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1 Basic definitions and resolutions

1.1 Some definitions and examples

Let G be a group.

Definition. The integral group ring ZG is the free abelian group on the elements of G
together with multiplication defined by

(3 ) () = 32 (3 )

heG keG g hk=g

A module over ZG will usually be a left module over ZG. A ZG-module M is trivial, if
gm =m for all m € M, g € G. The trivial module is Z (with G acting trivially).

The free ZG-module on X will be denoted by ZG{X }.

Definition. A ZG-map (or morphism) of ZG-modules My, Ms is a homomorphism « :
My — My of abelian groups such that a(rmq) = ra(my) for all r € G.

Example. The augmentation map ¢ : ZG — Z, deG Ngg Zg ng is a ZG-map where
we regard ZG as a left module and Z is the trivial module.

We write Homg (M, N) for the set of ZG-maps where M, N are ZG-modules. It is an
abelian group under addition.

Example. Note that Homg(ZG, M) can be given a ZG-module structure by (s¢)(r) :=
¢(rs) (essentially since ZG is a bimodule over itself). We have Homg(ZG, M) = M as ZG-
modules where the isomorphism is given by ¢ — ¢(1). In particular, Homg(ZG,ZG) = ZG
where ¢ : ZG — ZG corresponds to ¢(1) € ZG. So as ¢(r) = r¢(1), ¢ is multiplication on
the right by ¢(1).

Note that Homg is functorial:
Definition. If f : My — Ms is a ZG-map and N a ZG-module, then the dual map is
f* :Homg(Ms, N) — Homg (M, N),
pr—gof
Sitmilarly if f : Ny = Na is a ZG- map and M a ZG-module, then the induced map is
f« : Homg (M, N1) — Homg (M, Na),
pr— foo



Example. Let G = (t) be infinite cyclic, acting on the real line where ¢ is translation by
+1. We view this as follows: Let V' = {v; };ez be a set of vertices and let G act on V' by
t(v;) = vit1. For each pair (v;,v;y1) consider an edge between them and let E be the set
of these edges. Let e be the edge vy — v1. Then we can regard formal integral sums ZV
and ZE as ZG-modules. They are both free of rank one and ZV = ZG{vy}, ZE = ZG{e}.
There is a ZG-map corresponding to the augmentation map ZV — Z.

Definition. A chain complex of ZG-modules is a sequence

dit2 diy1

ds ds—1
Mg = My, —— ...

M4 M

with s > t such that for every t < n < s, dpdp+1 = 0, i.e. imd,41 C kerd,. We write
My = (M, dp)i<n<s- M, is exact at M, if imdy,41) = kerd,, it is exact if it is exact at
all M,, witht < n < s.

The homology of the chain complex Mo is Hs(M,) = kerds, H,(M,) = kerd, /imd, 11
fort <n <s and H(Ms) = My/imdy.

Example. Let G = (t) be infinite cyclic. There is an short exact sequence

05726 - 726 57 50

corresponding to
0—+2ZE =72V - 7Z —0

Definition. A ZG-module P is projective if for every surjective ZG-map o : My — My
and every ZG-map B : P — My, then there exists §: P — M — 1 such that oo § = (3.

B P
3 e

s
.

@ Mo

My

Let
0= NI M & My — 0

be a short exact sequence and consider the sequence

0 — Home (P, N) £ Home(P, M) % Hom(P, M) — 0 (+)

Then (by definition) P is projective if and only if|(x)|is exact at Homg (P, M3) for all short
exact sequences 0 = N — My — My — 0.
Note that we always have exactness elsewhere in

Lemma 1.1. Free modules are projective.



Proof. In the notation from the definition, define 3 on a basis X by setting 5(z) = y for
x € X where y € M; is such that a(y) = 5(x). O

Definition. A projective (resp. free) resolution of the trivial module 7, is an exact sequence
o p 70

with all P; projective (resp. free).
Note that the sequence can be of infinite length.
Examples.

1. Let G = (t) be again the infinite cyclic group. Then

0sze 7657 50

is a free resolution of Z.

2. Let G = (t) be cyclic of order n. Then

SN e RN el e RNy e BNy e B/
is a free resolution where the maps «, 8 are given by

alz) =z(t—1)
/3(-1'):1'(1+t+...+tn—1)

Exercise: Show this is indeed exact.
3. If we take a partial free/projective resolution

P PP T

(so this is exact, P; free/projective), set Xsy1 = kerds and Ps11 = ZG{Xs41}.
Then define dgy; : Ps41 — Ps by > ryx +— rpax € Ps. This gives us a longer partial
resolution

Py S p 50
This shows that free (so in particular projective) resolutions always exist. But note
that P41 is free of perhaps infinite rank. We could do a littple better by taking
Xs+1 to be a ZG-module generating set of ker d.

From algebraic topology: Let X be a connected simplicial complex X with fundamental
group G so that the universal cover X is contractible. Then X contains information about
G and we will be trying to replicate the study of cohomology of the space X algebraically.



Definition. G is of type F P, if the trivial ZG-module Z has a projective resolution
By p g Doy

such that P, Ph_1,..., Py are finitely generated as ZG-modules. G is of type F Py if
there is a such a resolution with all P, finitely generated. G is of type F'P if there is a
projective resolution of Z of finite length, i.e. Ps = 0 for all s large enough, and all P, are
finitely generated.

Examples.
1. The infinite cyclic group is of type FP.

2. The cyclic group of order n is of type F Py. We will see later that it is not of type
FP.

The FP, analogous to G being a fundamental group of a simplicial complex X with X
contractible and X has finite n-skeleton.

Definition. Let G = {[g1|ga|...|gn] | 91,---,9n € G} for n > 1 and G = {[]}. The
[91]92] - - - |gn] are called symbols and [ is the empty symbol. Set F,, = ZG{G™} and define
the ZG-map dy, : F, — F,,_1 on symbols by

do([g1 |- 1 gn)) =g1lg2 | - | gn]l — (9192 | 93| ==~ | gn] + (91 | 293 | -+~ | gn]
+o (D" Mo L g2 | L gne1gnl + (D)1 [ g2 | -+ | gnal-
Then
=1

dn
e e S N R R e /4

is the standard (or bar) resolution of group G.

It is easily verified that d,,—1 o dg = 0.

Lemma 1.2. The standard resolution is in fact a resolution, i.e. exact.

Proof. Note that F), is a free abelian group on GxG™ = {golg1 | - | gn] | 905 - -+ gn € G}.
Let s, : Fj, = Fy,41 be the map of abelian groups given by s,(golg1 | - | 9n]) = [90 | 91 |
-+ | gn]. Then it is straightforward to check that s,, satisfies

ian = dn+15n + Snfldn.

(L.e. sy, gives a chain homotopy equivalence idp ~ 0) Hence if = € ker d,,, then z = idz =
dp+150(2) + Sp—1dn(x) = dpyi1(sn(2)), so x € Imdp41. O

Corollary 1.3. A finite group G is of type F'Px.

Proof. Indeed, the standard resolution is free with all terms of finite rank. O



1.2 Cohomology

Definition. Take a projective resolution

dn+1 d
i3 Py = Py = S P 7

of Z by ZG-modules. Let M be a ZG-module. Apply Homeg(—, M) to get a sequence

o Homg(Pos1, M) <& Homg(Po, M) + ... <% Homg(Py, M)

where d™ = d},. Then the n-th cohomology group H"(G, M) with coefficients in M is then
the abelian group

n+1
imd"

H°(G, M) = ker d*

n>1

Remarks.
1. We have dropped the Z on the RHS.

2. Those are the homology groups of the chain complex C,, = Hom¢g(F_,,, M) defined
for —oo < n < n.

3. Those are independent of the choice of projective resolution, see Theorem [1.5
Example. Let G = (t) be infinite cyclic. Then we had the resolution

0—>ZG£&ZG—>Z—>O.

If ¢ € Homg(ZG, M), x € ZG, then

d'(¢)(z) = d(di(x)) = p(x(t - 1)).
Recall that we have an isomorphism ¢ : Homg(ZG, M) — M, 6 — 6(1). In particular,
d'(¢) — d'(¢)(1) = ¢(t — 1) = (t — 1)p(1) = (t — 1)i(¢). So the dual chain complex
Homg (P, M) is

0« MYy

Hence,
HY(G, M) =ker((t—1)) = {m e M | tm =m} = M®
M
=: M
{(t—1Dm|me M} ¢
HY(G,M)=0  ifn>2

HYG,M) =

Here M is the group of invariant, the largest submodule fixed by G, and M is the group
of co-invariants, the largest quotient fixed by G.



Remarks.

1. H(G, M) = MY is true in general. H'(G, M) = Mg is special to the the infinite
cyclic group and does not hold in general.

2. If G is of type FP, then H"(G, M) = 0 for all n > s for some s.

Definition. G is of cohomological dimension M (over Z) if there is some ZG-module M
such that H™(G, M) # 0 and for all modules M we have H"(G, M) =0 for n > m.

E.g. the infinite cyclic group is of cohomological dimension 1. More generally, if G is free
and non-trivial, then it is of cohomological dimension 1. The converse is also true:

e (Stallings 1968) If G is finitely generated, then G is free if it has cohomological
dimension 1.

e (Swan 1969) Removed the f.g. condition.
Definition. Let (A, ay) and (By, By) be chain complexes of ZG-modules. Then a chain
map Ae — Be is a family (f,) where each f,, : A, — By, is a ZG-map such that

A, —2 A,y

b e

Bn i) Bn—l

commutes for all n.

Lemma 1.4. Given a chain map (f,) as above, it induces a well-defined map on the
homology groups
fe: Hy(As) — Hp(Be).

Proof. Clear. O
Theorem 1.5. The definition of H"(G, M) is independent of the choice of resolution.

Proof. Let (P,,d,) and (P.,d]) be two projective resolutions of Z by ZG-modules. We

n»-'n
will produce various ZG-maps:

e Chain map (fn) Py — P./7
e Chain map (g,) : P, — P,
e s, : P, = P,y such that dp115, + sn—1dy, = gnfrn — id (ie. (gnfn) ~ id)

e s, : P} — P} such that d,_ 5], + s,,_,d;, = fngn —id.



Assume we have constructed these. Then (f}) gives a chain map Homg(P,, M) —
Homg (P,, M) and similarly (g;) gives a chain map Homg(Pe, M) — Homg(P,, M). They
induce maps between the (co)homology groups. Now observe that if ¢ € ker d®*!. Then

(f292)()(x) = (gn fn(x))

(%) + ¢(dnt15n(2)) + ¢(sn-1dn(2))
() + spd" "o (2) + d"s;, 1 (¢)(2)
(@) + d"(s5,-1(9)) (@),

¢
¢
¢

Hence fg:(¢) = ¢+ d"(s}_1(4)), so frg! induces the identity on the homology group.
Similarly for g f and so the g,, f, induces isomorphisms on the homologies.

So all we have to do is to construct these maps. Consider the end of the resolutions and
let f_1 : Z — Z be the identity and f_o : 0 — 0. Now suppose we have defined f,_; and
fn- Then frdpi1: Py — P and d,(fndnt1) = fa—1dndni1 = 0. So the image of f,,dp11
lies in ker d],. Consider the diagram:

dn+1 dn

TL+1 / Pn /
S
n+ lfn n+1 lfn lfn 1
/ ! / d,
Py *»kerd > P, P, 4

Since P41 is projective, the arrow f,+1 as indicated in the diagram exists. This shows
the existence of the chain map (f,) and similarly one gets the g,.

To define (s,), first set hy, = g fn —id : P, = P,. Then (h,,) is a chain map with h_; = 0.
Set s_1 : Z — P, to be the zero map. Note that dyhg = h_1dy = 0 and so im hg C ker dy.
As before dy : P — kerdy is surjective. Then consider:

» P() — 7
0 / lho lo
JEN kerdoc 7

Now for induction suppose s,,—1 and s,,_9 have been defined. Consider ¢,, = h,, — sp,—1d,
P, — P,. We have d,t, = dyh, — dnSn—1dn, = hp—1dy, — (hp—1 — Sp—2dyp—1)d, = 0. So
imt, C kerd,. Now look again at the diagram:

n

P, 5P,
= |
,f’// hn J’hnfl
— 41
Poiy B kerd, y P~y Py

Then we get (s,,) and similarly we get (s),). O



Remark. If we use free/projective resolutions of any ZG-module N (instead of Z), then
our definitions give us
Extyo (N, M).

Thus Exty(Z, M) = H"(G, M).
Now consider the definition of H™(G, M) as applied to the standard resolution
= ZG{GW} = 2G{G"V} - Z.
We have
Homg (ZG{G™}, M) = {functions ¢ : G* — M} =: C"(G, M)
and C°(G, M) = M.

Definition. The group of n-cochains of G with coefficients in M is C™(G, M) under
addition. The n-th coboundary map is d® : C"~Y(G, M) — C™(G, M) dual to d,, in the
standard resolution. Then

(dn¢)(gl7 .. agn) :gl¢(927 o 7gn) - 45(91927 g3,. .. 7971) + <Z5(91, 9293, 94, - - - ;gn)
— A (1" 991,92, s Gn2s Gn-19n) + (1) (91, -+, gn1)-

The group of n-cocycles is Z"(G,M) = kerd"t! C C™(G, M) and the group of n-

coboundaries is B"(G, M) = Imd" C C"(G, M). Then H™(G, M) = ZelC:A).

Relationship between our standard resolution and the usual one in algebraic topology: Let
G™*! be the set of n+ 1-tuples and consider the free abelian group ZG™*! on these. G acts
on G"! via g(g0,91,---,9n) = (990,---,99n). Thus ZG"*! becomes a free ZG-modules
with basis given by the n + 1-tuples with go = 1. The symbol [g; | - -+ | gn] corresponds
to (1,91,9192,---,9192 - - gn). Note that in the usual resolution in algebraic topology we
have the boundary map where there is an alternating sum of n-tuples where we miss out
one of the entries in turn. If we take (1,¢1,9192,...) and miss out the first entry, we get
(91,9192, ---) = 91(1, 92,9293, - .. ) which corresponds to g1[g2 | -+ | gn]- If we miss out
the second entry, we get (1, g1g2, 919293, - . . ), this corresponds to [g1g2 | g3 | - - | gn)-



2 Low degree cohomology and group
extensions

Let G be a group and M a ZG-module.
Corollary 2.1. H(G, M) = M.

Proof. Immediate from the definitions. O

2.1 H! - splittings of extensions

Definition. A derivation (or crossed homomorphism) of G with coefficients in M is a
function ¢ : G — M such that

P(gh) = go(h) + é(9)

for all g,h € G. An inner derivation is one of the form ¢(g) = gm — m for some fized
m € M.

Notice that Z!'(G, M) is the abelian group of derivations (under addition) and B'(G, M)
is the subgroup of inner derivations. Hence

{derivations G — M}
inner derivations G — M~

HY(G, M) =

In particular, if M is a trivial ZG-module, then H'(G, M) = Hom(G, M) (group homo-
morphisms G — M).

We recall the definition of the semidirect product:

Definition. Let G be a group, M be a left ZG-module. We construct the semidirect
product M x G as follows: The underlying set is M x G and the multiplication is given
by

(m1,g1) * (M2, g2) = (M1 + gima, g1g2)

In this case M = {(m, 1) | m € M} is an abelian normal subgroup and G = {(0,¢) | g € G}

is a subgroup. Conjugation of G on M C M x G corresponds to our ZG-module action.
This is an example of an extension of G by M.

10



Note that there is a group homomorphism s : G — M x G, g — (0,g) such that the
composite G = M x G = G is the identity map. This is called a splitting of the extension,
and the semidirect product is a split extension of G by M.

Let E = M x G. Now consider another splitting s; : G — E such that G 2% E 5 G
is the identity. Define 15, : G — M by s1(9) = (¥s,(g),g). Then 95, € Z1(G, M) (easy
check). Now suppose we have two splittings s; and sy. Then 15, — 15, € BY(G, M) if and
only if there exists m € M such that (m,1)s1(g)(m, 1)~ = sa(g) for all g € G. We obtain
a bijection:

HY(G, M) +— {M-conjugacy classes of splittings}

See Example Sheet 1, Exercise 3 for details.

2.2 H? - group extensions

Now let us consider a group theoretic interpretation of H?(G, M) and for that we consider
other extensions of G by an abelian group M, i.e. short exact sequences

1M —-F—-G—=1

where the maps are group homomorphisms. Thus M embeds in F as a normal subgroup
and E/M = G. Then E acts on M by conjugation, with M acting trivially on itself since
it is abelian. So we may regard M as a ZG-module since G = E /M.

Definition. Two extensions E, E' are equivalent if there is a commuting diagram of group
homomorphisms:

E is a central extension if M is a trivial ZG-module (via conjugation within E).

Exercise: Equivalent extensions F and E’ are isomorphic, but the converse is not neces-
sarily true, see example sheet.

Proposition 2.2. Let E be an extension of G by M. If there is a splitting s : G — E
which is a group homomorphism, then E is equivalent to the semidirect product.

Proof. Exercise. O

For other extensions there is a set-theoretic section s : G — FE, but it fails to be a
homomorphism. Wlog, assume s(1) = 1.

Define ¢(g1, g2) = 5(g1)s(g2)s(g1g2)*. This gives an indication of the failure of s to be a
group homomorphism.

11



Then, writing 7 : E — G for the quotient map, we have m(¢(g1,92)) = 1 and so ¢(g1,92) €
M and so ¢ : G?> — M is a 2-cochain. In fact ¢ is a 2-cocycle: Consider s(g1)s(g2)s(g3) in
two different ways. It is

= #(91, 92)5(9192)5(g3)
= ¢(91,92)9(9192, 93)5(919293) (1)
Also
= 5(g1)#(92, 93)5(9293
= 5(91)9 (92, 93)s(g1) " s(91)5(g293)
= 5(91)9 (92, 93)s(g1) ' (g1, 9293)5(919293) (1)

Equating|(1)|and [(11)|and cancelling s(g1g293) and converting to additive notation, we get

~d2¢(g1, 92, 93) = D(g1,92) + D(9192, 93) — G10(92, 93) — D91, g293) = 0.

So ¢ € Z3(G, M). Note that ¢ is a normalised cocycle, meaning that ¢(1,g) = ¢(g,1) =
for all g € G.

Now take a different choice of section s’ : G — E with s/(1) = 1. Then 7(s(g)s’(g)"!) = 1
for all g and so s'(g)s(g)™' =: 1¥(g) € M. So we get a map ¥ : G — M. Then

K
V)
V)
e
—=
I
—
-
—~
)
[
K
V)
~
<
—~
)
=
Q
V)
SN—
I
Cﬂ\
—~
)
=
Q
N
~

Hence (in additive notation)

¢'(91,92) = ¥(g1) + 919(g2) + ¢(91,92) — P (9192)
= ¢(91,92) + (d*¥) (g1, 92)-

Thus ¢ and ¢’ differ by a coboundary. So we have shown how to construct a map

extensions — H?(G, M).

We are aiming for:

Theorem 2.3. Let G be a group, M a ZG-module. Then there is a bijection:

equivalence classes of 9
{ extensions of G by M } «— H(G, M).

One has to show:

12



1. Equivalent extensions yield same cohomology class.

2. Construct the inverse map, i.e. given a cohomology class construct the associated
extension.

3. Show these maps are inverse to each other.
To produce the inverse map, we need a lemma first.

Lemma 2.4. Let ¢ € Z*(G,M). Then there is a cochain ) € CY(G, M) such that ¢p+d>y
18 normalised. Hence every cohomology class can be represented by a normalised cocycle.

Proof. Let 1(g) = —¢(1,g). Then

(¢ + d*)(1,9) = ¢(1,9) — (¢(1,9) — d(1,9) + ¢(1,1))

=¢(1,9) — ¢(1,1) (*)
(¢ + d*)(g,1) = ¢(g,1) — (90(1,1) — 6(1,9) + (1, 9))

=¢(g,1) — go(1,1) (%)

We know d3¢(1,1,9) = 0 = d3¢(g,1,1) since ¢ is a cocycle. Writing this out shows that
both and are 0. O

Now take a normalised cocycle ¢ € Z?(G, M) representing our given cohomology class.
Define a group Ey on the set M x G by

(m1, g2) *¢ (ma, g2) = (M1 + gima + ¢(g1, 92), 9192)-

Now check that this indeed defines a group. For this we need that ¢ is normalised. Then
M = {(m,1) | m € M} and the quotient is = G.

Finally notice that if ¢’ is a different normalised cocycle representing the same cohomology
class, then ¢ — ¢’ = d?1) for some ) € C1(G, M). Then we define

E¢ — E¢/,
(m, g) — (m +¥(g),9)

This is a group homomorphism and gives us the equivalence the extensions.

2.2.1 Example: Central extensions of Z? by Z
Let us find all the central extensions of Z? by Z. We certainly know of two such:

e The direct product
07 —172—=17%—0.

13



e The (integral) Heisenberg group

07 b—=Xo.b.0, H Xab,e—(a,c) 72 50
1 a b
where H = ¢ Xypc:= (0 1 c||a,bc€Z
0 01

Write T = Z?, generated by a,b. What are the equivalence classes of extensions? We have
a free resolution
027 2 Zr)? % 2T 5 2

of the trivial ZT-module Z where
B(2) = (:(1 = b), 2(a — 1))
a(z,y) =z(a—1)+y(b—-1)
and € is the augmentation map. Check that this indeed is an exact sequence. Then apply

Homp(—,Z) to get the chain complex

0 < Homp(ZT, Z) - Homy((ZT)%, Z) <~ Homy(ZT, 7).
We show that both o* and 6* are the zero maps and so
H*(T,Z) = Homy(ZT,Z) = 7

with generator represented by the augmentation map e.

To show 3* = 0 take a ZT-map f : (ZT)?> — Z and z € ZT. Then

(B°1)(2) = f(B(2)) = f((1 = b), 2(a = 1))
- f((Z - bZ,O) + (07 20 — Z))
= (1=0)f(2,0) + (a = 1)f(0,2)
=0

since T acts trivially on Z. Similarly for o*.

Next we must interpret h?(T,Z) in terms of cocycles, in particular what cocycle corre-
sponds to the generator. So we construct a chain map between our resolution above and
the standard resolution. Consider:

ZT{T®} —2 7r(TMW} —%s Z7{(TO} =57 — 5 0

bbb |

zr — P @ — sar = .7 0

14



In degree —1 and 0 we have take the identity maps. Next we construct f; : ZT{T(I)} —
ZT? such that of; = di. We just need to give the image of symbols [a"b*] where r, s € Z.
We let f1([a"b%]) = (2.5, Yrs) € ZT? so that

a(zys,yrs) = di([a"b°]) = a"b® — 1 = (a" — 1)b° + (b° — 1).

Define
1 coofart >0
S(a,r) = rateta "
—al—.. —a" r<0

so that S(a,r)(a —1) = a”" — 1 in both cases. Then a(S(a,r)b%,S(b,s)) = di1([a"b%]) as
required and we let z, s = S(a,7)b%,y.s = S(b,s). Now define f for each [a"b® | a'b"].
We find z.5¢, € ZT such that fida([a"b® | a'b*]) = B(zrstwu). Note that zpsp, =
S(a,r)b*S(b,u) works. Then define fo([a"b® | a'b¥]) = S(a,r)b*S(b, u).

ow we find a cochain ¢ : T= — Z representing the cohomology class p € Z = Homy(ZT,7) =
N find hai > -7 ing the coh 1 1 Z=H 7T, 7
H?(T,Z). Let ¢ be the composition T2 Py 71 25 7. Since e(S(a,r)) =r, we find
¢d(a”b®, atb“) = pe(2r.stu) = Pru.
The group structure on Z x T corresponding to ¢ is:
(m,a"b®) * (n,a'd") = (m + n + pru, a" 7).
Note that for p # 0 these correspond to

pr m

1
0 1 s||r,ssmeZ
0 0 1

2.3 Group presentations

Consider group extensions by using group presentations. Express G in terms of generators
and relations. Let F' be the free group on a set X of generators of G. So we get a surjective
group homomorphism F' — G. Let R be its kernel.

1 - R—-F—-G—=1

Often it is useful just to take a generating set of R. If G is generated by a finite set X
such that R is also finitely generated, then G is of finite presentation.

Let R, = R/R' be the abelianisation of R. F acts on R by conjugation and one has an
inherited action of R on R,,. Note that R acts trivially on R,, under this and so R,y
may be regarded as a Z(F/R)-module, i.e. a ZG-module. Then

1= Ry — F/R -G —1
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is an extension of G by R,,. Rap is called the relation module.

For a central extension rather than using R/[R, R] one can use R/[R, F)|. Then
1— R/[R,F]— F/[R,F] -G —1

is a central extension. Is there in some sense a largest or universal central extension? No,
we can always take a direct product with an arbitrary abelian group, but we do have:

Theorem 2.5 (MacLane). Given a presentation G = (X | R), let F' be the free group on
X and let M be a ZG-module. Then there is an exact sequence

HY(F, M) — Homg(Rap, M) — H*(G, M) — 0.

Here we regard M as an ZF-module via F' — G.

Thus any extension of M corresponding to a cohomology class arises from taking a ZG-map
Rab — M.

Corollary 2.6. In the above, if M is a trivial module, we get
Hom(F, M) — Homg(R/[R, F], M) — H*(G, M) — 0.

Proof. Recall that for trivial modules H'(F, M) = Hom(F, M) = Hom(F,,, M) and also
Homg (Rab, M) = Homg(R/[R, F|, M). O

There is also a connection with group homology. Given a projective resolution of Z, we
can apply Z ®zq — to it and consider the homology groups of the resulting chain complex.
The homology groups are H,(G,Z).

Definition. The Schur multiplier (or multiplicator) is the second homology group

M(G) := Hy(G, Z).

The Schur multiplier is important when considering central extensions.

Theorem 2.7 (Universal Coefficients Theorem). Let G be a group and M a trivial ZG-
module. Then there is a short exact sequence of abelian groups:

0 — Ext!(Gap, M) — H*(G, M) — Hom(M(G), M) — 0.

Corollary 2.8. Suppose Gy, i.e. G is perfect, then H?(G, M) = Hom(M(G), M).
Remark. Some authors call H2(G,C*) the Schur multiplier, rather than M (G).
There is a formula for M(G):

16



Theorem 2.9 (Hopf). Given a presentation G = (X | R), then

F'NnR

M(G) = R F]

Remarks.

1. We are not taking all of R/[R, F.

2. This shows that ﬁémﬁ is independent of the choice of presentation.

Remark. From geometric group theory, we know that all subgroups of free groups are
free. Thus the module R of relations is a free group, say with basis Y. Hence Ry, is a free
abelian group on Y.

Proposition 2.10. Given a presentation G = (X | R), there is an exact sequence

1 I
Rb P Bga57 51

I Irlr

where Irp = ker(ZF = 7) and ITr = ker(ZF — ZG). Moreover, Tif‘}F and ;—QR are free

R
ZG-modules with bases {x —1 |z € X} resp. {y — 1|y € Y}. Alsoimdy = Ryp.
Lemma 2.11. Let G be a group and M a ZG-module. Then:

(a) I under addition is the free abelian group on {g—1|g € G\ {1}}.
(b) Ic/I% = Gap.

(c) Der(G,M) = Homg(Ig, M) where Der(G, M) is the abelian group of derivations
G— M.

Proof.

(a) ZG is free abelian on {g | ¢ € G} and Ig = kere = {d ngg | >_ny = 0}. So
if Y ngg € Ig, then Y ngg = Y ng(g — 1) and clearly any element of the form
> ng(g—1) liesin kere = Ig. Also {g—1 | g € G\{1}} is linearly independent as the
elements g € G are. Hence Ig = {> n4(g—1) | ng € Z} isfreeon {g—1| g € G\{1}}.

(b) Since I is free abelian on {g—1 | g € G\ {1}}, we can define a group homomorphism
0 : I¢ — Gap by defining the image of g — 1 to be gG’ for g € G\ {1}. Since
(1 —D(g2—1) = (g192— 1) — (91 — 1) — (92 — 1), we have I% C ker 6. So # induces
amap 0 : Ig/I% — Gap. Conversely, ¢ : G — Ig/I2, g — (g — 1) + 1% is a group
homomorphism and this induces a map ¢ : G, — Ig /Ié The two maps 6 and ¢
are clearly inverse to each other.

(c) Define maps:

Der(G, M) — Homg(Ig, M)

17



pr—(0:9—1+ &(g))
(p:g—=0(g—1)) «—0

They are inverse to each other.

Lemma 2.12.
(a) Let F be a free group on X. Then Ir is a free ZF-module on X = {x — 1|z € X}.

(b) Let R be a normal subgroup of the free group F, so it is free on'Y, say. Then Ig is
a free ZF-module on basis Y ={y—1|ye€Y}.

Proof.

(a) Let o : X — M be a map to some ZF-module M. To establish freeness it suffices
to show that a extends uniquely to a ZF-map Ir — M. First let o/ : F — M x F
be defined by = — (a(z — 1),z) on X. Thus for cach f € F, f — (a, f) for some
a € M. There is a function @ : FF' — M, f + a so that o/(f) = (@(f), f). Then

o (fifa) = o (f1) x ' (f2)
= (@(f1), f1) * (@(f2), f2)
= (@(f1) + fia(f2), frfa).

Hence @ is a derivation F' — M. We take the corresponding ZF-map Ir — M as in

Lemma (c). Check uniquenessﬂ

(b) Suppose that »_ cy ry(y — 1) = 0 where r, € ZF. Choose a transversal T' to the
cosets of Rin F. We can write ry = >, p tsiy where sy € ZR. S0,y jeq tsey(y—
1)=0andso oy sty(y—1) =0 for each ¢ since I is free abelian on {f —1| f €
F\ {1}}. But Ig is a free ZR-module on {y —1 |y € Y} by (a), hence s;, = 0 for
allteT,yeY.

Also check that the y — 1 generate Ir?
O

Proof of Proposition[2.10, Ip is the free ZF-module on {x — 1 | z € X} by the lemma.
So Ir/(IrlF) is a free Z(F/R)-module, i.e. ZG-module, on {x — 1 | x € X}. Similarly it
follows that TR/Y%{ is a free ZG-module on {y —1 | y € Y'}. Consider the image of da. It is
Ir/(IgIr). Consider I as a right ZF-module (note that Iy is the kernel of a ring map,
hence a two-sided ideal). By the right version of the lemma, it is a free right ZF-module on

!This amounts to showing that the ZF-submodule A generated by X is Ir itself. To see this note first
that we know that Ir is generated over Z by {f — 1| f € F}. From S(z,r)(z —1) =2" —1,r € Z
we see that 2" — 1 whenever z € X. Then from (f —1)(g—1) = (fg—1)— (f —1) — (g — 1) we get
inductively that f —1 € A for all f € F.
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{y—1|yeY}. Solgr/(IRIF)is a free abelian group on {y —1 |y € Y}, hence isomorphic
to Rap,. For the left ZG-action note that g(y —1) = (gyg~' —1)g = (gyg~' —1) mod IgIF,
so the left ZG-action corresponds to the G action on R, inherited from the conjugation
action. O

This partial free resolution can be extended to give a full resolution:

Theorem 2.13 (Gruenberg resolution). Let G = (X | R) be a presentation of G. Then
there is a free ZG-resolution of Z:

o e T 7 I
R e N L = ey /e A |
Proof. Use the two lemmas. O

Lemma 2.14. Given a projective resolution
S RNy NN

denote J, =imd,, C P,_1 and let ¢ : P, — J, be d,, with its image restricted to .J,,.

(a) For a ZG-module M there is an exact sequence

Homg(P,_1, M) = Homg(J,, M) — H"(G, M) — 0.
(b) There is an exact sequence
0— Hn(G,Z) - Z®z6 Jn — Z Qz6 Pa-1.

Proof.
(a) We have

dnt1
Pn+1 a Pn

w Jn
7
Pnfl
with the row exact. Then take duals and we get

Homg(Poy1, M) < Home (P, M) «2— Homg(Jp, M) +—— 0

U

Homg(P,—1, M)

still with the row exact. Then ker "™ = im¢* & Homg(J,,, M). Thus H"(G, M) =
ker d"!/im d" = Homg(J,,, M)/ imres.
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(b) Follows similarly.
O

Proof of Theorem[2.5, We apply the last lemma to our partial resolution in Proposi-

tion [2.10] to get:
Homg (Ir/(Iglr), M) == Homg(Rap, M) — H*(G, M) — 0
But

Homg(fp/(TRIF), M) = HOmF(IF/(TRIF), M)
= HOII]F(IF, M)
= H'(F, M)

For the second equality note that any ZF-map Ir — M will factor through Ir/(IrlF) as
R acts trivially on M. Why does the last equality hold? O

Proof of Theorem[2.9. Again apply the lemma to our partial resolution in Proposition[2.10
We get: B
0— HQ(G, Z) — 7 Ry Ray — Z Qpac IF/(IRIF).

Note that tensoring with Z = ZG/Ig is equivalent to taking coinvariants. So

L @z Rap = R/[R, F,
Z®z6 (Ir/(Irlr)) = Ir/1} = F/[F, F).

Now the kernel of the right hand map R/[R, F| — F/[F, F| is exactly ﬁ;—mﬁ. O
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3 General Theory

3.1 Long exact sequence
In any cohomology theory one has a long exact sequence. Given a short exact sequence
0— M — My — M3 —0

of modules, we would like some relationship between the cohomology with coefficients in
My and that of M; and Ms. Recall that if we apply Hom(P, —) to short exact sequences
the result is always a short exact sequence only if P is projective.

Proposition 3.1 (Long exact sequence of cohomology). Let 0 — My — My — M3 — 0
be a short exact sequence. Then there is a long exact sequence:

- — H"(G, M) — H"(G, M) — H"(G, M3) — H" (G, M) — ...
Lemma 3.2 (Snake lemma). Let 0 — A, f—') Be 2 O, — 0 be a short exact sequence
of chain complexes (i.e. fe,ge are chain maps and the corresponding sequences of abelian

groups are exact in every degree). Then there exist maps 6, : Hypt1(Co) — Hyp(As) such
that the sequence

c o Hopt(C) 25 Hy(Ad) — Hn(Ba) — Ho(Ca) = ...
15 exact.

Proof. Easy diagram chase. O

Proof of Proposition[3.1. Consider a projective resolution P, of Z. Then since the modules
in the resolution are projective, we have a short exact sequence of chain complexes

0 — Homg(P,, M1) — Homeg(P,, M3) — Home (P, M3) — 0

Now apply the Snake lemma (relabel to convert to chain complex). O
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3.2 Five term exact sequence

If we want to consider the relationship between cohomology of a group G with that of
subgroups and quotients we have the following;:

Theorem 3.3 (Five term exact sequence). Let H be a normal subgroup of G. Let Q =
G/H and M be a ZG-module. Then there is an exact sequence

0— HYQ,M") - HY(G, M) — HY(H,M)? - H*(Q, M) - H*(G, M).

Remarks.
1. There is no — 0 at the end - we will see more when thinking about spectral sequences.

2. H'(H, M) may be regarded as a Z@Q-module, as we will see shortly, so that H*(H, M)?
is defined.

Corollary 3.4. If G = (X | R) is a presentation, M a ZG-module, then there is an exact
sequence

0— HY(G,M) — HY(F, M) — Homg(Rap, M) — H*(G, M) — 0
Remark. This is a continuation of the sequence in MacLane’s theorem to the left.

Proof. Set @ =G, G = F and H = R in Theorem [3.3] to get
0— HYG,MT - HY(F,M) — HY(R, M)Y — H*(G, M) — H*(F, M).

Note that we regard M as a ZF-module via ' — G. Then M is a trivial ZR-module,
so ME = M and HY(R, M) = Hom(R,},, M). Note that H?(F, M) = 0 by Question 8
on Example Sheet 1 (free groups have cohomological dimension 1). Also H'(R, M)¢ =
Hom (R, M) = Homg(Rap, M) where G acts on Hom(R,y,, M) by (gp)(x) = gp(g~'z).
The fixed points under this action are the ZG-maps. O

Corollary 3.5. If G = G’ and M is a trivial ZG-module, there is a short exact sequence
0 — Hom(Fyy, M) — Homg(Rap, M) — H*(G,M) =0

~ Hom Ra 7M
and so H*(G, M) = m'

Proof. Follows from the previous corollary. O

Now back to understanding the maps and actions in Theorem

Lemma 3.6. Let H be a normal subgroup of G, and M a ZG-module. Let G act on
the set of cochains C™(H, M) by (g¢)(h1,...,hn) = gp(g ' hig,...,g  hng). Then this
action descends to an action of G on H"(H, M). Moreover, the action of H on H"(H, M)
is trivial and so we have an induced action of Q = G/H on cohomology groups, so the
cohomology groups H"(H, M) are ZQ-modules.
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Proof. To have an action induced on the cohomology groups, we need to check that the
action of g € G is a chain map, i.e. g(d"¢) = d"(g¢) for ¢ € C"~1(H, M):
(9(d"$))(h1, - hn) = g(g~ @) (g~ h2, g, -, g hng)
—90(97 " h1gg " hag, .. g hng) + ..
= h1gd(g~ " h2g, -9 hng)
— g0(g~ " hihag, ..., g hng) + . ..
= hi1(g9)(ha, ..., hy) — (90)(hiha, ... hy) + ...
=d"(gp)(h1,...,hyn).

To show that H acts trivially, we must take a cocycle and show that applying h € H only
adds a coboundary. E.g. for 1-cocycles, let ¢ € Z'(H, M) and h,h; € H. Then

(h¢)(h1) — ¢(h1) = he(h™ hah) — ¢(ha)
= h(h™ ' ¢(h1h) + ¢(h™")) — ¢(ha)
= h1¢(h) + ¢(h1) + he(h™") — p(hy)
= h1g(h) — p(h)
= (b1 — 1)o(h).

So h¢ — ¢ is indeed a coboundary. Higher degrees are messier but true. O

The maps in Theorem

e Restriction maps: H"(G,M) — H"(H, M)®. We define these via definition on
cochains which descends to cohomology. Let f : G™ € M be a cochain. Then let
Resf : H® — M be the composition of f with the inclusion H" — G". This
gives a map Res : C"(G, M) — C™(H, M) which induces a map Res: H"(G, M) —
H"™(H, M) whose image lies in H™(H, M)C.

e Inflation maps: H"(Q,M") — H"(G,M) . Again we define them on cochain.
Given a cochain f : Q" — M, we let Inf f : G® — M be the composition G —
Q" ERS VLIS VS Again this map Inf : C"(Q, M) — C™(G, M) descends to
cohomology.

e Transgression maps: Tg: H'(H,M)? — H?*(Q,M™"). Let s : Q — G be a set-
theoretic section with s(1) = 1. Define p : G — H by p(g) = gs(gH )" where gH is

the coset of g in G/H. Take a 1-cohomology class invariant under Q and f : H — M
a cocycle representing it. Then define Tg(f) : G2 — M by

(91,92) = f(p(g1)p(g2)) — f(p(g192))-

Changing g1 and go by multiplying by elements of H doesn’t change this cochain,
so we can define a cochain Q? — M.

To prove Theorem we need to check all these maps give well-defined maps on coho-
mology and check exactness.
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3.3 Transfer map (or corestriction)

When K < G is a subgroup and M a ZG-module, there is a map H"(K, M) — H"(G, M).
Note the direction is opposite to that of the restriction map. Recall from Example Sheet
1, Question 9, the coinduced module is

coind (M) = Homg (ZG, M)
with G-action (gf)(z) = f(zg) for f € Homg(ZG, M), x € ZG.
Lemma 3.7 (Shapiro’s Lemma). For any K < G,

H™(K,M) = H"(G, coind5 (M)).

Proof. Example Sheet 1, Question 9. Take a free ZG-resolution of Z. It is also a free ZK-
resolution. But Homg (F, M) = Homg(F, coind® (M)) for a ZG-module F. Now apply
Homp (—, M) and Homg(—, coindZ (M)) to our resolution. O

Definition. Given any ZK-module V', we can define the induced ZG-module

ind% (V) = ZG @z V =PteV
teT

where T is a transversal to the cosets of K in G. The G-action is given by g(t®@v) = t' @ kv
where gt = t'k for somet' € T,k € K.

Observe that if one has a ZG-module M, generated by a ZK-module V' (i.e. M = ZG-V),
then there is a canonical map

ind% (V) — M,
tQ@vr—tv

Lemma 3.8. When |G : K| < co and M is a ZG-module, then
coindZ (M) = ind%(M).
Proof. There is a ZK-map

¢o0: M — Homg(ZG, M)
if K
m—s | g gm g€ o
0 otherwise.

¢:7G Qzx M — HOHIK(ZG, M)

This extends to a ZG-map

24



There is an inverse:

P HOmK(ZG,M) — ZG Q@px M
f=>te fith)

teT

Thus we have an isomorphism. O

Definition. If K < G is of finite index, the transfer (or corestriction) map is the com-
position:

coresG : H"(K, M) = H™(G, coind® (M)) = H"(G,ind%(M)) & H™(G, M)

where o : ind$ (M) — M is the canonical map.

Lemma 3.9. If z € H"(G, M), then cores% - res%(z) = |G : K|z.

Proof. Example Sheet 2. O

3.4 Products

Let G be a group and M, N ZG-modules.
Definition. Given [u] € HP(G, M) and [v] € HI(G, N), we define the cup product

[u— v] € HPTY(G,M ®z N)

on cochains in the standard resolution of Z. If uw € CP(G,M) and v € C4{(G,N), then
u—v € CPTYG, M ® N) is defined by

(u—0)(g15- -+ Gptq) = (=1)"ulg1, -, 9p) @ g1+ Gpv(Gp+1 - - - s Gp+q)
This induces the cup product on cohomology.
Here M ®z N is a ZG-module via the diagonal action, i.e. g(m ® n) = (gm) ® (gn).
Some properties:
e In degree 0 the cup produt H°(G, M) x H*(G,N) — H°(G,M ® N) is the map
MS% @ N% — (M @ N)¢
induced by the inclusions M¢ — M, N¢ — N.

e Naturality: The cup product is natural in the following sense: Given ZG-maps
f:M— M ,g: N— N and elements u € H*(G, M),v € H*(G,N) we have

(f @ 9)s(u—v) = fou — guv
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e Identity: The element 1 € H%(G,Z) = Z satisfies 1 Uu = u = u U 1 for all
ue H(G,M) using ZQ M =M = M ® Z.

e Associativity: Given u; € H*(G, M;), i = 1,2, 3, then

(U1 — U2) — Uz = Ul ~— (U2 — ’LL3) € H*(G,Ml ® Moy ®M3)

e Commutativity: For any u € HP(G, M), v € H1(G, N) we have
u—v=(—1)"a,(v—u)

where « is the natural map N@ M — M ® N.

These properties yield that H*(G, Z) is a graded commutative associative ring (here graded
commutative means xy = (—1)Pyx where z,y are of degree p, q). There is a commutative
subring by taking the sum of even degree terms. The whole cohomology ring is a module
for this subring.

More naturality properties:

e Change of groups: Given a group homomorphism « : H — G, then we have
o (u—v) = a*u— a’v.
Thus o* : H*(G,Z) — H*(H,Z) is a ring homomorphism.

e Transfer: When H < G is a subgroup of finite index, u € H*(G,M),v € H*(H,N),
then
coresfr(res (u) — v) = u — cores$ v.

Thus the transfer map H*(H,Z) — H*(G,Z) is a homomorphism of H*(G,Z)-
modules.

Recall we defined Ext%~(M, N) by taking a resolution for M and applying Homg(—, N) to
it. The homology groups arising are the abelian groups Ext% (M, N). Now take N = M.
We find Ext%-(M, M) is a module for the cohomology ring H*(G,Z). There is quite a
lot of work studying ZG-modules M via this module Ext7 (M, M) over the cohomology
ring.
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4 Brauer groups

Definition. A simple algebra A is one where the only two-sided ideals are 0 and A. A
central simple algebra A over a field k is one which is simple, finite-dimensional, and the
centre is Z(A) = k.

Examples.
1. The set of n x n-matrices M, (K) forms a central simple k-algebra.

2. The quaternions H form a central simple R-algebra. Recall that H has R-basis
1,i,j,k where ij = k = —ji and i = j?> = k> = —1. In fact, this is a division
algebra, i.e. every non-zero element has a multiplicative inverse.

Basic question: Classify central simple algebras over a specified field k.

Theorem 4.1 (Artin-Wedderburn). A finite dimensional simple k-algebra A is isomor-
phic to a matrix ring over a division algebra D.

Note that if D is a division-algebra over k, then Z(M, (D)) = {\ | A € Z(D)}. So the
classification problem boils down to classifying central division k-algebras.

We define an equivalence relation on central simple k-algebras: Two such algebras A, B
are equivalent, written A ~ B, if A ®; M, (k) = B ®j, M, (k) for some m,n. We write
[A] for the equivalence class. So by the Artin-Wedderburn, [A] = [D] for some division
algebra D.

Definition. The Brauer group Br(k) of k is the set {[A] | A central simple k-algebra}
together with the group operation [A][B] = [A ®y B.

We will soon prove that this is well-defined, i.e. A ®; B is again central simple. Assuming
this we show that this satisfies the abelian groups axioms:

Abelian: Clear from A ®; B = B ®;, A.
Associativity: Also clear.
Identity: Take [k].

Inverses: [A]~! = [A°P] where AP is the opposite algebra. It has the same underlying
set as A, but the multiplication is defined by a - 400 b = b-4 a. Note that a right A-module
may be regarded as a left A°P-module. That [A°P] indeed gives the inverse follows from
the following lemma:
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Lemma 4.2. A®; A = M, (k) where n = dimy, A.
Examples.

1. If k is algebraically closed, then Br(k) is trivial, since any division k-algebra, finite-
dimensional over k, has all elements algebraic over k, hence in k (using that every
non-zero element is invertible).

2. Br(R) = {[R],[H]}. We will prove this later as a consequence of knowing some
2-cohomology groups.

Definition. If L/k is a field extension, the subgroup Br(L/k) is the group of classes
represented by central simple k-algebras A such that A @y L = M, (L) for some n. In this
case we say A is split by L.

We will see that given A there are such field extensions L/k, in fact:

Proposition 4.3.

Br(k)= | Br(L/k)
L/K Galois
[L:k]<oo

Theorem 4.4. Let L/k be finite Galois, then

Br(L/k) = H*(Gal(L/k), L*).

Example. Let £ = R,L = C. Then G = Gal(C/R) is cyclic of order 2 generated by
complex conjugation ¢. Take A = H. Then RGRi =C CH=C®Cj. Thus Cis a
maximal subfield of H and there isa basis labelled by the elements of G, say e; = 1, e, = j.
Note that e,xe,;! = o(x) for all z € C.

Define ¢ : G x G — L* via eye; = ¢(0,7)eqr where ¢(o,7) € L* and 0,7 € G. We are
thinking of an extension of G by L* as a subgroup of the group of units in our algebra.
The algebra is associative if and only if ¢ is a 2-cocycle. Note that if we take e; = 1, then
the 2-cocycle is normalised.

Now let L/k be any finite Galois extension with Galois group G = Gal(L/k). Let ¢ :
G x G — L* be a normalised 2-cocycle. We define an algebra A = A(L, G, ¢) as follows:
It is the L-vector space on the basis {e, | o € G} with symbols e,. Define multiplication
on the basis by

eqer = P(0,7)esr and (oa)e, = eqa.

Since ¢ is a 2-cocycle, this extends to give an associative multiplication. ej is the mul-
tiplicative identity since ¢ is normalised. We identity L with Le; € A. The centre of
A(L,G, ) is k. Indeed, assume z = ) - Ases € Z(A(L,G, ¢)) with Ay € L. Then for
B € L we have

Z )\0'560' = 5(2)\060) - ,3.%’ = .%'5 = (Z)\Uea)ﬁ - ZAUJ(ﬂ)eU'

oeG
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So o(B) = B if A, # 0. However, if 0 # 1, we can choose § such that o(3) # 3, so Ay =0
for 0 # 1. Then z = A\je; Now ze, = e;x for all 7, so 7(\1) = A\; for any 7 and hence
A€ L¢ =K. Thus Z(A(L,G,¢)) = {de1 | A € k}.

Next we show that A is simple. Let I # 0 be a two-sided ideal and x = A\ €5, + - -+ A5, €0,
be a non-zero element in I with \,, € L™ and m minimal. If m > 1, we can find g € L*
such that 0,,(8) # om_1(8). Then y = x — 0, (B)xB~! € I and the coefficient of e,,, in
y is zero. Hence we conclude that m = 1, so x = Ae, with A € L*. This is a unit with
inverse 7! = 07} (A\"!)e,-1, s0 [ = A and A is simple.

Note that dimg A(L, G, ¢) = (dimg L)

Definition. The central simple k-algebra A(L, G, ¢) is the crossed product of L/k by the
Galois group Gal(L/k) with the given normalised 2-cocycle ¢ : G x G — L*.

Now suppose ¢’ : G x G — L* is another normalised 2-cocycle such that [¢] = [¢'], in
other words ¢ and ¢’ differ by a coboundary, i.e.

d)l(o-a T) = ¢(J> T)U(UT)u;:uU
for some 1-cochain u : G — L*. Define an L-linear map

F:A(LG,¢)— A(L,G,9)

/
€y — Ug€y

Then one checks that F' is a homomorphism. By simplicity and dimension reasons, it is
an isomorphism.

Proposition 4.5. The map

H*(G,L*) — Br(k),
[¢] — [A(L, G, ¢)]

1s a homomorphism of abelian groups.
Proof. Let ¢ and ¢’ be 2-cocycles. We have to show that
A(L,G,¢+¢') ~ A(L,G,¢) ® A(L,G, ¢').

Let A= A(L,G,¢), B=A(L,G,¢'), C = A(L,G,¢ + ¢'). Regard A and B as L-vector

spaces. Define

AR, B

V=A®,B= .
oL (lawb—a®lb|ac Abe B,l e L)

V has a unique right A ®; B-module structure given by

(a@pV)(a@b) =daxpbb
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for a’,a € A, V/,b € B. Also V has a unique left C-structure given by
(Ie2)(a®L b) = lesa @ eLb
forle L,o € G,a€ A, be B. Here we denote the basis elements of A, B,C by e,, e, el.

The two actions are compatible and so the right action of A ®; B on V defines a homo-
morphism

£ (A®y B)° — Ende(V)

which is injective because A ®j B is simple (to be proved later). Now (A ®; B)°P and
EndC(V)E have the same dimension n* where n = [L : K] = #G, so f is an isomorphism.
When we prove Artin-Wedderburn we will see that Endc (V) = M,.(D)°P for some division
algebra D which is the endomorphism algebra of a simple C-module. Also [C] = [D]. From
this we get (A ®x B)°? = M,,(D)°?, A®y B = M, (D) and so

[A @y B] = [D] = [C]
in Br(k). O

Remarks.

1. The map in Proposition is injective. We can see by counting dimensions that
[A(L, G, )] = [A(L,G,&)] if and only if A(L,G, ) = A(L,G¢).

2. The image of the map is in fact Br(L/k).

4.1 Some proofs

Now we return to fill in the remaining proofs. First we have the following lemma:

Lemma 4.6 (Schur’s lemma). If M is a simple module over some ring A, then Enda(M)
s a division algebra.

Proof. Immediate, by simplicity any endomorphism M — M is either 0 or an isomorphism.
O

Proof of Artin-Wedderburn, Theorem [{.1} Consider a minimal non-zero right A-submodule
of Ag (A regarded as a right A-module). Thus M has only the submodules 0 and M, i.e.
M is a simple right A-module. Then consider ) ., aM. This is a two-sided ideal in A,
hence it is A by simplicity.

Now consider 6, : M — aM given by multiplication by a € A on the left. This is a right
A-module map. By looking at ker 8,, 0, is either the zero map or an isomorphism. Thus

'That Endc (V) indeed has dimension n* follows from Theorem m (ii) applied to A = Endi(V), B =
C or directly from the discussion following that theorem. Note that dimC = n?, dimV =
n?, dim End (V) = nS.
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Y . alM is a sum of copies of M. An easy induction shows that a finite sum of simple
modules is a direct sum, possibly after ignoring multiple occurrences of the same module.

Now consider End4(M) =: D. By Schur’s lemma this is a division algebra. But A4 =
€;_, M; where the M, are simple right A-modules all isomorphic to each other. Consider
End(A4). We have a map

A — End A(A A),
a — multiplication on the left by a

An endomorphism is determined by the image of the generator 1, so this map is an
isomorphism, so A = Enda(A4). But Enda(D;_, M;) = M, (D). Hence A = M, (D). O

Corollary 4.7. With the notation as in the proof, every finitely generated right A-module
V' is isomorphic to a direct sum of finitely many copies of M. Any two submodules of the

same dimension over k are isomorphic and End (V') = M, (D) where r is the number of
copies of M in the direct sum.

Proof. A4 is a sum of copies of M. If V is finitely generated by v1, ..., v, as an A-module,
then the surjective map A" — V, (ai,...,a,) — > a;v; shows that V is a quotient of a
sum of copies of A4 and hence a quotient of a sum of finitely many copies of M. An easy
induction shows that this is in fact a direct sum of copies of M. O

We still have to show that the tensor product of two central simple k-algebras is again
such an algebra. We start with some easy linear algebra.

Definition. Let V' be a finite-dimensional k-vector space and {e;} a fized basis. For
v=> ae; €V welet Jw)=1{i€l|a; #0} be the support of v w.r.t. the basis {e;}.
For a subspace W C V', a non-zero element »  a;e; = w € W is primordial w.r.t. the basis
{e;} if J(w) is minimal among the sets J(w') with w' € W,w' # 0, and a; = 1 for some i.

Lemma 4.8.

(i) For 0 # w,w' € W with J(w) minimal, then J(w') C J(w) if and only if w' = cw
for some c € k.

(ii) The primordial elements span W .

Proof.
(i) Is clear.

(ii) Induction on #J(w). Let 0 # w = > ae; € W. Among the non-zero elements w’
of W with J(w') C J(w) we can choose one with #.J(w') minimal. Then wy = cw’
will be primordial for some ¢ € k*. Now wo = > be; with b; = 1 say. Then
w = a;jwo + (w— a;wg) and #J(w —ajwy) < #J(w), hence by induction we see that
w is a linear combination of primordial elements.
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Remark. The same is true for D-vector spaces for a division ring D.

Lemma 4.9. Let A be a k-algebra, D a central division algebra. Then every two-sided
ideal I in A ®y, D is generated as a left D-module by J =1N(A®1).

Note that I N (A ® 1) is an ideal of A.

Proof. There is a left D-module structure on A ®j D given by d(a ® §') = a ® 66’. The
ideal I is a D-submodule of A ®; D. Let {e;} be a basis for A as a k-vector space. Then
{(e; ® 1)} is a basis for A® D as a left D-module. Let r be primordial w.r.t. this basis.
Then r = ZieJ(r) di(e;®1) => e;®d; with §; € D. Then for any non-zero 6 € D, r§ € 1
and 7§ = Y d;0(e; ® 1). In particular, J(rd) = J(r) and so r§d = §'r for some &' € D
by the lemma. As some §; = 1 (since R is primordial) this implies 6 = ¢’ and so each ¢;
commutes with every § € D, thus §; € Z(D) = k. Sor € A® 1. Hence every primordial
element of I is in A ®; 1. The claim then follows from the previous lemma. ]

Proposition 4.10. The tensor product of two (finite-dimensional) simple k-algebras, at
least one of which is central, is again simple.

Proof. By Artin-Wedderburn we may assume that one of the algebras is M, (D) for some
division ring with centre k. Let A be the other algebra. By Lemma [£.9] A ®; D is simple,
hence by Artin-Wedderburn again A ®j D = M, (D’) for some division algebra D’. Thus

A® M,(D) = M,(A® D) = M,(My,(D")) =2 My (D)
is simple. ]

Corollary 4.11. The tensor product of two central simple k-algebras is again central
simple.

Proof. By Proposition the tensor product is again simple. Since Z(A ®; B) =
Z(A) ®y Z(B), it also follows that it is central. O

Thus the product in the Brauer group is defined.

Next we consider inverses in Br(k). Given a central simple k-algebra A, let V' be the
underlying vector space and consider the map

A® A 5 Endy(V),
a®ad — (v avad)

It is a ring homomorphism. The map is injective since A® A°P is simple by Proposition [£.10]
and the kernel does not contain 1® 1. So the map is an isomorphism since both sides have
the same dimension n? where n = dimgx A. Hence we proved A ®;, AP = M, (k) and so

[A] - [A°P] = [1].
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Theorem 4.12 (Double Centraliser Theorem). Let A be a central simple k-algebra with
simple subalgebra B. Then

(i) The centraliser Ca(B) is simple.
(11) dim B - dim C4(B) = dim A.
(iii) Ca(Ca(B)) = B.
(iv) If B is central simple, then Ca(B) is also central simple.

Proof. Exercise. 0

Direct proof of (ii) in a special case: Let C' be a central simple k-algebra, V a left C-
module. We regard V' as a right C°P-module. By Corollary V = M®" where M is a
simple C°P-module. Then End¢ (V) = Endger (V) = M, (D°P) where D°P = Endcop (M).
But C°P = M®™ for some m and C°P = M,,(D?). Now consider dimensions:

dimV =rdim M

dim C' = dim C* = m* dim D = m dim M

dim End¢ (V) = 72 dim M
dim End¢ (V) dim C = r?dim D - mdim M = (dim V)?

Remarks. We established the map
H*(Gal(L/k), L*) — Br(k).

The image is Br(L/k). For the converse we have to establish that given a central simple
algebra we can produce a 2-cocycle. In a central simple algebra A we consider maximal
subfields L (equivalently maximal commutative subalgebras). From the double centraliser
theorem we deduce dim A = (dimy L)2. Take an L-basis for A and consider multiplication
of two basis elements and we get a 2-cocycle. We also need to see that within A, L is
invariant under conjugation and the action is the Galois action.

Final remarks.

1. For a finite field k, Br(k) = 0 (Theorem by Wedderburn: finite division algebras
over fields).

2. For a non-archimedean local field k, Br(k) = Q/Z.

3. For a number field k there is a short exact sequence:

0 Br(k) = @ Br(k,) = Q/Z -0

where the sum runs through all the places v of k.
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5 Lyndon-Hochschild-Serre spectral
sequence

The aim is to link the cohomology of a group G with that of a normal subgroup H with
that of the quotient @ = G/H. We already saw this for low degree cohomology when we
met the five term exact sequence.

We consider a double cochain complex A. It consists of abelian groups AP, indexed
by p,q € Z, and maps d',d" of bidegree (1,0) resp. (0,1) such that d? = 0, d"? =
0,dd"+d"d =0.

We let A" =P, ,—, AP? and d = d'+d". Then ((A"),d) is a single chain complex, called
the total complez. The (total) cohomology H*(A) is the cohomology of the total complex.

In our context we are going to have AP = 0 for all p,q not in the first quadrant. In
our case let X*® be a ZG-projective resolution of the trivial module Z and Y* a Z(G/H)-
projective resolution of Z. Note that X* is also a ZH-projective resolution. Let M be a
ZG-module. Then G acts on Homp (X*®, M) by (gf)(x) = g(f(g~'x)). Since H then acts
trivially, we may view Homp (X*®, M) as a Z@Q-module.

Then we form the double complex A = Homg,y(Y*, Hompy(X®, M)). We let d' =
HOI’Ith/H(dY, ld) and d” = HOmg/H(id, d})

Warning: There is an alternating sign suppressed in the definition of d”. People have
different conventions. Cartan-Eilenberg put in (—1)P where p denotes the degree w.r.t.
the grading of X.

The cohomology of the total complex A can be approximated in different ways.

Aim. Filter the double complex in order to filter the cohomology spectral sequences to
get information about the associated graded version of H*(A) w.r.t. this filtration.

First calculate the cohomology H”(A) w.r.t. d’. Since d'd” = —d"d’, the horizontal differ-
ential d’ induces a differential on H”(A). We may then calculate H'(H"(A)). (Alterna-
tively we could have looked at H"(H'(A)).)

This gives the Eo-page - there is a cochain map we will define on H'(H"(A)) and then we
repeat to get Fs,... etc.

Consider how H'H"(A) is computed. Start in position (p, q). Let a?? € APY be a vertical
cocycle, i.e. d’aP? = 0. It defines a class in H”(A). For aP? to represent a horizontal
cocycle in H”(A) under d' it must be true that d’a?? (which has position (p + 1,q)) is
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the image under d” of an element a?*19=! in the position (p + 1,¢ — 1). Thus d(a?? —
aPtha=1ly = —@lgptlal ¢ AP+24-1 Go P9 — aPT1471 s a cocycle modulo everything
two steps to the right of the (p,¢)-th position. Similarly, a”? represents a coboundary
in H"”(A) under d’ if there are two elements b?~1¢ and ”9~! such that d’bP~14 = 0 and
d'bP~14 = q"pPa=t 4 gP4. Thus d(bP~ 19 — pP971) = aP7 modulo everything two steps to
the right of (p — 1, q).

This motivates the idea that filtrations of the complex will be useful. Let FPA be the
double subcomplex where components to the left of the p-th column are zero. So the total
complex of FPA is given by
(FPA" = p A
p'+g=n
p'>p

Note that (F°A)" = A™ and (FPA)" = 0 for p > n. This gives a decreasing filtration of
A°.

Let CP'? be the set of elements in (FPA)PTY whose image under d is in (FPT"A)PHatl,
Each such element is a sum of components along the line p + ¢ = n, starting at the
(p, q)-th position, such that the vertical and horizontal maps cancel within the range
p < p < p+r. Note that the image under d of such an element lies in (FPt"A)" 1 i.e. it
starts at coordinates (p +r,q — r + 1). Define

cPe 4 (Fp+1A)p+q

Ep7q — .

r

Then d induces maps dy? : EP? — EPTT4—m+1 gatisfying d? = 0.

If we compute the cohomology of the resulting complex, we get
H(Em dr) = Er+17

i.e. b
Ep’ql B ker d;
r+1 7 . — —-1-
im d? natr

A representative of an element a in EY? defines an element in a subquotient of APY at
its upper left (p, q), but its extended structure to the right is crucial in calculating dr. In
particular da € FPT! A represents d,. of the element represented by a. For each fixed (p, q)
the differential d2’? which starts there and differential df«’%’qﬂul which ends there must
vanish for r sufficiently large (all our terms are in the top right quadrant). It follows that
each EP"? eventually stabilises at a common value, denoted by EX! (but the r for which
EP? = E%! may depend on p, q).

Suppose that a € A™ is a cocycle starting at AP? where p + ¢ = n, i.e. a € (FPA)™ \
(FPT2A)™ and da = 0. So a determines an element of EX since it determines an element
of EP? for all » > 1 and d, is zero on that element.
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In other words, we have a map
FPHPY(A) == im (Hp+q(FpA) - Hp+q(A)) — EPY.

In fact, it is surjective and the kernel is FP*1HP+9(A). Thus the filtration of the double
complex A induces a descending filtration of H"(A) for each n and
~ P,q

FPHPTI(A)
FPrt1HPa(A) T

Note that the spectral sequence E, determines those factors and so determines the as-
sociated graded version gr H*(A). When calculating we may be left with the extension
problem of how to fit these factors together to give H*(A).

Back to our complex arising from G, H < G,G/H and ZG-module M. We can take two
spectral sequences arising from H'H"(A) as Fs-page and from H”H'(A) as E-page. We
will find that the second one shows relatively easily that the total cohomology H*(A) of
the complex is just H*(G, M). Then we can use the first sequence to calculate what this
cohomology is from knowledge of cohomology of H and G/H. Recall that

A** = Homg, (Y, Homy (X*, M))
d/ = Homg/H(dy, id)
d" = Homg g (id, d%) (with sign actually)

The first spectral sequence: Calculate H'H”(A) to give Es-page of spectral sequence.
We have

H"(Homg, (Y, Homp (X*, M))) = Homg (Y, H* (Homp (X, M)))

since the terms of Y'* are all ZG/H-projective and so Homg, 5 (Y®, —) preserves exactness
and therefore homology groups. Thus

By = H/H//(A)
= H % (Homg/H(Y',H*(X'aM)))
— H*(G/H, H*(H, M))

The second spectral sequence: We have
H'(Homg/H(Y',HomH(X°,M))) = H*(G/H,Hompg(X*, M)).
Lemma 5.1. H?(G/H,Hompg(X*, M)) =0 forp > 0.
Proof. Since each X, is ZG-projective and hence a direct summand of a free module,

it suffices to prove this for X = ZG. Let M be the trivial ZG-module with the same
underlying additive group as M. Claim: There is a ZG-isomorphism

Homp (ZG, M) = Homp (ZG, H)
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when G acts on the left hand side by (¢f)(z) = gf(¢ 'x) but on the right hand side
we have the action as an coinduced module. [Proof of claim: For f € Hompgy(ZG, M)
define f' € Hompy(ZG, M) via f'(z) = xzf(z~') for € G. Check this is indeed in
Homy (ZG, M). Observe that (f') = f. Also check f — f gives a ZG-isomorphism.]

This isomorphism allows us to use Shapiro’s lemma. Also note that Hompy (ZG, M) =
Hom(Z(G/H), M). Since H acts trivially on M,

HP(G/H,Hompy (ZG, M)) = HP(G/H,Hom(Z(G/H), M))
>~ HP(1,M)
=0
if p> 0. O

Thus H'(A) is concentrated on the line p = 0, i.e. all other terms are 0. We have

H°(G/H,Homp(X*, M)) = Homp (X*, M)¢/H
= Homg(X*, M).

Then

H"H'(A) = H*(Homg(X*, M))
=H*(G,M).
Thus the Es-page gives H*(G, M). Since the Es-page is concentrated in one line, it follows

that F, = FE for r > 2 and thus E, is concentrated on the line p = 0. Hence the filtration
of H"(A) has only one non-trivial factor. So

H"(A) = H"(G, M).

5.1 Example: Cohomology of S;5

Let G = 53. Consider 1 - C3 — G — Cy — 1.

The first spectral sequence: HP(Cy, H1(C3,7Z)) will give the Es-page. Here the action
of Cy on H%(C3,7) is induced by conjugation, (12)(123)(12)~! = (132). So the non-trivial
element of Cy acts on Cs via the inversion map which is a group homomorphism as Cj
is abelian. The induced map is a ring homomorphism of the cohomology ring H*(Cs,7Z).
The underlying groups are given by

HY(C3,7Z) = 7
H?*(C3,2) = 7/3Z,k > 0
H2k+l (03’ Z) -0
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(see example sheet) In fact, H*(C3,Z) = Z[c]/(3c) where c is of degree 2. What is the
action of Co? The action on H?(Cs3,Z) is given by multiplication by —1 (to check this,
consider find a 2-cocyle representing the given cohomology class and use the definition of
the action of Cy on cocycles). Thus the action on H*(C3, Z) is trivial and on H*+2(Cs, Z)
it is multiplication by —1.

So

HO(Co, H¥*2(C3,2)) = 0
HY(Co, H*(C3,2))) = 2./3Z

We know from Example Sheet 1 that HP(Cs,Z/3Z) =0 if p > 1. So the Es-page is

0
Z/3Z 0

0 0 0

0 0 0 0

0 0 0 0 0

d2
Z 0%0 7)27. 0

Note that all differentials start or finish at 0, and so Fy = F,. Also notice that there are
no extension problems, e.g.

0— Z/27 — HY(A) — Z/3Z — 0
and then necessarily H4(A) = Z/6Z. Then

Z n =20,
17(55.2) = 1 ° n odd,
Y7 2/22 n=2mod 4,

7/6Z n=0mod 4,n # 0.
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