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1 Conditional Expectation

1.1 Some Recap

We recall some basic definitions:

A probability space is a triple (2, F,P) where Q is a set, F a o-algebra on Q and P a
probability measure on (2, F), i.e. a measure with total mass P(Q2) = 1.
If A,B € F with P(B) > 0, then the conditional probability of A given B is P(A | B) :=

P(ANB)
P(B) -

The Borel o-algebra of R, denoted B(R) is the o-algebra generated by the open subsets of
R.

A (real valued) random variable on Q is a map X : Q — R that is F — B-measurable, i.e.
X~YB) € F for all B € B(R) (or equivalently just for all open subsets B C R).

If (X;)ies is a collection of random variables on €2, then the o-algebra generated by the X
o(Xi:iel)=c({X; ' (B)|ie€I,BcBR)})

is the smallest o-algebra such that all (X;);c; are measurable w.r.t. it.
Notation. If A € F, we denote the indicator function for A by 1(A).
We finally recall the definition of the expectation of a random variable:

(1) For simple non-negative random variables X, i.e. those of the form X = Y | ¢;1(4;)
with A; € F, ¢; > 0, define E[X] := Y"" | ¢;P(4;).

(2) If X > 0 is any non-negative random variable, let X, be a sequence of non-negative
simple random variables such that X,, / X pointwise as n — oo, e.g. one can take
Xp(w) = min(27"|2" X (w) |, n) for all w. Then define E[X] := lim,, o E[X,,].

(3) Let X be any random variable. Let X+ = max(X,0), X~ = max(—X,0) so that
X = Xt — X~ If at least one of E[X ] or E[X ] is finite, define E[X] := E[X ] —

E[X].
X is integrable if E[|X|] < oo.
Let A € F with P(A) > 0 and X integrable. Then define E[X | 4] := %.



1.2 Conditional Expectation in the Discrete Case

Let (B;)icr be a countable collection of pairwise disjoint events B; € F such that Uie 1 Bi =
Q. Let G = o((B;);er) be the o-algebra generated by the B;. One easily checks that

G={JBjlJCTI
JjEJ
Let X be an integrable random variable on 2. We want to define the conditional expec-
tation E[X | G] = X' : Q — R. We let
X' =Y "E[X | Bl(B).
1€l
Here E[X | B;] is defined as above in the case P(B;) > 0. If P(B;) = 0, we let E[X | B;] = 0.
X’ has the following properties:
(1) X' is G-measurable.
(2) For all A€ G, E[X1(A)] =E[X'1(A)].

Both are immediate from the definition. In the general case we will use these properties
to define E[X | G]. Also note that

E[X) < ZEHX\I(Bi)] = E[[X]] < o0,

so X' is also integrable.

1.3 Conditional Expectation in General

Theorem 1.1 (Conditional expectation). Let X be an integrable random variable on
(Q,F,P) and G C F a sub-c-algebra. Then there exists an integrable random variable Y
satisfying:

(a) Y is G-measurable.
(b) For all A € G, we have E[X1(A)] = E[Y1(A)].
Moreover, if Y' also satisfies (a) and (b), then Y =Y almost surely (a.s.).

We call Y a version of the conditional expectation of X given G and write Y = E[X | G]
a.s.

Remark. Instead of (b) we could have asked that E[XZ] = E[Y Z] for all bounded G-
measurable random variables Z.



Proof. Uniqueness. Let Y’ satisfy (a) and (b). Consider A = {Y > Y'}. By (a), we
have A € G, and by (b), E[(Y' —Y)1(A4)] =0, hence Y < Y’ a.s., and similarly Y > Y’
a.s.

Existence.

1. Assume first that X € £2(F) = £L3(Q, F,P). Recall that these £2 spaces are Hilbert
spaces. The space L2(G) = £L2(2, G,P) is a closed subspace of £L2(F). Hence L2(F) =
L2(G) + L2(G)*, so we can write X =Y + Z where Y € £2(G) and Z € £(G). We
set E[X | G] = Y. Y is G-measurable by definition. For (b) let A € G. Then
E[X1(A)] = E[Y1(A)] + E[Z1(A)] = E[Y'1(A)] since 1(A) € £(G) and Z € L3(G)*.

Note that if X > 0, then E[X | G] > 0 a.s. Indeed, if A = {Y < 0}, then 0 <
E[X1(A)]=E[Y1(A)] <0,s0 P(A) =0,ie. Y >0 a.s.

2. Assume X > 0. Then let X,, = X An for all n. Note that X,, € £2, so that
Y, = E[X,, | G] is defined by 1. Note that X,, X as n — oo a.s. By the
final remark in 1., Y}, is a.s. increasing. Let Y = limsup,, ,., Y5. Since the Y,, are G-
measurable, so is Y. By the a.s. increasing property of (Yy,),, we get Y = lim,, o0 ¥y,
a.s. Let A € G. Take the limit as n — oo in E[Y;,1(A)] = E[X,1(A4)] and use the
monotone convergence theorem to get E[Y1(A)] = E[X1(A)].

Taking A = Q in particular shows that E[Y] = E[X] < cc.

3. Let X be any integrable random variable. Write X = X+ — X~ as usual and define
E[X | G]:=E[X"|G]-E[X~ |g].

O
The second step shows that if X > 0, but not necessarily integrable, we can still define
the conditional expectation Y satisfying (a) and (b), but it need not be integrable.
We extend the notion of independence to o-algebras and random variables:

Definition. A sequence Gy,Go, ... of o-algebras is called independent if for all i1, ...,
distinct and G; € G;, we have

P(Giy N---NGy) = [[P(Gy)).

A random variable X is independent of a o-algebra G if 0(X) and G are independent.
Notation. If G = 0(Z), we write E[X | G] = E[X | Z].
Some properties of conditional expectation:
Proposition 1.2. Let X € £Y(Q, F,P), G C F a sub-c-algebra. Then
(1) E[EIX | 6] = E[X].



(2) If X is G-measurable, then E[X | G] = X a.s.
(3) If X is independent of G, then E[X | G] = E[X].
(4) If X >0, then E[X | G] > 0 a.s.

(5) E[X | G] is linear in X.

(6) [E[X | G]] <E[X]|[J] as.

There are analogues of classical measure theory theorems for conditional expection. Let
X, be a sequence of random variables.

Proposition 1.3 (Conditional monotone convergence). If X,, > 0 and X,, / X as
n — oo a.s., then
E[X, | ] /E[X | G] a.s. as n — oo.

Proof. Y,, = E[X,, | G] is a.s. increasing. Let Y = limsupY,,. Then Y is G-measurable and
Y =lim, 00 Yy, a.s. Clearly Y satisfies the properties defining E[X | G] (using monotone
convergence), so that E[X | G] =Y a.s. O

Proposition 1.4 (Conditional Fatou). If X,, > 0, then
Elliminf X,, | G] <liminf E[X,, | G| a.s.

Proof. Note that infy>, X} " liminf X} as n — co. So by conditional monotone conver-
gence, lim,_, E[infg>, X% | G] = E[lliminf X}, | G]. For every n we have E[inf;>, Ej |
G| <E[X) | G] ass., so E[infy>,, By | G] < infg>, E[X} | G] a.s. Now take limits. O

Proposition 1.5 (Conditional dominated convergence). Suppose X,, = X a.s., | X,| <Y
for all n where Y € LY(Q, F,P). Then

E[X, | ] = E[X | G] a.s. as n — oo.

Proof. Note that X,, +Y,Y —X,, > 0 for all n, so by Fatou, E[X+Y | G] < liminf, E[X,, +
Y | G] as., so liminf E[X,, | G] > E[X | G] a.s. Similarly limsupE[X,, | G] < E[X | G]
a.s. O

Proposition 1.6 (Conditional Jensen). Let X € L and ¢ : R — (—o00, 0] be a convex
function such that ¢(X) > 0 or ¢(X) is integrable. Then

Elp(X) | 6] 2 ¢(E[X | G]) a.s.

Proof. We can write ¢(x) = sup;en(aiz + b;) with a;,b; € R. Then for all i € N, ¢(X)
a; X +bi, s0 E[p(X) | G] > a;E[X | G] + b; a.s. Then by countability we get E[p(X) | G]
sup; (a;E[X | G] + b;) = ¢(E[X | G]) a.s.

LIV Iv



Consequence: For all p € [1,00), we have ||E[X | G]||, < [|X[],. Indeed,

IELX | Gl = EIELX | G117] < EE[IX[” | G]] = E[[X|"] = [|X]]5-

Proposition 1.7 (Tower property). Let H C G C F be sub-o-algebras. Then
E[E[X | G] | H] = E[X | H] a.s.

Proof. We check that E[X | H] satisfies the defining properties of the conditional expec-
tation of E[X | G] given H. It is clearly H-measurable. Let A € H. Then also A € G and
SO

E[E[X | H]1(A)] = E[X1(A)] = E[E[X [ G]1(A)].

O]

Proposition 1.8 (Take out what is known). Let X € L' and let Y be a bounded G-
measurable random variable. Then

E[XY |Gl =YE[X | ]G] a.s.
Proof. YE[X | G] is clearly G-measurable. Let A € G, then
EYE[X | G]1(4)] = E[E[X | G](Y1(4))] = E[(XY)1(A)].
]

Theorem 1.9. Let X be an integrable random variable in (2, F,P) and G, H C F sub-o-
algebras. Assume that o(X,G) is independent of H. Then

E[X |o(G,H)] =E[X | G] a.s.

For the proof we recall some measure theory: A set A C P(QQ) is called a w-system if A is
closed under finite intersections.

Theorem 1.10 (Uniqueness of extension). Let u and v be two measures on the same
measurable space (E,E). If w(E) = v(E) < 0o and p and v agree on a m-system generating
E, then p=v.

Proof of Theorem[1.9. E[X | G] is obviously (G, H)-measurable. Let A € o(G,H). We
have to show that E[X1(A4)] = E[E[X | G]1(A)]. By writing X = X+ —X ", we may assume
X > 0. Define the measures p,v by u(A) = E[X1(A)] and v(A) = E[E[X | G]1(A4)] for
A€ o(GH) Let A={ANB| A€ G,B € H}. Then A is a m-system generating
0(G,H). By the theorem on uniqueness of extension, it is enough to check that p = v
on A and p(Q2) = v(2) < oco. The latter is immediate from the integrability of X. Let
ANB e Awhere A€ G,BeH. Then E[X1(AN B)] = E[(X1(A))1(B)]. Now note that



X1(A) is o(X, G)-measurable, so E[(X1(A))1(B)] = E[X1(A)]P(B) since o(X,H) and H
are independent. Then using the same reasoning again:

(AN B) = E[X1(A)P(B) = E[E[X | G]1(A)|P(B) = E[E[X | G]1(AN B)] = v(AN B).
O

Remark. If we only required that H is independent of X and independent of G, then the
statement would be false.

1.4 Examples

1.4.1 Gaussian Distribution

Definition. A random vector (Xi,...,X,) with values in R™ is called a Gaussian if for
all aq,...,a, € R, Z?:l a; X; has a Gaussian distribution.

Let (X,Y) be a Gaussian vector in R?2. We want to find E[X | Y] = E[X | o(Y)]. We
know that E[X | Y] = f(Y) a.s. for some function f as E[X | Y] is Y-measurable. We try
f(Y)=aY +b for some a,b € R to be determined. Then f(Y') is certainly Y-measurable.
Letting A = Q in the definition of conditional expectation we get the condition

E[X] = aE[Y] + b.

We also must have E[XY] = E[f(Y)Y] (first note that E[X(Y An)] = E[f(Y)(Y An)] and
the get it from dominated convergence). So Cov(X — f(V),Y) =E[(X — f(Y))Y] =0, i.e.

Cov(X,Y) = aVar(Y).

These two conditions determine a, b uniquely. We now have to check that for these values
we indeed have aY + b = f(Y) = E[X | Y]. Let Z be bounded and Y-measurable. Since
X —aY —b,Y are jointly Gaussian and Cov(X —aY —b,Y) = 0, we get that X — f(Y)
is independent from Y, hence also independent from Z and thus E[(X — f(Y))Z] =
E[X — f(Y)]E[Z] = 0. Therefore E[XZ] = E[f(Y)Z] and so indeed E[X | Y] = f(Y).

1.4.2 Conditional Density

Let (X,Y) be a random variable in R? with density fxy(x,y). If h : R — R is Borel
such that h(X) is integrable, we want to find E[h(X) | Y]. Again, this is Y-measurable,
so E[h(X) | Y] = ¢(Y) for some function ¢. Let g be a bounded measurable function. We
want to determine ¢ such that E[h(X)g(Y)] = E[p(Y)g(Y)]. We have

Elp(Y)g(Y)] = /R oW)9(v) fy (v)dy,



where fy is the density of Y, and

E[h / / y) fxy(z,y)dedy
-/ g<y)fy(y)( /R h<x>fo’;<( Pttt go)ay

where we set 0/0 = 0. Hence we define ¢(y) := [ h( Y) dz. We let Ixy (@] y) =

)
ij;((;c)y)' Thus, for this ¢ we have E[h(X) \ Y] = <p(Y).




2 Discrete-time Martingales

We fix a probability space (2, F,P) and a measurable space (F,£). Some preliminary
definitions:

A sequence (X, )n>0 of random variables (on © and taking values in F) is called a stochastic
process.

A filtration is an increasing family (F,)n>0 of sub-o-algebras of F.
Given a process X = (X, )n>0, its natural filtration is defined to be FX = o(X}, | k < n).

A stochastic process (X,)n>0 is called adapted to the filtration (Fy,)n>0 if X, is Fp-
measurable for all n. Clearly, (X, )n>0 is adapted to its natural filtration.

X = (Xpn)n>o0 is called integrable if X, is integrable for all n.

Definition. Let (Fy,)n>0 be a flitration on (Q, F,P). Let X = (X,)n>0 be an adapted and
integrable process. X is a

e martingale if E[X,, | Fin] = X a.s. for alln > m.
e supermartingale if E[X,, | F| < Xy, a.s. for alln > m.
e submartingale if E[X,, | ] > X, a.s. for alln > m.

Remark. It follows from the tower property that if X is a martingale (or super-, sub-)
w.r.t. some filtration, then it is also a martingale (super, sub) w.r.t. its natural filtration
(F)-

Example. Let (&); be i.i.d. random variables with E[¢;] = 0 for all i. Let X, =>""" | &,
Xo = 0. Then X is a martingale. For example the simple random walk on Z is of this
form.

Example. Let (¢;); be i.i.d. random variables with E[¢;] = 1 for all 4. Let X,, =[]\, &,
Xo = 1. Then X,, is a martingale.

2.1 Stopping Times

Definition. Let (Q, F, (Fn)n,P) be a filtered probability space. A random variable T' :
Q — No U {oco} is called a stopping time if for alln € N, {T' < n} € F,.

Equivalently, for all n € N, {T' =n} € F,.



Examples.
e Constant times T' = n are stopping times.

o Let X = (X,,)n>0 be an adapted stochastic process. Let A € B(R). T" = inf{n >
0| X,, € A}. Then the entrance time T = inf{n > 0| X,, € A} is a stopping time.
Indeed, {T < n} =;_ {Xr € A} € F.

—_———

eFy

e In the situation of the previous example, L4 = sup{n < 100 | X,, € A} is (in general)
not a stopping time.

Proposition 2.1. Let S,T,(T,), be stopping times. Then S V T,S A T,infT,,
sup T;,, lim inf T;,, lim sup T;, are also stopping times.

Definition. Let T be a stopping time. We define
Fr={AeF|An{T <t} € FVt}.

Remark. If T is a constant stopping time T = t, then Fr = F;.

Given a stopping time T and a process X, we define X7 by Xr(w) = Xp(,)(w) when
T(w) < oo. We define the stopped process XT by X! = Xt

Proposition 2.2. Let S, T be stopping times and X = (X,,)n>0 an adapted process. Then
(a) If S < T, then Fs C Fr.
(b) Xr1(T < 00) is Fr-measurable.
(c) X1 is adapted.
(d) If X is integrable, then X™ is integrable.

Proof.
(a) Immediate.
(b) Let A € B(R). We have to show {X71(T < 00) € A} N{T <t} € F; for all t. We
have

t
{(Xr (T <o) e A} {T <t} = | J{X. € A}n{T =5} € Fu.
SZOW H,—/
€FsCFt €Fs

(c) X! = Xrps is Fra-measurable by (b). From (a), Fras C Fi, so X[ is Fy-

measurable.
@ t—1 t
B[ X7ndl] = > E[IXSUT = )] + B[ X 1T >t —1)] < Y E[|X,]] < o0.
s=0 s=0

10



O]

Theorem 2.3 (Optional Stopping Theorem (OST)). Let X = (X,,)n>0 be a martingale.
(1) If T is a stopping time, then X7 is also a martingale and E[X1x¢] = E[Xo] for all t.
(2) If S < T <n are stopping times, then E[ X1 | Fs] = Xg a.s. and E[X7]| = E[Xg].

(3) Let'Y be an integrable random variable and | X,,| <Y for alln. Let T be a stopping
time with P(T' < co) = 1. Then E[X7] = E[X,,]

(4) Suppose there exists M such that | X, 11 —Xy| < M for alln a.s. (i.e. X has bounded
increments) and T is a stopping time with E[T] < oco. Then E[X7] = E[Xj].
Proof.

(1) By Proposition XT is again an integrable adapted process. By repeated use the
tower property it suffices to prove E[X7x; | Fi—1] = Xpp—1) a.s. We have

E[ X7t | Fio1] = ZXl ) | Fia| +E | X L(T >t —1) | Fiy
h/—/ —_———
]'—t 1-measurable JFi—1-measurable
t—1
=N XA(T=3)+ 1T >t—DE[X, | Fri]
s=0
t—1
=N X T =)+ 1T >t—1)X; 4
s=0
= ATA(t—1)

(2) Let A € Fs. We need to show that E[X71(A4)] = E[Xg1(A)]. We have
Xr=Xr—Xr_1) +- 4+ (X1 — Xg) + Xg
=X+ Y (Xpp1 — Xp)U(S <k < T)
k=0

So

n

E[X71(A)] = E[Xs1(A)] + 3 E[(Xj1 — Xp)1(S < k < T)1(A)]
k=0

Now note that 1(A) - 1(S < k) is Fi measurable and {T" > k} € Fi. So 1(4)1(S <
k < T)is Fr-measurable. Since E[ X1 | Fi] = Xk, we then get E[( X411 —X5)1(S <
k <T)1(A)] = 0 and hence E[X71(A)] = E[Xs1(A)].

(3) Exercise.

11



(4) Exercise.
O

Proposition 2.4. Let X be a positive supermartingale and let T be a stopping time with
P(T < 00) = 1. Then E[X7] < E[X].

Proof. The previous theorem also holds for supermartingale if we replace equalities by
suitable inequalities. Then apply Fatou’s lemma. O

Example (Simple 1D random walk). Let (&;); bei.i.d. random variables taking +1 equally
likely. Let Xo =0, and X,, = > ;" | &. Take T, = inf{n > 0 | X,, = }. T is a stopping
time with P(Th < oo) = 1. For all ¢, E[X7 ] = E[Xo] = 0 by the theorem. But
E[X7,] =1, so we can’t (in general) get rid of the At in part (1) of the theorem.

2.2 Gambler’s Ruin

Let a,b > 0 be integers. Consider again the simple random walk X as in the last example.
We let T = T_, AN Tp. We want to determine P(7_, < T}), i.e. the probability that we
reach —a before b.

Note that | X,,+1 — X,| = 1. We need to check that E[T] < co in order to apply (4) of the
OST. Then we would get E[X7] = E[X(] = 0. On the other hand, we have

E[XT] = —a]P’(T_a < Tb) + bP(T(, < T_a).
Since also P(T_, < Tp) + P(Tp < T-4) = 1, we get

b
a+b

P(T_o < Tp) =

We only have to establish E[T] < co. For this, note that if {, = 1 for a + b consecutive
1 with n being the last such ¢, then T' < n. Hence, we can bound 7' from above by the
first time there are a + b consecutive i’s with & = 1. We can further bound this by only
considering blocks 1,...,a+bja+b+1,...,2(a+0b);.... Note if I C Ny consists of a + b
consecutive indices, then P(& = 1 for all i € I) = 2-(@+?) = hence

E[T] <Y k(a+p)(1—p""p = (a+b)2*".
k=1

2.3 Martingale Convergence Theorem

Theorem 2.5. Let X be a supermartingale bounded in L', i.e. sup,>o E[| Xy|] < co. Then
Xn — Xoo a.5. as n — 0o for some Xoo € LY (Fuo) where Foo = o0(Fp,n > 0).

12



Corollary 2.6. Let X be a positive supermartingale. Then X converges a.s. to an inte-
grable limit.

Proof. E[| X, || = E[X,] < E[X,] for all n. So the theorem applies. O

Let © = (z5)n>0 be a real sequence. Let a < b. Set Tp(x) = 0 and inductively define

Si+1(x) = inf{n > Ti(z) | , < a},
Ti+1(z) = inf{n > Si41(z) | z, > b}.

Then define N, ([a,b],z) = sup{k > 0 | Ti(x) < n}. It is the number of “upcrossings” up
to time n. Let N([a,b],z) = sup{k > 0 | Tx(z) < 0o} = sup,, Nn([a,b], ). It is the total
number of upcrossings.

Lemma 2.7. A real sequence x = (), converges in R U {£oo} if and only if for all
a,b e Q with a < b,
N([a,b],z) < 0.

Proof. “=” Suppose there exist a,b € Q with a < b and N([a,b],2) = oo. Then
liminfz, <a < b < limsup z,, so z is not convergent.

“<” If x does not converge, then liminfx, < limsupx,. Thus we find a,b € Q s.t.
liminf z, < a < b < limsupxz,. Then it is easily seen that N([a,b],x) = oco. O

Theorem 2.8 (Doob’s Upcrossing Inequality). Let X be a supermartingale and a < b
with a,b € R. Then
(b — a)E[Nn([a,b], X)] < E[(Xn —a)].

Proof of Theorem [2.5, We want to apply the lemma above. By the upcrossing inequality,

(b— a)E[Ny([a, 0], X)] < E[(Xy —a)7] < |a] + igléEHXnH = C.

As Ny ([a,b], X) / N([a,b], X) as n — oo, we get from monotone convergence
(b—a)E[N([a,b], X)] < C

So N([a,b],X) < oo a.s. Let Qy = () a<p {N([a,b],X) < co}. We get P(29) = 1. By

a,beQ
Lemma we can define

X = lim, oo X;, omn £,
0 on €.

Then X,, - X a.s. asn — 0o and X is Foo-measurable. Also E[|X|] = E[liminf | X,|] <
liminf E[| X,|] < 00, 50 Xoo € L1 (Foo). O

13



Proof of Theorem[2.8. Write Ty, Sk, N for Ti(X), Sk(X), Nn([a,b], X). One easily sees
that T}, S) are stopping times. By definition of T}, Sk, we have X7, — Xg, > b —a. We
have

n n

N
> (Xrpan = Xspan) = (X1, = Xs) + Y (X = Xgpnn) 1N < n).
k=1 k=1 k=N+1

Note that Syy2 > n by definition, so this is

N

Z(XTk - XSk) + (Xn - XSN+1)1(SN+1 < n)
k=1

Since SpAn < T, An, we get from the supermartingale version of the OST that E[X g, r,] >
E[X7,An]. Then

n N
0=>E Z(XTk/\n - XSk/\n) =E Z(XTk - XSk) + (Xn - XSN+1)]'(SN+1 < n)
k=1 k=1
> (b— a)E[N] +E[(X, — Xy, )1(Sn41 < )]
> (b—a)E[N] - E[(X, —a)~].

2.4 Doob’s Inequalities

Theorem 2.9 (Doob’s maximal inequality). Let X be a nonnegative submartingale. Let
X}, = supg<p<p Xk For A > 0 we have

AP(X; > \) <E[X,1(X] > )] <E[X,].
Proof. Define the stopping time 7' = inf{k > 0 | X > A}. The OST applied to TAn <n

gives
E[X,] > E[X7an] = E[Xr1(T < n)] + E[X,1(T > n)]

Hence E[X71(T < n)] < E[X,1(T < n)]. Now note that {T' <n} = {X,; > A} and we get
AP(X) > \) <E[X7l(T <n)=E[X,1(X; > )] <E[X,].
0

Theorem 2.10 (Doob’s LP inequality). Let X be a martingale or a nonnegative sub-
martingale. Let X, = supg<g<y, |Xk|. For p > 1, we have

. P
1 Xall, < b1 1 Xnll,

14



Proof. 1t suffices to prove the second case, since by Jensen, if X is a martingale, then | X|
is a nonnegative submartingale. For £ € N we have

E[(X; A k)] = B [ / Cper (XG> a:)dx] -] C o (X () > o) dwdP

0

k
:/ prPIP(X, > z)dx
0

Theorem [2.9]
< / pa? 2E[X, 1(X? > o)|de

/ paP~ 2/ X( (w) > x)dPdx

/X W) A k)P~ leﬁb

1IEJ[X (X5 AE)PTY

T
Holder
p * —1
S [ Xnll, 1X5 A KIS
Rearranging gives || X; A k|, < -2 || X[, Now let k — oo. O

2.5 [P-convergence

Theorem 2.11. Let X be a martingale, p > 1. TFAE:

1. X is bounded in LP,

2. X converges a.s. and in LP to some Xoo € LP.

3. There exists a random variable Z € LP such that X,, = E[Z | F,] a.s
Proof. “1. = 2.” If X is bounded in £P, then also in £! (e.g. by Jensen or Holder). So
by Theorem there exists Xoo € LP such that X,, = X a.s. By Fatou, E[|X|F] <
liminf E[| X, |P] < oo since X is bounded in £P. So X, € LP. By Doob’s LP-inequality

we have [ X7, < & L3 1 Xn |, Letting n — oo, we get [[ X5, < o - sup,, [| Xy ||, where
X7, = supg<y | Xk So X3, € LP. Since | X, XOO\ < 2X7%, we get X, - X in LP by

o
dominated convergence.

“2. = 3.7 Set Z = Xo,. We have Z € LP. For m > n, we have
[ Xn = E[Xoo | Fulll, = [E[Xm = Xoo [ F = nll, < [[Xim — Xool,,-

Letting m — oo this goes to 0, so X,, = E[Z | F,,] a.s

“3. = 1.” Jensen. O
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A martingale of the form X,, = E[Z | F,] for some Z € LP is called a martingale closed in
Lr.

Corollary 2.12. Letp > 1, Z € LP, X,, = E[Z | F,]. Then X,, - X a.s. and in LP
where Xoo = E[Z | Foo] a.s. and Foo = o(Fp i n > 0).

Proof. We know from the theorem that X,, — X a.s. and in LP for some X, € L.
We have to show Xo, = E[Z | Fu| a.s. We have to show E[X1(A)] = E[Z1(A)] for
all A € Fu. Since |, Fn is a m-system generating Fo, it suffices to prove this for
A € Fy for some N. Then E[Z1(A)] = E[Xny1(A)] = E[X,,1(A)] for all n > N. We have
E[X,1(A)] = E[Xx1(A)] as n — co. Then E[Z1(A)] = E[X1(A)]. O

For p = 1, we need another condition.

Definition. A collection of random variables (X;)ier is called uniformly integrable (UI)
if sup;er E[|XG[1(1 X5 > )] = 0 as a — 0.

Equivalently, (X;)ser is UL if (X;)ser if (Xi)ier is uniformly bounded in £' and for all
€ > 0 there exists ¢ > 0 such that if P(A) < 0, then sup;c; E[|X;|1(A4)] <e.

Lemma 2.13. Given X,,, X € L! for n > 1, we have

Ll X, — X in probability and

Xn—>£<:>{

(Xp) is uniformly integrable
Proof. See undergraduate probability lecture notes or book by Williams. O

Note: If (X,) is bounded in £P with p > 1, then it is uniformly integrable.
Theorem 2.14. Suppose X € L'. Then the family

{E[X | G] | G is a sub-o-algebra of F}
us uniformly integrable.
Proof. We have to show that for all € > 0 there exists Ky such that for all K > K,

SngHE[X | GI(EX [ G]] > K)] <e.

We have

E[IE[X [ GIL(E[X | 6]l > K) < E[E[|X] | GIL(E[X | G]| = K)
G-measurable

<E[X]-1(E[X | g]| = K]
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If X € £, it is easy to check that for all £ > 0 there exists § > 0 such that if P(4) < 4§,
then E[|X|P(A)] < e. We have

1
P(EX | 6]l 2 K) < -E[IX]]

by Markov. Thus we take Ky = M. Then for all K > Ky, we have P(|[E[X | G]| >

K) < and so

E[EX | G][- W(E[X | G]| = K)] < E[|X]- 1(|E[X | §]| = K)]
<e.

O

Definition. (X,,),>0 is called a Ul (uniformly integrable) martingale if it is a martingale
and (Xp)n>0 is UL
Theorem 2.15. Let X be a martingale. TFAE:

(1) X is UL

(2) (X,) converges a.s. and in L' to some Xoo.

(3) There exists Z € L' such that X,, = E[Z | F,] a.s. for alln > 0.
Proof. “(1) = (2)” Since X is bounded in £!, by the martingale convergence theorem we

get that X,, = X a.s. as n — oo for some Xo € £'. Then also X,, — X in probability,
hence in £!' by the lemma above.

“(2) = (3)” Set Z = Xo. We have to show X,, = E[X | F,]. The same proof as in
Theorem 2.11] works.

“(3) = (1)” Theorem |2.14 O
(

Remark. As before, if X,, = E[Z | F,] with Z € £!, then X, = E[Z | F.] a.s.

Example. Let X1, Xo,... be i.id. such that P(X; = 0) = P(X; = 2) = i. Take Y, =
X1Xsg -+ X,. Then (Y,) is a martingale. Then Y;, — 0 a.s. as n — oo. But E[Y,,] =1 for
all n, so it does not converge in £! and it is not a UI martingale.

Let T be a stopping time and X a Ul martingale. Then we can define

Xr =) Xpl(T =n)+ Xoo (T = 0)
n=0

Theorem 2.16. Let X be a Ul martingale and S <T be stopping times. Then

E[X71 | Fs] = Xg a.s.
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Proof. X, converges to X« a.s. and in £'. It suffices to prove that Xp = E[Xw | Fr] a.s.
Indeed, then we would get (applying this also to S)

E[X7 | Fs] = E[E[Xoo | F7] | Fs] = E[Xoo | Fs] =

First note that X7 is in £!. Indeed, from X,, = E[X, | F] we get | X,| < E[|Xoo| | Fn]
and then

E[|X7|] = ZIE 1 X,| - 1(T = n)] + E[| Xoo| - 1(T = 00)]
< ZE[E[\XOOI | Fnl - UT =n)] + E[| Xoo| - 1T = 00)]
n=0
=) B[ Xoo| - UT = n)] + E[| Xeo| - LT = o0)]
= E[| Xoo|]-

Let A € Fr. We need to show E[X1(A4)] = E[X7r1(A)]. Since A € Fr, we have
{T' =n}NAecF, for all n, and then

E[X7r1(A ZIE =n)1(A)] + E[Xo - 1(T = 00)1(A)]

- ZE[XOO 1T =n)1(A)] + E[Xoo - 1(T = 00)1(A)]
=0

= E[X51(A)).

2.6 Backwards martingales

Suppose ... D G_9 C G_; C Gy is a decreasing family of sub-o-algebras. We call (X,,)n<0
a backwards martingale if Xo € L' and (X,,) is adapted to (G,) and E[X,41 | Gn] = X
a.s. for all n < —1. Note that in this case X,, = E[X( | Go] a.s. for all n < —1, so (X,,) is
UI by Theorem

Theorem 2.17 (Backwards Martingale Convergence Theorem). Let X € LP, for some

p > 1. Then (X,,) converges a.s. and in LP as n — —oo to a random variable X_o which

satisfies X oo = E[Xo | G-co] a.s. where G_oo =, GN-
Proof. Let a < band N_,([a, b], X) be the number of upcrossings of [a, b] between times —n

and 0. Set F, = G_p 4k for 0 < k < n. This is an increasing filtration and (X_,,4%)o<k<n
is a martingale w.r.t. (F3). Then N_,([a,b],X) is the number of upcrossings of [a, ]
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by (X_n+k)o<k<n between times 0 and n. Doob’s upcrossing inequality for martingales,

Theorem gives
(b - a)E[N—n([a7 b]aX)] < E[(XO - a)i]’

Take the limit as n — oo and use monotone convergence to get (b — a)E[N_x([a,b], X)] <
00. So in particular, N_([a,b], X) < oo a.s. and so like before we get that X, converges
a.s. asn — —oo to some X_ . Then X_, is G_,-measurable since the G,, are decreasing.
Since Xy € LP, we get X,, € LP for all n by Jensen. Then X_, € LP by Fatou. Next we
show LP-convergence. We have

|Xn - X700|p = |E[Xn | gn] - IE[Xfoo | gn”p < EHXO - X700|p | gn]'

By Theorem this is a UI family. Then also | X,,— X _|P is UI and since it convergences
to 0 a.s., it also converges in £' by Lemma So X,, &> X_o in LP as n — —oc.

Finally, we have to show X_o, = E[X( | Goo] a.s. We prove this using the definition of
conditional expectation. Let A € Goo. Then A € G, and so E[X¢1(4)] = E[X,,1(A)] for
all n < —1. Since X,, = X_o in L1, we get E[Xo1(A)] = E[X_»1(4)]. O

2.7 Applications

2.7.1 Kolmogorov’s 0-1 Law

Theorem 2.18 (Kolmogorov’s 0-1 law). Let X1, Xs,... be independent random variables
and define F,, = 0(Xy : k > n) and Foo = [\,>0 Fn (the tail o-algebra). Then F is
trivial, i.e. for all A € F, P(A) € {0,1}. -

Proof. Let G, = 0(Xj : k <n). Let A € F. Consider E[1(A) | G,]. This is a martingale
(w.r.t. G,) and as n — oo it converges a.s. to E[1(A) | Goo] where Goo = 0(G,, : 1 > 0).
Clearly, Foo C Goo, 50 A € G and then E[1(A) | Goo] = 1(A4) a.s. Since A € Fu,
A€ Fpy1 = 0(Xg : k> n+1). Now F,41 is independent from G, by assumption.
Hence E[1(4) | G,] = E[1(A)] = P(A) a.s. So P(A) = 1(A) a.s., which can only happen if
P(A) € {0,1}. 0

2.7.2 Strong Law of Large Numbers

Theorem 2.19 (Strong law of large numbers). Let X, Xa,... be i.i.d. random variables
in L' and set p = E[X1]. Define So =0 and S,, = X1+ --- + X,,. Then % — 1 a.s. and
in L' as n — .

Proof. Define G, = 0(Sp, Sp+1,---) = 0(Sn, Xn+t1,...). Set F, = G_,, and define M,, =
S_

=2 for n < —1. We will prove that M is a backwards martingale w.r.t. 7. Let m = —n.
Then
S_p—
B 7 =[St
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:E[m ms m+17"':|
S — Xm
= E[ﬁ‘smaXerl, - }
Sm 1
= _1E[Xm|5m,Xm+1,...}
orem 1
The rem [[0] Sm E[Xm | Sm]
—1 m-1
By symmetry (the X,, are i.i.d.), E[X,, | Sm] = E[X; | S for all £ = 1,...,m. So
mE[X1 | S] = S0 E[Xk | Sm] = E[Sim | Sim] = Sm, hence E[X,, | Sp] = 22 ass., and
then s 1 s s
EMyy1 | Fo] = —— — ="M, as.
m—1 m-—1m m

So by the convergence theorem we get that % converges a.s. and in £! to a limit variable

Y. We have g ¥ x
Y = lim 2% = lim 2kt An
n—oo N n— 00 n
so Y is 0(Xy, Xp1,...)-measurable for all k. So Y is (), o(Xk, Xk+1,. .. )-measurable.
This is the tail o-algebra, hence trivial by Kolmogorov’s 0-1 law. Then there exists c € R

such that P(Y = ¢) = 1. Since %" — Y in £! and E[%] = p, we get ¢ = p. O

2.7.3 Kakutani’s Product Martingale Theorem

Theorem 2.20 (Kakutani’s product martingale theorem). Let X1, Xo,... be independent
nonnegative random variables with E[X,] = 1 for alln. Define My =1, M,, = X1 Xo--- X,
for n € N. Then (M,) converges a.s. to some My, as n — oo. Set a, = E[\/X,]. Then
0<an<1 foraln.

(1) If TI22 an > 0, then M,, — Mo in L' and E[My] = 1.
(2) If 11721 an =0, then My =0 a.s.

Proof. (M,) is a martingale, nonnegative and E[M,,] = 1. So (M,,) is a martingale bounded
in £', so M,, = My a.s. as n — oo for some M. The inequality a, < 1 is immediate
from Cauchy-Schwarz. Set N,, = ¥ jil . N is a nonnegative martingale and E[N,] = 1.

Hence again N,, =& N a.s. as n — oo for some No,. We have M, = NQ(Hz 1 al) < N2.
Note that E[N?] = ([, a:) 2 so

supE[N?] = (H az>

n>0 i—1

(1) ]I, >0, then supn>0 IE[N,%] < 00. We show that M is Ul, then we get M,, = M
in El from Theorem Note that My < sup,,~¢ Mp, so it is enough to prove that
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sup,,>o M, € L. We have

k<n - k<n
210
< 4E[N;]
< 4sup E[N?]
n>0

Thus by monotone convergence, E[sup,,~q M| < 4sup,>o E[N3] < co.

(2) If [Ta; = 0, then M, = N2([].,a)> — 0 as. as the product goes to 0 and
N, & Ny a.s. as n — 00.

O]

2.7.4 Radon-Nikodym Theorem

Theorem 2.21 (Radon-Nikodym). Let P and Q be probability measures on (2, F). Sup-
pose that F is countably generated, i.e. F = o(F, : n € N) where F,, C Q. TFAE:

(a) For all A € F, if P(A) =0, then Q(A) = 0 (i.e. Q is absolutely continuous w.r.t.
P, written Q < P).

(b) For all € > 0, there exists 6 > 0 such that if A € F with P(A) <9, then Q(A) < e.

(c) There exists a nonnegative random variable X such that Q(A) = E[X1(A)] for all
A € F (expectation taken w.r.t. P).

X is called the Radon-Nikodym derivative of Q w.r.t. P, denoted X = le% a.s.

Remark. By scaling this extends to finite measures. It also extends to o-finite measures
by splitting 2 into sets of finite measure. One can also lift the countably generated
assumption of F.

Proof. “(a) = (b)” Suppose (b) does not hold. Then there exists ¢ > 0 such that
for all n there is A, € F with P(4,) < 27" and Q(A,) > e. By Borel-Cantelli
P(A,, happens infinitely often) = 0. But Q(A, i.0.) > € as {A, i.0.} = U, >k 4n-
This contradicts (a). N

“(b) = (¢)” Define F,, = o(Fy: k <n). Set A, ={HiN---NHy, | Hy=F; or H; = Ff}.
The sets in A, are disjoint and F,, = o(A;). Define

Xolw) = Y prp e € 4)

AeA,

where we set § = 0. Let B € F,,. Then E[X,,1(B)] = Q(B) (the expectation is taken w.r.t.
P). Also E[X,+11(B)] = Q(B) = E[X,1(B)] and X,, is F,,-measurable, so E[X,, 11 | F] =
X, so (Xp)n is a martingale. Also E[X,,] = Q(2) = 1. By the martingale convergence
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theorem, X, — X, a.s. as n — oo for some Xo. We want £'-convergence, so we will
show that (X,) is UL So we want to show sup,,>oE[X,1(X;, > A\)] = 0 as A — oco. We
have E[X,1(X,, > A)] = Q(X,, > A). By Markov we have P(X,, > \) < w = 1. Let
£> 0. Take § > 0 as in (b) and let A\g = 3. Then for A > Xy we have P(X,, > \) < J and
thus Q(X,, > \) <e. So (X,,) is Ul and so X,, — X in £'. Then E[X.] = 1 and for
all A € Fp,, Q(A) = E[X,1(A)] = E[Xo1(A)]. So the probability measure Q, defined by
Q(B) = E[Xo1(B)] for B € F, agrees with Q on the 7-system J,~,F, that generates
F. Then Q = Q on F.

“(¢) = (a)” obvious. O
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3 Continuous-Time Processes

So we considered a probability space (€2, F,P) with a sequence (X, )nen, of random vari-
ables. Now we want to study processes (X;);er, where for each t € Ry, w— Xj(w) is a
random variable. Again we define filtrations (F;);er, as sub-o-algebras satisfying F; C F;
for all t < s. A function T : Q — [0,00] is called a stopping time if for all ¢ € [0, o],
{T < t} € Fi.

In the case of discrete-time processes, T4 = min{n > 0: X,, € A} (where A € B(R)) is a
stopping time as {T4 < n} = U<, {Xx € A}

Now for continuous-time processes, if we define T4 = inf{t > 0 : X; € A}, it is not so
clear wether {Ty <t} = J,,{Xs € A} is in F; and in fact this need not be the case, see
the example after Proposition

For discrete-time processes, consider X : (w,n) — X, (w) as a map Q x Ny — R. Then X
is measurable w.r.t. F @ P(Np).

For continuous-time, the map @ x Ry — R, (w,t) — X;(w) need not be measurable w.r.t.
F @ B(R4).

To avoid these problems, we require our process to satisfy some regularity conditions:

Suppose X is continuous in ¢, i.e. for all w, ¢t — X;(w) is continuous. Then we can write
Xi(w) = limy, 00 Xo-nrong(w). Now for all n, (w,t) = Xy-npony(w) is measurable w.r.t.
F @ B(R4) as 27™[2"t] takes on only countably many values. Then X is also measurable
as the limit of measurable functions. We can actually consider X which is only right
continuous. We will also require that the left limits lim, g X¢(w) exist for all w.

We call functions f that are right continuous and whose left limit exist cadlag. We write
C(R4, E),D(R4, E) for the space of continuous/cadlag functions Ry — E for suitable
sets F (e.g. E =R). Continuous and cadlag functions are uniquely determined by their
values in a countable set. We endow these spaces with the product o-algebra, i.e. the
smallest o-algebra that makes the projections 7y : f — f(t) measurable for all ¢.

The stopped o-algebra Fp, where T is a stopping time, is Fr = {A € F: An{T <t} €
FiVt}. If X is cadlag, we define as before X7(w) = Xp(,)(w) when T'(w) < oo and the
stopped process XtT = X7p¢.

Proposition 3.1. Let X be a cadlag adapted process and S, T stopping times. Then
(1) SAT is a stopping time.
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(2) If S <T, then Fs C Fr.
(3) X7r1(T < o0) is Fr-measurable.
(4) XT is adapted.

Proof.
(1) Clear.
(2) Clear.

(3) We need to show that for all ¢, Xp - 1(T < t) is Fy-measurable. Let T,, = 27" [2"T"].
Then T, \, T as n — oo. Ty, takes values in D, = {k27"*Nol U {c0}. T, is a
stopping time:

(T <t} = {[2°T] < 27} = {T < 27"[2"t]} € Fynony) C Fi.

We have X71(T' < t) = Xo1(T < t) + X;1(T = t). Clearly, X;1(T = t) is Fs-
measurable. By the cadlag property and T,, 7T,

Now Xr,ml(T < t) = X yep, a<t Xal(Tn = d) + Xi (T, > )U(T < t). Again
X 1(T,, > t)1(T < t) is Fy-measurable as T), is a stopping time. Also each X41(7,, =
d) is F; measurable and F; C F;, so we are done.

(4) By (3), Xra¢ is Frag-measurable and Frpa; C Fr.

Proposition 3.2. If X is a continuous adapted process and A a closed set in R, then
TA:in{tZO‘XtEA}
18 a stopping time.

Proof. We need to show that for all ¢, {T4 < t} € F. We will prove {T4 < t} =
{infseq,s<t d(Xs, A) = 0}. From this the claim is immediate. Suppose Ty = s < t. Then
there is a sequence s, ~\, s as n — oo such that X, € A for all n. By continuity,
Xs, — Xs asn — oo. Then d(Xs,,A) = 0 for all n, and hence d(Xs, A) = 0. Let ¢,
be a sequence of rational numbers such that ¢, ~ T4 as n — oo. Then ¢, < t and
d(Xg,, A) = d(Xr,,A) =0. So infseq s<t d(Xs, A) = 0.

Conversely, suppose infgeq s<t d(Xs, A) = 0. Then there is a sequence s, € Q with s, <t
and d(X,, ,A) — 0 as n — oco. By passing to a subsequence we may assume that s,
converges to some s < t. Then 0 = d(X;,, A) — d(Xs, A) as n — 00, so d(Xs, A) =0 and
then X, € A as Ais closed. So Ty < s <. O
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Example. Let £ = 41 equally likely. Define X by

Bt ifo<t<l,
CTlie(t—1) ift>1.

Consider A = (1,2), T4 = inf{t > 0: X; € A}. Let /4 = 0(X; : s < t) be the natural
filtration. Then T4 is not a stopping time as {T4 < 1} ¢ Fi.

Definition. Let (F;)ier, be a filtration. Define

Fer=[)Fe

s>t
If Fiy = Fi, we call F right-continuous.

Proposition 3.3. Let A be an open set, X a cadlac adapted process. Then T4 = inf{t >
0:X; € A} is an (Fit)-stopping time.

Proof. We need to show that {Ty <t} € Fy4 for all t. We have {Ty <t} =(),>1{Ta <
t+ 21} and {Th < t+ 1} = Usegs<tr1{Xs € A} since A is open and X is cadlag.
Since {X, € A} € ’Ft+% for s < t+ g, we get {Tq < t} € .7-"t+% for all n, hence
{TA < t} S ./T"t+. O

Let X = (X¢)ier, be a process. On the set of functions {f : Ry — E} (for us E = R) we
defined the product o-algebra, i.e. the smallest o-algebra for which all the projections are
measurable. Given A in this o-algebra, we define u(A) = P(X € A). u is called the law
of the process.

Given a finite subset J C R, we define u; to be the law of (X, ¢ € J). These are called
finite dimensional marginals. The family (uy : J C R4, finite) uniquely determines the
law of the process. Indeed, {(,c;{Xs € As} : J C Ry finite, A; € B(R)} is a 7m-system
generating the product o-algebra.

Definition. Let (X;)i>0, (X/)i>0 be processes on (2, F,P). We say X' is a version of X
if X¢ = X] a.s. for all t.

If X’ is a version of X, they both have the same finite dimensional marginals.

Example. Suppose X; =0 for all ¢ € [0,1]. Let U ~ U[0, 1] and define X; = 1(U = t) for
t € [0,1]. Clearly X{ =0 a.s. for all ¢, i.e. X" is a version of X. But

P(X, =0Vt) =0+#1=P(X, =0Vt).

The finite dimensional marginals are Dirac masses at 0.

Definition. Let (Q, F,(F;),P) be a filtered probability space. Define Fy = o(Fir, N)
whgre N is the set of measure-0 events of F. We say (Ft) satisfies the usual conditions
if Fe = Fy for all t.
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Theorem 3.4 (Martingale regularisation theorem). Let (X;)i>0 be an (F:)-martingale.
Then there exists a cadlag martingale (X¢) w.r.t. (Ft) such that Xy = E[X, | ] a.s. for

allt > 0. If (F;) satisfies the usual conditions, then X is a cadlag version of X.

Lemma 3.5. Let f: Qr — R be such that for all bounded I C Q4, a,b € Q with a < b,
f is bounded on I and N([a,b], 1, f) < oo where

N([a,b],I,f) =sup{n >0:30<s1 <t1 <---<sp, <tn€el, f(s) <a,f(t;) >bVi}
is the total number of upcrossings of [a,b] by f in I, then
I .
lip f(s), lim f(s)
seQ4 s€Q4

exist and are finite for all t € R,..

Proof. Let s, N\, t. Then (f(s,)) converges by Lemma and the assumptions on f.
Mixing two such sequences show that the limit is independent of the sequence s,. Hence

lim o\ f(s) exists. Similarly the other limit exists. The finiteness of the limits follows

s€Q+
from the boundedness of f. O

Proof of Theorem[3.4. Overview:

(1) Goal. Define X; = lim s\t Xs- S0 we want to prove the limit exists a.s. and is
s€Q4
finite.

(2) Show X; = E[X; | F] a.s. for all ¢
(3) Martingale property of X
(4) Cadlag property of X.

Start with (1). Let I € Q4 be bounded. To check the conditions in Lemma we first
want to show that P(sup,c; | X < 00) = 1. Let J = {j1 < --- < jn} C I. Since (X;)jes
is a martingale, Doob’s maximal inequality, Theorem gives

AP(sup | X¢| > A) < E[|X;,[]
teJ
for any A > 0. If we choose K > supl, this is < E[|Xj|]. Letting J A I, we get

AP(sup;cr | X¢| > A) < E[|X}|]. Taking A — oo gives P(sup,e; | X¢| < 00) = 1. Next we
want to consider the upcrossing property. Doob’s upcrossing inequality, Theorem [2.8| gives

(b—a)E[N([a,b], J, X)] < E[(Xj, —a)7] <E[(Xy —a)7].

Taking the sup over all finite J C I gives N([a,b],I,X) < oo a.s. Next take Ip; =
Q4 N[0, M] for M € N. Define

Q=) ({sup X, < o0} () {N([a,b],IM,X)<oo}>.

MeN, = (€I ab<61(>@
a7
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Then P(Qp) = 1 and on £, the limits

Xep = lim X, X = lim X;
st st
s€Qy s€Q4

exist and are finite. Now define

)’Zt _ Xt"r on QO )
0 otherwise.

Then X is F-adapted.

Next we do (2). Let t, \,t with ¢, € Q,. Then X; = lim,_,o, X, a.s. Note that (Xt )n
is a backwards martingale as t, is decreasing. So by Theorem X;, — X, also in £

Then X, = E[X;, | Fi] £5 E[X, | £, so X; = E[X, | Fi] as.

Now (3). We need to show that for s < t, E[X; | Fs] = X a.s. Let s, \, s where s, € Q.
such that sy < t. Then X, = lim,_,0o X5, = lim, oo E[X; | Fs,] Now, E[X; | Fs ] is
another backwards martingale, so E[X; | Fs,] — E[X; | Fs1] a.s. and in £! as n — co. So
Xs =E[X, | For] = EE[X, | ] | For] = E[X, | For] = E[X, | Foff}

Finally we do (4). We show that X is right continuous. If not, there is some w € Qg and
t € Ry and a sequence (sy,) such that s, \ ¢ and | X5, — X| > €. By definition of X on
) there exists a sequence (s},) of rationals such that s}, > s, for all n and s}, \, ¢t and

X, — Xy | < 5. But then X, — X | > § contradicting the definition of X on Q. The
existence of left limits is done similarly (exercise). O

Example. Let & 71 be independent random variables that attain the values +1 equally
likely. Define

0 t<1,
Xe=4¢ t=1,
E+n t>1.

X, is not right continuous. Take F; = (X5 : s < t). Then F; = o(§) and Fi14+ = o(&,n).
(X}) is a martingale w.r.t. (). Define

o t<1,
X =
§+n t>1
Then X is cadlag and it is a martingale w.r.t. (F;;). Also X; = E[X; | F;] a.s. for all ¢.
But X is not a version of X, because P(X; # X1) > 0.

'Tf X is any random variable and G any sub-o-algebra, we have E[X | (G, N)] = E[X | G] a.s.
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3.1 Convergence theorems and inequalities

Theorem 3.6 (A.s. martingale convergence theorem). Let (X;) be a cadlag martingale
which is bounded in L', i.e. supy>oE[|X¢]] < 0o. Then (X;) converges a.s. to Xoo € L1

Proof. Let Iny = Q4 N [0,M]. As in the proof of Theorem we get from Doob’s
upcrossing inequality, Theorem [2.8

(b = @BIN (a.b]. Inr, X)] < o+ sup E[|X,].

Taking M — oo. Hence N([a,b],Q4,X) < oo a.s. Define

Qo = ﬂ {N<[av b]vQ-HX) < OO}
a?b<6l()Q

Then P(Q) = 1 and on Qp, X, converges as ¢ — 00, ¢ € Q1. Denote the limit by X
(and set it to 0 on QF). Then X, — X a.8. as ¢ — o0, q € Q4. We already get X, € £!
by Fatou. We need to show X; — oo a.s. for ¢ — oo. The follows easily from the cadlag
property, indeed, given € > 0, there exists gg € Q4 such that for all ¢ > g with ¢ € Q, we
have | X, — Xoo| < §. By right continuity for all ¢ > qo there is ¢ € Q4 such that ¢ > ¢
such that | X; — X,| < 5. So for t > qo, we get | X; — Xoo| <e. O

Theorem 3.7 (Doob’s maximal inequality). Let (X;) be a cadlag martingale, X; =
supg<; | Xs|. Then for all A >0,

AP(X; > N\) <E[|Xy]].

Proof. By the cadlag property, X; = supg«; | X,| = SUPseq., N[0,]U{t} | Xs|. The rest follows
as in the proof of Theorem O

Theorem 3.8 (Doob’s LP-inequality). Let p > 1, X a cadlag martingale. Then

" P
X5, < o1 1X¢ll,,

Proof. Exactly as in the discrete case, Theorem [2.10 O

Theorem 3.9 (£P martingale convergence). Let X be a cadlag martingale, p > 1. TFAE
(1) X is bounded in LP.
(2) X converges a.s. and in LP so some Xoo € LP.

(3) There exists Z € LP such that Xy = E[Z | F] a.s. for all t.

Proof. Exactly as in the discrete case, Theorem [2.11 ]
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Theorem 3.10 (UI martingale convergence). Let X be a cadlag martingale. TFAE
(1) X is UL
(2) X converges a.s. and in L' to some Xo € L1
(8) There exists Z € L' such that Xy = E[Z | F] a.s. for all t.

Proof. Exactly as in the discrete case, Theorem [2.15 O

If these conditions are satisfied and T is a stopping time, we can define Xp by Xp(w) =
X7(w)(w) where now the case T'(w) = oo is included.

Theorem 3.11 (Optional stopping theorem). Let X be a cadlag UI martingale S < T
stopping times. Then
E[Xr | Fs] = Xg a.s.

Proof. We need to show that for all A € Fg,
E[X71(4)] = E[Xs1(A)).

Let T,, = 27"[2"T"] and S, = 27"[2"S]. Then T, \ T and S,, \( S as n — oco. By the
right continuity of X, we get X171, = X7 a.s. and Xg, = Xg a.s. as n — oco. X is Ul so
X1, = E[X | Fr,,]- Note that also (X7,), (Xs, ) are UL, so Xg, = E[Xp, | Fs,| by the
discrete optional stopping theorem, Theorem Since A € Fg, also A € Fg, for all n.
So E[X7,1(A4)] = E[Xg, 1(A)]. Let n — oo. By the UI property, X7, — X7, Xg, — Xs
in £1, so we get E[X71(A)] = E[Xs1(A)]. O

3.2 Kolmogorov’s continuity criterion

Write D, = {k27": 0 <k <2"}, D =,50 Dn-

Theorem 3.12. Let (Xy)iep be a stochastic process such that there exist ¢ < 0o, p,e > 0
such that

E[|X; — Xs[P] < cft — s+
for all s,t € D. Then for every a € (0, %), the process (X¢)iep is a.s. a-Hélder continuous,
i.e. there exists a random variable M, with M, < 0o a.s. such that | X; — Xs| < Myt — s|®
for allt,s € D.

This implies that there exists an o-Holder continuous process X on [0, 1] such that X=X,
a.s. for allt € D.

Proof. We first prove the Holder continuity on dyadics of the same level and then extend
it to all of D.
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We have
P(|Xyo-n — X(ppryz-n| > 27") < 2"PE[| Xjp-n — X(jprya-n|] < 27°Pc2"(1F),
Taking the union of these 2™ events, we get:

_ _n((14e)— _ o—n(e—
P(Ogi};n |Xk:2 " — X(k+1)2—n| Z 9 na) S I 2¢ n((1+e)—ap) = c2 n(e ap)‘

If a< ]%, then by Borel-Cantelli,

max |Xpg-n — X —n| <27 for all n sufficiently large a.s.
0<k<>§n| k2 (k+1)2-n| < y larg

Then
maxo<g<an [Xpo-n — X(pg1)2-n|

277’La

<M<

sup

n>0
where M is a random variable with M < oo a.s. Next we want to show that for all £, s € D,
| Xt — Xg| < M'|t — s|™ for some M'. Let s <t, s,t € D. Let r be the unique integer such
that 2-0*+D < ¢ — s < 27", Let k be such that s < k&2-+1) < ¢t and set z = k2~ ("+1),
Then t —z =3 5, 4 55 where z; € {0,1} for all j. Also z —s = PP 2% for some
y; € {0,1}. So we can decompose [s,t) N D into a disjoint union of dyadic intervals of
lengths 27" with n > r + 1. Any given length will appear in at most two intervals. Then

[ X — X < > | Xd — Xays-n]
d,n such that
d,d+ 27" are
endpoints in this decomp.

< Z Mo~
d,n

<M Z 27 _ 9 Nf
n>r+1

9—a(r+1)
1 -2«

Set M’ = 1,23{(1- We get
X, — X < M'270 ) < M|t — 5|

This shows that (X;)ep is a-Hélder continuous a.s.

For the last part: On the event (of probability 1) that X is Holder continuous, we set
X = limy,y oo X, wheret, € Dandt, —tasn — oco. On the complement (of probability

0) set X; = 0 for all £ € [0,1]. Then X is a-Holder continuous and X; = X; a.s. for
teD. O
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4 Weak convergence

Let (M, d) be a metric space, endowed with its Borel o-algebra. We will usually consider
random variables with values in M.

Definition. Let (u,) be a sequence of probability measures on (M,d). We say that (pu,)
converges weakly to p and write u, = u if for all continuous, bounded functions f : M —
R, we have [ fdu, — [ fdu.

Note that by taking f = 1, we get u(M) = 1, so p is also a probability measure.
Example. If z,, — x in (M,d), then 05, = 9.
Example. Let M = [0,1] with the euclidean metric. Let u, = %Zz;é 0r. Then

[ fdun, = %ZZ;S) f(%) is a Riemann sum of f. So if f is continuous, then [ fdu, —
fol f(z)dz, so u, converges weakly to the Lebesgue measure on [0, 1].

Example. Let M = [0,1] and z, = 1, p, = §,,. Take A = (0,1). Then p,(A) =1 and
tn = 0, but 69(A) =0, so p,(A) A u(A).

Theorem 4.1. Let (u,) be a sequence of probability measures on (M,d). TFAE:
(1) pm = p.
(2) liminf 1, (G) > p(G) for all open G C M.
(8) limsup p, (C) < u(C) for all closed C C M.
(4) If A € B(M) is such that n(0A) =0, then pun,(A) — u(A).
Proof. “(1) = (2)” Let K € N. Define fx : M — R by fr(z) = 1 A (Kd(z,G)).

Then fx is continuous, bounded and fx ,* 1(G) as K — oo. Since p = pu, we get

[ fxdpn, — [ fudp as n — oo. Then liminf, u,(G) > liminf, p,(fx) = pu(fx). By
monotone convergence, iu(fx) — p(G) as K — oo. So liminf, p,(G) > u(G).

“(2) < (3)” obvious.

“(2),(3) = (4)” Let A be such that u(0A) = 0. Since 9A = A\ A°, we get u(A) = p(A) =
w1(A°). Applying (2) and (3) gives

(A°) = u(A),

(4) = u(4)

liminf p, (A) > liminf p, (A°) > u
lim sup fip,(A) < limsup pin(A) < p
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This proves i, (A) — p(A).

“(4) = (1)” Suppose f continuous, bounded and positive. The general case follows by
writing f = fT — f~. We need to show that pu,(f) — u(f). Suppose f < K for some
K e R;. Then

i) = [ f@dimte) = [ ([T 1@ = )i

K
= [ ([ @ = )t

= [7 ([ 16w 2 dnaw))a

K

- / pa({a s f(2) > t})dt
K

:/0 pn(f = t)dl

We have 0{f >t} = {f 2t} \ ({f 2 t})° € {f =t} \ {f > t} = {f = t}. Claim: The
set {t : pu(f =t) > 0} is countable. Indeed, we have {t : u(f =1t) > 0} = U, >,{t :

u(f =t) > %} and for n > 1 the set {¢t: u(f =1t) > %} can have at most n elements, as
u(M) =1. So u(0{f > t}) = 0 for Lebesgue a.s. t. By (4) and dominanted convergence,
fOK pn(f > t)dt — fOK p(f > t)dt. By the same calculation as above, this last integral is
u(f)- O

Definition. Let pu be a Borel measure on R. We define its distribution function F),(x) :=
p((—o0,x]) for x € R.

Proposition 4.2. Let (uy), it be probability measures on R. TFAE:

(i) pn = p as n — 0.

(it) For all x € R that are points of continuity of F},, we have F},, (x) = F(x) asn — oo.
Proof. “(i) = (i1)” Let x be a continuity point of F},. We need to show p,((—o0,z]) —

p((—o0,z)) as n — co. By Theorem [4.1] it suffices to prove p(9(—o0,z]) = 0. Indeed, we
have

(@00, ) = p({x}) = pl(~00, 7)) — lim p((~00,x ~ )
= Fu(e) ~ lim Fy(e— 1) =0

where the last equality follows since F), is continuous at .

“(i1) = (i)” We will prove that if G is an open subset of R, then liminf, p,(G) > u(G).
We can write G = |J.(ag, by) where (ag,by) are disjoint interval. Fix such an interval
(@,5) = (ax, ). We have fin(a,5) = fin((—00,1)) — fin((—00,a]) = Fy (b=) — Fy(a) >
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F,,(t') — F,,(a') where a < a’ < b < b, and o/, are continuity points of F),. Note that
such a/,b" exist as F), can only have at most countably many discontinuities since it is
monotone. Then liminf,, py(a,b) > F,(V') — F,(a’) by (ii). Take the limit as ¥’ b and
a’ N\, a along continuity points of F}, to get liminf,, yi,,(a,b) > F,(b—) — Fu(a) = p((a,b)).

Then we have

lim inf 1, (G) = lgggfz:un((ak,bk)) > Zlgﬂg){gfun((akabk)) > ul(ak, b)) = p(G).
k k k

O]

Definition. Let (X,,), be a sequence of random wvariables defined on perhaps different
probability spaces (Qy,, Fn,Py) taking values in the same metric space (M,d). We say that

(X,) converges in distribution to some other random variable X, written Xy, 4 X, if the
law L(X,,) of X,, converges weakly to the law L(X) of X.

Equivalently, for all continuous and bounded functions f,

Ep,[f(Xn)] = Ep[f(X)]

as n — oQ.

Example. Let X1, Xs,... be ii.d. random variables with y = E[X;] < oo and ¢? =
Var(X7) < oco. Then 22175{“” converges in distribution to a a A(0,1) random variable
as n — oo. This is the Central Limit Theorem.

Proposition 4.3.
(1) If X,, converges to X in probability, then X,, also converges to X in distribution.

(2) If X,, converges to a constant c in distribution, then X,, also converges in probability
to c.

Proof. Example Sheet 3. O

4.1 Tightness

Definition. A sequence of probability measures (f1n)n>0 on a metric space (M, d) is tight,
if for all € > 0, there exists a compact set K C M such that

sup pun (M \ K) <e.
n>0

Remark. If the metric space is compact, then every sequence is tight.

Theorem 4.4 (Prokhorov). If (u,) is a tight sequence, then there is a subsequence (ny)
and a probability measure p such that pi,, = p as k — oo.
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Proof. We give the proof in the case M = R. Consider F,, = F,,. By a standard diagonal
subsequence argument, we find a subsequence ny, such that F,, (x) converges for all € Q.
Define F(q) for ¢ € Q to be the limit limg_, o Fpy, (¢). Since the F),, are non-decreasing, so
is F'. Then we can define F' on R by F(x) = limg\ 4 4eq F'(¢). Then F is right continuous
and by the monotonicity left limits of F' exist, so F' is cadlag. Next we have to prove that
F,, (t) — F(t) for all continuity points ¢ of F'. Let t be a continuity point of ' and € > 0.
We can find 51 < ¢ < s such that s1,52 € Q and |F(s;) — F'(t)| < §. For k large enough
we then have

£ €
F(t)—e < F(s1) — 5 < Fp,(s1) < Fy, (t) < F,, (s2) < F(s2) + 5 < F(t) +e.
So Fy, (t) — F(t) as k — oo for all points ¢ of continuity for F. It remains to show that

F' is the distribution function of some probability measure on R.

Since (py) is tight, for all € > 0 there exists N such that sup,,~q pn([—N, N]¢) < 5. We
can pick N such that N and —N are continuity points for F' (as F' has at most countably

many discontinuities). We have Fj,, (—=N) < § and 1 — F,, (N) < §. Then F(-N) < ¢

and 1 — F(N) <e¢, so limys_ oo F(z) =0 and lim,_,o F(x) = 1.

Define p((a,b]) = F'(b) — f(a). By Caratheodory’s extension theorem we can extend u to
a Borel probability measure on R and F' = F},. O

4.2 Characteristic functions

Let X be a random variable with values in R%. Recall that the characteristic function of
X is defined to be

Y =px: Rd — (C7
p(u) = px (u) = B[]
Note that ¢x(0) =1 and ¢x is continuous.

Theorem 4.5. The characteristic function uniquely determines the law of a random vari-
able, i.e. if px = py, then L(X) = L(Y).

Theorem 4.6 (Lévy’s convergence theorem). Let (X,,)n>0, X be random variables with
values in R?. Then

X, 5 X = ox, (1) = ox(u), Yu e R
This follows from the following slightly stronger theorem.

Theorem 4.7 (Lévy).

(1) Let (X,),X be random wvariables with values in R?. If L(X,) = L(X), then
ox, (u) = px(u) for all u € RY,
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(2) Suppose (X,) is a sequence of random variables with values in R satisfying that
there is some function ¢ : R — C such that ¥(0) = 1, ¢ is continuous at 0, and
ox, (u) — P(u) as n — oo for all n € R Then there exists a random variable X
such that ¥ = ox and L(X,) = L(X) as n — oo.

Lemma 4.8. Let X be a random variable with values in R?. Then for K > 0,
K\d
P(xl > K) < 0(3)" | (1~ px(u))du
[7K71,K*1}d
where C = (1 —sin1)~! (the RHS is real).

Proof. Let A > 0. Let p be the law of X. Then

/ ox(u)du = / E[e““ X>]d
ESW\L AN

/ / i(u,x) du(x
ANE JRA
/ / Hewﬂ]dudu( )
R J[-A N 5
AT _ o—iAT;
- /I‘le;ll ( 12 )du(:c)

J

B d 2sin(Az;)
_/Rd]l;[l<xj J )d,u(x).

So

d .
—d B _od o sin(Az)
A /[_M]du @X(u))du—2/Rd<1 El 2

Consider f:R? = R, f(u) = H?Zl Sizw. If £ > 1, then |sinz| < xsinl. Then if ||ul|, >
J

1, then |f(u)| < sinl. Consequently, 1(||lul, >1) < C(1— f(u)) where C' = (1 —sin1)~?
Then

P(| X[, > K) = P( Hin >1) <1 —E[f(g)})
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Proof of Theorem[{.7]. (1) is easy. Let f(x) = ¢®?)  Then f is continuous and bounded,
so letting p, = L£(X,,) and p = L(X), we get u,(f) — u(f) as n — oo by the definition
of weak convergence.

(2) We first show that (X,,) is a tight sequence. We need to show that for every ¢ > 0,
there is K large enough such that sup,~o P(|[ X, > K) < e. By the lemma, we have

P(|Xu]l, > K) < CyK* / (1— ox, (u)du
[_Kfl’Kfl}d

where Cy = C27%. We have |1 — ¢y, (u)| < 2, so by the dominated convergence theorem,
the RHS goes to CyK* f[—K*l K,l}d(l —(u))du as n — oo. Using that ¢(0) = 1 and ¢
is continuous at 0, we can take K sufficiently large so that

<6
9

carc! | (1 - (w))du
[—K*l,Kfl]d

Taking n large enough, we get
P(|| Xaloo > K) < c.
Taking K even larger, we then get this also for the finitely many remaining n, so

sup B(|X, |, > K) < ¢
n>0

So (Xp,) is tight. Then by Theorem L(X,,) = L(X) for some random variable X and
a subsequence ny. By (1), ¢x,, (u) = ¢x(u) as k — oo for all u € RY. Then ¢ = @x.
It remains to prove £(X,) = L(X). Suppose not. Then there is some subsequence (m)
and a continuous, bounded function f and € > 0, such that [E[f(X,,,)] —E[f(X)]| > ¢ for

all k. Applying the previous argument to X,,, instead of X, gives a contradiction. O
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5 Large deviations

Let Xi,Xs,... be ii.d. random variables and E[X;] = Z. Let S, = >, X;. Then
%” — T a.s. as n — 00, this is the strong law of large numbers, Theorem

By the Central Limit Theorem, Sg;%f = N(0,1) as n — oo, where 02 = Var(X;) < oo,
in other words if Z ~ N(0,1), then
Sn —nx
p( =t
ov/n

In this chapter we are interested in the probability P(S,, > na) where a > Z. By the CLT
it goes to 0 as n — oo. But what are the asymptotics?

Let X1, X5, ... by i.i.d. with distribution A(0,1). Let S,, = > | X;. Then

P(S, > nZ + acy/n) = > a) S P(Z > a).

P(‘\)/(%‘ —1—\/%/ _Ldaz

We have lim,,_, o0 %logp(% >0) = . So iﬁ is of order

large values with an exponentially small probablhty e 67

Setup. Let X1, X»,... beiid. random variables with E[X] = Z, S, = >_1" | X;. Set b, =
P(S,, > an). Then byypm = P(Spim > a(n+m)) > bpby,. So log b,y > logby, + log by,

o (—logb,) is a subadditive sequence. Exercise: Show that this property implies that
lim,, 00 —% log b,, exists and equals inf, —%.

f’ but it can take relatively

n

So we know that lim,,_,~ —% logP(S,, > an) exists.
Notation. Let M()\) = E[e*1], 4()\) = log M ().
For A > 0, we have
P(S, > na) = P(e*" > ) < e ME[M] = e M (M ()" = exp(—n(aX — ()))).
Define 1*(a) = sup,>o(Aa — ¥())). Note that 1/(0) = 0, so ¥*(a) > 0. Then
P(S,, > an) < e ¥ (@),
And so

1
liminf ——logP(S,, > an) > ¥*(a).

n—oo n
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Theorem 5.1 (Cramer). Let Xi, Xo,... be i.i.d. random variables with E[X1] = Z. Then

1
lim ——logP(S,, > an) = ¢*(a)
n—oo N

foralla > z.

Lemma 5.2. The functions M(\),¥(X\) are continuous in D = {\ : M()\) < oo} and
differentiable in D° with

M'(N)
MO

M'(\) =E[X1eM) and '(\) =
for A€ D°.

Proof. Continuity follows from the dominated convergence theorem. Note that D is an
interval, i.e. if A} < Ao are in D, then any A € (A, \2) is also in D which follows from
M < eMT 4 eM® et € D°. Let § > 0 be small and € € (—4,5). Then w =

Ele(nte)X _enX
%. We have

bt el el 1

€ 1)

Now choose ¢ small enough so that the RHS has finite mean. Then we can apply dominated
convergence and let € — 0. O

Proof of Theorem[5.1] Replace X; by X = X;—aand S, by S, = S,—na. Then E[X;] <
0 and we have P(S,, > 0) = P(S,, > an). Also M(\) = e M ()\) and P(\) = ¥(\) — Aa.
So we need to show

We have already proved lim,,_,~o —% log P(S,, > 0) > 4*(0), so we only need to prove the
reverse inequality, equivalently,

1 ~ _
lim = logP(5, > 0) > inf P(\).
im —logP(S _0>_g0w<>

n—oo N

We now assume Z < 0 and write X,,, S, for X,,, S,,.

We can assume that P(X; > 0) > 0, since if P(X; < 0) = 1, then P(S,, > 0) = u(0)", so
LlogP(S, > 0) — log 14(0) and infy>q 1(A) < limy_e0 (A) = log p(0).

Case 1. Assume M ()\) < oo for all A\. Let = £(X). Define a new probability measure

Ox

e f(z
1o by %2(z) = 755, 50 Bolf(X1)] := By, [f(X1)] = fy Sardin(x). Also

n bt xT;
Eg[F(X1,...,X,)] = RnF(xl,...,xn)[[lA%)z).
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Define g(0) = Ey[X1] = Epﬁizz)xl] = 4¢'(#). Since p(0,00) > 0 and p(—o00,0) > 0 (from

T < 0), we get limg|_,oc ¥(0) = oo. Then there is some 7 such that 1)(n) = infg ¥)(¢). Then
¥'(n) =0, s0 g(n) = 0.
Let € > 0. We have
P(S,, > 0) > P(S,, € [0,en]) > E[e?n~IMen . 1(S,, € [0,en])]
= e~ Ileng [6"5”1 Sy € 10,en ]

= e P, (S, € [0,en]) (M (n))"

By the Central Limit Theore (using E,[X1] = 0), P,(S, € [0,en]) — 3 as n — <.
Then

> 1 P n— 00
logp(:” 20 S e +v(n) + 28 ”<S”n€ 0.n]) ne

—[nle +(n)

Taking € — 0, we get

lim llog]P’(Sn > 0) > (n) > inf P(A).

n—oo n PYSIIN

By Jensen, ¥(A\) = logE[e*] > Az. So if A < 0, since Z < 0, we get AT > 0. So
infy<p ¥ (A) = 0 and therefore infycg ¢(A) = infy>¢ 1 (A). This proves the theorem in the
case M () < oo for all \.

Case 2. (General case) Let K € N, p, := L(Sy), v = L(X1 | | X1| < K), v, = L(S, |
Nz, {|Xi] < K}). We have

Mn([07 OO)) > Vn([()? OO)):U'([_Kv K])n

Then ) )
—log 115 ([0, 00) = —log va ([0, 00)) + log ([~ K, K]).

From the previous case we know

: 1 _ > Az
nlgr()loﬁlogun([O,oo)) = )1\%% (log/_ooe du(m))
Ko
= inf (1og /_Ke dp(z) — log p([~ K, K])).
So

lim L1 0 >'f<l g )—-J
im 10 n([0,00)) = f (log | e™du(z) ) =: Jx.

n—oo N _K

=pr(N)

'L.T.: Why can we apply CLT, i.e. why is X1 € £2(uy)?
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We have ¢ 9 as K — oo and also Jx ' J as K — oo for some J. Then Jx =
infy>o ¥ (A) < 9(0) =0, so J < 0. Taking K large, we get p([0, K]) > 0, so Jg > —o0,
so J > —oo. Consider for each K € N the set {\ : ¥ (\) < J}. These sets are non-empty,

compact (as ¥ is continuous) and nested. So there is some A\g € [yt YK (N) < J}
Then

lim o 1,((0,00)) > J > Tim 4i5e(Ao) = ¥(ho) > inf ().

n—oo N T >0
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6 Brownian motion

Definition. B = (B;):>0 is called a Brownian motion in R4 starting from x € R4 if
(i) B is a continuous process (recall this means that for all w, t — By(w) is continuous)[]
(ii) By =z a.s.
(iii) By — Bs ~ N (0, (t — s)I4) for s <t.
(iv) For any s < t, By — By is independent of FB = o(B, : u < s) (we say that B has
independent increments).
If x =0, B is called a standard Brownian motion.

If (By) is a standard Brownian motion, U ~ U[0, 1], define

B
v, B t#U
0 t=U.

Then X = (X3)¢>0 has the same law as a Brownian motion, but is discontinuous, so is not
a Brownian motion.

6.1 Existence

Theorem 6.1 (Wiener’s theorem). There exists a Brownian motion on some probability
space.

Proof. We first construct a Brownian motion for d = 1 and on [0,1]. Then we extend to
R4 and then to d > 1.

First we will construct Brownian motion along dyadic rationals of [0, 1]. Recall for n > 0,
we set D, = {k27" : 0 < k < 2"} and D = {J,,>0Dn- Let (Z4,d € D) be i.i.d. random
variables with distribution N(0,1) on some probability space (2, F,P). Set By = 0,
By = Z;. Suppose we have constructed (Bg,d € D,_1) satisfying (iii) and (iv) in the
definition of Brownian motion. Let d € D, \D;,—1. Let d_- =d—2"",d; = d+2" € D).

Define B, 4B P
B, — d_ d++ d

d — .
2 o5t

IL.T.: Tt seems that later we only require B to be continuous a.s.
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Then

Baq, —Ba.  Z4
Bd+ - Bd - - 9 T atilo
Bg, — Bq_ Zq
B;—B; =—"*
By induction, By, — B4 ~ N(0, 2-("=1) and Z, is independent from this. We see that
indeed By, — By, By — Ba_ ~ N(0,27"). Let N = 24P apd N/ = Zir. Then

Var(N) = Var(N’') = 2=+ Then Cov(N —N’, N + N’) = Var(N) — Var(N’) = 0. Since
(N —N',N + N’) is a Gaussian vector with covariance 0, they are independent. Similarly
one shows that (Bg — By_s-n,d € D,,) are independent.

So we have constructed (Bg,d € D) satisfying the properties (iii) and (iv). Let ¢,s € D.
Then By — Bs ~ N(0,t — s), so if N ~ N(0,1), then we have

E[|B; — Bl"] = |t — 5| *E[|NJ?],

and E[|N|P] < oo for all p. By Kolmogorov’s continuity criterion, we get that (Bg,d € D)

is a.s. Holder continuous for all o < % For all ¢ € [0, 1], define B; = lim;_, By,, where

d; € D, d; — t as i — 00, on the event that (Bg,d € D) is a-Hdlder. On the complement

set By = 0.Then (Bt)ico,1) is a.s. a-Holder continuous.

We need to show that if 0 <ty < t; < --- < t, then (B, — By, ,) are independent and

~ N(O t; —ti—1) for all i. Let tgn) € D with tgn) — tiasn — oo and 0 < tén) < tgn) <
- < tl(C ) Then (B( n) Bt(in_)l) — By, — By, , a.s. by continuity of B. We have

( (n) _ (n) )

gl e g

j=1
k

By Lévy’s theorem, Theorem we get (B, —By,_, ) are independent and ~ N (0, ¢;—t;_1).

u2t7t wi(tj—tj_1)

3

Thus we constructed Brownian motion on [0,1]. We now extend it to Ry. Let (B{,i €
[0,1]) by i.i.d. standard Brownian motions. Define

[t]t—1
By = t |_tJt + Z B i
It is easy to check that B has the desired properties.

In RY, let BY,B?,..., B% be independent one-dimensional standard Brownian motions.
Then set B, = (B}, ..., BY). O
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6.2 Properties

Proposition 6.2. Let (Bt)¢>0 be a standard Brownian motion in R, Then

(1) (rotational invariance of Brownian motion) If U is an orthogonal d X d-matriz, then
(UB4)t>0 is also a standard Brownian motion.

(2) (scaling invariance) For all A > 0, (\/Al)t>0 is a standard Brownian motion.

(3) (simple Markov property) For all s >0, (Byys — Bs : t > 0) is a standard Brownian
motion, independent of FP = o(By 1 u < s).

Proof. Immediate from basic properties of the normal distribution. O

Theorem 6.3 (Inversion formula). Let (By)i>0 be a standard Brownian motion in R.

Define
0 t=0,
X =
tB: t>0.
t

Then (X¢)e>0 is also a standard Brownian motion.

Proof. First we check that the finite dimensional marginals are Gaussian with the same
mean and covariance as Brownian motion. The mean is clearly 0. For the covariance, let
s < t. We need to show Cov (X, X;) = Cov(By, Bs). We have

Cov (B¢, Bs) = Cov(By — Bs, Bs) + Var(Bg, Bs) = Var(B;) = s

and
Cov(Xy, Xs) = COV(tB1 SBl) =tsCov(B1,B1) =s

It remains to show that X is continuous in ¢. For ¢ > 0, this is clear by continuity of
B. So we only need to show limy\ g X; = 0. (X4t > 0,¢t € Q) has the same law as
(Bi,t > 0,t € Q), so limp 0eq X¢ = limp o 1cq By = 0 a.s. Since X is continuous at all
t >0, we get limp o Xy = limpo,c0 Xt = 0 a.s] O

The continuity at 0 gives:

Corollary 6.4. lim;_, % =0 a.s.

If we restrict ¢ in the limit to ¢t € N, this also follows from the strong law of large numbers.
If we wanted to use this to prove the corollary one need to control the oscillation of B; in
intervals [n,n + 1]. See Exercise 2.2. on Example Sheet 3.

Define 7\ = (., FP.
Theorem 6.5. Let s > 0. Then (Bys — Bs)i>0 is independent of F; .

2L.T.: Initially, this was not quite obvious to me (i.e. given a continuous function f : (0,1) — R s.t.
limso0,teq f(t) = 0, then lims o f(¢)), but it turns out that this is very easily proved by contradiction.
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Proof. Let A € Ff and let 0 < t1,...,t; and F : (R%)* — R continuous and bounded.

s

We need to show that
E[F(Bt,+s — Bs, ..., By+s — Bs)1(A)] = E[F(By,+s — Bs, . .., Bt 45 — Bs)|P(A).
Let s, \( s as n — 0o. By continuity of B and F,
Jim F(Bpyys, = By o5 Biyts, = Bs,) = F(Biits = B, -+, Biyys = Bs)-
The simple Markov property of B now gives
E[F(Bt,+s, = Bsns- -+ Btyts, — Bs, )L(A)] = E[F(Bt;+s — Bs, ..., Byys — Bs)|P(A).
The claim follows e.g. from the dominated convergence theorem. O
Theorem 6.6 (Blumenthal’s 0-1 law). JFy is trivial, i.e. for all A € F;, P(A) € {0,1}.

Proof. Let A € ]_—ar C o(B¢,t > 0). By the previous theorem, A is independent of .7-"0+ , SO
A is independent from itself, so P(A) = P(AN A) = P(A)? and the result follows. O

Theorem 6.7. Let B be a standard Brownian motion in dimension d = 1. Define T =
inf{t >0: B >0} and o =inf{t >0: B, =0}. Theno =7 =0 a.s.

Proof. For all n € N, we have {7 = 0} = [);5,{30 < e < % : B. > 0} € FP. So
{r =0} € 7 and thus P(7 = 0) € {0,1} by Blumenthal’s 0-1 law. Next we have

1
P(r =0) =limP(r <t) > limP(B; > 0) = 3

1\0
soP(r=0)=1.

Of course, we also have P(inf{t > 0 : B, < 0} = 0) = 1. Then P(¢ = 0) = 1 by the
intermediate value theorem. O

Proposition 6.8. Let (Bi)i>0 be a standard Brownian motion in d = 1. Let Sy =
SUpg<; Bs, It = infs<t Bs. Then

(1) P(Ve>0:5.>0)=P(Ve >0: 1. < 0) = 1.

(2) supy>o By = o0, infy>g By = —00 a.s.
Proof. Let t, \, 0. Then {Ve > 0: S, > 0} D {Bs, > 0 for infinitely many n}. This
event is independent of By, ,..., By, | for all k, so it is in }'t]f for all k, hence in ]-'5“ . So

P(By, > 01i.0.) € {0,1}. Furthermore,

1
P(B;, > 01i.0.) = P(limsup{B;, > 0}) > limsupP(B;, > 0) = 3

44



Hence P(Ve > 0: S; > 0) = 1 by symmetry, the same holds for I. (or apply to —B). This
proves (1).

For (2) note that sup,>oB; = sup;sq Bx 4 sup;>o VAB: = VAsupsg B So Soe =
sup;>q By as the same distribution as aSe for all a > 0. So P(Sy > z) = P(aSx > z) =
P(Soo > 2) — 1 as a — 0o, hence P(So > ) = 1 for all , so So = 00 a.s. O

Proposition 6.9. Let (By)i>0 be a standard Brownian motion in R? and C' a cone in R4
with origin at 0 and non-empty interior, so C = {tu : t > 0,u € A} where A is an subset
of STt = {z € RY: ||z|| = 1} with non-empty interior. Define Hc = inf{t > 0: B, € C}.
Then P(Ho =0) = 1.

Proof. As before we have {Hc = 0} € F;, so P(He = 0) € {0,1}. We have

P(He =0) = }i\r%IP(HC <t)>P(B; ),

and P(B; € C) = P(v/tB; € C) = P(B; € C) > 0 since C has non-empty interior. O

Theorem 6.10 (Strong Markov property). Let T be a stopping time with P(T < co) =1
and let B be a standard Brownian motion. Then (Byyr—Br,t > 0) is a standard Brownian
motion, independent of ]-":,Jf.

Proof. Let T,, = 27"[2"T"]. It is again a stopping time. Let B,(t) = Byi1, — Br,,. We
will prove that B, is a Brownian motion, independent of .7-"}; . By is clearly continuous in
t. Let F € ]-';5“. Define ng) = By po-n — Bpo—n for t > 0. This is a standard Brownian

motion (so has the same law as B), independent of F;"

g—n- For any event A,

M8

P(B,€ A, E)=S P(B, €A, T,=k" E)

B
Il
o

o

P(B® € A, T, = k2™, E)
[ ———

+
eFl

e
Il
o

P(B*®) e AP(E, T, = 2k™")

o

B
Il

0

I
=

(B € A) iIP’(E, T, = 2k
k=0
— P(B € A)P(E).

So P(B. € A, E) = P(B € A)P(E). Taking E = () gives P(B, € A) = P(B € A), so

B, has the same law as B, so B, is a standard Brownian motion. We also get that it is
independent of ]-"jfn .
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By continuity of Brownian motion, Bijs+7 — Berr = limp—oo Bits+1, — Bst1,. Since
Bt+s+Tn — Bs+Tn ~ N(O, (t — S)I), we get Bt+s+T — Bs+T ~ N(O, (t — S)I)ﬂ

Let 0 < tq1,t2,...,t; and A € ]:;5. Let F : (RY)* — R be continuous and bounded. We
have to show that

E[F(B+r — Br,...,Bt,+7 — Br)1(A)| = E[F(By+17 — Br, ..., Bi,+17 — Br)|P(A).
Since A € .7-";, we get A € .7-"%; for all n. Then
E[F(Bt,+1, — Br,, - .., Bt,+1, — Br,)1(A)] = E[F (B4, +1, — Br13,» - . -, Bty 1, — Br,,)|P(A)
Now let n — oo and use dominated convergence. O

Remark. Let B be a one-dimensional Brownian motion. Take 7 = inf{t > 0 : B; =
maxo<s<1 Bs}. Then 7 is not a stopping time:

(1) 7<1as.,

(2) If 7 were a stopping time, then by the strong Markov property, (Bi+r — Br) would
be a Brownian motion. Then for ¢ > 0 sufficiently small, By, — B, would have to
be negative (by definition of 7), a contradiction.

Theorem 6.11 (Reflection principle). Let B be a standard Brownian motion and let T
be an a.s. finite stopping time. Define

By = Bil(t <T)+ (2Br — B)1(t > T).

Then B is also a standard Brownian motion. We call B Brownian motion reflected at 7.
Proof. Define BIST) = By 17 — By for t > 0. This is a Brownian motion, independent of
]-';5 by the strong Markov property. So BT) is independent of (Bt)o<t<T. Also —BT) g
a Brownian motion, independent of .7-"; . So

((Bozer, BT) 2 ((Bozi<r, —BD).

Let f, g be continuous paths with g(0) = 0. Let
vr(f,9)(t) = fl(t <T) + (fr + ge—1)L(t > T)

be the concatenation of f,g. Let A be the product o-algebra on C' = C([0,00)). Then
¥ : C x C — C and ¥y is measurable w.r.t. A ® A and A.

Then 47 (B, BT)) = B and (B, —BT)) = B. It follows that B < B. O

SL.T.: Why?
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Corollary 6.12 (Reflection principle). Let B be a standard Brownian motion in d = 1
and let a < b, b > 0. Define Sy = supy<s<; Bs. Then

P(St Z b, Bt S (Z) == [P(Bt Z 2b — CL).

Proof. Let Ty, = inf{t > 0 : B; = b}. Since sup;>q By = o0 a.s., we get Tj < oo a.s. Note
that {S; > b} = {T}, < t}. Consider B reflected at T. We have Br, = b by continuity of
Brownian motion. Then

P(S; >b,B; <a)=P(T, <t,B; <a) =P(T, <t,B; > 2b—a).
Now {§t >2b—a} C{T, <t} asa <b. Then

P(T, <t,B; >2b—a) =P(B; >2b—a) =P(B; > 2b—a).

O
Corollary 6.13. S; 4 | By|.
Proof.
P(S; > a) =P(S; > a,B; < a)+P(S; > a,B; > a)
=P(B, > a) + P(B; > a)
=2P(B; > a) =P(|By| > a).
O

Corollary 6.14. If T, = inf{t > 0: B; =z}, then T, 4 (Bll)z.

6.3 Martingales for Brownian motion

Theorem 6.15. Let B be a standard Brownian motion in d = 1. Then (B;) and (B? —t)
are (F;")-martingales.

Proof. Integrability is clear (by the Gaussian property). If s < ¢, then
E[B; | Ff]=E[B; — Bs | F,/1 + E[Bs | FJ'] = Bs a.s.
by the strong Markov property. Similarly

E(B? | F] = E[(B; — Bs)? + 2By(B; — B,) + B2 | ]
=E[(B; — By)*| + 0 + B:
—t—s+ B?
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Corollary 6.16. Let B be a standard Brownian motion ind =1, x,y > 0. Then

X

P(T, < T_,) = Py

and
E[T, NT_;] = xy.

Theorem 6.17. Let B be a standard Brownian motion in R%, u € RY. Then

Jult

M} = exp ((u, By) — T)

is an (F;")-martingale.

ul?t

Proof. For integrability note that Elexp((u, B))] = exp(5—). For ¢t > s, we have
Elexp((u, By)) | 7] = Elexp((u, By — Bs)) exp({u, By)) | F]

= exp((u, Bs)) exp (\u;t) .

O]

Let (Sp)n>0 be a simple symmetric random walk on Z. Given a function f, we want to
modify f(S,) to get martingale. We have

BLf(Sust) — F(S0) | So,--- Sal = 3 F(Sn+ 1)+ 37(5 — 1) = F(S)

1

= 5 (f(Sn +1) = 2f(Sn) + f(Sn = 1))

1~

where Af(z) = f(x + 1) — 2f(z) + f(x — 1) is the discrete Laplacian. So

is a martingale.
Going from (S,,) to Brownian motion, we will replace A by the Laplacian A.

Theorem 6.18. Let (B;) be a standard Brownian motion in R, d > 1. Let f(t,x) :
Ry x R? be Ot int and C? in x. Suppose everything is bounded. Then

0o 1

t
My = f(t, B)) — £(0, By) — /0 (24 3A) (s, Bds, 120

is an (F;")-martingale.
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Proof. M, is integrable since f and its derivatives are bounded. Next the martingale
property. We have

o 1

t
Mi= My = f(t 5. Bri) = F(5.8) = | (G4 58) s+ B )ar

So
E[f(t + s, Bits) | Fi 1 = E[f(t + 5, Beys — Bs + Bs) | F.]

=/ f(t+ s,z + Bs)P(Bys — Bs € dx)
R

= /f(t+s,:v+Bs)IF’(Bt € dr)

_ / f(t + 5,2+ By)pi(0,2)da

lz—y|2

where p;(z,y) = (2nt)~%2e~ 2 . By Fubini, we have

E[/Ot ((;)7’ + %A)f(r + S,Br+s>d7“‘f;_} = /OtE[t(; + %A)f(r%— 8, Brys)
1

t
o
B /o /]Rd <5 + 2A>f(7" + 8,2 + Bs)p, (0, z)dxdr

f;“]dr

lim/t/ <£+1A)f(r+sx+B) (0, z)dxzdr
=  Ja \Or 2 ) s)Pr (U,

e—0

Integrating by parts, we have:
¢ o 1
/6 /Rd <a + §A)f(r + s,x + Bs)pr (0, z)dzdr
= / f(s+t,z+ Bs)pe(0,2) — f(s+¢€), Bs + 2)p:(0, x)dz
Rd
¢ 0
- / f(r+s,x+ Bs)=—pr (0, z)drdx

Rd Je 87‘

t
1

+ / f(r+s,x+ Bs)=Ap,(0, z)dzdr
£ Rd 2

We have gpr = %Apr (Heat equation). So the last two integrals cancel. Then

E[Mye — M, | 7]+ f(s, B,) = lim /]R fs e Byt 2)pe(0,2)da

= lim E[f(s + &, Bsye) | Fy |
e—0
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Il
~ =

[f(s,Bs) | F]
(s, Bs)

6.4 Transience and recurrence

If B is a Brownian motion with By = x, we can write By = x + Et, where B is a standard
Brownian motion. Write P, for the probability measure to indicate that B starts at x.

Theorem 6.19. Let B be a Brownian motion in d > 1.

(1) If d = 1, then B is point-reccurrent, i.e. for all x, the set {t > 0 : By = x} is
unbounded a.s.

(2) If d = 2, then for all x,z € R% e > 0, the set {t : |B; — z| < €} is unbounded P,-a.s.
( “neighborhood recurrent”) However, Po(3t > 0: By = z) = 0.

(3) If d > 3, then Po(|By| — o0 ast — oo) =1 (“transient”)

Proof. The d =1 case is immediate, since limsup By = oo, liminf B; = —c0 a.s.

Next let d = 2. It suffices to take z = 0. First we prove that {y : |y| < e} is hit with
probability 1 under P,. Let ¢ € CZ(R?) be such that ¢(y) = log|y| if £ < |y| < R. Let
T. =inf{t > 0: |By| <€} and T = inf{t > 0: |B;| = R}. We first want to determine
P.(T: < Tr). Agp = 0 in the annulus € < |z| < R. By Theorem M; = o(By) —
%fg Ap(Bs)ds is a martingale. Take H = T.ATgr. Then H < co a.s. and Myrg = @(Bian)
is a bounded martingale. By the optional stopping theorem, E,[p(Bg)] = log|z|, so

P,(T: < Tgr)loge + P, (Tr < T¢)log R = log |x|.
Also P, (T: < Tr) + P, (T: > Tr) = 1, so we obtain

log R — log |z|

]Pa:(Ts < TR) = (*)

log R —loge
We have limpg_,o Tr = 00 a.s., hence P, (T < o0) = 1, so P,(|B;| < e for some t > 0) = 1.

Next,
P, (|Bi| < e for some ¢t > n) = /Px(\Bt — Bp, +y| <efort>n)p,(x,y)dy

= /IP’y(|Bt| <egfort>0)py(z,y)dy =1

So {t > 0:|By| < ¢} unbounded P,-a.s. Taking ¢ — 0 in gives P,(Tp < Tr) = 0, so
P, (To < 00) = 0, in other words

P,(3t>0:B; =0)=0.
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This holds for all x # 0. So it remains to show
0=Py(3t>0:B,=0)
We have
Po(Ft >0: B =0) :Clbi{%PO(Ht>a:Bt:O)

= lim /Pm(EIt >0:B;=0)pa(0,z)dz =0
a\O
=0

Finally, let d > 3. By only considering the first three coordinates, we can assume d = 3.

Then argue similarly as before, but with f(y) = % = ﬁ in e <|y| < R. Then we get

9

Define A,, = {|Bg| > n for all t > T,;5}. Then
Po(A7,) =Po(3t > 0 : [Byyr, ;| < n)

noting that T},3 < oo Py-a.s. (Bt+Tn3 — BTn3 )t>0 is a standard Brownian motion, indepen-
dent from Br ; by the strong Markov property. Then

c n 1
PO(AH) = EO[PBTng, (Tn < oo)] = ﬁ — ﬁ

So > Py(A¢) < oo, hence eventually we are in (A,,) a.s., so |By| — o0 a.s. ast — oo [

6.5 Donsker’s invariance principle

Recall that on C([0,1],R) we have the sup-norm, given by | f|| = supscp ) |f(¢)|. This
turns C([0,1],R) into a metric space so we can talk about convergence of probability
measures. The product o-algebra (i.e. the one that makes the coordinate maps measurable)
coincides with the Borel o-algebra.

Theorem 6.20 (Donsker’s invariance principle). Let (X,,)n,>1 be a sequence of i.i.d. R-
valued random variables with E[X1] = 0, Var(X;) = 02. Set So =0, S, = X1+ --- + X,
and define
St =1 —{t}H)Sy + {t}S|)+1
fort > 0. Then S
N Nt
S = (m)ogtg

converges in distribution to a standard Brownian motion (Bt>t€[0,1]; i.e. for all continuous,
bounded functions F : C([0,1],R) — R,

E[F(S™)] = E[F(B)]

as N — oo.
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Theorem 6.21 (Skorokhod embedding). Let u be a distribution on R with mean 0 and
variance 0. Then there exists a probability space (Q, F,P) on which a standard Brownian
motion (By) is defined and a filtration (Fi)i>0 and a sequence of stopping times 0 = Tp <
Ty < ... such that setting S, = Br,, we have

(1) (Ty,) is a random walk with increments of mean o2,

(2) (Spn) is a random walk with increments distribution .
Proof. Define Borel measures p4 on [0,00), by pt(A) = u(£A) for A € B([0,00)). There
exists a rich probability space (2, F,P) with a standard Brownian motion (B;) and i.i.d.
(X, Yn)nen with law

v(dz,dy) = C(z + y)p—(dz) ps(dy)

where C'is the constant such that C' [ zu(dz) = 1. Set Ty = 0. Inductively, define
Tn+1 = 1nf{t > Tn . Bt — BTn = *Xn+1 or Yn+l}-

Now check that this works. O
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7 Poisson Random Measures

Recall that X is Poisson distributed with parameter A > 0, written X ~ Poi(\) or X ~
P(N\), if P(X =n) = e 2} when n € Ng. We write X ~ Poi(0) if X = 0 and X ~ Poi(c0)
if X = o0.

Proposition 7.1.

(1) (Addition property) Let (N) be independent random variables with distribution P ().
(2) (Splitting/Thinning property) Let N ~ P(X) and let (Yy,) be i.i.d., independent of
N, and let P(Y; = j) =: p; for j = 1,....k. Let N; = SN _ 1(Yyn = 7). Then

m=1

Ny, ..., Ny are independent and N; ~ P(Ap;) for alli=1,... k.

Let (E,E&, 1) be a o-finite measure space. A Poisson random measure with intensity p is
a map

M:Qx&—ZyU{o}
satisfying for any disjoint sets (Ay) in &:
() MUy Ar) = 2o M(Ag),
(i1) (M (Ag))r are independent random variables,
(iii) For any k, M(Ag) ~ P(u(Ag)).
Here the dependence on ) is omitted.

In other words, for each w € Q, we get a measure M (w,—) and for each A € &, we get a
Poisson random variable M (—, A).

Let E* = {Z+ U{oo}-valued measures on £}. Define X : E* x £ — Z; U {oo} and for
A€, Xa: B — Zi U{oo} by X(m,A) = Xa(m) =m(A) (i.e. canonical pairing). Let
E*=0(Xa:A€8).

Theorem 7.2. There exists a unique probability measure p* on (E*,E*) such that under
w*, X is a Poisson random measure with intensity (.

Proof. Uniqueness. Let Aq,..., A; be disjoint and nq,...,nx € Z,. Then let A* =
{m € E* : m(A1) = n1,...,m(Ag) = ni}. The collection of such sets is a m-system that
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generates the o-algebra £*. For p* as in the statement of the theorem, we must have

e Ay (B(A5))"
(AR = [ e rA) 22 7
jl_‘[l TLj!

so p* is uniquely determined.

Existence. First assume p(E) < co. Let N ~ P( (E)) real valued and (Y;,) Q-valued be
independent (and independent of N) with law ( o) (on some perhaps different probability
space ). For all A € &, set

N
= 1(Ya € A).
n=1

Let Aq,...,A; be disjoint. Define the real-valued random variable X, by X, = k iff
Y, € A;. Then

N N
M(A) =D "1V € A)) = > 1(X, = ).
n=1 n=1
Now P(X,, = j) =P(Y,, € A4;) = u((E’)) By the splitting probability we get that the M (A;)
are independent and M(A;) ~ P(u(E)“44) = P(u(4))).

General case. Since F is o-finite, there exist disjoint sets (Ej)gen such that |, By = E
and p(Ey) < oo for all k. Let (M), be independent Poisson random measures with
intensity p|g, (—) := p(— N Ey). For A € £, define

M(A) =" My(ANEy).
keN

We have Mi(A N Ey) ~ Poi(u(A N Ey)). By the addition property, M (A) ~ Poi(u(A)).
The independence is clear by the independence of the (Mj). We can view M as a random
variable 2 — E*. Then take u* to be the law of M. O

Proposition 7.3. Let M be a Poisson random measure of intensity . If A is such that
u(A) < oo, then given M(A) = k, we can write M = Zle dx,, where X1,..., X} are

y o s(=nA)
i.i.d. and X; A

54



	1 Conditional Expectation
	1.1 Some Recap
	1.2 Conditional Expectation in the Discrete Case
	1.3 Conditional Expectation in General
	1.4 Examples

	2 Discrete-time Martingales
	2.1 Stopping Times
	2.2 Gambler's Ruin
	2.3 Martingale Convergence Theorem
	2.4 Doob's Inequalities
	2.5 Lp-convergence
	2.6 Backwards martingales
	2.7 Applications

	3 Continuous-Time Processes
	3.1 Convergence theorems and inequalities
	3.2 Kolmogorov's continuity criterion

	4 Weak convergence
	4.1 Tightness
	4.2 Characteristic functions

	5 Large deviations
	6 Brownian motion
	6.1 Existence
	6.2 Properties
	6.3 Martingales for Brownian motion
	6.4 Transience and recurrence
	6.5 Donsker's invariance principle

	7 Poisson Random Measures

