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1 Hahn-Banach extension theorems

Let X,Y be normed spaces. Notation:

1. X ~ Y means that X and Y are isomorphic, i.e. there exists a linear bijection
T : X — Y such that T and T~! are continuous.

2. X 2Y means that X and Y are isometrically isomorphic, i.e. there exists a linear
surjection T': X — Y such that for all x € X: ||Tz|| = ||z||. (Then T is injective
and T~ is also isometric)

3. For z € X, f € X*, then write (x, f) = f(z). When X is a Hilbert space and X* is
identified with X, then (-,-) is the inner product.

4. Sx denotes the unit sphere and By denotes the closed unit ball in X.
Definition. Let X be a real vector space. A functional p: X — R is called

e positive homogeneous if p(tx) = tp(z) for allt > 0,2 € X.

e subadditive if p(z +y) < p(x) + p(y) for all x,y € X.

Theorem 1.1 (Hahn-Banach). Let X be a real vector space and p be a positive homoge-
neous subadditive functional on X. Let Y be a subspace of X and g: Y — R be a linear
map such that for ally € Y: g(y) < p(y). Then there exists a linear f : X — R such that
fly =g and for allz € X: f(z) < p(z).

Proof. By Zorn’s lemma there exists a maximal extension h : Z — R of g that is still
dominated by p. If Z = X, we are done. Assume that Z # X. Fix z; € X \ Z and a € R.
Let Zy = Z+Rz; and hy : Z1 — R, hi(2 4+ Az1) = h(z) + Aa where A € R,z € Z. Clearly
h1 is linear and extends h. We show that there exists a choice of o such that hy < p|z,.
This will then give a contradiction.

We need hi(z+Az1) = h(z)+Aa < p(z+Az1) for all z € Z, A € R. By positive homogeneity
of p, this is equialent to

for all z € Z. This happens iff

h(w) —plw—2z1) <a<p(z+2z)—h(z) Vz,we Z.



Such an « exists iff h(w) — p(w — 2z1) < p(z+ 21) — h(z) for all z,w e Z

This s true since for all z,w € Z:
h(w)+h(z) =h(w+2) <plw+z2) =p(w—2z1 + 2+ 21) < p(w— 21) + p(z + 21).

O]

Definition. Let X be a real or complex vector space. A seminorm on X is a function
p: X — R such that

e p(x) >0 forallz € X.
o p(Az) = |A|p(z) for all scalars X\ and xz € X.
o p(x+y) <plx)+ply) forall z,y € X.

Note that
norm =—> seminorm = pos. hom. and subadditive

Theorem 1.2. Let X be a real or complex vector space and P be a seminorm on X. Let
Y be a subspace of X, g: Y — K be linear such that for ally € Y: |g(y)| < p(y). Then
there exists a linear f: X — K such that f|ly = g and for allx € X: |f(x)| < p(x).

Proof. The real case: For all y € Y, g(y) < |g(y)| < p(y). So by the first theorem there
exists a linear f : X — R such that f|ly = g and f < p. Then for z € X we also have

—f(z) = f(=2) < p(—2) = p(x), so [f(x)] < p(z).

Complex case: Reg : Y — R,y — Re(g(y)) is real linear and |Reg(y)| < |g9(y)| < p(y)
for y € Y. So by the real case there exists a real-linear h : X — R such that hly = Reg.
Next we show that there exists a unique complex linear f : X — C such that Re f = h.
Uniqueness: For v € X, f(x) = h(z) +ilm f(z) = h(z) + iIm(—if(iz)) = h(z) — ih(iz).
Ezistence: Define f : X — C by f(z) = h(z) — ih(ixz). This is real linear and f(iz) =
h(ix) —ih(—z) = h(iz) + ih(z) = i(h(x) — ih(iz)) = if(z). So f is complex linear and
h = Re f. Now Re f|ly = h]y = Reg, so by uniqueness f|y = g. Finally, given z € X,
choose A € T = {z € C | |z| = 1} such that |f(z)| = Af(z) = f(Az) = h(Az) < p(Az) =
[Alp(z) = p(). O

Remark: For a complex vector space V', let Vg be V viewed as a real vector space. Then the
proof above shows that given a complex normed space X, the map f— Re f: (X*)r —
(Xgr)* is an isometric isomorphism.

Corollary 1.3. Let X be a real or complex vector space and p be a seminorm on X.
Then for any xo € X there exists a linear f : X — K such that f(z9) = p(xo) and
[f(@)| < [p(z)| < p(x) for all x € X.

Proof. Let Y = Kzp. Apply the theorem to g : Y — K, g(Azg) = Ap(xp). O



Theorem 1.4. Let X be a real or complex normed space. Then

(i) Given a subspace Y of X and g € Y*, there exists X € X* such that fly = g and
1A= llgll-

(i) Given xo € X \ {0}, there exists f € Sx» such that f(xo) = ||zo]|.
Proof. Easy consequence of the previous results. O

Remarks:
1. Part (i) is a sort of linear version of Tietze’s extension theorem.

2. Part (ii) says that X* separates points of X: For all x # y € X there exists f € X*
such that f(z) # f(y).

3. The f in (ii) is called a norming functional for xy. We have

[[zoll = max{|g(zo)| [ g € Bx~}.

f is also called a support functional at xo: Assume X is real and ||xg|| = 1. Then
{r € X | f(x) <1} D Bx and so the hyperplane {z € X | f(z) = 1} can be thought
of as a tangent plane to Bx at xg.

1.1 Bidual

Let X be a normed space. Then X** = (X*)* is the bidual or second dual of X. For
x € X define T : X* — K by Z(f) = f(z). This map 7 is linear and for all f € X*:
Z(f)] = |f(@)] < Ifll l|lz]]. Soz € X** and ||Z|| < ||z||. The map =z +— Z : X — X** is the
canonical embedding of X into X™**.

Theorem 1.5. The canonical embedding is an isometric isomorphism of X into X**.
Proof. Follows from Theorem (i). O

Remarks:
1. In bracket notation (f,z) = (x, f) for x € X, f € X*.

2. Let X = {Z | # € X} be the image of X in X**. Then X is closed in X** iff X is
complete.

3. In general, the closure of X in X** is a Banach space, containing a dense isometric
copy of X, so every normed space has a completion.

Definition. A normed space X is reflexive if the canonical embedding X — X™* is sur-
jective.

Note: reflexive —> complete



Examples.
1. £, for 1 < p < oo, Hilbert spaces, finite-dimensional spaces are reflexive.
2. ¢g, 1, L1]0,1] are not reflexive.

Remark: there exist Banach spaces X such that X = X™** but that are not reflexive.

1.2 Dual operators

Let X,Y be normed spaces. Recall that
B(X,Y)={T:X — Y | T is linear and bounded}
is a normed space in the operator norm. If Y is complete, so is B(X,Y).

Let T € B(X,Y). The dual operator of T is the map T* : Y* — X* given by T*(g) = goT
where g € Y*. In the bracket notation (x,T*g) = (T'z, g) where z € X, g € Y*. T* is
bounded and || 77| = ||T]|. Indeed,

=)
sup [Tl = sup sup |(z, )| = sup sup |(Tz, )| P sup [Tl = T

gEBy* gEBy* z€Bx r€EBx gEBy* r€Bx

Remark: If XY are Hilbert spaces and we identify X™*, Y™* with X,Y resp. in the usual
way, then T* : Y — X is the adjoint of T'.

Example. Let 1 < p,q < oo with % + % = 1. We use the canonical identification £}, = £,.
If R:/{,— {,is the right shift, then R* : {;, — {; is the left shift.

Properties:
1. (Idx)* = Idx-.
2. ASHuD)* = NS* 4+ uT* (S, T € B(X,Y), A, pu scalars)
3. (ST)* =T*S* (T e B(X,Y),SeB(Y,Z2))
4. T—T*:B(X,Y) — B(Y*, X") is an into isometric isomorphism.
5. The following diagram commutes:

x T .,y

o

Here the vertical arrows are the canonical embeddings. Let 2 € X. We need % =
Tx. For g € Y™

(9,T8) = (T"9,%) = (2, T"g) = (T, g) = (g, Tx).

From the above properties, if X ~ Y, then X* ~ Y™,



1.3 Quotient spaces

Let X be a normed space and Y be a closed subspace of X. The quotient space X/Y
becomes a normed space in the quotient norm.:

|z + Y| =inf{[lz +y| [y € YV} =d(z,Y).

The quotient map ¢ : X — X/Y is linear, onto, and bounded with ||¢|| < 1.

Let Dy = {z € X | [|z]| < 1}. Since [|¢|| <1, ¢(Dx) € D(X/Y). In fact, ¢(Dx) = Dxy-
Indeed, given z+Y € Dx/y, ||z + Y|| < 1, so there exists y € Y such that ||z + y|| < 1. So
z+y € Dx and q(z +y) = q(z) =z +Y. So [lgl| = sup,ep, [l9(2)]| = sup.epy,, |2l =1
if Y # X. Moreover, ¢ is an open map.

Given another normed space Z and T : X — Z linear, bounded such that ¥ C kerT,

there exists a unique map T such that T'= To q. Moreover T is linear and bounded with
||| = |IT]|. Indeed, T(Dx,y) = T(q(Dx)) = T(Dx), so |T| = [T

Theorem 1.6. Let X be a normed space. If X* is separable, then so is X.

Proof. Let {f, | n € N} be dense in Sx+. For all n choose x,, € Bx such that f,(z,) > %
Let Y = span{z, | n € N}. Then Y is separable, so enough to show that ¥ = X. If
Y # X, then can pick h € S(x/y)«. Set f =hoq where q: X — X/Y is the quotient map.
Then ||f|| = [|h]| =1, 1e. f € Sx-. Now for alln € N, || f, — f|| > [(fn — f)(zn)| > 3 since
fly = 0. This is a contradiction since the {f,} were assumed to be dense in Sx+. O

Remark: The converse is false, e.g. X = {; is separable, but X* = {, is not.

Theorem 1.7. FEvery separable normed space X embeds isometrically into .

Proof. Let {x, | n € N} be dense in X. For all n there exists f, € Sx+ such that
fn(zn) = ||zn|l. For x € X and for all n € N, |f,(z)| < ||z]], so (fu(x))72; € . Define
T:X — by by Tx = (fn(x))52 ;. This is well-defined, linear and bounded (by above

n=1"
[Tz < |[z]). For all n, [Tz = |fa(zn)| = [[#nll; so [Tzally = [lznll for all n. By
dense, T is isometric. ]
Remarks:

1. This says that ¢, is isometrically universal for the class SB of separable Banach
space.

2. A dual version of the theorem says that every separable Banach space is a quotient
of ¢; (exercise).

Theorem 1.8 (Vector-valued Liouville). Let X be a complex Banach space and f : C — X
be holomorphid!] and bounded. Then f is constant.

1f.C — X is holomorphic if the limit lim; -, %ﬁ(gz") exists for all zg € C.



Proof. Fix w € C. We show that f(w) = f(0). Let ¢ € X* and consider po f: C — C.
Then po f is bounded and holomorphic, hence constant by the ordinary Liouville theorem,
so (f(w)) = ¢(f(0)). Since X* separates points in X, f(w) = f(0). O

1.4 Locally convex spaces

Definition. A locally convex space (LCS) is a pair (X, P) where X is a real or complex
vector space and P is a family of seminorms on X that separates the points of X in the
sense that for every x € X \ {0} there exists p € P such that p(z) # 0.

The family P induces a topology on X: A subset U C X is open iff for every x € U there
exist n € Nyp1,...,pn € Pye >0 such that {y € X |pp(y —x) <e, 1 <k<n}CU.

Remarks:
1. Addition and scalar multiplication are continuous.
2. The topology is Hausdorff.
3. We have z,, — z iff for every p € P, p(x,, — ) — 0 (also true for nets).
4

. Let Y be a subspace of X and Py = {p|y | p € P}. Then (Y, Py) is a LCS and the
corresponding topology is the subspace topology induced by X.

5. Given families P, Q of seminorms on X both separating the points of X, they are
called equivalent (written P ~ Q) if they induce the same topology on X.

Fact: A LCS (X, P) is metrizable iff there exists a countable Q ~ P.
Definition. A Fréchet space is a complete metrizable LCS.
Examples.
1. Every normed space (X, |-]|) is a LCS with P = {||-||}.

2. Let U be a non-empty open subset of C. Let O(U) be the set of holomorphic
functions on U. For a compact set K C U, define px(f) := sup{|f(z)| : z € K} for
all f € O(U). Let P ={pk | K C U, K compact}. Then (O(U),P) is a LCS whose
topology is the topology of local uniform convergence. There exist compact sets K,
such that K,, C Int K, and |JK,, = U. One can check that {px, | n € N} ~ P.
So (O(U),P) is metrizable and in fact a Fréchet space. It is not normable, i.e.
its topology is not induced by a norm. This follows from Montel’s theorem: If
(fn) € O(U) is such that for every compact K C U, {f,|x | n € N} is bounded in
(C(K),|Il.), then (f,) has a convergent subsequence.

3. Fix d € N and let  be a non-empty open subset of R?. Let C°°(£2) be the space of
all smooth functions 2 — R. For a multiindex a = (az,...,aq) € (Z>0)? we define



D% = (%)al - (i>ad. For a € (Zx0)?, compact K C Q, and f € C%°(Q) let

pra(f) = sup{|D*f(2)] : x € K}.

Let P = {pr.o | K CQ compact, a € Z%O}' Then (C*(R2),P) is a LCS. It is a
Fréchet space and is not normable.

4. Weak and Weak* topology - see Chapter
Lemma 1.9. Let (X,P) and (Y,Q) be LCSs and T : X — Y be linear. Then TFAE:
(i) T is continuous.
(i) T is continuous at 0.

(iii) For all ¢ € Q there exists n € N, p1,...,p, € P, C > 0 such that for all x € X,
q¢(Tz) < Cmaxi<p<p pi(z).

Proof. “(i) < (ii)” is clear. For “(ii) = (iii)” let ¢ € Qand V ={y €Y | q(y) < 1}.
Then V is a neighborhood of 0 in Y, so there exists a neighborhood U of 0 in X such that
TWU)CV. WLOG U ={z € X | pr(x) <efor 1 <k <n} for somen € N,p1,...,p, €
P,e > 0. Let z € X and t = maxj<p<pn pr(x). We show ¢(Tz) < %t. If ¢t > 0, then
pr(SE) <efor1 <k <n,s0 % €U andq(T(£)) <1,ie ¢(Tx) <L Ift =0, then for
all scalars A\, px(Ax) =0 for all 1 <k <n,so Az € U and ¢(T(A\x)) < 1. So ¢(Tx) = 0.

Conversely, “(iii) = (i7)”. Let V be a neighborhood of 0 in Y. We seek a neighborhood
U of 0 in X such that T(W) C V. WLOG, V ={y € Y | x(y) < efor1 <k <n}
for some n € N, q1,...,q, € Q,e > 0. By (éii) for each k = 1,...,n there exists my €
N, p1, -+, Pkm, € P and Cy, > 0 such that ¢ (Tz) < Cp maxi<j<m, prj(z). Let U = {z €
X | prj(z) < ﬁ,l < j < mg,1 <k <n}. This is a neighborhood of 0 in X and
TU)<V. O

Definition. Let (X,P) be a LCS. The dual space of (X, P) is the space X* of all con-
tinuous linear functionals on X, i.e. all linear maps X — K which are continuous in the
topology of (X, P).

Lemma 1.10. Let (X,P) be a LCS, f : X — K be linear. Then f € X* < ker f is
closed.

Proof. “=7 is clear. For “<” we may assume that ker f # X. Fix zp € X \ ker f. Then
there exists a neighborhood U of 0 such that zo + U C X \ ker f. WLOG U = {z €
X | pp(z) <e,1 <k <n} for somen € N,pj,...,p, € P,e > 0. Note that U is convex
and balanced. Since f is linear, the same is true for f(U). So either f(U) is bounded or
f(U) =K. In the latter case, f(xo+U) = f(z9)+ f(U) = K, contradicting z¢ ¢ ker f. So
there exists M > 0 such that |f(z)| < M for all x € U, i.e. f(U) C{A]| |\ < M}. Hence
for all e >0, f(57U) € {X ||\ <e}. So f is continuous at 0 and hence f € X*. O



Theorem 1.11 (Hahn-Banach). Let (X,P) be a LCS. Then
(i) Given a subspace Y of X and g € Y*, there exists f € X* such that fly = g.

(i) Given a closed subspace Y of X and o € X \'Y, there exists f € X* such that
fly =0, f(zo) #0

Proof.

(i) By the characterization of continuous linear maps between LCSs there exists n €
N,p1,...,pn € P,C > 0 such that for all y € Y, |g(y)| < Cmaxj<p<,pr(y). Let
p(x) = Cmaxi<p<npr(x) for x € X. Then p is a seminorm on X and for all
y €Y, lg(y)| <p(y). By the seminorm version of Hahn-Banach there exists a linear
f:X — Ksuch that fly = gand forall z € X, |f(z)| < p(x). Then f is continuous.

(ii) Let Z = spanY U{zp} and define g : Z — K by g(y + Axg) = A where y € Y, A € K.
Then g is linear and ker g = Y, so by the previous Lemma, g € Z*. Then extend g
to X by part (i). O



2 The dual spaces of L,(u) and C(K)

Let (2, F, 1) be a measure space. For 1 < p < oo we have

Ly(p) = {f : Q — K| f is measurable and /Q |fIPdp < oo}.

This is a (semi-)normed space in the Ly-norm: || f|, = (Jo IfIPdw) r

For p = co we have
Loo(p) ={f:Q — K| f is measurable and essentially bounded}.

This is a (semi-)normed space in the Ls.-norm:

[flloe = esssup |f| = inf{gl@l;\fl N € F,u(N) =0}

The essential sup is attained: There exists N € JF such that u(N) = 0 and supg\y |f| =
1/l

Remark: Technically, for 1 < p < oo, the Ly-norm is only a seminorm. In general, if ||-||
is a seminorm on a real or complex vector space X, then N = {z € X | ||z]| = 0} is a
subspace and ||z + N|| = ||z|| defines a norm on X/N. So for us equality in L, will mean
a.e. equality.

We also recall:

Theorem 2.1. L,(u) is a Banach space for 1 < p < oco.

2.1 Dual space of L,

2.1.1 Complex measures

Let © be a set and F a o-field on Q. A complex measure on F is a countably additive set
function v : F — C, i.e. pu(0) = 0 and v(UA,) = > v(A,) for countably many pairwise
disjoint A,, € F.

The total variation measure |v| of v is defined as follows: For A € F,

|V|(A) = sup {Z lv(Ag)|: A= U Aj is a measurable partition of A} .
k=1 k=1

10



Note that |v| : F — [0,00] is a positive measure (i.e. a measure). |v| is the smallest
positive measure dominating v (i.e. for all A € F, |v(A)| < |v|(A) and if p is a positive
measure such that for all A € F,|v(A4)| < u(A), then |v| < p).

In fact, |v| is a finite measure (see Remark 3 below). The total variation |v||; of v is
defined by ||v||; = |v|(£2).

Remark: Any complex measure v is continuous (from below and above).

A signed measure on F is a countably additive set function v : F — R (i.e. a complex
measure that only takes on real values).

Theorem 2.2. Let 2 be a set, F a o-field on Q and v : F — R a signed measure.
Then there exists a measurable partition Q@ = P U N of Q such that for all A € F,
ACP = v(A)>0and ACN = v(4)<0.

Remarks:
1. The partition Q@ = PU N is the Hahn decomposition of Q (or of v).

2. Define vt (A) =v(ANP) and v~ (A) = —v(ANN) for A € F. Then v and v~ are
finite positive measures such that v = v+ — v~ and |v| = vt + . These properties
determine v, v~ uniquely. This is called the Jordan decomposition of v.

3. If v: F — Cis a complex measure, then Re v, Im v are signed measures with Jordan
decomposition Rev = v; — 19 and Imv = v3 — v4. Hence v = vy — 19 + iv3 — iy
(the Jordan decomposition of v). It follows that v, < |v| for £k = 1,2,3,4 and
lv| < w1+ ve 4 v3 + v, hence |v|(2) < co.

4. Let v =v" —v~ asin 2. For A,B € F if B C A, then v(B) = v*(B) — v (B) <
vH(B) < vt(A). Also, PNAC A and v(PNA)=v"(A), so vt (A) = sup{v(B) |
B e F,B C A} for any A € F. This will be the idea of the proof.

Proof of Theorem [2.9 Define vt (A) := sup{v(B) | B € F,B C A} for A € F. Then
vT(0) =0 and v is finitely additive and positive.

Claim: v (Q) < oo: Assume v (Q) = oo. Inductively construct (A4,)3%, and (B,),
in F such that By = Q and for all n € N, v7(B,_1) = o0, A, C B,_1, v(4,) > n
and B, = A, or B,_1 \ A, (such that v"(B,) = o0). Then either there exists N such
that for all n > N, A, O A,41. Then v(NA4,) = limv(A4,), a contradiction. Or there
exist k1 C ko C ... such that for m # n, Ay, N A, = 0. So v(UAg,) = > v(A4g,), a
contradiction.

Claim: There exists P € F such that vT(Q) = v(P). For all n there exists A, €
F such that v(A,) > vH(Q) — 27" For m # n, v(A, NA,) = v(4,) + v(4,) —
v(Am UA,) > vH(Q) =27 — 27" Let P = U, Nyyon Am- Then v7(Q) > v(P) =
1My, 00 Mg o0 (A N Apprr N -+ N Apag) > v7(Q). Then let N = Q\ P. This
works. =

11



2.1.2 Absolute continuity
Throughout (2, F, i) is a measure space.

Definition. A complex measure v : F — C is absolutely continuous w.r.t. u if for all
AeF, u(A) =0 implies v(A) = 0. We denote this by v < p.

Remarks:

1. If v < p, then |v| < p. In this case, if v = vy — o + ivg — vy is the Jordan
decomposition of v, then v, < u for all k.

2. f v < p, then Ve > 035 > 0VA € F:pu(ld) <d = |v(4)| <e.

Example. Let f € Li(). Then v(A) = [, fdu, A € F, defines a complex measure and
v .

Theorem 2.3 (Radon-Nikodym). Let p be o-finite and v : F — C be a complex mea-
sure such that v < p. Then there exists a unique f € Li(u) such that v(A) = [, fdu
for all A € F. Moreover f takes values in C/R/R™ according to whether v is a com-
plex/signed/positive measure, respectively.

Proof. Uniqueness is clear from basic measure theory. Existence: wlog v is a positive
measure (take Jordan decomposition). Wlog p is finite. Let

H= {h : Q — R | h is measurable and VA € F : / hdp < V(A)}.
A

Note: 0 € H. If hy,hy € H, then also hy V he = max(hy, he) € H. If hy, € H for all n and
hn / h, then h € H.

Let o = sup{ [, hdp | h € H}. Note 0 < oo < v(Q). Choose hy, € H such that [, hydp —
a. Wlog hy, < hyyq for all n (replace hy, by hy V ha V-V hy). Then h,, / f € H and
fQ fdp = a by monotone convergence. So we have f > 0 measurable, such that for all
AeF: [, fdu<v(A).

For n € N and A € F define
1 1
i) = [ <f " n) n—v4) = [ g+ Lul) - v(a),

v, has Hahn-decomposition Q = P, U N,,. For A C N,, measurable, we have 0 > v,,(A) =
Ja(f + D)dp—v(A), so [,(f + L)du < v(A). Therefore f + L1y, € H, and then

1 1
a> / (f + *1Nn>dﬂ = a+ —u(Ny),
Q n n

so f1(Nyp) = 0. Let N = J,, N, P =(),, Pn- Then Q@ = PUN, PNN =0, u(N) =0 = v(N)
(as v < ).
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For A € F, n € N we have

1 1
v(A)=v(ANP)= fdu+ —p(ANP)—v,(ANP) < / fdp+ —p(P).
ANP n A n
Now let n — oo and we are done. O
Remarks:

1. The proof shows that any complex measure v can be written as v = v + vo where
v < pand vy L p (ie. there exists N € F such that u(N) = 0, [v»|(2\ N) = 0).
This is the Lebesgue decomposition of v.

2. The unique f in the theorem is called the Radon-Nikodym derivative of v w.r.t. p,
denoted g—”. One can prove that for measurable g : 2 — C, g is v-integrable iff g%

is p-integrable, and then
dv
/gdl/:/gdp.
0 o dp

2.1.3 Dual Space of L,

We fix a measure space (2, F, u) throughout. Let 1 < p < oo and let ¢ be the conjugate
index of p.

For g € Ly = Lg(p) we define ¢4 : L, = K by ¢4(f) = [, gfdu. By Hélder this is
well-defined and [pg(f)| < l|gll, [[f]l,, so ¢4 € Ly, and [¢g|l < [|lgll,- So we have a linear
map ¢ : Lg — Ly, g — ¢g.

Theorem 2.4. Let (2, F, ), p, q, ¢ be as above.

(i) If 1 < p < oo, then ¢ is an isometric isomorphism, so Ly = L.

(i) If p=1 and p is o-finite, then ¢ is an isometric isomorphism, so L] = L.
Proof.

(i) ¢ isometric: Let g € Lg. We have seen [¢g| < |lgf|,- Let

p=Ll'fg itg #0,
0 ifg=20

/Iflpduz/\g\(q”pduz/ lg|9dp
Q Q Q

So f € Ly and |||l = [lgll§. Thus [legll - [I£]l, > leg(f) = Jq lgl?du = llglg- Hence

q_ﬂ
legll = llglla * = liglly-

Then

@ onto:

13



e Case 1: p is finite. Fix ¢ € L;. Seek g € L, such that ¢(f) = Jo 9fdp for all
f € L. Define v(A) = ¢(14) (note that 14 € L, since p is finite) for A € F.
Then v(f) = 0 and if A =J,2; Ay is a measurable partition, then

A= 3wl

n=1

= ‘w(lA\U;V:l An)

N 1/p
<1y, 4l = 2l (AN L_Jl 4,) " =0,

So v is countably additive and if u(A) = 0, then v(A) =¥ (14) =0, s0 v <K L.

By the Radon-Nikodym theorem, there exists g € L;(u) such that v(A) =
Jigdp for all A € F. So ¢(1a) = [,g9ladp for all A € F, and hence
P(f) = fg fdu for all simple functions f. Given f € Lo C L, there ex-
ists simple functions f, such that for all n € N, |f,| < |f] and f, — f a.e.
Then f, — f in L, and gf, — gf in L1 by dominated convergence. So
Jo9fdp = limy o0 [ 9fndp = limy o ¥(fn) = ¥(f) as ¢ is continuous. For
neNlet A4, ={0 < |g| < n}. Thenf:%lAn € L, so

/ gfdu :/ l9l%du = (f) < ([Pl £, = Nl - (/ \g\qdﬁt)l/p
0 An - P A

1/q
So (fAn |qu> < [[#[l, so by monotone convergence g € Lq and ||g||, < [[+]|.
Now 4,9 € L, and ¢y, agree on the dense subspace Lo, 80 ¢4 = 9.

For the other cases we introduce some notation. For B € F, let Fp = {A € F |
A C B} and pp = p|r,. Then (B, Fp,pup) is a measure space and Ly,(ug) € Ly(p).
Given 1 € Lp(u)*, let 1 = 1|1, (up)- Then vp € Ly(pp)* and [y < |4

Claim: Let B,C € F with BN C = (. Then ||¢¥puc|l = (|[¥sl|? + vc|9)Y9. Proof:
Given f € L,(upuc), we have

[YBuc (NI < [Wa(flB)| + e (flo)l < IesllIfl1all, + el Lflell,
< (sl + eIV 1BIE + 1 Flclp)
= (Iosl* + lve 1DV, -

So [vpucl < (I¥s]" + [lvell”)/e. Fix a,b > 0 with a” + b = 1 and a[¢p| +

bllvell = (lvsll? + [vcl!)/? (use & 2 €,). Let f € Ly(up), g € Ly(uc) such that
1£ll, < 1,]gll, < 1. Fix scalars A, u such that [A] = |u| =1 and Mg (f) = |[¢B(f)]

and pipo(g) = [o(g)]. Then
alyp(f)| + blve(9)l = veuc(arf +bug) < [[¥suc| llarf + bugll, < [[¥suc -

Taking sup over f, g we get a|[¢p] +bll¢cll < lvsucl|
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e Case 2: p is o-finite. So there exists a measurable partition Q = (J, .y An of
Q2 such that p(A,) < co. By case 1, for every n, there exists g, € Lq(pa,)
such that ¥4, (f) = fAn gfdpa, for all f € L,(uAy). Since ¢ is isometric,
|4, [l = llgnll,- Let g = gn on A, for all n. Then

N N
S lgnlld =D eanlt® = [y a,
n=1 n

=1

q
< [l

So by monotone convergence g € Ly(p), we have ¢, =1 on Ly(pa,) for every
n. Since |J,, Ly(1ea, ) has dense linear span, ¢, = 1.

e General case. First recall that for f € L,(n), {f # 0} = Upen{lfl > 2}
is o-finite since p({|f| > }) < nP || fIl; < oo (Markov). Let ¢ € Ly(u)*.

There exists a sequence (f,) in Ly(u) such that [|f,[l, < 1 and ¢(fn) — [[¢]|-
Then B = |J,cy{fn # 0} is o-finite and [¢p|| = [|¢|. By the claim, [|¢|¢ =
lvBl|? + ||¢Q\3Hq, s0 1o\ g = 0. So we are done by case 2.

(ii) ¢ isometric: Let g € Loo(p). We already have ||p4|| < ||glo- For the reverse, wlog
g#0. Fix 0 < s < ||g]lo- Let A= {|g| > s}. Then pu(A) > 0. Then pu(A) > 0.

Since p is o-finite, there exists B C A, 0 < u(B) < oo. Let f = |%'1,3. Then f € Ly
and

si(B) < ¢g(f) = /B lgldi < [l@gll 1711, = llogll n(B)-
Then s < gy, s0 llgllo < llell-
© onto:

e Case 1: p is finite. Let ¢ € L} and proceed as in (i): Define v(A) = ¢(14).
As before, v is a complex measure and v < u, so by the Radon-Nikodym
theorem there exists g € Ly such that v(A) = [, gdu for all A € F. Thus
Jo9ladp = ¥(1,4) for all A € F. As before, [, gfdu = (f) for all f € Ly
(Loo € Ly since p is finite).

Next we show that g € Lo. Fixt > ||¢|| and let A = {|g| > t} and f = |g|/g1a.
Then f € L and so

tu(A) < /A lgldy = /Q gfdi =) < 11151, = Il u(A)

Hence p(A) =0 and g € L.
Now ¢4 =1 on Lo, Lo dense in Ly and so ¢4 = 1.

e Case 2: p is o-finite. So there exists a measurable partition Q = [J,, A, of Q
such that p(Ay,) < oo for every n. Let ¢ € Li(u)*. By case 1, for every n there
exists gn € Loo(p1a,,) such that ¢4, (f) = [, gnfdua, for all f € Li(ua,).

¢ is isometric, 50 ||gnllo, = [[¥a,]l < [[¥]. Let g = g, on A, for all n. Then
g € Loo(p). Have ¢y =1 on Li(pa, ) for all n. By density ¢4 = 1.
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O]

Corollary 2.5. For any measure space (2, F,u) and 1 < p < oo, the Banach space
(Ly(2), I1,) is reflezive.

Proof. By the theorem we have an isometric isomorphism ¢ : L, — Ly, (f,¢(g)) =
fQ gfdu for f € Ly, g € Ly. This induces an isometric isomorphism ¢* : Ly* — Ly. Also
there is an isometric isomorphism ¢ : L, — L given by (g,¢f) = Jo fadp.

Hence we get an isometric isomorphism (p*)™t o : L, — Ly For f € Ly, g € Ly we

have

~ ~

(00" (P) = (o), F) = (f: 09) = /Q afdp = (g.0(f))
So ¢*(f) = v(f), ie. (o) (f) = f. O

2.2 Dual space of C(K)

Throughout K is a compact Hausdorff space. Some notation:
C(K)={f:K — C| f continuous}
C®(K)={f:K — R| f continuous}
CH(K) = {f e CYK)| f =0}
C(K), C®(K) are complex resp. real Banach spaces in the sup norm ||-|| . We also let

M(K)=C(K)"={¢:C(K)— C| ¢ linear, bounded}
ME(K) = {p € M(K) | (f) € R for all f € CF(K))
MY (K)={p:C(K)— C| ¢ linear, p(f) >0 for all f € CT(K)}
Elements of M+ (K) are called positive linear functionals.
Aim: Describe M (K) and C®(K)*. It is enough to consider M+ (K):
Lemma 2.6.
(i) For all ¢ € M(K) there exist unique @1, p2 € MR(K) such that ¢ = p1 + ips.
(i) o — olerk) MR(K) — CR(K)* is an isometric isomorphism.
(iii) M*(K) € M(K) and M*(K) = { € M(K) | lpl] = 9(1)}.
(iv) For all p € MR(K) there exist unique o, p~ € MT(K) such that ¢ = ¢+ —p~ and
lell = Nl + e -

Proof.
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(i)

(i)

(iii)

Let ¢ € M(K). Uniqueness: Assume ¢ = o1 + ips with ¢1,¢p9 € MR(K). For
f € CH(K) we have o(f) = p1(f) +ipa(f) and ¢(f) = 1(f) —iga(f), s0 p1(f) =
“’(f)ﬂ’( ),g02(f) = W. So 1, 2 are determined by ¢ on C®(K) and hence
on C( ) = CR(K) +iC®(K).

Existence: Define ¢1(f) = M, wa(f) = so(f) ) for f € C(K). This works.
If p € MR(K), then ¢| c®(k) 18 real-linear and continuous.

Isometric: We have |l¢[cr)ll < ll¢ll. Given f € C(K), there is A € C, || =
L such that [o(f)] = Ap(f) = @(Af) = ¢(ReAf) +ip(ImAf) = p(Re(Af)) <
Ielem ) [IReA oo < llecm |l 1 flloos s0 el < llpcm (K-

Onto: Given 1 € C®(K)*, define o(f) = ¥(Re f) + iyp(Im f) for f € C(K), so ¢
is continuous, real-linear and ¢(if) = ip(f) for all f € C(K). So ¢ € M(K) and
Yor(K) = .

Let ¢ € MT(K) and f € C®(K) with || f||,, < 1. Then 1x+f > 0, so ¢(1K)i¢(f) =
o1k £ f) 2 0,50 ¢(f) € R and |o(f)| < ¢(1k), so [[leri)l = ¢(1k). By (i),
¢ € MR(K) and [[¢ll = [[¢lcm o)l = (k).

Now assume ¢ € M(K) and ||¢| = p(lg). Aim: ¢ € MT(K). WLOG || =

o(1g) = 1. Let f € C®(K), ||fllo. < 1. Let »(f) = a + ib with a, bER Forte]R
lo(f +itlg)|? = \a—l—z(b—l—t)|2—a 02 20t + 2. Tt is also < ||| || f + itlx| %
1+t2% So a?+b?+2bt < 1forallt € R. Hence b= 0. Sogo(f)ERandgoeMR(K)
Let f € CT(K), |[flloo < 1,800 < f <1 Then —1x < 1g — 2f < 1k and so
11k —2f]l, < 1. Hence p(1x —2f) =1 —2p(f) < 1 and hence ¢(f) > 0. Thus
v € MT(K).

Let ¢ € M®(K). Existence: [Idea: If 0 < g < £, then ¢(g) = ¢*(g) — ¢ (g9) <
¢t (9) < e" ()]

Define ¢t on C*(K): For f € CT(K), ¢ (f) =sup{p(g9) : g € CT(K),0< g < f}.
Note T (f) > ©(0) = 0 and T (f) > ¢(f). Then p* is positive homogeneous and
additive: Let f1, fo € CT(K). Given 0 < g1 < f1,0 < go < fa, we have 0 < g1 + g <
fit fa,s0 o (fit+ fo) = @(g1+92) = @(91)+¢(g2), s0 oF (fi+f2) = T (f1)+oT (f2).
Conversely, given 0 < g < fi+f2, p(g) = @(gAf1)+o(g— (9N f1)) < 0T (f)+o" (f2).
Thus o™ (f1 + f2) < 0" (f1) + ¢ (f2).

Now define ¢+ on C®(K): Given f € C®(K), write f = f1 — fa for f1, f» € CT(K)
(e.g. fi = f VO, fa = (—f) V0) Define ¢*(f) = ¢*(f1) — ¢*(f2). By properties
of o1 on CT(K), ¢t is well-defined and real linear on C®(K). Finally, define
T (f) =pT(Re f) +ipT(Im f) for f € C(K). Then ¢t is complex linear on C'(K).
From above ¢™ € MT(K). Then define ¢~ = ¢* — ¢. For f € CT(K), then
o~ (F) = 9*(f) — o) > (1) — o) = 0. S0 € M*(K) and = g+ — o~

Further [|¢]| < [l [|+[le7 || = ¢T(1x)+¢ (1k) = 201 (1k)—¢(1k). If0 < f <1,
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then —1x <2f —1g <1k, so ||2f — 1k|l,, < 1,50 20(f) —p(lk) = @(2f —1k) <
[ol]. Hence 20" (1x) — (1) < [lo]|-

Uniqueness: Assume ¢ = 1)1 — 1o where 11,19 € MT(K) and ||p]| = ||¢1] + [|1b2]|-
If 0 < g < f, then p(g) = ¥1(g9) — ¥2(9) < ¥1(9) < ¥1(f). Sup over g gives us
e (f) <¢i(f). So b — T € M¥(K). Hence 2 — ¢~ =91 — " € MT(K). Thus
11 =P+ 112 — 7| = (Y1 — ¢T) (1K) + (2 — 97 )(1k) = (Y1 (1K) + ¥2(lk)) —
(" (1) + 9~ (1K) = llell = llell = 0. Thus ¢y = ™, 1h2 = ™.

O]

2.2.1 Topological Preliminaries

Recall K is normal: for disjoint closed subsets F, F' of K there exist disjoint open subsets
U,V of K such that £ C U, F C V. Equivalently, if £ C U C K with F closed, U open,
there exists an open V such that £ C V C VCU.

Lemma (Urysohn’s Lemma). Given disjoint closed subsets E, F' of K there exists a con-
tinuous function f: K — [0,1] such that f =0 on E, f=1 on F.

Notation: f < U means U C K, U open, f: K — [0, 1] continuous and supp f C U.
E < f means F C K, F closed, f: K — [0, 1] continuous and f =1 on E.

Urysohn says: If £ C U C K with E closed, U open, then there exists f such that
E < f < U. [Choose open V such that E CV CV C U and apply Urysohn to E, K \ V]

Lemma 2.7. Let E C K be closed, n € N, U; C K open, 1 < j<n and E C U?zl Uj.
(i) There exist open sets V; with V] CU;, 1 <j<n such that E C U?:l V.
(it) There exist fj < Uj, 1 < j <mn suchthat 37, fj <1l onK and > 7, fj =1 on E.

Proof.
(i) By induction on n. E'\ Uy, is closed and covered by (J;_,, U;, so by induction there
exist open V; with V] C Uj such that E\U, CJ._,, V;. Then E\Uj<an C Uy, so
by normality there exists open V;, such that £\ J,_,, V; C Vi, C V,, C U,.

j<n

j<n

(ii) Choose open sets V; as in (i). By Urysohn there exist functions g; such that V; <
gj = Uj and go such that K\U?ZlVJ <go < K\ E. Let g = Z?:ogj- Then g
is continuous, g > 1 on K. Set f; = gj/g for 1 < j < n. Then f; : K — [0,1]
is continuous for all j and 377, f; < >°% ;g;/g = 1. On E we have gg = 0, so
Z?:l fi= Z?:o g9;/9 = 1.

O
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2.2.2 Borel Measures

Let X be a Hausdorff topological space. Let G be the set of open subsets of X (i.e. the
topology). The Borel o-field B = 0(G) is the o-field on X generated by G. Members of B
are the Borel sets.

A Borel measure on X is a measure p on B. We say u is reqular if it satisfies the following
properties:

(i) For all compact E C X, u(FE) < oco.
(ii) For every A € B, u(A) = inf{u(U) | A C U € G} (“outer regularity”).
(iii) For every U € G, u(U) = sup{u(E) | E C U, E compact} (“inner regularity”).
A complex Borel measure v on X is regular if |v| is regular.

Note that if X is compact and Hausdorff, then a Borel measure p is regular iff u(X) < oo
and (ii) holds, iff u(X) < co and VA € B : u(A) =sup{u(E) | E C A, E closed}.

2.2.3 Integration w.r.t. a Complex Measure

Let 2 be a set, F a o-field on 2 and v a complex measure on F. A measurable f: Q — C
is v-integrable if f is [v|-integrable, i.e. [, |f|d|v| < co. Then we define

[ gav= [ i [ gasi [ gavs—i [ gavi

where v = v — vy + iv3 — vy is the Jordan decomposition of v. Recall vy < || <
v1 +vo + v+ 1y, so f is |v|-integrable iff f is vg-integrable for all k.

Properties:
1. For Ae F, [ 1ladv =v(A).
2. [ fdv is linear in f.

3. Dominated convergence (D.C.) holds: Given measurable (fy)nen, f,g such that
|ful < g for all n, [4]gldlv] < oo, fn — f ae., then f,, f are v-integrable and

Jo fndv — [ fdv.

4. If f is v-integrable, then | [, fdv| < [, |f|d|v|. Proof: This holds for simple functions
by 1, 2 and then for all functions by 3.

2.2.4 Riesz Representation Theorem

Let v be a complex Borel measure on K. For f € C(K), f is Borel measurable and
Jr 1 fldlv] < || fllo [VI(K) < co. Define ¢ : C(K) — C by ¢(f) = [, fdv. This is linear
and [o(f)] < [Iflloc I¥ll1; s0 ¢ € M(K) = C(K)* and ||| < [|v[|;.
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If v is a signed measure, then p € MX(K) = C®(K)*. If v is a positive measure, then
v € MT(K).

Theorem 2.8 (Riesz Representation Theorem). Let ¢ € MT(K). Then there erists a
unique reqular Borel measure v on K that represents ¢, i.e.

/K fdp=(f) VI e ).

Moreover ||| = p(K) = ||p|l;-

Proof. Uniqueness: Suppose p1, o both represent ¢. For E C U C K, F closed, U open,
there exists f, F < f < U. Then

E)S/de/n=<P(f)=/deu2§uz(U)

Since pg is regular, pi(F) < uz(F). By symmetry, we get equality, so u1 = pg on closed
sets.

Existence: [Want: Let 11(A) = ¢(14) but 14 need not be continuous.]

We will construct an outer measure p*. For U € G let p*(U) = sup{¢(f) | f < U}. We
have f <1k, so o(f) < ¢(1k).

Note that p*(#) = 0 and p*(K) = ¢(1x) = ||¢|| (Lemma [2.6).

p* is subadditive on G: Assume U C |Jo2, U, (U € G,U, € G for all n). Given f < U,

for some n € N, supp f C U?:1 U; by compactness. By Lemma 7 there exist h; < U; such
that > hj; <lon K, > hj=1onsuppf. So

=s0<§hjf) Zw (hsf) sf}

Taking sup over all f < U, gives pu*(U) < Zn L (Un).
w(

Clearly, for U,V € G,U C V, we have p*(U) < p*(V). So (U)
V € G}. We can extend pu* to P(K): pu*(A) = 1nf{,u U) ] A

pr(0) = 0,p"(K) = (1K)

p* is subadditive on P(K): Assume A C |Jo2 | Ay, fix € > 0 and for all n choose U,, €
G such that A, C U,, p*(Un) C p*(Ap) +€27". Then A C U2, Up, so p*(A) <
(Ul Un) <30, 05 (Up) <30, 1" (A)+e. Hence p*(A) < > p*(Ap). So p* is an outer

measure on K.

= inf{p*(V) | U
CUegG}ACK. Have

So the set M of p*-measurable sets is a o-field and p*| o is a measure.

We show that G C M: Fix U € G. Need: For all A C K : pu*(A) > p*(ANU) 4+ p*(A\U).
Proof: First assume A =V € G. Let f < VNU, g <V \suppf. Then f+¢g <V, so
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1 (V) > o(f+9) = ¢(f) +¢(g). Taking sup over g gives u* (V) > ¢(f)+p*(V \supp f) >
o(f) + p*(V\ U), so taking sup over f: p*(V) > p*(VNU)+ pu*(V\U).

General AC K. Let V€ G,V D A. Then p*(V) > p*(VNU)+p*(V\U) > p*(ANU) +
p*(A\ U). Taking inf over V gives p*(A) > p*(ANU) + p*(A\U).

It follows that B C M and p = p*|p is a Borel measure on K. Recall: u(K) = ¢(1g) =
llpl] < oo and p is regular by definition.

It remains to show that ¢(f) = [} fdu for all f € C(K). It is enough to show this for all
¢ € C®(K). Furthermore, it is enough to show that ¢(f) < [i fdu for all f € C*(K):
Replace f by —f to get the other inequality.

Let f € C®(K) and choose a < b in R such that f(K) C [a,b]. Wlog a > 0 (since
we know that our desired equality holds for constant functions). Fix ¢ > 0 and choose
0<yo<a<y <---<yp=bsuchthat y; —y;j_1 <eforall j. Let 4; = f~1((yj_1,y;]))
forj=1,...,n.

So K = U?Zl A; is a Borel partition of K. For each j choose U; € G, A; C U; with
w(U;) < u(Aj) + £ and U; € f1((yj—1,y; +¢€)). Then by Lemmathere exist h; < U;
such that 3%, hj = 1x. Then

n

o(F) =D e(fhi) <D oy +o)hy) = D (i +e)p(hy) < Y (y; +e)n(U;)
J J j=1

Jj=1

<D (-1 + 29)((A) + )
j=1

= / Z Yj—11la,dp + 2ep(K) + (b + 2¢)e
K “
7j=1

< / Fdu+ £(2u(K) + b+ 2¢)
K

Hence ¢(f) < [ fdu. O

Corollary 2.9. For every ¢ € M(K) there exists a unique reqular complex Borel measure
v on K such that o(f) = [ fdv for all f € C(K).

Moreover, ||¢|| = ||v|l; and if ¢ € M®(K), then v is a signed measure.

Proof. Existence: Lemma [2.6] and the theorem.
Uniqueness: Follows from |lp|| = ||v[];.

Proof of ||| = ||v||;: We have seen [|¢| < ||v|/;. Recall

[Vl = [V[(K) = sup{D _ |v(4;)| : K = ] A; is a Borel partition of K}.
j=1 j=1
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Fix a Borel partition K = U?:l Aj of K. For each j choose a closed set £/ C A; such
that [v|(A4; \ Ej) < £ (regularity). Note that E; C K\ Ul 1 E;. So there exist open sets

U; such that E; C U; CK\Ul 1Eland\1/\(U\E)<f SetE Uj=: B € UU;. By
I#]

Lemma there exist h; < U; such that Z 1hij <lon K and ) h; =1 on E. Note
that h; = 1 on Ej for all j.

Choose \; € C with [\;| =1 and |[v(E;)| = A\jv(E;). Then

Z\ =@ Z)\h Z/\/ (1p; — hy) dy<2/1E hj|d|v]

< Z\V\(UJ \Ej) <e

j=1
So
n
S w(4y)] <Z| D+ e < o> Aihy)| +2¢ < gl HZ)\ h H 42 < ||| + 2¢
j=1
This holds for all € > 0 and for all Borel partitions K = [Ji_; A, so [[v]l; < [l¢]|- O

Corollary 2.10. The space of regular complex (resp. signed) Borel measures on K is a
complez (resp. real) Banach space in |||, and it is isomorphic to M(K) = C(K)* (resp.
MR(K) = C¥(K)")
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3 Weak topologies

3.1 Weak topologies in general

Let X be a set and F a collection of functions such that each f € F is a function
[+ X — Yy where Y} is a topological space. The weak topology o(X,F) on X generated
by F is the smallest topology on X such that all f € F are continuous.

Remarks:

1. S={f"'(U) | f € F, Uisopen in Ys} generates o(X,F), i.e. is a subbase for it.
So o(X,F) consists of arbitrary unions of finite intersections of members of S. So
V C X is open in o(X, F) iff

VeeVIneN,fi,...,fn € F,open U; € Yy, s.t. x € m fj_l(Uj) cV.

j=1
Equivalently

Ve e VIneN,fi,..., fon € F, open neighborhoods Uj of f;(x) in Yy,

st. ()£ (U CV.
j=1

2. If Sy is a subbase for the topology of Yy (f € F), then {f~*(U) | f € F,U € 8} is
a subbase for o(X, F).

3. If Yy is Hausdorff for all f € F and F separates points of X (ie. v # y in X
= Jf € F: f(z) # f(y)), then o(X, F) is Hausdorff.

4. If Y C X, then let Fy = {f|y : f € F}. Then o(X,F)|y = o(Y, Fy).

5. Universal property: Let Z be a topological space and g : Z — X a function. Then
g is continuous iff for all f € F, fog:Z — Y} is continuous.

Examples.

1. Let X be a topological space, Y C X, ¢ : Y — X the inclusion map. Then o(Y, {¢})
is the subspace topology on Y.
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2. Let I" be a set and for each v € I', X, be a topological space. Let

X = H X, ={z | is a function on I" with z(y) € X, for all v € I'}.
vyerl’

For v € I' let 7, : X — X, be the projection onto X,.

The product topology on X is the weak topology o(X,{m, |y €T}). SoV C X is
open iff for all z € V there exist n € N, v1,...,7v, € I' and open neighborhoods U;
of z, in X, for 1 <i <n, such that {y = (yy)yer € X |y, €U;,1 <i<n} CV.

Proposition 3.1. Let X be a set and for each n € N let (Yy,,d,) be a metric space and
fn: X =Y, be a function. Assume F = {f, | n € N} separates the points of X. Then
o(X,F) is metrizable.

Proof. WLOG d,, < 1 for every n (replace d, with the equivalent metric min(d,,1) or

dfil). Define for =,y € X,

d(z,y) = 27" dn(ful(x), fa(y))-
n=1

It is easy to check that d is a metric.

Note that each f, is Lipschitz as a map (X,d) — (Y,d,) and hence continuous. Thus,
o = o(X,F) is contained in the metric topology of (X,d). Conversely, if each f, is
o-continuous, then (x,y) — d,(fn(x), fn(y)) is also o-continuous. So by the M-test,
d:(X,0) x (X,0) = R is continuous. So for x € X,e > 0, the ball {y € X | d(y,z) < e}
is o-open. Hence the metric topology of (X, d) is contained in o (X, F). O

Theorem 3.2 (Tychonov). The product of compact topological spaces is compact in the
product topology.

Proof. Let I' be a set, for each v € I', let X, be a compact space and let X = H'yEF X,
with the product topology.

Let A be a non-empty family of closed subsets of X with the finite intersection property
(fip.), i.e. for every n € N and Ay,..., 4, € A, (., A; # 0. We need to show that

ﬂAeA AF0.
By Zorn’s Lemma there exists a maximal (w.r.t. inclusion) family B of (not necessarily

closed) subsets of X such that A C BB and B has f.i.p. Then (4o 4 A 2 (\geg B- So it is
enough to shows that (\zep B # 0.

Observe if A C X and for all B € B, AN B # (), then A € B. Indeed, if By,...,B, € B,
then BU{(;"; B;} has fi.p. So by maximality ();_, B; € B, and so AN\, B; # 0. So
B U{A} has f.i.p., so again by maximality A € B.
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Fix v € I. {my(B) | B € B} has fip. As X, is compact, (\geg 7T (B) # 0. Choose
Ty € (pep ™y (B). Do this for every v € I' to obtain z = (2,),er € X. We show that
v € (e B-

Let V be an open neighborhood of z. We need VN B # () for all B € B. WLOG
V =L, 7, L(U;) where n € N, 71,...,7, € I and U; is an open neighborhood of z.,
in X,, (1 <i < mn). Since z,, € N\pepmy(B), Ui N7y, (B) # 0 for all B € B, so
71 (Ui) N B # 0 for all B € B.

So by the observation above, 77! (U;) € B. Hence V = (VL 7' (U;) € B. Thus VN B # ()
for all B € B. It follows that = € B for every B. O

3.2 Weak topologies on vector spaces

Let E be a real or complex vector space and F' be a subspace of the space of all linear
functionals on E that separates the points of FE, i.e. for all x # 0 in F there exists f € F
such that f(x) # 0. We consider the weak topology o(E, F). So U C E is open iff for
every x € U there exist n € N, f1,..., f, € F, ¢ > 0 such that {y € E' | |fi(y) — fi(zx)] <
£,1<i<n}CU.

For f € F define py : E — R, py(x) = |f(x)|. Let P = {ps | f € F'}. Then P is a family
of seminorms on E that separates points on E. The topology of the LCS (E, P) is exactly
o(E,F).

Lemma 3.3. Let E be as above. Let f,q1,...,gn be linear functionals on E such that
Ni—, kerg; C ker f. Then f € span{gi,...,gn}-

Proof. Define T : E — F" (F =R or C) by Tz = (g;x)i=1,...n. Then kerT =", ker g; C
ker f, so there exists a linear A : im 7T — F such that f = hoT. We can extend this to
h :F" — F. There exist ai,...,a, € F such that h(y) = > | a;y; for all y = (y;)i=1,..n €
F". Sofor all z € E, f(x) = hTz =1 | a;gi(x). O

Proposition 3.4. Let E, F be as above. A linear functional f on E is continuous w.r.t.
o(E,F)iff feF, ie (E,0(E,F))"=F.
Proof. “<” By definition of o(E, F).

“=7 If f is continuous, then V = {z € F | |f(z)| < 1} is an open neighborhood of 0. So
there exist n € N, g1,...,9n € F, e > 0such that U ={y € F | |g:(y)| <e&,1 <i<n} C
V. If z € (), ker g;, then for all scalars A, \x € U C V, so |f(Az)| = |A||f(z)] < 1. So
f(z) = 0. So by the previous Lemma, f € span{gi,...,gn} C F. O

Examples.
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1. Let X be a normed space. The weak topology on X is the weak topology o (X, X*).
(By Hahn-Banach, X* separates the points of X).

The weak topology on X is sometimes written w-topology and write (X, w) =
(X, 0(X, X7)).

An open set in (X, X*) is called weak-open or w-open.

So U C X is w-open iff for every x € U there exist n € N, fi,...,fn € X*, ¢ >0
such that {y € X | |fily —z)| <e,1<i<n} CU.

2. The weak-star topology or w*-topology on X* is the weak topology o(X*, X) where
we identify X with its image in X** under the canonical embedding X — X**.
Open sets of X™* in the w*-topology are called w*-open. U C X* is w* open iff for all
f €U, there exist n € N, x1,...,2, € X, € > 0 such that {g € X* | |(g — f)(x;)|] <
g, 1<i<n}CU.

Properties:

1. (X,w) and (X*,w*) are LCSs. So they are Hausdorff and addition and scalar mul-
tiplication are continuous.

2. o(X, X*) C norm-topology and equality holds iff dim X < oo.

3. o(X*, X) C o(X*, X**) C norm-topology. Equality in the first place holds iff X is
reflexive, equality in the second place holds iff dim X < co.

4. If Y is a subspace of X, then o(X, X*)|y =a(Y,{fly | f € X*}) =o(Y,Y™).

Similarly o(X™*, X*)|x = o(X,X"). So the canonical embedding X — X** is a
w-to-w*-homeomorphism from onto X.

Proposition 3.5. Let X be a normed space.
(i) A linear functional f on X is w-continuous iff f € X*, i.e. (X,w)* = X*.

(ii) A linear functional p on X* is w*-continuous iff ¢ € X, i.e. there exists x € X such
that o = 2. So (X*,w*)* = X.

It follows that o(X*, X) = o(X*, X**) iff X is reflezive.

Proof. (i) and (ii) are immediate from Proposition For the last statement: “<” is
clear. “=" Given p € X** ¢ is w-continuous, so w* continuous, so by (ii) there exists
x € X such that ¢ = 7. O

Definition. Let X be a normed space. A C X is weakly bounded if {f(z) | z € A} is
bounded for all f € X*E| Similarly, B C X* is w*-bounded if {f(x) | f € B} is bounded
forallz € X[

L& ¥ w-neighbhorhoods U of 0 there exists A > 0 such that A C \U.
24 W w*-neighborhoods U of 0 there exists A > 0 such that B C \U.
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Recall:

Lemma (Principle of Uniform Boundedness (PUB)). Let X be a Banach space, Y a
normed space, T C B(X,Y). If T is pointwise bounded, i.e. suppct [|[Tz|| < oo for every
x € X, then T is bounded, i.e. suppcr ||T]| < 0.

Proposition 3.6. Let X be a normed space.
(a) If A C X is weakly bounded, then A is ||-||-bounded.
(b) If X is complete and B C X* is w*-bounded, then B is ||-||-bounded.

Proof.

(a) A:={Z|ax e A} C X** = B(X*,F). As A is w-bounded, A is pointwise bounded
and hence ||-||-bounded by PUB. Thus A is ||-|-bounded since for all x € X, ||Z|| =
]]-

(b) B C X* = B(X,F). If B is w*-bounded, it is pointwise bounded, so it is bounded
by PUB.

O]

Notation: Let X be a normed space.

1. If a sequence (zy), in X converges to € X in the weak topology, then we write
w
xn, — X and say that (x,) weakly converges to x.

This happens iff (x,, f) — (z, f) for all f € X* iff Z,, — T pointwise.

2. If a sequence (f,)n, in X™* converges to f € X* in the w*-topology, then we write

fn v, f and say that (x,) w*-converges to f.
This happens iff (z, f,) — (z, f) for all z € X, i.e. iff f,, — f pointwise.
Recall:

Lemma (Consequence of PUB). Let X be a Banach space, Y a normed space and (1},)
a sequence in B(X,Y). If T,, = T pointwise on X for some function T : X — Y, then
T € B(X,Y) and |T|| < liminf,  [|T,] < sup, ||Tn|] < occ.

Proposition 3.7. Let X be a normed space.

(i) If x, = x in X, then sup ||z, || < oo and ||z|| < liminf ||z,]|.

(ii) If X is complete and f, v, fin X*, then sup,, || fn|l < o0 and || f]| < liminf || f,||.
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3.3 Hahn-Banach separation theorems

Let (X, P) be a LCS. Let C be a convex subset of X with 0 € Int C'. Define uc : X — R,
po(x) =inf{t > 0|z € tC}. Givenz € X, x/n — 0 as n — oo, so there exists n € N such
that x/n € C, i.e. x € nC, so uc is well-defined. puc is called the Minkowski functional
(or gauge functional) of C.

Example. If X is a normed space and C' = Bx, then pc = |||

Lemma 3.8. uc is positive homogeneous and subadditive. Also
{freX|pc(x) <1} CCC{reX|puc(x) <1}
If C is open (resp. closed), then the first (resp. second) inclusion is an equality.

Proof. Homogeneity is obvious.

Observation: If t > uc(z), then x € tC. Indeed, if t > pc(x), then there exists s < ¢

such that x € sC. Then 7 = 3% + (1 — %) -0 € C by convexity. So « € tC. Now given
z,y € X, for s > pc(z),t > pc(y), we have z € sC,y € tC. So iii’ =shst SL—H% eC

by convexity, so puc(x +y) < s+ t. Taking inf over s,t gives pc(z +y) < pe(z) + po(y).

If pc(x) < 1, then x € C by the observation. Assume C' is open and z € C. We have
(1 + %)x — x € C, C open, so there exists n € N such that (1 + %)x € C,so uo(x) < 1.

If x € C, then by definition pc(z) < 1. Assume C is closed and pc(x) < 1. Then
(1—%)1’—>an(21 (1—%)3060,SoxeCasC’isclosed. O

Remark: If C' is symmetric in the real case (i.e. v € C = —z € C) or balanced in the
complex case (z € C,a € C,|a] =1 = ax € (), then p¢ is a seminorm. If in addition,
C' is bounded (i.e. ¥ Neighborhoods U of 0 3t > 0 : C' C tU, equivalently every p € P is
bounded on C), then u¢ is a norm.

Theorem 3.9 (Hahn-Banach Separation Theorem). Let (X,P) be a LCS, C an open,
convez subset of X with 0 € C' and let xo € X \ C. Then there exists f € X* such that
for every x € C, f(x) < f(xo) (real case) or Re f(z) < Re f(zo) (in the complez case).

Proof. WLOG the scalar field is R. Indeed, in the complex case for all real-linear f : X —
R there exists a unique complex-linear g : X — C such that f = Reg.

Let Y = spanzg and g : Y — R, g(Axg) = Auc(zp). Then g is linear and for all A > 0,
g(Axo) = pe(Azp) and for all A < 0, g(Axo) = Auc(zo) < 0 < pc(Axp). So for all y € Y,
9(y) < pe(y). By the first version of Hahn-Banach there exists a linear f : X — R such
that fly = g and f < pc on X. Then for every x € C N (=C), f(x) < pec(z) < 1
and —f(z) = f(—z) < pe(—z) < 1. So |f(z)| < 1. So for € > 0, |f| < € on the open
neighborhood ¢(C' N (—C)) of 0. So f is continuous at 0, hence f € X*.

For all o € C, f(x) < po() < 1 < pe(xo) = f(xo). O
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Theorem 3.10 (Hahn-Banach Separation Theorem). Let (X,P) be a LCS, A, B non-
empty disjoint, convex subsets of X.

(i) If A is open, then there exist f € X*,a € R such that for all x € Ay € B,

fl) <a < f(y).

(ii) If A is compact and B is closed, then there exists f € X* such that supy f < infp f.

Proof.

(i)

Fixa € A,be B. Let C = A—B+b—a,r9g = b—a. Then C is convex and
C=Uyep(A—y+b—a)isopen, 0 € C and 7y ¢ C as ANB = . So there
exists f € X* such that for all z € C, f(2) < f(zo). So for every x € A,y € B,
f(z) < f(y). Let @ = infp f. This exists and for all x € A,y € B, f(z) < a < f(y).
Since f # 0, there exists u € X, f(u) > 0. Given z € A, x + %u — x and A is open,
so there exists n € N with « + 2u € A and hence f(z) < f(z + iu) < a.

Claim: There exists an open, convex neighborhood U of 0 such that (A+U)NB # (.
Proof of claim: For all x € A there exists an open neighborhood V,, of 0 such that
(x+Vz)N B =10 as B is closed. Since addition is continuous, there exists an open
neighborhood W, of 0 such that W, + W, C V,. Since A is compact, there are
finitely many points 1, ...,z, € A such that A C (JI" , (z; + Wy,). Since ()7 W,
is an open neighborhood of 0, there exist m € N,p1,...,pm € P,e > 0 such that
U={zre X |pz) <el<i<n} C(), Wy Then U is an open, convex
neighborhood of 0. We show (A4 U) N B = (). Given z € A, there exists ¢ such
that x € z; + Wy,. Hence x +U C z; + Wy, + U Cx; + W, + Wy, C x; + V. So
(x+U)N B =0 and thus (A+U)N B = 0.

Then A + U is open and convex, so by (i) there exists f € X*, a € R such that for
allz € A+ U,y € B, f(x) < a < f(y). As f is continuous, sup, f is attained, so
supy f < a <infp f.

O]

Remark: The way the theorem is stated is for real spaces. For the complex case replace f
in the inequalities by Re f.

3.4

Consequences

Theorem 3.11 (Mazur’s theorem). Let X be a normed space and C' be a convex subset.
Then O/ =T, In particular C is ||-||-closed iff C is w-closed.

Proof. Since the w-topology is weaker than the ||-||-topology, ol C C". For the converse,
fixz e X \6”'“. Apply Theorem (i) to A = {z}, B = ¢ in the LCS X to get

29



f € X* such that f(z) <infz f = a. The set {y € X | f(y) < o} is a w-neighborhood
of z disjoint from C. So 6”'” is w-closed, hence C* = GH’”. ]

Corollary 3.12. Assume x, — 0 in a normed space X. Then for all e > 0 there exists
x € conv{z, | n € N} such that ||z| < e.

Proof. Let C = conv{z, | n € N}, so by Mazur’s theorem o'l = C" 500 ¢ ol O

qn

Remark: So there exist p1 < q1 < p2 < g2 < ... in N, convex combinations z, = i—pn tix;

such that z, — 0 in [|-]|.

Theorem 3.13 (Banach-Alaoglu). For any normed space X, the dual ball Bx+ is w*-
compact.

Proof. For x € X, let K, = {\ € F | [\ < [[z[[}. Let K = [[,cx K, with the product
topology, which is compact by Tychonov’s theorem. We can view K = {f : X — R |
f(z) € K, for all x € X}. Then Bx- = {f € K | f linear}.

Let m, : K — K, be the projection onto K, i.e. m,(f) = f(x). So mz|py. = Z|By.
(z € X**). Then o(K,{m, | x € X})|By. = 0(Bx+,{Tz|By. | * € X}) = (Bx~,w").

So it is enough to check that Bx- is closed in K.

Bx+={f €K | ﬂ')\x—l—uy(f) — Az (f) _l“ry(f) =0,Y\,peF,z,yc X}

= ﬂ (Taatpy — Ame — pmy) " H({0}) s closed
ATy

O]

Proposition 3.14. Let X be a normed space and K a compact Hausdorff space. Then
(i) X is separable iff (Bx~,w*) is metrizable.
(ii) C(K) is separable iff K is metrizable.

Proof.

(i) “=” Let {z, | n € N} be dense in X. Let f, : Bxx = F, fu(v) = ¢(x,), ie.
fn = §n|3;( for n € N. Let F = {f, | n € N}. Note that if ¢,9 € Bx- and
fu(p) = fu(@) for all n, then p(z,) = ¥(zy,) for all n, then ¢ = ¢ by density,
so F separates points. By Proposition the weak topology o = o(Bx=,F) is
metrizable. Since o is weaker than the w*-topology, id : (Bx+,w*) — (Bx=,0) is
a continuous bijection. (Bx«,w*) is compact by Banach-Alaoglu and (Bx=+,0) is
Hausdorff, so id is a homeomorphism, so ¢ is the w*-topology.
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(ii) “=" Let X = C(K). By (i) “=” (Bx=,w") is metrizable. Define § : K — (Bx»,w"),
k +— & where 0r(f) = f(k),f € X = C(K). ¢ is injective by Urysohns’s Lemma.

§ is continuous: Let f € X. Consider fod. For k € K, (foé)(k:) = f(k), so foo=f
is continuous for all f € X, so ¢ is continuous by the universal property of the weak
topology.

So § : K — (Bx+,w*) is a continuous injection; K is compact and (Bx+,w*) is
Hausdorff, so it is a homeomorphism onto its image and thus K is metrizable.

“<” Let d be a metric on K that induces the topology of K. Since (K,d) is a
compact metric space, it is separable, so there exists a dense set {k, | n € N}. Let
fu(k) = d(k, k) for every n € N,k € K. These separate the points of K as the k,
are dense in K. Let A be the subalgebra of C(K) generated by the f,. This is a
subalgebra of C'(K) that separates points of K, contains 1x, and in the complex
case, closed under conjugation. So by the Stone-Weierstral theorem A = C(K).
Since A is separable, so is C(K).

(i) “«<” Assume that K = (Bx-,w") is metrizable. So by (ii), C(K) is separable.
Define T': X — C(K) by (Tz)(f) = f(z) forx € X, f € K, ie. Tx = Z|p,.. Then
T is linear and ||Tz|,, = [|z|. So X = T(X), so X is separable.

O]

Remarks:
1. If X is separable, then (Bx«,w*) is compact, metrizable, so sequentially compact.
2. X separable = X* w*-separable (note that X* = J,,cxynBx+).
By Mazur, X is separable iff X is w-separable.
If X is w-separable, then X™* is w*-separable. The converse is false, e.g. X = f..

3. If K is compact Hausdorff, then K is a subspace (i.e. homeomorphic to a subset) of
(Be(kys w™).
4. Any normed space X embeds isometrically into C'(K) for some compact Hausdorff

K. If X is separable, then can take K to be a compact metrizable space, e.g.
K = (Bx~,w").

Proposition 3.15. X* is separable iff (Bx,w) is metrizable.
Proof. “=” If X* is separable, then (Bx+,w*) is metrizable. Since (Bx,w) is a subspace
of (Bx+,w*) (under the canonical embedding), we are done.

“<” If (Bx,w) is metrizable, then there exists a sequence (V,,), of w-neighborhoods of
0 in Bx such that every w-neighborhood U of 0 in Bx contains one of the V,,. WLOG
for all n € N, there exist a finite set F,, C X* &, > 0 such that V;, = {x € Bx | f €
F, :|f(z)] < en}. We show that span|J F,, = X*, then we are done. Let g € X*, ¢ > 0.
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Then U = {z € Bx | |g(x)| < €} is a w-neighborhood of 0, so there exists n € N with
Vo CU. Then on (\;cp ker f N Bx we have [g] < ¢, Le. Hg|nfEF ker || < €. By Hahn-
Banach there exists h € X* such that h|ﬂfan ker f = g|mf€Fn er f and [|h|| < e. Then

ﬂfan ker f C ker(g — h), so by Lemmag—hESpanFn. O

Theorem 3.16 (Goldstine’s Theorem). For any normed space X, Ew* = Bxs.
Proof. (Bx»,w") is compact by Banach-Alaoglu and hence closed in X**. Hence ?Xw* C
By+. Now let ¢ € X*\ Bx" . We need: || > 1, then we are done. Let A = {i},

B = E}U( ._Then A, B are non-empty, disjoint convex sets. A is compact, B is closed. By

-~

Theorem [3.10| (ii) there exist f € X* such that f(p) = ¢(f) > supg f > supp, f =
supp, f = [If]l. Since |p(f)] < [lll - [If]l, we have [lg]| > 1. O

*

Remark: So if X is separable, then X** = [, nBx " is w*-separable. So G, = 07" is
w*-separable.

Theorem 3.17. Let X be a Banach space. Then TFAE
(i) X is reflexive.

(i) (Bx,w) is compact.

(iii) X* is reflexive.

Proof. “(i) = (ii)” Since X is reflexive, (Bx,w) = (Bx»+,w*) is compact (by Banach
Alaoglu).

“(it1) = (i)” (Bx,w) is a compact subset of (Bx=,w*) and hence w*-closed. But by
Goldstine By« = Bx = Bx,so X™ = X.

“(i) < (i77)” has been proved on sheet 1. Alternative proof: “(i) = (iii)”: If X is reflexive,
then on X* the w-topology is the same as the w*-topology. So (Bx+,w) = (Bx=,w*) which
is compact by Banach-Alaoglu. By “(ii) = (¢)”, X* is reflexive. “(#ii) = (i7)” If X* is
reflexive, then on X** the w-topology and w*-topology are the same. So By« is w-
compact by Banach-Alaoglu. Bx C By« and Bx is convex, ||-||-closed (as X is complete)
and hence w-closed by Mazur. Hence By is w-compact. O

Remark: If X is a separable, reflexive space, then (Bx, w) is compact and metrizable, and
hence sequentially compact.

Lemma 3.18. Let (K,d) be a non-empty, compact metric space. Then there exists a
continuous surjection ¢ : A — K where A = {0, 1} with the product topology.

3Note that (X**,o(X*™, X*))* = X*.
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Proof. For each € € ¥ = J;2({0,1}" we define a non-empty closed subset K. of K such
that

o Kyp=K.
o K. =K. oUK;
® max.c(g,1}» diam K. — 0 as n — oo.

This can be done inductively using the following fact: If A # ) is a closed subset of K,
then A is totally bounded, so for all € > 0 there exist n € N, closed B; C A,1 < i <mn
such that A = (J; B; and diam B; < ¢ for all .

Let ¢ : A — K be as follows: ¢((g;)72;) is the unique point in L = ()72, K¢, ..., . For all
n, diam L < diam K., ., — 0,80 #L <1, and L # 0 since {K;, ., | n € N} has the
fip.

Lyeeey
¢ continuous: Given € = (£;)72;, n € N and ¢ = (6;):2, such that §; = ¢; for 1 <i < n,
then d(p(0), p(e)) < diam K., ..

¢ is onto: Given x € K, construct €1,€9,... such that for all n, x € K., ... Then
p((e)i2y) = . O
Remark: A is homeomorphic to the middel-third Cantor set via (£;)5°; +— > 20 (2¢;)37".

Theorem 3.19. Ewvery separable normed space X embeds isometrically into C10,1].

Proof. Let K = (Bx~,w*). This is a compact metrizable space. By the proof of Propo-
sition X embeds isometrically into C'(K). By the previous Lemma there exists a
continuous surjection ¢ : A — K. (Here think of A as the middle-third Cantor set)

So we get C(K) = C(A), f — fop. Finally, C(A) S C[0,1] by piecewise linear

extension f +— f (use that [0,1] \ A = J,,(an,bn) disjoint union). O

Remark: So C[0,1] € SB and C|0, 1] is isometrically universal for SB.
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4 Convexity and the Krein-Milman theorem

Let X be a real (or complex) vector space and let K be a convex subset of X. A point
z € K is an extreme point of K if whenever z = (1 —t)y +tz with y,z € K and t € (0, 1),
then y = z = x. Let Ext K be the set of extreme points of K.

Examples.
o Ext Bge ) = {£e1, tea}.
o Bxt Bz, = Sz,
e ExtB,, = 0: Given z = (2;)%, € By, choose n € N such that |z,| < 5. Let
y:x+%en,z:mf%en. Then y,z € B, and z = %(y+z), y#x,zF T,

Theorem 4.1 (Krein-Milman). Let (X,P) be a LCS and K a compact convex subset of
X. Then K =conv Ext K. So in particular, if K # (), then Ext K # ().

Corollary 4.2. If X is a normed space, then Bx- = conv®” (Ext Bx+). So Ext Bx« # 0.

~

Remark: So there does not exist a normed space X such that X™* & ¢.

Definition. Let (X,P) be a LCS and K a non-empty, compact, convex subset of K. A
face of K is a non-empty closed, convez subset F' of K such that whenever (1—t)y+tz €
for some y,z € K,t € (0,1), theny,z € F.

Examples.
1. K is a face of K, and for x € K, {z} is a face iff it is an extreme point of K.

2. Let f € X* and a =supg f. Then E = {x € K | f(x) = a} is a face of K. Indeed,
FE is non-empty, compact, convex and if y,z € K, t € (0,1) and x = (1—t)y+tz € E,
then a = f(x) = (1 —=t)f(y) + tf(z) < (1 —t)a+ta = a, so f(y) = f(z) = a, ie.
Y,z € .

3. If F'is a face of K, and FE is a face of F', then F is a face of K. So if x € Ext F,
then = € Ext K.

Proof of Theorem[{.1. WLOG K # (.

Claim: Ext K # (). Proof of claim: By Zorn’s Lemma there exists a minimal face F of
K w.r.t. inclusion. Suppose there exist x #% y in F. Since X* separates the points of X,
there exists f € X* such that f(x) < f(y). Let a =supp f and E = {z € F | f(2) = a}.
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Then E is a face of F' and hence of K and F C F as ¢ E. This is a contradiction, so
F = {w} for some w which means w € Ext K.

Now let L = conv Ext K. Since K is closed and convex, L C K. Assume there exists xg €
K \ L. Then by Hahn-Banach separation there exists f € X* such that f(z¢) > supy, f.
Let @ = supg f and F = {z € K | f(x) = a}. Then F is a face of K, so by the claim
there exists z € Ext FF C Ext K. But F N L = () since o > f(x0), so z ¢ L. O

Lemma 4.3. Let (X,P) be a LCS and K a compact subset of X and o € K. Then for
any neighborhood V' of xg there exist n € N, f1,..., fn € X*, a1,...,a, € R such that
roe{reX | filz)<a; for1<i<n}nNKCV

Proof. Let 7 be the topology of (X, P) and let o = o(X, X*) be the weak topology on X
generated by X* = (X, 7)*. By definition ¢ C 7. So id : (K,7) — (K, 0) is a continuous
bijection from a compact space to a Hausdorff space, hence a homeomorphism. ]

Lemma 4.4. Let (X,P) be a LCS, K C X non-empty, compact, conver and o € Ext(K).
Then if V is a neighborhood of xq, there exist f € X*, a € R such that z¢g € {x € X |
flz)<a}nNK CV.

Proof. By Lemma [£.3] there exist n € N, f1,..., fn, € X*,a1,...,a, € R such that z¢ €
{r e X | filz) <ajyi =1,...,n} NK CV. Let K; = {x € K | fi(x) > «;} for
i=1,...,n. Let L =conv|J;_, K;. Note that each K; is convex, compact, z¢ ¢ ", K;,
K\V CUL K, and L = {> 0" tiwi | Vi : z; € Kit; > 0,>.0 t; = 1} (as each
K; is convex). Since zg € Ext(K), whenever z = Y 1" tiy;, y; € K, t; > 0 for all 4,
Somti=1,then yy = - = ym =z, so xg ¢ L. Since L is the continuous image of the
compact space Ki x Ko x -+ x K, x {(t;).y € R" : t; > 0Vi, > t; = 1} under the map
(1, .oy T, (L)1) = D iz, it follows that L is compact. WLOG L # (), otherwise K C
V and the result is clear. By Hahn-Banach there exists f € X* such that f(zg) < infy, f.
Let o € R be such that f(z9) < a <infy f. Then zp € {x € X | f(z) < a} N K and this
set is disjoint from L, hence disjoint from K \ V, so contained in V. 0

Theorem 4.5 (Partial converse to Krein-Milman). Let (X,P) be a LCS, K C X non-
empty, convex, compact and S C K. If K = convS, then Ext K C S.

Proof. Suppose there exists 29 € Ext K\ S. Then V = X \ S is a neighborhood of z¢. By
Lemma [4.4] there exist f € X* and o € R such that zp € {z € X | f(z) <a}NK C V.
Let L = {z € K | f(z) > a}. Then L is closed and convex with L O S, and hence
L D convS = K, a contradiction to zg ¢ L. O

Example. Let K be a compact Hausdorff space. Then
Ext(Be(iy+) = {A\k | A scalar, M| =1,k € K}

where 0 (f) = f(k) for f € C(K) (see Sheet 3).
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Theorem 4.6 (Banach-Stone theorem). Let K, L be compact Hausdorff spaces. Then K
and L are homeomorphic iff C(K) = C(L).

Proof. “=" is obvious. “«<” Let T : C(K) — C(L) be an isometric isomorphism. Then
T* : C(L)* — C(K)* is an isometric isomorphism. So T*(B¢(r)<) = Be(k)+ and hence
T*(Ext Bory-) = Ext Bo(y+. Thus for all I € L there exist a scalar A(), [A(I)| = 1, and
QD(Z) € K such that T*((;l) = A(l)éw(l) Then )\(l) = (T*((Sl))(lK) = (Sl(TlK) = (TlK)(l),
ie. A =T(1x) € C(L).

So d,q) = MDT*(6;) for I € L. Since § : L — (Bg(ry+,w™) is continuous (see proof of
Proposition , A is continuous and T™ is w*-to-w*-continuous, it follows that I — d,)

is continuous and hence ¢ is continuous as § : K — (BC( K)+>w") is a homeomorphism
K — §(K).

¢ injective: If p(l1) = p(l2), then T*(A(11)d1,) = Sp1y) = Sp) = T7(A(l2)d1,) and hence
A1), = A(l2)0y,. Evaluate at 11, to get A({1) = A(l2), and hence §;;, = d;, and hence
I =ls.

¢ surjective: Given k € K there exist u scalar, |u| = 1, and [ € L such that T*(ud;) = 0.
So puA(1)dy) = k- Evaluate at 1x to get uA(l) = 1, so d,() = dy, i.e. p(l) = k.

Now ¢ : L — K is a continuous bijection, and hence a homeomorphism. ]
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5 Banach algebras

A real or complex algebra is a real or resp. complex vector space A with a bilinear map
Ax A— A, (a,b) — ab such that a(bc) = (ab)c for all a,b,c € A.

A is a unital algebra if there is a (necessarily unique) element 1 € A such that 1 # 0 and
la =al = a for all a € A. 1 is called the unit of A.

An algebra norm on an algebra A is a norm ||-|| on A such that ||ab|| < ||a||||b]] for all
a,b € A. Thus multiplication is continuous w.r.t. ||-|.

A normed algebra is an algebra with an algebra norm. A Banach algebra is a complete
normed algebra.

A wunital normed algebra is a unital algebra with an algebra norm such that ||1]] = 1.

Note that if A is a unital algebra with an algebra norm ||-||, there exists an equivalent
algebra norm |||-|| on A such that ||1]| = 1, e.g. ||a|| = sup{||ad|| : ||o]| < 1}.

Let A, B be algebras. A homomorphism from A to B is a linear map 6 : A — B such that
for all z,y € A, O(xy) = 6(x)0(y).

If A, B are unital with units 14, 15, resp., then € is a unital homomorphism if §(14) = 1.
Say 6 is an isomorphism if 6 is a bijective homomorphism.

Note: If A, B are normed algebras, then a homomorphism A — B is not assumed contin-
uous. But isomorphisms will be assumed to be homeomorphisms.

Note: From now on the scalar field is C.
Examples.

1. Let K be a compact Hausdorff space. Then C'(K) is a commutative, unital Banach
algebra under pointwise multiplication.

2. Let K be as in 1. A uniform algebra on K is a closed subalgebra of C'(K) that
separates the points of K and contains the constant functions. E.g. the disc algebra
A(A)={f € C(A) | f is holomorphic on Int A} where A = {z € C | |2| < 1}. More
generally, let K C C, K # () compact. Then we have the following uniform algebras
on K:

P(K) € R(K) € O(K) € A(K) € C(K)
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where P(K), R(K),O(K) are the closures in C(K) of, respectively, polynomials,
rational functions without poles in K, holomorphic functions on some open neigh-
borhood of K, and A(K) = {f € C(K) | f is holomorphic on Int K'}. Later we will
see that always R(K) = O(K) and P(K) = R(K) iff C\ K is connected (this is
Runge’s Theorem). In general R(K) # A(K). A(K) = C(K) iff Int K = (.

. L1(R) with the Li-norm and convolution as multiplication is a commutative B.A.

without a unit (e.g. by the Riemann-Lebesgue lemma).

. Let X be a Banach space. Then B(X) with the operator norm and composition as

multiplication is a unital B.A. It is not commutative if dim X > 2. Special case: X
is a Hilbert space. Then B(X) is a C*-algebra (later).

Elementary constructions:

1.

Subalgebras: Let A be an algebra and B a subalgebra of A. If A is unital with
unit 1, we say B is a unital subalgebra if 1 € B. If A is a normed algebra, then B
(closure of B in A) is also a subalgebra.

. Unitization: Let A be an algebra. The unitization of A is the vector space A, =

A & C with multiplication (a, \)(b, 1) = (ab + Ab + pa, Ap). Then Ay is an algebra
with unit 1 = (0,1). The set {(a,0) | a € A} is an ideal of Ay, isomorphic to A.
Under this identification, write Ay = {a+ Al |a € A, X € C}.

If A is a normed algebra, then so is Ay with norm [ja + A1]| = ||a|| + |A|. So A4 is a
unital normed algebra, and A is a closed ideal of A. If A is a Banach algebra, then
A4 is a unital Banach algebra.

. Ideals: Let A be a normed algebra. If J is an ideal of A, then sois J. If .J is a closed

ideal of A, then A/J is a normed algebra with the quotient norm. If A is unital and
J is a proper closed ideal (i.e. J # A), then A/J is a unital normed algebra with
unit 14 J.

. Completion: Let A be a normed algebra. Let A be the Banach space completion

of A. Then the multiplication on A extends to A and A becomes a Banach algebra
that contains A as a dense subalgebra.

. Let A be a unital Banach algebra. For a € A define L, : A - A,x — ax. Then L,

is a bounded linear map. The map a +— L, : A — B(A) is an isometric homorphism.

So every Banach algebra is a closed subalgebra of B(X) for some Banach space X.

Lemma 5.1. Let A be a unital Banach algebra and a € A. If |1 —a| < 1, then a is

invertible. Moreover, |ja™!|| <

1
I-[1-all”

Proof. Let h =1 —a. Then ||h|| < 1 and for all n, ||A™|| < ||A]|". Hence b := > " h"
converges absolutely, and so converges. Then b is the inverse of a and ||b]| < Y07 ||h||" =

1

1—[[R[*

O
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Notation: For a unital algebra A, we let G(A) = {a € A | a is invertible}.

Corollary 5.2. Let A be a unital Banach algebra.
(i) G(A) is open.
(i) z+— 271 G(A) = G(A) is continuous.
(iii) If z, is a sequence in G(A) and x, — v & G(A), then ||z, || — .
(i) If z € OG(A) = G(A) \ G(A), then there is a sequence (z,) with ||z,| =1 for alln
such that zpx — 0 and 2, — 0 as n — oo (z is a “topological divisor of zero”). It

follows that x has no left or right inverse in A or even in a unital Banach algebra
B that contains A as a subalgebra (isometrically).

Proof.

(i) Let z € G(A),y € A, assume ||y — z|| < Hl“ll\ Then |1 — a7 y| < |27 |z — vl <
1, so 271y is invertible and thus y = z(z~1y) € G(A).

(ii) Fix z € G(A). Let y € G(A). Then y ! —z ! =y Yz —gy)a™t So |yt -2} <
ly= Ml =yl lz= |- I llz =yl < g=rps then [y~ — e < lly™! — 27| <
3y~ and hence [ly || < 2[l27*|l. Thus if |z — y|| < g, then [y~ — 27 <
2|z Pz — yll = 0 asy — 0.

(i) From (i), if y € A, |ly — x| < || o then y € G(A). Hence for all n, ||z — z,|| >

L, hence Hx,_LIH — 00.

[l

(iv) Choose (x,) in G(A) such that =, — x. let z, =

B ,1” Then ||z, || = 1 for all n. So

[zl = llzn2n + 2n(2 — 20)]| < ‘ + llznll [l = znll = m + llz = znll = 0

Tl

as n — oo by (iii). Similarly, zz, — 0.

If y € B and yx = 1p, then 2, = yxz, — 0. Similarly, z has no right inverse in B.
O

5.1 Spectrum and Characters

Definition. Let A be an algebra and x € A. We define the spectrum o4(z) of x in A as
follows: If A is unital, then oa(x) ={A € C| A\l —x ¢ G(A)}. If A is not unital, then
oa(z) =oa, ().

Examples:

1. A = M,(C) the set of n x n complex matrices, z € A. Then o4(x) is the set of all
eigenvalues of x.
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2. A=C(K), K compact Hausdorff, f € A. Then o4(f) = f(K) as g € A is invertible
iff 0 ¢ g(K).
3. If X is a Banach space, A = B(X), T € A, then

oa(T) ={A € C| A —T is not an isomorphism}.

Theorem 5.3. Let A be a Banach algebra, x € A. Then o4(x) is a non-empty, compact
subset of {\ € C | |A| < ||z||}.

Proof. WLOG A is unital. The map C — A, A\ — Al — x is continuous and o 4(z) is the
inverse image of A\ G(A) which is closed by the previous result. So o4(z) is closed. If
Al > ||z|, then ||| < 1, so 1 — % is invertible, hence A — z is invertible, i.e. A & oa(z).
Hence o4(x) C {\ € C| |A| < |lz||}. Thus the spectrum is compact.

Suppose o 4(z) = 0. Then we can define R: C — G(A) C A by R(A) = (A1 —z)7L. Tt is
continuous. In fact it is holomorphic:

R(A) = R(p) = RA)((pl — =) = (AL = 2))R(p) = (n = A R(A) R(p)

So %ﬁ(“) = —R(A\)R(p) = —R(p)? as X — p as R is continuous.

If [A| > |||, then R(A) = +(1—%)~1, s0 [|[R(N)|| < ‘—ih_’l’%” = w—lnxu — 0as |\ — oco. By
vector-valued Liouville (Theorem [L.8), R = 0 which is a contradiction. So oa(z) #0. O

Corollary 5.4 (Gelfand-Mazur). A complez unital normed division algebra A is isomet-
rically isomorphic to C.

Proof. Define 6 : C — A,0(\) = Al. Then 0 is isometric and a homomorphism. We prove
it is surjective. Let B be the completion of A. Given z € A, op(x) # () by the theorem.
Pick A € op(z). Then A1 —x ¢ G(B) and so \1 —x ¢ G(A). Since A is a division algebra,
Al —x=0and so z = 0(A). O

Definition. Let A be a Banach algebra and x € A. The spectral radius of x in A is
ra(@) = sup{|A | A € oa(a)}.
Note that r4(z) < ||lz||.

Note: Let A be a unital algebra, z,y € A. Assume zy = yx. Then zy € G(A) iff z € G(A)
and y € G(A) (obvious).

Lemma 5.5 (Polynomial Spectral Mapping Theorem). Let A be a unital Banach alge-
bra, x € A. Then for any complex polynomial p(z) = S j_, axz® we have oa(p(z)) =
ploa(@)) ={p(A) [ A € oa(z)}.
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Proof. This is clear for constant polynomials as 04(A1) = {A}. Assume n > 1 and a,, # 0.
Fix p € C. We write p — p(z) = c[[}—;(\j — 2) where ¢ # 0,A1,..., A, € C. Then
pl —p(x) = c[[i_; (A1 —2). So pu € oa(p(w)) iff there exists j such that \; € oa(x) iff
there exists A € o4(z) such that g = p(\) as p~1(u) = {A1,..., \n} O

Theorem 5.6 (Beurling-Gelfand Spectral Radius Formula). Let A be a Banach algebra,

e ",

x € A. Then ra(z) =lim,_ || = infpen ||z

Proof. WLOG A is unital. If A\ € o4(x), then A" € o4(2"), and hence |\"| < [|z"|,
ie. [A| < [|z"|Y™. Tt follows that r4(z) < infpey ||z”||Y™. Consider R : {\ € C |
IA| > ra(x)} = G(A) C A, R(\) = (Al — )~ L. As in the proof of Theorem this is
holomorphic. Fix ¢ € A*. Then po R: {\| |A\| > ra(z)} — C is holomorphic, and hence
it has a Laurent expansion. For [A| > ||z|| (= ra(z)), R(\) = 1(1-%)"1 = 13>, f{—z So
o R(A) =>7°  ¢(a™)5rr. This is the Laurent expansion of ¢ o R on {A | |A| > ra(z)}.
Fix A € C with [A| > ra(z). Then @(z"/A") — 0 for every ¢ € A*. Thus {4 | n € A} is
weakly bounded, and hence norm bounded. Fix M > 0 such that for all n € N, H f\—z H <M,
so ||z™|Y™ < MY/7|A|. Hence limsup [|#™||Y/™ < |A| for every A with |A| > ra(z). O

Theorem 5.7. Let A be a unital Banach algebra, B a closed unital subalgebra of A,
x € B. Then op(x) 2 oa(x) and dopg(x) C doa(x). It follows that op(x) is the union of
oa(x) together with some of the bounded components of C\ o4(x).

Proof. op(x) 2 oa(x) is trivial as G(B) C G(A).

Let A € dop(x). Choose (\,) in C\ op(x) such that A\, — X\. Then \,1 —z € G(B)
for all n and \,1 —2 — A\l — 2 ¢ G(B). So A\l —x € 0G(B). By Corollary |5.2| (iv),
Al —x ¢ G(A). Since A\, 1 —z € G(A) for all n, it follows that A\ € doa(z). O

Proposition 5.8. Let A be a unital Banach algebra and C a mazximal commutative sub-
algebra of A. Then C is closed and unital and for every x € C, oc(x) = ca(x).

Proof. C is also a commutative subalgebra, so C' = C by maximality. C' + C1 is also a
commutative algebra, so again by maximality 1 € C. Fix z € C. We know that o¢(x) 2
oa(x). Let A ¢ 04(x). Then there exists y € A such that y(Al —x) = (Al — z)y = 1. For
any z € C, we have z(A\l —z) = (Al — z)z, so yz(Al — z)y = y(Al — x)zy, so yz = zy.
So the subalgebra generated by C' and {y} is commutative. By maximality y € C' and so
A ¢ oc(x). O

Definition. A character on an algebra A is a non-zero homomorphism A — C. Let ® 4
be the set of all characters of A.
Note: If A is unital and ¢ € ® 4, then p(1) = 1.

Lemma 5.9. Let A be a Banach algebra, ¢ € ®4. Then ¢ is bounded and |p| < 1.
Moreover, if A is unital, then ||¢|| = 1.
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Proof. WLOG A is unital: define ¢ : Ay = Cby py(z+A1) = p(x)+A. Then py € @y,
and 1|4 = A. Given z € A, if |p(x)| > ||z|, then ¢(x)1 —x € G(A), so there exists
y € A such that (p(z)l —x)y = 1. Apply ¢: Then 0- ¢(y) = ¢(1) = 1, a contradiction.
Hence |¢(x)| < ||z||. Since ¢(1) = 1, it follows that ||¢|| = 1 in the unital case. O

Lemma 5.10. Let A be a unital Banach algebra. If J is a proper ideal of A, then the
ideal J is also proper. Hence mazimal ideals are closed.

Proof. Since J is proper, JNG(A) = (. Since G(A) is open, it follows that JNG(A) =0,
so J is proper. If M is a maximal ideal, then M is a proper ideal containing M, hence
M = M by maximality. O
Notation: Let M 4 be the set of all maximal ideals of an algebra A.

Theorem 5.11. Let A be a commutative unital Banach algebra. Then the map @ — ker
s a bijection ® 4 — My.

Proof. Let ¢ € ®4. Then ker ¢ is an ideal as ¢ is a homomorphism. In fact it must be

maximal as A/ ker ¢ — C is a field. So the map is well-defined.

Injective: Let ¢,1 € ®4 be characters with ker ¢ = kert). For z € A, have p(x)l —x €
ker p = ker ¢, so 0 = ¢(p(2)1 — ) = p(z) — ().

Surjective: Let M € My. Then A/M is a field and a unital Banach algebra. Hence by
Gelfand-Mazur A/M = C. Then the quotient map ¢ : A - A/M = C is a character. [J

Corollary 5.12. Let A be a commutative unital Banach algebra, x € A.
(i) x € G(A) iff p(z) #0 for all p € D4.
(ii) oa(x) ={p(z) | ¢ € Pa}.

(i) ra(z) = sup{[p(2)| | ¢ € a}.

Proof.

(i) “=7 is clear. “«<” Assume x ¢ G(A). Then J = Ax is a proper ideal. Hence by
Zorn’s lemma J C M for some maximal ideal M which by the previous theorem is
ker ¢ for some ¢ € ® 4, so p(z) = 0.

(ii) Immediate from (i).
(iii) Immediate from (ii).
O

Corollary 5.13. Let A be a Banach algebra, x,y € A. Assume xy = yx. Thenra(z+y) <
ra(@) +ra(y), ra(zy) < ra(@)ra(y).
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Proof. WLOG A is unital. WLOG A is commutative: Replace A by a maximal commu-
tative subalgebra containing z,y using Proposition For ¢ € ® 4 we have |p(z +y)| <
lo(x)|+ ()] < ra(x)+7ra(y), soralx+y) <7a(x)+7ra(y) and similarly for r4(zy). O

Examples.

1. A = C(K) with K compact Hausdorff. Then ®4 = {d; | £k € K}. Proof: “D”
is obvious. For the reverse inclusion let M be a maximal ideal of A. We have to
show that there exists k € K such that M = kerd,. Suppose not. Then for all
k € K there exists fr € M with fi(k) # 0 and then there is an open neighborhood
Uy of k such that fr # 0 on Ug. By compactness there exist ki,...,k, € K such
that K = Jj_; Uy;. Then g = >0, |fx;I* > 0 on K and hence g € G(A). Also

g= Z?Zl fkj?kj, so g € M, a contradiction.
2. Let K C C be non-empty, compact. Then ®rg) = {0y | w € K}.
3. The disc algebra A(A). Then ®4a) = {0y | w € A}.

4. The Wiener algebra is W = {f € C(T) | Znez|ﬁl’ < oo} Here T = St C C

and f, = % O% f(e®)e=™m9dp. W is a commutative unital Banach algebra with

pointwise operations and norm || f[|; = " ,cz | fn|- This is isometrically isomorphic
to the commutative unital Banach algebra ¢1(Z) with convolution as algebra product,

ie (axb), = Z]’Jrk:n a;by.

Then @y = {6y | w € T}. So f € W is invertible in W iff f is non-zero on T
(Wiener’s theorem).

Let A be a commutative, unital Banach algebra. Then

Py ={p € Ba|p(1) =1, p(zy) = p(z)p(y) Vr,y € A}
=B N17Y({-1)n () @ -2~ ({0})

z,y€A

is a w*-closed subset of B4«. So by Banach-Alaoglu ® 4 is a compact, Hausdorff space in
the w*-topology, called the Gelfand-topology. ® 4 with the Gelfand-topology is called the
spectrum of A, the character space of A or the maximal ideal space of A.

For z € A, its Gelfand transform is 7 : ®4 — C, ¢ — ¢(x), i.e. the restriction of ¥ € A**
to @4. Then 7 € C(®4). The map A — C(®4), z — 7 is the Gelfand map.

Theorem 5.14 (Gelfand Representation Theorem). The Gelfand map A — C(®4) is a
continuous, unital homomorphism. For x € A, have

(1) 7]l = ralz) < [lz]|.
(2) oc(@,)(T) = 0a(2).
(38) z € GA) iff T € G(C(Dy)).
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Proof. Clearly the Gelfand map is a unital homomorphism. Continuity follows from
2]l = sup{|Z(¢)| | ¢ € ®a} = ra(z) < [Jz||. For (ii) note that oc(e,)(Z) = imZ =
{p() | ¢ € Pa} = oa(x). (iii) follows from (ii). O

Remark: In general, the Gelfand map is neither injective, nor surjective. Its kernel is

_ _ : nyl/n _ oy — _
o € Al oale) = (01} = o € A| tun |"]"" =0} = () bero= () M.
ped 4 MeMy

Elements ¢ € A with lim,_, Ha;"Hl/ " = 0 are called quasi-nilpotent. The intersection
Narem, M =: J(A) is called the Jacobson radical of A. We say that A is semisimple if

J(A) = {0}.
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6 Holomorphic Functional Calculus

Let U C C be non-empty and open. Recall O(U) = {f : U — C | f is holomorphic} is a
LCS with seminorms || f|| x = supy |f| where f € O(U) and ) # K C U compact. O(U) is
also an algebra with pointwise multiplication, which is continuous in the topology. O(U)
is a Fréchet algebra (we will not go into this).

Notation: Define e,u € O(U) by e(z) =1, u(z) = z for all z € U.
O(U) is unital with unit e.
Theorem 6.1 (Holomorphic Functional Calculus (HFC)). Let A be a commutative, unital

Banach algebra, x € A, U C C an open set with o4(x) C U. Then there exists a unique,
continuous unital homomorphism O, : O(U) — A such that ©z(u) = x.

Moreover, for all ¢ € ®4,f € OU), ©(©z(f)) = f(e(x)), and for all f € O(U),
04(02(f)) ={f(N) | A € oa(2)}.

Remark: We think of ©, as “evaluation at z” and write f(z) for O4(f).

Since e(z) = 1,u(z) = x and O, is a homomorphism, if p(z) = Y }_, ax2" is a complex
polynomial, then p(z) = >}, apx®. So think of HFC as a generalization of Lemma

Theorem 6.2 (Runge’s approximation theorem). Let ) # K C C be compact. Then
O(K) = R(K), i.e. if f is holomorphic on some open set containing K and € > 0, then
there is a rational function r without poles in K such that ||f —r||, < e. More precisely,
given a set A containing a point from each bounded component of C\ K, we may choose
the r such that all its poles lie in A.

Note: If C\ K is connected, we can take A = (), so we can even choose r to be a polynomial.
So O(K) = P(K).

6.1 Vector-valued integration

Let a < b be real numbers, X a Banach space and f : [a,b] — X continuous. We define
f; f(t)dt. Take a sequence D,, : a = tén) < tgn) << t,(cz) = b, n € N, of dissections of
[a, b] such that

|D,| := 122}12 |t§-n) — tg@ﬂ —0 asn—oo.
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Since f is uniformly continuous, the limit

exists and is independent of (D,,). We denote this limit by f; f(t)dt.

Note that for ¢ € X*, gp(ff f)dt) = f; o(f(t))dt. If we now take ¢ to be a norming

functional for f; f(t)dt, we get
b b
| [ s < [Cuscnan

Next, let =y : [a,b] — C be a path (here continuously differentiable) and f : [y] — X be
continuous, where [7] is the image of v. We define

b
/}ww=/fwwwww

For a chain I' = (71, ...,7,) and a continuous function f : [['| = |J;_,[vi] — X, we define

/Ff(z)dz = Z f(z)dz
< L(T) sup [ f(2)]l-

j=1"7
[ 1)
r z€[T]
Here {(I') = 3_; £(;) is the sum of the lengths of the ;.

From the above:

Theorem (Vector-valued Cauchy). Let U C C be open, T' a cycle in U such that n(T', w) =
0 for allw ¢ U. Then for a holomorphic function f:U — X, we have

/ f(z)dz = 0.

r

Proof. Indeed, for all ¢ € X*, o( [ f(2)dz) = [r¢(f(2))dz = 0 by the scalar-valued
version of Cauchy’s theorem. The result follows from Hahn-Banach. O

6.2 Proof of HFC

Lemma 6.3. Let A,z,U be as in Theorem[6.1 Let K = oa(z). Fiz a cycleT in U\ K

such that
1 K
n(T,w) = wen
0 weC\U
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Define ©, : O(U) — A by

a1
O, ( 27rz/f (21 —z) "d=.

Then:

(i) Oy is well-defined, linear and continuous.

(ii) For a rational function r without poles in U, ©4(r) = r(x) in the usual sense.

(7ii) For all o € Py, f € OU), p(©.(f)) = f(e(x)) and for all f € OU), 04(Ox(f)) =

floa(z)).

Remark: So HFC is a vector-valued Cauchy integral formula. The lemma proves Theorem
except for multiplicativity and uniqueness of ©,.

Proof of Lemma[6.3.
(i) Well-defined: z +— f(2)(z1 —x)~! is well-defined on [I'] and continuous by Corollary

().

Linearity is immediate from linearity of |.

Continuity: [|©,(f)| < £4(T) sup,err | f(2)]- (21 —x)~Y|. The continuous function
(21 — 2)~! on the compact set [I'] is bounded (independent of f), so there exists
M = 0 such that [[©4f| < M || f[|; for all f € O(U). So O is continuous.

First, ©,(e) = 1: We have O,(e) = o= [(21 —z)"1dz = ;L |Z|:R(z1 —z) ldx

since I' and |z| = R are homologous in C\ K for R > ||z||, so equality follows by
vector-valued Cauchy. So

" 2mi /|Z Rzz”“
dz o
- Z (2m /|| Rz"+1>

:1

Let 7 be a rational function without poles in U. Then r = 2 € O(U) where p, q
are polynomials and ¢ has no zeros in U. By Lemma [5.5 E oalq(z)) = {q(N) |
A€ ga(z)}, s0 0 ¢ oa(g(x)). So we can define 7(x) = p(z) - g(z)~!. For z,w €
C, p(z)q(w) — q(z)p(w) = (2 — w)s(z,w) where s is a polynomial in z,w. Hence
p(2)a(x) — (2)p(2) = (21— 2)s(2,2), 50 1(2)1 — r(x) = (=1 — 2)s(2, 2)a(2)'a(x) .
Then

O,(r) = i )i r(2)(z1 —x)"dz
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Then
oa(0z(f)) ={e(©z(f)) [ € Pa} ={f(p(@)) | ¢ € Pa} ={f(N) | A€ ga(z)}.
O

Proof of Theorem[6.2 Let U C C be open such that U O K. Let A = R(K), z € A be
z(z) =z, for z € K. Then o4(z) = K CU. Let ©,: O(U) — A be as in Lemmal6.3] For

feO), 0:(f)(2) = 0:(0:(f)) = f(8:(x)) = f(2). So R(K) 3 O:(f) = flk.

Next let B the closed subalgebra of A generated by 1,z, (A1 —2)~! for A € A. So B is
the closure in C'(K) of the rational functions whose poles lie in A. So B is a closed unital
subalgebra of A. If B is a bounded component of C\ o4(z) = C\ K, then there exists
A€ ANnV. Then Al — z is invertible in B, so A ¢ op(x). It follows from Theorem
that op(z) = oa(x) = K C U. The argument above shows that ©, actually takes values
in B. O

Corollary 6.4. Let ) # U C C be open. Then the subalgebra R(U) of O(U) consisting
of rational functions without poles in U is dense in O(U).

Proof. Let ) # K C U be compact. Let K be K together with all bounded components
of C\ K that lie in U. Then K is compact and K CU. For every bounded component V'
of C\ K, V\U # 0, so we can pick Ay € V' \ U. Let A be the set of all such Ay’s. By
Runge’s theorem, given f € O(U) and € > 0 there exists a rational function r whose poles
lie in A such that || f —r||z <e. Sor € R(U) and ||f — 7| x < e. The result follows. [

Proof of Theorem[6.1l Let A,x,U be as in the theorem. Let ©, be as in Lemma [6.3]
For existence, we just need to check that ©,(fg) = ©,(f)O.(g) for all f,g € O(U). By
Lemma (ii) this holds for all f,g € R(U). Since O, is continuous and R(U) is dense

in O(U), it is true for all f,g € O(U). Uniqueness follows similarly from the denseness of
R(U) in O(U). O
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7 C*-algebras

A x-algebra is a (complex) algebra A with an involution A — A,z — z*, i.e. a map
satisfiying:

(i) (Ao +py)* =A™ + fy*

(ii) (zy)* =y z*

**:.:U

(iii)
Note that if A is unital, then 1* = 1.

A C*-algebra is a Banach algebra with an involution such that the C*-equation holds:

"z = [|z|* ¥z e A

So a C*-algebra is a *-algebra with a complete algebra norm satisfying the C*-equation.
Such a norm is called a C*-norm.

A Banach x-algebra is a Banach algebra with an involution such that ||z*| = ||z|| for all
x.
Remarks:

1. In a C*algebra A, |z*| = ||z for all z. Indeed, ||z||* = ||z*z|| < ||z*|| |z||, so

|z]| < ||z*|| and doing the same for x* gives the reverse inequality.
So the involution is continuous.

2. If A is a C*-algebra with multiplicative identity 1 # 0, then ||1|| = 1 since ||1]|* =
L] = [[1]]-

A x-subalgebra of a x-algebra A is a subalgebra B of A that is such that «* € B for all
x € B.

A closed *-subalgebra (called a C*-subalgebra) of a C*-algebra is a C*-algebra. The closure
of a x-subalgebra of a C*-algebra is a *-subalgebra, and hence a C*-subalgebra.

A homomorphism 6 : A — B between *-algebras is called a x-homomorphism if 0(z*) =
O(x)* for all z € A. A *-isomorphism is a bijective x-homomorphism.

Examples.
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1. C(K), K a compact Hausdorff space, with involution given by f*(z) = f(z). This
is a commutative unital C*-algebra.

2. B(H), H a Hilbert space, with involution 7"+ T, where T™ is the adjoint of T', i.e.
(Tx,y) = (x, T*y) for all z,y € H.

3. Any C*-subalgebra of B(H).

Remark: Any C*-algebra is isometrically *-isomorphic to a C*-subalgebra of B(H) for
some Hilbert space H. This is the Gelfand-Naimark theorem.

From now on A will always be a C*-algebra.
An element x € A is said to be
e hermitian or self-adjoint if z* = x,
e unitary if A is unital and z*z = 1 = xz*,
e normal if x*x = xx*.
Examples.

1. If A is unital, then 1 is hermitian and unitary. In general, hermitian elements and
unitary elements are normal.

2. In C(K) a function f is hermitian iff f(K) C R and f is unitary iff f(K) C T.
Remarks:

1. For x € A there exist unique hermitian h,k € A such that x = h + ik. Indeed, if
x = h+ ik, then ¥ = h — ik, so h = x;’”*,k = ng* Note that x is normal iff
hk = kh.

2. For x € A, A unital, x € G(A) iff 2* € G(A). So cga(z*) = {A | A € ga(z)} and
ra(z*) =ra(x).

Lemma 7.1. If z € A is normal, then r4(x) = ||z].
Proof. If z is hermitian, then ||z2|| = ||z*z| = ||z||, so by induction ||z2"|| = ||z|*" for
every n. Then r4(x) = lim, o ||z2"||}/?" = ||z]|.

Now assume z is normal. Then z*x is hermitian and hence
EI3
|z|? = |z* 2] = ra(a*z) < ra(@*)ra(x) <ra(z) ||
So ||z|| < ra(z), and hence ||z|| = ra(z). O

Lemma 7.2. Assume A is unital, x € A, ¢ € ®4. Then p(z*) = p(z).
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Proof. Write x = h + ik with h, k hermitian. Then ¢(x) = @(h) + ip(k) and p(z*) =
o(h) — ip(k), so the result follows if we show that for hermitian =, p(z) € R. Let
o(x) = a+ib with a,b € R. For t € R,

lp(z +it1)|2 = a® + (b+ 1) < |lz + itl||* = ||(z + it])*(z + it1)|| = ||2® + 21| < ||22|| +¢2
So a? + b? + 2bt < ||22|| for all t € R, so b = 0. O
Remark: The assumption that A is unital is not needed, but unitization is tricky (see
Sheet 4).
Corollary 7.3. Assume A is unital.

(1) If x € A is hermitian, then o4(x) C R.

(2) If x € A is unitary, then o4(x) C T.

If B is a unital C*-subalgebra of A and x € B is normal, then op(z) = oa(z).

Proof.

(1) WLOG A is commutative (replace A by the closure of the unital subalgebra generated
by z, note that the spectrum can only get larger). Then o4(z) = {¢(x) | p € P4} C
R by the previous lemma.

(2) Again we can assume that A is commutative. For o(z) € ®4, we have |p(x)|? =
p(r)p(x) = p(a*)p(r) = p(z*r) =1, s0 (x) € T. So oa(x) = {p(z) | ¢ € Pa} S

T.

For the last part, first assume = € B is hermitian. By Theorem op(z) 2 oa(r) and
dop(x) C doa(x). By the first part, oa(z),0p(x) C R, so ca(x) = doa(z),op(x) =
Jop(x).

Now assume = € B is normal and let A € C. Then
Al — z invertible in B <= A1 — z and (A1 — )" invertible in B
<= (Al — 2)(A\1 — x) invertible in B
<= (Al — 2)(A\1 — z) invertible in A

<= A\l — z invertible in A

O
Remark: Let H be a Hilbert space and 7' € B(H) be hermitian or unitary. By the

corollary, o(T') = 00 (T) C cap(T) C o(T'). So o(T') = 04p(T). This also holds for normal
operators.

o1



Theorem 7.4 (Commutative Gelfand-Naimark Theorem). Let A be a commutative, uni-
tal C*-algebra. Then there exists a compact Hausdor[f space K such that A is isometrically
x-isomorphic to C(K). More precisely, the Gelfand map x — = : A — C(®4) is an iso-
metric *-isomorphism.

Proof. We already know that the Gelfand map is a unital homomorphism.

— —_—

e s«-homomorphism: We have (Z)*(¢) = Z(¢) = ¢(x) = p(z*) = (z*)(p). So (z*) =

(@)".
e isometric: ||Z]oc = 74(z) = ||z| (A is commutative, so all z € A are normal).

e surjective: Since the Gelfand map is an isometric, unital x-homomorphism, its image
is a closed, unital *-subalgebra of C'(K') that separates the points of ®4. By Stone-
Weierstral the image is C(K).

O

Applications:
1. Let A be a unital C*-algebra.

x € Ais positive if x is hermitian and o 4(z) C [0,00). A positive x € A has a unique
positive square root: a positive y such that y?> = x.

Existence: Let B be the unital C*-subalgebra generated by z. Then z € B and
op(x) = o4(x) C [0,00). Consider the Gelfand map z — z : B — C(®p). For all
p € &p, T(p) = p(x) > 0. Then there exists y € B such that y(¢) = /Z(¢). Then
¥y is a positive square root of T, so y is a positive square root of x.

Uniqueness: Assume z € A is another positive square root of z. Then zz = 2% = zz,

so there exists a commutative unital C*-subalgebra D of A containing x,z. Then
consider the Gelfand map w +— @ : D — C(®p). Note that also y € D. So y and z
are both positive square roots of Z. So y =z and y = z.

2. Let T € B(H) be invertible where H is a Hilbert space. Then there exist unique
R,U € B(H) such that R is positive, U is unitary and 7' = RU. TT* is positive,
solet R = (TT*)/? and U = R™'T. U is invertible and UU* = R™'TT*R™! =
R'R’R'=Tand T = RU.
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8 Borel Functional Calculus and Spectral
Theory

Throughout:

e H # 0 is a complex Hilbert space, B(H) is the C*-algebra of bounded, linear oper-
ators on H.

e K is a compact Hausdorff space, B the Borel o-field on K.
A resolution of the identity of H over K is a map P : B — B(H) such that
(i) P(0)=0,P(K)=1.

(ii) For every E € B, P(FE) is an orthogonal projection (i.e. P(E)? = P(E), P(E)* =
P(E)).

(iii) For all B, F € B, P(EN F) = P(E)P(F).
(iv) For all E,F € B, if ENF =, then P(EUF) = P(E) + P(F).

(v) For all x,y € H, the map P,, : B - C,E — (P(E)z,y) is a bounded regular
complex Borel measure.

Example. Let H = L3[0,1], K = [0,1], P(E)(f) = f - 1&.
Simple properties:
(i) For all E,F € B, P(E)P(F) = P(F)P(E).
(ii) For all E,F € B, If ENF = 0, then P(E)(H) L P(F)(H).
(iii) For all z € H, P, is a positive measure of total mass P, ,(K) = |z/*.
)

(iv) P is finitely additive, but not countably additive in general. But for every x € H,
the function B — H, E — P(FE)(x) is countably additive.

(v) If B, € Band P(E,) =0 for all n € N, then P(J,,cyy £rn) = 0.

Let P be as above. A Borel function f : K — C is P-essentially bounded if there exists
a set E € B such that P(E) = 0 and f is bounded on K \ E. Then we define | f||,, =
inf{[|f|| ;g | £ € B, P(E) = 0}. This inf is attained.

Let Loo(P) be the set of all P-essentially bounded Borel functions on K. We identify
functions f and g if f = g P-almost everywhere, i.e. if there exists £ € B such that
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P(E)=0and f=gon K\ E. Then (Ls(P),|||,,) is & commutative unital C*-algebra
with pointwise operations.

Lemma 8.1 (Definition of [;- fdP). Let P be as above. Then there exists an isometric,
unital x-homomorphism ® : Loo(P) — B(H) such that

(Z) <(I)(f):l?, y> = fK fdPx,y,

(ii) |2(H)@)I* = [ /" dPr,
(iii) S € B(H) commutes with all the ®(f) iff S commutes with all the P(E)
Note: Property (i) defines ® uniquely. We write [, fdP for ®(f). So (i) becomes

<(/deP)x,y>=/deP$,y.

Proof. Let s = 77" a;lp; be a simple function, i.e. K = [Jj~, E; is a Borel partition
and aq, ..., am € C. Let ®(s) = >, a; P(Ej).

Let t = Y, Bxlr, be another simple function. We check @ is
e well-defined: If s =t P-a.e., then for all j, k either P(E; N F}) =0 or aj = [, hence

Y aiP(Ej) =Y ojP(E;NFy) =Y BP(E;NF) = BiP(FL).
j P

Jik g,k
e additive: s+t = ij(aj + Br)1E,nF,- Then

O(s+t) = Y (o+B8) P(BjNFy) = > o P(E;NFr)+> _ BuP(E;NFy) = O(s)+2(t).
Jk Jik Jk
e multiplicative: st = Zj,k a;BrlE,nF,, SO
O(st) =Y a;fpP(E;NFy) =Y a;B8P(E;)P(Fy) = ®(s)®(t).
7k gk
e x-homomorphism: 5 =) @;lg;. So ®(5) = > a;P(E;) = ®(s)".
e unital: ¢(1x) = P(K) = 1.

o isometric: (®(s)z,y) = >, ;i (P(Ej)z,y) = > ; ajPpy(Ej) = [i sdPy . Hence

1@ (s)z]|* = (@(s)z, B(s)z) = (B(s)"®(s)z,z) = (®(|s[*)z, z) = /K |sI* APy
Hence ||®(s)x||* < ||s|% ||lz]|?, so ®(s) < ||s]|.. If |||, > 0, then there exists j such

that P(E;) # 0 and |o;| = ||s]|,,. There exists a unit vector € P(E;)(H). Then
[D()| = 1@(s)l| = |ay| | PCEj)x]| = lej| = [[s]l o> sO [[R()]] = [l -
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So @ is an isometric unital *-homomorphism on the x-subalgebra of simple functions. Let
[ € Loo(P). Choose simple functions s, — f. Then [|®(sp,) — ®(sn)]| = ||Sm — snlloo = 0
as n,m — 00, so (®(sy))n is Cauchy in B(H). Let ®(f) = limy—00 P(s,). This is is
well-defined. By continuity, ® is an isometric, unital *-homomorphism L. (P) — B(H)
satisfying (i) and (ii).

For (iii): Since ®(1g) = P(E), one direction is clear. Conversely, if S commutes with all
P(FE), then S commutes with all ®(s) with s simple, and then by continuity S commutes
with all ®(f) with f € Loo(P). O

Let Loo(K) be the set of all bounded Borel functions f : K — C. This is a commutative,
unital C*-algebra with pointwise operations and |[|-|| ;. If P is as above, then the inclusion
Loo(K) C Loo(P) is a norm-decreasing unital *-homomorphism.

Theorem 8.2 (Spectral Theorem for commutative C*-algebras). Let A be a commutative
unital C*-subalgebra of B(H). Then there exists a unique resolution P of the identity of

H over K = ®4 such that
/ TdP =T
K

for all T € A, where T is the Gelfand transform of T.
Moreover,
(i) If ) # U C K is open, then P(U) # 0.
(i) If S € B(H), then S commutes with all T € A iff S commutes with all P(E).

Remark: The inverse Gelfand map C(K) — A C B(H ),f — T is an isometric, unital
x-homomorphism. So Theorem is an operator version of the Riesz Representation
Theorem (RRT).

Proof. For z,y € H, T — (T'z,y) is a bounded linear functional on C'(K) of norm <
llz|| ly|l. By RRT there exists a unique bounded regular complex Borel measure i, on
K such that (Tx,y) = [, Tdpe,y. For real-valued T, T is hermitian, so [, T, =
(Tx,y) = (Ty,x) = [ Tdliyz. SO pizy = iy by uniqueness in RRT.
Also
/ Td/bm{y,z - <T()‘x + y)7z> - /\/ Tdﬂar,z +/ Tdﬂy,z
K K K

So Hxz+y,z2 = )\Mm,z + fy,z-

For f € Loo(K), (2,y) = [ fdps,y is a sesquilinear form of norm < || f[|; and it is a
hermitian form if f is R-valued.

Hence there exists a unique ¢(f) € B(H) such that [, fduezy = (W(f)x,y) for all z,y,
1o (f)Il < || fll and (f) is hermitian if f is R-valued. Then

e 1 is linear: by linearity of integration,
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e x-map: (f) = (f)* since this holds for R-valued f and % is linear.
e ¢(T) =T: By construction (¢(T)z,y) = Jx T\dum’y = (Tz,y) for all x,y.

e ¢ is multiplicative: For S,T € A, ST = §f, SO
/ §T\d,ux7y = (STz,y) :/ §d,uTw7y,
K K
SO Tduw,y = dprsy. For f € Loo(K),

SO fdpigy = dpiy y(fyry- For g € Loo(K), [ 9fdpiey = [1e 9ty p(f)2ys 50 (0(gf)z,y) =
(W(g)z, v (f)y) = (L(f)b(g)x, y), so p(fg) = Y(f)Y(g)

So ¢ : Loo(K) — B(H) is a norm-decreasing, unital x-homomorphism extending the
inverse Gelfand map.

Define P(E) =9 (1g). It is easy to see that P is a resolution of the identity of H over K.
Note P, y(E) := (P(E)x,y) = [ 1Edpiey = ploy(E). S0 Ppy = figy.

For all T ¢ A, (( [y TdP)a,y) = i TdPyy = [ic Tdjizy = (Tw,y), s0 T = [ TdP.
This shows the existence of P.

Uniqueness: If T = [, % fdP, then (Tz,y) = || % fdvay, so this defines P, , uniquely by
RRT, so P is defined uniquely.

Finally we prove the remaining properties of P:

(i) Let ) # U C K be open. By Urysohn there exists a continuous function K =
[0,1] such that f # 0, supp f C U. So there exists a positve T' € A such that T? = f.
So T # 0. Pick z € H with T # 0. Then 0 < ||Tz|* = (Tx,Tx) = (T2z,z) =
fK fdPy» < P, ,(U) = (P(U)x,z), so P(U) # 0.

(ii) LetAS € B(H). For T € A, (STz,y) = (Tz,S*y) = [ T\d,uag*y and (T'Sx,y) =
Jx Tdpsey. So T commutes with all T' € A iff pip gey = pi5e,y for all z,y.
Moreover, (SP(E)x,y) = (P(E)x,S*y) = g s+y(F) and (P(E)Sz,y) = psey(E).
The result follows.

O]

Note: If A is a unital Banach algebra and z € A, we can define ¢ := Y > % For
x,y € A with 2y = yx we have e*TY = e%eY.

Lemma 8.3 (Fuglede-Putnam-Rosenblum). If A is a unital C*-algebra, x,y,z € A, x,y
normal and rz = zy, then x*z = zy*.
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Proof. Omitted due to time reasons, use the exponential defined above and the vector
valued Liouville Theorem. O

Theorem 8.4 (Spectral Theorem for normal operators). Let T' € B(H) be normal. Then
there exists a unique resolution P of the identity of H over o(T) such that T = fU(T) AdP.

Moreover, for S € B(H), ST =TS iff S commutes with all P(E).

Proof. Let A be the unital C*-subalgebra of B(H) generated by 7. Since T is normal, A
is commutative. By Corollary 0A(T) = o(T). For ¢ € ®4, ¢ is uniquely determined
by ¢(T) (since p(T*) = (T)), so ¢ — @(T) : P4 — o(T) is a continuous bijection and so

a homeomorphism (as ® 4 is compact and o(7") Hausdorff). The maps T and T* in C(® A)
correspond to A — A and A — A in C(o(7T)). Existence of P follows from Theorem 8.2

Uniqueness: If T' = fo(T) AP, then p(T,T*) = fa(T) p(\, A)dP for all polynomials p. The
functions p(\, A), p polynomial, are dense in C(c(T)) by Stone-Weierstra. So P, are
uniquely determined, and hence so is P.

For S € B(H), we have ST = T'S iff S commutes with 7" and 7™ by Lemma ift S
commutes with all elements of A iff S commutes with all P(E) by Theorem O

Theorem 8.5 (Borel Functional Calculus). Let T' € B(H) be a normal operator, K =
o(T) and P as in Theorem[8.4, The map

Luol) = B(H). £+ $T) = [ fdp
K
satisfies:
(i) It is a unital x-homomorphism and z(T) = T where z(A) = X\ for all A € K.
(ii) [|f (T < | fll g with equality for f € C(K).
(i1i) If S € B(H) and ST =TS, then Sf(T) = f(T)S for all f € Loo(K).

(w) o(f(T)) C f(K).

Proof. All follow from the previous results.

For (iv), if A ¢ f(K), then Mg — f € G(Loo(K)), so M — f(T) € G(B(H)), so X\ ¢

a(f(T)). O
Applications:
1. T normal, then T'= RU where R = [, |A|dP is hermitian and U = fU(T) ﬁdP is
unitary.

2. If U is unitary, then U = €@ for some operator Q (as there is a Borel, bounded
function f : T — R with ¢//() = ¢, then let Q = f(U)).

3. Let T € G(B(H)), we can write T' = e°¢?. So G(B(H)) is connected.
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