Group Cohomology

Cambridge Part III, Lent 2023
Taught by Christopher Brookes
Notes taken by Leonard Tomczak

Contents

1 Basic definitions and resolutions 2
1.1 Some definitions and examples 2
1.2 Cohomology 6
2 Low degree cohomology and group extensions 10
$2.1 \quad H^{1}-$ splittings of extensions 10
$2.2 \quad H^{2}$ - group extensions 11
2.3 Group presentations 15
3 General Theory 21
3.1 Long exact sequence 21
3.2 Five term exact sequence 22
3.3 Transfer map (or corestriction) 24
3.4 Products 25
4 Brauer groups 27
4.1 Some proofs 30
5 Lyndon-Hochschild-Serre spectral sequence 34
5.1 Example: Cohomology of S_{3}. 37

1 Basic definitions and resolutions

1.1 Some definitions and examples

Let G be a group.
Definition. The integral group ring $\mathbb{Z} G$ is the free abelian group on the elements of G together with multiplication defined by

$$
\left(\sum_{h \in G} m_{h} h\right)\left(\sum_{k \in G} n_{k} k\right)=\sum_{g}\left(\sum_{h k=g} m_{h} n_{k}\right) g .
$$

A module over $\mathbb{Z} G$ will usually be a left module over $\mathbb{Z} G$. A $\mathbb{Z} G$-module M is trivial, if $g m=m$ for all $m \in M, g \in G$. The trivial module is \mathbb{Z} (with G acting trivially).
The free $\mathbb{Z} G$-module on X will be denoted by $\mathbb{Z} G\{X\}$.
Definition. $A \mathbb{Z} G$-map (or morphism) of $\mathbb{Z} G$-modules M_{1}, M_{2} is a homomorphism α : $M_{1} \rightarrow M_{2}$ of abelian groups such that $\alpha\left(r m_{1}\right)=r \alpha\left(m_{1}\right)$ for all $r \in G$.
Example. The augmentation map $\varepsilon: \mathbb{Z} G \rightarrow \mathbb{Z}, \sum_{g \in G} n_{g} g \mapsto \sum_{g} n_{g}$ is a $\mathbb{Z} G$-map where we regard $\mathbb{Z} G$ as a left module and \mathbb{Z} is the trivial module.

We write $\operatorname{Hom}_{G}(M, N)$ for the set of $\mathbb{Z} G$-maps where M, N are $\mathbb{Z} G$-modules. It is an abelian group under addition.

Example. Note that $\operatorname{Hom}_{G}(\mathbb{Z} G, M)$ can be given a $\mathbb{Z} G$-module structure by $(s \phi)(r):=$ $\phi(r s)$ (essentially since $\mathbb{Z} G$ is a bimodule over itself). We have $\operatorname{Hom}_{G}(\mathbb{Z} G, M) \cong M$ as $\mathbb{Z} G$ modules where the isomorphism is given by $\phi \mapsto \phi(1)$. In particular, $\operatorname{Hom}_{G}(\mathbb{Z} G, \mathbb{Z} G) \cong \mathbb{Z} G$ where $\phi: \mathbb{Z} G \rightarrow \mathbb{Z} G$ corresponds to $\phi(1) \in \mathbb{Z} G$. So as $\phi(r)=r \phi(1), \phi$ is multiplication on the right by $\phi(1)$.
Note that Hom_{G} is functorial:
Definition. If $f: M_{1} \rightarrow M_{2}$ is a $\mathbb{Z} G$-map and N a $\mathbb{Z} G$-module, then the dual map is

$$
\begin{aligned}
f^{*}: \operatorname{Hom}_{G}\left(M_{2}, N\right) & \longrightarrow \operatorname{Hom}_{G}\left(M_{1}, N\right), \\
\phi & \longmapsto \phi \circ f
\end{aligned}
$$

Similarly if $f: N_{1} \rightarrow N_{2}$ is a $\mathbb{Z} G$ - map and M a $\mathbb{Z} G$-module, then the induced map is

$$
\begin{aligned}
f_{*}: \operatorname{Hom}_{G}\left(M, N_{1}\right) & \longrightarrow \operatorname{Hom}_{G}\left(M, N_{2}\right), \\
\phi & \longmapsto f \circ \phi
\end{aligned}
$$

Example. Let $G=\langle t\rangle$ be infinite cyclic, acting on the real line where t is translation by +1. We view this as follows: Let $V=\left\{v_{i}\right\}_{i \in \mathbb{Z}}$ be a set of vertices and let G act on V by $t\left(v_{i}\right)=v_{i+1}$. For each pair $\left(v_{i}, v_{i+1}\right)$ consider an edge between them and let E be the set of these edges. Let e be the edge $v_{0} \rightarrow v_{1}$. Then we can regard formal integral sums $\mathbb{Z} V$ and $\mathbb{Z} E$ as $\mathbb{Z} G$-modules. They are both free of rank one and $\mathbb{Z} V=\mathbb{Z} G\left\{v_{0}\right\}, \mathbb{Z} E=\mathbb{Z} G\{e\}$. There is a $\mathbb{Z} G$-map corresponding to the augmentation map $\mathbb{Z} V \rightarrow \mathbb{Z}$.

Definition. A chain complex of $\mathbb{Z} G$-modules is a sequence

$$
M_{s} \xrightarrow{d_{s}} M_{s_{1}} \xrightarrow{d_{s-1}} \ldots \xrightarrow{d_{t+2}} M_{t+1} \xrightarrow{d_{t+1}} M_{t}
$$

with $s>t$ such that for every $t<n<s, d_{n} d_{n+1}=0$, i.e. $\operatorname{im} d_{n+1} \subseteq \operatorname{ker} d_{n}$. We write $M_{\bullet}=\left(M_{n}, d_{n}\right)_{t \leq n \leq s} . M_{\bullet}$ is exact at M_{n} if $\left.\operatorname{im} d_{n+1}\right)=\operatorname{ker} d_{n}$, it is exact if it is exact at all M_{n} with $t<n<s$.

The homology of the chain complex M_{\bullet} is $H_{s}\left(M_{\bullet}\right)=\operatorname{ker} d_{s}, H_{n}\left(M_{\bullet}\right)=\operatorname{ker} d_{n} / \operatorname{im} d_{n+1}$ for $t<n<s$ and $H_{t}\left(M_{\bullet}\right)=M_{t} / \operatorname{im} d_{t+1}$.
Example. Let $G=\langle t\rangle$ be infinite cyclic. There is an short exact sequence

$$
0 \rightarrow \mathbb{Z} G \xrightarrow{\cdot(t-1)} \mathbb{Z} G \stackrel{\varepsilon}{\longrightarrow} \mathbb{Z} \rightarrow 0
$$

corresponding to

$$
0 \rightarrow \mathbb{Z} E \rightarrow \mathbb{Z} V \rightarrow \mathbb{Z} \rightarrow 0
$$

Definition. $A \mathbb{Z} G$-module P is projective if for every surjective $\mathbb{Z} G$-map $\alpha: M_{1} \rightarrow M_{2}$ and every $\mathbb{Z} G$-map $\beta: P \rightarrow M_{2}$, then there exists $\bar{\beta}: P \rightarrow M-1$ such that $\alpha \circ \bar{\beta}=\beta$.

Let

$$
0 \rightarrow N \xrightarrow{f} M_{1} \xrightarrow{\alpha} M_{2} \rightarrow 0
$$

be a short exact sequence and consider the sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Hom}_{G}(P, N) \xrightarrow{f_{*}} \operatorname{Hom}_{G}\left(P, M_{1}\right) \xrightarrow{\alpha_{*}} \operatorname{Hom}\left(P, M_{2}\right) \rightarrow 0 \tag{*}
\end{equation*}
$$

Then (by definition) P is projective if and only if (*) is exact at $\operatorname{Hom}_{G}\left(P, M_{2}\right)$ for all short exact sequences $0 \rightarrow N \rightarrow M_{1} \rightarrow M_{2} \rightarrow 0$.

Note that we always have exactness elsewhere in (*).
Lemma 1.1. Free modules are projective.

Proof. In the notation from the definition, define $\bar{\beta}$ on a basis X by setting $\bar{\beta}(x)=y$ for $x \in X$ where $y \in M_{1}$ is such that $\alpha(y)=\beta(x)$.

Definition. A projective (resp. free) resolution of the trivial module \mathbb{Z} is an exact sequence

$$
\cdots \xrightarrow{d_{2}} P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{d_{0}} \mathbb{Z} \rightarrow 0
$$

with all P_{i} projective (resp. free).
Note that the sequence can be of infinite length.

Examples.

1. Let $G=\langle t\rangle$ be again the infinite cyclic group. Then

$$
0 \rightarrow \mathbb{Z} G \xrightarrow{\cdot(t-1)} \mathbb{Z} G \stackrel{\varepsilon}{\rightarrow} \mathbb{Z} \rightarrow 0
$$

is a free resolution of \mathbb{Z}.
2. Let $G=\langle t\rangle$ be cyclic of order n. Then

$$
\ldots \xrightarrow{\alpha} \mathbb{Z} G \xrightarrow{\beta} \mathbb{Z} G \xrightarrow{\alpha} \mathbb{Z} G \xrightarrow{\beta} \mathbb{Z} G \xrightarrow{\alpha} \mathbb{Z} G \xrightarrow{\varepsilon} \mathbb{Z} \rightarrow 0
$$

is a free resolution where the maps α, β are given by

$$
\begin{aligned}
& \alpha(x)=x(t-1) \\
& \beta(x)=x\left(1+t+\cdots+t^{n-1}\right)
\end{aligned}
$$

Exercise: Show this is indeed exact.
3. If we take a partial free/projective resolution

$$
P_{s} \xrightarrow{d_{s}} \cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow \mathbb{Z}
$$

(so this is exact, P_{i} free/projective), set $X_{s+1}=\operatorname{ker} d_{s}$ and $P_{s+1}=\mathbb{Z} G\left\{X_{s+1}\right\}$. Then define $d_{s+1}: P_{s+1} \rightarrow P_{s}$ by $\sum r_{x} x \mapsto r_{x} x \in P_{s}$. This gives us a longer partial resolution

$$
P_{s+1} \xrightarrow{d_{s+1}} P_{s} \rightarrow \cdots \rightarrow 0
$$

This shows that free (so in particular projective) resolutions always exist. But note that P_{s+1} is free of perhaps infinite rank. We could do a littple better by taking X_{s+1} to be a $\mathbb{Z} G$-module generating set of ker d_{s}.

From algebraic topology: Let X be a connected simplicial complex X with fundamental group G so that the universal cover \widetilde{X} is contractible. Then X contains information about G and we will be trying to replicate the study of cohomology of the space X algebraically.

Definition. G is of type $F P_{n}$ if the trivial $\mathbb{Z} G$-module \mathbb{Z} has a projective resolution

$$
\cdots \xrightarrow{d_{2}} P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{d_{0}} \mathbb{Z} \rightarrow 0
$$

such that $P_{n}, P_{n-1}, \ldots, P_{0}$ are finitely generated as $\mathbb{Z} G$-modules. G is of type $F P_{\infty}$ if there is a such a resolution with all P_{n} finitely generated. G is of type $F P$ if there is a projective resolution of \mathbb{Z} of finite length, i.e. $P_{s}=0$ for alls large enough, and all P_{n} are finitely generated.

Examples.

1. The infinite cyclic group is of type $F P$.
2. The cyclic group of order n is of type $F P_{\infty}$. We will see later that it is not of type $F P$.

The $F P_{n}$ analogous to G being a fundamental group of a simplicial complex X with \widetilde{X} contractible and X has finite n-skeleton.

Definition. Let $G^{(n)}=\left\{\left[g_{1}\left|g_{2}\right| \ldots \mid g_{n}\right] \mid g_{1}, \ldots, g_{n} \in G\right\}$ for $n \geq 1$ and $G^{(0)}=\{[]\}$. The $\left[g_{1}\left|g_{2}\right| \ldots \mid g_{n}\right]$ are called symbols and [] is the empty symbol. Set $F_{n}=\mathbb{Z} G\left\{G^{(n)}\right\}$ and define the $\mathbb{Z} G$-map $d_{n}: F_{n} \rightarrow F_{n-1}$ on symbols by

$$
\begin{aligned}
d_{n}\left(\left[g_{1}|\cdots| g_{n}\right]\right)= & g_{1}\left[g_{2}|\cdots| g_{n}\right]-\left[g_{1} g_{2}\left|g_{3}\right| \cdots \mid g_{n}\right]+\left[g_{1}\left|g_{2} g_{3}\right| \cdots \mid g_{n}\right] \\
& +\cdots+(-1)^{n-1}\left[g_{1}\left|g_{2}\right| \cdots \mid g_{n-1} g_{n}\right]+(-1)^{n}\left[g_{1}\left|g_{2}\right| \cdots \mid g_{n-1}\right]
\end{aligned}
$$

Then

$$
\cdots \rightarrow F_{n} \xrightarrow{d_{n}} \rightarrow F_{n-1} \rightarrow \cdots \rightarrow F_{0} \xrightarrow{[] \mapsto 1} \mathbb{Z}
$$

is the standard (or bar) resolution of group G.
It is easily verified that $d_{n-1} \circ d_{d}=0$.
Lemma 1.2. The standard resolution is in fact a resolution, i.e. exact.
Proof. Note that F_{n} is a free abelian group on $G \times G^{(n)}=\left\{g_{0}\left[g_{1}|\cdots| g_{n}\right] \mid g_{0}, \ldots, g_{n} \in G\right\}$. Let $s_{n}: F_{n} \rightarrow F_{n+1}$ be the map of abelian groups given by $s_{n}\left(g_{0}\left[g_{1}|\cdots| g_{n}\right]\right)=\left[g_{0}\left|g_{1}\right|\right.$ $\left.\cdots \mid g_{n}\right]$. Then it is straightforward to check that s_{n} satisfies

$$
\operatorname{id}_{F_{n}}=d_{n+1} s_{n}+s_{n-1} d_{n}
$$

(I.e. s_{n} gives a chain homotopy equivalence $\operatorname{id}_{F} \sim 0$) Hence if $x \in \operatorname{ker} d_{n}$, then $x=\operatorname{id} x=$ $d_{n+1} s_{n}(x)+s_{n-1} d_{n}(x)=d_{n+1}\left(s_{n}(x)\right)$, so $x \in \operatorname{Im} d_{n+1}$.

Corollary 1.3. A finite group G is of type $F P_{\infty}$.
Proof. Indeed, the standard resolution is free with all terms of finite rank.

1.2 Cohomology

Definition. Take a projective resolution

$$
\cdots \rightarrow P_{n+1} \xrightarrow{d_{n+1}} P_{n} \rightarrow \ldots \xrightarrow{d_{1}} P_{0} \rightarrow \mathbb{Z}
$$

of \mathbb{Z} by $\mathbb{Z} G$-modules. Let M be a $\mathbb{Z} G$-module. Apply $\operatorname{Hom}_{G}(-, M)$ to get a sequence

$$
\cdots \leftarrow \operatorname{Hom}_{G}\left(P_{n+1}, M\right) \stackrel{d^{n+1}}{\leftarrow} \operatorname{Hom}_{G}\left(P_{n}, M\right) \leftarrow \ldots \stackrel{d^{1}}{\leftarrow} \operatorname{Hom}_{G}\left(P_{0}, M\right)
$$

where $d^{n}=d_{n}^{*}$. Then the n-th cohomology group $H^{n}(G, M)$ with coefficients in M is then the abelian group

$$
\begin{aligned}
H^{n}(G, M) & =\frac{\operatorname{ker} d^{n+1}}{\operatorname{im} d^{n}} \quad n \geq 1 \\
H^{0}(G, M) & =\operatorname{ker} d^{1}
\end{aligned}
$$

Remarks.

1. We have dropped the \mathbb{Z} on the RHS.
2. Those are the homology groups of the chain complex $C_{n}=\operatorname{Hom}_{G}\left(F_{-n}, M\right)$ defined for $-\infty<n \leq n$.
3. Those are independent of the choice of projective resolution, see Theorem 1.5

Example. Let $G=\langle t\rangle$ be infinite cyclic. Then we had the resolution

$$
0 \rightarrow \mathbb{Z} G \xrightarrow{\cdot(t-1)} \mathbb{Z} G \rightarrow \mathbb{Z} \rightarrow 0
$$

If $\phi \in \operatorname{Hom}_{G}(\mathbb{Z} G, M), x \in \mathbb{Z} G$, then

$$
d^{1}(\phi)(x)=\phi\left(d_{1}(x)\right)=\phi(x(t-1)) .
$$

Recall that we have an isomorphism $i: \operatorname{Hom}_{G}(\mathbb{Z} G, M) \rightarrow M, \theta \mapsto \theta(1)$. In particular, $d^{1}(\phi) \mapsto d^{1}(\phi)(1)=\phi(t-1)=(t-1) \phi(1)=(t-1) i(\phi)$. So the dual chain complex $\operatorname{Hom}_{G}\left(P_{\bullet}, M\right)$ is

$$
0 \leftarrow M \stackrel{(t-1) \cdot}{\leftrightarrows} M
$$

Hence,

$$
\begin{aligned}
& H^{0}(G, M)=\operatorname{ker}((t-1) \cdot)=\{m \in M \mid t m=m\}=M^{G} \\
& H^{1}(G, M)=\frac{M}{\{(t-1) m \mid m \in M\}}=: M_{G} \\
& H^{n}(G, M)=0 \quad \text { if } n \geq 2
\end{aligned}
$$

Here M^{G} is the group of invariant, the largest submodule fixed by G, and M_{G} is the group of co-invariants, the largest quotient fixed by G.

Remarks.

1. $H^{0}(G, M)=M^{G}$ is true in general. $H^{1}(G, M)=M_{G}$ is special to the the infinite cyclic group and does not hold in general.
2. If G is of type $F P$, then $H^{n}(G, M)=0$ for all $n \geq s$ for some s.

Definition. G is of cohomological dimension M (over \mathbb{Z}) if there is some $\mathbb{Z} G$-module M such that $H^{m}(G, M) \neq 0$ and for all modules M we have $H^{n}(G, M)=0$ for $n>m$.
E.g. the infinite cyclic group is of cohomological dimension 1. More generally, if G is free and non-trivial, then it is of cohomological dimension 1 . The converse is also true:

- (Stallings 1968) If G is finitely generated, then G is free if it has cohomological dimension 1.
- (Swan 1969) Removed the f.g. condition.

Definition. Let $\left(A_{n}, \alpha_{n}\right)$ and $\left(B_{n}, \beta_{n}\right)$ be chain complexes of $\mathbb{Z} G$-modules. Then a chain $\operatorname{map} A_{\bullet} \rightarrow B \bullet$ is a family $\left(f_{n}\right)$ where each $f_{n}: A_{n} \rightarrow B_{n}$ is a $\mathbb{Z} G$-map such that

commutes for all n.
Lemma 1.4. Given a chain map $\left(f_{n}\right)$ as above, it induces a well-defined map on the homology groups

$$
f_{*}: H_{n}\left(A_{\bullet}\right) \rightarrow H_{n}\left(B_{\bullet}\right) .
$$

Proof. Clear.
Theorem 1.5. The definition of $H^{n}(G, M)$ is independent of the choice of resolution.
Proof. Let $\left(P_{n}, d_{n}\right)$ and $\left(P_{n}^{\prime}, d_{n}^{\prime}\right)$ be two projective resolutions of \mathbb{Z} by $\mathbb{Z} G$-modules. We will produce various $\mathbb{Z} G$-maps:

- Chain map $\left(f_{n}\right): P_{\bullet} \rightarrow P_{\bullet}^{\prime}$,
- Chain map $\left(g_{n}\right): P_{\bullet}^{\prime} \rightarrow P_{\bullet}$,
- $s_{n}: P_{n} \rightarrow P_{n+1}$ such that $d_{n+1} s_{n}+s_{n-1} d_{n}=g_{n} f_{n}-$ id (i.e. $\left(g_{n} f_{n}\right) \sim$ id)
- $s_{n}^{\prime}: P_{n}^{\prime} \rightarrow P_{n+1}^{\prime}$ such that $d_{n+1}^{\prime} s_{n}^{\prime}+s_{n-1}^{\prime} d_{n}^{\prime}=f_{n} g_{n}-\mathrm{id}$.

Assume we have constructed these. Then $\left(f_{n}^{*}\right)$ gives a chain map $\operatorname{Hom}_{G}\left(P_{\mathbf{\bullet}}^{\prime}, M\right) \rightarrow$ $\operatorname{Hom}_{G}\left(P_{\bullet}, M\right)$ and similarly $\left(g_{n}^{*}\right)$ gives a chain map $\operatorname{Hom}_{G}\left(P_{\bullet}, M\right) \rightarrow \operatorname{Hom}_{G}\left(P_{\bullet}^{\prime}, M\right)$. They induce maps between the (co)homology groups. Now observe that if $\phi \in \operatorname{ker} d^{n+1}$. Then

$$
\begin{aligned}
\left(f_{n}^{*} g_{n}^{*}\right)(\phi)(x) & =\phi\left(g_{n} f_{n}(x)\right) \\
& =\phi(x)+\phi\left(d_{n+1} s_{n}(x)\right)+\phi\left(s_{n-1} d_{n}(x)\right) \\
& =\phi(x)+s_{n}^{*} d^{n+1} \phi(x)+d^{n} s_{n-1}^{*}(\phi)(x) \\
& =\phi(x)+d^{n}\left(s_{n-1}^{*}(\phi)\right)(x) .
\end{aligned}
$$

Hence $f_{n}^{*} g_{n}^{*}(\phi)=\phi+d^{n}\left(s_{n-1}^{*}(\phi)\right)$, so $f_{n}^{*} g_{n}^{*}$ induces the identity on the homology group. Similarly for $g_{n}^{*} f_{n}^{*}$ and so the g_{n}, f_{n} induces isomorphisms on the homologies.

So all we have to do is to construct these maps. Consider the end of the resolutions and let $f_{-1}: \mathbb{Z} \rightarrow \mathbb{Z}$ be the identity and $f_{-2}: 0 \rightarrow 0$. Now suppose we have defined f_{n-1} and f_{n}. Then $f_{n} d_{n+1}: P_{n+1} \rightarrow P_{n}^{\prime}$ and $d_{n}^{\prime}\left(f_{n} d_{n+1}\right)=f_{n-1} d_{n} d_{n+1}=0$. So the image of $f_{n} d_{n+1}$ lies in ker d_{n}^{\prime}. Consider the diagram:

Since P_{n+1} is projective, the arrow f_{n+1} as indicated in the diagram exists. This shows the existence of the chain map $\left(f_{n}\right)$ and similarly one gets the g_{n}.
To define $\left(s_{n}\right)$, first set $h_{n}=g_{n} f_{n}-\mathrm{id}: P_{n} \rightarrow P_{n}$. Then $\left(h_{n}\right)$ is a chain map with $h_{-1}=0$. Set $s_{-1}: \mathbb{Z} \rightarrow P_{0}$ to be the zero map. Note that $d_{0} h_{0}=h_{-1} d_{0}=0$ and so $\operatorname{im} h_{0} \subseteq \operatorname{ker} d_{0}$. As before $d_{1}: P \rightarrow \operatorname{ker} d_{0}$ is surjective. Then consider:

Now for induction suppose s_{n-1} and s_{n-2} have been defined. Consider $t_{n}=h_{n}-s_{n-1} d_{n}$: $P_{n} \rightarrow P_{n}$. We have $d_{n} t_{n}=d_{n} h_{n}-d_{n} s_{n-1} d_{n}=h_{n-1} d_{n}-\left(h_{n-1}-s_{n-2} d_{n-1}\right) d_{n}=0$. So $\operatorname{im} t_{n} \subseteq \operatorname{ker} d_{n}$. Now look again at the diagram:

Then we get $\left(s_{n}\right)$ and similarly we get $\left(s_{n}^{\prime}\right)$.

Remark. If we use free/projective resolutions of any $\mathbb{Z} G$-module N (instead of \mathbb{Z}), then our definitions give us

$$
\operatorname{Ext}_{\mathbb{Z} G}^{n}(N, M)
$$

Thus $\operatorname{Ext}_{\mathbb{Z} G}^{n}(\mathbb{Z}, M)=H^{n}(G, M)$.
Now consider the definition of $H^{n}(G, M)$ as applied to the standard resolution

$$
\cdots \rightarrow \mathbb{Z} G\left\{G^{(1)}\right\} \rightarrow \mathbb{Z} G\left\{G^{(0)}\right\} \rightarrow \mathbb{Z}
$$

We have

$$
\operatorname{Hom}_{G}\left(\mathbb{Z} G\left\{G^{(n)}\right\}, M\right) \cong\left\{\text { functions } \phi: G^{n} \rightarrow M\right\}=: C^{n}(G, M)
$$

and $C^{0}(G, M) \cong M$.
Definition. The group of n-cochains of G with coefficients in M is $C^{n}(G, M)$ under addition. The n-th coboundary map is $d^{n}: C^{n-1}(G, M) \rightarrow C^{n}(G, M)$ dual to d_{n} in the standard resolution. Then

$$
\begin{aligned}
\left(d^{n} \phi\right)\left(g_{1}, \ldots, g_{n}\right)= & g_{1} \phi\left(g_{2}, \ldots, g_{n}\right)-\phi\left(g_{1} g_{2}, g_{3}, \ldots, g_{n}\right)+\phi\left(g_{1}, g_{2} g_{3}, g_{4}, \ldots, g_{n}\right) \\
& -\cdots+(-1)^{n-1} \phi\left(g_{1}, g_{2}, \ldots, g_{n-2}, g_{n-1} g_{n}\right)+(-1)^{n} \phi\left(g_{1}, \ldots, g_{n-1}\right)
\end{aligned}
$$

The group of n-cocycles is $Z^{n}(G, M)=\operatorname{ker} d^{n+1} \subseteq C^{n}(G, M)$ and the group of n coboundaries is $B^{n}(G, M)=\operatorname{Im} d^{n} \subseteq C^{n}(G, M)$. Then $H^{n}(G, M)=\frac{Z^{n}(G, M)}{B^{n}(G, M)}$.
Relationship between our standard resolution and the usual one in algebraic topology: Let G^{n+1} be the set of $n+1$-tuples and consider the free abelian group $\mathbb{Z} G^{n+1}$ on these. G acts on G^{n+1} via $g\left(g_{0}, g_{1}, \ldots, g_{n}\right)=\left(g g_{0}, \ldots, g g_{n}\right)$. Thus $\mathbb{Z} G^{n+1}$ becomes a free $\mathbb{Z} G$-modules with basis given by the $n+1$-tuples with $g_{0}=1$. The symbol $\left[g_{1}|\cdots| g_{n}\right]$ corresponds to $\left(1, g_{1}, g_{1} g_{2}, \ldots, g_{1} g_{2} \cdots g_{n}\right)$. Note that in the usual resolution in algebraic topology we have the boundary map where there is an alternating sum of n-tuples where we miss out one of the entries in turn. If we take $\left(1, g_{1}, g_{1} g_{2}, \ldots\right)$ and miss out the first entry, we get $\left(g_{1}, g_{1} g_{2}, \ldots\right)=g_{1}\left(1, g_{2}, g_{2} g_{3}, \ldots\right)$ which corresponds to $g_{1}\left[g_{2}|\cdots| g_{n}\right]$. If we miss out the second entry, we get $\left(1, g_{1} g_{2}, g_{1} g_{2} g_{3}, \ldots\right)$, this corresponds to $\left[g_{1} g_{2}\left|g_{3}\right| \cdots \mid g_{n}\right]$.

2 Low degree cohomology and group extensions

Let G be a group and M a $\mathbb{Z} G$-module.
Corollary 2.1. $H^{0}(G, M)=M^{G}$.
Proof. Immediate from the definitions.

2.1 H^{1} - splittings of extensions

Definition. A derivation (or crossed homomorphism) of G with coefficients in M is a function $\phi: G \rightarrow M$ such that

$$
\phi(g h)=g \phi(h)+\phi(g)
$$

for all $g, h \in G$. An inner derivation is one of the form $\phi(g)=g m-m$ for some fixed $m \in M$.

Notice that $Z^{1}(G, M)$ is the abelian group of derivations (under addition) and $B^{1}(G, M)$ is the subgroup of inner derivations. Hence

$$
H^{1}(G, M)=\frac{\{\text { derivations } G \rightarrow M\}}{\text { inner derivations } G \rightarrow M}
$$

In particular, if M is a trivial $\mathbb{Z} G$-module, then $H^{1}(G, M)=\operatorname{Hom}(G, M)$ (group homomorphisms $G \rightarrow M)$.

We recall the definition of the semidirect product:
Definition. Let G be a group, M be a left $\mathbb{Z} G$-module. We construct the semidirect product $M \rtimes G$ as follows: The underlying set is $M \times G$ and the multiplication is given by

$$
\left(m_{1}, g_{1}\right) *\left(m_{2}, g_{2}\right)=\left(m_{1}+g_{1} m_{2}, g_{1} g_{2}\right)
$$

In this case $M \cong\{(m, 1) \mid m \in M\}$ is an abelian normal subgroup and $G \cong\{(0, g) \mid g \in G\}$ is a subgroup. Conjugation of G on $M \subseteq M \rtimes G$ corresponds to our $\mathbb{Z} G$-module action. This is an example of an extension of G by M.

Note that there is a group homomorphism $s: G \rightarrow M \rtimes G, g \mapsto(0, g)$ such that the composite $G \xrightarrow{s} M \rtimes G \xrightarrow{\pi} G$ is the identity map. This is called a splitting of the extension, and the semidirect product is a split extension of G by M.
Let $E=M \rtimes G$. Now consider another splitting $s_{1}: G \rightarrow E$ such that $G \xrightarrow{s_{1}} E \xrightarrow{\pi} G$ is the identity. Define $\psi_{s_{1}}: G \rightarrow M$ by $s_{1}(g)=\left(\psi_{s_{1}}(g), g\right)$. Then $\psi_{s_{1}} \in Z^{1}(G, M)$ (easy check). Now suppose we have two splittings s_{1} and s_{2}. Then $\psi_{s_{1}}-\psi_{s_{2}} \in B^{1}(G, M)$ if and only if there exists $m \in M$ such that $(m, 1) s_{1}(g)(m, 1)^{-1}=s_{2}(g)$ for all $g \in G$. We obtain a bijection:

$$
H^{1}(G, M) \longleftrightarrow\{M \text {-conjugacy classes of splittings }\}
$$

See Example Sheet 1, Exercise 3 for details.

2.2 H^{2} - group extensions

Now let us consider a group theoretic interpretation of $H^{2}(G, M)$ and for that we consider other extensions of G by an abelian group M, i.e. short exact sequences

$$
1 \rightarrow M \rightarrow E \rightarrow G \rightarrow 1
$$

where the maps are group homomorphisms. Thus M embeds in E as a normal subgroup and $E / M \cong G$. Then E acts on M by conjugation, with M acting trivially on itself since it is abelian. So we may regard M as a $\mathbb{Z} G$-module since $G \cong E / M$.

Definition. Two extensions E, E^{\prime} are equivalent if there is a commuting diagram of group homomorphisms:

E is a central extension if M is a trivial $\mathbb{Z} G$-module (via conjugation within E).
Exercise: Equivalent extensions E and E^{\prime} are isomorphic, but the converse is not necessarily true, see example sheet.

Proposition 2.2. Let E be an extension of G by M. If there is a splitting $s: G \rightarrow E$ which is a group homomorphism, then E is equivalent to the semidirect product.

Proof. Exercise.

For other extensions there is a set-theoretic section $s: G \rightarrow E$, but it fails to be a homomorphism. Wlog, assume $s(1)=1$.

Define $\phi\left(g_{1}, g_{2}\right)=s\left(g_{1}\right) s\left(g_{2}\right) s\left(g_{1} g_{2}\right)^{-1}$. This gives an indication of the failure of s to be a group homomorphism.

Then, writing $\pi: E \rightarrow G$ for the quotient map, we have $\pi\left(\phi\left(g_{1}, g_{2}\right)\right)=1$ and so $\phi\left(g_{1}, g_{2}\right) \in$ M and so $\phi: G^{2} \rightarrow M$ is a 2-cochain. In fact ϕ is a 2-cocycle: Consider $s\left(g_{1}\right) s\left(g_{2}\right) s\left(g_{3}\right)$ in two different ways. It is

$$
\begin{align*}
& =\phi\left(g_{1}, g_{2}\right) s\left(g_{1} g_{2}\right) s\left(g_{3}\right) \\
& =\phi\left(g_{1}, g_{2}\right) \phi\left(g_{1} g_{2}, g_{3}\right) s\left(g_{1} g_{2} g_{3}\right)
\end{align*}
$$

Also

$$
\begin{align*}
& =s\left(g_{1}\right) \phi\left(g_{2}, g_{3}\right) s\left(g_{2} g_{3}\right) \\
& =s\left(g_{1}\right) \phi\left(g_{2}, g_{3}\right) s\left(g_{1}\right)^{-1} s\left(g_{1}\right) s\left(g_{2} g_{3}\right) \\
& =s\left(g_{1}\right) \phi\left(g_{2}, g_{3}\right) s\left(g_{1}\right)^{-1} \phi\left(g_{1}, g_{2} g_{3}\right) s\left(g_{1} g_{2} g_{3}\right)
\end{align*}
$$

Equating (\dagger) and $(\dagger \dagger)$ and cancelling $s\left(g_{1} g_{2} g_{3}\right)$ and converting to additive notation, we get

$$
-d^{3} \phi\left(g_{1}, g_{2}, g_{3}\right)=\phi\left(g_{1}, g_{2}\right)+\phi\left(g_{1} g_{2}, g_{3}\right)-g_{1} \phi\left(g_{2}, g_{3}\right)-\phi\left(g_{1}, g_{2} g_{3}\right)=0
$$

So $\phi \in Z^{3}(G, M)$. Note that ϕ is a normalised cocycle, meaning that $\phi(1, g)=\phi(g, 1)=0$ for all $g \in G$.
Now take a different choice of section $s^{\prime}: G \rightarrow E$ with $s^{\prime}(1)=1$. Then $\pi\left(s(g) s^{\prime}(g)^{-1}\right)=1$ for all g and so $s^{\prime}(g) s(g)^{-1}=: \psi(g) \in M$. So we get a map $\psi: G \rightarrow M$. Then

$$
\begin{aligned}
s^{\prime}\left(g_{1}\right) s^{\prime}\left(g_{2}\right) & =\psi\left(g_{1}\right) s\left(g_{1}\right) \psi\left(g_{2}\right) s\left(g_{2}\right) \\
& =\psi\left(g_{1}\right) s\left(g_{1}\right) \psi\left(g_{2}\right) s\left(g_{1}\right)^{-1} s\left(g_{1}\right) s\left(g_{2}\right) \\
& =\psi\left(g_{1}\right) s\left(g_{1}\right) \psi\left(g_{2}\right) s\left(g_{1}\right)^{-1} \phi\left(g_{1}, g_{2}\right) s\left(g_{1} g_{2}\right) \\
& =\psi\left(g_{1}\right) s\left(g_{1}\right) \psi\left(g_{2}\right) s\left(g_{1}\right)^{-1} \phi\left(g_{1}, g_{2}\right) \psi\left(g_{1} g_{2}\right)^{-1} s^{\prime}\left(g_{1} g_{2}\right)
\end{aligned}
$$

Hence (in additive notation)

$$
\begin{aligned}
\phi^{\prime}\left(g_{1}, g_{2}\right) & =\psi\left(g_{1}\right)+g_{1} \psi\left(g_{2}\right)+\phi\left(g_{1}, g_{2}\right)-\psi\left(g_{1} g_{2}\right) \\
& =\phi\left(g_{1}, g_{2}\right)+\left(d^{2} \psi\right)\left(g_{1}, g_{2}\right)
\end{aligned}
$$

Thus ϕ and ϕ^{\prime} differ by a coboundary. So we have shown how to construct a map

$$
\text { extensions } \longrightarrow H^{2}(G, M)
$$

We are aiming for:
Theorem 2.3. Let G be a group, M a $\mathbb{Z} G$-module. Then there is a bijection:

$$
\left\{\begin{array}{l}
\text { equivalence classes of } \\
\text { extensions of } G \text { by } M
\end{array}\right\} \longleftrightarrow H^{2}(G, M)
$$

One has to show:

1. Equivalent extensions yield same cohomology class.
2. Construct the inverse map, i.e. given a cohomology class construct the associated extension.
3. Show these maps are inverse to each other.

To produce the inverse map, we need a lemma first.
Lemma 2.4. Let $\phi \in Z^{2}(G, M)$. Then there is a cochain $\psi \in C^{1}(G, M)$ such that $\phi+d^{2} \psi$ is normalised. Hence every cohomology class can be represented by a normalised cocycle.

Proof. Let $\psi(g)=-\phi(1, g)$. Then

$$
\begin{align*}
\left(\phi+d^{2} \psi\right)(1, g) & =\phi(1, g)-(\phi(1, g)-\phi(1, g)+\phi(1,1)) \\
& =\phi(1, g)-\phi(1,1) \tag{*}\\
\left(\phi+d^{2} \psi\right)(g, 1) & =\phi(g, 1)-(g \phi(1,1)-\phi(1, g)+\phi(1, g)) \\
& =\phi(g, 1)-g \phi(1,1) \tag{**}
\end{align*}
$$

We know $d^{3} \phi(1,1, g)=0=d^{3} \phi(g, 1,1)$ since ϕ is a cocycle. Writing this out shows that both (*) and (**) are 0 .

Now take a normalised cocycle $\phi \in Z^{2}(G, M)$ representing our given cohomology class. Define a group E_{ϕ} on the set $M \times G$ by

$$
\left(m_{1}, g_{2}\right) *_{\phi}\left(m_{2}, g_{2}\right)=\left(m_{1}+g_{1} m_{2}+\phi\left(g_{1}, g_{2}\right), g_{1} g_{2}\right) .
$$

Now check that this indeed defines a group. For this we need that ϕ is normalised. Then $M \cong\{(m, 1) \mid m \in M\}$ and the quotient is $\cong G$.

Finally notice that if ϕ^{\prime} is a different normalised cocycle representing the same cohomology class, then $\phi-\phi^{\prime}=d^{2} \psi$ for some $\psi \in C^{1}(G, M)$. Then we define

$$
\begin{aligned}
E_{\phi} & \longrightarrow E_{\phi^{\prime}} \\
(m, g) & \longmapsto(m+\psi(g), g)
\end{aligned}
$$

This is a group homomorphism and gives us the equivalence the extensions.

2.2.1 Example: Central extensions of \mathbb{Z}^{2} by \mathbb{Z}

Let us find all the central extensions of \mathbb{Z}^{2} by \mathbb{Z}. We certainly know of two such:

- The direct product

$$
0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{2} \rightarrow 0
$$

- The (integral) Heisenberg group

$$
\begin{aligned}
& 0 \rightarrow \mathbb{Z} \xrightarrow{b \mapsto X_{0, b, 0}} H \xrightarrow{X_{a, b, c} \mapsto(a, c)} \mathbb{Z}^{2} \rightarrow 0 \\
& \text { where } H=\left\{X_{a, b, c}: \left.=\left(\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{Z}\right\}
\end{aligned}
$$

Write $T=\mathbb{Z}^{2}$, generated by a, b. What are the equivalence classes of extensions? We have a free resolution

$$
0 \rightarrow \mathbb{Z} T \xrightarrow{\beta}(\mathbb{Z} T)^{2} \xrightarrow{\alpha} \mathbb{Z} T \xrightarrow{\varepsilon} \mathbb{Z}
$$

of the trivial $\mathbb{Z} T$-module \mathbb{Z} where

$$
\begin{aligned}
\beta(z) & =(z(1-b), z(a-1)) \\
\alpha(x, y) & =x(a-1)+y(b-1)
\end{aligned}
$$

and ε is the augmentation map. Check that this indeed is an exact sequence. Then apply $\operatorname{Hom}_{T}(-, \mathbb{Z})$ to get the chain complex

$$
0 \leftarrow \operatorname{Hom}_{T}(\mathbb{Z} T, \mathbb{Z}) \stackrel{\beta^{*}}{\leftarrow} \operatorname{Hom}_{T}\left((\mathbb{Z} T)^{2}, \mathbb{Z}\right) \stackrel{\alpha^{*}}{\leftarrow} \operatorname{Hom}_{T}(\mathbb{Z} T, \mathbb{Z})
$$

We show that both α^{*} and β^{*} are the zero maps and so

$$
H^{2}(T, \mathbb{Z})=\operatorname{Hom}_{T}(\mathbb{Z} T, \mathbb{Z}) \cong \mathbb{Z}
$$

with generator represented by the augmentation map ε.
To show $\beta^{*}=0$ take a $\mathbb{Z} T$-map $f:(\mathbb{Z} T)^{2} \rightarrow \mathbb{Z}$ and $z \in \mathbb{Z} T$. Then

$$
\begin{aligned}
\left(\beta^{*} f\right)(z) & =f(\beta(z))=f(z(1-b), z(a-1)) \\
& =f((z-b z, 0)+(0, z a-z)) \\
& =(1-b) f(z, 0)+(a-1) f(0, z) \\
& =0
\end{aligned}
$$

since T acts trivially on \mathbb{Z}. Similarly for α^{*}.
Next we must interpret $h^{2}(T, \mathbb{Z})$ in terms of cocycles, in particular what cocycle corresponds to the generator. So we construct a chain map between our resolution above and the standard resolution. Consider:

In degree -1 and 0 we have take the identity maps. Next we construct $f_{1}: \mathbb{Z} T\left\{T^{(1)}\right\} \rightarrow$ $\mathbb{Z} T^{2}$ such that $\alpha f_{1}=d_{1}$. We just need to give the image of symbols $\left[a^{r} b^{s}\right]$ where $r, s \in \mathbb{Z}$. We let $f_{1}\left(\left[a^{r} b^{s}\right]\right)=\left(x_{r, s}, y_{r, s}\right) \in \mathbb{Z} T^{2}$ so that

$$
\alpha\left(x_{r, s}, y_{r, s}\right)=d_{1}\left(\left[a^{r} b^{s}\right]\right)=a^{r} b^{s}-1=\left(a^{r}-1\right) b^{s}+\left(b^{s}-1\right) .
$$

Define

$$
S(a, r)= \begin{cases}1+a+\cdots+a^{r-1} & r>0 \\ -a^{-1}-\cdots-a^{r} & r \leq 0\end{cases}
$$

so that $S(a, r)(a-1)=a^{r}-1$ in both cases. Then $\alpha\left(S(a, r) b^{s}, S(b, s)\right)=d_{1}\left(\left[a^{r} b^{s}\right]\right)$ as required and we let $x_{r, s}=S(a, r) b^{s}, y_{r, s}=S(b, s)$. Now define f_{2} for each $\left[a^{r} b^{s} \mid a^{t} b^{u}\right]$. We find $z_{r, s, t, u} \in \mathbb{Z} T$ such that $f_{1} d_{2}\left(\left[a^{r} b^{s} \mid a^{t} b^{u}\right]\right)=\beta\left(z_{r, s, t, u}\right)$. Note that $z_{r, s, t, u}=$ $S(a, r) b^{s} S(b, u)$ works. Then define $f_{2}\left(\left[a^{r} b^{s} \mid a^{t} b^{u}\right]\right)=S(a, r) b^{s} S(b, u)$.
Now we find a cochain $\phi: T^{2} \rightarrow \mathbb{Z}$ representing the cohomology class $p \in \mathbb{Z}=\operatorname{Hom}_{T}(\mathbb{Z} T, \mathbb{Z})=$ $H^{2}(T, \mathbb{Z})$. Let ϕ be the composition $T^{2} \xrightarrow{f_{2}} \mathbb{Z} T \xrightarrow{p \varepsilon} \mathbb{Z}$. Since $\varepsilon(S(a, r))=r$, we find

$$
\phi\left(a^{r} b^{s}, a^{t} b^{u}\right)=p \varepsilon\left(z_{r, s, t, u}\right)=p r u
$$

The group structure on $\mathbb{Z} \times T$ corresponding to ϕ is:

$$
\left(m, a^{r} b^{s}\right) *\left(n, a^{t} b^{u}\right)=\left(m+n+p r u, a^{r+t} b^{s+u}\right) .
$$

Note that for $p \neq 0$ these correspond to

$$
\left\{\left.\left(\begin{array}{ccc}
1 & p r & m \\
0 & 1 & s \\
0 & 0 & 1
\end{array}\right) \right\rvert\, r, s, m \in \mathbb{Z}\right\}
$$

2.3 Group presentations

Consider group extensions by using group presentations. Express G in terms of generators and relations. Let F be the free group on a set X of generators of G. So we get a surjective group homomorphism $F \rightarrow G$. Let R be its kernel.

$$
1 \rightarrow R \rightarrow F \rightarrow G \rightarrow 1
$$

Often it is useful just to take a generating set of R. If G is generated by a finite set X such that R is also finitely generated, then G is of finite presentation.
Let $R_{\mathrm{ab}}=R / R^{\prime}$ be the abelianisation of R. F acts on R by conjugation and one has an inherited action of R on R_{ab}. Note that R acts trivially on R_{ab} under this and so R_{ab} may be regarded as a $\mathbb{Z}(F / R)$-module, i.e. a $\mathbb{Z} G$-module. Then

$$
1 \rightarrow R_{\mathrm{ab}} \rightarrow F / R^{\prime} \rightarrow G \rightarrow 1
$$

is an extension of G by $R_{\mathrm{ab}} . R_{\mathrm{ab}}$ is called the relation module.
For a central extension rather than using $R /[R, R]$ one can use $R /[R, F]$. Then

$$
1 \rightarrow R /[R, F] \rightarrow F /[R, F] \rightarrow G \rightarrow 1
$$

is a central extension. Is there in some sense a largest or universal central extension? No, we can always take a direct product with an arbitrary abelian group, but we do have:

Theorem 2.5 (MacLane). Given a presentation $G=\langle X \mid R\rangle$, let F be the free group on X and let M be a $\mathbb{Z} G$-module. Then there is an exact sequence

$$
H^{1}(F, M) \rightarrow \operatorname{Hom}_{G}\left(R_{\mathrm{ab}}, M\right) \rightarrow H^{2}(G, M) \rightarrow 0 .
$$

Here we regard M as an $\mathbb{Z} F$-module via $F \rightarrow G$.
Thus any extension of M corresponding to a cohomology class arises from taking a $\mathbb{Z} G$-map $R_{\mathrm{ab}} \rightarrow M$.

Corollary 2.6. In the above, if M is a trivial module, we get

$$
\operatorname{Hom}(F, M) \rightarrow \operatorname{Hom}_{G}(R /[R, F], M) \rightarrow H^{2}(G, M) \rightarrow 0
$$

Proof. Recall that for trivial modules $H^{1}(F, M)=\operatorname{Hom}(F, M)=\operatorname{Hom}\left(F_{\text {ab }}, M\right)$ and also $\operatorname{Hom}_{G}\left(R_{\mathrm{ab}}, M\right)=\operatorname{Hom}_{G}(R /[R, F], M)$.

There is also a connection with group homology. Given a projective resolution of \mathbb{Z}, we can apply $\mathbb{Z} \otimes_{\mathbb{Z} G}$ - to it and consider the homology groups of the resulting chain complex. The homology groups are $H_{n}(G, \mathbb{Z})$.

Definition. The Schur multiplier (or multiplicator) is the second homology group

$$
M(G):=H_{2}(G, \mathbb{Z})
$$

The Schur multiplier is important when considering central extensions.
Theorem 2.7 (Universal Coefficients Theorem). Let G be a group and M a trivial $\mathbb{Z} G$ module. Then there is a short exact sequence of abelian groups:

$$
0 \rightarrow \operatorname{Ext}^{1}\left(G_{\mathrm{ab}}, M\right) \rightarrow H^{2}(G, M) \rightarrow \operatorname{Hom}(M(G), M) \rightarrow 0
$$

Corollary 2.8. Suppose G_{ab}, i.e. G is perfect, then $H^{2}(G, M) \cong \operatorname{Hom}(M(G), M)$.
Remark. Some authors call $H^{2}\left(G, \mathbb{C}^{\times}\right)$the Schur multiplier, rather than $M(G)$.
There is a formula for $M(G)$:

Theorem 2.9 (Hopf). Given a presentation $G=\langle X \mid R\rangle$, then

$$
M(G)=\frac{F^{\prime} \cap R}{[R, F]}
$$

Remarks.

1. We are not taking all of $R /[R, F]$.
2. This shows that $\frac{F^{\prime} \cap R}{[R, F]}$ is independent of the choice of presentation.

Remark. From geometric group theory, we know that all subgroups of free groups are free. Thus the module R of relations is a free group, say with basis Y. Hence R_{ab} is a free abelian group on Y.
Proposition 2.10. Given a presentation $G=\langle X \mid R\rangle$, there is an exact sequence

$$
\frac{\bar{I}_{R}}{\bar{I}_{R}^{2}} \xrightarrow{d_{2}} \frac{I_{F}}{\bar{I}_{R} I_{F}} \xrightarrow{d_{1}} \mathbb{Z} G \xrightarrow{\varepsilon} \mathbb{Z} \rightarrow 1
$$

where $I_{F}=\operatorname{ker}(\mathbb{Z} F \xrightarrow{\varepsilon} \mathbb{Z})$ and $\bar{I}_{R}=\operatorname{ker}(\mathbb{Z} F \rightarrow \mathbb{Z} G)$. Moreover, $\frac{I_{F}}{\bar{I}_{R} I_{F}}$ and $\frac{\bar{I}_{R}}{\bar{I}_{R}^{2}}$ are free $\mathbb{Z} G$-modules with bases $\{x-1 \mid x \in X\}$ resp. $\{y-1 \mid y \in Y\}$. Also im $d_{2} \cong R_{\mathrm{ab}}$.
Lemma 2.11. Let G be a group and M a $\mathbb{Z} G$-module. Then:
(a) I_{G} under addition is the free abelian group on $\{g-1 \mid g \in G \backslash\{1\}\}$.
(b) $I_{G} / I_{G}^{2} \cong G_{\mathrm{ab}}$.
(c) $\operatorname{Der}(G, M) \cong \operatorname{Hom}_{G}\left(I_{G}, M\right)$ where $\operatorname{Der}(G, M)$ is the abelian group of derivations $G \rightarrow M$.

Proof.
(a) $\mathbb{Z} G$ is free abelian on $\{g \mid g \in G\}$ and $I_{G}=\operatorname{ker} \varepsilon=\left\{\sum n_{g} g \mid \sum n_{g}=0\right\}$. So if $\sum n_{g} g \in I_{G}$, then $\sum n_{g} g=\sum n_{g}(g-1)$ and clearly any element of the form $\sum n_{g}(g-1)$ lies in $\operatorname{ker} \varepsilon=I_{G}$. Also $\{g-1 \mid g \in G \backslash\{1\}\}$ is linearly independent as the elements $g \in G$ are. Hence $I_{G}=\left\{\sum n_{g}(g-1) \mid n_{g} \in \mathbb{Z}\right\}$ is free on $\{g-1 \mid g \in G \backslash\{1\}\}$.
(b) Since I_{G} is free abelian on $\{g-1 \mid g \in G \backslash\{1\}\}$, we can define a group homomorphism $\theta: I_{G} \rightarrow G_{\text {ab }}$ by defining the image of $g-1$ to be $g G^{\prime}$ for $g \in G \backslash\{1\}$. Since $\left(g_{1}-1\right)\left(g_{2}-1\right)=\left(g_{1} g_{2}-1\right)-\left(g_{1}-1\right)-\left(g_{2}-1\right)$, we have $I_{G}^{2} \subseteq \operatorname{ker} \theta$. So θ induces a map $\bar{\theta}: I_{G} / I_{G}^{2} \rightarrow G_{\mathrm{ab}}$. Conversely, $\phi: G \rightarrow I_{G} / I_{G}^{2}, g \mapsto(g-1)+I_{G}^{2}$ is a group homomorphism and this induces a map $\bar{\phi}: G_{\mathrm{ab}} \rightarrow I_{G} / I_{G}^{2}$. The two maps $\bar{\theta}$ and $\bar{\phi}$ are clearly inverse to each other.
(c) Define maps:

$$
\operatorname{Der}(G, M) \longleftrightarrow \operatorname{Hom}_{G}\left(I_{G}, M\right)
$$

$$
\begin{aligned}
\phi & \longmapsto(\theta: g-1 \mapsto \phi(g)) \\
(\phi: g \mapsto \theta(g-1)) & \longleftrightarrow \theta
\end{aligned}
$$

They are inverse to each other.

Lemma 2.12.

(a) Let F be a free group on X. Then I_{F} is a free $\mathbb{Z} F$-module on $\widetilde{X}=\{x-1 \mid x \in X\}$.
(b) Let R be a normal subgroup of the free group F, so it is free on Y, say. Then \bar{I}_{R} is a free $\mathbb{Z} F$-module on basis $\widetilde{Y}=\{y-1 \mid y \in Y\}$.

Proof.

(a) Let $\alpha: \widetilde{X} \rightarrow M$ be a map to some $\mathbb{Z} F$-module M. To establish freeness it suffices to show that α extends uniquely to a $\mathbb{Z} F$-map $I_{F} \rightarrow M$. First let $\alpha^{\prime}: F \rightarrow M \rtimes F$ be defined by $x \mapsto(\alpha(x-1), x)$ on \widetilde{X}. Thus for each $f \in F, f \mapsto(a, f)$ for some $a \in M$. There is a function $\bar{\alpha}: F \rightarrow M, f \mapsto a$ so that $\alpha^{\prime}(f)=(\bar{\alpha}(f), f)$. Then

$$
\begin{aligned}
\alpha^{\prime}\left(f_{1} f_{2}\right) & =\alpha^{\prime}\left(f_{1}\right) * \alpha^{\prime}\left(f_{2}\right) \\
& =\left(\bar{\alpha}\left(f_{1}\right), f_{1}\right) *\left(\bar{\alpha}\left(f_{2}\right), f_{2}\right) \\
& =\left(\bar{\alpha}\left(f_{1}\right)+f_{1} \bar{\alpha}\left(f_{2}\right), f_{1} f_{2}\right) .
\end{aligned}
$$

Hence $\bar{\alpha}$ is a derivation $F \rightarrow M$. We take the corresponding $\mathbb{Z} F$-map $I_{F} \rightarrow M$ as in Lemma 2.11 (c). Check uniqueness. ${ }^{1}$.
(b) Suppose that $\sum_{y \in Y} r_{y}(y-1)=0$ where $r_{y} \in \mathbb{Z} F$. Choose a transversal T to the cosets of R in F. We can write $r_{y}=\sum_{t \in T} t s_{t, y}$ where $s_{t, y} \in \mathbb{Z} R$. So $\sum_{y \in Y, t \in T} t s_{t, y}(y-$ 1) $=0$ and so $\sum_{y \in Y} s_{t, y}(y-1)=0$ for each t since I_{F} is free abelian on $\{f-1 \mid f \in$ $F \backslash\{1\}\}$. But I_{R} is a free $\mathbb{Z} R$-module on $\{y-1 \mid y \in Y\}$ by (a), hence $s_{t, y}=0$ for all $t \in T, y \in Y$.

Also check that the $y-1$ generate \bar{I}_{R} ?

Proof of Proposition 2.10. I_{F} is the free $\mathbb{Z} F$-module on $\{x-1 \mid x \in X\}$ by the lemma. So $I_{F} /\left(\bar{I}_{R} I_{F}\right)$ is a free $\mathbb{Z}(F / R)$-module, i.e. $\mathbb{Z} G$-module, on $\{x-1 \mid x \in X\}$. Similarly it follows that $\bar{I}_{R} / \bar{I}_{R}^{2}$ is a free $\mathbb{Z} G$-module on $\{y-1 \mid y \in Y\}$. Consider the image of d_{2}. It is $\bar{I}_{R} /\left(\bar{I}_{R} I_{F}\right)$. Consider \bar{I}_{R} as a right $\mathbb{Z} F$-module (note that \bar{I}_{R} is the kernel of a ring map, hence a two-sided ideal). By the right version of the lemma, it is a free right $\mathbb{Z} F$-module on

[^0]$\{y-1 \mid y \in Y\}$. So $\bar{I}_{R} /\left(\bar{I}_{R} I_{F}\right)$ is a free abelian group on $\{y-1 \mid y \in Y\}$, hence isomorphic to R_{ab}. For the left $\mathbb{Z} G$-action note that $g(y-1)=\left(g y g^{-1}-1\right) g \equiv\left(g y g^{-1}-1\right) \bmod \bar{I}_{R} I_{F}$, so the left $\mathbb{Z} G$-action corresponds to the G action on R_{ab} inherited from the conjugation action.

This partial free resolution can be extended to give a full resolution:
Theorem 2.13 (Gruenberg resolution). Let $G=\langle X \mid R\rangle$ be a presentation of G. Then there is a free $\mathbb{Z} G$-resolution of \mathbb{Z} :

$$
\rightarrow \frac{\bar{I}_{R}^{n}}{\bar{I}_{R}^{n+1}} \rightarrow \frac{\bar{I}_{R}^{n-1} I_{F}}{\bar{I}_{R}^{n} I_{F}} \rightarrow \frac{\bar{I}_{R}^{n-1}}{\bar{I}_{R}^{n}} \rightarrow \cdots \rightarrow \frac{\bar{I}_{R}}{\bar{I}_{R}^{2}} \rightarrow \frac{I_{F}}{\bar{I}_{R} I_{F}} \rightarrow \mathbb{Z} G \xrightarrow{\varepsilon} \mathbb{Z} \rightarrow 1
$$

Proof. Use the two lemmas.
Lemma 2.14. Given a projective resolution

$$
\cdots \rightarrow P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{P_{0}} \mathbb{Z} \rightarrow 0,
$$

denote $J_{n}=\operatorname{im} d_{n} \subseteq P_{n-1}$ and let $\psi: P_{n} \rightarrow J_{n}$ be d_{n} with its image restricted to J_{n}.
(a) For a $\mathbb{Z} G$-module M there is an exact sequence

$$
\operatorname{Hom}_{G}\left(P_{n-1}, M\right) \xrightarrow{\text { res }} \operatorname{Hom}_{G}\left(J_{n}, M\right) \rightarrow H^{n}(G, M) \rightarrow 0 .
$$

(b) There is an exact sequence

$$
0 \rightarrow H_{n}(G, \mathbb{Z}) \rightarrow \mathbb{Z} \otimes_{\mathbb{Z} G} J_{n} \rightarrow \mathbb{Z} \otimes_{\mathbb{Z} G} P_{n-1}
$$

Proof.
(a) We have

with the row exact. Then take duals and we get

still with the row exact. Then $\operatorname{ker} d^{n+1}=\operatorname{im} \psi^{*} \cong \operatorname{Hom}_{G}\left(J_{n}, M\right)$. Thus $H^{n}(G, M)=$ ker $d^{n+1} / \operatorname{im} d^{n} \cong \operatorname{Hom}_{G}\left(J_{n}, M\right) /$ im res.
(b) Follows similarly.

Proof of Theorem 2.5. We apply the last lemma to our partial resolution in Proposition 2.10 to get:

$$
\operatorname{Hom}_{G}\left(I_{F} /\left(\bar{I}_{R} I_{F}\right), M\right) \xrightarrow{\text { res }} \operatorname{Hom}_{G}\left(R_{\mathrm{ab}}, M\right) \rightarrow H^{2}(G, M) \rightarrow 0
$$

But

$$
\begin{aligned}
\operatorname{Hom}_{G}\left(I_{F} /\left(\bar{I}_{R} I_{F}\right), M\right) & =\operatorname{Hom}_{F}\left(I_{F} /\left(\bar{I}_{R} I_{F}\right), M\right) \\
& =\operatorname{Hom}_{F}\left(I_{F}, M\right) \\
& =H^{1}(F, M)
\end{aligned}
$$

For the second equality note that any $\mathbb{Z} F$-map $I_{F} \rightarrow M$ will factor through $I_{F} /\left(\bar{I}_{R} I_{F}\right)$ as R acts trivially on M. Why does the last equality hold?

Proof of Theorem 2.9. Again apply the lemma to our partial resolution in Proposition 2.10 . We get:

$$
0 \rightarrow H_{2}(G, \mathbb{Z}) \rightarrow \mathbb{Z} \otimes_{\mathbb{Z} G} R_{\mathrm{ab}} \rightarrow \mathbb{Z} \otimes_{\mathbb{Z} G} I_{F} /\left(\bar{I}_{R} I_{F}\right)
$$

Note that tensoring with $\mathbb{Z} \cong \mathbb{Z} G / I_{G}$ is equivalent to taking coinvariants. So

$$
\begin{aligned}
\mathbb{Z} \otimes_{\mathbb{Z} G} R_{\mathrm{ab}} & =R /[R, F] \\
\mathbb{Z} \otimes_{\mathbb{Z} G}\left(I_{F} /\left(\bar{I}_{R} I_{F}\right)\right) & =I_{F} / I_{F}^{2}=F /[F, F]
\end{aligned}
$$

Now the kernel of the right hand map $R /[R, F] \rightarrow F /[F, F]$ is exactly $\frac{F^{\prime} \cap R}{[R, F]}$.

3 General Theory

3.1 Long exact sequence

In any cohomology theory one has a long exact sequence. Given a short exact sequence

$$
0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0
$$

of modules, we would like some relationship between the cohomology with coefficients in M_{2} and that of M_{1} and M_{3}. Recall that if we apply $\operatorname{Hom}(P,-)$ to short exact sequences the result is always a short exact sequence only if P is projective.

Proposition 3.1 (Long exact sequence of cohomology). Let $0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0$ be a short exact sequence. Then there is a long exact sequence:

$$
\cdots \rightarrow H^{n}\left(G, M_{1}\right) \rightarrow H^{n}\left(G, M_{2}\right) \rightarrow H^{n}\left(G, M_{3}\right) \rightarrow H^{n+1}\left(G, M_{1}\right) \rightarrow \ldots
$$

Lemma 3.2 (Snake lemma). Let $0 \rightarrow A_{\bullet} \xrightarrow{f_{\bullet}} B_{\bullet} \xrightarrow{g_{\bullet}} C \bullet \rightarrow 0$ be a short exact sequence of chain complexes (i.e. f_{\bullet}, g_{\bullet} are chain maps and the corresponding sequences of abelian groups are exact in every degree). Then there exist maps $\delta_{n}: H_{n+1}\left(C_{\bullet}\right) \rightarrow H_{n}\left(A_{\bullet}\right)$ such that the sequence

$$
\cdots \rightarrow H_{n+1}(C) \xrightarrow{\delta_{n}} H_{n}\left(A_{\bullet}\right) \rightarrow H_{n}\left(B_{\bullet}\right) \rightarrow H_{n}\left(C_{\bullet}\right) \rightarrow \ldots
$$

is exact.
Proof. Easy diagram chase.
Proof of Proposition 3.1. Consider a projective resolution P_{\bullet} of \mathbb{Z}. Then since the modules in the resolution are projective, we have a short exact sequence of chain complexes

$$
0 \rightarrow \operatorname{Hom}_{G}\left(P_{\bullet}, M_{1}\right) \rightarrow \operatorname{Hom}_{G}\left(P_{\bullet}, M_{2}\right) \rightarrow \operatorname{Hom}_{G}\left(P_{\bullet}, M_{3}\right) \rightarrow 0
$$

Now apply the Snake lemma (relabel to convert to chain complex).

3.2 Five term exact sequence

If we want to consider the relationship between cohomology of a group G with that of subgroups and quotients we have the following:

Theorem 3.3 (Five term exact sequence). Let H be a normal subgroup of G. Let $Q=$ G / H and M be a $\mathbb{Z} G$-module. Then there is an exact sequence

$$
0 \rightarrow H^{1}\left(Q, M^{H}\right) \rightarrow H^{1}(G, M) \rightarrow H^{1}(H, M)^{Q} \rightarrow H^{2}\left(Q, M^{H}\right) \rightarrow H^{2}(G, M) .
$$

Remarks.

1. There is no $\rightarrow 0$ at the end - we will see more when thinking about spectral sequences.
2. $H^{1}(H, M)$ may be regarded as a $\mathbb{Z} Q$-module, as we will see shortly, so that $H^{1}(H, M)^{Q}$ is defined.

Corollary 3.4. If $G=\langle X \mid R\rangle$ is a presentation, $M a \mathbb{Z} G$-module, then there is an exact sequence

$$
0 \rightarrow H^{1}(G, M) \rightarrow H^{1}(F, M) \rightarrow \operatorname{Hom}_{G}\left(R_{\mathrm{ab}}, M\right) \rightarrow H^{2}(G, M) \rightarrow 0
$$

Remark. This is a continuation of the sequence in MacLane's theorem to the left.
Proof. Set $Q=G, G=F$ and $H=R$ in Theorem 3.3 to get

$$
0 \rightarrow H^{1}\left(G, M^{R}\right) \rightarrow H^{1}(F, M) \rightarrow H^{1}(R, M)^{G} \rightarrow H^{2}\left(G, M^{R}\right) \rightarrow H^{2}(F, M) .
$$

Note that we regard M as a $\mathbb{Z} F$-module via $F \rightarrow G$. Then M is a trivial $\mathbb{Z} R$-module, so $M^{R}=M$ and $H^{1}(R, M)=\operatorname{Hom}\left(R_{\mathrm{ab}}, M\right)$. Note that $H^{2}(F, M)=0$ by Question 8 on Example Sheet 1 (free groups have cohomological dimension 1). Also $H^{1}(R, M)^{G}=$ $\operatorname{Hom}\left(R_{\mathrm{ab}}, M\right)^{G}=\operatorname{Hom}_{G}\left(R_{\mathrm{ab}}, M\right)$ where G acts on $\operatorname{Hom}\left(R_{\mathrm{ab}}, M\right)$ by $(g \phi)(x)=g \phi\left(g^{-1} x\right)$. The fixed points under this action are the $\mathbb{Z} G$-maps.

Corollary 3.5. If $G=G^{\prime}$ and M is a trivial $\mathbb{Z} G$-module, there is a short exact sequence

$$
0 \rightarrow \operatorname{Hom}\left(F_{\mathrm{ab}}, M\right) \rightarrow \operatorname{Hom}_{G}\left(R_{\mathrm{ab}}, M\right) \rightarrow H^{2}(G, M) \rightarrow 0
$$

and so $H^{2}(G, M) \cong \frac{\operatorname{Hom}_{G}\left(R_{\mathrm{ab}}, M\right)}{\operatorname{Hom}\left(F_{\mathrm{ab}}, M\right)}$.
Proof. Follows from the previous corollary.
Now back to understanding the maps and actions in Theorem 3.3
Lemma 3.6. Let H be a normal subgroup of G, and M a $\mathbb{Z} G$-module. Let G act on the set of cochains $C^{n}(H, M)$ by $(g \phi)\left(h_{1}, \ldots, h_{n}\right)=g \phi\left(g^{-1} h_{1} g, \ldots, g^{-1} h_{n} g\right)$. Then this action descends to an action of G on $H^{n}(H, M)$. Moreover, the action of H on $H^{n}(H, M)$ is trivial and so we have an induced action of $Q=G / H$ on cohomology groups, so the cohomology groups $H^{n}(H, M)$ are $\mathbb{Z} Q$-modules.

Proof. To have an action induced on the cohomology groups, we need to check that the action of $g \in G$ is a chain map, i.e. $g\left(d^{n} \phi\right)=d^{n}(g \phi)$ for $\phi \in C^{n-1}(H, M)$:

$$
\begin{aligned}
\left(g\left(d^{n} \phi\right)\right)\left(h_{1}, \ldots, h_{n}\right)= & g\left(g^{-1} h_{1} g\right) \phi\left(g^{-1} h_{2}, g, \ldots, g^{-1} h_{n} g\right) \\
& -g \phi\left(g^{-1} h_{1} g g^{-1} h_{2} g, \ldots, g^{-1} h_{n} g\right)+\ldots \\
= & h_{1} g \phi\left(g^{-1} h_{2} g, \ldots, g^{-1} h_{n} g\right) \\
& -g \phi\left(g^{-1} h_{1} h_{2} g, \ldots, g^{-1} h_{n} g\right)+\ldots \\
= & h_{1}(g \phi)\left(h_{2}, \ldots, h_{n}\right)-(g \phi)\left(h_{1} h_{2}, \ldots, h_{n}\right)+\ldots \\
= & d^{n}(g \phi)\left(h_{1}, \ldots, h_{n}\right) .
\end{aligned}
$$

To show that H acts trivially, we must take a cocycle and show that applying $h \in H$ only adds a coboundary. E.g. for 1 -cocycles, let $\phi \in Z^{1}(H, M)$ and $h, h_{1} \in H$. Then

$$
\begin{aligned}
(h \phi)\left(h_{1}\right)-\phi\left(h_{1}\right) & =h \phi\left(h^{-1} h_{1} h\right)-\phi\left(h_{1}\right) \\
& =h\left(h^{-1} \phi\left(h_{1} h\right)+\phi\left(h^{-1}\right)\right)-\phi\left(h_{1}\right) \\
& =h_{1} \phi(h)+\phi\left(h_{1}\right)+h \phi\left(h^{-1}\right)-\phi\left(h_{1}\right) \\
& =h_{1} \phi(h)-\phi(h) \\
& =\left(h_{1}-1\right) \phi(h) .
\end{aligned}
$$

So $h \phi-\phi$ is indeed a coboundary. Higher degrees are messier but true.
The maps in Theorem 3.3.

- Restriction maps: $H^{n}(G, M) \rightarrow H^{n}(H, M)^{Q}$. We define these via definition on cochains which descends to cohomology. Let $f: G^{n} \in M$ be a cochain. Then let Res $f: H^{n} \rightarrow M$ be the composition of f with the inclusion $H^{n} \hookrightarrow G^{n}$. This gives a map Res : $C^{n}(G, M) \rightarrow C^{n}(H, M)$ which induces a map Res : $H^{n}(G, M) \rightarrow$ $H^{n}(H, M)$ whose image lies in $H^{n}(H, M)^{G}$.
- Inflation maps: $H^{n}\left(Q, M^{H}\right) \rightarrow H^{n}(G, M)$. Again we define them on cochain. Given a cochain $f: Q^{n} \rightarrow M^{H}$, we let Inf $f: G^{n} \rightarrow M$ be the composition $G^{n} \rightarrow$ $Q^{n} \xrightarrow{f} M^{H} \hookrightarrow M$. Again this map Inf : $C^{n}\left(Q, M^{H}\right) \rightarrow C^{n}(G, M)$ descends to cohomology.
- Transgression maps: $\operatorname{Tg}: H^{1}(H, M)^{Q} \rightarrow H^{2}\left(Q, M^{H}\right)$. Let $s: Q \rightarrow G$ be a settheoretic section with $s(1)=1$. Define $\rho: G \rightarrow H$ by $\rho(g)=g s(g H)^{-1}$ where $g H$ is the coset of g in G / H. Take a 1-cohomology class invariant under Q and $f: H \rightarrow M$ a cocycle representing it. Then define $\operatorname{Tg}(f): G^{2} \rightarrow M$ by

$$
\left(g_{1}, g_{2}\right) \mapsto f\left(\rho\left(g_{1}\right) \rho\left(g_{2}\right)\right)-f\left(\rho\left(g_{1} g_{2}\right)\right)
$$

Changing g_{1} and g_{2} by multiplying by elements of H doesn't change this cochain, so we can define a cochain $Q^{2} \rightarrow M$.

To prove Theorem 3.3 we need to check all these maps give well-defined maps on cohomology and check exactness.

3.3 Transfer map (or corestriction)

When $K \leq G$ is a subgroup and M a $\mathbb{Z} G$-module, there is a map $H^{n}(K, M) \rightarrow H^{n}(G, M)$. Note the direction is opposite to that of the restriction map. Recall from Example Sheet 1, Question 9, the coinduced module is

$$
\operatorname{coind}_{G}^{K}(M)=\operatorname{Hom}_{K}(\mathbb{Z} G, M)
$$

with G-action $(g f)(x)=f(x g)$ for $f \in \operatorname{Hom}_{K}(\mathbb{Z} G, M), x \in \mathbb{Z} G$.
Lemma 3.7 (Shapiro's Lemma). For any $K \leq G$,

$$
H^{n}(K, M) \cong H^{n}\left(G, \operatorname{coind}_{G}^{K}(M)\right)
$$

Proof. Example Sheet 1, Question 9. Take a free $\mathbb{Z} G$-resolution of \mathbb{Z}. It is also a free $\mathbb{Z} K$ resolution. But $\operatorname{Hom}_{K}(F, M) \cong \operatorname{Hom}_{G}\left(F, \operatorname{coind}_{G}^{K}(M)\right)$ for a $\mathbb{Z} G$-module F. Now apply $\operatorname{Hom}_{K}(-, M)$ and $\operatorname{Hom}_{G}\left(-, \operatorname{coind}_{G}^{K}(M)\right)$ to our resolution.

Definition. Given any $\mathbb{Z} K$-module V, we can define the induced $\mathbb{Z} G$-module

$$
\operatorname{ind}_{K}^{G}(V)=\mathbb{Z} G \otimes_{\mathbb{Z} K} V=\bigoplus_{t \in T} t \otimes V
$$

where T is a transversal to the cosets of K in G. The G-action is given by $g(t \otimes v)=t^{\prime} \otimes k v$ where $g t=t^{\prime} k$ for some $t^{\prime} \in T, k \in K$.

Observe that if one has a $\mathbb{Z} G$-module M, generated by a $\mathbb{Z} K$-module V (i.e. $M=\mathbb{Z} G \cdot V$), then there is a canonical map

$$
\begin{aligned}
\operatorname{ind}_{K}^{G}(V) & \longrightarrow M, \\
t \otimes v & \longmapsto t v
\end{aligned}
$$

Lemma 3.8. When $|G: K|<\infty$ and M is a $\mathbb{Z} G$-module, then

$$
\operatorname{coind}_{G}^{K}(M) \cong \operatorname{ind}_{K}^{G}(M)
$$

Proof. There is a $\mathbb{Z} K$-map

$$
\begin{aligned}
\phi_{0}: M & \operatorname{Hom}_{K}(\mathbb{Z} G, M) \\
& m \longmapsto\left(g \mapsto\left\{\begin{array}{ll}
g m & \text { if } g \in K, \\
0 & \text { otherwise. }
\end{array}\right)\right.
\end{aligned}
$$

This extends to a $\mathbb{Z} G$-map

$$
\phi: \mathbb{Z} G \otimes_{\mathbb{Z} K} M \rightarrow \operatorname{Hom}_{K}(\mathbb{Z} G, M)
$$

There is an inverse:

$$
\begin{aligned}
\psi: \operatorname{Hom}_{K}(\mathbb{Z} G, M) & \longrightarrow \mathbb{Z} G \otimes_{\mathbb{Z} K} M \\
f & \longmapsto \sum_{t \in T} t \otimes f\left(t^{-1}\right)
\end{aligned}
$$

Thus we have an isomorphism.
Definition. If $K \leq G$ is of finite index, the transfer (or corestriction) map is the composition:

$$
\operatorname{cores}_{K}^{G}: H^{n}(K, M) \cong H^{n}\left(G, \operatorname{coind}_{G}^{K}(M)\right) \cong H^{n}\left(G, \operatorname{ind}_{K}^{G}(M)\right) \xrightarrow{\alpha_{*}} H^{n}(G, M)
$$

where $\alpha: \operatorname{ind}_{K}^{G}(M) \rightarrow M$ is the canonical map.
Lemma 3.9. If $z \in H^{n}(G, M)$, then $\operatorname{cores}_{K}^{G} \operatorname{res}_{K}^{G}(z)=|G: K| z$.
Proof. Example Sheet 2.

3.4 Products

Let G be a group and $M, N \mathbb{Z} G$-modules.
Definition. Given $[u] \in H^{p}(G, M)$ and $[v] \in H^{q}(G, N)$, we define the cup product

$$
[u \smile v] \in H^{p+q}\left(G, M \otimes_{\mathbb{Z}} N\right)
$$

on cochains in the standard resolution of \mathbb{Z}. If $u \in C^{p}(G, M)$ and $v \in C^{q}(G, N)$, then $u \smile v \in C^{p+q}(G, M \otimes N)$ is defined by

$$
(u \smile v)\left(g_{1}, \ldots, g_{p+q}\right)=(-1)^{p q} u\left(g_{1}, \ldots, g_{p}\right) \otimes g_{1} \cdots g_{p} v\left(g_{p+1}, \ldots, g_{p+q}\right)
$$

This induces the cup product on cohomology.
Here $M \otimes_{\mathbb{Z}} N$ is a $\mathbb{Z} G$-module via the diagonal action, i.e. $g(m \otimes n)=(g m) \otimes(g n)$.
Some properties:

- In degree 0 the cup produt $H^{0}(G, M) \times H^{0}(G, N) \rightarrow H^{0}(G, M \otimes N)$ is the map

$$
M^{G} \otimes N^{G} \longrightarrow(M \otimes N)^{G}
$$

induced by the inclusions $M^{G} \rightarrow M, N^{G} \rightarrow N$.

- Naturality: The cup product is natural in the following sense: Given $\mathbb{Z} G$-maps $f: M \rightarrow M^{\prime}, g: N \rightarrow N^{\prime}$ and elements $u \in H^{*}(G, M), v \in H^{*}(G, N)$ we have

$$
(f \otimes g)_{*}(u \smile v)=f_{*} u \smile g_{*} v
$$

- Identity: The element $1 \in H^{0}(G, \mathbb{Z})=\mathbb{Z}$ satisfies $1 \cup u=u=u \cup 1$ for all $u \in H^{*}(G, M)$ using $\mathbb{Z} \otimes M=M=M \otimes \mathbb{Z}$.
- Associativity: Given $u_{i} \in H^{*}\left(G, M_{i}\right), i=1,2,3$, then

$$
\left(u_{1} \smile u_{2}\right) \smile u_{3}=u_{1} \smile\left(u_{2} \smile u_{3}\right) \in H^{*}\left(G, M_{1} \otimes M_{2} \otimes M_{3}\right) .
$$

- Commutativity: For any $u \in H^{p}(G, M), v \in H^{q}(G, N)$ we have

$$
u \smile v=(-1)^{p q} \alpha_{*}(v \smile u)
$$

where α is the natural map $N \otimes M \rightarrow M \otimes N$.
These properties yield that $H^{*}(G, \mathbb{Z})$ is a graded commutative associative ring (here graded commutative means $x y=(-1)^{p q} y x$ where x, y are of degree $\left.p, q\right)$. There is a commutative subring by taking the sum of even degree terms. The whole cohomology ring is a module for this subring.

More naturality properties:

- Change of groups: Given a group homomorphism $\alpha: H \rightarrow G$, then we have

$$
\alpha^{*}(u \smile v)=\alpha^{*} u \smile \alpha^{*} v .
$$

Thus $\alpha^{*}: H^{*}(G, \mathbb{Z}) \rightarrow H^{*}(H, \mathbb{Z})$ is a ring homomorphism.

- Transfer: When $H \leq G$ is a subgroup of finite index, $u \in H^{*}(G, M), v \in H^{*}(H, N)$, then

$$
\operatorname{cores}_{H}^{G}\left(\operatorname{res}_{H}^{G}(u) \smile v\right)=u \smile \operatorname{cores}_{H}^{G} v .
$$

Thus the transfer map $H^{*}(H, \mathbb{Z}) \rightarrow H^{*}(G, \mathbb{Z})$ is a homomorphism of $H^{*}(G, \mathbb{Z})$ modules.

Recall we defined $\operatorname{Ext}_{\mathbb{Z}}^{n}(M, N)$ by taking a resolution for M and applying $\operatorname{Hom}_{G}(-, N)$ to it. The homology groups arising are the abelian groups $\operatorname{Ext}_{\mathbb{Z} G}^{n}(M, N)$. Now take $N=M$. We find $\operatorname{Ext}_{\mathbb{Z} G}^{n}(M, M)$ is a module for the cohomology ring $H^{*}(G, \mathbb{Z})$. There is quite a lot of work studying $\mathbb{Z} G$-modules M via this module $\operatorname{Ext}_{\mathbb{Z} G}^{n}(M, M)$ over the cohomology ring.

4 Brauer groups

Definition. A simple algebra A is one where the only two-sided ideals are 0 and A. A central simple algebra A over a field k is one which is simple, finite-dimensional, and the centre is $Z(A)=k$.

Examples.

1. The set of $n \times n$-matrices $M_{n}(K)$ forms a central simple k-algebra.
2. The quaternions \mathbb{H} form a central simple \mathbb{R}-algebra. Recall that \mathbb{H} has \mathbb{R}-basis $1, i, j, k$ where $i j=k=-j i$ and $i^{2}=j^{2}=k^{2}=-1$. In fact, this is a division algebra, i.e. every non-zero element has a multiplicative inverse.

Basic question: Classify central simple algebras over a specified field k.
Theorem 4.1 (Artin-Wedderburn). A finite dimensional simple k-algebra A is isomorphic to a matrix ring over a division algebra D.
Note that if D is a division-algebra over k, then $Z\left(M_{n}(D)\right)=\{\lambda I \mid \lambda \in Z(D)\}$. So the classification problem boils down to classifying central division k-algebras.

We define an equivalence relation on central simple k-algebras: Two such algebras A, B are equivalent, written $A \sim B$, if $A \otimes_{k} M_{n}(k) \cong B \otimes_{k} M_{m}(k)$ for some m, n. We write $[A]$ for the equivalence class. So by the Artin-Wedderburn, $[A]=[D]$ for some division algebra D.

Definition. The Brauer group $\operatorname{Br}(k)$ of k is the set $\{[A] \mid A$ central simple k-algebra $\}$ together with the group operation $[A][B]=\left[A \otimes_{k} B\right]$.

We will soon prove that this is well-defined, i.e. $A \otimes_{k} B$ is again central simple. Assuming this we show that this satisfies the abelian groups axioms:

Abelian: Clear from $A \otimes_{k} B \cong B \otimes_{k} A$.
Associativity: Also clear.
Identity: Take $[k]$.
Inverses: $[A]^{-1}=\left[A^{\mathrm{op}}\right]$ where A^{op} is the opposite algebra. It has the same underlying set as A, but the multiplication is defined by $a \cdot{ }_{A^{\text {op }}} b=b \cdot{ }_{A} a$. Note that a right A-module may be regarded as a left A^{op}-module. That $\left[A^{\mathrm{op}}\right]$ indeed gives the inverse follows from the following lemma:

Lemma 4.2. $A \otimes_{k} A^{\text {op }} \cong M_{n}(k)$ where $n=\operatorname{dim}_{k} A$.

Examples.

1. If k is algebraically closed, then $\operatorname{Br}(k)$ is trivial, since any division k-algebra, finitedimensional over k, has all elements algebraic over k, hence in k (using that every non-zero element is invertible).
2. $\operatorname{Br}(\mathbb{R})=\{[\mathbb{R}],[\mathbb{H}]\}$. We will prove this later as a consequence of knowing some 2-cohomology groups.

Definition. If L / k is a field extension, the subgroup $\operatorname{Br}(L / k)$ is the group of classes represented by central simple k-algebras A such that $A \otimes_{k} L \cong M_{n}(L)$ for some n. In this case we say A is split by L.

We will see that given A there are such field extensions L / k, in fact:

Proposition 4.3.

$$
\operatorname{Br}(k)=\bigcup_{\substack{L / K \text { Galoos } \\[L: k]<\infty}} \operatorname{Br}(L / k)
$$

Theorem 4.4. Let L / k be finite Galois, then

$$
\operatorname{Br}(L / k) \cong H^{2}\left(\operatorname{Gal}(L / k), L^{\times}\right)
$$

Example. Let $k=\mathbb{R}, L=\mathbb{C}$. Then $G=\operatorname{Gal}(\mathbb{C} / \mathbb{R})$ is cyclic of order 2 generated by complex conjugation σ. Take $A=\mathbb{H}$. Then $\mathbb{R} \oplus \mathbb{R} i=\mathbb{C} \subseteq \mathbb{H}=\mathbb{C} \oplus \mathbb{C} j$. Thus \mathbb{C} is a maximal subfield of \mathbb{H} and there isa basis labelled by the elements of G, say $e_{1}=1, e_{\sigma}=j$. Note that $e_{\sigma} x e_{\sigma}^{-1}=\sigma(x)$ for all $x \in \mathbb{C}$.
Define $\phi: G \times G \rightarrow L^{\times}$via $e_{\sigma} e_{\tau}=\phi(\sigma, \tau) e_{\sigma \tau}$ where $\phi(\sigma, \tau) \in L^{\times}$and $\sigma, \tau \in G$. We are thinking of an extension of G by L^{\times}as a subgroup of the group of units in our algebra. The algebra is associative if and only if ϕ is a 2 -cocycle. Note that if we take $e_{1}=1$, then the 2 -cocycle is normalised.

Now let L / k be any finite Galois extension with Galois group $G=\operatorname{Gal}(L / k)$. Let ϕ : $G \times G \rightarrow L^{\times}$be a normalised 2-cocycle. We define an algebra $A=A(L, G, \phi)$ as follows: It is the L-vector space on the basis $\left\{e_{\sigma} \mid \sigma \in G\right\}$ with symbols e_{σ}. Define multiplication on the basis by

$$
e_{\sigma} e_{\tau}=\phi(\sigma, \tau) e_{\sigma \tau} \text { and }(\sigma a) e_{\sigma}=e_{\sigma} a
$$

Since ϕ is a 2-cocycle, this extends to give an associative multiplication. e_{1} is the multiplicative identity since ϕ is normalised. We identity L with $L e_{1} \subseteq A$. The centre of $A(L, G, \phi)$ is k. Indeed, assume $x=\sum_{\sigma \in G} \lambda_{\sigma} e_{\sigma} \in Z(A(L, G, \phi))$ with $\lambda_{\sigma} \in L$. Then for $\beta \in L$ we have

$$
\sum_{\sigma \in G} \lambda_{\sigma} \beta e_{\sigma}=\beta\left(\sum \lambda_{\sigma} e_{\sigma}\right)=\beta x=x \beta=\left(\sum \lambda_{\sigma} e_{\sigma}\right) \beta=\sum \lambda_{\sigma} \sigma(\beta) e_{\sigma} .
$$

So $\sigma(\beta)=\beta$ if $\lambda_{\sigma} \neq 0$. However, if $\sigma \neq 1$, we can choose β such that $\sigma(\beta) \neq \beta$, so $\lambda_{\sigma}=0$ for $\sigma \neq 1$. Then $x=\lambda_{1} e_{1}$ Now $x e_{\tau}=e_{\tau} x$ for all τ, so $\tau\left(\lambda_{1}\right)=\lambda_{1}$ for any τ and hence $\lambda \in L^{G}=K$. Thus $Z(A(L, G, \phi))=\left\{\lambda e_{1} \mid \lambda \in k\right\}$.

Next we show that A is simple. Let $I \neq 0$ be a two-sided ideal and $x=\lambda_{\sigma_{1}} e_{\sigma_{1}}+\cdots+\lambda_{\sigma_{m}} e_{\sigma_{m}}$ be a non-zero element in I with $\lambda_{\sigma_{i}} \in L^{\times}$and m minimal. If $m>1$, we can find $\beta \in L^{\times}$ such that $\sigma_{m}(\beta) \neq \sigma_{m-1}(\beta)$. Then $y=x-\sigma_{m}(\beta) x \beta^{-1} \in I$ and the coefficient of $e_{\sigma_{m}}$ in y is zero. Hence we conclude that $m=1$, so $x=\lambda e_{\sigma}$ with $\lambda \in L^{\times}$. This is a unit with inverse $x^{-1}=\sigma^{-1}\left(\lambda^{-1}\right) e_{\sigma^{-1}}$, so $I=A$ and A is simple.

Note that $\operatorname{dim}_{K} A(L, G, \phi)=\left(\operatorname{dim}_{K} L\right)^{2}$.
Definition. The central simple k-algebra $A(L, G, \phi)$ is the crossed product of L / k by the Galois group $\operatorname{Gal}(L / k)$ with the given normalised 2 -cocycle $\phi: G \times G \rightarrow L^{\times}$.

Now suppose $\phi^{\prime}: G \times G \rightarrow L^{\times}$is another normalised 2-cocycle such that $[\phi]=\left[\phi^{\prime}\right]$, in other words ϕ and ϕ^{\prime} differ by a coboundary, i.e.

$$
\phi^{\prime}(\sigma, \tau)=\phi(\sigma, \tau) \sigma\left(u_{\tau}\right) u_{\sigma \tau}^{-1} u_{\sigma}
$$

for some 1-cochain $u: G \rightarrow L^{\times}$. Define an L-linear map

$$
\begin{aligned}
& F: A\left(L, G, \phi^{\prime}\right) \longrightarrow A(L, G, \phi) \\
& e_{\sigma}^{\prime} \longmapsto u_{\sigma} e_{\sigma}
\end{aligned}
$$

Then one checks that F is a homomorphism. By simplicity and dimension reasons, it is an isomorphism.

Proposition 4.5. The map

$$
\begin{aligned}
H^{2}\left(G, L^{\times}\right) & \longrightarrow \operatorname{Br}(k), \\
{[\phi] } & \longmapsto[A(L, G, \phi)]
\end{aligned}
$$

is a homomorphism of abelian groups.

Proof. Let ϕ and ϕ^{\prime} be 2-cocycles. We have to show that

$$
A\left(L, G, \phi+\phi^{\prime}\right) \sim A(L, G, \phi) \otimes A\left(L, G, \phi^{\prime}\right)
$$

Let $A=A(L, G, \phi), B=A\left(L, G, \phi^{\prime}\right), C=A\left(L, G, \phi+\phi^{\prime}\right)$. Regard A and B as L-vector spaces. Define

$$
V=A \otimes_{L} B=\frac{A \otimes_{k} B}{\langle l a \otimes b-a \otimes l b \mid a \in A, b \in B, l \in L\rangle}
$$

V has a unique right $A \otimes_{k} B$-module structure given by

$$
\left(a^{\prime} \otimes_{L} b^{\prime}\right)\left(a \otimes_{k} b\right)=a^{\prime} a \otimes_{L} b^{\prime} b
$$

for $a^{\prime}, a \in A, b^{\prime}, b \in B$. Also V has a unique left C-structure given by

$$
\left(l e_{\sigma}^{\prime \prime}\right)\left(a \otimes_{L} b\right)=l e_{\sigma} a \otimes e_{\sigma}^{\prime} b
$$

for $l \in L, \sigma \in G, a \in A, b \in B$. Here we denote the basis elements of A, B, C by $e_{\sigma}, e_{\sigma}^{\prime}, e_{\sigma}^{\prime \prime}$. The two actions are compatible and so the right action of $A \otimes_{k} B$ on V defines a homomorphism

$$
f:\left(A \otimes_{k} B\right)^{\mathrm{op}} \rightarrow \operatorname{End}_{C}(V)
$$

which is injective because $A \otimes_{k} B$ is simple (to be proved later). Now $\left(A \otimes_{k} B\right)^{\mathrm{op}}$ and $\operatorname{End}_{C}(V)^{1}$ have the same dimension n^{4} where $n=[L: K]=\# G$, so f is an isomorphism. When we prove Artin-Wedderburn we will see that $\operatorname{End}_{C}(V) \cong M_{r}(D)^{\mathrm{op}}$ for some division algebra D which is the endomorphism algebra of a simple C-module. Also $[C]=[D]$. From this we get $\left(A \otimes_{k} B\right)^{\mathrm{op}} \cong M_{n}(D)^{\mathrm{op}}, A \otimes_{k} B \cong M_{n}(D)$ and so

$$
\left[A \otimes_{k} B\right]=[D]=[C]
$$

in $\operatorname{Br}(k)$.

Remarks.

1. The map in Proposition 4.5 is injective. We can see by counting dimensions that $[A(L, G, \phi)]=\left[A\left(L, G, \phi^{\prime}\right)\right]$ if and only if $A(L, G, \phi) \cong A\left(L, G \phi^{\prime}\right)$.
2. The image of the map is in fact $\operatorname{Br}(L / k)$.

4.1 Some proofs

Now we return to fill in the remaining proofs. First we have the following lemma:
Lemma 4.6 (Schur's lemma). If M is a simple module over some ring A, then $\operatorname{End}_{A}(M)$ is a division algebra.

Proof. Immediate, by simplicity any endomorphism $M \rightarrow M$ is either 0 or an isomorphism.

Proof of Artin-Wedderburn, Theorem 4.1. Consider a minimal non-zero right A-submodule of A_{A} (A regarded as a right A-module). Thus M has only the submodules 0 and M, i.e. M is a simple right A-module. Then consider $\sum_{a \in A} a M$. This is a two-sided ideal in A, hence it is A by simplicity.

Now consider $\theta_{a}: M \rightarrow a M$ given by multiplication by $a \in A$ on the left. This is a right A-module map. By looking at $\operatorname{ker} \theta_{a}, \theta_{a}$ is either the zero map or an isomorphism. Thus

[^1]$\sum_{a} a M$ is a sum of copies of M. An easy induction shows that a finite sum of simple modules is a direct sum, possibly after ignoring multiple occurrences of the same module.

Now consider $\operatorname{End}_{A}(M)=: D$. By Schur's lemma this is a division algebra. But $A_{A}=$ $\bigoplus_{i=1}^{r} M_{i}$ where the M_{i} are simple right A-modules all isomorphic to each other. Consider $\operatorname{End}_{A}\left(A_{A}\right)$. We have a map

$$
\begin{aligned}
A & \longrightarrow \operatorname{End}_{A}\left(A_{A}\right) \\
a & \longmapsto \text { multiplication on the left by } a
\end{aligned}
$$

An endomorphism is determined by the image of the generator 1, so this map is an isomorphism, so $A \cong \operatorname{End}_{A}\left(A_{A}\right)$. But $\operatorname{End}_{A}\left(\bigoplus_{i=1}^{r} M_{i}\right) \cong M_{r}(D)$. Hence $A \cong M_{r}(D)$.

Corollary 4.7. With the notation as in the proof, every finitely generated right A-module V is isomorphic to a direct sum of finitely many copies of M. Any two submodules of the same dimension over k are isomorphic and $\operatorname{End}_{A}(V) \cong M_{r}(D)$ where r is the number of copies of M in the direct sum.

Proof. A_{A} is a sum of copies of M. If V is finitely generated by v_{1}, \ldots, v_{r} as an A-module, then the surjective map $A^{r} \rightarrow V,\left(a_{1}, \ldots, a_{r}\right) \mapsto \sum a_{i} v_{i}$ shows that V is a quotient of a sum of copies of A_{A} and hence a quotient of a sum of finitely many copies of M. An easy induction shows that this is in fact a direct sum of copies of M.

We still have to show that the tensor product of two central simple k-algebras is again such an algebra. We start with some easy linear algebra.

Definition. Let V be a finite-dimensional k-vector space and $\left\{e_{i}\right\}$ a fixed basis. For $v=\sum a_{i} e_{i} \in V$ we let $J(v)=\left\{i \in I \mid a_{i} \neq 0\right\}$ be the support of v w.r.t. the basis $\left\{e_{i}\right\}$. For a subspace $W \subseteq V$, a non-zero element $\sum a_{i} e_{i}=w \in W$ is primordial w.r.t. the basis $\left\{e_{i}\right\}$ if $J(w)$ is minimal among the sets $J\left(w^{\prime}\right)$ with $w^{\prime} \in W, w^{\prime} \neq 0$, and $a_{i}=1$ for some i.

Lemma 4.8.

(i) For $0 \neq w, w^{\prime} \in W$ with $J(w)$ minimal, then $J\left(w^{\prime}\right) \subseteq J(w)$ if and only if $w^{\prime}=c w$ for some $c \in k$.
(ii) The primordial elements span W.

Proof.
(i) Is clear.
(ii) Induction on $\# J(w)$. Let $0 \neq w=\sum a_{i} e_{i} \in W$. Among the non-zero elements w^{\prime} of W with $J\left(w^{\prime}\right) \subseteq J(w)$ we can choose one with $\# J\left(w^{\prime}\right)$ minimal. Then $w_{0}=c w^{\prime}$ will be primordial for some $c \in k^{\times}$. Now $w_{0}=\sum b_{i} e_{i}$ with $b_{j}=1$ say. Then $w=a_{j} w_{0}+\left(w-a_{j} w_{0}\right)$ and $\# J\left(w-a_{j} w_{0}\right)<\# J(w)$, hence by induction we see that w is a linear combination of primordial elements.

Remark. The same is true for D-vector spaces for a division ring D.
Lemma 4.9. Let A be a k-algebra, D a central division algebra. Then every two-sided ideal I in $A \otimes_{k} D$ is generated as a left D-module by $J=I \cap(A \otimes 1)$.

Note that $I \cap(A \otimes 1)$ is an ideal of A.
Proof. There is a left D-module structure on $A \otimes_{k} D$ given by $\delta\left(a \otimes \delta^{\prime}\right)=a \otimes \delta \delta^{\prime}$. The ideal I is a D-submodule of $A \otimes_{k} D$. Let $\left\{e_{i}\right\}$ be a basis for A as a k-vector space. Then $\left\{\left(e_{i} \otimes 1\right)\right\}$ is a basis for $A \otimes D$ as a left D-module. Let r be primordial w.r.t. this basis. Then $r=\sum_{i \in J(r)} \delta_{i}\left(e_{i} \otimes 1\right)=\sum e_{i} \otimes \delta_{I}$ with $\delta_{i} \in D$. Then for any non-zero $\delta \in D, r \delta \in I$ and $r \delta=\sum \delta_{i} \delta\left(e_{i} \otimes 1\right)$. In particular, $J(r \delta)=J(r)$ and so $r \delta=\delta^{\prime} r$ for some $\delta^{\prime} \in D$ by the lemma. As some $\delta_{j}=1$ (since R is primordial) this implies $\delta=\delta^{\prime}$ and so each δ_{i} commutes with every $\delta \in D$, thus $\delta_{i} \in Z(D)=k$. So $r \in A \otimes 1$. Hence every primordial element of I is in $A \otimes_{k} 1$. The claim then follows from the previous lemma.

Proposition 4.10. The tensor product of two (finite-dimensional) simple k-algebras, at least one of which is central, is again simple.

Proof. By Artin-Wedderburn we may assume that one of the algebras is $M_{n}(D)$ for some division ring with centre k. Let A be the other algebra. By Lemma $4.9 A \otimes_{k} D$ is simple, hence by Artin-Wedderburn again $A \otimes_{k} D \cong M_{m}\left(D^{\prime}\right)$ for some division algebra D^{\prime}. Thus

$$
A \otimes M_{n}(D) \cong M_{n}(A \otimes D) \cong M_{n}\left(M_{m}\left(D^{\prime}\right)\right) \cong M_{n m}\left(D^{\prime}\right)
$$

is simple.
Corollary 4.11. The tensor product of two central simple k-algebras is again central simple.

Proof. By Proposition 4.10, the tensor product is again simple. Since $Z\left(A \otimes_{k} B\right)=$ $Z(A) \otimes_{k} Z(B)$, it also follows that it is central.

Thus the product in the Brauer group is defined.
Next we consider inverses in $\operatorname{Br}(k)$. Given a central simple k-algebra A, let V be the underlying vector space and consider the map

$$
\begin{aligned}
& A \otimes A^{\mathrm{op}} \longrightarrow \operatorname{End}_{k}(V) \\
& a \otimes a^{\prime} \longmapsto\left(v \mapsto a v a^{\prime}\right)
\end{aligned}
$$

It is a ring homomorphism. The map is injective since $A \otimes A^{\mathrm{op}}$ is simple by Proposition 4.10 and the kernel does not contain $1 \otimes 1$. So the map is an isomorphism since both sides have the same dimension n^{2} where $n=\operatorname{dim}_{K} A$. Hence we proved $A \otimes_{k} A^{\mathrm{op}} \cong M_{n}(k)$ and so $[A] \cdot\left[A^{\mathrm{op}}\right]=[1]$.

Theorem 4.12 (Double Centraliser Theorem). Let A be a central simple k-algebra with simple subalgebra B. Then
(i) The centraliser $C_{A}(B)$ is simple.
(ii) $\operatorname{dim} B \cdot \operatorname{dim} C_{A}(B)=\operatorname{dim} A$.
(iii) $C_{A}\left(C_{A}(B)\right)=B$.
(iv) If B is central simple, then $C_{A}(B)$ is also central simple.

Proof. Exercise.
Direct proof of (ii) in a special case: Let C be a central simple k-algebra, V a left C module. We regard V as a right $C^{\text {op }}$-module. By Corollary 4.7, $V \cong M^{\oplus r}$ where M is a simple C^{op}-module. Then $\operatorname{End}_{C}(V) \cong \operatorname{End}_{C \text { op }}(V) \cong M_{r}\left(D^{\mathrm{op}}\right)$ where $D^{\mathrm{op}}=\operatorname{End}_{C o \mathrm{p}}(M)$. But $C^{\mathrm{op}}=M^{\oplus m}$ for some m and $C^{\mathrm{op}}=M_{m}\left(D^{\mathrm{op}}\right)$. Now consider dimensions:

$$
\begin{aligned}
\operatorname{dim} V & =r \operatorname{dim} M \\
\operatorname{dim} C & =\operatorname{dim} C^{\mathrm{op}}=m^{2} \operatorname{dim} D=m \operatorname{dim} M \\
\operatorname{dim} \operatorname{End}_{C}(V) & =r^{2} \operatorname{dim} M \\
\operatorname{dim} \operatorname{End}_{C}(V) \operatorname{dim} C & =r^{2} \operatorname{dim} D \cdot m \operatorname{dim} M=(\operatorname{dim} V)^{2}
\end{aligned}
$$

Remarks. We established the map

$$
H^{2}\left(\operatorname{Gal}(L / k), L^{\times}\right) \rightarrow \operatorname{Br}(k)
$$

The image is $\operatorname{Br}(L / k)$. For the converse we have to establish that given a central simple algebra we can produce a 2 -cocycle. In a central simple algebra A we consider maximal subfields L (equivalently maximal commutative subalgebras). From the double centraliser theorem we deduce $\operatorname{dim} A=\left(\operatorname{dim}_{k} L\right)^{2}$. Take an L-basis for A and consider multiplication of two basis elements and we get a 2-cocycle. We also need to see that within A, L is invariant under conjugation and the action is the Galois action.

Final remarks.

1. For a finite field $k, \operatorname{Br}(k)=0$ (Theorem by Wedderburn: finite division algebras over fields).
2. For a non-archimedean local field $k, \operatorname{Br}(k) \cong \mathbb{Q} / \mathbb{Z}$.
3. For a number field k there is a short exact sequence:

$$
0 \rightarrow \operatorname{Br}(k) \rightarrow \bigoplus_{v} \operatorname{Br}\left(k_{v}\right) \xrightarrow{\sum} \mathbb{Q} / \mathbb{Z} \rightarrow 0
$$

where the sum runs through all the places v of k.

5 Lyndon-Hochschild-Serre spectral sequence

The aim is to link the cohomology of a group G with that of a normal subgroup H with that of the quotient $Q=G / H$. We already saw this for low degree cohomology when we met the five term exact sequence.

We consider a double cochain complex A. It consists of abelian groups $A^{p, q}$, indexed by $p, q \in \mathbb{Z}$, and maps d^{\prime}, $d^{\prime \prime}$ of bidegree $(1,0)$ resp. $(0,1)$ such that $d^{\prime 2}=0, d^{\prime \prime 2}=$ $0, d^{\prime} d^{\prime \prime}+d^{\prime \prime} d^{\prime}=0$.

We let $A^{n}=\bigoplus_{p+q=n} A^{p, q}$ and $d=d^{\prime}+d^{\prime \prime}$. Then $\left(\left(A^{n}\right), d\right)$ is a single chain complex, called the total complex. The (total) cohomology $H^{*}(A)$ is the cohomology of the total complex.

In our context we are going to have $A^{p, q}=0$ for all p, q not in the first quadrant. In our case let X^{\bullet} be a $\mathbb{Z} G$-projective resolution of the trivial module \mathbb{Z} and Y^{\bullet} a $\mathbb{Z}(G / H)$ projective resolution of \mathbb{Z}. Note that X^{\bullet} is also a $\mathbb{Z} H$-projective resolution. Let M be a $\mathbb{Z} G$-module. Then G acts on $\operatorname{Hom}_{H}\left(X^{\bullet}, M\right)$ by $(g f)(x)=g\left(f\left(g^{-1} x\right)\right)$. Since H then acts trivially, we may view $\operatorname{Hom}_{H}\left(X^{\bullet}, M\right)$ as a $\mathbb{Z} Q$-module.

Then we form the double complex $\mathcal{A}=\operatorname{Hom}_{G / H}\left(Y^{\bullet}, \operatorname{Hom}_{H}\left(X^{\bullet}, M\right)\right)$. We let $d^{\prime}=$ $\operatorname{Hom}_{G / H}\left(d_{Y}, \mathrm{id}\right)$ and $d^{\prime \prime}=\operatorname{Hom}_{G / H}\left(\mathrm{id}, d_{X}^{*}\right)$.
Warning: There is an alternating sign suppressed in the definition of $d^{\prime \prime}$. People have different conventions. Cartan-Eilenberg put in $(-1)^{p}$ where p denotes the degree w.r.t. the grading of X.

The cohomology of the total complex A can be approximated in different ways.
Aim. Filter the double complex in order to filter the cohomology spectral sequences to get information about the associated graded version of $H^{*}(A)$ w.r.t. this filtration.

First calculate the cohomology $H^{\prime \prime}(A)$ w.r.t. $d^{\prime \prime}$. Since $d^{\prime} d^{\prime \prime}=-d^{\prime \prime} d^{\prime}$, the horizontal differential d^{\prime} induces a differential on $H^{\prime \prime}(A)$. We may then calculate $H^{\prime}\left(H^{\prime \prime}(A)\right)$. (Alternatively we could have looked at $H^{\prime \prime}\left(H^{\prime}(A)\right)$.)

This gives the E_{2}-page - there is a cochain map we will define on $H^{\prime}\left(H^{\prime \prime}(A)\right)$ and then we repeat to get E_{3}, \ldots etc.

Consider how $H^{\prime} H^{\prime \prime}(A)$ is computed. Start in position (p, q). Let $a^{p, q} \in A^{p, q}$ be a vertical cocycle, i.e. $d^{\prime \prime} a^{p, q}=0$. It defines a class in $H^{\prime \prime}(\mathcal{A})$. For $a^{p, q}$ to represent a horizontal cocycle in $H^{\prime \prime}(A)$ under d^{\prime} it must be true that $d^{\prime} a^{p, q}$ (which has position $(p+1, q)$) is
the image under $d^{\prime \prime}$ of an element $a^{p+1, q-1}$ in the position $(p+1, q-1)$. Thus $d\left(a^{p, q}-\right.$ $\left.a^{p+1, q-1}\right)=-d^{\prime} a^{p+1, q-1} \in A^{p+2, q-1}$. So $a^{p, q}-a^{p+1, q-1}$ is a cocycle modulo everything two steps to the right of the (p, q)-th position. Similarly, $a^{p, q}$ represents a coboundary in $H^{\prime \prime}(A)$ under d^{\prime} if there are two elements $b^{p-1, q}$ and $b^{p, q-1}$ such that $d^{\prime \prime} b^{p-1, q}=0$ and $d^{\prime} b^{p-1, q}=d^{\prime \prime} b^{p, q-1}+a^{p, q}$. Thus $d\left(b^{p-1, q}-b^{p, q-1}\right)=a^{p, q}$ modulo everything two steps to the right of $(p-1, q)$.

This motivates the idea that filtrations of the complex will be useful. Let $F^{p} A$ be the double subcomplex where components to the left of the p-th column are zero. So the total complex of $F^{p} A$ is given by

$$
\left(F^{p} A\right)^{n}=\bigoplus_{\substack{p^{\prime}+q=n \\ p^{\prime} \geq p}} A^{p^{\prime}, q} .
$$

Note that $\left(F^{0} A\right)^{n}=A^{n}$ and $\left(F^{p} A\right)^{n}=0$ for $p>n$. This gives a decreasing filtration of A^{\bullet}.

Let $C_{r}^{p, q}$ be the set of elements in $\left(F^{p} A\right)^{p+q}$ whose image under d is in $\left(F^{p+r} A\right)^{p+q+1}$. Each such element is a sum of components along the line $p+q=n$, starting at the (p, q)-th position, such that the vertical and horizontal maps cancel within the range $p \leq p^{\prime}<p+r$. Note that the image under d of such an element lies in $\left(F^{p+r} A\right)^{n+1}$, i.e. it starts at coordinates ($p+r, q-r+1$). Define

$$
E_{r}^{p, q}=\frac{C_{r}^{p, q}+\left(F^{p+1} A\right)^{p+q}}{d\left(C_{r-1}^{p-1,1, q+r-2}\right)+\left(F^{p+1} A\right)^{p+q}} .
$$

Then d induces maps $d_{r}^{p, q}: E_{r}^{p, q} \rightarrow E^{p+r, q-r+1}$ satisfying $d_{r}^{2}=0$.
If we compute the cohomology of the resulting complex, we get

$$
H\left(E_{r}, d_{r}\right)=E_{r+1},
$$

i.e.

$$
E_{r+1}^{p, q}=\frac{\operatorname{ker} d_{r}^{p, q}}{\operatorname{im} d_{r}^{p-r, q+r-1}} .
$$

A representative of an element a in $E_{r}^{p, q}$ defines an element in a subquotient of $A^{p, q}$ at its upper left (p, q), but its extended structure to the right is crucial in calculating $d r$. In particular $d a \in F^{p+1} A$ represents d_{r} of the element represented by a. For each fixed (p, q) the differential $d_{r}^{p, q}$ which starts there and differential $d_{r}^{p-r, q+r-1}$ which ends there must vanish for r sufficiently large (all our terms are in the top right quadrant). It follows that each $E_{r}^{p, q}$ eventually stabilises at a common value, denoted by $E_{\infty}^{p, q}$ (but the r for which $E_{r}^{p, q}=E_{\infty}^{p, q}$ may depend on $\left.p, q\right)$.
Suppose that $a \in A^{n}$ is a cocycle starting at $A^{p, q}$ where $p+q=n$, i.e. $a \in\left(F^{p} A\right)^{n} \backslash$ $\left(F^{p+q} A\right)^{n}$ and $d a=0$. So a determines an element of $E_{\infty}^{p, q}$ since it determines an element of $E_{r}^{p, q}$ for all $r \geq 1$ and d_{r} is zero on that element.

In other words, we have a map

$$
F^{p} H^{p+q}(A):=\operatorname{im}\left(H^{p+q}\left(F^{p} A\right) \rightarrow H^{p+q}(A)\right) \rightarrow E_{\infty}^{p, q}
$$

In fact, it is surjective and the kernel is $F^{p+1} H^{p+q}(A)$. Thus the filtration of the double complex A induces a descending filtration of $H^{n}(A)$ for each n and

$$
\frac{F^{p} H^{p+q}(A)}{F^{p+1} H^{p, q}(A)} \cong E_{\infty}^{p, q}
$$

Note that the spectral sequence E_{r} determines those factors and so determines the associated graded version $\operatorname{gr} H^{*}(A)$. When calculating we may be left with the extension problem of how to fit these factors together to give $H^{*}(A)$.

Back to our complex arising from $G, H \unlhd G, G / H$ and $\mathbb{Z} G$-module M. We can take two spectral sequences arising from $H^{\prime} H^{\prime \prime}(A)$ as E_{2}-page and from $H^{\prime \prime} H^{\prime}(A)$ as E_{2}-page. We will find that the second one shows relatively easily that the total cohomology $H^{*}(A)$ of the complex is just $H^{*}(G, M)$. Then we can use the first sequence to calculate what this cohomology is from knowledge of cohomology of H and G / H. Recall that

$$
\begin{aligned}
A^{\bullet \bullet} & =\operatorname{Hom}_{G / H}\left(Y^{\bullet}, \operatorname{Hom}_{H}\left(X^{\bullet}, M\right)\right) \\
d^{\prime} & =\operatorname{Hom}_{G / H}\left(d_{Y}, \mathrm{id}\right) \\
d^{\prime \prime} & =\operatorname{Hom}_{G / H}\left(\mathrm{id}, d_{X}^{\bullet}\right)(\text { with sign actually })
\end{aligned}
$$

The first spectral sequence: Calculate $H^{\prime} H^{\prime \prime}(A)$ to give E_{2}-page of spectral sequence. We have

$$
H^{\prime \prime}\left(\operatorname{Hom}_{G / H}\left(Y^{\bullet}, \operatorname{Hom}_{H}\left(X^{\bullet}, M\right)\right)\right)=\operatorname{Hom}_{G / H}\left(Y^{\bullet}, H^{*}\left(\operatorname{Hom}_{H}\left(X^{\bullet}, M\right)\right)\right)
$$

since the terms of Y^{\bullet} are all $\mathbb{Z} G / H$-projective and so $\operatorname{Hom}_{G / H}\left(Y^{\bullet},-\right)$ preserves exactness and therefore homology groups. Thus

$$
\begin{aligned}
E_{2} & =H^{\prime} H^{\prime \prime}(A) \\
& =H *\left(\operatorname{Hom}_{G / H}\left(Y^{\bullet}, H^{*}\left(X^{\bullet}, M\right)\right)\right) \\
& =H^{*}\left(G / H, H^{*}(H, M)\right)
\end{aligned}
$$

The second spectral sequence: We have

$$
H^{\prime}\left(\operatorname{Hom}_{G / H}\left(Y^{\bullet}, \operatorname{Hom}_{H}\left(X^{\bullet}, M\right)\right)\right)=H^{*}\left(G / H, \operatorname{Hom}_{H}\left(X^{\bullet}, M\right)\right)
$$

Lemma 5.1. $H^{p}\left(G / H, \operatorname{Hom}_{H}\left(X^{\bullet}, M\right)\right)=0$ for $p>0$.
Proof. Since each X_{q} is $\mathbb{Z} G$-projective and hence a direct summand of a free module, it suffices to prove this for $X=\mathbb{Z} G$. Let \widetilde{M} be the trivial $\mathbb{Z} G$-module with the same underlying additive group as M. Claim: There is a $\mathbb{Z} G$-isomorphism

$$
\operatorname{Hom}_{H}(\mathbb{Z} G, M) \cong \operatorname{Hom}_{H}(\mathbb{Z} G, \widetilde{H})
$$

when G acts on the left hand side by $(g f)(x)=g f\left(g^{-1} x\right)$ but on the right hand side we have the action as an coinduced module. [Proof of claim: For $f \in \operatorname{Hom}_{H}(\mathbb{Z} G, M)$ define $f^{\prime} \in \operatorname{Hom}_{H}(\mathbb{Z} G, \widetilde{M})$ via $f^{\prime}(x)=x f\left(x^{-1}\right)$ for $x \in G$. Check this is indeed in $\operatorname{Hom}_{H}(\mathbb{Z} G, \widetilde{M})$. Observe that $\left(f^{\prime}\right)^{\prime}=f$. Also check $f \mapsto f^{\prime}$ gives a $\mathbb{Z} G$-isomorphism.]
This isomorphism allows us to use Shapiro's lemma. Also note that $\operatorname{Hom}_{H}(\mathbb{Z} G, \widetilde{M})=$ $\operatorname{Hom}(\mathbb{Z}(G / H), \widetilde{M})$. Since H acts trivially on \widetilde{M},

$$
\begin{aligned}
H^{p}\left(G / H, \operatorname{Hom}_{H}(\mathbb{Z} G, M)\right) & \cong H^{p}(G / H, \operatorname{Hom}(\mathbb{Z}(G / H), \widetilde{M})) \\
& \cong H^{p}(1, \widetilde{M}) \\
& =0
\end{aligned}
$$

if $p>0$.
Thus $H^{\prime}(A)$ is concentrated on the line $p=0$, i.e. all other terms are 0 . We have

$$
\begin{aligned}
H^{0}\left(G / H, \operatorname{Hom}_{H}\left(X^{\bullet}, M\right)\right) & =\operatorname{Hom}_{H}\left(X^{\bullet}, M\right)^{G / H} \\
& =\operatorname{Hom}_{G}\left(X^{\bullet}, M\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
H^{\prime \prime} H^{\prime}(A) & =H^{*}\left(\operatorname{Hom}_{G}\left(X^{\bullet}, M\right)\right) \\
& =H^{*}(G, M) .
\end{aligned}
$$

Thus the E_{2}-page gives $H^{*}(G, M)$. Since the E_{2}-page is concentrated in one line, it follows that $E_{r}=E_{\infty}$ for $r \geq 2$ and thus E_{∞} is concentrated on the line $p=0$. Hence the filtration of $H^{n}(A)$ has only one non-trivial factor. So

$$
H^{n}(A)=H^{n}(G, M) .
$$

5.1 Example: Cohomology of S_{3}

Let $G=S_{3}$. Consider $1 \rightarrow C_{3} \rightarrow G \rightarrow C_{2} \rightarrow 1$.
The first spectral sequence: $H^{p}\left(C_{2}, H^{q}\left(C_{3}, \mathbb{Z}\right)\right)$ will give the E_{2}-page. Here the action of C_{2} on $H^{q}\left(C_{3}, \mathbb{Z}\right)$ is induced by conjugation, $(12)(123)(12)^{-1}=(132)$. So the non-trivial element of C_{2} acts on C_{3} via the inversion map which is a group homomorphism as C_{3} is abelian. The induced map is a ring homomorphism of the cohomology ring $H^{*}\left(C_{3}, \mathbb{Z}\right)$. The underlying groups are given by

$$
\begin{aligned}
H^{0}\left(C_{3}, \mathbb{Z}\right) & \cong \mathbb{Z} \\
H^{2 k}\left(C_{3}, \mathbb{Z}\right) & \cong \mathbb{Z} / 3 \mathbb{Z}, k>0 \\
H^{2 k+1}\left(C_{3}, \mathbb{Z}\right) & =0
\end{aligned}
$$

(see example sheet) In fact, $H^{*}\left(C_{3}, \mathbb{Z}\right) \cong \mathbb{Z}[c] /(3 c)$ where c is of degree 2 . What is the action of C_{2} ? The action on $H^{2}\left(C_{3}, \mathbb{Z}\right)$ is given by multiplication by -1 (to check this, consider find a 2 -cocyle representing the given cohomology class and use the definition of the action of C_{2} on cocycles). Thus the action on $H^{4 k}\left(C_{3}, \mathbb{Z}\right)$ is trivial and on $H^{4 k+2}\left(C_{3}, \mathbb{Z}\right)$ it is multiplication by -1 .

So

$$
\begin{aligned}
H^{0}\left(C_{2}, H^{4 k+2}\left(C_{3}, \mathbb{Z}\right)\right) & =0 \\
H^{0}\left(C_{2}, H^{4 k}\left(C_{3}, \mathbb{Z}\right)\right) & =\mathbb{Z} / 3 \mathbb{Z}
\end{aligned}
$$

We know from Example Sheet 1 that $H^{p}\left(C_{2}, \mathbb{Z} / 3 \mathbb{Z}\right)=0$ if $p \geq 1$. So the E_{2}-page is

Note that all differentials start or finish at 0 , and so $E_{2}=E_{\infty}$. Also notice that there are no extension problems, e.g.

$$
0 \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow H^{4}(A) \rightarrow \mathbb{Z} / 3 \mathbb{Z} \rightarrow 0
$$

and then necessarily $H^{4}(A) \cong \mathbb{Z} / 6 \mathbb{Z}$. Then

$$
H^{n}\left(S_{3}, \mathbb{Z}\right)= \begin{cases}\mathbb{Z} & n=0 \\ 0 & n \text { odd } \\ \mathbb{Z} / 2 \mathbb{Z} & n \equiv 2 \bmod 4 \\ \mathbb{Z} / 6 \mathbb{Z} & n \equiv 0 \bmod 4, n \neq 0\end{cases}
$$

[^0]: ${ }^{1}$ This amounts to showing that the $\mathbb{Z} F$-submodule A generated by \widetilde{X} is I_{F} itself. To see this note first that we know that I_{F} is generated over \mathbb{Z} by $\{f-1 \mid f \in F\}$. From $S(x, r)(x-1)=x^{r}-1, r \in \mathbb{Z}$ we see that $x^{r}-1$ whenever $x \in X$. Then from $(f-1)(g-1)=(f g-1)-(f-1)-(g-1)$ we get inductively that $f-1 \in A$ for all $f \in F$.

[^1]: ${ }^{1}$ That $\operatorname{End}_{C}(V)$ indeed has dimension n^{4} follows from Theorem 4.12 (ii) applied to $A=\operatorname{End}_{k}(V), B=$ C or directly from the discussion following that theorem. Note that $\operatorname{dim} C=n^{2}, \operatorname{dim} V=$ $n^{3}, \operatorname{dim} \operatorname{End}_{k}(V)=n^{6}$.

