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1 Preliminaries and Review
Definition. A (first order) language L consists of

(i) a set F of function symbols and for each f ∈ F a positive integer nf , the arity of
f ,

(ii) a set R of relation symbols and for each R ∈ R a positive integer nR, the arity of
R,

(iii) a set C of constant symbols.

Remark. Constant symbols could bee seen as function symbols of arity 0. So some
authors only include (i) and (ii) in the definition and allow nf = 0 in (i).

Examples.

(a) Lgp is the language of groups, it has two function symbols · and −1 of arity 2 resp.
1, a constant symbol 1 and no relation symbols.

(b) Llo is the language of linear orders. It has only one binary relation symbol <.

Definition. Given a language L = (F ,R, C), an L-structure consists of

(i) a non-empty set M , called the domain,

(ii) for each function symbol f ∈ F , a function fM : Mnf →M ,

(iii) for each relation symbol R ∈ R, a relation RM ⊆MnR ,

(iv) for each constant symbol c ∈ C, an element cM ∈M .

fM , RM , cM are called the interpretations of the symbols f,R, c resp. in M .

Remarks.

1. We sometimes ignore the distinction between an L-structure and its domain, and
between symbols in L and their interpretations in the structure when it is clear from
the context.

2. We writeM = (M, {fi}i∈I , {Rj}j∈J , {ck}k∈K) for a structure in L = ({fi}i∈I , {Rj}j∈J , {ck}k∈K).

Examples.

(a) (R+, {·,−1}, {1}) is an Lgp-structure.

(b) (Z, {+,−}, 0) is another Lgp-structure.

(c) (Q, {<}) is an Llo-structure.

Using

• the symbols of L,
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• connectives ∧, ¬ (and consequently also ∨,→,↔),

• quantifiers ∃ (and consequently also ∀),

• variables x0, x1, x2, . . . , y, z etc. (arbitrarily many),

• punctuation (, ),

• ⊥,

• equality

define recursively L-terms and L-formulas.

Notation. The letters u, v, x, y, z usually stand for variables while a, b, c stand for con-
stants. If φ is a formula, φ(x0, . . . , xn) indicates that the xi are free variables in φ, same
for terms. We write x = x0, . . . , xn for an (n+1)-tuple of variables and same for constants.
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2 Embeddings
Definition. Let L = (F ,R, C) be a language and M,N be L-structures. An embedding
of M into N is an injective map α : M → N such that:

(i) for all f ∈ F , and a = a1, . . . , anf
∈M ,

α(fM (a1, . . . , anf
)) = fN (α(a1), . . . , α(nf )),

(ii) for all R ∈ R, and a1, . . . , anR ∈M ,

(a1, . . . , anR) ∈ RM ⇐⇒ (α(a1), . . . , α(anR)) ∈ RN ,

(iii) for each c ∈ C,
α(cM ) = cN .

A bijective embedding α : M → N is called an isomorphism. If there exists an isomorphism
between M and N , we write M ≃ N .

Examples.

(i) Let G1, G2 be groups, viewed as Lgp-structures, then α : G1 → G2 is an embedding
iff it is an injective group homomorphism.

(ii) If A,B are linear orders, viewed as Lop-structures, then α : A→ B is an embedding
iff α is injective and such that for a, b ∈ A, a < b iff α(a) < α(b).

Proposition 2.1. Let M,N be L-structures, α : M → N an embedding. Let a ∈ Mk,
and t(x) a term with |x| = k. Then

α(tM (a)) = tN (α(a)),

where α(a) = (α(a1), . . . , α(ak)).

Proof. This is a standard proof by induction on the complexity of the term t(x).

• Case 1: t is a variable xi. Then α(tM (a)) = α(ai) and tN (α(a)) = α(ai).

• Case 2: t is a constant c. Then it follows from (iii) in the definition of embeddings.

• Case 3: Let t(x) = f(t1(x), . . . , tnf
(x)). Then α(tMi (a)) = tNi (α(a)) by induction

and then α(tM (a)) = tN (α(a)) by (i) in the definition of embeddings.

Notation. Recall that if ϕ(x) is an L-formula, M is an L-structure and a ∈ M |x|, then
M |= ϕ(a) means that ϕ holds in M under the assignment xi 7→ ai (defined recursively).
Also recall that atomic L-formulas are those of one of the following two forms:
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(i) t1 = t2 where t1, t2 are L-terms,

(ii) R(t1, . . . , tmR) where R is a relation symbol and t1, . . . , tmR are terms.

Proposition 2.2. Let M,N be L-structures, α : M → N an embedding. Let φ(x) be an
atomic formula and a ∈M |x|. Then

M |= φ(a)⇐⇒ N |= φ(α(a)).

Proof. Immediate from the definitions and Proposition 2.1.

Exercise: Show that the same holds more generally for quantifier-free formulas instead of
just atomic ones.

Warning. Embeddings do not necessarily preserve all formulas. Consider e.g. (Z, <) and
(Q, <) as Llo-structures. Then the map α : Z→ Q, n 7→ n is an embedding. Let φ(x1, x2)
be the formula ∃z(x1 < z ∧ z < x2). Then Z ̸|= φ(1, 2), but Q |= φ(1, 2) = φ(α(1), α(2)).

Exercise: Let M,N be L-structures, α : M → N an isomorphism. Let φ(x) be any formula
and a ∈M |x|. Then

M |= φ(a)⇐⇒ N |= φ(α(a)).

Remark. The converse of Proposition 2.2 also holds, i.e. a map α : M → N that preserves
atomic formulas is an embedding (exercise).
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3 Theories and Elementarity
Let L be a fixed language. Recall that a sentence is a formula with no free variables.

Definition. An L-theory T is a set of L-sentences. An L-structure M is a model of T
if all sentences in T hold in M , i.e. M |= σ for all σ ∈ T . We write Mod(T ) for the class
of all models of T .

If M is a L-structure, then the theory of M is

Th(M) = {σ | σ is an L-sentence and M |= σ}.

Example. Consider L = Lgp. Let Tgp be the theory consisting of

(i) ∀x, y, z ((x · y) · z = x · (y · z)),

(ii) ∀x (x · 1 = 1 · x = x),

(iii) ∀x (x · x−1 = x−1 · x = 1).

If G is a group, clearly G |= Tgp, but Th(G) ⊋ Tgp.

Definition. L-structures M,N are elementary equivalent if

Th(M) = Th(N).

In this case we write M ≡ N .

Remark. If M ≃ N , then M ≡ N , but the converse does not hold in general. E.g. we
will later, see Corollary 4.7, show that

(Q, <) ≡ (R, <)

as Llo-structures, but they are clearly not isomorphic.

Definition. Let M,N be L-structures. Then:

(i) An embedding β : M → N is elementary if for all L-formulas φ(x) and a ∈M |a|,

M |= φ(a)⇐⇒ N |= φ(β(a)).

(ii) When M is a subset of N and the inclusion map M ↪→ N is an embedding, then M
is a substructure of N , written M ⊆ N .

(iii) When M is a subset of N and the inclusion map M ↪→ N is an elementary embed-
ding, then M is an elementary substructure of N , written M ⪯ N .

Example. LetM = ([0, 1], <) and N = ([0, 2], <) be Llo-structures. ThenM⊆ N . Also
M ≃ N (e.g. via x 7→ 2x), hence M ≡ N . But M ̸⪯ N ! Indeed, consider the formula
φ(x) = ∀y (y < x ∨ y = x). Then M |= φ(1), but N ̸|= φ(1).
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Definition. Let M be an L-structure, A ⊆M a subset. Then we define the language

L(A) := L ∪ {constant symbols ca | a ∈ A}.

We interpret M as an L(A)-structure by cMa := a. In this context, the elements of A are
called parameters.

Notation. Let M,N be L-structures and A ⊆M ∩N a subset. Then we write M ≡A N
and say that M is elementary equivalent to N over A, if M,N satisfy exactly the same
L(A)-sentences.

Remark. If M ⪯ N , then M ≡M N .

Lemma 3.1 (Tarski-Vaught Test). Let N be an L-structure, A ⊆ N a subset. TFAE:

(i) A is the domain of an elementary substructure of N .

(ii) For all L(A)-formulas φ(x) with one free variable x,

N |= ∃xφ(x) =⇒ N |= φ(b) for some b ∈ A. (∗)

Proof. “(i)⇒ (ii)” is easy: By elementarity,

N |= ∃xφ(x) =⇒ A |= ∃xφ(x)

=⇒ A |= φ(b) for some b ∈ A
=⇒ N |= φ(b) for some b ∈ A.

“(ii)⇒ (i)” First show that A is the domain of a substructure. It suffices to show (exercise)

(a) for all c ∈ C, cN ∈ A. [Use (∗) with ∃x (x = c). Then N |= ∃x (x = c), so N |= b = c
for some b ∈ A, so cN = b ∈ A.]

(b) for f ∈ F , a ∈ Anf , we have f(a) ∈ A. [Similar to (a) with ∃x f(a) = x.]

So A ⊆ N is a substructure. Next let χ(x) be an L-formula and a ∈ A|x|. We have to
show A |= χ(a)⇐⇒ N |= χ(a). We argue by induction on the complexity of χ(x).

• If χ(x) is atomic, the claim follows from A ⊆ N and Proposition 2.2.

• If χ(x) = ¬ψ(x). Then

A |= χ(a)⇐⇒ A ̸|= ψ(a)

⇐⇒ N ̸|= ψ(A)

⇐⇒ N |= χ(a).

• If χ(x) = ψ(x) ∧ ξ(x). Similar as before.
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• If χ(x) = ∃y ψ(x, y). Then for a ∈ A|x|, ψ(a, y) is an L(A)-formula with one free
variable. Then

A |= χ(a)⇐⇒ A |= ∃y ψ(a, y)

=⇒ A |= ψ(a, b) for some b ∈ A
=⇒ N |= ψ(a, b) for some b ∈ A
=⇒ N |= ∃y ψ(a, y)

=⇒ N |= χ(a).

For the converse we need to use (∗), so suppose N |= ∃y ψ(a, y). Then N |= ψ(a, b)
for some b ∈ A. By induction hypothesis A |= ψ(a, b), so A |= ∃y ψ(a, y).

Definition. We define the cardinality of the language L to be

|L| := |{φ(x) | φ(x) is an L-formula}|.

Note that always |L| ≥ ω (we use ω both for the ordinal and the cardinality). Also
|L(A)| = |L|+ |A|(= max{|L|, |A|}) for parameter sets A.

Definition. Let λ be an ordinal. Then a chain of sets of length λ is a sequence (Ai)i<λ
where the Ai are sets such that Ai ⊆ Aj whenever i ≤ j < λ.

Similarly, a chain of L-structures of length λ is a sequence (Mi)i<λ such that Mi ⊆Mj is
a substructure whenever i ≤ j < λ. The union of the chain (Mi)i<λ is defined as follows:

• the domain is M =
⋃
i<λMi.

• if c ∈ C, cM := cMi for any i < λ.

• if f ∈ F , a ∈Mnf , then fM (a) = fMi(a) where i is large enough such that a ∈Mnf

i .

• if R ∈ R, then RM =
⋃
i<λR

Mi.

Note that these interpretations are well-defined because Mi ⊆ Mj is a substructure for
i ≤ j.

Theorem 3.2 (Downward Löwenheim-Skolem). Let N be an L-structure with |N | ≥ |L|
and A ⊆ N a subset. Then for any cardinal λ such that |L| + |A| ≤ λ ≤ |N | there is an
elementary substructure M ⪯ N such that

(i) |M | = λ,

(ii) A ⊆M .

Proof. We build inductively a chain (Ai)i<ω of subsets of N containing A such that
⋃
Ai

is the required substructure M . Let A0 ⊇ A be any subset of N with |A0| = λ. Suppose
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we already constructed Ai (with |Ai| = λ). Let (φk(x))k<λ be an enumeration of L(Ai)-
formulas with one free variable and such that N |= ∃xφk(x). Then let

Ai+1 := Ai ∪ {ak ∈ N | N |= φk(ak), k < λ}.1

Now let M =
⋃
i<ω Ai. Claim: M ⪯ N . We use TVT (Lemma 3.1). Let φ(x, y) be an

L-formula. Claim: If N |= ∃y φ(a, y) for a ∈M |x|, then N |= φ(a, b) for some b ∈M . Let
i < λ be such that a ∈ Ai. Then φ(a, y) is among the formulas considered at stage i + 1
in the construction of M , hence there is a witness to ∃y φ(a, y) in Ai+1 ⊆M .

Remark. We have the following special case: If L is a countable language, T an L-theory
with an infinite model, then T has a countable model.

1Remark by L.T.: This should probably mean that that we choose one ak for each k < λ such that
N |= φk(ak), instead of taking all of them. Otherwise it would not be clear why the cardinality is
bounded by λ.

9



4 Two Relational Structures
Definition. An Llo-structure is a linear order if it satisfies

1. ∀x¬(x < x),

2. ∀x, y, z ((x < y ∧ y < z)→ x < z),

3. ∀x, y (x = y ∨ x < y ∨ y < x).

A linear order is dense if it satisfies

4. ∃x, y (x < y),

5. ∀x, y, (x < y → ∃z (x < z ∧ z < y)).

A linear order has no endpoints if

6. ∀x (∃y (x < y) ∧ ∃z (z < x)).

We let Tlo be the theory consisting of 1,2,3 and Tdlo be the theory consisting of 1-6.

Remark. If M |= Tdlo, then |N | ≥ ω.

Let L be any language.

Definition. A partial embedding between L-structures M,N is an injective map p :
dom(p) ⊆ M → N, where dom(p) is a subset of M , such that p preserves functions,
relations and constants as in the definition of embeddings.

M and N are said to be partially isomorphic if there is a non-empty collection I of partial
embeddings from M to N such that

(1) if p ∈ I, a ∈M , then there is p̂ ∈ I such that p ⊆ p̂ and a ∈ dom p̂.

(2) if p ∈ I, b ∈ N , then there is p̂ ∈ I such that p ⊆ p̂ and b ∈ ran p̂.

We sometimes write “p : M → N is partial map” for a partial map instead of p : dom p ⊆
M → N .

Lemma 4.1 (“Back and Forth”). If |M | = |N | = ω and M,N are partially isomorphic
via I, then M ≃ N .

Proof. Enumerate M and N , say M = {ai | i < ω}, N = {bi | i < ω}. We define
inductively a chain (pi)i<ω of elements of I such that ai−1 ∈ dom(pi) and bi−1 ∈ ran(pi).
Let p0 be any element in I. Suppose pi is given. Use (1) in the definition to get p̂ ∈ I
such that p̂ ⊇ pi and ai ∈ dom p̂. Then use (2) to find pi+1 ∈ I such that pi+1 ⊇ p̂ and
bi ∈ ran pi+1. Then π =

⋃
i<ω pi is the required isomorphism.
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Lemma 4.2 (Extension). Let M |= Tlo and N |= Tdlo. Let p : dom(p) ⊆ M → N be
a finite partial embedding, i.e. dom p is finite. Let c ∈ M . Then there is a finite partial
embedding p̂ such that p̂ ⊇ p and c ∈ dom(p̂).

Proof. Let dom p = {a0, . . . , an} with ai < aj if i < j.

• Case 1: c < a0. Since N has no endpoints, we find d ∈ N such that d < p(a0).

• Case 2: ai < c < ai+1 for some i. We find d ∈ N such that p(ai) < d < p(ai+1) by
density of N .

• Case 3: an < c. Similar to 1.

Now define p̂ by p̂(c) = d on dom p̂ = dom p ∪ {c}.

Theorem 4.3. Let M,N |= Tdlo be such that |M | = |N | = ω. Then M ≃ N .

Proof. Let I = {q : M → N | q is finite partial embedding}. Then I is non-empty as it
contains the empty map. By Lemma 4.2, I satisfies properties (1) and (2) in the definition
of partial isomorphism. Hence Lemma 4.1 applies, i.e. M ≃ N .

Definition. An L-theory T is consistent if there is an L-structure M that models T . If
σ is an L-sentence, write T ⊢ σ if for all L-structures M we have

M |= T =⇒ M |= σ.

The theory T is complete if for all L-stentences σ, either T ⊢ σ or T ⊢ ¬σ.

Remark. Th(M) is complete for all L-structures M . We often seek S ⊆ Th(M) such
that S is complete. Then S is an axiomatisation of Th(M).

Definition. If |L| = ω, an L-theory T is ω-categorical if whenever M,N |= T and
|M | = |N | = ω, then M ≃ N .

So by Theorem 4.3, Tdlo is ω-categorical.

Theorem 4.4. If T is an ω-categorical theory with no finite models, then T is complete.

Proof. Let M,N |= T and φ be an L-sentence such that M |= φ. We have to show that
N |= φ. By the Downward Löwenheim-Skolem theorem there are elementary substructures
M ′ ⪯ M,N ′ ⪯ N with |M ′| = |N ′| = ω. By ω-categoricity, M ′ ≃ N ′. Then M ′ |= φ, so
N ′ |= φ and then N |= φ.

Corollary 4.5. Tdlo is complete.

Definition. Let f : dom(f) ⊆ M → N be a partial map. f is elementary if for all
L-formulas φ(x) and a ∈ (dom f)|x|, we have

M |= φ(a)⇐⇒ N |= φ(f(a)).
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Remark. A map f is elementary iff every finite restriction of f is elementary.

Proposition 4.6. Let M,N |= Tdlo and let p : M → N be a partial embedding. Then p
is an elementary map.

Proof. By the above remark we may assume that p is a finite partial embedding. By
Donward Löwenheim-Skolem, there are M ′ ⪯ M,N ′ ⪯ N with |M ′| = |N ′| = ω and
dom p ⊆M ′, ran p ⊆ N ′. By an argument identical to the proof of Lemma 4.1 with p0 = p
and I the collection of finite partial embeddings between M ′ and N ′, we can extend p to
an isomorphism π : M ′ ≃ N ′. In particular, π is an elementary map, therefore so is its
restriction p.

Corollary 4.7. (Q, <) ⪯ (R, <).

Proof. The inclusion map is an embedding, therefore it is elementary by the proposition.

Definition. Let Lgph = {R} where R is a binary relation symbol. A graph is an Lgph-
structure M which satisfies

1. ∀x (¬R(x, x)),

2. ∀x, y (R(x, y)→ R(y, x)).

Elements of M are called vertices, elements of RM edges.

Let Tgph be the theory consisting of the two axioms above.

We want to formalise the following properties of a graph G: However we choose finite
subsets U, V ⊆ G, we can find z ∈ G \ (U ∪ V ) such that z is R-related to all vertices in
U and not R-related to any vertex in V .

A graph is called a random graph if it satisfies ∃x, y (x ̸= y) (non-triviality) and for each
n ∈ N, the axiom

∀x0 . . . xn, y0 . . . yn

(
n∧

i,j=0

xi ̸= yj → ∃z

(
n∧
i=0

z ̸= yi ∧
n∧
i=0

R(xi, z) ∧
n∧
i=0

¬R(z, yi)

))
(rn)

Trg is the theory that says that R is a graph relation that is non-trivial in the above sense
and satisfies rn for all n ∈ N.

Proposition 4.8. Trg is consistent.

Proof. Define R on ω as follows: For i, j ∈ ω with i < j, R(i, j) holds, i.e. {i, j} is an edge,
iff the i-th digit in the binary expansion of j is 1.

Exercise: Prove (ω,R) is a model for Trg.
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Lemma 4.9 (Extension). Let M |= Tgph, N |= Trg. Let p : dom(p) ⊆ M → N be a finite
partial embedding and c ∈ M . Then there is a finite partial embedding p̂ : M → N such
that p̂ ⊇ p and c ∈ dom p̂.

Proof. We may assume c /∈ dom p. Let U = {a ∈ dom(p) | R(a, c)} be the set of neighbors
of c in dom p and V = {b ∈ dom p | ¬R(b, c)}. By a suitable instance of (rn), we
find d ∈ N such that R(d, p(a)) for all a ∈ U and ¬R(d, p(b)) for all b ∈ V . Then let
p̂ = p ∪ {(c, d)}.

Theorem 4.10. Let M,N |= Trg with |M | = |N | = ω. Then M ≃ N .

Proof. Same as Theorem 4.3 but with Lemma 4.9 instead of Lemma 4.2.

Theorem 4.11. Trg is ω-categorical and complete. Every partial embedding between mod-
els of Trg is elementary.

Remark. The unique countable model of Trg is called the countable random graph, or
Rado’s graph. Rado’s graph is universal for finite graphs, i.e. every finite graph embeds
into it, and ultrahomogeneous, i.e. every isomorphism between finite induced subgraphs
extends to an automorphism.
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5 Compactness
Definition. Let I be a set. A filter on I is a subset F ⊆ P(I) such that

1. I ∈ F ,

2. X ∩ Y ∈ F whenever X,Y ∈ F ,

3. if X ∈ F , X ⊆ Y ⊆ I, then also Y ∈ F .

F is proper if F ̸= P(I) or, equivalently, if ∅ /∈ F . An ultrafilter is a proper filter U such
that for all X ⊆ I, either X ∈ U or I \X ∈ U .

Proposition 5.1. Let U be a proper filter on I. TFAE:

(a) U is an ultrafilter.

(b) U is maximal among all proper filters.

(c) If X ∪ Y ∈ U , then X ∈ U or Y ∈ U .

Proof. Exercise.

Definition. Let (Mi)i∈I of L-structures. The direct product of the Mi is the set

X =
∏
i∈I

Mi = {f : I →
⋃
i∈I

Mi | f(i) ∈Mi ∀i ∈ I}.

We write a = ⟨ai | i ∈ I⟩ for a ∈ X.

Let U be an ultrafilter on I. We define the relation ∼U on X by

a ∼U b⇐⇒ {i ∈ I | a(i) = b(i)} ∈ U.

Proposition 5.2. ∼U is an equivalence relation.

Proof. Reflexivity and symmetry are immediate. For transitivity let a, b, c ∈ X such
that a ∼U b, b ∼U c. Let A = {i ∈ I | a(i) = b(i)}, B = {i ∈ I | b(i) = c(i)} and
C = {i ∈ I | a(i) = c(i)}. Then A,B ∈ U and thus A ∩ B ∈ U . Since A ∩ B ⊆ C, we
obtain C ∈ U , hence a ∼U c.

Write aU for the equivalence class [a]∼U under the relation ∼U .

Proposition 5.3. Let ak, bk ∈ X for k = 1, . . . , n, be such that ak ∼U bk. Then

(a) if f is an n-ary function symbol, then

⟨fMi(a1(i), . . . , an(i)) | i ∈ I⟩ ∼U ⟨fMi(b1(i), . . . , bn(i)) | i ∈ I⟩

14



(b) if R is an n-ary relation symbol, then

{i ∈ I | (a1(i), . . . , an(i)) ∈ RMi} ∈ U ⇐⇒ {i ∈ I | (b1(i), . . . , bn(i)) ∈ RMi} ∈ U

Proof. To simplify notation assume n = 1 and let a = a1, b = b1.

(a) Let A = {i ∈ I | a(i) = b(i)} and C = {i ∈ I | fMi(a(i)) = fMi(b(i))}. Clearly
A ⊆ C and so C ∈ U as A ∈ U , hence ⟨fMi(a(i)) | i ∈ I⟩ ∼U ⟨fMi(b(i)) | i ∈ I⟩.

(b) is similar (exercise).

Definition. Given a set I, (Mi)i∈I a family of L-structures, U an ultrafilter on I, we
define an L-structure on the ultraproduct∏

i∈I
Mi

/
∼U = X/∼U =: XU

as follows:

(i) if c ∈ C, then cXu := ⟨cMi(i) | i ∈ I⟩U .

(ii) if f ∈ F and a1U , . . . , a
nf

U ∈ X
nf

U , we define

fXU (a1U , . . . , a
nf

U ) = ⟨fMi(a1U (i), . . . , a
nf

U (i)) | i ∈ I⟩.

(iii) if R ∈ R, and a1U , . . . , a
nR
U ∈ XU , then

(a1U , . . . , a
nR
U ) ∈ RXU ⇐⇒ {i ∈ I | (a1(i), . . . , anR(i)) ∈ RMi} ∈ U.

Proposition 5.3 shows that the L-structure on XU is well-defined. So far we have not used
that U is an ultrafilter and not merely a filter. However, we will finally need this in the
following theorem:

Theorem 5.4 ( Loś). In the above setting the following is true:

(i) For all terms t(x1, . . . , xn), a1U , . . . , a
n
U ∈ XU , we have

tXU (a1U , . . . , a
n
U ) = ⟨tMi(a1(i), . . . , an(i)) | i ∈ I⟩U .

(ii) For all L-formulas φ(x1, . . . , xn) and a1U , . . . , a
n
U ∈ XU , we have

XU |= φ(a1U , . . . , a
n
U )⇐⇒ {i ∈ I |Mi |= φ(a1(i), . . . , an(i))} ∈ U.

(iii) For all L-sentences σ,

XU |= σ ⇐⇒ {i ∈ I |Mi |= σ} ∈ U.
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Proof.

(i) The usual argument via induction over the complexity of the term.

(ii) By induction on φ(x). The base case φ(x) atomic follows from (i).

Suppose φ ≡ ¬χ for some L-formula χ(x1, . . . , xn). Let Aχ = {i ∈ I | Mi |=
χ(a1(i), . . . , an(i))}. By induction hypothesis, XU |= χ(a1U , . . . , a

n
U ) ⇐⇒ Aχ ∈ U .

Then
χU ̸|= χ(a1U , . . . , a

n
U )⇐⇒ Aχ /∈ U

U ultrafilter⇐⇒ I \Aχ ∈ U.

Hence

XU |= ¬χ(a1U , . . . , a
n
U )⇐⇒ {i ∈ I |Mi |= ¬χ(a1(i), . . . , an(i))} ∈ U.

The case φ ≡ χ ∧ ψ is an exercise.

Finally, consider the case φ(x) = ∃y ψ(x, y). To simplify notation assume |x| = 1.
Define Aφ = {i ∈ I |Mi |= ∃y φ(a(i), y)}. We have to show

XU |= φ(aU )⇐⇒ Aφ ∈ U.

For “⇒” assume XU |= ∃y ψ(aU , y), i.e. XU |= ψ(aU , bU ) for some bU ∈ XU . Let
Aψ := {i ∈ I | Mi |= ψ(a(i), b(i))}. Then Aψ ∈ U by induction hypothesis and so
Aφ ∈ U as Aψ ⊆ Aφ.

For “⇐” let i ∈ Aφ. Then Mi |= ∃y ψ(a(i), y). Pick a witness b(i). For i ∈ I \ Aφ,
let b(i) be arbitrary in M . Define bU = ⟨b(i) | i ∈ I⟩U . Let Aψ = {i ∈ I | Mi |=
ψ(a(i), b(i))}. Then Aψ ⊇ Aφ by our choice of the b(i). Since Aφ ∈ U , also Aψ. By
the induction hypothesis, XU |= ψ(aU , bU ) and therefore XU |= ∃y ψ(aU , y).

(iii) Immediate from (ii).

Definition. A subset S ⊆ P(I) has the finite intersection property (FIP) if for all n ∈ N,
A0, . . . , An ∈ S, we have

⋂n
i=0Ai ̸= ∅.

Remark. Proper filters on I have the FIP.

Lemma 5.5.

1. If S ⊆ P(I) has the FIP, then S can be extended to a proper filter.

2. Any proper filter can be extended to an ultrafilter.

Proof.

1. Let F ⊆ S be defined as

F = {X ⊆ I | X ⊇
n⋂
i=0

Ai, for some n ∈ N and Ai ∈ S}.
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Then check that this works.

2. Immediate from Zorn’s lemma noting that the union of a chain of filters is again a
filter.

Definition. An L-theory T is finitely consistent if every finite subset of T is consistent,
i.e. has a model.

Theorem 5.6 (Compactness). A theory T is consistent if and only if it is finitely consis-
tent.

Proof. “⇒” is clear.

“⇐” Let S ⊆ T be finite. Let MS be any L-structure such that MS |= S. Let I be the
set of finite subsets of T . For φ ∈ T , let Aφ = {S ∈ I | φ ∈ S}. We claim that the set

{Aφ | φ ∈ T}

has the FIP. Indeed, let φ1, . . . , φn. Then {φ1, . . . , φn} ∈ I and {φ1, . . . , φn} ∈
⋂n
i=1Aφi ,

so the intersection is non-empty. Therefore there is an ultrafilter U on I with Aφ ∈ U

for all φ ∈ T . Then let XU =
∏
S∈IMS

/
∼U be the ultraproduct of the MS w.r.t. this

ultrafilter. Claim: If φ ∈ T , then XU |= φ. To prove this we use  Loś’ theorem: XU |= φ
iff {S ∈ I | MS |= φ} ∈ U . But Aφ ∈ U , so Aφ = {S ∈ I | φ ∈ S} ⊆ {S ∈ I | MS |= φ},
so {S ∈ I |MS |= φ} ∈ U .

Definition. A type p(x) in L is a set of L-formula whose free variables are among x =
(xi)i<λ. A type p(x) is

• satisfiable in an L-structure M if there is a tuple a ∈ M |x| such that M |= φ(a) for
all φ(x) ∈ p(x). In this case we write M |= p(a), M |= p(x) or M,a |= p(x). We
say a realises or witnesses the type p(x) in M .

• satisfiable if there is an L-structure M such that M |= p(x).

• finitely satisfiable in M if every finite subset of p(x) is satisfiable in M .

• finitely satisfiable if every finite subset of p(x) is satisfiable.

We sometimes say (finitely) consistent instead of (finitely) satisfiable.

Remark. p(x) may be finitely satisfiable in M , but not satisfiable in M . E.g. let M =
(ω,<). Let φn(x) say “there are at least n distinct elements less than x”. Then take
p(x) = {φn(x) | n ∈ ω}. It is finitely satisfiable in M , but not satisfiable in M .

Theorem 5.7 (Compactness for types). Every finitely satisfiable type is satisfiable.
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Proof. Let p(x) be an L-type with x = (xi)i<λ. Expand L to L′ = L ∪ {ci | i ∈ λ}
where the ci are new constant symbols. Then p(c) is a finitely consistent theory in L′. By
compactness, there is an L′-structure M such that M |= p(c). But M is also an L-structure
by forgetting the interpretations of the c. Then M, cM |= p(x).

Lemma 5.8. Let M be an L-structure and a = (ai)i<λ an enumeration of M . Let q(x) =
{φ(x) | M |= φ(a)} where |x| = λ1 Then q(x) is satisfiable in an L-structure N iff M
embeds elementarily into N .

Proof. “⇒” Let q(x) be satisfiable in N , i.e. there is b ∈ Nλ such that N |= q(b), i.e.
N |= φ(b) for any φ(x) ∈ q(x). Then for any L-formula χ(x),

M |= χ(a)⇐⇒ χ(x) ∈ q(x)⇐⇒ N |= χ(b).2

Define β : M → N by β : ai 7→ bi. Then β is an elementary embedding.

“⇐” is clear.

Remark. Let A ⊆ M be a subset. We can works with types in L(A). In particular we
can work with types in L(M). A type in L(A) is said to have parameters in A, or to be
over A. Also, if p(x) is a type in L(M), there is an enumeration a of M and and L-type
q(x, z) such that p(x) = q(x, a). We obtain the following restatement of the lemma:

Lemma 5.9. Let Th(MM ) be the L(M)-theory of M . Suppose N |= Th(MM ), then M
embeds elementarily in N .

Theorem 5.10. If M is an L-structure and p(x) a type in L(M) that is finitely satisfiable
in M , then p(x) is realised (satisfiable) in some elementary extension N ⪰M .

Example. Let M = ((0, 1)∩Q, <). Let an = 1− 1
n with n ∈ ω\{0}. Let φn(x) = (x > an).

Let p(x) = {φn(x) | n ∈ ω \ {0}}. Then p(x) is a type in L(M) that is finitely satisfiable,
but not satisfiable. However, (Q, <) |= p(1), and M ⪯ (Q, <) by Proposition 4.6.

Proof of Theorem 5.10. Let a = (ai)i<λ be an enumeration of M and let q(z) = {φ(z) |
M |= φ(a)} where |z| = λ and z ∩ x = ∅. Write p(x) = p′(x, a) where p′(x, z) is an
L-type. Now p′(x, z) ∪ q(z) is finitely satisfiable in M . By compactness for types, there
are an L-structure N and c ∈ N |x|, b ∈ Nλ such that N |= p′(c, b) ∪ q(b). In particular,
N |= q(b), so by Lemma 5.8, ai 7→ bi is an elementary embedding M → N . We may
assume M ⪯ N .

Theorem 5.11 (Upward Löwenheim-Skolem). Let M be an infinite L-structure and λ ≥
|M |+ |L|. Then there is N such that M ⪯ N and |N | = λ.

1Here we use the convention that φ(x) only uses finitely many variables in x.
2Remark by L.T.:To see “⇐” note that if M ̸|= χ(a), then M |= ¬χ(a), so ¬χ(x) ∈ q(x) and thus
N |= ¬χ(b), so N ̸|= χ(b).
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Proof. Let (xi)i<λ be distinct variables. Let p(x) = {xi ̸= xj | i < j < λ}. Then p(x) is
finitely satisfiable in M , so p(x) is realised in some N ⪰M by Theorem 5.10. In particular,
|N | ≥ λ. Now by Downward Löwenheim-Skolem, we may assume that in fact |N | = λ.
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6 Saturation
Definition. Let λ be an infinite cardinal, M an infinite L-structure. Then M is λ-
saturated if it realises every type p(x) ∈ L(A) such that

(i) p(x) is finitely satisfiable in M ,

(ii) A ⊆M is such that |A| < λ,

(iii) x is a single variable.

M is saturated if it is λ-saturated for λ = |M |.

Remark. If λ > |M |, then M cannot be λ-saturated. Indeed, consider the type p(x) =
{x ̸= a | a ∈M}, then p(x) is finitely satisfiable in M , but not satisfiable in M .

Definition. Let M be an L-structure, A ⊆ M a subset, b a tuple in M . Then the type
of b in M over A is

tpM (b/A) := {φ(x) type in L(A) |M |= φ(b)}.

We sometimes omit the M if it is clear from the context.

Remarks.

(i) tpM (b/A) is complete, i.e. for all φ(x) in L(A), either φ(x) ∈ tp(b/A) or ¬φ(x) ∈
tp(b/A).

(ii) If M ⪯ N , A ⊆M , b ∈M |b|, then tpM (b/A) = tpN (b/A).

There is a relation between types and elementary maps:

Proposition 6.1. If f : A ⊆M → N is an elementary map. Then

(a) M ≡ N (and if M ≡ N , then the empty map ∅ : ∅ ⊆M → N is elementary).

(b) If a is an enumeration of dom f , then

tpM (a/∅) = tpN (f(a)/∅).

More generally, if B ⊆ dom(f) ∩N and f |B = idB, then for every b ∈ dom(f)|b|,

tp(b/B) = tp(f(b)/B).

(c) Let a enumerate dom(f) and let p(x, a) be finitely satisfiable in M . Then p(x, f(a))
is finitely satisfiable in N .

Proof. Easy from the definitions. For (c) let {φ1(x, a), . . . , φn(x, a)} ⊆ p(x, a). Then
M |= ∃x

∧n
i=1 φi(x, a), so by elementarity N |= ∃x

∧n
i=1 φ(x, f(a)).
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If p(x, a) is satisfiable in M , then p(x, f(a)) need not be satisfiable in N .

Theorem 6.2. Let N,λ be such that |L| ≤ λ ≤ |N |. Then TFAE:

(i) N is λ-saturated.

(ii) If f : M → N is a partial elementary map such that |f | < λ, and b ∈M , then there
is f̂ ⊇ f , elementary and such that b ∈ dom f̂ .

(iii) If p(z) is a type in L(A) with A ⊆ N , |A| < λ, |z| ≤ λ, and p(z) is finitely satisfiable
in N , then it is satisfiable in N .

Proof. “(i)⇒ (ii)” Let M,f, b be as in (ii). Let dom f = a = (ai)i<λ be an enumeration
of dom f . Let p(x, a) = tpM (b/a). Since p(x, a) is satisfiable in M , p(x, f(a)) is finitely
satisfiable in N and hence satisfiable in N since N is λ-saturated. Let c ∈ N be such that
N |= p(c, f(a)). Then f̂ = f ∪ {(b, c)} is the required elementary map.

“(ii) ⇒ (iii)” Let p(z) be as in (iii). By Theorem 5.10, p(z) is realised in some M ⪰ N
by some a, say, so |a| = |z| ≤ λ. Since A ⊆ N ⪯ M , the partial map idA : A ⊆ M → N
is an elementary map. Idea: Extend idA to a partial elementary map f : M → N such
that dom f ⊇ a. Build f in stages. Let f0 = idA. At stage i + 1, use (ii) to define fi+1

on ai. At limit stages µ < |a|, let fµ =
⋃
i<µ fi. Eventually f =

⋃
i<|a| fi is the required

extension of idA.

“(iii)⇒ (i)” is trivial.

Corollary 6.3. Let M,N be saturated models of the same cardinality. If there is a partial
elementary map f : M → N such that |f | < |M |, then M ≃ N . In particular, if M ≡ N ,
then M ≃ N .

Proof. Given f : M → N , use Theorem 6.2 (ii) to extend f to α : M ≃ N by a back-and-
forth argument.

If M ≡ N , then ∅ : M → N is elementary.

Corollary 6.4. Models of Tdlo and Trg are ω-saturated.

Proof. This follows from Lemma 4.2 and Lemma 4.9 using Theorem 6.2 “(ii)⇒ (i)”.

So (Q, <) is saturated, and (R, <) is ω-saturated. But (R, <) is not saturated. E.g.
consider p(x) = {x > q | q ∈ Q}. Then p(x) is finitely satisfiable in R and p(x) ∈ Llo(Q),
but is not satisfiable in R.

Definition. An isomorphism α : M → M is called an automorphism. The collection
of automorphisms of M is a group, denoted Aut(M). Given a subset A ⊆ M , we let
Aut(M/A) := {α ∈ Aut(M) | α|A = idA}.

Definition. The L-structure N is said to be
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(i) λ-universal if for every M such that |M | ≤ λ and M ≡ N , there is an elementary
embedding β : M → N . N is universal if it is |N |-universal.

(ii) λ-homogeneous if every elementary map f : N → N with |f | < λ extends to an
automorphism of N . N is homogeneous if it is |N |-homogeneous.

Warning. For some authors property (i) is called λ+-universality and (ii) is called strong
λ-homogeneity (cf. ultrahomogeneity vs. homogeneity).

Theorem 6.5. Let N be such that |N | ≥ |L|. Then

N is saturated⇐⇒ N is homogeneous and universal

Proof. “⇒” Assume that N is saturated and let M ≡ N with |M | ≤ |N |. Let a = (ai)i<|M |
enumerate M , and let p(x) = tp(a/∅). Then p(x) is finitely satisfiable in M (since it is
satisfiable in M), hence p(x) is finitely satisfiable in N as M ≡ N . By saturation, there
is b ∈ N |x| such that N |= p(b). Then ai 7→ bi is an elementary embedding M → N . So N
is universal. For homogeneity, use Corollary 6.3 with M = N .

“⇐” We show that if M ≡ N , b ∈ M , f : M → N elementary with |f | < |N |, then
there is f̂ ⊇ f with b ∈ dom f̂ . By Theorem 6.2 this then shows that N is saturated.
By Downward Löwenheim-Skolem, we may assume |M | ≤ |N |. Since M ≡ N , there is an
elementary embedding β : M → N by universality. Then f ◦ β−1 : β(dom(f))→ ran f is
an elementary map N → N and satisfies |f ◦ β−1| < |N |. By homogeneity of N , f ◦ β−1

extends to α ∈ Aut(N). Then f ∪ {(b, α(β(b)))} is the required extension f̂ . Note that f̂
is elementary as it is a restriction of α ◦ β.

Definition. Let a ∈ N |a|, A ⊆ N . Then

ON (a/N) := {α(a) | α ∈ Aut(N/A)}

is the orbit of a over A.

If φ(x) is an L(A)-formula, then

φ(N) := {b ∈ N |x| | N |= φ(b)}

is the set defined by φ(x). A subset of N is definable over A if it defined by some formula
in L(A).

There are analogous notions for “type-definable” sets.

Remark. If a, b are tuples in N , A ⊆ N and |a| = |b|, then TFAE:

(i) tp(a/A) = tp(b/A)

(ii) ⟨ai 7→ bi | i < |a|⟩ ∪ idA is an elementary map.

Proposition 6.6. Let N be λ-homogeneous, A ⊆ N such that |A| < λ, and a ∈ N |a| such
that |a| < λ. Then ON (a/A) = p(N), where p(x) = tp(a/A) and p(N) = {b | N |= p(b)}.
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Proof. “ON (a/A) ⊆ p(N)” is clear, since if b = α(a) for some α ∈ Aut(N/A), then
tpN (b/A) = tpN (a/A).

“ON (a/A) ⊇ p(N)”. IfN |= p(b), then the map {(ai, bi) | i < |a|}∪idA is elementary, hence
by λ-homogeneity of N , the map extends to α ∈ Aut(N). In particular, α ∈ Aut(N/A)
and α(a) = b.
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7 The Monster Model
Let T be a complete theory without finite models. Idea: Work in a “large” saturated
model of T that embeds elementary every model of T that you might be interested in.
Such a “large”, “very” saturated structure is called the monster model of T , and is usually
denoted by U ; or M.

Terminology and Notation.

When working in U |= T , we say

• “φ(x) holds”, written |= φ(x), when U |= ∀xφ(x).

• “φ(x) is consistent” if U |= ∃xφ(x).

• A type p(x) is consistent or satisfiable if p(U) ̸= ∅, i.e. ∃a ∈ U |x| such that U |= p(a).

• If |U | = κ, a cardinality is small if it is < κ. Sets, tuples etc. are small if they have
small cardinality.

• A model is M ⪯ U with small cardinality.

Conventions.

• Tuples have small length

• Formulas have parameters in U .

• Definable sets have the form φ(U) for φ(x) in L(U).

• Type-definable sets have the form p(U) for some type p(x) in L(A) where A ⊆ U is
small.

Notation.

• A,B,C will denote parameter sets (small).

• tp(a/A) = tpU (a/A).

• O(a/A) = OU (a/A).

• If p(x), q(x) are types, then “p(x)→ q(x)” means that p(U) ⊆ q(U).

Informally, one can think of a type as an infinite conjunction of formulas.

Proposition 7.1. Let p(x), q(x) be satisfiable (i.e. satisfiable in U) and in L(A), L(B)
resp. Suppose that p(U)∩q(U) = ∅. Then there are φ1(x), . . . , φn(x) ∈ p(x), ψ1(x), . . . , ψn(x) ∈
q(x) such that

n∧
i=1

φi(x) −→ ¬
n∧
i=1

ψi(x)
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Proof. If p(U) ∩ q(U) = ∅, then p(x) ∪ q(x) is not satisfiable. Then, by saturation of U ,
p(x) ∪ q(x) is not finitely satisfiable.

Remark. Let φ(U, b) be a definable set and α ∈ Aut(U). Then α[φ(U, b)] = φ(U,α(b)).
For “⊆”, let c = α(a), with a ∈ U |a| and |= φ(a, b). Then |= φ(α(a), α(b)) = φ(c, α(b)).
“⊇” is similar.

Similarly, if p(x, z) is a type in L and b ∈ U |z|, then α[p(U, b)] = p(U,α(b)).

Definition. A set D ⊆ Uλ with λ < |U | is invariant under A ⊆ U if it satisfies one of
the following equivalent properties:

• For all α ∈ Aut(U/A), we have α[D] = D.

• For all α ∈ Aut(U/A) and for all a ∈ D|a|, O(a/A) ⊆ D.

• For all α ∈ Aut(U/A) and for all a ∈ D|a|, b |= tp(a/A)⇒ b ∈ D.

For the equivalence of the last two statements see Proposition 6.6.

Proposition 7.2. Let A ⊆ U be small. For φ(x) in L(U), TFAE:

(i) There is ψ(x) in L(A) such that

|= ∀x [φ(x)↔ ψ(x)].

(ii) φ(U) is invariant under A.

Proof. “(i) ⇒ (ii)” is clear since φ(U) = ψ(U) and ψ(U) is invariant over A, see e.g. the
above remark.

“(ii)⇒ (i)” Let φ = φ(x, z) be an L-formula such that φ(U, b) is invariant over A for some
b ∈ U |z|. Let q(z) = tp(b/A) and c ∈ q(U) so that c |= q(z). Then {(bi, ci) | i < |b|} ∪ idA
is an elementary map, so by homogeneity there is α ∈ Aut(U/A) such that α(b) = c. Then
φ(U, b) = α[φ(U, b)] = φ(U, c). Therefore q(z) → ∀x [φ(x, z) ↔ φ(x, b)]. By a version of
Proposition 7.1 (exercise), there is χ(z) ∈ q(z) such that

|= χ(z)→ [φ(x, z)↔ φ(x, b)].

Then ∃z [χ(z) ∧ φ(x, z)] is the required formula in L(A).

Proposition 7.3. For φ(x), a formula in L, TFAE:

(i) There is a quantifier-free formula ψ(x) such that

|= ∀x [φ(x)↔ ψ(x)].

(ii) For all partial embeddings g : U → U , for all a ∈ dom(g)|a|, we have

|= φ(a)↔ φ(g(a)).
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Proof. “(i)⇒ (ii)” is clear since partial embeddings preserve quantifier-free formulas.

“(ii)⇒ (i)” For a ∈ U |a|, let

qftp(a) = {ψ(x) ∈ tp(a) | ψ(x) is quantifier-free}.

Let D = {q(x) | q(x) = qftp(a) for some a ∈ φ(U)}. Claim: φ(U) =
⋃
q(x)∈D q(U). The

inclusion “⊆” is clear by definition. For the other containment let q(x) = qftp(a) with
a ∈ φ(U). Let b |= q(x). Then ai 7→ bi is a partial embedding and so by assumption in
(ii), φ(b) holds. Hence b ∈ φ(U) and thus q(U) ⊆ φ(U). This proves the claim.

Then in particular, q(x) → φ(x). By a version of Proposition 7.1 there is ψq(x) ∈ q(x)
such that ψq(x)→ φ(x). Also φ(x)→ ψq(x) for some q. Then

φ(x)←→
∨
q∈D
{ψq(x) | ψq(x)→ φ(x) and ψq(x) ∈ q(x)}

Again by a version of Proposition 7.1 there are q1, . . . , qn ∈ D such that

|= φ(x)←→
n∨
i=1

ψqi(x)

and so
∨n
i=1 ψqi(x) is the required quantifier-free formula.

Definition. An L-theory T has quantifier elimination if for every φ(x) in L there is a
quantifier-free formula ψ(x) such that

T ⊢ ∀x [φ(x)↔ ψ(x)].

Theorem 7.4. Let T be a complete theory with an infinite model. TFAE:

(i) T has quantifier elimination.

(ii) Every partial embedding p : U → U is elementary.

(iii) For every partial embedding p : U → U such that |p| < |U | and b ∈ U , there is a
partial embedding p̂ ⊇ p such that b ∈ dom(p̂).

Proof. “(i)⇒ (ii)” is clear since partial embeddings preserve quantifier-free formulas.

“(ii)⇒ (i)” All partial embeddings are elementary, so any φ(x) is preserved by all partial
embeddings, so φ(x)↔ ψ(x) for some quantifier-free ψ(x) by Proposition 7.3.

“(ii) ⇒ (iii)” Let p : U → U be a partial embedding such that |p| < |U |. Then p is
elementary, so there is α ∈ Aut(U) such that p ⊆ α. For b ∈ U , p ∪ {(b, α(b))} is the
required p̂.

“(iii) ⇒ (ii)” Let p : U → U be a partial embedding, and let p0 ⊆ p be finite (or small).
Extend p0 to α ∈ Aut(U) by (iii) using a back-and-forth argument. Then p0 is the
restriction of an isomorphism, hence elementary.
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Remark. A fourth equivalent condition is (iii) with p finite (exercise).

It follows that Trg and Tdlo have quantifier elimination.

Definition. An element a ∈ U is definable over A ⊆ U if there is φ(x) in L(A) such
that φ(U) = {a}. a is algebraic over A if there is φ(x) in L(A) such that |φ(U)| < ω and
a ∈ φ(U). A formula φ(x) such that |φ(U)| < ω is said to be algebraic.

The algebraic closure of A ⊆ U is

acl(A) = {a ∈ U | a is algebraic over A}.

If acl(A) = A, A is algebraically closed. The definable closure of A is

dcl(A) = {a ∈ U | a is definable over A}.

Remark. Any finite set is definable: {a1, . . . , an} is defined by
∨n
i=1(ai = x) (in L({a1, . . . , an})?).

Proposition 7.5. For a ∈ U , A ⊆ U , TFAE:

(i) a ∈ dcl(A).

(ii) O(a/A) = {a}.

Proof. “(i) ⇒ (ii)” Let φ(x) in L(A) define a over A. Then φ(U) is invariant under
Aut(U/A) and so O(a/A) ⊆ {a} = φ(U).

”(ii)⇒ (i)” O(a/A) is definable (in L(A∪{a})) and invariant over A, so by Proposition 7.2,
O(a/A) is defined by a formula in L(A).

Theorem 7.6. Let a ∈ U,A ⊆ U . TFAE:

(i) a ∈ acl(A).

(ii) |O(a/A)| < ω

(iii) a ∈M for any model M such that A ⊆M .

Proof. “(i)⇒ (ii)” If a ∈ acl(A), there is φ(x) in L(A) such that φ(a) holds and |φ(U)| <
ω. Since φ(U) is invariant over A, O(a/A) ⊆ φ(U).

“(ii) ⇒ (i)” If |O(a/A)| < ω, then O(a/A) is definable. But O(a/A) is invariant under
A, so by Proposition 7.2, there is φ(x) in L(A) such that φ(U) = O(a/A), so |φ(U)| < ω.
Since a ∈ φ(U), a ∈ acl(A).

“(i) ⇒ (iii)” Let φ(x) in L(A) such that U |= φ(a) ∧ ∃=nxφ(x). In particular, U |=
∃=nxφ(x). Now let M ⪯ U , A ⊆ M . Then M |= ∃=nxφ(x). But then φ(M) = φ(U)
since both sets are finite of the same size, so a ∈ φ(M) ⊆M .

“(iii) ⇒ (i)” Let a /∈ acl(A), and tp(a/A) = p(x). Then for φ(x) ∈ p(x), we have
|φ(U)| ≥ ω. We can showthat |p(U)| ≥ ω and then |p(U)| = |U | (see Example Sheet 2).
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Let M ⊇ A be a model. Then p(U) \M ̸= ∅ (by cardinality). Let b ∈ p(U) \M . By
homogeneity there is α ∈ Aut(U/A) such hat α(b) = a. Then αM is a model that contains
A, but not a.

Proposition 7.7. Let a ∈ U , A ⊆ U small. Then

(i) If a ∈ acl(A), then a ∈ acl(A0) for some finite subset A0 ⊆ A.

(ii) A ⊆ acl(A).

(iii) If A ⊆ B, then acl(A) ⊆ acl(B).

(iv) acl(acl(A)) = acl(A).

(v) acl(A) =
⋂
M⊇AM where M ranges over models containing A.

Proof.

(i) Clear.

(ii) In fact A ⊆ dcl(A) ⊆ acl(A).

(iii) Clear.

(iv) By (ii) and (iii), acl(A) ⊆ acl(acl(A)). For the other inclusion let a ∈ acl(acl(A)).
By Theorem 7.6, a ∈ M for all M ⊇ acl(A). But M ⊇ acl(A) ⇔ M ⊇ A by the
same theorem, hence a ∈M for all models M containing A, so a ∈ acl(A).

(v) Clear by Theorem 7.6.

Proposition 7.8. Let β ∈ Aut(U), and A ⊆ U . Then β[acl(A)] = acl(β[A]).

Proof. Suppose a ∈ acl(A), so |= φ(a, b) where b ∈ A|b| and |φ(U, b)| < ω. Then |=
φ(β(a), β(b)) and |φ(U, β(b))| < ω and so β(a) ∈ acl(β[A]). The other inclusion is similar,
or apply what we just proved to β−1, β[A] instead of β,A.
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8 Strongly Minimal Theories
Definition. Let M be an infinite L-structure. A subset A ⊆ M is called cofinite if
|M \A| < ω.

Remark. Finite and cofinite sets are always definable in any structure.

We will only be concerned with infinite M .

Definition. Let M be an L-structure. Then M is minimal if all its definable subsets are
finite or cofinite. M is strongly minimal if it is minimal, and so are all its elementary
extensions. If T is a consistent theory without finite models, T is strongly minimal if for
every L-formula φ(x, z), there is n ∈ ω \ {0} such that

T ⊢ ∀z [∃≤nxφ(x, z) ∨ ∃≤nx¬φ(x, z)].

Example. Let L = {E} where E is a binary relation symbol. Let M be an L-structure
where E is interpreted as an equivalence relation with exactly one equivalence class of size
n for each n ∈ ω \ {0} and no infinite equivalence classes. We can prove (exercise) that
Th(M) has quantifier elimination. Also it is not difficult to see that there is an elementary
extension M ⪯ N that has an infinite equivalence class. So M is minimal (definable sets
are boolean combinations of equivalence classes thanks to quantifier elimination), but N
is not.

From now on, T is a complete, strongly minimal theory without finite models.

Definition. If a ∈ U , B ⊆ U , then a is independent from B if a /∈ acl(B). The set B is
independent if for all b ∈ B, b /∈ acl(B \ {b}).

Notation. We will often write Ab for A ∪ {b}, A \ b for A \ {b}, etc.

Theorem 8.1. Let B ⊆ U , a, b ∈ U \ acl(B), then

a ∈ acl(Bb)⇐⇒ b ∈ acl(Ba).

Proof. Assume that a ∈ acl(Bb), but b /∈ acl(Ba). Let φ(x, y) ∈ L(B) be such that

|= φ(a, b) ∧ ∃≤nxφ(x, b)

for some n ∈ ω \ {0}. Consider ψ(a, y) = φ(a, y)∧ ∃≤nxφ(x, y) in L(Ba). Now |= φ(a, b),
so |ψ(a, U)| ≥ ω as b /∈ acl(Ba). By strong minimality, |¬ψ(a, U)| < ω. Let M be a
model such that B ⊆ M . Then M ∩ ψ(a, U) ̸= ∅ (by cardinality). Let c ∈ M ∩ ψ(a, U).
Then a ∈ acl(Bc), and B ⊆ M, c ∈ M , so acl(Bc) ⊆ M and thus a ∈ M . Then
a ∈

⋂
M⊇B = acl(B), a contradiction.

Main examples.
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1. LetK be an infinite field. The language ofK-vector spaces is LK = {+,−, 0, {λ}λ∈K}
where the λ’s are unary function symbols. Interpretations of +,−, 0 are obvious and
interpretation of λ is multiplication by the scalar λ, we write λx for λ(x). The theory
TVSK includes the following axioms:

• axioms for abelian groups for +,−, 0.

• axioms for scalar product, e.g.

– for each λ ∈ K,
∀x, y [λ(x+ y) = λx+ λy.]

– for each λ1, λ2, µ ∈ K such that λ1λ2 = µ,

∀x [λ1(λ2x) = µx.]

– etc.

• We also require non-triviality: ∃x [x ̸= 0].

We can prove (with some work) that TVSK is complete and has quantifier elimination.

Then:

• a term is a linear combination: λ1x1 + · · ·+ λnxn.

• atomic formulas are equalities between terms.

• atomic formulas with one free variable and parameters are equivalent to formu-
las of the form λx = a. Therefore such formulas define singletons.

• quantifier-free formulas with one variable and parameters define finite or cofinite
sets.

By quantifier elimination, a model of TVSK is strongly minimal. Moreover, for
A ⊆ M |= TV SK , acl(A) = ⟨A⟩, the linear span. Also a /∈ acl(A) iff a is linearly
independent from A. A set A is independent iff it is linearly independent.

Remark. If K is finite, one can define T∞
VSK , the theory of infinite-dimensional

vector space over K (more later).

2. The language of rings is Lring = {+, ·,−, 0, 1}. Then ACF is the Lring-theory that
includes:

• axioms for abelian group using +,−, 0.

• axioms for commutative monoids (·, 1).

• field axioms

• For each 0 < n < ω, the axiom

∀x0 . . . xn ∃y [x0 + x1y + · · ·+ xny
n = 0].
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For p prime, let χp be the sentence 1 + 1 + · · ·+ 1 = 0 where there are p 1’s on the
left hand side.

Then ACFp = ACF ∪ {χp} and AFC0 = ACF ∪ {̸ χp | p prime}.

ACF0 and ACFp for given p are both complete and have quantifier elimination.
Then

• atomic formulas are polynomial equations.

• If A ⊆ M |= ACF0/p, an atomic formula in Lring(A) with one free variable is
equivalent to p(x) = 0 where p(x) ∈ F [x] where F is the subfield generated by
A.

• Therefore, atomic formulas as above define finite sets

• Quantifier-free formulas define finite/cofinite sets.

By quantifier elimination, ACF0, ACFp are strongly minimal.

Definition. Let B ⊆ C ⊆ U . Then B is a basis of C if B is independent and C ⊆ acl(B).

Lemma 8.2. If B is independent and a /∈ acl(B), then {a} ∪B is independent.

Proof. Assume that a∪{B} is not independent. Let b ∈ B such that b ∈ acl(aB \b). Since
B is independent, b /∈ acl(B \ b). We assumed a /∈ acl(B \ b). Then a ∈ acl(bB \ b) = aclB
by Theorem 8.1, a contradiction.

Corollary 8.3. If B ⊆ C ⊆ U , TFAE:

(i) B is a basis of C.

(ii) B is a maximal independent subset.

Theorem 8.4. Let C ⊆ U small. Then

(i) any independent B ⊆ C extends to a basis of C.

(ii) if A,B are bases of C, then |A| = |B|.

Proof.

(i) Immediate from Zorn’s lemma.

(ii) Assume that |A| < |B|.

Suppose first that |B| ≥ ω. Assume |A| < |B|. For a ∈ A, let Da ⊆ B be finite
such that a ∈ acl(Da). Let D =

⋃
a∈ADa. Then A ⊆ acl(D), and |D| < |B|. Then

A ⊆ acl(D) and A is a basis, so C ⊆ acl(D) and B ⊆ acl(D) which contradicts the
independence of B.
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Now suppose |B| < ω. Among those B, choose B such that |B \A| is minimal. Let
b ∈ B\A. Let B′ be a maximal independent subset of A∪B\b containing B\b. Then
B′ is a basis of acl(AB \ b). Since C ⊆ acl(A), we have C ⊆ acl(AB \ b) ⊆ acl(B′).
So B′ ⊆ C, B′ is independent and acl(C) ⊆ acl(B), hence B′ is a basis of C. But
|B′ \A| = |(B′ \ b) \A| < |B \A|, contradicting the minimality of |B \A|.

Definition. Let C ⊆ U , acl(C) = C. Then the dimension of C, denoted dimC, is the
cardinality of a basis of C.

Proposition 8.5. Let f : U → U be partial elementary, b /∈ acl(dom f), c /∈ acl(ran f).
Then f ∪ {(b, c)} is elementary.

Proof. Let a enumerate dom f , let φ(x, a) be a formula in L(a). Claim: |= φ(b, a) ↔
φ(c, f(a)).

Case 1: |φ(U, a)| < ω. Then |φ(U, f(a))| < ω. Since b /∈ acl(a) and c /∈ acl(f(a)), we have

|= ¬φ(b, a) ∧ ¬φ(c, f(a)).

Case 2: |(U, a)| ≥ ω, then |¬φ(U, a)| < ω. As in case 1, we conclude that

|= φ(b, a) ∧ φ(c, f(a)).

Corollary 8.6. Every bijection between independent subsets of U is elementary.

Proof. Let A,B ⊆ U with |A| = |B|. Let f : A → B be a bijection. Let a enumerate
A, so b = f(a) enumerates B. Then a0, b0 /∈ acl(∅). Then by Proposition 8.5, a0 7→ b0 is
elementary. The step i + 1 similar, since ai+1 /∈ acl(a0, . . . , ai) and bi+1 /∈ acl(b0, . . . , bi).
The limit case is clear.

Remark. If M ⪯ U is a model, then acl(M) = M by Proposition 7.7. So models of a
strongly minimal theory have a dimension.

Theorem 8.7. Let M,N ⪯ U be models such that dim(M) = dim(N). Then M ≃ N .

Proof. LetA,B be bases ofM,N resp. Let f : A→ B be a bijection. Then f is elementary,
so there is α ∈ Aut(U) such that α ⊇ f . Then α[M ] = α[acl(A)] = acl(α[A]) = acl(B) =
N .

Corollary 8.8. Let λ > |L| be a cardinal. Then T is λ-categorical.
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Proof. If A ⊆ U , then | acl(A)| ≤ |L(A)| because there are at most |L(A)| algebraic formu-
las and each such formula contributes only finitely many elements to acl(A). Therefore, if
|M | = λ > |L|, then a basis of M must have cardinality λ. By the previous theorem, M
is then unique up to isomorphism.

Recall TVSK , the theory of vector spaces over an infinite fieldK. If |K| = ω, then TVSK is λ-
categorical for every uncountable λ. However, TVSK is not ω-categorical. Each n ∈ ω \{0}
determines a countable model of TVSK of dimension n, unique up to isomorphism. There
is also a model of dimension ω. These models have the same cardinality.

Now let K be a finite field and let T∞
VSK be TVSK plus axioms that ensure that models

are infinite. One can show that T∞
VSK is strongly minimal. T∞

VSK has a countable model.
Every countable model has dimension ω, so T∞

VSK is ω-categorical. So T∞
VSK is totally

categorical.

Theorem 8.9. Let N |= T (still assumed to be strongly minimal) and |N | ≥ |L|. Then

N is saturated⇐⇒ dimN = |N |

Proof. Exercise.
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