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1 Hahn-Banach extension theorems

Let X,Y be normed spaces. Notation:

1. X ∼ Y means that X and Y are isomorphic, i.e. there exists a linear bijection
T : X → Y such that T and T−1 are continuous.

2. X ∼= Y means that X and Y are isometrically isomorphic, i.e. there exists a linear
surjection T : X → Y such that for all x ∈ X: ∥Tx∥ = ∥x∥. (Then T is injective
and T−1 is also isometric)

3. For x ∈ X, f ∈ X∗, then write ⟨x, f⟩ = f(x). When X is a Hilbert space and X∗ is
identified with X, then ⟨·, ·⟩ is the inner product.

4. SX denotes the unit sphere and BX denotes the closed unit ball in X.

Definition. Let X be a real vector space. A functional p : X → R is called

• positive homogeneous if p(tx) = tp(x) for all t ≥ 0, x ∈ X.

• subadditive if p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X.

Theorem 1.1 (Hahn-Banach). Let X be a real vector space and p be a positive homoge-
neous subadditive functional on X. Let Y be a subspace of X and g : Y → R be a linear
map such that for all y ∈ Y : g(y) ≤ p(y). Then there exists a linear f : X → R such that
f |Y = g and for all x ∈ X: f(x) ≤ p(x).

Proof. By Zorn’s lemma there exists a maximal extension h : Z → R of g that is still
dominated by p. If Z = X, we are done. Assume that Z ̸= X. Fix z1 ∈ X \Z and α ∈ R.
Let Z1 = Z +Rz1 and h1 : Z1 → R, h1(z + λz1) = h(z) + λα where λ ∈ R, z ∈ Z. Clearly
h1 is linear and extends h. We show that there exists a choice of α such that h1 ≤ p|Z1 .
This will then give a contradiction.

We need h1(z+λz1) = h(z)+λα ≤ p(z+λz1) for all z ∈ Z, λ ∈ R. By positive homogeneity
of p, this is equialent to

h1(z + z1) = h(z) + α ≤ p(z + z1)

and h1(z − z1) = h(z)− α ≤ p(z − z1)

for all z ∈ Z. This happens iff

h(w)− p(w − z1) ≤ α ≤ p(z + z1)− h(z) ∀z, w ∈ Z.
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Such an α exists iff h(w)− p(w − z1) ≤ p(z + z1)− h(z) for all z, w ∈ Z

This is true since for all z, w ∈ Z:

h(w) + h(z) = h(w + z) ≤ p(w + z) = p(w − z1 + z + z1) ≤ p(w − z1) + p(z + z1).

Definition. Let X be a real or complex vector space. A seminorm on X is a function
p : X → R such that

• p(x) ≥ 0 for all x ∈ X.

• p(λx) = |λ|p(x) for all scalars λ and x ∈ X.

• p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X.

Note that
norm =⇒ seminorm =⇒ pos. hom. and subadditive

Theorem 1.2. Let X be a real or complex vector space and P be a seminorm on X. Let
Y be a subspace of X, g : Y → K be linear such that for all y ∈ Y : |g(y)| ≤ p(y). Then
there exists a linear f : X → K such that f |Y = g and for all x ∈ X: |f(x)| ≤ p(x).

Proof. The real case: For all y ∈ Y , g(y) ≤ |g(y)| ≤ p(y). So by the first theorem there
exists a linear f : X → R such that f |Y = g and f ≤ p. Then for x ∈ X we also have
−f(x) = f(−x) ≤ p(−x) = p(x), so |f(x)| ≤ p(x).

Complex case: Re g : Y → R, y 7→ Re(g(y)) is real linear and |Re g(y)| ≤ |g(y)| ≤ p(y)
for y ∈ Y . So by the real case there exists a real-linear h : X → R such that h|Y = Re g.
Next we show that there exists a unique complex linear f : X → C such that Re f = h.
Uniqueness: For x ∈ X, f(x) = h(x) + i Im f(x) = h(x) + i Im(−if(ix)) = h(x)− ih(ix).
Existence: Define f : X → C by f(x) = h(x) − ih(ix). This is real linear and f(ix) =
h(ix) − ih(−x) = h(ix) + ih(x) = i(h(x) − ih(ix)) = if(x). So f is complex linear and
h = Re f . Now Re f |Y = h|Y = Re g, so by uniqueness f |Y = g. Finally, given x ∈ X,
choose λ ∈ T = {z ∈ C | |z| = 1} such that |f(x)| = λf(x) = f(λx) = h(λx) ≤ p(λx) =
|λ|p(x) = p(x).

Remark: For a complex vector space V , let VR be V viewed as a real vector space. Then the
proof above shows that given a complex normed space X, the map f 7→ Re f : (X∗)R →
(XR)

∗ is an isometric isomorphism.

Corollary 1.3. Let X be a real or complex vector space and p be a seminorm on X.
Then for any x0 ∈ X there exists a linear f : X → K such that f(x0) = p(x0) and
|f(x)| ≤ |p(x)| ≤ p(x) for all x ∈ X.

Proof. Let Y = Kx0. Apply the theorem to g : Y → K, g(λx0) = λp(x0).

3



Theorem 1.4. Let X be a real or complex normed space. Then

(i) Given a subspace Y of X and g ∈ Y ∗, there exists X ∈ X∗ such that f |Y = g and
∥f∥ = ∥g∥.

(ii) Given x0 ∈ X \ {0}, there exists f ∈ SX∗ such that f(x0) = ∥x0∥.

Proof. Easy consequence of the previous results.

Remarks:

1. Part (i) is a sort of linear version of Tietze’s extension theorem.

2. Part (ii) says that X∗ separates points of X: For all x ̸= y ∈ X there exists f ∈ X∗

such that f(x) ̸= f(y).

3. The f in (ii) is called a norming functional for x0. We have

∥x0∥ = max{|g(x0)| | g ∈ BX∗}.

f is also called a support functional at x0: Assume X is real and ∥x0∥ = 1. Then
{x ∈ X | f(x) ≤ 1} ⊇ BX and so the hyperplane {x ∈ X | f(x) = 1} can be thought
of as a tangent plane to BX at x0.

1.1 Bidual

Let X be a normed space. Then X∗∗ = (X∗)∗ is the bidual or second dual of X. For
x ∈ X define x̂ : X∗ → K by x̂(f) = f(x). This map x̂ is linear and for all f ∈ X∗:
|x̂(f)| = |f(x)| ≤ ∥f∥ ∥x∥. So x̂ ∈ X∗∗ and ∥x̂∥ ≤ ∥x∥. The map x 7→ x̂ : X → X∗∗ is the
canonical embedding of X into X∗∗.

Theorem 1.5. The canonical embedding is an isometric isomorphism of X into X∗∗.

Proof. Follows from Theorem 1.4 (ii).

Remarks:

1. In bracket notation ⟨f, x̂⟩ = ⟨x, f⟩ for x ∈ X, f ∈ X∗.

2. Let X̂ = {x̂ | x ∈ X} be the image of X in X∗∗. Then X̂ is closed in X∗∗ iff X is
complete.

3. In general, the closure of X̂ in X∗∗ is a Banach space, containing a dense isometric
copy of X, so every normed space has a completion.

Definition. A normed space X is reflexive if the canonical embedding X → X∗∗ is sur-
jective.

Note: reflexive =⇒ complete
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Examples.

1. ℓp for 1 < p <∞, Hilbert spaces, finite-dimensional spaces are reflexive.

2. c0, ℓ1, L1[0, 1] are not reflexive.

Remark: there exist Banach spaces X such that X ∼= X∗∗, but that are not reflexive.

1.2 Dual operators

Let X,Y be normed spaces. Recall that

B(X,Y ) = {T : X → Y | T is linear and bounded}

is a normed space in the operator norm. If Y is complete, so is B(X,Y ).

Let T ∈ B(X,Y ). The dual operator of T is the map T ∗ : Y ∗ → X∗ given by T ∗(g) = g ◦T
where g ∈ Y ∗. In the bracket notation ⟨x, T ∗g⟩ = ⟨Tx, g⟩ where x ∈ X, g ∈ Y ∗. T ∗ is
bounded and ∥T ∗∥ = ∥T∥. Indeed,

sup
g∈BY ∗

∥T ∗g∥ = sup
g∈BY ∗

sup
x∈BX

|⟨x, T ∗g⟩| = sup
x∈BX

sup
g∈BY ∗

|⟨Tx, g⟩| 1.4(ii)= sup
x∈BX

∥Tx∥ = ∥T∥ .

Remark: If X,Y are Hilbert spaces and we identify X∗, Y ∗ with X,Y resp. in the usual
way, then T ∗ : Y → X is the adjoint of T .

Example. Let 1 < p, q <∞ with 1
p +

1
q = 1. We use the canonical identification ℓ∗p

∼= ℓq.
If R : ℓp → ℓp is the right shift, then R∗ : ℓq → ℓq is the left shift.

Properties:

1. (IdX)
∗ = IdX∗ .

2. (λS + µT )∗ = λS∗ + µT ∗ (S, T ∈ B(X,Y ), λ, µ scalars)

3. (ST )∗ = T ∗S∗ (T ∈ B(X,Y ), S ∈ B(Y,Z))

4. T 7→ T ∗ : B(X,Y ) → B(Y ∗, X∗) is an into isometric isomorphism.

5. The following diagram commutes:

X Y

X∗∗ Y ∗∗

T

T ∗∗

Here the vertical arrows are the canonical embeddings. Let x ∈ X. We need T ∗∗x̂ =
T̂ x. For g ∈ Y ∗:

⟨g, T ∗∗x̂⟩ = ⟨T ∗g, x̂⟩ = ⟨x, T ∗g⟩ = ⟨Tx, g⟩ = ⟨g, T̂ x⟩.

From the above properties, if X ∼ Y , then X∗ ∼ Y ∗.
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1.3 Quotient spaces

Let X be a normed space and Y be a closed subspace of X. The quotient space X/Y
becomes a normed space in the quotient norm:

∥x+ Y ∥ = inf{∥x+ y∥ | y ∈ Y } = d(x, Y ).

The quotient map q : X → X/Y is linear, onto, and bounded with ∥q∥ ≤ 1.

Let DX = {x ∈ X | ∥x∥ < 1}. Since ∥q∥ ≤ 1, q(DX) ⊆ D(X/Y ). In fact, q(DX) = DX/Y .
Indeed, given x+Y ∈ DX/Y , ∥x+ Y ∥ < 1, so there exists y ∈ Y such that ∥x+ y∥ < 1. So
x+ y ∈ DX and q(x+ y) = q(x) = x+ Y . So ∥q∥ = supx∈DX

∥q(x)∥ = supz∈DX/Y
∥z∥ = 1

if Y ̸= X. Moreover, q is an open map.

Given another normed space Z and T : X → Z linear, bounded such that Y ⊆ kerT ,
there exists a unique map T̃ such that T = T̃ ◦ q. Moreover T̃ is linear and bounded with
∥T̃∥ = ∥T∥. Indeed, T̃ (DX/Y ) = T̃ (q(DX)) = T (DX), so ∥T̃∥ = ∥T∥.

Theorem 1.6. Let X be a normed space. If X∗ is separable, then so is X.

Proof. Let {fn | n ∈ N} be dense in SX∗ . For all n choose xn ∈ BX such that fn(xn) >
1
2 .

Let Y = span{xn | n ∈ N}. Then Y is separable, so enough to show that Y = X. If
Y ̸= X, then can pick h ∈ S(X/Y )∗ . Set f = h◦q where q : X → X/Y is the quotient map.

Then ∥f∥ = ∥h∥ = 1, i.e. f ∈ SX∗ . Now for all n ∈ N, ∥fn − f∥ ≥ |(fn− f)(xn)| > 1
2 since

f |Y = 0. This is a contradiction since the {fn} were assumed to be dense in SX∗ .

Remark: The converse is false, e.g. X = ℓ1 is separable, but X∗ ∼= ℓ∞ is not.

Theorem 1.7. Every separable normed space X embeds isometrically into ℓ∞.

Proof. Let {xn | n ∈ N} be dense in X. For all n there exists fn ∈ SX∗ such that
fn(xn) = ∥xn∥. For x ∈ X and for all n ∈ N, |fn(x)| ≤ ∥x∥, so (fn(x))

∞
n=1 ∈ ℓ∞. Define

T : X → ℓ∞ by Tx = (fn(x))
∞
n=1. This is well-defined, linear and bounded (by above

∥Tx∥ ≤ ∥x∥). For all n, ∥Txn∥∞ ≥ |fn(xn)| = ∥xn∥, so ∥Txn∥∞ = ∥xn∥ for all n. By
dense, T is isometric.

Remarks:

1. This says that ℓ∞ is isometrically universal for the class SB of separable Banach
space.

2. A dual version of the theorem says that every separable Banach space is a quotient
of ℓ1 (exercise).

Theorem 1.8 (Vector-valued Liouville). Let X be a complex Banach space and f : C → X
be holomorphic1 and bounded. Then f is constant.

1f : C → X is holomorphic if the limit limz→z0
f(z)−f(z0)

z−z0
exists for all z0 ∈ C.
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Proof. Fix w ∈ C. We show that f(w) = f(0). Let φ ∈ X∗ and consider φ ◦ f : C → C.
Then φ◦f is bounded and holomorphic, hence constant by the ordinary Liouville theorem,
so φ(f(w)) = φ(f(0)). Since X∗ separates points in X, f(w) = f(0).

1.4 Locally convex spaces

Definition. A locally convex space (LCS) is a pair (X,P) where X is a real or complex
vector space and P is a family of seminorms on X that separates the points of X in the
sense that for every x ∈ X \ {0} there exists p ∈ P such that p(x) ̸= 0.

The family P induces a topology on X: A subset U ⊆ X is open iff for every x ∈ U there
exist n ∈ N, p1, . . . , pn ∈ P, ε > 0 such that {y ∈ X | pk(y − x) < ε, 1 ≤ k ≤ n} ⊆ U .

Remarks:

1. Addition and scalar multiplication are continuous.

2. The topology is Hausdorff.

3. We have xn → x iff for every p ∈ P, p(xn − x) → 0 (also true for nets).

4. Let Y be a subspace of X and PY = {p|Y | p ∈ P}. Then (Y,PY ) is a LCS and the
corresponding topology is the subspace topology induced by X.

5. Given families P,Q of seminorms on X both separating the points of X, they are
called equivalent (written P ∼ Q) if they induce the same topology on X.

Fact: A LCS (X,P) is metrizable iff there exists a countable Q ∼ P.

Definition. A Fréchet space is a complete metrizable LCS.

Examples.

1. Every normed space (X, ∥·∥) is a LCS with P = {∥·∥}.

2. Let U be a non-empty open subset of C. Let O(U) be the set of holomorphic
functions on U . For a compact set K ⊆ U , define pK(f) := sup{|f(z)| : z ∈ K} for
all f ∈ O(U). Let P = {pK | K ⊆ U,K compact}. Then (O(U),P) is a LCS whose
topology is the topology of local uniform convergence. There exist compact sets Kn

such that Kn ⊆ IntKn+1 and
⋃
Kn = U . One can check that {pKn | n ∈ N} ∼ P.

So (O(U),P) is metrizable and in fact a Fréchet space. It is not normable, i.e.
its topology is not induced by a norm. This follows from Montel’s theorem: If
(fn) ∈ O(U) is such that for every compact K ⊆ U , {fn|K | n ∈ N} is bounded in
(C(K), ∥·∥∞), then (fn) has a convergent subsequence.

3. Fix d ∈ N and let Ω be a non-empty open subset of Rd. Let C∞(Ω) be the space of
all smooth functions Ω → R. For a multiindex α = (α1, . . . , αd) ∈ (Z≥0)

d we define
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Dα =
(

∂
∂x1

)α1

· · ·
(

∂
∂xd

)αd

. For α ∈ (Z≥0)
d, compact K ⊆ Ω, and f ∈ C∞(Ω) let

pK,α(f) = sup{|Dαf(x)| : x ∈ K}.

Let P = {pK,α | K ⊆ Ω compact, α ∈ Zd≥0}. Then (C∞(Ω),P) is a LCS. It is a
Fréchet space and is not normable.

4. Weak and Weak* topology - see Chapter 3.

Lemma 1.9. Let (X,P) and (Y,Q) be LCSs and T : X → Y be linear. Then TFAE:

(i) T is continuous.

(ii) T is continuous at 0.

(iii) For all q ∈ Q there exists n ∈ N, p1, . . . , pn ∈ P, C ≥ 0 such that for all x ∈ X,
q(Tx) ≤ Cmax1≤k≤n pk(x).

Proof. “(i) ⇔ (ii)” is clear. For “(ii) ⇒ (iii)” let q ∈ Q and V = {y ∈ Y | q(y) ≤ 1}.
Then V is a neighborhood of 0 in Y , so there exists a neighborhood U of 0 in X such that
T (U) ⊆ V . WLOG U = {x ∈ X | pk(x) ≤ ε for 1 ≤ k ≤ n} for some n ∈ N, p1, . . . , pn ∈
P, ε > 0. Let x ∈ X and t = max1≤k≤n pk(x). We show q(Tx) ≤ 1

ε t. If t > 0, then
pk(

εx
t ) ≤ ε for 1 ≤ k ≤ n, so εx

t ∈ U and q(T ( εxt )) ≤ 1, i.e. q(Tx) ≤ t
ε . If t = 0, then for

all scalars λ, pk(λx) = 0 for all 1 ≤ k ≤ n, so λx ∈ U and q(T (λx)) ≤ 1. So q(Tx) = 0.

Conversely, “(iii) ⇒ (ii)”. Let V be a neighborhood of 0 in Y . We seek a neighborhood
U of 0 in X such that T (W ) ⊆ V . WLOG, V = {y ∈ Y | qk(y) ≤ ε for 1 ≤ k ≤ n}
for some n ∈ N, q1, . . . , qn ∈ Q, ε > 0. By (iii) for each k = 1, . . . , n there exists mk ∈
N, pk1, . . . , pkmk

∈ P and Ck ≥ 0 such that qk(Tx) ≤ Ckmax1≤j≤mk
pkj(x). Let U = {x ∈

X | pkj(x) ≤ ε
Ck+1 , 1 ≤ j ≤ mk, 1 ≤ k ≤ n}. This is a neighborhood of 0 in X and

T (U) ≤ V .

Definition. Let (X,P) be a LCS. The dual space of (X,P) is the space X∗ of all con-
tinuous linear functionals on X, i.e. all linear maps X → K which are continuous in the
topology of (X,P).

Lemma 1.10. Let (X,P) be a LCS, f : X → K be linear. Then f ∈ X∗ ⇔ ker f is
closed.

Proof. “⇒” is clear. For “⇐” we may assume that ker f ̸= X. Fix x0 ∈ X \ ker f . Then
there exists a neighborhood U of 0 such that x0 + U ⊆ X \ ker f . WLOG U = {x ∈
X | pk(x) ≤ ε, 1 ≤ k ≤ n} for some n ∈ N, p1, . . . , pn ∈ P, ε > 0. Note that U is convex
and balanced. Since f is linear, the same is true for f(U). So either f(U) is bounded or
f(U) = K. In the latter case, f(x0+U) = f(x0)+ f(U) = K, contradicting x0 /∈ ker f . So
there exists M ≥ 0 such that |f(x)| ≤M for all x ∈ U , i.e. f(U) ⊆ {λ | |λ| ≤M}. Hence
for all ε > 0, f( εMU) ⊆ {λ | |λ| ≤ ε}. So f is continuous at 0 and hence f ∈ X∗.
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Theorem 1.11 (Hahn-Banach). Let (X,P) be a LCS. Then

(i) Given a subspace Y of X and g ∈ Y ∗, there exists f ∈ X∗ such that f |Y = g.

(ii) Given a closed subspace Y of X and x0 ∈ X \ Y , there exists f ∈ X∗ such that
f |Y = 0, f(x0) ̸= 0

Proof.

(i) By the characterization of continuous linear maps between LCSs there exists n ∈
N, p1, . . . , pn ∈ P, C ≥ 0 such that for all y ∈ Y , |g(y)| ≤ Cmax1≤k≤n pk(y). Let
p(x) = Cmax1≤k≤n pk(x) for x ∈ X. Then p is a seminorm on X and for all
y ∈ Y , |g(y)| ≤ p(y). By the seminorm version of Hahn-Banach there exists a linear
f : X → K such that f |Y = g and for all x ∈ X, |f(x)| ≤ p(x). Then f is continuous.

(ii) Let Z = spanY ∪ {x0} and define g : Z → K by g(y+ λx0) = λ where y ∈ Y, λ ∈ K.
Then g is linear and ker g = Y , so by the previous Lemma, g ∈ Z∗. Then extend g
to X by part (i).
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2 The dual spaces of Lp(µ) and C(K)

Let (Ω,F , µ) be a measure space. For 1 ≤ p <∞ we have

Lp(µ) =
{
f : Ω → K | f is measurable and

∫
Ω
|f |pdµ <∞

}
.

This is a (semi-)normed space in the Lp-norm: ∥f∥p =
(∫

Ω |f |pdµ
)1/p

.

For p = ∞ we have

L∞(µ) = {f : Ω → K | f is measurable and essentially bounded}.

This is a (semi-)normed space in the L∞-norm:

∥f∥∞ = ess sup |f | = inf{sup
Ω\N

|f | : N ∈ F , µ(N) = 0}.

The essential sup is attained: There exists N ∈ F such that µ(N) = 0 and supΩ\N |f | =
∥f∥∞.

Remark: Technically, for 1 ≤ p ≤ ∞, the Lp-norm is only a seminorm. In general, if ∥·∥
is a seminorm on a real or complex vector space X, then N = {x ∈ X | ∥x∥ = 0} is a
subspace and ∥x+N∥ = ∥x∥ defines a norm on X/N . So for us equality in Lp will mean
a.e. equality.

We also recall:

Theorem 2.1. Lp(µ) is a Banach space for 1 ≤ p ≤ ∞.

2.1 Dual space of Lp

2.1.1 Complex measures

Let Ω be a set and F a σ-field on Ω. A complex measure on F is a countably additive set
function ν : F → C, i.e. µ(∅) = 0 and ν(∪An) =

∑
ν(An) for countably many pairwise

disjoint An ∈ F .

The total variation measure |ν| of ν is defined as follows: For A ∈ F ,

|ν|(A) = sup

{
n∑
k=1

|ν(Ak)| : A =

n⋃
k=1

Ak is a measurable partition of A

}
.
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Note that |ν| : F → [0,∞] is a positive measure (i.e. a measure). |ν| is the smallest
positive measure dominating ν (i.e. for all A ∈ F , |ν(A)| ≤ |ν|(A) and if µ is a positive
measure such that for all A ∈ F , |ν(A)| ≤ µ(A), then |ν| ≤ µ).

In fact, |ν| is a finite measure (see Remark 3 below). The total variation ∥ν∥1 of ν is
defined by ∥ν∥1 = |ν|(Ω).

Remark: Any complex measure ν is continuous (from below and above).

A signed measure on F is a countably additive set function ν : F → R (i.e. a complex
measure that only takes on real values).

Theorem 2.2. Let Ω be a set, F a σ-field on Ω and ν : F → R a signed measure.
Then there exists a measurable partition Ω = P ∪ N of Ω such that for all A ∈ F ,
A ⊆ P =⇒ ν(A) ≥ 0 and A ⊆ N =⇒ ν(A) ≤ 0.

Remarks:

1. The partition Ω = P ∪N is the Hahn decomposition of Ω (or of ν).

2. Define ν+(A) = ν(A∩ P ) and ν−(A) = −ν(A∩N) for A ∈ F . Then ν+ and ν− are
finite positive measures such that ν = ν+ − ν− and |ν| = ν+ + ν−. These properties
determine ν+, ν− uniquely. This is called the Jordan decomposition of ν.

3. If ν : F → C is a complex measure, then Re ν, Im ν are signed measures with Jordan
decomposition Re ν = ν1 − ν2 and Im ν = ν3 − ν4. Hence ν = ν1 − ν2 + iν3 − iν4
(the Jordan decomposition of ν). It follows that νk ≤ |ν| for k = 1, 2, 3, 4 and
|ν| ≤ ν1 + ν2 + ν3 + ν4, hence |ν|(Ω) <∞.

4. Let ν = ν+ − ν− as in 2. For A,B ∈ F if B ⊆ A, then ν(B) = ν+(B) − ν−(B) ≤
ν+(B) ≤ ν+(A). Also, P ∩ A ⊆ A and ν(P ∩ A) = ν+(A), so ν+(A) = sup{ν(B) |
B ∈ F , B ⊆ A} for any A ∈ F . This will be the idea of the proof.

Proof of Theorem 2.2. Define ν+(A) := sup{ν(B) | B ∈ F , B ⊆ A} for A ∈ F . Then
ν+(∅) = 0 and ν+ is finitely additive and positive.

Claim: ν+(Ω) < ∞: Assume ν+(Ω) = ∞. Inductively construct (An)
∞
n=1 and (Bn)

∞
n=0

in F such that B0 = Ω and for all n ∈ N, ν+(Bn−1) = ∞, An ⊆ Bn−1, ν(An) > n
and Bn = An or Bn−1 \ An (such that ν+(Bn) = ∞). Then either there exists N such
that for all n ≥ N , An ⊇ An+1. Then ν(∩An) = lim ν(An), a contradiction. Or there
exist k1 ⊆ k2 ⊆ . . . such that for m ̸= n, Akm ∩ Akn = ∅. So ν(∪Akn) =

∑
ν(Akn), a

contradiction.

Claim: There exists P ∈ F such that ν+(Ω) = ν(P ). For all n there exists An ∈
F such that ν(An) > ν+(Ω) − 2−n. For m ̸= n, ν(Am ∩ An) = ν(Am) + ν(An) −
ν(Am ∪ An) > ν+(Ω) − 2−m − 2−n. Let P =

⋃
n

⋂
m≥nAm. Then ν+(Ω) ≥ ν(P ) =

limm→∞ limk→∞ ν(Am ∩ Am+1 ∩ · · · ∩ Am+k) ≥ ν+(Ω). Then let N = Ω \ P . This
works.
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2.1.2 Absolute continuity

Throughout (Ω,F , µ) is a measure space.

Definition. A complex measure ν : F → C is absolutely continuous w.r.t. µ if for all
A ∈ F , µ(A) = 0 implies ν(A) = 0. We denote this by ν ≪ µ.

Remarks:

1. If ν ≪ µ, then |ν| ≪ µ. In this case, if ν = ν1 − ν2 + iν3 − iν4 is the Jordan
decomposition of ν, then νk ≪ µ for all k.

2. If ν ≪ µ, then ∀ε > 0∃δ > 0∀A ∈ F : µ(A) < δ =⇒ |ν(A)| < ε.

Example. Let f ∈ L1(µ). Then ν(A) =
∫
A fdµ, A ∈ F , defines a complex measure and

ν ≪ µ.

Theorem 2.3 (Radon-Nikodym). Let µ be σ-finite and ν : F → C be a complex mea-
sure such that ν ≪ µ. Then there exists a unique f ∈ L1(µ) such that ν(A) =

∫
A fdµ

for all A ∈ F . Moreover f takes values in C/R/R+ according to whether ν is a com-
plex/signed/positive measure, respectively.

Proof. Uniqueness is clear from basic measure theory. Existence: wlog ν is a positive
measure (take Jordan decomposition). Wlog µ is finite. Let

H =
{
h : Ω → R+ | h is measurable and ∀A ∈ F :

∫
A
hdµ ≤ ν(A)

}
.

Note: 0 ∈ H. If h1, h2 ∈ H, then also h1 ∨ h2 = max(h1, h2) ∈ H. If hn ∈ H for all n and
hn ↗ h, then h ∈ H.

Let α = sup{
∫
Ω hdµ | h ∈ H}. Note 0 ≤ α ≤ ν(Ω). Choose hn ∈ H such that

∫
Ω hndµ →

α. Wlog hn ≤ hn+1 for all n (replace hn by h1 ∨ h2 ∨ · · · ∨ hn). Then hn ↗ f ∈ H and∫
Ω fdµ = α by monotone convergence. So we have f ≥ 0 measurable, such that for all
A ∈ F :

∫
A fdµ ≤ ν(A).

For n ∈ N and A ∈ F define

νn(A) =

∫
A

(
f +

1

n

)
dµ− ν(A) =

∫
A
fdµ+

1

n
µ(A)− ν(A).

νn has Hahn-decomposition Ω = Pn ∪Nn. For A ⊆ Nn measurable, we have 0 ≥ νn(A) =∫
A(f + 1

n)dµ− ν(A), so
∫
A(f + 1

n)dµ ≤ ν(A). Therefore f + 1
n1Nn ∈ H, and then

α ≥
∫
Ω

(
f +

1

n
1Nn

)
dµ = α+

1

n
µ(Nn),

so µ(Nn) = 0. LetN =
⋃
nNn, P =

⋂
n Pn. Then Ω = P∪N , P∩N = ∅, µ(N) = 0 = ν(N)

(as ν ≪ µ).
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For A ∈ F , n ∈ N we have

ν(A) = ν(A ∩ P ) =
∫
A∩P

fdµ+
1

n
µ(A ∩ P )− νn(A ∩ P ) ≤

∫
A
fdµ+

1

n
µ(P ).

Now let n→ ∞ and we are done.

Remarks:

1. The proof shows that any complex measure ν can be written as ν = ν1 + ν2 where
ν1 ≪ µ and ν2 ⊥ µ (i.e. there exists N ∈ F such that µ(N) = 0, |ν2|(Ω \ N) = 0).
This is the Lebesgue decomposition of ν.

2. The unique f in the theorem is called the Radon-Nikodym derivative of ν w.r.t. µ,
denoted dν

dµ . One can prove that for measurable g : Ω → C, g is ν-integrable iff g dνdµ
is µ-integrable, and then ∫

Ω
gdν =

∫
Ω
g
dν

dµ
dµ.

2.1.3 Dual Space of Lp

We fix a measure space (Ω,F , µ) throughout. Let 1 ≤ p < ∞ and let q be the conjugate
index of p.

For g ∈ Lq = Lq(µ) we define φg : Lp → K by φg(f) =
∫
Ω gfdµ. By Hölder this is

well-defined and |φg(f)| ≤ ∥g∥q ∥f∥p, so φg ∈ L∗
p and ∥φg∥ ≤ ∥g∥q. So we have a linear

map φ : Lq → L∗
p, g 7→ φg.

Theorem 2.4. Let (Ω,F , µ), p, q, φ be as above.

(i) If 1 < p <∞, then φ is an isometric isomorphism, so L∗
p
∼= Lq.

(ii) If p = 1 and µ is σ-finite, then φ is an isometric isomorphism, so L∗
1
∼= L∞.

Proof.

(i) φ isometric: Let g ∈ Lq. We have seen ∥φg∥ ≤ ∥g∥q. Let

f =

{
|g|q/g if g ̸= 0,

0 if g = 0

Then ∫
Ω
|f |pdµ =

∫
Ω
|g|(q−1)pdµ =

∫
Ω
|g|qdµ

So f ∈ Lp and ∥f∥pp = ∥g∥qq. Thus ∥φg∥ · ∥f∥p ≥ |φg(f)| =
∫
Ω |g|qdµ = ∥g∥qq. Hence

∥φg∥ ≥ ∥g∥
q− q

p
q = ∥g∥q.

φ onto:
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• Case 1: µ is finite. Fix ψ ∈ L∗
p. Seek g ∈ Lq such that ψ(f) =

∫
Ω gfdµ for all

f ∈ Lp. Define ν(A) = ψ(1A) (note that 1A ∈ Lp since µ is finite) for A ∈ F .
Then ν(∅) = 0 and if A =

⋃∞
n=1An is a measurable partition, then

∣∣∣ν(A)− N∑
n=1

ν(An)
∣∣∣ = ∣∣∣ψ(1A\⋃N

n=1 An

)∣∣∣
≤ ∥ψ∥ ∥1A\⋃N

n=1 An
∥p = ∥ψ∥µ

(
A \

N⋃
n=1

An

)1/p
→ 0.

So ν is countably additive and if µ(A) = 0, then ν(A) = ψ(1A) = 0, so ν ≪ µ.

By the Radon-Nikodym theorem, there exists g ∈ L1(µ) such that ν(A) =∫
A gdµ for all A ∈ F . So ψ(1A) =

∫
A g1Adµ for all A ∈ F , and hence

ψ(f) =
∫
g fdµ for all simple functions f . Given f ∈ L∞ ⊆ Lp there ex-

ists simple functions fn such that for all n ∈ N, |fn| ≤ |f | and fn → f a.e.
Then fn → f in Lp and gfn → gf in L1 by dominated convergence. So∫
Ω gfdµ = limn→∞

∫
Ω gfndµ = limn→∞ ψ(fn) = ψ(f) as ψ is continuous. For

n ∈ N let An = {0 < |g| ≤ n}. Then f = |g|q
g 1An ∈ L∞, so∫

Ω
gfdµ =

∫
An

|g|qdµ = ψ(f) ≤ ∥ψ∥ ∥f∥p = ∥ψ∥ ·
(∫

An

|g|qdµ
)1/p

So
(∫

An
|g|q

)1/q
≤ ∥ψ∥, so by monotone convergence g ∈ Lq and ∥g∥q ≤ ∥ψ∥.

Now φg, ψ ∈ L∗
p and φg, ψ agree on the dense subspace L∞, so φg = ψ.

For the other cases we introduce some notation. For B ∈ F , let FB = {A ∈ F |
A ⊆ B} and µB = µ|FB

. Then (B,FB, µB) is a measure space and Lp(µB) ⊆ Lp(µ).
Given ψ ∈ Lp(µ)

∗, let ψB = ψ|Lp(µB). Then ψB ∈ Lp(µB)
∗ and ∥ψB∥ ≤ ∥ψ∥.

Claim: Let B,C ∈ F with B ∩ C = ∅. Then ∥ψB∪C∥ = (∥ψB∥q + ∥ψC∥q)1/q. Proof:
Given f ∈ Lp(µB∪C), we have

|ψB∪C(f)| ≤ |ψB(f |B)|+ |ψC(f |C)| ≤ ∥ψB∥ ∥f |B∥p + ∥ψC∥ ∥f |C∥p
≤ (∥ψB∥q + ∥ψC∥q)1/q(∥f |B∥pp + ∥f |C∥pp)

1/p

= (∥ψB∥q + ∥ψC∥q)1/q ∥f∥p .

So ∥ψB∪C∥ ≤ (∥ψB∥q + ∥ψC∥q)1/q. Fix a, b ≥ 0 with ap + bp = 1 and a ∥ψB∥ +
b ∥ψC∥ = (∥ψB∥q + ∥ψC∥q)1/q (use ℓ∗q

∼= ℓp). Let f ∈ Lp(µB), g ∈ Lp(µC) such that
∥f∥p ≤ 1, ∥g∥p ≤ 1. Fix scalars λ, µ such that |λ| = |µ| = 1 and λψB(f) = |ψB(f)|
and µψC(g) = |ψC(g)|. Then

a|ψB(f)|+ b|ψC(g)| = ψB∪C(aλf + bµg) ≤ ∥ψB∪C∥ ∥aλf + bµg∥p ≤ ∥ψB∪C∥ .

Taking sup over f, g we get a ∥ψB∥+ b ∥ψC∥ ≤ ∥ψB∪C∥.
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• Case 2: µ is σ-finite. So there exists a measurable partition Ω =
⋃
n∈NAn of

Ω such that µ(An) < ∞. By case 1, for every n, there exists gn ∈ Lq(µAn)
such that ψAn(f) =

∫
An
gfdµAn for all f ∈ Lp(µAn). Since φ is isometric,

∥ψAn∥ = ∥gn∥q. Let g = gn on An for all n. Then

N∑
n=1

∥gn∥qq =
N∑
n=1

∥ψAn∥
q =

∥∥∥ψ∪N
n=1An

∥∥∥q ≤ ∥ψ∥q .

So by monotone convergence g ∈ Lq(µ), we have φg = ψ on Lp(µAn) for every
n. Since

⋃
n Lp(µAn) has dense linear span, φg = ψ.

• General case. First recall that for f ∈ Lp(µ), {f ̸= 0} =
⋃
n∈N{|f | >

1
n}

is σ-finite since µ({|f | > 1
n}) ≤ np ∥f∥pp < ∞ (Markov). Let ψ ∈ Lp(µ)

∗.
There exists a sequence (fn) in Lp(µ) such that ∥fn∥p ≤ 1 and ψ(fn) → ∥ψ∥.
Then B =

⋃
n∈N{fn ̸= 0} is σ-finite and ∥ψB∥ = ∥ψ∥. By the claim, ∥ψ∥q =

∥ψB∥q +
∥∥ψΩ\B

∥∥q, so ψΩ\B = 0. So we are done by case 2.

(ii) φ isometric: Let g ∈ L∞(µ). We already have ∥φg∥ ≤ ∥g∥∞. For the reverse, wlog
g ̸= 0. Fix 0 < s < ∥g∥∞. Let A = {|g| > s}. Then µ(A) > 0. Then µ(A) > 0.

Since µ is σ-finite, there exists B ⊆ A, 0 < µ(B) <∞. Let f = |g|
g 1B. Then f ∈ L1

and

sµ(B) ≤ φg(f) =

∫
B
|g|dµ ≤ ∥φg∥ ∥f∥1 = ∥φg∥µ(B).

Then s ≤ ∥φg∥, so ∥g∥∞ ≤ ∥φ∥g.

φ onto:

• Case 1: µ is finite. Let ψ ∈ L∗
1 and proceed as in (i): Define ν(A) = ψ(1A).

As before, ν is a complex measure and ν ≪ µ, so by the Radon-Nikodym
theorem there exists g ∈ L1 such that ν(A) =

∫
A gdµ for all A ∈ F . Thus∫

Ω g1Adµ = ψ(1A) for all A ∈ F . As before,
∫
A gfdµ = ψ(f) for all f ∈ L∞

(L∞ ⊆ L1 since µ is finite).

Next we show that g ∈ L∞. Fix t > ∥ψ∥ and let A = {|g| > t} and f = |g|/g1A.
Then f ∈ L∞ and so

tµ(A) ≤
∫
A
|g|dµ =

∫
Ω
gfdµ = ψ(f) ≤ ∥ψ∥ ∥f∥1 = ∥ψ∥µ(A)

Hence µ(A) = 0 and g ∈ L∞.

Now φg = ψ on L∞, L∞ dense in L1 and so φg = ψ.

• Case 2: µ is σ-finite. So there exists a measurable partition Ω =
⋃
nAn of Ω

such that µ(An) <∞ for every n. Let ψ ∈ L1(µ)
∗. By case 1, for every n there

exists gn ∈ L∞(µAn) such that ψAn(f) =
∫
An
gnfdµAn for all f ∈ L1(µAn).

φ is isometric, so ∥gn∥∞ = ∥ψAn∥ ≤ ∥ψ∥. Let g = gn on An for all n. Then
g ∈ L∞(µ). Have φg = ψ on L1(µAn) for all n. By density φg = ψ.
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Corollary 2.5. For any measure space (Ω,F , µ) and 1 < p < ∞, the Banach space
(Lp(µ), ∥·∥p) is reflexive.

Proof. By the theorem we have an isometric isomorphism φ : Lq → L∗
p, ⟨f, φ(g)⟩ =∫

Ω gfdµ for f ∈ Lp, g ∈ Lq. This induces an isometric isomorphism φ∗ : L∗∗
p → L∗

q . Also
there is an isometric isomorphism ψ : Lp → L∗

q given by ⟨g, ψf⟩ =
∫
Ω fgdµ.

Hence we get an isometric isomorphism (φ∗)−1 ◦ ψ : Lp → L∗∗
p . For f ∈ Lp, g ∈ Lq we

have

⟨g, φ∗(f̂)⟩ = ⟨φ(g), f̂⟩ = ⟨f, φg⟩ =
∫
Ω
gfdµ = ⟨g, ψ(f)⟩

So φ∗(f̂) = ψ(f), i.e. (φ∗)−1ψ(f) = f̂ .

2.2 Dual space of C(K)

Throughout K is a compact Hausdorff space. Some notation:

C(K) = {f : K → C | f continuous}
CR(K) = {f : K → R | f continuous}
C+(K) = {f ∈ CR(K) | f ≥ 0}

C(K), CR(K) are complex resp. real Banach spaces in the sup norm ∥·∥∞. We also let

M(K) = C(K)∗ = {φ : C(K) → C | φ linear, bounded}
MR(K) = {φ ∈M(K) | φ(f) ∈ R for all f ∈ CR(K)}
M+(K) = {φ : C(K) → C | φ linear, φ(f) ≥ 0 for all f ∈ C+(K)}

Elements of M+(K) are called positive linear functionals.

Aim: Describe M(K) and CR(K)∗. It is enough to consider M+(K):

Lemma 2.6.

(i) For all φ ∈M(K) there exist unique φ1, φ2 ∈MR(K) such that φ = φ1 + iφ2.

(ii) φ 7→ φ|CR(K) :M
R(K) → CR(K)∗ is an isometric isomorphism.

(iii) M+(K) ⊆M(K) and M+(K) = {φ ∈M(K) | ∥φ∥ = φ(1K)}.

(iv) For all φ ∈MR(K) there exist unique φ+, φ− ∈M+(K) such that φ = φ+−φ− and
∥φ∥ = ∥φ+∥+ ∥φ−∥.

Proof.
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(i) Let φ ∈ M(K). Uniqueness: Assume φ = φ1 + iφ2 with φ1, φ2 ∈ MR(K). For
f ∈ CR(K) we have φ(f) = φ1(f) + iφ2(f) and φ(f) = φ1(f)− iφ2(f), so φ1(f) =
φ(f)+φ(f)

2 , φ2(f) = φ(f)−φ(f)
2i . So φ1, φ2 are determined by φ on CR(K) and hence

on C(K) = CR(K) + iCR(K).

Existence: Define φ1(f) =
φ(f)+φ(f)

2 , φ2(f) =
φ(f)−φ(f)

2i for f ∈ C(K). This works.

(ii) If φ ∈MR(K), then φ|CR(K) is real-linear and continuous.

Isometric: We have ∥φ|CR(K)∥ ≤ ∥φ∥. Given f ∈ C(K), there is λ ∈ C, |λ| =
1 such that |φ(f)| = λφ(f) = φ(λf) = φ(Reλf) + iφ(Imλf) = φ(Re(λf)) ≤
∥φ|CR(K)∥∥Re(λf)∥∞ ≤ ∥φCR(K)∥ ∥f∥∞, so ∥φ∥ ≤ ∥φCR(K)∥.

Onto: Given ψ ∈ CR(K)∗, define φ(f) = ψ(Re f) + iψ(Im f) for f ∈ C(K), so φ
is continuous, real-linear and φ(if) = iφ(f) for all f ∈ C(K). So φ ∈ M(K) and
φCR(K) = ψ.

(iii) Let φ ∈M+(K) and f ∈ CR(K) with ∥f∥∞ ≤ 1. Then 1K±f ≥ 0, so φ(1K)±φ(f) =
φ(1K ± f) ≥ 0, so φ(f) ∈ R and |φ(f)| ≤ φ(1K), so ∥φ|CR(K)∥ = φ(1K). By (ii),

φ ∈MR(K) and ∥φ∥ = ∥φ|CR(K)∥ = φ(1K).

Now assume φ ∈ M(K) and ∥φ∥ = φ(1K). Aim: φ ∈ M+(K). WLOG ∥φ∥ =
φ(1K) = 1. Let f ∈ CR(K), ∥f∥∞ ≤ 1. Let φ(f) = a+ ib with a, b ∈ R. For t ∈ R,
|φ(f + it1K)|2 = |a+ i(b+ t)|2 = a2 + b2 +2bt+ t2. It is also ≤ ∥φ∥2 ∥f + it1K∥2∞ ≤
1+ t2. So a2+ b2+2bt ≤ 1 for all t ∈ R. Hence b = 0. So φ(f) ∈ R and φ ∈MR(K).
Let f ∈ C+(K), ∥f∥∞ ≤ 1, so 0 ≤ f ≤ 1. Then −1K ≤ 1K − 2f ≤ 1K and so
∥1K − 2f∥∞ ≤ 1. Hence φ(1K − 2f) = 1 − 2φ(f) ≤ 1 and hence φ(f) ≥ 0. Thus
φ ∈M+(K).

(iv) Let φ ∈ MR(K). Existence: [Idea: If 0 ≤ g ≤ f , then φ(g) = φ+(g) − φ−(g) ≤
φ+(g) ≤ φ+(f)].

Define φ+ on C+(K): For f ∈ C+(K), φ+(f) = sup{φ(g) : g ∈ C+(K), 0 ≤ g ≤ f}.
Note φ+(f) ≥ φ(0) = 0 and φ+(f) ≥ φ(f). Then φ+ is positive homogeneous and
additive: Let f1, f2 ∈ C+(K). Given 0 ≤ g1 ≤ f1, 0 ≤ g2 ≤ f2, we have 0 ≤ g1+g2 ≤
f1+f2, so φ

+(f1+f2) ≥ φ(g1+g2) = φ(g1)+φ(g2), so φ
+(f1+f2) ≥ φ+(f1)+φ

+(f2).
Conversely, given 0 ≤ g ≤ f1+f2, φ(g) = φ(g∧f1)+φ(g−(g∧f1)) ≤ φ+(f1)+φ

+(f2).
Thus φ+(f1 + f2) ≤ φ+(f1) + φ+(f2).

Now define φ+ on CR(K): Given f ∈ CR(K), write f = f1 − f2 for f1, f2 ∈ C+(K)
(e.g. f1 = f ∨ 0, f2 = (−f) ∨ 0) Define φ+(f) = φ+(f1) − φ+(f2). By properties
of φ+ on C+(K), φ+ is well-defined and real linear on CR(K). Finally, define
φ+(f) = φ+(Re f) + iφ+(Im f) for f ∈ C(K). Then φ+ is complex linear on C(K).
From above φ+ ∈ M+(K). Then define φ− = φ+ − φ. For f ∈ C+(K), then
φ−(f) = φ+(f)− φ(f) ≥ φ(f)− φ(f) = 0. So φ− ∈M+(K) and φ = φ+ − φ−.

Further ∥φ∥ ≤ ∥φ+∥+∥φ−∥ = φ+(1K)+φ−(1K) = 2φ+(1K)−φ(1K). If 0 ≤ f ≤ 1K ,
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then −1K ≤ 2f − 1K ≤ 1K , so ∥2f − 1K∥∞ ≤ 1, so 2φ(f)− φ(1K) = φ(2f − 1K) ≤
∥φ∥. Hence 2φ+(1K)− φ(1K) ≤ ∥φ∥.

Uniqueness: Assume φ = ψ1 − ψ2 where ψ1, ψ2 ∈ M+(K) and ∥φ∥ = ∥ψ1∥ + ∥ψ2∥.
If 0 ≤ g ≤ f , then φ(g) = ψ1(g) − ψ2(g) ≤ ψ1(g) ≤ ψ1(f). Sup over g gives us
φ+(f) ≤ ψ1(f). So ψ1 − φ+ ∈M+(K). Hence ψ2 − φ− = ψ1 − φ+ ∈M+(K). Thus
∥ψ1 − φ+∥+ ∥ψ2 − φ−∥ = (ψ1 − φ+)(1K) + (ψ2 − φ−)(1K) = (ψ1(1K) + ψ2(1K))−
(φ+(1K) + φ−(1K)) = ∥φ∥ − ∥φ∥ = 0. Thus ψ1 = φ+, ψ2 = φ−.

2.2.1 Topological Preliminaries

Recall K is normal: for disjoint closed subsets E,F of K there exist disjoint open subsets
U, V of K such that E ⊆ U, F ⊆ V . Equivalently, if E ⊆ U ⊆ K with E closed, U open,
there exists an open V such that E ⊆ V ⊆ V ⊆ U .

Lemma (Urysohn’s Lemma). Given disjoint closed subsets E,F of K there exists a con-
tinuous function f : K → [0, 1] such that f = 0 on E, f = 1 on F .

Notation: f ≺ U means U ⊆ K, U open, f : K → [0, 1] continuous and supp f ⊆ U .

E ≺ f means E ⊆ K, E closed, f : K → [0, 1] continuous and f = 1 on E.

Urysohn says: If E ⊆ U ⊆ K with E closed, U open, then there exists f such that
E ≺ f ≺ U . [Choose open V such that E ⊆ V ⊆ V ⊆ U and apply Urysohn to E, K \V .]

Lemma 2.7. Let E ⊆ K be closed, n ∈ N, Uj ⊆ K open, 1 ≤ j ≤ n and E ⊆
⋃n
j=1 Uj.

(i) There exist open sets Vj with Vj ⊆ Uj, 1 ≤ j ≤ n such that E ⊆
⋃n
j=1 Vj.

(ii) There exist fj ≺ Uj, 1 ≤ j ≤ n such that
∑n

j=1 fj ≤ 1 on K and
∑n

j=1 fj = 1 on E.

Proof.

(i) By induction on n. E \ Un is closed and covered by
⋃
j<n Uj , so by induction there

exist open Vj with Vj ⊆ Uj such that E \Un ⊆
⋃
j<n Vj . Then E \

⋃
j<n Vj ⊆ Un, so

by normality there exists open Vn such that E \
⋃
j<n Vj ⊆ Vn ⊆ Vn ⊆ Un.

(ii) Choose open sets Vj as in (i). By Urysohn there exist functions gj such that Vj ≺
gj ≺ Uj and g0 such that K \

⋃n
j=1 Vj ≺ g0 ≺ K \ E. Let g =

∑n
j=0 gj . Then g

is continuous, g ≥ 1 on K. Set fj = gj/g for 1 ≤ j ≤ n. Then fj : K → [0, 1]
is continuous for all j and

∑n
j=1 fj ≤

∑n
j=0 gj/g = 1. On E we have g0 = 0, so∑n

j=1 fj =
∑n

j=0 gj/g = 1.
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2.2.2 Borel Measures

Let X be a Hausdorff topological space. Let G be the set of open subsets of X (i.e. the
topology). The Borel σ-field B = σ(G) is the σ-field on X generated by G. Members of B
are the Borel sets.

A Borel measure on X is a measure µ on B. We say µ is regular if it satisfies the following
properties:

(i) For all compact E ⊆ X, µ(E) <∞.

(ii) For every A ∈ B, µ(A) = inf{µ(U) | A ⊆ U ∈ G} (“outer regularity”).

(iii) For every U ∈ G, µ(U) = sup{µ(E) | E ⊆ U,E compact} (“inner regularity”).

A complex Borel measure ν on X is regular if |ν| is regular.

Note that if X is compact and Hausdorff, then a Borel measure µ is regular iff µ(X) <∞
and (ii) holds, iff µ(X) <∞ and ∀A ∈ B : µ(A) = sup{µ(E) | E ⊆ A,E closed}.

2.2.3 Integration w.r.t. a Complex Measure

Let Ω be a set, F a σ-field on Ω and ν a complex measure on F . A measurable f : Ω → C
is ν-integrable if f is |ν|-integrable, i.e.

∫
Ω |f |d|ν| <∞. Then we define∫

Ω
fdν =

∫
Ω
fdν1 −

∫
Ω
fdν2 + i

∫
Ω
fdν3 − i

∫
Ω
fdν4

where ν = ν1 − ν2 + iν3 − iν4 is the Jordan decomposition of ν. Recall νk ≤ |ν| ≤
ν1 + ν2 + ν3 + ν4, so f is |ν|-integrable iff f is νk-integrable for all k.

Properties:

1. For A ∈ F ,
∫
Ω 1Adν = ν(A).

2.
∫
Ω fdν is linear in f .

3. Dominated convergence (D.C.) holds: Given measurable (fn)n∈N, f, g such that
|fn| ≤ g for all n,

∫
Ω |g|d|ν| < ∞, fn → f a.e., then fn, f are ν-integrable and∫

Ω fndν →
∫
Ω fdν.

4. If f is ν-integrable, then
∣∣∫

Ω fdν
∣∣ ≤ ∫

Ω |f |d|ν|. Proof: This holds for simple functions
by 1, 2 and then for all functions by 3.

2.2.4 Riesz Representation Theorem

Let ν be a complex Borel measure on K. For f ∈ C(K), f is Borel measurable and∫
K |f |d|ν| ≤ ∥f∥∞ |ν|(K) < ∞. Define φ : C(K) → C by φ(f) =

∫
K fdν. This is linear

and |φ(f)| ≤ ∥f∥∞ ∥ν∥1, so φ ∈M(K) = C(K)∗ and ∥φ∥ ≤ ∥ν∥1.
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If ν is a signed measure, then φ ∈ MR(K) ∼= CR(K)∗. If ν is a positive measure, then
φ ∈M+(K).

Theorem 2.8 (Riesz Representation Theorem). Let φ ∈ M+(K). Then there exists a
unique regular Borel measure µ on K that represents φ, i.e.∫

K
fdµ = φ(f) ∀f ∈ C(K).

Moreover ∥φ∥ = µ(K) = ∥µ∥1.

Proof. Uniqueness: Suppose µ1, µ2 both represent φ. For E ⊆ U ⊆ K, E closed, U open,
there exists f , E ≺ f ≺ U . Then

µ1(E) ≤
∫
K
fdµ1 = φ(f) =

∫
K
fdµ2 ≤ µ2(U)

Since µ2 is regular, µ1(E) ≤ µ2(E). By symmetry, we get equality, so µ1 = µ2 on closed
sets.

Existence: [Want: Let µ(A) = φ(1A) but 1A need not be continuous.]

We will construct an outer measure µ∗. For U ∈ G let µ∗(U) = sup{φ(f) | f ≺ U}. We
have f ≤ 1K , so φ(f) ≤ φ(1K).

Note that µ∗(∅) = 0 and µ∗(K) = φ(1K) = ∥φ∥ (Lemma 2.6).

µ∗ is subadditive on G: Assume U ⊆
⋃∞
n=1 Un (U ∈ G, Un ∈ G for all n). Given f ≺ U ,

for some n ∈ N, supp f ⊆
⋃n
j=1 Uj by compactness. By Lemma 7 there exist hj ≺ Uj such

that
∑
hj ≤ 1 on K,

∑
hj = 1 on supp f . So

φ(f) = φ
( n∑
k=1

hjf
)
=

n∑
j=1

φ(hjf) ≤
∞∑
j=1

µ∗(Uj).

Taking sup over all f ≺ U , gives µ∗(U) ≤
∑∞

n=1 µ(Un).

Clearly, for U, V ∈ G, U ⊆ V , we have µ∗(U) ≤ µ∗(V ). So µ∗(U) = inf{µ∗(V ) | U ⊆
V ∈ G}. We can extend µ∗ to P(K): µ∗(A) = inf{µ∗(U) | A ⊆ U ∈ G}, A ⊆ K. Have
µ∗(∅) = 0, µ∗(K) = φ(1K).

µ∗ is subadditive on P(K): Assume A ⊆
⋃∞
n=1An, fix ε > 0 and for all n choose Un ∈

G such that An ⊆ Un, µ
∗(Un) ⊆ µ∗(An) + ε2−n. Then A ⊆

⋃∞
n=1 Un, so µ∗(A) ≤

µ∗(
⋃∞
n=1 Un) ≤

∑
n µ

∗(Un) ≤
∑

n µ
∗(A)+ε. Hence µ∗(A) ≤

∑
n µ

∗(An). So µ
∗ is an outer

measure on K.

So the set M of µ∗-measurable sets is a σ-field and µ∗|M is a measure.

We show that G ⊆ M: Fix U ∈ G. Need: For all A ⊆ K : µ∗(A) ≥ µ∗(A∩U)+µ∗(A \U).
Proof: First assume A = V ∈ G. Let f ≺ V ∩ U , g ≺ V \ supp f . Then f + g ≺ V , so
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µ∗(V ) ≥ φ(f+g) = φ(f)+φ(g). Taking sup over g gives µ∗(V ) ≥ φ(f)+µ∗(V \supp f) ≥
φ(f) + µ∗(V \ U), so taking sup over f : µ∗(V ) ≥ µ∗(V ∩ U) + µ∗(V \ U).

General A ⊆ K. Let V ∈ G, V ⊇ A. Then µ∗(V ) ≥ µ∗(V ∩U)+µ∗(V \U) ≥ µ∗(A∩U)+
µ∗(A \ U). Taking inf over V gives µ∗(A) ≥ µ∗(A ∩ U) + µ∗(A \ U).

It follows that B ⊆ M and µ = µ∗|B is a Borel measure on K. Recall: µ(K) = φ(1K) =
∥φ∥ <∞ and µ is regular by definition.

It remains to show that φ(f) =
∫
K fdµ for all f ∈ C(K). It is enough to show this for all

φ ∈ CR(K). Furthermore, it is enough to show that φ(f) ≤
∫
K fdµ for all f ∈ CR(K):

Replace f by −f to get the other inequality.

Let f ∈ CR(K) and choose a < b in R such that f(K) ⊆ [a, b]. Wlog a > 0 (since
we know that our desired equality holds for constant functions). Fix ε > 0 and choose
0 < y0 < a < y1 < · · · < yn = b such that yj−yj−1 < ε for all j. Let Aj = f−1((yj−1, yj ]))
for j = 1, . . . , n.

So K =
⋃n
j=1Aj is a Borel partition of K. For each j choose Uj ∈ G, Aj ⊆ Uj with

µ(Uj) < µ(Aj) +
ε
n and Uj ⊆ f−1((yj−1, yj + ε)). Then by Lemma 2.7 there exist hj ≺ Uj

such that
∑n

j=1 hj = 1K . Then

φ(f) =
∑
j

φ(fhj) ≤
∑
j

φ((yj + ε)hj) =

n∑
j=1

(yj + ε)φ(hj) ≤
n∑
j=1

(yj + ε)µ(Uj)

≤
n∑
j=1

(yj−1 + 2ε)(µ(Aj) +
ε

n
)

=

∫
K

n∑
j=1

yj−11Ajdµ+ 2εµ(K) + (b+ 2ε)ε

≤
∫
K
fdµ+ ε(2µ(K) + b+ 2ε)

Hence φ(f) ≤
∫
K fdµ.

Corollary 2.9. For every φ ∈M(K) there exists a unique regular complex Borel measure
ν on K such that φ(f) =

∫
K fdν for all f ∈ C(K).

Moreover, ∥φ∥ = ∥ν∥1 and if φ ∈MR(K), then ν is a signed measure.

Proof. Existence: Lemma 2.6 and the theorem.

Uniqueness: Follows from ∥φ∥ = ∥ν∥1.

Proof of ∥φ∥ = ∥ν∥1: We have seen ∥φ∥ ≤ ∥ν∥1. Recall

∥ν∥1 = |ν|(K) = sup{
n∑
j=1

|ν(Aj)| : K =

n⋃
j=1

Aj is a Borel partition of K}.
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Fix a Borel partition K =
⋃n
j=1Aj of K. For each j choose a closed set Ej ⊆ Aj such

that |ν|(Aj \ Ej) < ε
n (regularity). Note that Ej ⊆ K \

⋃n
l=1
l ̸=j

El. So there exist open sets

Uj such that Ej ⊆ Uj ⊆ K \
⋃n
l=1
l ̸=j

El and |ν|(Uj \ Ej) < ε
n . Set E =

⋃n
j=1Ej ⊆

⋃
Uj . By

Lemma 2.6 there exist hj ≺ Uj such that
∑n

j=1 hj ≤ 1 on K and
∑
hj = 1 on E. Note

that hj = 1 on Ej for all j.

Choose λj ∈ C with |λj | = 1 and |ν(Ej)| = λjν(Ej). Then∣∣∣∣∣∣
n∑
j=1

|ν(Ej)| − φ(

n∑
j=1

λjhj)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
n∑
j=1

λj

∫
K
(1Ej − hj)dν

∣∣∣∣∣∣ ≤
n∑
j=1

∫
K
|1Ej − hj |d|ν|

≤
n∑
j=1

|ν|(Uj \ Ej) < ε

So

n∑
j=1

|ν(Aj)| ≤
n∑
j=1

|ν(Ej)|+ ε ≤ |φ(
∑

λjhj)|+ 2ε ≤ ∥φ∥
∥∥∥∑λjhj

∥∥∥
∞

+ 2ε ≤ ∥φ∥+ 2ε

This holds for all ε > 0 and for all Borel partitions K =
⋃n
j=1Aj , so ∥ν∥1 ≤ ∥φ∥.

Corollary 2.10. The space of regular complex (resp. signed) Borel measures on K is a
complex (resp. real) Banach space in ∥·∥1 and it is isomorphic to M(K) = C(K)∗ (resp.
MR(K) ∼= CR(K)∗)
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3 Weak topologies

3.1 Weak topologies in general

Let X be a set and F a collection of functions such that each f ∈ F is a function
f : X → Yf where Yf is a topological space. The weak topology σ(X,F) on X generated
by F is the smallest topology on X such that all f ∈ F are continuous.

Remarks:

1. S = {f−1(U) | f ∈ F , U is open in Yf} generates σ(X,F), i.e. is a subbase for it.
So σ(X,F) consists of arbitrary unions of finite intersections of members of S. So
V ⊆ X is open in σ(X,F) iff

∀x ∈ V ∃n ∈ N, f1, . . . , fn ∈ F , open Uj ∈ Yfj s.t. x ∈
n⋂
j=1

f−1
j (Uj) ⊆ V .

Equivalently

∀x ∈ V ∃n ∈ N, f1, . . . , fn ∈ F , open neighborhoods Uj of fj(x) in Yfj

s.t.
n⋂
j=1

f−1
j (Uj) ⊆ V .

2. If Sf is a subbase for the topology of Yf (f ∈ F), then {f−1(U) | f ∈ F , U ∈ Sf} is
a subbase for σ(X,F).

3. If Yf is Hausdorff for all f ∈ F and F separates points of X (i.e. x ̸= y in X
=⇒ ∃f ∈ F : f(x) ̸= f(y)), then σ(X,F) is Hausdorff.

4. If Y ⊆ X, then let FY = {f |Y : f ∈ F}. Then σ(X,F)|Y = σ(Y,FY ).

5. Universal property: Let Z be a topological space and g : Z → X a function. Then
g is continuous iff for all f ∈ F , f ◦ g : Z → Yf is continuous.

Examples.

1. Let X be a topological space, Y ⊆ X, ι : Y → X the inclusion map. Then σ(Y, {ι})
is the subspace topology on Y .
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2. Let Γ be a set and for each γ ∈ Γ, Xγ be a topological space. Let

X =
∏
γ∈Γ

Xγ = {x | x is a function on Γ with x(γ) ∈ Xγ for all γ ∈ Γ}.

For γ ∈ Γ let πγ : X → Xγ be the projection onto Xγ .

The product topology on X is the weak topology σ(X, {πγ | γ ∈ Γ}). So V ⊆ X is
open iff for all x ∈ V there exist n ∈ N, γ1, . . . , γn ∈ Γ and open neighborhoods Ui
of xγi in Xγi for 1 ≤ i ≤ n, such that {y = (yγ)γ∈Γ ∈ X | yγi ∈ Ui, 1 ≤ i ≤ n} ⊆ V .

Proposition 3.1. Let X be a set and for each n ∈ N let (Yn, dn) be a metric space and
fn : X → Yn be a function. Assume F = {fn | n ∈ N} separates the points of X. Then
σ(X,F) is metrizable.

Proof. WLOG dn ≤ 1 for every n (replace dn with the equivalent metric min(dn, 1) or
dn
dn+1). Define for x, y ∈ X,

d(x, y) =
∞∑
n=1

2−ndn(fn(x), fn(y)).

It is easy to check that d is a metric.

Note that each fn is Lipschitz as a map (X, d) → (Y, dn) and hence continuous. Thus,
σ = σ(X,F) is contained in the metric topology of (X, d). Conversely, if each fn is
σ-continuous, then (x, y) 7→ dn(fn(x), fn(y)) is also σ-continuous. So by the M -test,
d : (X,σ)× (X,σ) → R is continuous. So for x ∈ X, ε > 0, the ball {y ∈ X | d(y, x) < ε}
is σ-open. Hence the metric topology of (X, d) is contained in σ(X,F).

Theorem 3.2 (Tychonov). The product of compact topological spaces is compact in the
product topology.

Proof. Let Γ be a set, for each γ ∈ Γ, let Xγ be a compact space and let X =
∏
γ∈ΓXγ

with the product topology.

Let A be a non-empty family of closed subsets of X with the finite intersection property
(f.i.p.), i.e. for every n ∈ N and A1, . . . , An ∈ A,

⋂n
i=1Ai ̸= ∅. We need to show that⋂

A∈AA ̸= ∅.

By Zorn’s Lemma there exists a maximal (w.r.t. inclusion) family B of (not necessarily
closed) subsets of X such that A ⊆ B and B has f.i.p. Then

⋂
A∈AA ⊇

⋂
B∈B B. So it is

enough to shows that
⋂
B∈B B ̸= ∅.

Observe if A ⊆ X and for all B ∈ B, A ∩ B ̸= ∅, then A ∈ B. Indeed, if B1, . . . , Bn ∈ B,
then B ∪ {

⋂n
i=1Bi} has f.i.p. So by maximality

⋂n
i=1Bi ∈ B, and so A ∩

⋂n
i=1Bi ̸= ∅. So

B ∪ {A} has f.i.p., so again by maximality A ∈ B.
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Fix γ ∈ Γ. {πγ(B) | B ∈ B} has f.i.p. As Xγ is compact,
⋂
B∈B πγ(B) ̸= ∅. Choose

xγ ∈
⋂
B∈B πγ(B). Do this for every γ ∈ Γ to obtain x = (xγ)γ∈Γ ∈ X. We show that

x ∈
⋂
B∈B B.

Let V be an open neighborhood of x. We need V ∩ B ̸= ∅ for all B ∈ B. WLOG
V =

⋂n
i=1 π

−1
γi (Ui) where n ∈ N, γ1, . . . , γn ∈ Γ and Ui is an open neighborhood of xγi

in Xγi (1 ≤ i ≤ n). Since xγi ∈
⋂
B∈B πγi(B), Ui ∩ πγi(B) ̸= ∅ for all B ∈ B, so

π−1
γi (Ui) ∩B ̸= ∅ for all B ∈ B.

So by the observation above, π−1
γi (Ui) ∈ B. Hence V =

⋂n
i=1 π

−1
γi (Ui) ∈ B. Thus V ∩B ̸= ∅

for all B ∈ B. It follows that x ∈ B for every B.

3.2 Weak topologies on vector spaces

Let E be a real or complex vector space and F be a subspace of the space of all linear
functionals on E that separates the points of E, i.e. for all x ̸= 0 in E there exists f ∈ F
such that f(x) ̸= 0. We consider the weak topology σ(E,F ). So U ⊆ E is open iff for
every x ∈ U there exist n ∈ N, f1, . . . , fn ∈ F , ε > 0 such that {y ∈ E | |fi(y) − fi(x)| <
ε, 1 ≤ i ≤ n} ⊆ U .

For f ∈ F define pf : E → R, pf (x) = |f(x)|. Let P = {pf | f ∈ F}. Then P is a family
of seminorms on E that separates points on E. The topology of the LCS (E,P) is exactly
σ(E,F ).

Lemma 3.3. Let E be as above. Let f, g1, . . . , gn be linear functionals on E such that⋂n
i=1 ker gi ⊆ ker f . Then f ∈ span{g1, . . . , gn}.

Proof. Define T : E → Fn (F = R or C) by Tx = (gix)i=1,...,n. Then kerT =
⋂n
i=1 ker gi ⊆

ker f , so there exists a linear h : imT → F such that f = h ◦ T . We can extend this to
h : Fn → F. There exist a1, . . . , an ∈ F such that h(y) =

∑n
i=1 aiyi for all y = (yi)i=1,...,n ∈

Fn. So for all x ∈ E, f(x) = hTx =
∑n

i=1 aigi(x).

Proposition 3.4. Let E,F be as above. A linear functional f on E is continuous w.r.t.
σ(E,F ) iff f ∈ F , i.e. (E, σ(E,F ))∗ = F .

Proof. “⇐” By definition of σ(E,F ).

“⇒” If f is continuous, then V = {x ∈ E | |f(x)| < 1} is an open neighborhood of 0. So
there exist n ∈ N, g1, . . . , gn ∈ F , ε > 0 such that U = {y ∈ E | |gi(y)| < ε, 1 ≤ i ≤ n} ⊆
V . If x ∈

⋂n
i=1 ker gi, then for all scalars λ, λx ∈ U ⊆ V , so |f(λx)| = |λ||f(x)| < 1. So

f(x) = 0. So by the previous Lemma, f ∈ span{g1, . . . , gn} ⊆ F .

Examples.
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1. Let X be a normed space. The weak topology on X is the weak topology σ(X,X∗).
(By Hahn-Banach, X∗ separates the points of X).

The weak topology on X is sometimes written w-topology and write (X,w) =
(X,σ(X,X∗)).

An open set in σ(X,X∗) is called weak-open or w-open.

So U ⊆ X is w-open iff for every x ∈ U there exist n ∈ N, f1, . . . , fn ∈ X∗, ε > 0
such that {y ∈ X | |fi(y − x)| < ε, 1 ≤ i ≤ n} ⊆ U .

2. The weak-star topology or w∗-topology on X∗ is the weak topology σ(X∗, X) where
we identify X with its image in X∗∗ under the canonical embedding X → X∗∗.
Open sets of X∗ in the w∗-topology are called w∗-open. U ⊆ X∗ is w∗ open iff for all
f ∈ U , there exist n ∈ N, x1, . . . , xn ∈ X, ε > 0 such that {g ∈ X∗ | |(g − f)(xi)| <
ε, 1 ≤ i ≤ n} ⊆ U .

Properties:

1. (X,w) and (X∗, w∗) are LCSs. So they are Hausdorff and addition and scalar mul-
tiplication are continuous.

2. σ(X,X∗) ⊆ norm-topology and equality holds iff dimX <∞.

3. σ(X∗, X) ⊆ σ(X∗, X∗∗) ⊆ norm-topology. Equality in the first place holds iff X is
reflexive, equality in the second place holds iff dimX <∞.

4. If Y is a subspace of X, then σ(X,X∗)|Y = σ(Y, {f |Y | f ∈ X∗}) = σ(Y, Y ∗).

Similarly σ(X∗∗, X∗)|X = σ(X,X∗). So the canonical embedding X → X∗∗ is a
w-to-w∗-homeomorphism from onto X̂.

Proposition 3.5. Let X be a normed space.

(i) A linear functional f on X is w-continuous iff f ∈ X∗, i.e. (X,w)∗ = X∗.

(ii) A linear functional φ on X∗ is w∗-continuous iff φ ∈ X, i.e. there exists x ∈ X such
that φ = x̂. So (X∗, w∗)∗ = X.

It follows that σ(X∗, X) = σ(X∗, X∗∗) iff X is reflexive.

Proof. (i) and (ii) are immediate from Proposition 3.4. For the last statement: “⇐” is
clear. “⇒” Given φ ∈ X∗∗, φ is w-continuous, so w∗ continuous, so by (ii) there exists
x ∈ X such that φ = x̂.

Definition. Let X be a normed space. A ⊆ X is weakly bounded if {f(x) | x ∈ A} is
bounded for all f ∈ X∗.1 Similarly, B ⊆ X∗ is w∗-bounded if {f(x) | f ∈ B} is bounded
for all x ∈ X.2

1⇔ ∀ w-neighbhorhoods U of 0 there exists λ > 0 such that A ⊆ λU .
2⇔ ∀ w∗-neighborhoods U of 0 there exists λ > 0 such that B ⊆ λU .
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Recall:

Lemma (Principle of Uniform Boundedness (PUB)). Let X be a Banach space, Y a
normed space, T ⊆ B(X,Y ). If T is pointwise bounded, i.e. supT∈T ∥Tx∥ < ∞ for every
x ∈ X, then T is bounded, i.e. supT∈T ∥T∥ <∞.

Proposition 3.6. Let X be a normed space.

(a) If A ⊆ X is weakly bounded, then A is ∥·∥-bounded.

(b) If X is complete and B ⊆ X∗ is w∗-bounded, then B is ∥·∥-bounded.

Proof.

(a) Â := {x̂ | x ∈ A} ⊆ X∗∗ = B(X∗,F). As A is w-bounded, Â is pointwise bounded
and hence ∥·∥-bounded by PUB. Thus A is ∥·∥-bounded since for all x ∈ X, ∥x̂∥ =
∥x∥.

(b) B ⊆ X∗ = B(X,F). If B is w∗-bounded, it is pointwise bounded, so it is bounded
by PUB.

Notation: Let X be a normed space.

1. If a sequence (xn)n in X converges to x ∈ X in the weak topology, then we write
xn

w−→ X and say that (xn) weakly converges to x.

This happens iff ⟨xn, f⟩ → ⟨x, f⟩ for all f ∈ X∗ iff x̂n → x̂ pointwise.

2. If a sequence (fn)n in X∗ converges to f ∈ X∗ in the w∗-topology, then we write

fn
w∗
−−→ f and say that (xn) w

∗-converges to f .

This happens iff ⟨x, fn⟩ → ⟨x, f⟩ for all x ∈ X, i.e. iff fn → f pointwise.

Recall:

Lemma (Consequence of PUB). Let X be a Banach space, Y a normed space and (Tn)
a sequence in B(X,Y ). If Tn → T pointwise on X for some function T : X → Y , then
T ∈ B(X,Y ) and ∥T∥ ≤ lim infn→∞ ∥Tn∥ ≤ supn ∥Tn∥ <∞.

Proposition 3.7. Let X be a normed space.

(i) If xn
w−→ x in X, then sup ∥xn∥ <∞ and ∥x∥ ≤ lim inf ∥xn∥.

(ii) If X is complete and fn
w∗
−−→ f in X∗, then supn ∥fn∥ <∞ and ∥f∥ ≤ lim inf ∥fn∥.

27



3.3 Hahn-Banach separation theorems

Let (X,P) be a LCS. Let C be a convex subset of X with 0 ∈ IntC. Define µC : X → R,
µC(x) = inf{t > 0 | x ∈ tC}. Given x ∈ X, x/n→ 0 as n→ ∞, so there exists n ∈ N such
that x/n ∈ C, i.e. x ∈ nC, so µC is well-defined. µC is called the Minkowski functional
(or gauge functional) of C.

Example. If X is a normed space and C = BX , then µC = ∥·∥.

Lemma 3.8. µC is positive homogeneous and subadditive. Also

{x ∈ X | µC(x) < 1} ⊆ C ⊆ {x ∈ X | µC(x) ≤ 1}

If C is open (resp. closed), then the first (resp. second) inclusion is an equality.

Proof. Homogeneity is obvious.

Observation: If t > µC(x), then x ∈ tC. Indeed, if t > µC(x), then there exists s < t
such that x ∈ sC. Then x

t = s
t
x
s +

(
1 − s

t

)
· 0 ∈ C by convexity. So x ∈ tC. Now given

x, y ∈ X, for s > µC(x), t > µC(y), we have x ∈ sC, y ∈ tC. So x+y
s+t = s

s+t
x
s +

t
s+t

y
t ∈ C

by convexity, so µC(x+ y) ≤ s+ t. Taking inf over s, t gives µC(x+ y) ≤ µC(x) + µC(y).

If µC(x) < 1, then x ∈ C by the observation. Assume C is open and x ∈ C. We have(
1 + 1

n

)
x→ x ∈ C, C open, so there exists n ∈ N such that

(
1 + 1

n

)
x ∈ C, so µC(x) < 1.

If x ∈ C, then by definition µC(x) ≤ 1. Assume C is closed and µC(x) ≤ 1. Then(
1− 1

n

)
x→ x and

(
1− 1

n

)
x ∈ C, so x ∈ C as C is closed.

Remark: If C is symmetric in the real case (i.e. x ∈ C =⇒ −x ∈ C) or balanced in the
complex case (x ∈ C,α ∈ C, |α| = 1 =⇒ αx ∈ C), then µC is a seminorm. If in addition,
C is bounded (i.e. ∀ Neighborhoods U of 0 ∃t > 0 : C ⊆ tU , equivalently every p ∈ P is
bounded on C), then µC is a norm.

Theorem 3.9 (Hahn-Banach Separation Theorem). Let (X,P) be a LCS, C an open,
convex subset of X with 0 ∈ C and let x0 ∈ X \ C. Then there exists f ∈ X∗ such that
for every x ∈ C, f(x) < f(x0) (real case) or Re f(x) < Re f(x0) (in the complex case).

Proof. WLOG the scalar field is R. Indeed, in the complex case for all real-linear f : X →
R there exists a unique complex-linear g : X → C such that f = Re g.

Let Y = spanx0 and g : Y → R, g(λx0) = λµC(x0). Then g is linear and for all λ ≥ 0,
g(λx0) = µC(λx0) and for all λ < 0, g(λx0) = λµC(x0) ≤ 0 ≤ µC(λx0). So for all y ∈ Y ,
g(y) ≤ µC(y). By the first version of Hahn-Banach there exists a linear f : X → R such
that f |Y = g and f ≤ µC on X. Then for every x ∈ C ∩ (−C), f(x) ≤ µC(x) < 1
and −f(x) = f(−x) ≤ µC(−x) < 1. So |f(x)| < 1. So for ε > 0, |f | < ε on the open
neighborhood ε(C ∩ (−C)) of 0. So f is continuous at 0, hence f ∈ X∗.

For all x ∈ C, f(x) ≤ µC(x) < 1 ≤ µC(x0) = f(x0).
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Theorem 3.10 (Hahn-Banach Separation Theorem). Let (X,P) be a LCS, A,B non-
empty disjoint, convex subsets of X.

(i) If A is open, then there exist f ∈ X∗, α ∈ R such that for all x ∈ A, y ∈ B,
f(x) < α ≤ f(y).

(ii) If A is compact and B is closed, then there exists f ∈ X∗ such that supA f < infB f .

Proof.

(i) Fix a ∈ A, b ∈ B. Let C = A − B + b − a, x0 = b − a. Then C is convex and
C =

⋃
y∈B(A − y + b − a) is open, 0 ∈ C and x0 /∈ C as A ∩ B = ∅. So there

exists f ∈ X∗ such that for all z ∈ C, f(z) < f(x0). So for every x ∈ A, y ∈ B,
f(x) < f(y). Let α = infB f . This exists and for all x ∈ A, y ∈ B, f(x) ≤ α ≤ f(y).
Since f ̸= 0, there exists u ∈ X, f(u) > 0. Given x ∈ A, x+ 1

nu→ x and A is open,
so there exists n ∈ N with x+ 1

nu ∈ A and hence f(x) < f(x+ 1
nu) ≤ α.

(ii) Claim: There exists an open, convex neighborhood U of 0 such that (A+U)∩B ̸= ∅.
Proof of claim: For all x ∈ A there exists an open neighborhood Vx of 0 such that
(x + Vx) ∩ B = ∅ as B is closed. Since addition is continuous, there exists an open
neighborhood Wx of 0 such that Wx + Wx ⊆ Vx. Since A is compact, there are
finitely many points x1, . . . , xn ∈ A such that A ⊆

⋃n
i=1(xi +Wxi). Since

⋂n
i=1Wxi

is an open neighborhood of 0, there exist m ∈ N, p1, . . . , pm ∈ P, ε > 0 such that
U = {x ∈ X | pi(x) < ε, 1 ≤ i ≤ n} ⊆

⋂n
i=1Wxi . Then U is an open, convex

neighborhood of 0. We show (A + U) ∩ B = ∅. Given x ∈ A, there exists i such
that x ∈ xi +Wxi . Hence x + U ⊆ xi +Wxi + U ⊆ xi +Wxi +Wxi ⊆ xi + Vxi . So
(x+ U) ∩B = ∅ and thus (A+ U) ∩B = ∅.

Then A+ U is open and convex, so by (i) there exists f ∈ X∗, α ∈ R such that for
all x ∈ A + U, y ∈ B, f(x) < α ≤ f(y). As f is continuous, supA f is attained, so
supA f < α ≤ infB f .

Remark: The way the theorem is stated is for real spaces. For the complex case replace f
in the inequalities by Re f .

3.4 Consequences

Theorem 3.11 (Mazur’s theorem). Let X be a normed space and C be a convex subset.

Then C
∥·∥

= C
w
. In particular C is ∥·∥-closed iff C is w-closed.

Proof. Since the w-topology is weaker than the ∥·∥-topology, C∥·∥ ⊆ C
w
. For the converse,

fix x ∈ X \ C∥·∥
. Apply Theorem 3.10 (ii) to A = {x}, B = C

∥·∥
in the LCS X to get
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f ∈ X∗ such that f(x) < inf
C

∥·∥ f = α. The set {y ∈ X | f(y) < α} is a w-neighborhood

of x disjoint from C. So C
∥·∥

is w-closed, hence C
w
= C

∥·∥
.

Corollary 3.12. Assume xn
w−→ 0 in a normed space X. Then for all ε > 0 there exists

x ∈ conv{xn | n ∈ N} such that ∥x∥ < ε.

Proof. Let C = conv{xn | n ∈ N}, so by Mazur’s theorem C
∥·∥

= C
w
, so 0 ∈ C

∥·∥
.

Remark: So there exist p1 < q1 < p2 < q2 < . . . in N, convex combinations zn =
∑qn

i=pn
tixi

such that zn → 0 in ∥·∥.

Theorem 3.13 (Banach-Alaoglu). For any normed space X, the dual ball BX∗ is w∗-
compact.

Proof. For x ∈ X, let Kx = {λ ∈ F | |λ| ≤ ∥x∥}. Let K =
∏
x∈X Kx with the product

topology, which is compact by Tychonov’s theorem. We can view K = {f : X → R |
f(x) ∈ Kx for all x ∈ X}. Then BX∗ = {f ∈ K | f linear}.

Let πx : K → Kx be the projection onto Kx, i.e. πx(f) = f(x). So πx|BX∗ = x̂|BX∗

(x̂ ∈ X∗∗). Then σ(K, {πx | x ∈ X})|BX∗ = σ(BX∗ , {πx|BX∗ | x ∈ X}) = (BX∗ , w∗).

So it is enough to check that BX∗ is closed in K.

BX∗ = {f ∈ K | πλx+µy(f)− λπx(f)− µπy(f) = 0, ∀λ, µ ∈ F, x, y ∈ X}

=
⋂

λ,µ,x,y

(πλx+µy − λπx − µπy)
−1({0}) is closed

Proposition 3.14. Let X be a normed space and K a compact Hausdorff space. Then

(i) X is separable iff (BX∗ , w∗) is metrizable.

(ii) C(K) is separable iff K is metrizable.

Proof.

(i) “⇒” Let {xn | n ∈ N} be dense in X. Let fn : BX∗ → F, fn(φ) = φ(xn), i.e.
fn = x̂n|B∗

X
for n ∈ N. Let F = {fn | n ∈ N}. Note that if φ,ψ ∈ BX∗ and

fn(φ) = fn(ψ) for all n, then φ(xn) = ψ(xn) for all n, then φ = ψ by density,
so F separates points. By Proposition 3.1, the weak topology σ = σ(BX∗ ,F) is
metrizable. Since σ is weaker than the w∗-topology, id : (BX∗ , w∗) → (BX∗ , σ) is
a continuous bijection. (BX∗ , w∗) is compact by Banach-Alaoglu and (BX∗ , σ) is
Hausdorff, so id is a homeomorphism, so σ is the w∗-topology.
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(ii) “⇒” LetX = C(K). By (i) “⇒” (BX∗ , w∗) is metrizable. Define δ : K → (BX∗ ,w∗),
k 7→ δk where δk(f) = f(k), f ∈ X = C(K). δ is injective by Urysohns’s Lemma.

δ is continuous: Let f ∈ X. Consider f̂ ◦δ. For k ∈ K, (f̂ ◦δ)(k) = f(k), so f̂ ◦δ = f
is continuous for all f ∈ X, so δ is continuous by the universal property of the weak
topology.

So δ : K → (BX∗ , w∗) is a continuous injection; K is compact and (BX∗ , w∗) is
Hausdorff, so it is a homeomorphism onto its image and thus K is metrizable.

“⇐” Let d be a metric on K that induces the topology of K. Since (K, d) is a
compact metric space, it is separable, so there exists a dense set {kn | n ∈ N}. Let
fn(k) = d(k, kn) for every n ∈ N, k ∈ K. These separate the points of K as the kn
are dense in K. Let A be the subalgebra of C(K) generated by the fn. This is a
subalgebra of C(K) that separates points of K, contains 1K , and in the complex
case, closed under conjugation. So by the Stone-Weierstraß theorem A = C(K).
Since A is separable, so is C(K).

(i) “⇐” Assume that K = (BX∗ , w∗) is metrizable. So by (ii), C(K) is separable.
Define T : X → C(K) by (Tx)(f) = f(x) for x ∈ X, f ∈ K, i.e. Tx = x̂|BX∗ . Then
T is linear and ∥Tx∥∞ = ∥x∥. So X ∼= T (X), so X is separable.

Remarks:

1. If X is separable, then (BX∗ , w∗) is compact, metrizable, so sequentially compact.

2. X separable =⇒ X∗ w∗-separable (note that X∗ =
⋃
n∈N nBX∗).

By Mazur, X is separable iff X is w-separable.

If X is w-separable, then X∗ is w∗-separable. The converse is false, e.g. X = ℓ∞.

3. If K is compact Hausdorff, then K is a subspace (i.e. homeomorphic to a subset) of
(BC(K)∗ , w

∗).

4. Any normed space X embeds isometrically into C(K) for some compact Hausdorff
K. If X is separable, then can take K to be a compact metrizable space, e.g.
K = (BX∗ , w∗).

Proposition 3.15. X∗ is separable iff (BX , w) is metrizable.

Proof. “⇒” If X∗ is separable, then (BX∗∗ , w∗) is metrizable. Since (BX , w) is a subspace
of (BX∗∗ , w∗) (under the canonical embedding), we are done.

“⇐” If (BX , w) is metrizable, then there exists a sequence (Vn)n of w-neighborhoods of
0 in BX such that every w-neighborhood U of 0 in BX contains one of the Vn. WLOG
for all n ∈ N, there exist a finite set Fn ⊆ X∗, εn > 0 such that Vn = {x ∈ BX | f ∈
Fn : |f(x)| < εn}. We show that span

⋃
Fn = X∗, then we are done. Let g ∈ X∗, ε > 0.
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Then U = {x ∈ BX | |g(x)| < ε} is a w-neighborhood of 0, so there exists n ∈ N with
Vn ⊆ U . Then on

⋂
f∈Fn

ker f ∩ BX we have |g| < ε, i.e. ∥g|⋂
f∈Fn

ker f∥ < ε. By Hahn-

Banach there exists h ∈ X∗ such that h|⋂
f∈Fn

ker f = g|⋂
f∈Fn

ker f and ∥h∥ < ε. Then⋂
f∈Fn

ker f ⊆ ker(g − h), so by Lemma 3.3, g − h ∈ spanFn.

Theorem 3.16 (Goldstine’s Theorem). For any normed space X, BX
w∗

= BX∗∗.

Proof. (BX∗∗ , w∗) is compact by Banach-Alaoglu and hence closed in X∗∗. Hence BX
w∗

⊆
BX∗∗ . Now let φ ∈ X∗∗ \ BX

w∗
. We need: ∥φ∥ > 1, then we are done. Let A = {φ},

B = B
w∗

X . Then A,B are non-empty, disjoint convex sets. A is compact, B is closed. By
Theorem 3.10 (ii) there exists3 f ∈ X∗ such that f̂(φ) = φ(f) > supB f̂ ≥ supBX

f̂ =
supBX

f = ∥f∥. Since |φ(f)| ≤ ∥φ∥ · ∥f∥, we have ∥φ∥ > 1.

Remark: So if X is separable, then X∗∗ =
⋃
n nBX

w∗
is w∗-separable. So ℓ∗∞ = ℓ∗∗1 is

w∗-separable.

Theorem 3.17. Let X be a Banach space. Then TFAE

(i) X is reflexive.

(ii) (BX , w) is compact.

(iii) X∗ is reflexive.

Proof. “(i) ⇒ (ii)” Since X is reflexive, (BX , w) = (BX∗∗ , w∗) is compact (by Banach
Alaoglu).

“(ii) ⇒ (i)” (BX , w) is a compact subset of (BX∗∗ , w∗) and hence w∗-closed. But by

Goldstine BX∗∗ = BX
w∗

= BX , so X
∗∗ = X.

“(i) ⇔ (iii)” has been proved on sheet 1. Alternative proof: “(i) ⇒ (iii)”: IfX is reflexive,
then onX∗ the w-topology is the same as the w∗-topology. So (BX∗ , w) = (BX∗ , w∗) which
is compact by Banach-Alaoglu. By “(ii) ⇒ (i)”, X∗ is reflexive. “(iii) ⇒ (ii)” If X∗ is
reflexive, then on X∗∗ the w-topology and w∗-topology are the same. So BX∗∗ is w-
compact by Banach-Alaoglu. BX ⊆ BX∗∗ and BX is convex, ∥·∥-closed (as X is complete)
and hence w-closed by Mazur. Hence BX is w-compact.

Remark: If X is a separable, reflexive space, then (BX , w) is compact and metrizable, and
hence sequentially compact.

Lemma 3.18. Let (K, d) be a non-empty, compact metric space. Then there exists a
continuous surjection φ : ∆ → K where ∆ = {0, 1}N with the product topology.

3Note that (X∗∗, σ(X∗∗, X∗))∗ = X∗.
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Proof. For each ε ∈ Σ =
⋃∞
n=0{0, 1}n we define a non-empty closed subset Kε of K such

that

• K∅ = K.

• Kε = Kε,0 ∪Kε,1

• maxε∈{0,1}n diamKε → 0 as n→ ∞.

This can be done inductively using the following fact: If A ̸= ∅ is a closed subset of K,
then A is totally bounded, so for all ε > 0 there exist n ∈ N, closed Bi ⊆ A, 1 ≤ i ≤ n
such that A =

⋃n
i=1Bi and diamBi < ε for all i.

Let φ : ∆ → K be as follows: φ((εi)
∞
i=1) is the unique point in L =

⋂∞
n=0Kε1,...,εn . For all

n, diamL ≤ diamKε1,...,εn → 0, so #L ≤ 1, and L ̸= ∅ since {Kε1,...,εn | n ∈ N} has the
f.i.p.

φ continuous: Given ε = (εi)
∞
i=1, n ∈ N and δ = (δi)

∞
i=1 such that δi = εi for 1 ≤ i ≤ n,

then d(φ(δ), φ(ε)) ≤ diamKε1,...,εn .

φ is onto: Given x ∈ K, construct ε1, ε2, . . . such that for all n, x ∈ Kε1,...,εn . Then
φ((εi)

∞
i=1) = x.

Remark: ∆ is homeomorphic to the middel-third Cantor set via (εi)
∞
i=1 7→

∑∞
i=1(2εi)3

−i.

Theorem 3.19. Every separable normed space X embeds isometrically into C[0, 1].

Proof. Let K = (BX∗ , w∗). This is a compact metrizable space. By the proof of Propo-
sition 3.14, X embeds isometrically into C(K). By the previous Lemma there exists a
continuous surjection φ : ∆ → K. (Here think of ∆ as the middle-third Cantor set)

So we get C(K)
≃
↪−→ C(∆), f 7→ f ◦ φ. Finally, C(∆)

≃
↪−→ C[0, 1] by piecewise linear

extension f 7→ f̃ (use that [0, 1] \∆ =
⋃
n(an, bn) disjoint union).

Remark: So C[0, 1] ∈ SB and C[0, 1] is isometrically universal for SB.

33



4 Convexity and the Krein-Milman theorem

Let X be a real (or complex) vector space and let K be a convex subset of X. A point
x ∈ K is an extreme point of K if whenever x = (1− t)y+ tz with y, z ∈ K and t ∈ (0, 1),
then y = z = x. Let ExtK be the set of extreme points of K.

Examples.

• ExtB(R2,∥·∥1) = {±e1,±e2}.

• ExtB(R2,∥·∥2) = S(R2,∥·∥2).

• ExtBc0 = ∅: Given x = (xi)
∞
i=1 ∈ Bc0 choose n ∈ N such that |xn| < 1

2 . Let
y = x+ 1

2en, z = x− 1
2en. Then y, z ∈ Bc0 and x = 1

2(y + z), y ̸= x, z ̸= x.

Theorem 4.1 (Krein-Milman). Let (X,P) be a LCS and K a compact convex subset of
X. Then K = convExtK. So in particular, if K ̸= ∅, then ExtK ̸= ∅.

Corollary 4.2. If X is a normed space, then BX∗ = convw
∗
(ExtBX∗). So ExtBX∗ ̸= ∅.

Remark: So there does not exist a normed space X such that X∗ ∼= c0.

Definition. Let (X,P) be a LCS and K a non-empty, compact, convex subset of K. A
face of K is a non-empty closed, convex subset F of K such that whenever (1−t)y+tz ∈ F
for some y, z ∈ K, t ∈ (0, 1), then y, z ∈ F .

Examples.

1. K is a face of K, and for x ∈ K, {x} is a face iff it is an extreme point of K.

2. Let f ∈ X∗ and α = supK f . Then E = {x ∈ K | f(x) = α} is a face of K. Indeed,
E is non-empty, compact, convex and if y, z ∈ K, t ∈ (0, 1) and x = (1−t)y+tz ∈ E,
then α = f(x) = (1 − t)f(y) + tf(z) ≤ (1 − t)α + tα = α, so f(y) = f(z) = α, i.e.
y, z ∈ E.

3. If F is a face of K, and E is a face of F , then E is a face of K. So if x ∈ ExtF ,
then x ∈ ExtK.

Proof of Theorem 4.1. WLOG K ̸= ∅.

Claim: ExtK ̸= ∅. Proof of claim: By Zorn’s Lemma there exists a minimal face F of
K w.r.t. inclusion. Suppose there exist x ̸= y in F . Since X∗ separates the points of X,
there exists f ∈ X∗ such that f(x) < f(y). Let α = supF f and E = {z ∈ F | f(z) = α}.
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Then E is a face of F and hence of K and E ⊊ F as x /∈ E. This is a contradiction, so
F = {w} for some w which means w ∈ ExtK.

Now let L = convExtK. Since K is closed and convex, L ⊆ K. Assume there exists x0 ∈
K \ L. Then by Hahn-Banach separation there exists f ∈ X∗ such that f(x0) > supL f .
Let α = supK f and F = {x ∈ K | f(x) = α}. Then F is a face of K, so by the claim
there exists z ∈ ExtF ⊆ ExtK. But F ∩ L = ∅ since α ≥ f(x0), so z /∈ L.

Lemma 4.3. Let (X,P) be a LCS and K a compact subset of X and x0 ∈ K. Then for
any neighborhood V of x0 there exist n ∈ N, f1, . . . , fn ∈ X∗, α1, . . . , αn ∈ R such that
x0 ∈ {x ∈ X | fi(x) < αi for 1 ≤ i ≤ n} ∩K ⊆ V

Proof. Let τ be the topology of (X,P) and let σ = σ(X,X∗) be the weak topology on X
generated by X∗ = (X, τ)∗. By definition σ ⊆ τ . So id : (K, τ) → (K,σ) is a continuous
bijection from a compact space to a Hausdorff space, hence a homeomorphism.

Lemma 4.4. Let (X,P) be a LCS, K ⊆ X non-empty, compact, convex and x0 ∈ Ext(K).
Then if V is a neighborhood of x0, there exist f ∈ X∗, α ∈ R such that x0 ∈ {x ∈ X |
f(x) < α} ∩K ⊆ V .

Proof. By Lemma 4.3 there exist n ∈ N, f1, . . . , fn ∈ X∗, α1, . . . , αn ∈ R such that x0 ∈
{x ∈ X | fi(x) < αi, i = 1, . . . , n} ∩ K ⊆ V . Let Ki = {x ∈ K | fi(x) ≥ αi} for
i = 1, . . . , n. Let L = conv

⋃n
i=1Ki. Note that each Ki is convex, compact, x0 /∈

⋃n
i=1Ki,

K \ V ⊆
⋃n
i=1Ki and L = {

∑n
i=1 tixi | ∀i : xi ∈ Ki, ti ≥ 0,

∑n
i=1 ti = 1} (as each

Ki is convex). Since x0 ∈ Ext(K), whenever x =
∑n

i=1 tiyi, yi ∈ K, ti > 0 for all i,∑n
i=1 ti = 1, then y1 = · · · = ym = x, so x0 /∈ L. Since L is the continuous image of the

compact space K1 ×K2 × · · · ×Kn × {(ti)ni=1 ∈ Rn : ti ≥ 0∀i,
∑
ti = 1} under the map

(x1, . . . , xn, (ti)
n
i=1) 7→

∑
tixi, it follows that L is compact. WLOG L ̸= ∅, otherwise K ⊆

V and the result is clear. By Hahn-Banach there exists f ∈ X∗ such that f(x0) < infL f .
Let α ∈ R be such that f(x0) < α < infL f . Then x0 ∈ {x ∈ X | f(x) < α} ∩K and this
set is disjoint from L, hence disjoint from K \ V , so contained in V .

Theorem 4.5 (Partial converse to Krein-Milman). Let (X,P) be a LCS, K ⊆ X non-
empty, convex, compact and S ⊆ K. If K = convS, then ExtK ⊆ S.

Proof. Suppose there exists x0 ∈ ExtK \S. Then V = X \S is a neighborhood of x0. By
Lemma 4.4 there exist f ∈ X∗ and α ∈ R such that x0 ∈ {x ∈ X | f(x) < α} ∩K ⊆ V .
Let L = {x ∈ K | f(x) ≥ α}. Then L is closed and convex with L ⊇ S, and hence
L ⊇ convS = K, a contradiction to x0 /∈ L.

Example. Let K be a compact Hausdorff space. Then

Ext(BC(K)∗) = {λδk | λ scalar, |λ| = 1, k ∈ K}

where δk(f) = f(k) for f ∈ C(K) (see Sheet 3).
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Theorem 4.6 (Banach-Stone theorem). Let K,L be compact Hausdorff spaces. Then K
and L are homeomorphic iff C(K) ∼= C(L).

Proof. “⇒” is obvious. “⇐” Let T : C(K) → C(L) be an isometric isomorphism. Then
T ∗ : C(L)∗ → C(K)∗ is an isometric isomorphism. So T ∗(BC(L)∗) = BC(K)∗ and hence
T ∗(ExtBC(L)∗) = ExtBC(K)∗ . Thus for all l ∈ L there exist a scalar λ(l), |λ(l)| = 1, and
φ(l) ∈ K such that T ∗(δl) = λ(l)δφ(l). Then λ(l) = (T ∗(δl))(1K) = δl(T1K) = (T1K)(l),
i.e. λ = T (1K) ∈ C(L).

So δφ(l) = λ(l)T ∗(δl) for l ∈ L. Since δ : L → (BC(L)∗ , w
∗) is continuous (see proof of

Proposition 3.14), λ is continuous and T ∗ is w∗-to-w∗-continuous, it follows that l 7→ δφ(l)
is continuous and hence φ is continuous as δ : K → (BC(K)∗ , w

∗) is a homeomorphism
K → δ(K).

φ injective: If φ(l1) = φ(l2), then T
∗(λ(l1)δl1) = δφ(l1) = δφ(l2) = T ∗(λ(l2)δl2) and hence

λ(l1)δl1 = λ(l2)δl2 . Evaluate at 1L to get λ(l1) = λ(l2), and hence δl1 = δl2 and hence
l1 = l2.

φ surjective: Given k ∈ K there exist µ scalar, |µ| = 1, and l ∈ L such that T ∗(µδl) = δk.
So µλ(l)δφ(l) = δk. Evaluate at 1K to get µλ(l) = 1, so δφ(l) = δk, i.e. φ(l) = k.

Now φ : L→ K is a continuous bijection, and hence a homeomorphism.

36



5 Banach algebras

A real or complex algebra is a real or resp. complex vector space A with a bilinear map
A×A→ A, (a, b) 7→ ab such that a(bc) = (ab)c for all a, b, c ∈ A.

A is a unital algebra if there is a (necessarily unique) element 1 ∈ A such that 1 ̸= 0 and
1a = a1 = a for all a ∈ A. 1 is called the unit of A.

An algebra norm on an algebra A is a norm ∥·∥ on A such that ∥ab∥ ≤ ∥a∥ ∥b∥ for all
a, b ∈ A. Thus multiplication is continuous w.r.t. ∥·∥.

A normed algebra is an algebra with an algebra norm. A Banach algebra is a complete
normed algebra.

A unital normed algebra is a unital algebra with an algebra norm such that ∥1∥ = 1.

Note that if A is a unital algebra with an algebra norm ∥·∥, there exists an equivalent
algebra norm |||·||| on A such that |||1||| = 1, e.g. |||a||| = sup{∥ab∥ : ∥b∥ ≤ 1}.

Let A,B be algebras. A homomorphism from A to B is a linear map θ : A→ B such that
for all x, y ∈ A, θ(xy) = θ(x)θ(y).

If A,B are unital with units 1A, 1B, resp., then θ is a unital homomorphism if θ(1A) = 1B.

Say θ is an isomorphism if θ is a bijective homomorphism.

Note: If A,B are normed algebras, then a homomorphism A→ B is not assumed contin-
uous. But isomorphisms will be assumed to be homeomorphisms.

Note: From now on the scalar field is C.

Examples.

1. Let K be a compact Hausdorff space. Then C(K) is a commutative, unital Banach
algebra under pointwise multiplication.

2. Let K be as in 1. A uniform algebra on K is a closed subalgebra of C(K) that
separates the points of K and contains the constant functions. E.g. the disc algebra
A(∆) = {f ∈ C(∆) | f is holomorphic on Int∆} where ∆ = {z ∈ C | |z| ≤ 1}. More
generally, let K ⊆ C, K ̸= ∅ compact. Then we have the following uniform algebras
on K:

P(K) ⊆ R(K) ⊆ O(K) ⊆ A(K) ⊆ C(K)
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where P(K),R(K),O(K) are the closures in C(K) of, respectively, polynomials,
rational functions without poles in K, holomorphic functions on some open neigh-
borhood of K, and A(K) = {f ∈ C(K) | f is holomorphic on IntK}. Later we will
see that always R(K) = O(K) and P(K) = R(K) iff C \ K is connected (this is
Runge’s Theorem). In general R(K) ̸= A(K). A(K) = C(K) iff IntK = ∅.

3. L1(R) with the L1-norm and convolution as multiplication is a commutative B.A.
without a unit (e.g. by the Riemann-Lebesgue lemma).

4. Let X be a Banach space. Then B(X) with the operator norm and composition as
multiplication is a unital B.A. It is not commutative if dimX ≥ 2. Special case: X
is a Hilbert space. Then B(X) is a C∗-algebra (later).

Elementary constructions:

1. Subalgebras: Let A be an algebra and B a subalgebra of A. If A is unital with
unit 1, we say B is a unital subalgebra if 1 ∈ B. If A is a normed algebra, then B
(closure of B in A) is also a subalgebra.

2. Unitization: Let A be an algebra. The unitization of A is the vector space A+ =
A⊕ C with multiplication (a, λ)(b, µ) = (ab+ λb+ µa, λµ). Then A+ is an algebra
with unit 1 = (0, 1). The set {(a, 0) | a ∈ A} is an ideal of A+, isomorphic to A.
Under this identification, write A+ = {a+ λ1 | a ∈ A, λ ∈ C}.

If A is a normed algebra, then so is A+ with norm ∥a+ λ1∥ = ∥a∥+ |λ|. So A+ is a
unital normed algebra, and A is a closed ideal of A+. If A is a Banach algebra, then
A+ is a unital Banach algebra.

3. Ideals: Let A be a normed algebra. If J is an ideal of A, then so is J . If J is a closed
ideal of A, then A/J is a normed algebra with the quotient norm. If A is unital and
J is a proper closed ideal (i.e. J ̸= A), then A/J is a unital normed algebra with
unit 1 + J .

4. Completion: Let A be a normed algebra. Let Ã be the Banach space completion
of A. Then the multiplication on A extends to Ã and Ã becomes a Banach algebra
that contains A as a dense subalgebra.

5. Let A be a unital Banach algebra. For a ∈ A define La : A → A, x 7→ ax. Then La
is a bounded linear map. The map a 7→ La : A→ B(A) is an isometric homorphism.

So every Banach algebra is a closed subalgebra of B(X) for some Banach space X.

Lemma 5.1. Let A be a unital Banach algebra and a ∈ A. If ∥1− a∥ < 1, then a is
invertible. Moreover, ∥a−1∥ ≤ 1

1−∥1−a∥ .

Proof. Let h = 1 − a. Then ∥h∥ < 1 and for all n, ∥hn∥ ≤ ∥h∥n. Hence b :=
∑∞

n=0 h
n

converges absolutely, and so converges. Then b is the inverse of a and ∥b∥ ≤
∑∞

n=0 ∥h∥
n =

1
1−∥h∥ .
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Notation: For a unital algebra A, we let G(A) = {a ∈ A | a is invertible}.

Corollary 5.2. Let A be a unital Banach algebra.

(i) G(A) is open.

(ii) x 7→ x−1 : G(A) → G(A) is continuous.

(iii) If xn is a sequence in G(A) and xn → x /∈ G(A), then ∥x−1
n ∥ → ∞.

(iv) If x ∈ ∂G(A) = G(A) \G(A), then there is a sequence (zn) with ∥zn∥ = 1 for all n
such that znx → 0 and xzn → 0 as n → ∞ (x is a “topological divisor of zero”). It
follows that x has no left or right inverse in A or even in a unital Banach algebra
B that contains A as a subalgebra (isometrically).

Proof.

(i) Let x ∈ G(A), y ∈ A, assume ∥y − x∥ < 1
∥x−1∥ . Then

∥∥1− x−1y
∥∥ ≤

∥∥x−1
∥∥ ∥x− y∥ <

1, so x−1y is invertible and thus y = x(x−1y) ∈ G(A).

(ii) Fix x ∈ G(A). Let y ∈ G(A). Then y−1 − x−1 = y−1(x− y)x−1. So ∥y−1 − x−1∥ ≤
∥y−1∥ ∥x− y∥

∥∥x−1
∥∥. If ∥x − y∥ < 1

2∥x−1∥ , then ∥y−1∥ − ∥x−1∥ ≤ ∥y−1 − x−1∥ ≤
1
2∥y

−1∥ and hence ∥y−1∥ ≤ 2∥x−1∥. Thus if ∥x− y∥ < 1
2∥x−1∥ , then ∥y−1 − x−1∥ ≤

2∥x−1∥2∥x− y∥ → 0 as y → 0.

(iii) From (i), if y ∈ A, ∥y − xn∥ < 1

∥x−1
n ∥ , then y ∈ G(A). Hence for all n, ∥x− xn∥ ≥

1

∥x−1
n ∥ , hence

∥∥x−1
n

∥∥ → ∞.

(iv) Choose (xn) in G(A) such that xn → x. let zn = x−1
n

∥x−1
n ∥ . Then ∥zn∥ = 1 for all n. So

∥znx∥ = ∥znxn + zn(x− xn)∥ ≤
∥∥∥∥ 1

∥x−1
n ∥

∥∥∥∥ + ∥zn∥ ∥x− xn∥ = 1

∥x−1
n ∥ + ∥x− xn∥ → 0

as n→ ∞ by (iii). Similarly, xzn → 0.

If y ∈ B and yx = 1B, then zn = yxzn → 0. Similarly, x has no right inverse in B.

5.1 Spectrum and Characters

Definition. Let A be an algebra and x ∈ A. We define the spectrum σA(x) of x in A as
follows: If A is unital, then σA(x) = {λ ∈ C | λ1 − x /∈ G(A)}. If A is not unital, then
σA(x) = σA+(x).

Examples:

1. A = Mn(C) the set of n × n complex matrices, x ∈ A. Then σA(x) is the set of all
eigenvalues of x.
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2. A = C(K), K compact Hausdorff, f ∈ A. Then σA(f) = f(K) as g ∈ A is invertible
iff 0 /∈ g(K).

3. If X is a Banach space, A = B(X), T ∈ A, then

σA(T ) = {λ ∈ C | λI − T is not an isomorphism}.

Theorem 5.3. Let A be a Banach algebra, x ∈ A. Then σA(x) is a non-empty, compact
subset of {λ ∈ C | |λ| ≤ ∥x∥}.

Proof. WLOG A is unital. The map C → A, λ → λ1 − x is continuous and σA(x) is the
inverse image of A \ G(A) which is closed by the previous result. So σA(x) is closed. If
|λ| > ∥x∥, then

∥∥x
λ

∥∥ < 1, so 1 − x
λ is invertible, hence λ − x is invertible, i.e. λ /∈ σA(x).

Hence σA(x) ⊆ {λ ∈ C | |λ| ≤ ∥x∥}. Thus the spectrum is compact.

Suppose σA(x) = ∅. Then we can define R : C → G(A) ⊆ A by R(λ) = (λ1− x)−1. It is
continuous. In fact it is holomorphic:

R(λ)−R(µ) = R(λ)((µ1− x)− (λ1− x))R(µ) = (µ− λ)R(λ)R(µ)

So R(λ)−R(µ)
λ−µ = −R(λ)R(µ) → −R(µ)2 as λ→ µ as R is continuous.

If |λ| > ∥x∥, then R(λ) = 1
λ(1−

x
λ)

−1, so ∥R(λ)∥ ≤ 1
|λ|

1
1−∥ x

λ∥
= 1

|λ|−∥x∥ → 0 as |λ| → ∞. By

vector-valued Liouville (Theorem 1.8), R ≡ 0 which is a contradiction. So σA(x) ̸= ∅.

Corollary 5.4 (Gelfand-Mazur). A complex unital normed division algebra A is isomet-
rically isomorphic to C.

Proof. Define θ : C → A, θ(λ) = λ1. Then θ is isometric and a homomorphism. We prove
it is surjective. Let B be the completion of A. Given x ∈ A, σB(x) ̸= ∅ by the theorem.
Pick λ ∈ σB(x). Then λ1−x /∈ G(B) and so λ1−x /∈ G(A). Since A is a division algebra,
λ1− x = 0 and so x = θ(λ).

Definition. Let A be a Banach algebra and x ∈ A. The spectral radius of x in A is
rA(x) := sup{|λ| | λ ∈ σA(x)}.

Note that rA(x) ≤ ∥x∥.

Note: Let A be a unital algebra, x, y ∈ A. Assume xy = yx. Then xy ∈ G(A) iff x ∈ G(A)
and y ∈ G(A) (obvious).

Lemma 5.5 (Polynomial Spectral Mapping Theorem). Let A be a unital Banach alge-
bra, x ∈ A. Then for any complex polynomial p(z) =

∑n
k=0 akz

k we have σA(p(x)) =
p(σA(x)) = {p(λ) | λ ∈ σA(x)}.
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Proof. This is clear for constant polynomials as σA(λ1) = {λ}. Assume n ≥ 1 and an ̸= 0.
Fix µ ∈ C. We write µ − p(z) = c

∏n
j=1(λj − z) where c ̸= 0, λ1, . . . , λn ∈ C. Then

µ1 − p(x) = c
∏n
j=1(λj1 − x). So µ ∈ σA(p(x)) iff there exists j such that λj ∈ σA(x) iff

there exists λ ∈ σA(x) such that µ = p(λ) as p−1(µ) = {λ1, . . . , λn}.

Theorem 5.6 (Beurling-Gelfand Spectral Radius Formula). Let A be a Banach algebra,

x ∈ A. Then rA(x) = limn→∞ ∥xn∥1/n = infn∈N ∥xn∥1/n.

Proof. WLOG A is unital. If λ ∈ σA(x), then λn ∈ σA(x
n), and hence |λn| ≤ ∥xn∥,

i.e. |λ| ≤ ∥xn∥1/n. It follows that rA(x) ≤ infn∈N ∥xn∥1/n. Consider R : {λ ∈ C |
|λ| > rA(x)} → G(A) ⊆ A, R(λ) = (λ1 − x)−1. As in the proof of Theorem 5.3 this is
holomorphic. Fix φ ∈ A∗. Then φ ◦R : {λ | |λ| > rA(x)} → C is holomorphic, and hence
it has a Laurent expansion. For |λ| > ∥x∥ (≥ rA(x)), R(λ) =

1
λ(1−

x
λ)

−1 = 1
λ

∑∞
n=0

xn

λn . So
φ ◦R(λ) =

∑∞
n=0 φ(x

n) 1
λn+1 . This is the Laurent expansion of φ ◦R on {λ | |λ| > rA(x)}.

Fix λ ∈ C with |λ| > rA(x). Then φ(x
n/λn) → 0 for every φ ∈ A∗. Thus {xnλn | n ∈ A} is

weakly bounded, and hence norm bounded. FixM ≥ 0 such that for all n ∈ N,
∥∥xn
λn

∥∥ ≤M ,

so ∥xn∥1/n ≤M1/n|λ|. Hence lim sup ∥xn∥1/n ≤ |λ| for every λ with |λ| > rA(x).

Theorem 5.7. Let A be a unital Banach algebra, B a closed unital subalgebra of A,
x ∈ B. Then σB(x) ⊇ σA(x) and ∂σB(x) ⊆ ∂σA(x). It follows that σB(x) is the union of
σA(x) together with some of the bounded components of C \ σA(x).

Proof. σB(x) ⊇ σA(x) is trivial as G(B) ⊆ G(A).

Let λ ∈ ∂σB(x). Choose (λn) in C \ σB(x) such that λn → λ. Then λn1 − x ∈ G(B)
for all n and λn1 − x → λ1 − x /∈ G(B). So λ1 − x ∈ ∂G(B). By Corollary 5.2 (iv),
λ1− x /∈ G(A). Since λn1− x ∈ G(A) for all n, it follows that λ ∈ ∂σA(x).

Proposition 5.8. Let A be a unital Banach algebra and C a maximal commutative sub-
algebra of A. Then C is closed and unital and for every x ∈ C, σC(x) = σA(x).

Proof. C is also a commutative subalgebra, so C = C by maximality. C + C1 is also a
commutative algebra, so again by maximality 1 ∈ C. Fix x ∈ C. We know that σC(x) ⊇
σA(x). Let λ /∈ σA(x). Then there exists y ∈ A such that y(λ1− x) = (λ1− x)y = 1. For
any z ∈ C, we have z(λ1 − x) = (λ1 − x)z, so yz(λ1 − x)y = y(λ1 − x)zy, so yz = zy.
So the subalgebra generated by C and {y} is commutative. By maximality y ∈ C and so
λ /∈ σC(x).

Definition. A character on an algebra A is a non-zero homomorphism A → C. Let ΦA
be the set of all characters of A.

Note: If A is unital and φ ∈ ΦA, then φ(1) = 1.

Lemma 5.9. Let A be a Banach algebra, φ ∈ ΦA. Then φ is bounded and ∥φ∥ ≤ 1.
Moreover, if A is unital, then ∥φ∥ = 1.
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Proof. WLOG A is unital: define φ+ : A+ → C by φ+(x+λ1) = φ(x)+λ. Then φ+ ∈ ΦA+

and φ+|A = A. Given x ∈ A, if |φ(x)| > ∥x∥, then φ(x)1 − x ∈ G(A), so there exists
y ∈ A such that (φ(x)1 − x)y = 1. Apply φ: Then 0 · φ(y) = φ(1) = 1, a contradiction.
Hence |φ(x)| ≤ ∥x∥. Since φ(1) = 1, it follows that ∥φ∥ = 1 in the unital case.

Lemma 5.10. Let A be a unital Banach algebra. If J is a proper ideal of A, then the
ideal J is also proper. Hence maximal ideals are closed.

Proof. Since J is proper, J ∩G(A) = ∅. Since G(A) is open, it follows that J ∩G(A) = ∅,
so J is proper. If M is a maximal ideal, then M is a proper ideal containing M , hence
M =M by maximality.

Notation: Let MA be the set of all maximal ideals of an algebra A.

Theorem 5.11. Let A be a commutative unital Banach algebra. Then the map φ 7→ kerφ
is a bijection ΦA → MA.

Proof. Let φ ∈ ΦA. Then kerφ is an ideal as φ is a homomorphism. In fact it must be
maximal as A/ kerφ

∼−→ C is a field. So the map is well-defined.

Injective: Let φ,ψ ∈ ΦA be characters with kerφ = kerψ. For x ∈ A, have φ(x)1 − x ∈
kerφ = kerψ, so 0 = ψ(φ(x)1− x) = φ(x)− ψ(x).

Surjective: Let M ∈ MA. Then A/M is a field and a unital Banach algebra. Hence by
Gelfand-Mazur A/M ∼= C. Then the quotient map φ : A→ A/M ∼= C is a character.

Corollary 5.12. Let A be a commutative unital Banach algebra, x ∈ A.

(i) x ∈ G(A) iff φ(x) ̸= 0 for all φ ∈ ΦA.

(ii) σA(x) = {φ(x) | φ ∈ ΦA}.

(iii) rA(x) = sup{|φ(x)| | φ ∈ ΦA}.

Proof.

(i) “⇒” is clear. “⇐” Assume x /∈ G(A). Then J = Ax is a proper ideal. Hence by
Zorn’s lemma J ⊆ M for some maximal ideal M which by the previous theorem is
kerφ for some φ ∈ ΦA, so φ(x) = 0.

(ii) Immediate from (i).

(iii) Immediate from (ii).

Corollary 5.13. Let A be a Banach algebra, x, y ∈ A. Assume xy = yx. Then rA(x+y) ≤
rA(x) + rA(y), rA(xy) ≤ rA(x)rA(y).
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Proof. WLOG A is unital. WLOG A is commutative: Replace A by a maximal commu-
tative subalgebra containing x, y using Proposition 5.8. For φ ∈ ΦA we have |φ(x+ y)| ≤
|φ(x)|+ |φ(y)| ≤ rA(x)+rA(y), so rA(x+y) ≤ rA(x)+rA(y) and similarly for rA(xy).

Examples.

1. A = C(K) with K compact Hausdorff. Then ΦA = {δk | k ∈ K}. Proof: “⊇”
is obvious. For the reverse inclusion let M be a maximal ideal of A. We have to
show that there exists k ∈ K such that M = ker δk. Suppose not. Then for all
k ∈ K there exists fk ∈ M with fk(k) ̸= 0 and then there is an open neighborhood
Uk of k such that fk ̸= 0 on Uk. By compactness there exist k1, . . . , kn ∈ K such
that K =

⋃n
j=1 Ukj . Then g =

∑n
j=1 |fkj |2 > 0 on K and hence g ∈ G(A). Also

g =
∑n

j=1 fkjfkj , so g ∈M , a contradiction.

2. Let K ⊆ C be non-empty, compact. Then ΦR(K) = {δw | w ∈ K}.

3. The disc algebra A(∆). Then ΦA(∆) = {δw | w ∈ ∆}.

4. The Wiener algebra is W = {f ∈ C(T) |
∑

n∈Z |f̂n| < ∞}. Here T = S1 ⊆ C
and f̂n = 1

2π

∫ 2π
0 f(eiθ)e−inθdθ. W is a commutative unital Banach algebra with

pointwise operations and norm ∥f∥1 =
∑

n∈Z |f̂n|. This is isometrically isomorphic
to the commutative unital Banach algebra ℓ1(Z) with convolution as algebra product,
i.e. (a ∗ b)n =

∑
j+k=n ajbk.

Then ΦW = {δw | w ∈ T}. So f ∈ W is invertible in W iff f is non-zero on T
(Wiener’s theorem).

Let A be a commutative, unital Banach algebra. Then

ΦA = {φ ∈ BA∗ | φ(1) = 1, φ(xy) = φ(x)φ(y)∀x, y ∈ A}

= BA∗ ∩ 1̂−1({−1}) ∩
⋂

x,y∈A
(x̂y − x̂ŷ)−1({0})

is a w∗-closed subset of BA∗ . So by Banach-Alaoglu ΦA is a compact, Hausdorff space in
the w∗-topology, called the Gelfand-topology. ΦA with the Gelfand-topology is called the
spectrum of A, the character space of A or the maximal ideal space of A.

For x ∈ A, its Gelfand transform is x̂ : ΦA → C, φ 7→ φ(x), i.e. the restriction of x̂ ∈ A∗∗

to ΦA. Then x̂ ∈ C(ΦA). The map A→ C(ΦA), x 7→ x̂ is the Gelfand map.

Theorem 5.14 (Gelfand Representation Theorem). The Gelfand map A → C(ΦA) is a
continuous, unital homomorphism. For x ∈ A, have

(1) ∥x̂∥∞ = rA(x) ≤ ∥x∥.

(2) σC(ΦA)(x̂) = σA(x).

(3) x ∈ G(A) iff x̂ ∈ G(C(ΦA)).
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Proof. Clearly the Gelfand map is a unital homomorphism. Continuity follows from
∥x̂∥∞ = sup{|x̂(φ)| | φ ∈ ΦA} = rA(x) ≤ ∥x∥. For (ii) note that σC(ΦA)(x̂) = im x̂ =
{φ(x) | φ ∈ ΦA} = σA(x). (iii) follows from (ii).

Remark: In general, the Gelfand map is neither injective, nor surjective. Its kernel is

{x ∈ A | σA(x) = {0}} = {x ∈ A | lim
n→∞

∥xn∥1/n = 0} =
⋂

φ∈ΦA

kerφ =
⋂

M∈MA

M.

Elements x ∈ A with limn→∞ ∥xn∥1/n = 0 are called quasi-nilpotent. The intersection⋂
M∈MA

M =: J(A) is called the Jacobson radical of A. We say that A is semisimple if
J(A) = {0}.
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6 Holomorphic Functional Calculus

Let U ⊆ C be non-empty and open. Recall O(U) = {f : U → C | f is holomorphic} is a
LCS with seminorms ∥f∥K = supK |f | where f ∈ O(U) and ∅ ≠ K ⊆ U compact. O(U) is
also an algebra with pointwise multiplication, which is continuous in the topology. O(U)
is a Fréchet algebra (we will not go into this).

Notation: Define e, u ∈ O(U) by e(z) = 1, u(z) = z for all z ∈ U .

O(U) is unital with unit e.

Theorem 6.1 (Holomorphic Functional Calculus (HFC)). Let A be a commutative, unital
Banach algebra, x ∈ A, U ⊆ C an open set with σA(x) ⊆ U . Then there exists a unique,
continuous unital homomorphism Θx : O(U) → A such that Θx(u) = x.

Moreover, for all φ ∈ ΦA, f ∈ O(U), φ(Θx(f)) = f(φ(x)), and for all f ∈ O(U),
σA(Θx(f)) = {f(λ) | λ ∈ σA(x)}.

Remark: We think of Θx as “evaluation at x” and write f(x) for Θx(f).

Since e(x) = 1, u(x) = x and Θx is a homomorphism, if p(z) =
∑n

k=0 akz
k is a complex

polynomial, then p(x) =
∑n

k=0 akx
k. So think of HFC as a generalization of Lemma 5.5

Theorem 6.2 (Runge’s approximation theorem). Let ∅ ≠ K ⊆ C be compact. Then
O(K) = R(K), i.e. if f is holomorphic on some open set containing K and ε > 0, then
there is a rational function r without poles in K such that ∥f − r∥K < ε. More precisely,
given a set Λ containing a point from each bounded component of C \K, we may choose
the r such that all its poles lie in Λ.

Note: If C\K is connected, we can take Λ = ∅, so we can even choose r to be a polynomial.
So O(K) = P(K).

6.1 Vector-valued integration

Let a < b be real numbers, X a Banach space and f : [a, b] → X continuous. We define∫ b
a f(t)dt. Take a sequence Dn : a = t

(n)
0 < t

(n)
1 < · · · < t

(n)
kn

= b, n ∈ N, of dissections of
[a, b] such that

|Dn| := max
1≤j≤kn

|t(n)j − t
(n)
j−1| → 0 as n→ ∞.
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Since f is uniformly continuous, the limit

lim
n→∞

kn∑
k=1

f(t
(n)
j )(t

(n)
j − t

(n)
j−1)

exists and is independent of (Dn). We denote this limit by
∫ b
a f(t)dt.

Note that for φ ∈ X∗, φ
( ∫ b

a f(t)dt
)
=

∫ b
a φ(f(t))dt. If we now take φ to be a norming

functional for
∫ b
a f(t)dt, we get∥∥∥∥∫ b

a
f(t)dt

∥∥∥∥ ≤
∫ b

a
∥f(t)∥ dt.

Next, let γ : [a, b] → C be a path (here continuously differentiable) and f : [γ] → X be
continuous, where [γ] is the image of γ. We define∫

γ
f(z)dz =

∫ b

a
f(γ(t))γ′(t)dt.

For a chain Γ = (γ1, . . . , γn) and a continuous function f : [Γ] =
⋃n
i=1[γi] → X, we define∫

Γ
f(z)dz =

n∑
j=1

∫
γj

f(z)dz

From the above: ∥∥∥∥∫
Γ
f(z)dz

∥∥∥∥ ≤ ℓ(Γ) sup
z∈[Γ]

∥f(z)∥ .

Here ℓ(Γ) =
∑

j ℓ(γj) is the sum of the lengths of the γj .

Theorem (Vector-valued Cauchy). Let U ⊆ C be open, Γ a cycle in U such that n(Γ, w) =
0 for all w /∈ U . Then for a holomorphic function f : U → X, we have∫

Γ
f(z)dz = 0.

Proof. Indeed, for all φ ∈ X∗, φ
( ∫

Γ f(z)dz
)
=

∫
Γ φ(f(z))dz = 0 by the scalar-valued

version of Cauchy’s theorem. The result follows from Hahn-Banach.

6.2 Proof of HFC

Lemma 6.3. Let A, x, U be as in Theorem 6.1. Let K = σA(x). Fix a cycle Γ in U \K
such that

n(Γ, w) =

{
1 w ∈ K,

0 w ∈ C \ U
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Define Θx : O(U) → A by

Θx(f) =
1

2πi

∫
Γ
f(z)(z1− x)−1dz.

Then:

(i) Θx is well-defined, linear and continuous.

(ii) For a rational function r without poles in U , Θx(r) = r(x) in the usual sense.

(iii) For all φ ∈ ΦA, f ∈ O(U), φ(Θx(f)) = f(φ(x)) and for all f ∈ O(U), σA(Θx(f)) =
f(σA(x)).

Remark: So HFC is a vector-valued Cauchy integral formula. The lemma proves Theorem
6.1 except for multiplicativity and uniqueness of Θx.

Proof of Lemma 6.3.

(i) Well-defined: z 7→ f(z)(z1−x)−1 is well-defined on [Γ] and continuous by Corollary
5.2 (ii).

Linearity is immediate from linearity of
∫
.

Continuity: ∥Θx(f)∥ ≤ 1
2π ℓ(Γ) supz∈[Γ] |f(z)| ·∥(z1−x)

−1∥. The continuous function
(z1 − x)−1 on the compact set [Γ] is bounded (independent of f), so there exists
M ≥ 0 such that ∥Θxf∥ ≤M ∥f∥[Γ] for all f ∈ O(U). So Θx is continuous.

(ii) First, Θx(e) = 1: We have Θx(e) = 1
2πi

∫
Γ(z1 − x)−1dz = 1

2πi

∫
|z|=R(z1 − x)−1dx

since Γ and |z| = R are homologous in C \ K for R > ∥x∥, so equality follows by
vector-valued Cauchy. So

Θx(e) =
1

2πi

∫
|z|=R

∞∑
n=0

xn

zn+1
dz

=
∞∑
n=0

( 1

2πi

∫
|z|=R

dz

zn+1

)
xn

= 1

Let r be a rational function without poles in U . Then r = p
q ∈ O(U) where p, q

are polynomials and q has no zeros in U . By Lemma 5.5, σA(q(x)) = {q(λ) |
λ ∈ σA(x)}, so 0 /∈ σA(q(x)). So we can define r(x) = p(x) · q(x)−1. For z, w ∈
C, p(z)q(w) − q(z)p(w) = (z − w)s(z, w) where s is a polynomial in z, w. Hence
p(z)q(x)− q(z)p(x) = (z1−x)s(z, x), so r(z)1− r(x) = (z1−x)s(z, x)q(z)−1q(x)−1.
Then

Θx(r) =
1

2πi

∫
Γ
r(z)(z1− x)−1dz
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=
1

2πi

∫
Γ
(z1− x)−1dz · r(x) + 1

2πi

∫
Γ
s(z, x)q(z)−1dz · q(x)−1

= Θx(e)r(x) + 0 · q(x)−1

= r(x)

(iii) For φ ∈ ΦA, f ∈ O(U), we have

φ(Θx(f)) =
1

2πi

∫
Γ
φ(f(z)(z1− x)−1)dz

=
1

2πi

∫
Γ

f(z)

z − φ(x)
dz

= n(Γ, φ(x))f(φ(x))

= f(φ(x))

Then

σA(Θx(f)) = {φ(Θx(f)) | φ ∈ ΦA} = {f(φ(x)) | φ ∈ ΦA} = {f(λ) | λ ∈ σA(x)}.

Proof of Theorem 6.2. Let U ⊆ C be open such that U ⊇ K. Let A = R(K), x ∈ A be
x(z) = z, for z ∈ K. Then σA(x) = K ⊆ U . Let Θx : O(U) → A be as in Lemma 6.3. For
f ∈ O(U), Θx(f)(z) = δz(Θx(f)) = f(δz(x)) = f(z). So R(K) ∋ Θx(f) = f |K .

Next let B the closed subalgebra of A generated by 1, x, (λ1 − x)−1 for λ ∈ Λ. So B is
the closure in C(K) of the rational functions whose poles lie in Λ. So B is a closed unital
subalgebra of A. If B is a bounded component of C \ σA(x) = C \K, then there exists
λ ∈ Λ ∩ V . Then λ1 − x is invertible in B, so λ /∈ σB(x). It follows from Theorem 5.7
that σB(x) = σA(x) = K ⊆ U . The argument above shows that Θx actually takes values
in B.

Corollary 6.4. Let ∅ ≠ U ⊆ C be open. Then the subalgebra R(U) of O(U) consisting
of rational functions without poles in U is dense in O(U).

Proof. Let ∅ ≠ K ⊆ U be compact. Let K̂ be K together with all bounded components
of C \K that lie in U . Then K̂ is compact and K̂ ⊆ U . For every bounded component V
of C \ K̂, V \ U ̸= ∅, so we can pick λV ∈ V \ U . Let Λ be the set of all such λV ’s. By
Runge’s theorem, given f ∈ O(U) and ε > 0 there exists a rational function r whose poles
lie in Λ such that ∥f − r∥

K̂
< ε. So r ∈ R(U) and ∥f − r∥K < ε. The result follows.

Proof of Theorem 6.1. Let A, x, U be as in the theorem. Let Θx be as in Lemma 6.3.
For existence, we just need to check that Θx(fg) = Θx(f)Θx(g) for all f, g ∈ O(U). By
Lemma 6.3 (ii) this holds for all f, g ∈ R(U). Since Θx is continuous and R(U) is dense
in O(U), it is true for all f, g ∈ O(U). Uniqueness follows similarly from the denseness of
R(U) in O(U).
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7 C*-algebras

A ∗-algebra is a (complex) algebra A with an involution A → A, x 7→ x∗, i.e. a map
satisfiying:

(i) (λx+ µy)∗ = λx∗ + µy∗

(ii) (xy)∗ = y∗x∗

(iii) x∗∗ = x

Note that if A is unital, then 1∗ = 1.

A C*-algebra is a Banach algebra with an involution such that the C*-equation holds:

∥x∗x∥ = ∥x∥2 ∀x ∈ A

So a C*-algebra is a ∗-algebra with a complete algebra norm satisfying the C*-equation.
Such a norm is called a C*-norm.

A Banach ∗-algebra is a Banach algebra with an involution such that ∥x∗∥ = ∥x∥ for all
x.

Remarks:

1. In a C*-algebra A, ∥x∗∥ = ∥x∥ for all x. Indeed, ∥x∥2 = ∥x∗x∥ ≤ ∥x∗∥ ∥x∥, so
∥x∥ ≤ ∥x∗∥ and doing the same for x∗ gives the reverse inequality.

So the involution is continuous.

2. If A is a C*-algebra with multiplicative identity 1 ̸= 0, then ∥1∥ = 1 since ∥1∥2 =
∥1∗1∥ = ∥1∥.

A ∗-subalgebra of a ∗-algebra A is a subalgebra B of A that is such that x∗ ∈ B for all
x ∈ B.

A closed ∗-subalgebra (called a C*-subalgebra) of a C*-algebra is a C*-algebra. The closure
of a ∗-subalgebra of a C*-algebra is a ∗-subalgebra, and hence a C*-subalgebra.

A homomorphism θ : A → B between ∗-algebras is called a ∗-homomorphism if θ(x∗) =
θ(x)∗ for all x ∈ A. A ∗-isomorphism is a bijective ∗-homomorphism.

Examples.
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1. C(K), K a compact Hausdorff space, with involution given by f∗(z) = f(z). This
is a commutative unital C*-algebra.

2. B(H), H a Hilbert space, with involution T 7→ T ∗, where T ∗ is the adjoint of T , i.e.
⟨Tx, y⟩ = ⟨x, T ∗y⟩ for all x, y ∈ H.

3. Any C*-subalgebra of B(H).

Remark: Any C*-algebra is isometrically ∗-isomorphic to a C*-subalgebra of B(H) for
some Hilbert space H. This is the Gelfand-Naimark theorem.

From now on A will always be a C*-algebra.

An element x ∈ A is said to be

• hermitian or self-adjoint if x∗ = x,

• unitary if A is unital and x∗x = 1 = xx∗,

• normal if x∗x = xx∗.

Examples.

1. If A is unital, then 1 is hermitian and unitary. In general, hermitian elements and
unitary elements are normal.

2. In C(K) a function f is hermitian iff f(K) ⊆ R and f is unitary iff f(K) ⊆ T.

Remarks:

1. For x ∈ A there exist unique hermitian h, k ∈ A such that x = h + ik. Indeed, if
x = h + ik, then x∗ = h − ik, so h = x+x∗

2 , k = x−x∗
2i . Note that x is normal iff

hk = kh.

2. For x ∈ A, A unital, x ∈ G(A) iff x∗ ∈ G(A). So σA(x
∗) = {λ | λ ∈ σA(x)} and

rA(x
∗) = rA(x).

Lemma 7.1. If x ∈ A is normal, then rA(x) = ∥x∥.

Proof. If x is hermitian, then ∥x2∥ = ∥x∗x∥ = ∥x∥2, so by induction ∥x2n∥ = ∥x∥2
n

for
every n. Then rA(x) = limn→∞∥x2n∥1/2n = ∥x∥.

Now assume x is normal. Then x∗x is hermitian and hence

∥x∥2 = ∥x∗x∥ = rA(x
∗x)

5.13
≤ rA(x

∗)rA(x) ≤ rA(x) ∥x∥

So ∥x∥ ≤ rA(x), and hence ∥x∥ = rA(x).

Lemma 7.2. Assume A is unital, x ∈ A, φ ∈ ΦA. Then φ(x∗) = φ(x).
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Proof. Write x = h + ik with h, k hermitian. Then φ(x) = φ(h) + iφ(k) and φ(x∗) =
φ(h) − iφ(k), so the result follows if we show that for hermitian x, φ(x) ∈ R. Let
φ(x) = a+ ib with a, b ∈ R. For t ∈ R,

|φ(x+ it1)|2 = a2 +(b+ t)2 ≤ ∥x+ it1∥2 = ∥(x+ it1)∗(x+ it1)∥ = ∥x2 + t21∥ ≤ ∥x2∥+ t2

So a2 + b2 + 2bt ≤ ∥x2∥ for all t ∈ R, so b = 0.

Remark: The assumption that A is unital is not needed, but unitization is tricky (see
Sheet 4).

Corollary 7.3. Assume A is unital.

(1) If x ∈ A is hermitian, then σA(x) ⊆ R.

(2) If x ∈ A is unitary, then σA(x) ⊆ T.

If B is a unital C*-subalgebra of A and x ∈ B is normal, then σB(x) = σA(x).

Proof.

(1) WLOGA is commutative (replaceA by the closure of the unital subalgebra generated
by x, note that the spectrum can only get larger). Then σA(x) = {φ(x) | φ ∈ ΦA} ⊆
R by the previous lemma.

(2) Again we can assume that A is commutative. For φ(x) ∈ ΦA, we have |φ(x)|2 =
φ(x)φ(x) = φ(x∗)φ(x) = φ(x∗x) = 1, so φ(x) ∈ T. So σA(x) = {φ(x) | φ ∈ ΦA} ⊆
T.

For the last part, first assume x ∈ B is hermitian. By Theorem 5.7, σB(x) ⊇ σA(x) and
∂σB(x) ⊆ ∂σA(x). By the first part, σA(x), σB(x) ⊆ R, so σA(x) = ∂σA(x), σB(x) =
∂σB(x).

Now assume x ∈ B is normal and let λ ∈ C. Then

λ1− x invertible in B ⇐⇒ λ1− x and (λ1− x)∗ invertible in B

⇐⇒ (λ1− x)(λ1− x) invertible in B

⇐⇒ (λ1− x)(λ1− x) invertible in A

⇐⇒ λ1− x invertible in A

Remark: Let H be a Hilbert space and T ∈ B(H) be hermitian or unitary. By the
corollary, σ(T ) = ∂σ(T ) ⊆ σap(T ) ⊆ σ(T ). So σ(T ) = σap(T ). This also holds for normal
operators.
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Theorem 7.4 (Commutative Gelfand-Naimark Theorem). Let A be a commutative, uni-
tal C*-algebra. Then there exists a compact Hausdorff space K such that A is isometrically
∗-isomorphic to C(K). More precisely, the Gelfand map x 7→ x̂ : A → C(ΦA) is an iso-
metric ∗-isomorphism.

Proof. We already know that the Gelfand map is a unital homomorphism.

• ∗-homomorphism: We have (x̂)∗(φ) = x̂(φ) = φ(x)
7.2
= φ(x∗) = (̂x∗)(φ). So (̂x∗) =

(x̂)∗.

• isometric: ∥x̂∥∞ = rA(x) = ∥x∥ (A is commutative, so all x ∈ A are normal).

• surjective: Since the Gelfand map is an isometric, unital ∗-homomorphism, its image
is a closed, unital ∗-subalgebra of C(K) that separates the points of ΦA. By Stone-
Weierstraß the image is C(K).

Applications:

1. Let A be a unital C*-algebra.

x ∈ A is positive if x is hermitian and σA(x) ⊆ [0,∞). A positive x ∈ A has a unique
positive square root: a positive y such that y2 = x.

Existence: Let B be the unital C*-subalgebra generated by x. Then x ∈ B and
σB(x) = σA(x) ⊆ [0,∞). Consider the Gelfand map z 7→ ẑ : B → C(ΦB). For all
φ ∈ ΦB, x̂(φ) = φ(x) ≥ 0. Then there exists y ∈ B such that ŷ(φ) =

√
x̂(φ). Then

ŷ is a positive square root of x̂, so y is a positive square root of x.

Uniqueness: Assume z ∈ A is another positive square root of x. Then zx = z3 = xz,
so there exists a commutative unital C*-subalgebra D of A containing x, z. Then
consider the Gelfand map w 7→ ŵ : D → C(ΦD). Note that also y ∈ D. So ŷ and ẑ
are both positive square roots of x̂. So ŷ = ẑ and y = z.

2. Let T ∈ B(H) be invertible where H is a Hilbert space. Then there exist unique
R,U ∈ B(H) such that R is positive, U is unitary and T = RU . TT ∗ is positive,
so let R = (TT ∗)1/2 and U = R−1T . U is invertible and UU∗ = R−1TT ∗R−1 =
R−1R2R−1 = I and T = RU .
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8 Borel Functional Calculus and Spectral
Theory

Throughout:

• H ̸= 0 is a complex Hilbert space, B(H) is the C∗-algebra of bounded, linear oper-
ators on H.

• K is a compact Hausdorff space, B the Borel σ-field on K.

A resolution of the identity of H over K is a map P : B → B(H) such that

(i) P (∅) = 0, P (K) = I.

(ii) For every E ∈ B, P (E) is an orthogonal projection (i.e. P (E)2 = P (E), P (E)∗ =
P (E)).

(iii) For all E,F ∈ B, P (E ∩ F ) = P (E)P (F ).

(iv) For all E,F ∈ B, if E ∩ F = ∅, then P (E ∪ F ) = P (E) + P (F ).

(v) For all x, y ∈ H, the map Px,y : B → C, E 7→ ⟨P (E)x, y⟩ is a bounded regular
complex Borel measure.

Example. Let H = L2[0, 1], K = [0, 1], P (E)(f) = f · 1E .

Simple properties:

(i) For all E,F ∈ B, P (E)P (F ) = P (F )P (E).

(ii) For all E,F ∈ B, If E ∩ F = ∅, then P (E)(H) ⊥ P (F )(H).

(iii) For all x ∈ H, Px,x is a positive measure of total mass Px,x(K) = ∥x∥2.

(iv) P is finitely additive, but not countably additive in general. But for every x ∈ H,
the function B → H,E 7→ P (E)(x) is countably additive.

(v) If En ∈ B and P (En) = 0 for all n ∈ N, then P (
⋃
n∈NEn) = 0.

Let P be as above. A Borel function f : K → C is P -essentially bounded if there exists
a set E ∈ B such that P (E) = 0 and f is bounded on K \ E. Then we define ∥f∥∞ =
inf{∥f∥K\E | E ∈ B, P (E) = 0}. This inf is attained.

Let L∞(P ) be the set of all P -essentially bounded Borel functions on K. We identify
functions f and g if f = g P -almost everywhere, i.e. if there exists E ∈ B such that
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P (E) = 0 and f = g on K \ E. Then (L∞(P ), ∥·∥∞) is a commutative unital C*-algebra
with pointwise operations.

Lemma 8.1 (Definition of
∫
K fdP ). Let P be as above. Then there exists an isometric,

unital ∗-homomorphism Φ : L∞(P ) → B(H) such that

(i) ⟨Φ(f)x, y⟩ =
∫
K fdPx,y,

(ii) ∥Φ(f)(x)∥2 =
∫
K |f |2 dPx,x,

(iii) S ∈ B(H) commutes with all the Φ(f) iff S commutes with all the P (E)

Note: Property (i) defines Φ uniquely. We write
∫
K fdP for Φ(f). So (i) becomes

〈( ∫
K
fdP

)
x, y

〉
=

∫
K
fdPx,y.

Proof. Let s =
∑m

j=1 αj1Ej be a simple function, i.e. K =
⋃m
j=1Ej is a Borel partition

and α1, . . . , αm ∈ C. Let Φ(s) =
∑m

j=1 αjP (Ej).

Let t =
∑n

k=1 βk1Fk
be another simple function. We check Φ is

• well-defined: If s = t P -a.e., then for all j, k either P (Ej ∩Fk) = 0 or αj = βk, hence∑
j

αjP (Ej) =
∑
j,k

αjP (Ej ∩ Fk) =
∑
j,k

βkP (Ej ∩ Fk) =
∑
k

βkP (Fk).

• additive: s+ t =
∑

j,k(αj + βk)1Ej∩Fk
. Then

Φ(s+t) =
∑
j,k

(αj+βk)P (Ej∩Fk) =
∑
j,k

αjP (Ej∩Fk)+
∑
j,k

βkP (Ej∩Fk) = Φ(s)+Φ(t).

• multiplicative: st =
∑

j,k αjβk1Ej∩Fk
, so

Φ(st) =
∑
j,k

αjβkP (Ej ∩ Fk) =
∑
j,k

αjβkP (Ej)P (Fk) = Φ(s)Φ(t).

• ∗-homomorphism: s =
∑
αj1Ej . So Φ(s) =

∑
αjP (Ej) = Φ(s)∗.

• unital: Φ(1K) = P (K) = I.

• isometric: ⟨Φ(s)x, y⟩ =
∑

j αj⟨P (Ej)x, y⟩ =
∑

j αjPx,y(Ej) =
∫
K sdPx,y. Hence

∥Φ(s)x∥2 = ⟨Φ(s)x,Φ(s)x⟩ = ⟨Φ(s)∗Φ(s)x, x⟩ = ⟨Φ(|s|2)x, x⟩ =
∫
K
|s|2 dPx,x.

Hence ∥Φ(s)x∥2 ≤ ∥s∥2∞ ∥x∥2, so Φ(s) ≤ ∥s∥∞. If ∥s∥∞ > 0, then there exists j such
that P (Ej) ̸= 0 and |αj | = ∥s∥∞. There exists a unit vector x ∈ P (Ej)(H). Then
∥Φ(s)∥ ≥ ∥Φ(s)x∥ = |αj | ∥P (Ej)x∥ = |αj | = ∥s∥∞, so ∥Φ(s)∥ = ∥s∥∞.
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So Φ is an isometric unital ∗-homomorphism on the ∗-subalgebra of simple functions. Let
f ∈ L∞(P ). Choose simple functions sn → f . Then ∥Φ(sm)− Φ(sn)∥ = ∥sm − sn∥∞ → 0
as n,m → ∞, so (Φ(sn))n is Cauchy in B(H). Let Φ(f) = limn→∞Φ(sn). This is is
well-defined. By continuity, Φ is an isometric, unital ∗-homomorphism L∞(P ) → B(H)
satisfying (i) and (ii).

For (iii): Since Φ(1E) = P (E), one direction is clear. Conversely, if S commutes with all
P (E), then S commutes with all Φ(s) with s simple, and then by continuity S commutes
with all Φ(f) with f ∈ L∞(P ).

Let L∞(K) be the set of all bounded Borel functions f : K → C. This is a commutative,
unital C*-algebra with pointwise operations and ∥·∥K . If P is as above, then the inclusion
L∞(K) ⊆ L∞(P ) is a norm-decreasing unital ∗-homomorphism.

Theorem 8.2 (Spectral Theorem for commutative C*-algebras). Let A be a commutative
unital C*-subalgebra of B(H). Then there exists a unique resolution P of the identity of
H over K = ΦA such that ∫

K
T̂ dP = T

for all T ∈ A, where T̂ is the Gelfand transform of T .

Moreover,

(i) If ∅ ≠ U ⊆ K is open, then P (U) ̸= 0.

(ii) If S ∈ B(H), then S commutes with all T ∈ A iff S commutes with all P (E).

Remark: The inverse Gelfand map C(K) → A ⊆ B(H), T̂ 7→ T is an isometric, unital
∗-homomorphism. So Theorem 8.2 is an operator version of the Riesz Representation
Theorem (RRT).

Proof. For x, y ∈ H, T̂ 7→ ⟨Tx, y⟩ is a bounded linear functional on C(K) of norm ≤
∥x∥ ∥y∥. By RRT there exists a unique bounded regular complex Borel measure µx,y on

K such that ⟨Tx, y⟩ =
∫
K T̂ dµx,y. For real-valued T̂ , T is hermitian, so

∫
K T̂ dµx,y =

⟨Tx, y⟩ = ⟨Ty, x⟩ =
∫
K T̂ dµy,x. So µx,y = µy,x by uniqueness in RRT.

Also ∫
K
T̂ dµλx+y,z = ⟨T (λx+ y), z⟩ = λ

∫
K
T̂ dµx,z +

∫
K
T̂ dµy,z

So µλx+y,z = λµx,z + µy,z.

For f ∈ L∞(K), (x, y) 7→
∫
K fdµx,y is a sesquilinear form of norm ≤ ∥f∥K and it is a

hermitian form if f is R-valued.

Hence there exists a unique ψ(f) ∈ B(H) such that
∫
K fdµx,y = ⟨ψ(f)x, y⟩ for all x, y,

∥ψ(f)∥ ≤ ∥f∥K and ψ(f) is hermitian if f is R-valued. Then

• ψ is linear: by linearity of integration,
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• ∗-map: ψ(f) = ψ(f)∗ since this holds for R-valued f and ψ is linear.

• ψ(T̂ ) = T : By construction ⟨ψ(T̂ )x, y⟩ =
∫
K T̂ dµx,y = ⟨Tx, y⟩ for all x, y.

• ψ is multiplicative: For S, T ∈ A, ŜT = ŜT̂ , so∫
K
ŜT̂ dµx,y = ⟨STx, y⟩ =

∫
K
ŜdµTx,y,

so T̂ dµx,y = dµTx,y. For f ∈ L∞(K),∫
K
fT̂ dµx,y =

∫
K
fdµTx,y = ⟨ψ(f)(Tx), y⟩ = ⟨Tx, ψ(f)∗y⟩ =

∫
K
T̂ dµx,ψ(f)∗y,

so fdµx,y = dµx,ψ(f)∗y. For g ∈ L∞(K),
∫
K gfdµx,y =

∫
K gdµx,ψ(f)∗y, so ⟨ψ(gf)x, y⟩ =

⟨ψ(g)x, ψ(f)∗y⟩ = ⟨ψ(f)ψ(g)x, y⟩, so ψ(fg) = ψ(f)ψ(g).

So ψ : L∞(K) → B(H) is a norm-decreasing, unital ∗-homomorphism extending the
inverse Gelfand map.

Define P (E) = ψ(1E). It is easy to see that P is a resolution of the identity of H over K.
Note Px,y(E) := ⟨P (E)x, y⟩ =

∫
K 1Edµx,y = µx,y(E). So Px,y = µx,y.

For all T ∈ A, ⟨
( ∫

K T̂ dP
)
x, y⟩ =

∫
K T̂ dPx,y =

∫
K T̂ dµx,y = ⟨Tx, y⟩, so T =

∫
K T̂ dP .

This shows the existence of P .

Uniqueness: If T =
∫
K T̂ dP , then ⟨Tx, y⟩ =

∫
K T̂ dPx,y, so this defines Px,y uniquely by

RRT, so P is defined uniquely.

Finally we prove the remaining properties of P :

(i) Let ∅ ≠ U ⊆ K be open. By Urysohn there exists a continuous function f : K →
[0, 1] such that f ̸= 0, supp f ⊆ U . So there exists a positve T ∈ A such that T̂ 2 = f .
So T ̸= 0. Pick x ∈ H with Tx ̸= 0. Then 0 < ∥Tx∥2 = ⟨Tx, Tx⟩ = ⟨T 2x, x⟩ =∫
K fdPx,x ≤ Px,x(U) = ⟨P (U)x, x⟩, so P (U) ̸= 0.

(ii) Let S ∈ B(H). For T ∈ A, ⟨STx, y⟩ = ⟨Tx, S∗y⟩ =
∫
K T̂ dµx,S∗y and ⟨TSx, y⟩ =∫

K T̂ dµSx,y. So T commutes with all T ∈ A iff µx,S∗y = µSx,y for all x, y.

Moreover, ⟨SP (E)x, y⟩ = ⟨P (E)x, S∗y⟩ = µx,S∗y(E) and ⟨P (E)Sx, y⟩ = µSx,y(E).
The result follows.

Note: If A is a unital Banach algebra and x ∈ A, we can define ex :=
∑∞

n=0
xn

n! . For
x, y ∈ A with xy = yx we have ex+y = exey.

Lemma 8.3 (Fuglede-Putnam-Rosenblum). If A is a unital C*-algebra, x, y, z ∈ A, x, y
normal and xz = zy, then x∗z = zy∗.
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Proof. Omitted due to time reasons, use the exponential defined above and the vector
valued Liouville Theorem.

Theorem 8.4 (Spectral Theorem for normal operators). Let T ∈ B(H) be normal. Then
there exists a unique resolution P of the identity of H over σ(T ) such that T =

∫
σ(T ) λdP .

Moreover, for S ∈ B(H), ST = TS iff S commutes with all P (E).

Proof. Let A be the unital C*-subalgebra of B(H) generated by T . Since T is normal, A
is commutative. By Corollary 7.3, σA(T ) = σ(T ). For φ ∈ ΦA, φ is uniquely determined
by φ(T ) (since φ(T ∗) = φ(T )), so φ 7→ φ(T ) : ΦA → σ(T ) is a continuous bijection and so

a homeomorphism (as ΦA is compact and σ(T ) Hausdorff). The maps T̂ and T̂ ∗ in C(ΦA)
correspond to λ 7→ λ and λ 7→ λ in C(σ(T )). Existence of P follows from Theorem 8.2.

Uniqueness: If T =
∫
σ(T ) λdP , then p(T, T

∗) =
∫
σ(T ) p(λ, λ)dP for all polynomials p. The

functions p(λ, λ), p polynomial, are dense in C(σ(T )) by Stone-Weierstraß. So Px,y are
uniquely determined, and hence so is P .

For S ∈ B(H), we have ST = TS iff S commutes with T and T ∗ by Lemma 8.3 iff S
commutes with all elements of A iff S commutes with all P (E) by Theorem 8.2.

Theorem 8.5 (Borel Functional Calculus). Let T ∈ B(H) be a normal operator, K =
σ(T ) and P as in Theorem 8.4. The map

L∞(K) → B(H), f 7→ f(T ) :=

∫
K
fdP

satisfies:

(i) It is a unital ∗-homomorphism and z(T ) = T where z(λ) = λ for all λ ∈ K.

(ii) ∥f(T )∥ ≤ ∥f∥K with equality for f ∈ C(K).

(iii) If S ∈ B(H) and ST = TS, then Sf(T ) = f(T )S for all f ∈ L∞(K).

(iv) σ(f(T )) ⊆ f(K).

Proof. All follow from the previous results.

For (iv), if λ /∈ f(K), then λ1K − f ∈ G(L∞(K)), so λI − f(T ) ∈ G(B(H)), so λ /∈
σ(f(T )).

Applications:

1. T normal, then T = RU where R =
∫
K |λ| dP is hermitian and U =

∫
σ(T )

λ
|λ|dP is

unitary.

2. If U is unitary, then U = eiQ for some operator Q (as there is a Borel, bounded
function f : T → R with eif(t) = t, then let Q = f(U)).

3. Let T ∈ G(B(H)), we can write T = eSeiQ. So G(B(H)) is connected.
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