)j∈J
is a martingale, Doob’s maximal inequality, Theorem 2.9, gives

λP(sup
t∈J

|Xt| > λ) ≤ E[|Xjn |]

for any λ > 0. If we choose K > sup I, this is ≤ E[|Xk|]. Letting J ↗ I, we get
λP(supt∈I |Xt| > λ) ≤ E[|Xk|]. Taking λ → ∞ gives P(supt∈I |Xt| < ∞) = 1. Next we
want to consider the upcrossing property. Doob’s upcrossing inequality, Theorem 2.8 gives

(b− a)E[N([a, b], J,X)] ≤ E[(Xjn − a)−] ≤ E[(Xk − a)−].

Taking the sup over all finite J ⊆ I gives N([a, b], I,X) < ∞ a.s. Next take IM =
Q+ ∩ [0,M ] for M ∈ N. Define

Ω0 =
⋂

M∈N0

(
{ sup
t∈IM

|Xt| <∞} ∩
⋂
a<b
a,b∈Q

{N([a, b], IM , X) <∞}
)
.
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Then P(Ω0) = 1 and on Ω0, the limits

Xt+ := lim
s↓t
s∈Q+

Xs, Xt− := lim
s↑t
s∈Q+

Xs

exist and are finite. Now define

X̃t =

{
Xt+ on Ω0,

0 otherwise.

Then X̃ is F̃-adapted.

Next we do (2). Let tn ↘ t with tn ∈ Q+. Then X̃t = limn→∞Xtn a.s. Note that (Xtn)n
is a backwards martingale as tn is decreasing. So by Theorem 2.17, Xtn → X̃t also in L1.

Then Xt = E[Xtn | Ft]
L1

−→ E[X̃t | Ft], so Xt = E[X̃t | Ft] a.s.

Now (3). We need to show that for s < t, E[X̃t | F̃s] = X̃s a.s. Let sn ↘ s where sn ∈ Q+

such that s0 < t. Then X̃s = limn→∞Xsn = limn→∞ E[Xt | Fsn ] Now, E[Xt | Fsn ] is
another backwards martingale, so E[Xt | Fsn ] → E[Xt | Fs+] a.s. and in L1 as n→ ∞. So
X̃s = E[Xt | Fs+] = E[E[X̃t | Ft] | Fs+] = E[X̃t | Fs+] = E[X̃t | F̃s]

1.

Finally we do (4). We show that X̃ is right continuous. If not, there is some ω ∈ Ω0 and
t ∈ R+ and a sequence (sn) such that sn ↘ t and |X̃sn − X̃t| > ε. By definition of X̃ on
Ω0 there exists a sequence (s′n) of rationals such that s′n > sn for all n and s′n ↘ t and
|X̃sn −Xs′n | <

ε
2 . But then |X̃t −Xs′n | ≥

ε
2 contradicting the definition of X̃ on Ω0. The

existence of left limits is done similarly (exercise).

Example. Let ξ, η be independent random variables that attain the values ±1 equally
likely. Define

Xt =


0 t < 1,

ξ t = 1,

ξ + η t > 1.

Xt is not right continuous. Take Ft = σ(Xs : s ≤ t). Then F1 = σ(ξ) and F1+ = σ(ξ, η).
(Xt) is a martingale w.r.t. (Ft). Define

X̃t =

{
0 t < 1,

ξ + η t ≥ 1.

Then X̃ is cadlag and it is a martingale w.r.t. (Ft+). Also Xt = E[X̃t | Ft] a.s. for all t.

But X̃ is not a version of X, because P(X1 ̸= X̃1) > 0.

1If X is any random variable and G any sub-σ-algebra, we have E[X | σ(G,N )] = E[X | G] a.s.
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3.1 Convergence theorems and inequalities

Theorem 3.6 (A.s. martingale convergence theorem). Let (Xt) be a cadlag martingale
which is bounded in L1, i.e. supt≥0 E[|Xt|] <∞. Then (Xt) converges a.s. to X∞ ∈ L1.

Proof. Let IM = Q+ ∩ [0,M ]. As in the proof of Theorem 3.4 we get from Doob’s
upcrossing inequality, Theorem 2.8,

(b− a)E[N([a, b], IM , X)] ≤ a+ sup
t≥0

E[|Xt|].

Taking M → ∞. Hence N([a, b],Q+, X) <∞ a.s. Define

Ω0 =
⋂
a<b
a,b∈Q

{N([a, b],Q+, X) <∞}.

Then P(Ω0) = 1 and on Ω0, Xq converges as q → ∞, q ∈ Q+. Denote the limit by X∞
(and set it to 0 on Ωc0). Then Xq → X∞ a.s. as q → ∞, q ∈ Q+. We already get X∞ ∈ L1

by Fatou. We need to show Xt → ∞ a.s. for t → ∞. The follows easily from the cadlag
property, indeed, given ε > 0, there exists q0 ∈ Q+ such that for all q > q0 with q ∈ Q, we
have |Xq −X∞| < ε

2 . By right continuity for all t > q0 there is q ∈ Q+ such that q > t
such that |Xt −Xq| < ε

2 . So for t > q0, we get |Xt −X∞| < ε.

Theorem 3.7 (Doob’s maximal inequality). Let (Xt) be a cadlag martingale, X∗
t =

sups≤t |Xs|. Then for all λ > 0,

λP(X∗
t ≥ λ) ≤ E[|Xt|].

Proof. By the cadlag property, X∗
t = sups≤t |Xs| = sups∈Q+∩[0,t]∪{t} |Xs|. The rest follows

as in the proof of Theorem 3.4

Theorem 3.8 (Doob’s Lp-inequality). Let p > 1, X a cadlag martingale. Then

∥X∗
t ∥p ≤

p

p− 1
∥Xt∥p

Proof. Exactly as in the discrete case, Theorem 2.10.

Theorem 3.9 (Lp martingale convergence). Let X be a cadlag martingale, p > 1. TFAE

(1) X is bounded in Lp.

(2) X converges a.s. and in Lp so some X∞ ∈ Lp.

(3) There exists Z ∈ Lp such that Xt = E[Z | Ft] a.s. for all t.

Proof. Exactly as in the discrete case, Theorem 2.11
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Theorem 3.10 (UI martingale convergence). Let X be a cadlag martingale. TFAE

(1) X is UI.

(2) X converges a.s. and in L1 to some X∞ ∈ L1.

(3) There exists Z ∈ L1 such that Xt = E[Z | Ft] a.s. for all t.

Proof. Exactly as in the discrete case, Theorem 2.15

If these conditions are satisfied and T is a stopping time, we can define XT by XT (ω) =
XT (ω)(ω) where now the case T (ω) = ∞ is included.

Theorem 3.11 (Optional stopping theorem). Let X be a cadlag UI martingale S ≤ T
stopping times. Then

E[XT | FS ] = XS a.s.

Proof. We need to show that for all A ∈ FS ,

E[XT 1(A)] = E[XS1(A)].

Let Tn = 2−n⌈2nT ⌉ and Sn = 2−n⌈2nS⌉. Then Tn ↘ T and Sn ↘ S as n → ∞. By the
right continuity of X, we get XTn → XT a.s. and XSn → XS a.s. as n → ∞. X is UI, so
XTn = E[X∞ | FTn ]. Note that also (XTn), (XSn) are UI, so XSn = E[XTn | FSn ] by the
discrete optional stopping theorem, Theorem 2.16. Since A ∈ FS , also A ∈ FSn for all n.
So E[XTn1(A)] = E[XSn1(A)]. Let n → ∞. By the UI property, XTn → XT , XSn → XS

in L1, so we get E[XT 1(A)] = E[XS1(A)].

3.2 Kolmogorov’s continuity criterion

Write Dn = {k2−n : 0 ≤ k ≤ 2n}, D =
⋃
n≥0Dn.

Theorem 3.12. Let (Xt)t∈D be a stochastic process such that there exist c < ∞, p, ε > 0
such that

E[|Xt −Xs|p] ≤ c|t− s|1+ε

for all s, t ∈ D. Then for every α ∈ (0, εp), the process (Xt)t∈D is a.s. α-Hölder continuous,
i.e. there exists a random variable Mα with Mα <∞ a.s. such that |Xt−Xs| ≤Mα|t−s|α
for all t, s ∈ D.

This implies that there exists an α-Hölder continuous process X̃ on [0, 1] such that X̃t = Xt

a.s. for all t ∈ D.

Proof. We first prove the Hölder continuity on dyadics of the same level and then extend
it to all of D.
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We have

P(|Xk2−n −X(k+1)2−n | ≥ 2−nα) ≤ 2nαpE[|Xk2−n −X(k+1)2−n |] ≤ 2nαpc2−n(1+ε).

Taking the union of these 2n events, we get:

P( max
0≤k<2n

|Xk2−n −X(k+1)2−n | ≥ 2−nα) ≤ 2n · 2c−n((1+ε)−αp) = c2−n(ε−αp).

If α < ε
p , then by Borel-Cantelli,

max
0≤k<2n

|Xk2−n −X(k+1)2−n | ≤ 2−nα for all n sufficiently large a.s.

Then

sup
n≥0

max0≤k<2n |Xk2−n −X(k+1)2−n |
2−nα

≤M <∞

whereM is a random variable withM <∞ a.s. Next we want to show that for all t, s ∈ D,
|Xt −Xs| ≤M ′|t− s|α for some M ′. Let s < t, s, t ∈ D. Let r be the unique integer such
that 2−(r+1) ≤ t − s < 2−r. Let k be such that s < k2−(r+1) < t and set z = k2−(r+1).
Then t − z =

∑
j≥r+1

xj
2j

where xj ∈ {0, 1} for all j. Also z − s =
∑

j≥r+1
yj
2j

for some
yj ∈ {0, 1}. So we can decompose [s, t) ∩ D into a disjoint union of dyadic intervals of
lengths 2−n with n ≥ r + 1. Any given length will appear in at most two intervals. Then

|Xt −Xs| ≤
∑

d, n such that
d, d+ 2−n are

endpoints in this decomp.

|Xd −Xd+s−n |

≤
∑
d,n

M2−nα

≤ 2M
∑
n≥r+1

2−nα = 2M
2−α(r+1)

1− 2−α

Set M ′ = 2M
1−2−α . We get

|Xt −Xs| ≤M ′2−α(r+1) ≤M ′|t− s|α

This shows that (Xt)t∈D is α-Hölder continuous a.s.

For the last part: On the event (of probability 1) that X is Hölder continuous, we set
X̃t = limn→∞Xtn where tn ∈ D and tn → t as n→ ∞. On the complement (of probability
0) set X̃t = 0 for all t ∈ [0, 1]. Then X̃ is α-Hölder continuous and X̃t = Xt a.s. for
t ∈ D.
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4 Weak convergence

Let (M,d) be a metric space, endowed with its Borel σ-algebra. We will usually consider
random variables with values in M .

Definition. Let (µn) be a sequence of probability measures on (M,d). We say that (µn)
converges weakly to µ and write µn ⇒ µ if for all continuous, bounded functions f :M →
R, we have

∫
fdµn →

∫
fdµ.

Note that by taking f ≡ 1, we get µ(M) = 1, so µ is also a probability measure.

Example. If xn → x in (M,d), then δxn ⇒ δx.

Example. Let M = [0, 1] with the euclidean metric. Let µn = 1
n

∑n−1
k=0 δ k

n
. Then∫

fdµn = 1
n

∑n−1
k=0 f

(
k
n

)
is a Riemann sum of f . So if f is continuous, then

∫
fdµn →∫ 1

0 f(x)dx, so µn converges weakly to the Lebesgue measure on [0, 1].

Example. Let M = [0, 1] and xn = 1
n , µn = δxn . Take A = (0, 1). Then µn(A) = 1 and

µn ⇒ δ0, but δ0(A) = 0, so µn(A) ̸→ µ(A).

Theorem 4.1. Let (µn) be a sequence of probability measures on (M,d). TFAE:

(1) µn ⇒ µ.

(2) lim inf µn(G) ≥ µ(G) for all open G ⊆M .

(3) lim supµn(C) ≤ µ(C) for all closed C ⊆M .

(4) If A ∈ B(M) is such that µ(∂A) = 0, then µn(A) → µ(A).

Proof. “(1) ⇒ (2)” Let K ∈ N. Define fK : M → R by fK(x) = 1 ∧ (Kd(x,Gc)).
Then fK is continuous, bounded and fK ↗ 1(G) as K → ∞. Since µ ⇒ µ, we get∫
fKdµn →

∫
fMdµ as n → ∞. Then lim infn µn(G) ≥ lim infn µn(fK) = µ(fK). By

monotone convergence, µ(fK) → µ(G) as K → ∞. So lim infn µn(G) ≥ µ(G).

“(2) ⇔ (3)” obvious.

“(2), (3) ⇒ (4)” Let A be such that µ(∂A) = 0. Since ∂A = A\A◦, we get µ(A) = µ(A) =
µ(A◦). Applying (2) and (3) gives

lim inf
n

µn(A) ≥ lim inf
n

µn(A
◦) ≥ µ(A◦) = µ(A),

lim sup
n

µn(A) ≤ lim sup
n

µn(A) ≤ µ(A) = µ(A)
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This proves µn(A) → µ(A).

“(4) ⇒ (1)” Suppose f continuous, bounded and positive. The general case follows by
writing f = f+ − f−. We need to show that µn(f) → µ(f). Suppose f ≤ K for some
K ∈ R+. Then

µn(f) =

∫
M
f(x)dµn(x) =

∫
M

(∫ ∞

0
1(f(x) ≥ t)dt

)
dµn(x)

=

∫
M

(∫ K

0
(f(x) ≥ t)dt

)
dµn(x)

=

∫ K

0

(∫
M

1(f(x) ≥ t)dµn(x)
)
dt

=

∫ K

0
µn({x : f(x) ≥ t})dt

=

∫ K

0
µn(f ≥ t)dt

We have ∂{f ≥ t} = {f ≥ t} \ ({f ≥ t})◦ ⊆ {f ≥ t} \ {f > t} = {f = t}. Claim: The
set {t : µ(f = t) > 0} is countable. Indeed, we have {t : µ(f = t) > 0} =

⋃
n≥1{t :

µ(f = t) ≥ 1
n} and for n ≥ 1 the set {t : µ(f = t) ≥ 1

n} can have at most n elements, as
µ(M) = 1. So µ(∂{f ≥ t}) = 0 for Lebesgue a.s. t. By (4) and dominanted convergence,∫K
0 µn(f ≥ t)dt →

∫K
0 µ(f ≥ t)dt. By the same calculation as above, this last integral is

µ(f).

Definition. Let µ be a Borel measure on R. We define its distribution function Fµ(x) :=
µ((−∞, x]) for x ∈ R.

Proposition 4.2. Let (µn), µ be probability measures on R. TFAE:

(i) µn ⇒ µ as n→ ∞.

(ii) For all x ∈ R that are points of continuity of Fµ, we have Fµn(x) → F (x) as n→ ∞.

Proof. “(i) ⇒ (ii)” Let x be a continuity point of Fµ. We need to show µn((−∞, x]) →
µ((−∞, x)) as n→ ∞. By Theorem 4.1, it suffices to prove µ(∂(−∞, x]) = 0. Indeed, we
have

µ(∂(−∞, x]) = µ({x}) = µ((−∞, x])− lim
n→∞

µ((−∞, x− 1

n
])

= Fµ(x)− lim
n→∞

Fµ(x− 1

n
) = 0

where the last equality follows since Fµ is continuous at x.

“(ii) ⇒ (i)” We will prove that if G is an open subset of R, then lim infn µn(G) ≥ µ(G).
We can write G =

⋃
k(ak, bk) where (ak, bk) are disjoint interval. Fix such an interval

(a, b) = (ak, bk). We have µn(a, b) = µn((−∞, b)) − µn((−∞, a]) = Fµn(b−) − Fµn(a) ≥
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Fµn(b
′)− Fµn(a

′) where a < a′ < b′ < b, and a′, b′ are continuity points of Fµ. Note that
such a′, b′ exist as Fµ can only have at most countably many discontinuities since it is
monotone. Then lim infn µn(a, b) ≥ Fµ(b

′) − Fµ(a
′) by (ii). Take the limit as b′ ↗ b and

a′ ↘ a along continuity points of Fµ to get lim infn µn(a, b) ≥ Fµ(b−)−Fµ(a) = µ((a, b)).

Then we have

lim inf
n

µn(G) = lim inf
n→∞

∑
k

µn((ak, bk)) ≥
∑
k

lim inf
n→∞

µn((ak, bk)) ≥
∑
k

µ((ak, bk)) = µ(G).

Definition. Let (Xn)n be a sequence of random variables defined on perhaps different
probability spaces (Ωn,Fn,Pn) taking values in the same metric space (M,d). We say that

(Xn) converges in distribution to some other random variable X, written Xn
d−→ X, if the

law L(Xn) of Xn converges weakly to the law L(X) of X.

Equivalently, for all continuous and bounded functions f ,

EPn [f(Xn)] → EP[f(X)]

as n→ ∞.

Example. Let X1, X2, . . . be i.i.d. random variables with µ = E[X1] < ∞ and σ2 =

Var(X1) <∞. Then
∑n

i=1Xi−µn
σ
√
n

converges in distribution to a a N (0, 1) random variable

as n→ ∞. This is the Central Limit Theorem.

Proposition 4.3.

(1) If Xn converges to X in probability, then Xn also converges to X in distribution.

(2) If Xn converges to a constant c in distribution, then Xn also converges in probability
to c.

Proof. Example Sheet 3.

4.1 Tightness

Definition. A sequence of probability measures (µn)n≥0 on a metric space (M,d) is tight,
if for all ε > 0, there exists a compact set K ⊆M such that

sup
n≥0

µn(M \K) ≤ ε.

Remark. If the metric space is compact, then every sequence is tight.

Theorem 4.4 (Prokhorov). If (µn) is a tight sequence, then there is a subsequence (nk)
and a probability measure µ such that µnk

⇒ µ as k → ∞.
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Proof. We give the proof in the case M = R. Consider Fn = Fµn . By a standard diagonal
subsequence argument, we find a subsequence nk such that Fnk

(x) converges for all x ∈ Q.
Define F (q) for q ∈ Q to be the limit limk→∞ Fnk

(q). Since the Fnk
are non-decreasing, so

is F . Then we can define F on R by F (x) = limq↘x,q∈Q F (q). Then F is right continuous
and by the monotonicity left limits of F exist, so F is cadlag. Next we have to prove that
Fnk

(t) → F (t) for all continuity points t of F . Let t be a continuity point of F and ε > 0.
We can find s1 < t < s2 such that s1, s2 ∈ Q and |F (si)− F (t)| < ε

2 . For k large enough
we then have

F (t)− ε < F (s1)−
ε

2
< Fnk

(s1) ≤ Fnk
(t) ≤ Fnk

(s2) < F (s2) +
ε

2
< F (t) + ε.

So Fnk
(t) → F (t) as k → ∞ for all points t of continuity for F . It remains to show that

F is the distribution function of some probability measure on R.

Since (µn) is tight, for all ε > 0 there exists N such that supn≥0 µn([−N,N ]c) ≤ ε
2 . We

can pick N such that N and −N are continuity points for F (as F has at most countably
many discontinuities). We have Fnk

(−N) ≤ ε
2 and 1 − Fnk

(N) ≤ ε
2 . Then F (−N) ≤ ε

and 1− F (N) ≤ ε, so limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

Define µ((a, b]) = F (b)− f(a). By Caratheodory’s extension theorem we can extend µ to
a Borel probability measure on R and F = Fµ.

4.2 Characteristic functions

Let X be a random variable with values in Rd. Recall that the characteristic function of
X is defined to be

φ = φX : Rd −→ C,

φ(u) = φX(u) = E[ei⟨u,X⟩]

Note that φX(0) = 1 and φX is continuous.

Theorem 4.5. The characteristic function uniquely determines the law of a random vari-
able, i.e. if φX = φY , then L(X) = L(Y ).

Theorem 4.6 (Lévy’s convergence theorem). Let (Xn)n≥0, X be random variables with
values in Rd. Then

Xn
d−→ X ⇐⇒ φXn(u) → φX(u), ∀u ∈ Rd.

This follows from the following slightly stronger theorem.

Theorem 4.7 (Lévy).

(1) Let (Xn), X be random variables with values in Rd. If L(Xn) ⇒ L(X), then
φXn(u) → φX(u) for all u ∈ Rd.
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(2) Suppose (Xn) is a sequence of random variables with values in Rd satisfying that
there is some function ψ : Rd → C such that ψ(0) = 1, ψ is continuous at 0, and
φXn(u) → ψ(u) as n → ∞ for all n ∈ Rd. Then there exists a random variable X
such that ψ = φX and L(Xn) ⇒ L(X) as n→ ∞.

Lemma 4.8. Let X be a random variable with values in Rd. Then for K > 0,

P(∥X∥∞ ≥ K) ≤ C
(K
2

)d ∫
[−K−1,K−1]d

(1− φX(u))du

where C = (1− sin 1)−1 (the RHS is real).

Proof. Let λ > 0. Let µ be the law of X. Then∫
[−λ,λ]d

φX(u)du =

∫
[−λ,λ]d

E[ei⟨u,X⟩]du

=

∫
[−λ,λ]d

∫
Rd

ei⟨u,x⟩dµ(x)du

=

∫
Rd

∫
[−λ,λ]d

d∏
j=1

eiujxjdudµ(x)

=

∫
Rd

d∏
j=1

(eiλxj − e−iλxj

ixj

)
dµ(x)

=

∫
Rd

d∏
j=1

(2 sin(λxj)
xj

)
dµ(x).

So

λ−d
∫
[−λ,λ]d

(1− φX(u))du = 2d
∫
Rd

(
1−

d∏
j=1

sin(λxj)

λxj

)
dµ(x)

Consider f : Rd → R, f(u) =
∏d
j=1

sinuj
uj

. If x ≥ 1, then | sinx| ≤ x sin 1. Then if ∥u∥∞ ≥
1, then |f(u)| ≤ sin 1. Consequently, 1(∥u∥∞ ≥ 1) ≤ C(1− f(u)) where C = (1− sin 1)−1.
Then

P(∥X∥∞ ≥ K) = P
(∥∥∥∥XK

∥∥∥∥
∞

≥ 1
)
≤ C

(
1− E

[
f
(X
K

)])
= C

∫
Rd

(
1−

d∏
j=1

sin
Xj

K
Xj

k

)
dµ(x)

= C(2λ)−d
∫
[−λ,λ]d

(1− φX(u))du.
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Proof of Theorem 4.7. (1) is easy. Let f(x) = ei⟨u,x⟩. Then f is continuous and bounded,
so letting µn = L(Xn) and µ = L(X), we get µn(f) → µ(f) as n → ∞ by the definition
of weak convergence.

(2) We first show that (Xn) is a tight sequence. We need to show that for every ε > 0,
there is K large enough such that supn≥0 P(∥Xn∥∞ ≥ K) ≤ ε. By the lemma, we have

P(∥Xn∥∞ ≥ K) ≤ CdK
d

∫
[−K−1,K−1]d

(1− φXn(u))du

where Cd = C2−d. We have |1− φXn(u)| ≤ 2, so by the dominated convergence theorem,
the RHS goes to CdK

d
∫
[−K−1,K−1]d(1 − ψ(u))du as n → ∞. Using that ψ(0) = 1 and ψ

is continuous at 0, we can take K sufficiently large so that∣∣∣∣∣CdKd

∫
[−K−1,K−1]d

(1− ψ(u))du

∣∣∣∣∣ < ε

2
.

Taking n large enough, we get

P(∥Xn∥∞ ≥ K) ≤ ε.

Taking K even larger, we then get this also for the finitely many remaining n, so

sup
n≥0

P(∥Xn∥∞ ≥ K) ≤ ε.

So (Xn) is tight. Then by Theorem 4.4, L(Xnk
) ⇒ L(X) for some random variable X and

a subsequence nk. By (1), φXnk
(u) → φX(u) as k → ∞ for all u ∈ Rd. Then ψ = φX .

It remains to prove L(Xn) ⇒ L(X). Suppose not. Then there is some subsequence (mk)
and a continuous, bounded function f and ε > 0, such that |E[f(Xmk

)]−E[f(X)]| > ε for
all k. Applying the previous argument to Xmk

instead of Xn gives a contradiction.
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5 Large deviations

Let X1, X2, . . . be i.i.d. random variables and E[X1] = x̄. Let Sn =
∑n

i=1Xi. Then
Sn
n → x̄ a.s. as n→ ∞, this is the strong law of large numbers, Theorem 2.19.

By the Central Limit Theorem, Sn−nx̄
σ
√
n

⇒ N (0, 1) as n → ∞, where σ2 = Var(X1) < ∞,

in other words if Z ∼ N (0, 1), then

P(Sn ≥ nx̄+ aσ
√
n) = P

(Sn − nx̄

σ
√
n

≥ a
)
→ P(Z ≥ a).

In this chapter we are interested in the probability P(Sn ≥ na) where a > x. By the CLT
it goes to 0 as n→ ∞. But what are the asymptotics?

Let X1, X2, . . . by i.i.d. with distribution N (0, 1). Let Sn =
∑n

i=1Xi. Then

P
( |X1|√

n
≥ δ) = 1− 1√

2π

∫ δ
√
n

−δ
√
n
e−

x2

2 dx.

We have limn→∞
1
n logP

( |Sn|√
n
≥ δ) = − δ2

2 . So
Sn√
n
is of order 1√

n
, but it can take relatively

large values with an exponentially small probability ≈ e−
δ2

2
n.

Setup. LetX1, X2, . . . be i.i.d. random variables with E[X1] = x̄, Sn =
∑n

i=1Xi. Set bn =
P(Sn ≥ an). Then bn+m = P(Sn+m ≥ a(n +m)) ≥ bnbm. So log bn+m ≥ log bn + log bm,
so (− log bn) is a subadditive sequence. Exercise: Show that this property implies that
limn→∞− 1

n log bn exists and equals infn− log bn
n .

So we know that limn→∞− 1
n logP(Sn ≥ an) exists.

Notation. Let M(λ) = E[eλX1 ], ψ(λ) = logM(λ).

For λ ≥ 0, we have

P(Sn ≥ na) = P(eλSn ≥ eλna) ≤ e−λnaE[eλSn ] = e−λna(M(λ))n = exp(−n(aλ− ψ(λ))).

Define ψ∗(a) = supλ≥0(λa− ψ(λ)). Note that ψ(0) = 0, so ψ∗(a) ≥ 0. Then

P(Sn ≥ an) ≤ e−ψ
∗(a).

And so

lim inf
n→∞

− 1

n
logP(Sn ≥ an) ≥ ψ∗(a).
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Theorem 5.1 (Cramer). Let X1, X2, . . . be i.i.d. random variables with E[X1] = x̄. Then

lim
n→∞

− 1

n
logP(Sn ≥ an) = ψ∗(a)

for all a > x̄.

Lemma 5.2. The functions M(λ), ψ(λ) are continuous in D = {λ : M(λ) < ∞} and
differentiable in D◦ with

M ′(λ) = E[X1e
λX1 ] and ψ′(λ) =

M ′(λ)

M(λ)

for λ ∈ D◦.

Proof. Continuity follows from the dominated convergence theorem. Note that D is an
interval, i.e. if λ1 < λ2 are in D, then any λ ∈ (λ1, λ2) is also in D which follows from

eλx ≤ eλ1x + eλ2x. Let η ∈ D◦. Let δ > 0 be small and ε ∈ (−δ, δ). Then M(η+ε)−M(η)
ε =

E[e(η+ε)X−eηX ]
ε . We have ∣∣∣∣∣e(η+ε)x − eηx

ε

∣∣∣∣∣ ≤ eηx
eδ|x| − 1

δ
.

Now choose δ small enough so that the RHS has finite mean. Then we can apply dominated
convergence and let ε→ 0.

Proof of Theorem 5.1. Replace Xi by X̃i = Xi−a and Sn by S̃n = Sn−na. Then E[X̃i] ≤
0 and we have P(S̃n ≥ 0) = P(Sn ≥ an). Also M̃(λ) = e−λaM(λ) and ψ̃(λ) = ψ(λ)− λa.
So we need to show

− 1

n
logP(S̃n ≥ 0) → ψ̃∗(0) = sup

λ≥0
(−ψ̃(λ)).

We have already proved limn→∞− 1
n logP(S̃n ≥ 0) ≥ ψ̃∗(0), so we only need to prove the

reverse inequality, equivalently,

lim
n→∞

1

n
logP(S̃n ≥ 0) ≥ inf

λ≥0
ψ̃(λ).

We now assume x̄ < 0 and write Xn, Sn for X̃n, S̃n.

We can assume that P(X1 > 0) > 0, since if P(X1 ≤ 0) = 1, then P(Sn ≥ 0) = µ(0)n, so
1
n logP(Sn ≥ 0) → logµ(0) and infλ≥0 ψ(λ) ≤ limλ→∞ ψ(λ) = log µ(0).

Case 1. Assume M(λ) <∞ for all λ. Let µ = L(X1). Define a new probability measure

µθ by dµθ
dµ (x) = eθx

M(θ) , so Eθ[f(X1)] := Eµθ [f(X1)] =
∫
R
eθxf(x)
M(θ) dµ(x). Also

Eθ[F (X1, . . . , Xn)] =

∫
Rn

F (x1, . . . , xn)

n∏
i=1

eθxidµ(xi)

M(θ)
.
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Define g(θ) = Eθ[X1] =
E[X1eθX1 ]
M(θ) = ψ′(θ). Since µ(0,∞) > 0 and µ(−∞, 0) > 0 (from

x̄ < 0), we get lim|θ|→∞ ψ(θ) = ∞. Then there is some η such that ψ(η) = infθ ψ(θ). Then
ψ′(η) = 0, so g(η) = 0.

Let ε > 0. We have

P(Sn ≥ 0) ≥ P(Sn ∈ [0, εn]) ≥ E
[
eηSn−|η|εn · 1(Sn ∈ [0, εn])

]
= e−|η|εnE

[
eηSn1(Sn ∈ [0, εn])

]
= e−|η|εnPµη(Sn ∈ [0, εn])(M(η))n

By the Central Limit Theorem1 (using Eη[X1] = 0), Pη(Sn ∈ [0, εn]) → 1
2 as n → ∞.

Then

logP(Sn ≥ 0

n
≥ −|η|ε+ ψ(η) +

logPη(Sn ∈ [0, εn])

n

n→∞−−−→ −|η|ε+ ψ(η)

Taking ε→ 0, we get

lim
n→∞

1

n
logP(Sn ≥ 0) ≥ ψ(η) ≥ inf

λ∈R
ψ(λ).

By Jensen, ψ(λ) = logE[eλx] ≥ λx̄. So if λ ≤ 0, since x̄ < 0, we get λx̄ ≥ 0. So
infλ≤0 ψ(λ) = 0 and therefore infλ∈R ψ(λ) = infλ≥0 ψ(λ). This proves the theorem in the
case M(λ) <∞ for all λ.

Case 2. (General case) Let K ∈ N, µn := L(Sn), ν = L(X1 | |X1| ≤ K), νn = L(Sn |⋂n
i=1{|Xi| ≤ K}). We have

µn([0,∞)) ≥ νn([0,∞))µ([−K,K])n.

Then
1

n
logµn([0,∞) ≥ 1

n
log νn([0,∞)) + log µ([−K,K]).

From the previous case we know

lim
n→∞

1

n
log νn([0,∞)) = inf

λ≥0

(
log

∫ ∞

−∞
eλxdν(x)

)
= inf

λ≥0

(
log

∫ K

−K
eλxdµ(x)− logµ([−K,K])

)
.

So

lim
n→∞

1

n
logµn([0,∞)) ≥ inf

λ≥0

(
log

∫ K

−K
eλxdµ(x)︸ ︷︷ ︸

=:ψK(λ)

)
=: JK .

1L.T.: Why can we apply CLT, i.e. why is X1 ∈ L2(µη)?
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We have ψK ↗ ψ as K → ∞ and also JK ↗ J as K → ∞ for some J . Then JK =
infλ≥0 ψK(λ) ≤ ψ(0) = 0, so J ≤ 0. Taking K large, we get µ([0,K]) > 0, so JK > −∞,
so J > −∞. Consider for each K ∈ N the set {λ : ψK(λ) ≤ J}. These sets are non-empty,
compact (as ψK is continuous) and nested. So there is some λ0 ∈

⋂
K∈N{λ : ψK(λ) ≤ J}.

Then

lim
n→∞

1

n
logµn([0,∞)) ≥ J ≥ lim

K→∞
ψK(λ0) = ψ(λ0) ≥ inf

λ≥0
ψ(λ).
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6 Brownian motion

Definition. B = (Bt)t≥0 is called a Brownian motion in Rd starting from x ∈ Rd if

(i) B is a continuous process (recall this means that for all ω, t 7→ Bt(ω) is continuous).
1

(ii) B0 = x a.s.

(iii) Bt −Bs ∼ N (0, (t− s)Id) for s < t.

(iv) For any s < t, Bt − Bs is independent of FB
s = σ(Bu : u < s) (we say that B has

independent increments).

If x = 0, B is called a standard Brownian motion.

If (Bt) is a standard Brownian motion, U ∼ U [0, 1], define

Xt =

{
Bt t ̸= U,

0 t = U.

Then X = (Xt)t≥0 has the same law as a Brownian motion, but is discontinuous, so is not
a Brownian motion.

6.1 Existence

Theorem 6.1 (Wiener’s theorem). There exists a Brownian motion on some probability
space.

Proof. We first construct a Brownian motion for d = 1 and on [0, 1]. Then we extend to
R+ and then to d ≥ 1.

First we will construct Brownian motion along dyadic rationals of [0, 1]. Recall for n ≥ 0,
we set Dn = {k2−n : 0 ≤ k ≤ 2n} and D =

⋃
n≥0Dn. Let (Zd, d ∈ D) be i.i.d. random

variables with distribution N (0, 1) on some probability space (Ω,F ,P). Set B0 = 0,
B1 = Z1. Suppose we have constructed (Bd, d ∈ Dn−1) satisfying (iii) and (iv) in the
definition of Brownian motion. Let d ∈ Dn \Dn−1. Let d− = d−2−n, d+ = d+2n ∈ Dn−1.
Define

Bd =
Bd− +Bd+

2
+

Zd

2
n+1
2

.

1L.T.: It seems that later we only require B to be continuous a.s.
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Then

Bd+ −Bd =
Bd+ −Bd−

2
− Zd

2
n+1
2

,

Bd −Bd− =
Bd+ −Bd−

2
+

Zd

2
n+1
2

.

By induction, Bd+ − Bd− ∼ N (0, 2−(n−1)) and Zd is independent from this. We see that

indeed Bd+ − Bd, Bd − Bd− ∼ N (0, 2−n). Let N =
Bd+

−Bd−
2 and N ′ = Zd

2
n+1
2

. Then

Var(N) = Var(N ′) = 2−(n+1). Then Cov(N−N ′, N+N ′) = Var(N)−Var(N ′) = 0. Since
(N −N ′, N +N ′) is a Gaussian vector with covariance 0, they are independent. Similarly
one shows that (Bd −Bd−2−n , d ∈ Dn) are independent.

So we have constructed (Bd, d ∈ D) satisfying the properties (iii) and (iv). Let t, s ∈ D.
Then Bt −Bs ∼ N (0, t− s), so if N ∼ N (0, 1), then we have

E[|Bt −Bs|p] = |t− s|
p
2E[|N |p],

and E[|N |p] <∞ for all p. By Kolmogorov’s continuity criterion, we get that (Bd, d ∈ D)
is a.s. Hölder continuous for all α < 1

2 . For all t ∈ [0, 1], define Bt = limi→∞Bdi , where
di ∈ D, di → t as i → ∞, on the event that (Bd, d ∈ D) is α-Hölder. On the complement
set Bt = 0.Then (Bt)t∈[0,1] is a.s. α-Hölder continuous.

We need to show that if 0 ≤ t0 < t1 < · · · < tk, then (Bti − Bti−1) are independent and

∼ N (0, ti − ti−1) for all i. Let t
(n)
i ∈ D with t

(n)
i → ti as n → ∞ and 0 ≤ t

(n)
0 < t

(n)
1 <

· · · < t
(n)
k . Then (B

(n)
ti

−B
(n)
ti−1

) → Bti −Bti−1 a.s. by continuity of B. We have

E
[
e
i
∑k

j=1 uj

(
B

t
(n)
j

−B
t
(n)
j−1

)]
=

k∏
j=1

e−
u2j

(
t
(n)
j

−t
(n)
j−1

)
2

n→∞−→
k∏
j=1

e−
u2j (tj−tj−1)

2

By Lévy’s theorem, Theorem 4.7, we get (Bti−Bti−1) are independent and∼ N (0, ti−ti−1).

Thus we constructed Brownian motion on [0, 1]. We now extend it to R+. Let (Bi
t, i ∈

[0, 1]) by i.i.d. standard Brownian motions. Define

Bt = B
⌊t⌋
t−⌊t⌋t +

⌊t⌋t−1∑
i=0

Bi
1.

It is easy to check that B has the desired properties.

In Rd, let B1, B2, . . . , Bd be independent one-dimensional standard Brownian motions.
Then set Bt = (B1

t , . . . , B
d
t ).
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6.2 Properties

Proposition 6.2. Let (Bt)t≥0 be a standard Brownian motion in Rd. Then

(1) (rotational invariance of Brownian motion) If U is an orthogonal d×d-matrix, then
(UBt)t≥0 is also a standard Brownian motion.

(2) (scaling invariance) For all λ > 0, (Bλt√
λ
)t≥0 is a standard Brownian motion.

(3) (simple Markov property) For all s ≥ 0, (Bt+s −Bs : t ≥ 0) is a standard Brownian
motion, independent of FB

s = σ(Bu : u ≤ s).

Proof. Immediate from basic properties of the normal distribution.

Theorem 6.3 (Inversion formula). Let (Bt)t≥0 be a standard Brownian motion in Rd.
Define

Xt =

{
0 t = 0,

tB 1
t

t > 0.

Then (Xt)t≥0 is also a standard Brownian motion.

Proof. First we check that the finite dimensional marginals are Gaussian with the same
mean and covariance as Brownian motion. The mean is clearly 0. For the covariance, let
s < t. We need to show Cov(Xt, Xs) = Cov(Bt, Bs). We have

Cov(Bt, Bs) = Cov(Bt −Bs, Bs) + Var(Bs, Bs) = Var(Bs) = s

and
Cov(Xt, Xs) = Cov(tB 1

t
, sB 1

s
) = tsCov(B 1

t
, B 1

s
) = s.

It remains to show that X is continuous in t. For t > 0, this is clear by continuity of
B. So we only need to show limt↘0Xt = 0. (Xt, t ≥ 0, t ∈ Q) has the same law as
(Bt, t ≥ 0, t ∈ Q), so limt↘0,t∈QXt = limt↘0,t∈QBt = 0 a.s. Since X is continuous at all
t > 0, we get limt↘0Xt = limt↘0,t∈QXt = 0 a.s.2

The continuity at 0 gives:

Corollary 6.4. limt→∞
Bt
t = 0 a.s.

If we restrict t in the limit to t ∈ N, this also follows from the strong law of large numbers.
If we wanted to use this to prove the corollary one need to control the oscillation of Bt in
intervals [n, n+ 1]. See Exercise 2.2. on Example Sheet 3.

Define F+
s =

⋂
t>sFB

t .

Theorem 6.5. Let s ≥ 0. Then (Bt+s −Bs)t≥0 is independent of F+
s .

2L.T.: Initially, this was not quite obvious to me (i.e. given a continuous function f : (0, 1) → R s.t.
limt↘0,t∈Q f(t) = 0, then limt↘0 f(t)), but it turns out that this is very easily proved by contradiction.
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Proof. Let A ∈ F+
s and let 0 ≤ t1, . . . , tk and F : (Rd)k → R continuous and bounded.

We need to show that

E[F (Bt1+s −Bs, . . . , Btk+s −Bs)1(A)] = E[F (Bt1+s −Bs, . . . , Btk+s −Bs)]P(A).

Let sn ↘ s as n→ ∞. By continuity of B and F ,

lim
n→∞

F (Bt1+sn −Bsn , . . . , Btk+sn −Bsn) = F (Bt1+s −Bs, . . . , Btk+s −Bs).

The simple Markov property of B now gives

E[F (Bt1+sn −Bsn , . . . , Btk+sn −Bsn)1(A)] = E[F (Bt1+s −Bs, . . . , Btk+s −Bs)]P(A).

The claim follows e.g. from the dominated convergence theorem.

Theorem 6.6 (Blumenthal’s 0-1 law). F+
0 is trivial, i.e. for all A ∈ F+

0 , P(A) ∈ {0, 1}.

Proof. Let A ∈ F+
0 ⊆ σ(Bt, t ≥ 0). By the previous theorem, A is independent of F+

0 , so
A is independent from itself, so P(A) = P(A ∩A) = P(A)2 and the result follows.

Theorem 6.7. Let B be a standard Brownian motion in dimension d = 1. Define τ =
inf{t > 0 : Bt > 0} and σ = inf{t > 0 : Bt = 0}. Then σ = τ = 0 a.s.

Proof. For all n ∈ N, we have {τ = 0} =
⋂
k≥n{∃0 < ε < 1

k : Bε > 0} ∈ FB
1
n

. So

{τ = 0} ∈ F+
0 and thus P(τ = 0) ∈ {0, 1} by Blumenthal’s 0-1 law. Next we have

P(τ = 0) = lim
t↘0

P(τ ≤ t) ≥ limP(Bt > 0) =
1

2
,

so P(τ = 0) = 1.

Of course, we also have P(inf{t > 0 : Bt < 0} = 0) = 1. Then P(σ = 0) = 1 by the
intermediate value theorem.

Proposition 6.8. Let (Bt)t≥0 be a standard Brownian motion in d = 1. Let St =
sups≤tBs, It = infs≤tBs. Then

(1) P(∀ε > 0 : Sε > 0) = P(∀ε > 0 : Iε < 0) = 1.

(2) supt≥0Bt = ∞, inft≥0Bt = −∞ a.s.

Proof. Let tn ↘ 0. Then {∀ε > 0 : Sε > 0} ⊇ {Btn > 0 for infinitely many n}. This
event is independent of Bt1 , . . . , Btk−1

for all k, so it is in FB
tk

for all k, hence in F+
0 . So

P(Btn > 0 i.o.) ∈ {0, 1}. Furthermore,

P(Btn > 0 i.o.) = P(lim sup{Btn > 0}) ≥ lim supP(Btn > 0) =
1

2
.
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Hence P(∀ε > 0 : Sε > 0) = 1 by symmetry, the same holds for Iε (or apply to −B). This
proves (1).

For (2) note that supt≥0Bt = supt≥0Bλt
d
= supt≥0

√
λBt =

√
λ supt≥0Bt. So S∞ =

supt≥0Bt as the same distribution as aS∞ for all a > 0. So P(S∞ ≥ x) = P(aS∞ ≥ x) =
P(S∞ ≥ x

a ) → 1 as a→ ∞, hence P(S∞ ≥ x) = 1 for all x, so S∞ = ∞ a.s.

Proposition 6.9. Let (Bt)t≥0 be a standard Brownian motion in Rd and C a cone in Rd
with origin at 0 and non-empty interior, so C = {tu : t > 0, u ∈ A} where A is an subset
of Sd−1 = {x ∈ Rd : ∥x∥ = 1} with non-empty interior. Define HC = inf{t > 0 : Bt ∈ C}.
Then P(HC = 0) = 1.

Proof. As before we have {HC = 0} ∈ F+
0 , so P(HC = 0) ∈ {0, 1}. We have

P(HC = 0) = lim
t↘0

P(HC ≤ t) ≥ P(Bt ∈ C),

and P(Bt ∈ C) = P(
√
tBt ∈ C) = P(B1 ∈ C) > 0 since C has non-empty interior.

Theorem 6.10 (Strong Markov property). Let T be a stopping time with P(T <∞) = 1
and let B be a standard Brownian motion. Then (Bt+T−BT , t ≥ 0) is a standard Brownian
motion, independent of F+

T .

Proof. Let Tn = 2−n⌈2nT ⌉. It is again a stopping time. Let B∗(t) = Bt+Tn − BTn . We
will prove that B∗ is a Brownian motion, independent of F+

Tn
. B∗ is clearly continuous in

t. Let E ∈ F+
Tn
. Define B

(k)
t = Bt+k2−n − Bk2−n for t ≥ 0. This is a standard Brownian

motion (so has the same law as B), independent of F+
k2−n . For any event A,

P(B∗ ∈ A, E) =
∞∑
k=0

P(B∗ ∈ A, Tn = k2−n, E)

=

∞∑
k=0

P(B(k) ∈ A, Tn = k2−n, E︸ ︷︷ ︸
∈F+

k2−n

)

=
∞∑
k=0

P(B(k) ∈ A)P(E, Tn = 2k−n)

= P(B ∈ A)
∞∑
k=0

P(E, Tn = 2k−n)

= P(B ∈ A)P(E).

So P(B∗ ∈ A, E) = P(B ∈ A)P(E). Taking E = Ω gives P(B∗ ∈ A) = P(B ∈ A), so
B∗ has the same law as B, so B∗ is a standard Brownian motion. We also get that it is
independent of F+

Tn
.
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By continuity of Brownian motion, Bt+s+T − Bs+T = limn→∞Bt+s+Tn − Bs+Tn . Since
Bt+s+Tn −Bs+Tn ∼ N (0, (t− s)I), we get Bt+s+T −Bs+T ∼ N (0, (t− s)I)3.

Let 0 ≤ t1, t2, . . . , tk and A ∈ F+
T . Let F : (Rd)k → R be continuous and bounded. We

have to show that

E[F (Bt1+T −BT , . . . , Btk+T −BT )1(A)] = E[F (Bt1+T −BT , . . . , Btk+T −BT )]P(A).

Since A ∈ F+
T , we get A ∈ F+

Tn
for all n. Then

E[F (Bt1+Tn −BTn , . . . , Btk+Tn −BTn)1(A)] = E[F (Bt1+Tn −BTn , . . . , Btk+Tn −BTn)]P(A)

Now let n→ ∞ and use dominated convergence.

Remark. Let B be a one-dimensional Brownian motion. Take τ = inf{t ≥ 0 : Bt =
max0≤s≤1Bs}. Then τ is not a stopping time:

(1) τ < 1 a.s.,

(2) If τ were a stopping time, then by the strong Markov property, (Bt+τ − Bτ ) would
be a Brownian motion. Then for t > 0 sufficiently small, Bt+τ − Bτ would have to
be negative (by definition of τ), a contradiction.

Theorem 6.11 (Reflection principle). Let B be a standard Brownian motion and let T
be an a.s. finite stopping time. Define

B̃t = Bt1(t ≤ T ) + (2BT −Bt)1(t > T ).

Then B̃ is also a standard Brownian motion. We call B̃ Brownian motion reflected at T .

Proof. Define B
(T )
t = Bt+T − BT for t ≥ 0. This is a Brownian motion, independent of

F+
T by the strong Markov property. So B(T ) is independent of (Bt)0≤t≤T . Also −B(T ) is

a Brownian motion, independent of F+
T . So

((Bt)0≤t≤T , B
(T ))

(d)
= ((Bt)0≤t≤T , −B(T )).

Let f, g be continuous paths with g(0) = 0. Let

ψT (f, g)(t) = ft1(t ≤ T ) + (fT + gt−T )1(t > T )

be the concatenation of f, g. Let A be the product σ-algebra on C = C([0,∞)). Then
ψT : C × C → C and ψT is measurable w.r.t. A⊗A and A.

Then ψT (B,B
(T )) = B and ψT (B,−B(T )) = B̃. It follows that B

d
= B̃.

3L.T.: Why?
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Corollary 6.12 (Reflection principle). Let B be a standard Brownian motion in d = 1
and let a ≤ b, b > 0. Define St = sup0≤s≤tBs. Then

P(St ≥ b, Bt ≤ a) = P(Bt ≥ 2b− a).

Proof. Let Tb = inf{t ≥ 0 : Bt = b}. Since supt≥0Bt = ∞ a.s., we get Tb < ∞ a.s. Note

that {St ≥ b} = {Tb ≤ t}. Consider B̃ reflected at Tb. We have BTb = b by continuity of
Brownian motion. Then

P(St ≥ b, Bt ≤ a) = P(Tb ≤ t, Bt ≤ a) = P(Tb ≤ t, B̃t ≥ 2b− a).

Now {B̃t ≥ 2b− a} ⊆ {Tb ≤ t} as a ≤ b. Then

P(Tb ≤ t, B̃t ≥ 2b− a) = P(B̃t ≥ 2b− a) = P(Bt ≥ 2b− a).

Corollary 6.13. St
d
= |Bt|.

Proof.

P(St ≥ a) = P(St ≥ a,Bt ≤ a) + P(St ≥ a,Bt ≥ a)

= P(Bt ≥ a) + P(Bt ≥ a)

= 2P(Bt ≥ a) = P(|Bt| ≥ a).

Corollary 6.14. If Tx = inf{t ≥ 0 : Bt = x}, then Tx
d
=

(
x
B1

)2
.

6.3 Martingales for Brownian motion

Theorem 6.15. Let B be a standard Brownian motion in d = 1. Then (Bt) and (B2
t − t)

are (F+
t )-martingales.

Proof. Integrability is clear (by the Gaussian property). If s < t, then

E[Bt | F+
s ] = E[Bt −Bs | F+

s ] + E[Bs | F+
s ] = Bs a.s.

by the strong Markov property. Similarly

E[B2
t | F+

s ] = E[(Bt −Bs)
2 + 2Bs(Bt −Bs) +B2

s | F+
s ]

= E[(Bt −Bs)
2] + 0 +B2

s

= t− s+B2
s
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Corollary 6.16. Let B be a standard Brownian motion in d = 1, x, y > 0. Then

P(Ty < T−x) =
x

x+ y

and
E[Ty ∧ T−x] = xy.

Theorem 6.17. Let B be a standard Brownian motion in Rd, u ∈ Rd. Then

Mu
t = exp

(
⟨u,Bt⟩ −

|u|2t
2

)
is an (F+

t )-martingale.

Proof. For integrability note that E[exp(⟨u,Bt⟩)] = exp( |u|
2t
2 ). For t > s, we have

E[exp(⟨u,Bt⟩) | F+
s ] = E[exp(⟨u,Bt −Bs⟩) exp(⟨u,Bs⟩) | F+

s ]

= exp(⟨u,Bs⟩) exp
( |u|2t

2

)
.

Let (Sn)n≥0 be a simple symmetric random walk on Z. Given a function f , we want to
modify f(Sn) to get martingale. We have

E[f(Sn+1)− f(Sn) | S0, . . . , Sn] =
1

2
f(Sn + 1) +

1

2
f(Sn − 1)− f(Sn)

=
1

2
(f(Sn + 1)− 2f(Sn) + f(Sn − 1))

=
1

2
∆̃f(Sn)

where ∆̃f(x) = f(x+ 1)− 2f(x) + f(x− 1) is the discrete Laplacian. So

(
f(Sn)−

1

2

n−1∑
k=0

∆̃f(Sk)
)
n≥0

is a martingale.

Going from (Sn) to Brownian motion, we will replace ∆̃ by the Laplacian ∆.

Theorem 6.18. Let (Bt) be a standard Brownian motion in Rd, d ≥ 1. Let f(t, x) :
R+ × Rd be C1 in t and C2 in x. Suppose everything is bounded. Then

Mt = f(t, Bt)− f(0, B0)−
∫ t

0

( ∂

∂s
+

1

2
∆
)
f(s,Bs)ds, t ≥ 0

is an (F+
t )-martingale.
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Proof. Mt is integrable since f and its derivatives are bounded. Next the martingale
property. We have

Mt+s −Ms = f(t+ s,Bt+s)− f(s,Bs)−
∫ t

0

( ∂

∂r
+

1

2
∆
)
f(s+ r,Bs+r)dr

So

E[f(t+ s,Bt+s) | F+
s ] = E[f(t+ s,Bt+s −Bs +Bs) | F+

s ]

=

∫
Rd

f(t+ s, x+Bs)P(Bt+s −Bs ∈ dx)

=

∫
f(t+ s, x+Bs)P(Bt ∈ dx)

=

∫
f(t+ s, x+Bs)pt(0, x)dx

where pt(x, y) = (2πt)−d/2e−
|x−y|2

2t . By Fubini, we have

E
[ ∫ t

0

( ∂

∂r
+

1

2
∆
)
f(r + s,Br+s)dr

∣∣∣F+
s

]
=

∫ t

0
E
[
t
( ∂

∂r
+

1

2
∆
)
f(r + s,Br+s)

∣∣∣F+
s

]
dr

=

∫ t

0

∫
Rd

( ∂

∂r
+

1

2
∆
)
f(r + s, x+Bs)pr(0, x)dxdr

= lim
ε→0

∫ t

ε

∫
Rd

( ∂

∂r
+

1

2
∆
)
f(r + s, x+Bs)pr(0, x)dxdr

Integrating by parts, we have:∫ t

ε

∫
Rd

( ∂

∂r
+

1

2
∆
)
f(r + s, x+Bs)pr(0, x)dxdr

=

∫
Rd

f(s+ t, x+Bs)pt(0, x)− f(s+ ε), Bs + x)pε(0, x)dx

−
∫
Rd

∫ t

ε
f(r + s, x+Bs)

∂

∂r
pr(0, x)drdx

+

∫ t

ε

∫
Rd

f(r + s, x+Bs)
1

2
∆pr(0, x)dxdr

We have ∂
∂ pr =

1
2∆pr (Heat equation). So the last two integrals cancel. Then

E[Mt+s −Ms | F+
s ] + f(s,Bs) = lim

ε→0

∫
Rd

f(s+ ε,Bs + x)pε(0, x)dx

= lim
ε→0

E[f(s+ ε,Bs+ε) | F+
s ]
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= E[f(s,Bs) | F+
s ]

= f(s,Bs)

6.4 Transience and recurrence

If B is a Brownian motion with B0 = x, we can write Bt = x+ B̃t, where B̃ is a standard
Brownian motion. Write Px for the probability measure to indicate that B starts at x.

Theorem 6.19. Let B be a Brownian motion in d ≥ 1.

(1) If d = 1, then B is point-reccurrent, i.e. for all x, the set {t ≥ 0 : Bt = x} is
unbounded a.s.

(2) If d = 2, then for all x, z ∈ Rd, ε > 0, the set {t : |Bt − z| ≤ ε} is unbounded Px-a.s.
(“ neighborhood recurrent”) However, P0(∃t > 0 : Bt = x) = 0.

(3) If d ≥ 3, then P0(|Bt| → ∞ as t→ ∞) = 1 (“ transient”)

Proof. The d = 1 case is immediate, since lim supBt = ∞, lim inf Bt = −∞ a.s.

Next let d = 2. It suffices to take z = 0. First we prove that {y : |y| ≤ ε} is hit with
probability 1 under Px. Let φ ∈ C2

b (R2) be such that φ(y) = log |y| if ε ≤ |y| ≤ R. Let
Tε = inf{t ≥ 0 : |Bt| ≤ ε} and TR = inf{t ≥ 0 : |Bt| = R}. We first want to determine
Px(Tε < TR). ∆φ = 0 in the annulus ε < |x| < R. By Theorem 6.18, Mt = φ(Bt) −
1
2

∫ t
0 ∆φ(Bs)ds is a martingale. TakeH = Tε∧TR. ThenH <∞ a.s. andMt∧H = φ(Bt∧H)

is a bounded martingale. By the optional stopping theorem, Ex[φ(BH)] = log |x|, so

Px(Tε < TR) log ε+ Px(TR < Tε) logR = log |x|.

Also Px(Tε < TR) + Px(Tε > TR) = 1, so we obtain

Px(Tε < TR) =
logR− log |x|
logR− log ε

(∗)

We have limR→∞ TR = ∞ a.s., hence Px(Tε <∞) = 1, so Px(|Bt| ≤ ε for some t > 0) = 1.

Next,

Px(|Bt| ≤ ε for some t > n) =

∫
Px(|Bt −Bn + y| ≤ ε for t > n)pn(x, y)dy

=

∫
Py(|Bt| ≤ ε for t > 0)pn(x, y)dy = 1

So {t ≥ 0 : |Bt| ≤ ε} unbounded Px-a.s. Taking ε → 0 in (∗) gives Px(T0 < TR) = 0, so
Px(T0 <∞) = 0, in other words

Px(∃t > 0 : Bt = 0) = 0.
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This holds for all x ̸= 0. So it remains to show

0 = P0(∃t > 0 : Bt = 0)

We have

P0(∃t > 0 : Bt = 0) = lim
a↘0

P0(∃t > a : Bt = 0)

= lim
a↘0

∫
Px(∃t > 0 : Bt = 0)︸ ︷︷ ︸

=0

pa(0, x)dx = 0

Finally, let d ≥ 3. By only considering the first three coordinates, we can assume d = 3.
Then argue similarly as before, but with f(y) = 1

y = 1
|y| in ε ≤ |y| ≤ R. Then we get

Px(Tε <∞) =
ε

|x|
.

Define An = {|Bk| ≥ n for all t ≥ Tn3}. Then

P0(A
c
n) = P0(∃t ≥ 0 : |Bt+Tn3 | ≤ n)

noting that Tn3 <∞ P0-a.s. (Bt+Tn3 −BTn3 )t≥0 is a standard Brownian motion, indepen-
dent from BTn3 by the strong Markov property. Then

P0(A
c
n) = E0[PBT

n3
(Tn <∞)] =

n

n3
=

1

n2

So
∑

P0(A
c
n) <∞, hence eventually we are in (An) a.s., so |Bt| → ∞ a.s. as t→ ∞

6.5 Donsker’s invariance principle

Recall that on C([0, 1],R) we have the sup-norm, given by ∥f∥ = supf∈[0,1] |f(t)|. This
turns C([0, 1],R) into a metric space so we can talk about convergence of probability
measures. The product σ-algebra (i.e. the one that makes the coordinate maps measurable)
coincides with the Borel σ-algebra.

Theorem 6.20 (Donsker’s invariance principle). Let (Xn)n≥1 be a sequence of i.i.d. R-
valued random variables with E[X1] = 0,Var(X1) = σ2. Set S0 = 0, Sn = X1 + · · · +Xn

and define
St = (1− {t})S⌊t⌋ + {t}S⌊t⌋+1

for t > 0. Then

S[N ] =
( SNt√

σ2N

)
0≤t≤t

converges in distribution to a standard Brownian motion (Bt)t∈[0,1], i.e. for all continuous,
bounded functions F : C([0, 1],R) → R,

E[F (S[N ])] → E[F (B)]

as N → ∞.

51



Theorem 6.21 (Skorokhod embedding). Let µ be a distribution on R with mean 0 and
variance σ2. Then there exists a probability space (Ω,F ,P) on which a standard Brownian
motion (Bt) is defined and a filtration (Ft)t≥0 and a sequence of stopping times 0 = T0 ≤
T1 ≤ . . . such that setting Sn = BTn, we have

(1) (Tn) is a random walk with increments of mean σ2,

(2) (Sn) is a random walk with increments distribution µ.

Proof. Define Borel measures µ± on [0,∞), by µ±(A) = µ(±A) for A ∈ B([0,∞)). There
exists a rich probability space (Ω,F ,P) with a standard Brownian motion (Bt) and i.i.d.
(Xn, Yn)n∈N with law

ν(dx, dy) = C(x+ y)µ−(dx)µ+(dy)

where C is the constant such that C
∫∞
0 xµ(dx) = 1. Set T0 = 0. Inductively, define

Tn+1 = inf{t ≥ Tn : Bt −BTn = −Xn+1 or Yn+1}.

Now check that this works.
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7 Poisson Random Measures

Recall that X is Poisson distributed with parameter λ > 0, written X ∼ Poi(λ) or X ∼
P (λ), if P(X = n) = e−λ λ

n

n! when n ∈ N0. We write X ∼ Poi(0) if X ≡ 0 and X ∼ Poi(∞)
if X ≡ ∞.

Proposition 7.1.

(1) (Addition property) Let (Nk) be independent random variables with distribution P (λk).
Then

∑
kNk ∼ P (

∑
λk).

(2) (Splitting/Thinning property) Let N ∼ P (λ) and let (Yn) be i.i.d., independent of
N , and let P(Yi = j) =: pj for j = 1, . . . , k. Let Nj =

∑N
m=1 1(Ym = j). Then

N1, . . . , Nk are independent and Ni ∼ P (λpi) for all i = 1, . . . , k.

Let (E, E , µ) be a σ-finite measure space. A Poisson random measure with intensity µ is
a map

M : Ω× E → Z+ ∪ {∞}

satisfying for any disjoint sets (Ak) in E :

(i) M(
⋃
k Ak) =

∑
kM(Ak),

(ii) (M(Ak))k are independent random variables,

(iii) For any k, M(Ak) ∼ P (µ(Ak)).

Here the dependence on Ω is omitted.

In other words, for each ω ∈ Ω, we get a measure M(ω,−) and for each A ∈ E , we get a
Poisson random variable M(−, A).

Let E∗ = {Z+ ∪ {∞}-valued measures on E}. Define X : E∗ × E → Z+ ∪ {∞} and for
A ∈ E , XA : E∗ → Z+ ∪ {∞} by X(m,A) = XA(m) = m(A) (i.e. canonical pairing). Let
E∗ = σ(XA : A ∈ E).

Theorem 7.2. There exists a unique probability measure µ∗ on (E∗, E∗) such that under
µ∗, X is a Poisson random measure with intensity µ.

Proof. Uniqueness. Let A1, . . . , Ak be disjoint and n1, . . . , nk ∈ Z+. Then let A∗ =
{m ∈ E∗ : m(A1) = n1, . . . ,m(Ak) = nk}. The collection of such sets is a π-system that
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generates the σ-algebra E∗. For µ∗ as in the statement of the theorem, we must have

µ∗(A∗) =
k∏
j=1

e−µ(Aj)
(µ(Aj))

nj

nj !
,

so µ∗ is uniquely determined.

Existence. First assume µ(E) <∞. Let N ∼ P (µ(E)) real valued and (Yn) Ω-valued be
independent (and independent of N) with law µ

µ(E) (on some perhaps different probability

space Ω). For all A ∈ E , set

M(A) =
N∑
n=1

1(Yn ∈ A).

Let A1, . . . , Ak be disjoint. Define the real-valued random variable Xn by Xn = k iff
Yn ∈ Aj . Then

M(Ai) =
N∑
n=1

1(Yn ∈ A1) =

N∑
n=1

1(Xn = j).

Now P(Xn = j) = P(Yn ∈ Aj) =
µ(Aj)
µ(E) . By the splitting probability we get that theM(Ai)

are independent and M(Aj) ∼ P (µ(E)
µ(Aj)
µ(E) ) = P (µ(Aj)).

General case. Since E is σ-finite, there exist disjoint sets (Ek)k∈N such that
⋃
k Ek = E

and µ(Ek) < ∞ for all k. Let (Mk)k be independent Poisson random measures with
intensity µ|Ek

(−) := µ(− ∩ Ek). For A ∈ E , define

M(A) =
∑
k∈N

Mk(A ∩ Ek).

We have Mk(A ∩ Ek) ∼ Poi(µ(A ∩ Ek)). By the addition property, M(A) ∼ Poi(µ(A)).
The independence is clear by the independence of the (Mk). We can view M as a random
variable Ω → E∗. Then take µ∗ to be the law of M .

Proposition 7.3. Let M be a Poisson random measure of intensity µ. If A is such that
µ(A) < ∞, then given M(A) = k, we can write M =

∑k
i=1 δXi, where X1, . . . , Xk are

i.i.d. and Xi ∼ µ(−∩A)
µ(A) .
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