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1 Fermat’s Method of Infinite Descent

We consider a right angle triangle A with side lengths a,b,c > 0 such that a® + v = ¢?
and area %ab. A is rational if a,b,c € Q. A is primitive if a,b,c € Z are coprime.

Lemma 1.1. Every primitive triangle is of the form {a,b} = {u® — v?,2uv}, c = u? + v?
for some integers u > v > 0.

Proof. 1t is easy to see that exactly one of a,b (wlog say b) is even. So (b/2)? = <F2<2,
The factors on the right are coprime positive integers. By unique factorization in Z we

get that HTQ = u?, ot = v? for suitable u,v € Z. The claim follows. O

Definition. D € Q- is a congruent number if there exists a rational (right angled)
triangle A with area D.

N.B. It suffices to consider D € Z~( squarefree.

E.g. D = 5,6 are congruent.

Lemma 1.2. D € Q is congruent iff Dy? = 23

y # 0.

—x for some rational numbers x,y € Q,

Proof. The first lemma shows that D is congruent iff Dw? = uv(u? —v?) for some u, v, w €
Q,w # 0. Then put x = u/v,y = w/v>. O

Fermat showed that 1 is not a congruent number:

Theorem 1.3. There is no solution to

w? = uv(u +v)(u —v) (x)

with u,v,w € Z, w # 0.

Proof. Wlog u,v coprime, v > 0,w > 0. If v < 0, then replace (u,v,w) by (—v,u,w). If

u = v mod 2, then replace (u,v,w) by (UQﬂ, 454, %). Then u,v,u + v,u — v are pairwise
positive integers with product a square. By unique factorization in Z u = a?,v = b, u+v =

c?,u — v = d? for some a,b,c,d € Z~p. Since u # v mod 2, both ¢ and d are odd. Hence

c+d\? c—d\* A+d? 9
(57) +(57) =




This is a primitive triangle. Its area is # =¥ = (b/2)%. Let wy = b/2. By the first
lemma we get again w? = ujvi(u; + v1)(u; — v1) for some uy,v1 € Z. So we have a new
solution to But 4w% = =0 | w?, so wy < %w. So by Fermat’s method of infinite
descent, there is no solution to |(x)| O

1.1 A Variant for Polynomials

Let K be a field of characteristic not equal to 2 with algebraic closure K?8.
Lemma 1.4. Letu,v € K[t] coprime. If au+Bv is a square for four distinct (o : 3) € P!,
then u,v € K.

Proof. Wlog K = K®#, Changing coordinates on P! we may assume the ratios (« : 3) are
(1:0),(0:1),(1:—1),(1: =) for some A € K\ {0,1}. We have u = a?,v = b?>,u — v =
(a+b)(a—b),u—Av = (a+ub)(a—ub) where . = v/A. By unique factorization in K [t] we get
that a+b,a—b, a+ pub, a— ub are all squares. But max(dega, degb)) < %max(deg u, degv).
So by Fermat’s method of infinite descent u,v € K. O

Definition.

(i) (Preliminary definition) An elliptic curve E/K is the projective closure of the plane
affine curve defined by

y* = f(x)
where f € K[z] is a monic cubic separable polynomial.

(i) For L/K any field extension we let

B(L) ={(z,y) € L” | y* = f(2)} U{O}
where O = (0:1:0) is the point at infinity.
The previous results show that for £ : y? = 2% — 2 we have E(Q) = {0, (0,0), (£1,0)}.
Corollary 1.5. Let E/K be an elliptic curve. Then E(K(t)) = E(K).
Proof. Wlog K = K. By a change of coordinates we may assume E : y> = z(z—1)(z—)\)
for some A € K \ {0, 1}.

Suppose (z,y) € E(K(t)). Write z = u/v where u,v € K]Jt| are coprime. Then we
get w? = wv(u — v)(u — M) for some w € K[t]. By unique factorization in K[t], the
four polynomials u,v,u — v,u — Av are squares. So by our previous result u,v € K, so
x,y € K. O

This shows that elliptic curves are not rational.



2 Some Remarks on Algebraic Curves

For this section we assume K = K?8,

Proposition 2.1. Let C be a smooth projective curve and g(C) its genus.
(i) C is rational iff g(C) = 0.
(ii) C is an elliptic curve (in our sense) iff g(C) = 1.

Recall that a uniformizer of a curve C at a smooth point P is a function ¢t € K(C)* such
that ordpt = 1.

Example. Let C = {g = 0} C A? be a plane curve with g € K[z, ] irreducible. Suppose
P =(0,0) € C and write g = go + ¢g1(z,y) + g2(z,y) + ... and where g; is homogeneous
of degree i. Write g1(x,y) = ax + By. Assume that C is non-singular so that «, § are not
both zero. Then vz + dy € K(C) is a uniformizer at P iff «d — Sy # 0.

Example. Let {y? = z(z — 1)(z — \)} € A% where )\ # 0, 1. The projective closure is
{(Y?Z = X(X - Z)(X — \2)} C P?

where ¢ = X/Z,y =Y/Z. P=(0:1:0). Putt = X/Y,w = Z/Y. Then w =
t(t — w)(t — \w) (dehomogenize w.r.t. y) Now P is the point (¢,w) = (0,0). This is a
smooth point with ord,(t) = ord,(t — w) = ordy(t — Aw) = 1, so ord,(w) = 3. Then
ord,(z) = ordy(t/w) = —2,0rd,(y) = —3.

Recall the Riemann-Roch Theorem for smooth curves of genus 1. If D is a divisor, then:

deg D if degD > 0,
dimL(D)=q0or1 ifdegD =0,
0 if deg D < 0.

Assume K = K% and char K # 2.

Proposition 2.2. Let C C P? be a smooth plane cubic P € C a point of inflection. Then
we may change coordinates such that C : Y?Z = X(X — Z)(X — A\Z) for some X # 0,1
and P=(0:1:0).

Proof. We may change coordinates such that P = (0:1:0) and 7T,C = {Z = 0}. Let C
be defined by F(X,Y, 7). P is a point of inflection, so F(t,1,0) = 3, i.e. F has no terms



X2Y,XY?2 Y3, Therefore F € (Y?Z XYZ YZ* X3 X?7Z XZ?% 7Z3). The monomials
Y2Z, X3 must appear in F, as P is non-singular and {Z = 0} ¢ C. We are free to rescale
X,Y,Z and F. Wlog C is defined by

Y2Z 4+ a1 XYZ+a3YZ? = X3 + s X?Z + au X Z% + agZ3. “Weierstrafl equation”
Substituing ¥ +— Y — %alX — %agZ we may assume a; = az = 0. Now C : Y2Z =
Z3f(X/Z) for some monic cubic polynomial f. Since C is smooth, f has distinct roots,
wlog 0,1, A. Then C' has the equation

Y2Z = X(X — Z)(X — \Z). “Legendre form”
O

Remark: It can be shown that the points of inflection on a plane curve C' = {F(X1, Xo, X3) =

0} C P? are given by
O*F
F=0= — .
0 = det <8Xi8Xj>



3 Weierstrall Equations

In this chapter, K is a perfect field with algebraic closure K2,

Definition. An elliptic curve E/K is a smooth projective curve of genus 1 defined over
K, with a specified K -rational point OF.

A morphisms of elliptic curves is a morphism of algebraic curves preserving the base point

0.

Example. {X3 + pY?3 + p2Z3 = 0} C P? is a smooth projective curve of genus 1 defined
over QQ, but it is not an elliptic curve over QQ, since it has no QQ-rational points.

Theorem 3.1. Every elliptic curve E is isomorphic over K to a curve in Weierstrafs
form, via an isomorphism taking O to (0:1:0).

Fact: If D € Div(E) is defined over K (i.e. fixed by Gal(K®#/K)), then £(D) has a basis
in K(E).

Proof. Pick bases 1,z resp. 1,2,y of £L(20g) C L(30g). Note that ordp,(z) = —2 and
ordp, (y) = —3. The seven elements 1, z,y, 22, xy, 23, y? in the 6-dimensional vector space
L(60g) must satisfy a dependence relation. Leaving out 23 or y? gives a basis for £L(60x)
since each term has a different order pole at Og. Therefore the coefficients of 23 and 7?2
are non-zero. Rescaling x,y and the whole equation we get

y2 + a2y + aszy = x> + aga:z + aqx + ag

for some a; € K. Let ¢ : E — E' C P2 P v (2(P),y(P) : 1). This is a morphism and
&(P) = ((z/y)(P) : 1: (1/y)(P)), hence ¢(Or) = (0 : 1 : 0). We have deg¢p = [K(E) :
¢*K(E')] and ¢*K(E") = K(z,y). Since z,y have degree 2 resp. 3, we see that deg ¢ = 1,
S0 ¢ is birational.

If £’ is singular, then E, E’ are rational, so E’ is non-singular and ¢ is thus an isomorphism.
O

Proposition 3.2. Let E,E’ be elliptic curves over K in Weierstrafy form. Then E = E’
over K iff the equations are related by a change of variables of the form

z =l +r
Yy = u3y’ +ulsx’ +t

for some u,r,s,t € K, u+# 0.



Proof. (1,x) = L(2,0g) = (1,2'), so v = Az’ + r for some \,r € K,\ # 0. Similarly for
y, we get that y = uy’ + oz’ +t for some p,0,t € K, u # 0. looking at the coefficients of
23, y? we see that A2 = 12, so A = u?, u = u? for some u # 0. Put s = o/u?. O

A Weierstrafl equation defines an elliptic curve iff it defines a smooth curve which is the
case iff

A(a,...,a¢) #0

where A € Z[ay, ..., ag] is a certain polynomial.

If char K # 2,3 we can reduce to the case F : y?> = 22 + ar + b with discriminant
A = —16(4a® + 27b%).

Corollary 3.3. Assume char K # 2,3. Then two elliptic curves
E:y?=24ax+b
By =23 +dz+V
are isomorphic over K iff a’ = u*a,b’ = uSb for some u € K*.
Proof. E and E’ are related by a substitution as in the proposition withr = s =¢t=0. [

1728(4a?)

Definition. The j-invariant of E is j(E) = T3 1o -

Corollary 3.4. E= E' = j(E) = j(E'). The converse holds if K = K¥8.
Proof. By the the previous corollary

E~FE < d =u*a, b = uSb for some u € K*
= (@ 0?) = ((¢)*: (v)?)
< j(E) = j(E')

and the converse holds if K = K?8, O



4 The Group Law

Let E C P? be a smooth plane cubic. E meets any line in 3 points counted with multi-
plicity. Let Og, P, € E. Let S be the third point of intersection of E and PQ. Let R
be the third point of intersection of £ and OgS. Define P& Q := R. If P = Q, then take
the tangent line TpFE at P instead of PQ, etc.

This is called “the cord and tangent process”.

Theorem 4.1. (E,®) is an abelian group.

Proof.
(i) commutativity of @ is clear.
(ii) Op is the identity.

(iii) Inverses: Let S be the third point of N of E and Tp, E. Let @ be the third point of
Nof F and PS. Then P® Q = Og.

(iv) Associativity: Harder! O

Define ¢ : E — Pic’(E) by P — [(P) — (Og)].
Proposition 4.2.

(1) P(P & Q) =(P)+4(Q).
(ii) 1 is a bijection.

Proof.

(i) Let I resp. m be the linear forms whose zero sets are the lines PQ resp. OgS. Then
div(l/m) = (P) + (5) + (@) = (Op) — (5) = (R) = (P) + (@) — (Op) — (P& Q).
Therefore (P® Q) — (Og) ~ (P)—(Op)+(Q)— (Op), i.e. p(P® Q) = Y(P)+ ¥ (Q).

(ii) Injective: Suppose ¥(P) = 1(Q), for P # Q. So there exists f € K*8(E) such that
divf = (P) — (Q). Then the map f : E — P! has degree 1, so F is rational, a
contradiction.

Surjective: Let [D] € Pic’(E). Then D + (Og) has degree 1, so by Riemann-Roch,
dim £(D + (Og)) = 1, so there exists f € K8(E)* such that div f + D + (Og) > 0.
The divisor on the left has degree 1, so div f + D + (Og) = (P) for some P € F and
hence ¢ (P) = [D]. O



So 1 identifies (E,®) with (Pic’(E), +), hence @ is associative.

4.1 Formulae for E in Weierstral3 Form
Let
E:y? + ajzy + azy = ©° + aga® + aux + ag. (+)

Let Py, P,, P3, P’ be points such that P’ is the third point of intersection of E with
Py P, and Ps is the third point of intersection of E with P'Og. Write P, = (24,v;),1 =
17 27 37 Pl = (x/’ y/)'

The inverse ©P; of P; is the third point of intersection of P O with E. So 6P =
(1, —(a121 + az) — y1).

Suppose the line through P;, P> has equation y = Az + v. Substituting this into and
looking at the coefficient of 2 gives

Ntaud—a =z +19+ 2.
Note that 2’ = x3, so

a;3:/\2+a1)\—a2—x1—1:2,

y3 = —(a12’ +a3) =y = —(A+a1)zs — v — as.

Formulae for A, v:

e Case I: z1 = x9 and P; # P,, then P, & P, = Op.

Z2Y1—T1Y2

e Case II: x1 # x9. Then \ = % and v =y, — Az = L2

e Case III: P, = P,. See formula sheet.

Corollary 4.3. E(K) is an abelian group.

Proof. Tt is a subgroup (E, @). We need to check that it is closed under @, ©. This follows
from the explicit formulas (they only involve the coefficients of the Weierstrafl equation
which lie in K). ]

Theorem 4.4. Elliptic curves are group varieties, i.e. the maps [—1]: E — E, P +— ©P
and @ : ExX E — E,(P,Q) — P ® Q are morphisms.

Proof. The above formula show that [—1] : F — FE is a rational map, hence extends to a
morphism (and this extension still agrees with [—1]).

The above formulae show that @ : £ x E — F is a rational map, regular on

U={(PQ eExXE|P.Q,PEQ,PSQ+Op).



For P € E let 7p : E — E be translation by P. 7p is rational map and thus extends to a
morphism (which still agrees with 7p). We factor @ as

Ex B o208 pop 8 pTes p

This shows that & is regular on (74 x 75)(U) for all A,B € E. Thus & is regular on
ExE. O

4.2 Statement of Results on E(K)

(i) K =C. Then E(C) = C/A for a lattice A.

(i) K =R. Then E(R) = {H@QZZ xR/Z ii Z 8?

(i) K =F,. Then [#E(F,) — (q+1)| < 2,/4.

(iv) [K : Qp] < 0o. Then E(K) has a subgroup of finite index isomorphic to (O, +).
(v) [K :Q] < co. Then E(K) is finitely generated.

In the subsequent chapters we will prove (iii), (iv) and (v).
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5 Isogenies

Let E4, E» be elliptic curves.

Definition.
(i) An isogeny ¢ : By — E3 is a nonconstant morphism with ¢(Og,) = ¢(Og,).
(ii) We say E1, E2 are isogenous if there is an isogeny Ey — Es.

By basic theorems about curves, ¢ : 1 — E» is nonconstant iff it is surjective on K?8-

points. Hence if F4 g FEs ﬂ FEs are isogenies, then so is ¢¢ : £ — FE3. Furthermore,
deg(1¢) = deg1) deg ¢ which also holds if we allow ¢ = 0 and set deg0 = 0.

Definition. Hom(FE1, Ey) = {isogenies E1 — Eo} U {0}. This is an abelian group with
pointwise operations.

Definition. Forn € Z let [n| : E — E be defined by P~ P+ ---+ P (n times) if n > 0
and [—n| = [-1] o [n] for n < 0.

The n-torsion subgroup of E is E[n| = ker(FE I, ).

If K = C, then E(C) = C/A, so (1) E[n] & (Z/nZ)? and (2) deg[n] = n? in this case.
We will show that (2) holds over any field K and (1) holds if char K {n

Lemma 5.1. Assume char K # 2 and let E be given by y> = f(x) = (x—e1)(z—e2)(z—e3)
with e; € K¥8. Then E[2] = {0, (e1,0), (e2,0), (e3,0)} = (Z/2Z)2.

Proof. Let P = (z,y) € E\{O}. Then 2|P = O iff P = —P iff (z,y) = (z,—y) iff
y=0. O

Proposition 5.2. If0 #n € Z, then [n| : E — E is an isogeny.
Proof. [n] is a morphism since the group law is given by a morphism, so we must show
[n] # [0]. Assume that char K # 2.

e Case n = 2: By the previous Lemma we have E[2] # E, so [2] # 0.

e Case n odd: By the Lemma there exists O # T € E[2]. Then [n|T =T # 0, so
[n] # [0].

e General case: Write [n] = [2¥][m] with m odd.

11



If char K = 2, then we could replace the Lemma with an explicit lemma about 3-torsion
points. ]

Corollary. Hom(F1, E2) is a torsion-free Z-module.

Theorem 5.3. Let ¢ : E1 — FE5 be an isogeny. Then ¢ is a group homomorphism.

Proof. ¢ induces a map ¢, : Div?(E;) — Div?(Ey), Y pep, "PP = Y pcp npo(P). Fact:
If f € K(E1)*, then div Ng(g,)/x(E,)(f) = ¢«(div f). So ¢« sends principal divisors to
principal divisors and hence descends to a map Pic?(E;) — Pic®(Fs). Since ¢(Og,) = Og,,
the following diagram commutes:

El%EQ

oL

Pic’(B)) —2 Pic®(By)
Since ¢, is clearly a group homomorphism, ¢ is a homomorphism. ]

Lemma 5.4. Let ¢ : E1 — E5 be an isogeny. Then there exists a morphism & making the

following diagram commute:

ElLEQ

b
Pl p!
Here x; is an x-coodinate of a Weierstraf§ equation for E;.

Moreover if £(t) = % with r,s € K|t] coprime, then deg ¢ = deg{ = max(degr, degs).

Proof. For i = 1,2, K(E;)/K(x;) is a degree 2 Galois extension with with Galois group
generated by [—1]*. By the theorem ¢[—1] = [—1]¢. So if f € K(x2), then [—1]*¢*f =
O*[-1]*f = ¢*f, so ¢*f € K(x1). Now under the field embedding K(x2) — K(x1)
induced by ¢*, z2 maps to some &(z1). This ¢ defines a morphism P! — P! making the
G
with r,s € K][t] coprime. We claim that the minimal polynomial of z; over K(z3) is

f(t) = r(t) — s(t)xe € K(x2)[t]. Since r,s are coprime, f is irreducible in Klzs,t]. By
Gauss’ Lemma it is irreducible in K (x2)[t], hence deg¢ = degé = [K(x1) : K(x2)] =
deg, f = max(degr,deg s). O

above diagram commute. Then 2deg¢ = 2degé, so deg¢ = degf. Write {(z1) =

Lemma 5.5. deg[2] = 4.

12



Proof. Assume char K # 2,3. E : 4> = 28 +ax +b = f(z). If P = (x,y), then

z(2P) = (?“22#)2 —2r = (3x2+2}2(;$xf(x) = "”f;}‘&')'. So we have to prove that numer-
ator and denominator are coprime. Indeed, otherwise there would be § € K?& with
f(0) =0 =322+ a = f'(§) which is not possible, hence deg[2] = max(4,3) = 4. O

Definition. Let A be an abelian group. q : A — Z is a quadratic form if

(i) q(nx) = n2q(z) for alln € Z,x € A,

(ii) (x,y) — q(x +y) —q(z) — q(y) is Z-bilinear.
Lemma 5.6. ¢ : A — 7Z is a quadratic form iff it satisfies the parallelogram law, i.e.
q(z +y) +q(z —y) = 2q(x) +2q(y) for all z,y € A.
Proof. “=" Let (z,y) = q(x +y) —q(z) — q(y). Then (z,x) = q(2x) — 2q(x) = 2¢(x). But
by (ii), g(z+y)+q(z—y) = 3{z+y, 2 +y) + 5 (x—y, 2 —y) = (z,2)+(y,y) = 2q(2) +2q(y).
“«<” On Example Sheet 2. O
Theorem 5.7. deg : Hom(E1, E2) — Z is a quadratic form (N.B. we define deg0 = 0).
Proof. We assume that char K # 2,3, so that we can write Ey : y?> = 23 + ax + b. Let
P,Q € FEy with P,Q,P+Q,P—Q #0. Let 21, ..., x4 be their x-coordinates.
Lemma 5.8. There exist polynomials Wy, W1, Wy € Zla, b][x1, 2] of degree < 2 in x1 and
degree < 2 and xo such that (1 : x3+ x4 : x3xg) = (Wo: Wyt Wa).
Proof. Method 1: Direct calculation, Wy = (21 — 22)%, W1 = ..., Wy = ..., see formula
sheet.

Method 2: Let y = Az + v be the equation of the line through P, Q. Then x> + ax + b —
Az +v)? = (z —21) (2 — 22)(z — 23) = 2> — 5122 + 591 — s3.

Comparing coefficients gives:

)\2281
-2\ =89 —a
1/2:$3+b

Eliminating \, v gives (s —a)? —4s1(s3+b) = 0. The left side is a polynomial in x1, z2, 3.
We denote it by F'(x1,x2,x3). It has degree at most 2 in each x; (separately). x3 is a root
of the quadratic W (t) = F(x1,x2,t). Note that the same is true for x4 (as —@Q has also
x-coordinate x2).

So W()(t— xg)(t —1‘4) = W(t) = Wot2 — Wit + Wy, Then (1 T3+ x4t x3m4) = (WO W
Wa). O

13



We show that if ¢,1 € Hom(E1, Es), then deg(¢ + 1) + deg(é — ) < 2deg ¢ + 2deg ).
We may assume ¢, 1, ¢+ 1, ¢ — 1 # 0. Otherwise trivial (or use deg|—1] = 1, deg[2] = 4).

We can write

QS : (l‘,y) = (él(x)?)7

¢ : (xvy) = (52($)7 e ')’

o+ (2,y) = (&(2),...),

b= (@) o (E4(), ).
By the Lemma, (1: &+ & : 68&) = ((& —&)? ¢ ...). Put & = ri/s; with r;,s; € K|t]
coprime. Then (s3s4 : 7354 + 1453 : r374) = ((r182 — 7251)% : ...). The three polynomials

on the left are (not necessarily pairwise) coprime.

Therefore

deg(¢ + 1) + deg(¢ — ¢) = max(degrs, deg s3) + max(degry, deg s4)
= max(deg(s3s4), deg(rsss + ras3), deg(rsrs))
< 2max(degri, degs1) + 2max(degry, deg s1)
=2deg ¢ + 2degy

Now replace ¢, by ¢+, ¢ — 1), so that deg(2¢) + deg(2¢) < 2deg(¢p+ 1) +2deg(d — ).
Since deg[2] = 4, we get the desired reversed inequality.

Hence deg satisfies the parallelogram law and is thus a quadratic form. O

Corollary 5.9. deg(ng) = n?dege for all n € Z,¢ € Hom(Ey, Ey), in particular
deg[n] = n2.

Example (2-isogeny). Let E/K be an elliptic curve. Suppose char K # 2 and 0 # T €
E(K)[2]. WLOG E : y* = x(2? + ax +b), with a,b € K, b(a? — 4b) # 0 and T = (0,0). If
P = (x,y),then P' = P+ T = (2',y) where 2’ = (y/2)? —a —x = % —a—-b=21
and ¢y = —(y/x)2’ = —%. Let

{=w+a +a=(y/z),
n=y+y = (y/x)(x —b/x).

Then n? = (y/x)*((z + b/x)? — 4b) = £((&€ — a)? — 4b) = (€2 — 2a€ + a® — 4b). Thus
¢ = (&,n) is a map from E to E' : y? = x(2? + d/z + V) with o/ = —2a,V = a® — 4b.
This is an isogeny: ¢(x,y) = ((y/z)? : (y(x® —b))/2? : 1). The orders of these functions
at Op are —2,—3,0, so by multipliying through by the cube of a uniformizer gives 1,0, 3,
so $(Op) = (0:1:0) = O%. Note that (y/x)? = (22 + ax + b)/x, and 22 + ax + b, x are
coprime as b # 0. So deg ¢ = 2 and we say that ¢ is a 2-isogeny.

14



6 The Invariant Differential

Let C be an algebraic curve over K = K28,

Definition. The space of differentials Q¢ is the K(C)-vector space generated by df for
f € K(C) subject to the relations

(1) d(f +g) = df +dg,
(ii) d(fg) = fdg + gdf,
(iii) da =0 fora € K.
Fact: Q¢ is a 1-dimensional K (C')-vector space.

Let 0 # w € Q¢. Let P € C be a smooth point and ¢t € K(C) a uniformizer at P. Then

w = fdt for some f € K(C)*. We define ordp(w) = ordp(f). It is independent of the
choice of ¢.

Fact: Suppose f € K(C)*, ordp(f) =n # 0. If char K { n, then ordp(df) =n — 1.
We now assume that C' is a smooth projective curve.

Definition. divw := } pcoordp(w)P € Div(C) (using that ordp(w) = 0 for all but
finitely many P € C). The genus is g(C) = dimg{w € Q¢ | div(w) > 0}.

Consequence of Riemann-Roch: If 0 # w € Q¢, degdiv(w) = 29 — 2.

Lemma 6.1. Assume char K # 2 and let E : y?> = (x — e1)(z — e2)(x — e3) with e, ea, €3
distinct. Then w = df is a differential on E with no poles or zeros. In particular the
K -vector space of reqular differentials on E is 1-dimensional, spanned by w.

Proof. Let T; = (61,0), E[Q] = {O,Tl,TQ,Tg}. Then le(y) = (Tl) + (TQ) + (Tg) — 3(0}5)
For O # P € E we have div(z — zp) = (P) + (—P) — 2(Og). If P € E\ E[2], then
ordp(z —xzp) =1, so ordp(dx) = 0. If P = T;, then ordp(z —zp) = 2, so ordp(dz) = 1.
If P = Og, then ordp(z) = —2, so ordp(dx) = —3. Therefore div(dz) = (T1) + (1) +
(T5) — 3(Og). Thus div(dx/y) = 0. O

Definition. For a nonconstant morphism ¢ : C; — Cy we define ¢* : Qc, — Qc, by
fdg — ¢ fd(¢™g)

Lemma 6.2. Let P € E andtp : E — E, X — P+ X. Let w = dz/y as above. Then
Thw = W.

15



Proof. Tpw is a regular differential on E, so 7pw = Apw for some Ap € K*. The map
E — P!, P+ \p is a morphism of smooth projective curves, but not surjective (misses 0
and oo). Hence this morphism is constant. Since Ao, = 1, we deduce that Ap = 1 for all
P. O

Remark: If K = C, C/A =2 E(C) via z — (p(z2),¢'(2)). Then dx/y = (¢'(2)dz)/¢'(z) =
dz.

Lemma 6.3. Let ¢,¢p € Hom(E, E2), w an invariant differential on Eo. Then (¢ +
V) 'w = ¢*w + YPrw.

Proof. Write E = Fs. Define the following maps:

ExE—EFE,
p(PQ)— P+Q,
prlz(PaQ)'—>P7
pry : (P,Q) — Q.
Fact: Qpxg is a 2-dimensional K (E x E)-vector space with basis prj w, prj w. Therefore
prw = fprjw+ gpriw for some f,g € K(E x E). For fixed Q € E let
w: B — ExXFE
P— (P,Q)

Applying ng to the above equation gives

(me@)'w = (1o f)(pr1 Q) w + (1g9) (- Pratg )'w
~———
constant map
= Tow = (15 f)w+0
= w=(1of)w

Therefore v, f = 1 for all Q € E, so f(P,Q) =1 for all P,Q € E. Similarly g(P,Q) =1
for all P, € E. Therefore p*w = prjw + prjw. Now pullback by E; — Ey x Ea, P —

(¢(P),¥(P)) to get (¢ +v)*w = ¢*w +¢*w. O

Lemma 6.4. Let ¢ : C1 — Cy be a morphism. Then ¢ is separable iff ¢* : Qc, — Q¢ s
non-zero.

Proof. Omitted. O

Example. Let G,, = A!\ {0} be the multiplicative group. Consider the map ¢ : G,, —
G, — x". Then ¢*(dx) = d(2™) = nz" 'dz. So if char K { n, then ¢ is separable, so
#¢~1(Q) = deg ¢ for all but finitely many @ € G,,. Since ¢ is a group homomorphism,
#¢p7H(Q) = # ker ¢ for all Q € G,,,. Therefore # ker ¢ = deg ¢ = n. So K contains exactly
n n-th roots of unity (unsurprisingly).

16



Theorem 6.5. If char K { n, then E[n] = (Z/nZ)?.

Proof. By Lemma and induction we get [n]*w = nw. Since char K t n, we get that
[n] is separable, so #[n]~'(Q) = deg[n] for all but finitely many Q € E. As in the
example above, since [n] is a group homomorphism, #[n]~1(Q) = #E[n] for all Q € E, so

#E[n] = deg[n] = n?. We know that E[n] = Z/d1Z x ... Z/d;Z with dy | --- | dy | n. If p
is a prime with p | di, then E[p] = (Z/pZ)!. But what we just proved is also true for p,
i.e. #F[p] = p?, hence t = 2 and then d; = dy = n. O

Remark: If char K = p, then [p] is inseparable. It can be shown that either E[p"] = Z/p"Z
for all » > 1 or E[p"] = 0 for all » > 1. In the first case F is “ordinary”, in the second
“supersingular”.
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7 Elliptic Curves over Finite Fields

Lemma 7.1. Let A be an abelz’an group and q A — 7 be a positive definite quadratic

form. Then |q(z +y) — q(z) — q(y)| < 2/4(

Proof. We denote (z,y) = q(x+vy) —q(x) — q(y). We may assume z # 0, so that g(z) > 0.

q(
Let m,n € Z. Then 0 < g(mz + ny) = 3(mx + ny, mz + ny) = m?q(z) + mn(z,y) +
n2q(y) = q(x)(m+ éz(% n)2+ (q(y) — <4q(;3) yn?. Now take m = —(x,y),n = 2q(z) to deduce

4q(x)q(y) > (x, ). O

Theorem 7.2. Let E/F, be an elliptic curve. Then |[#E(F,) — (¢ + 1) <2,/3.

Proof. Recall Gal(IFZlg /F,) is topologically generated by the Frobenius x +— z9. Define
the Frobenius endomorphism ¢ : E — E,(x,y) — (2%,y?) (after fixing a Weierstrafl
equation). It is an isogeny of degree q. Then E(F,) = {P € E | ¢(P) = P} = ker(1 — ¢).
Note that ¢*w = ¢*(dz/y) = d(z?)/y? = qu?~ 1dx/y‘1 = 0. By Lemma (1—-9¢)'w=
w—¢*w=w #0,s0 1 — ¢ is separable. Hence #E(F;) = # ker(l — ¢) = deg(1l — ¢). Now
deg : Hom(F, FE) — Z is a positive definite quadratic form, so by the lemma we get

#E(E,) — (g + 1) = | deg(l — ¢) — 1 — deg ¢| < 2,/degd = 2//4.

7.1 Zeta Functions

For K a function field, i.e. K =F4(C) where C/F, is a smooth projective curve, we define
Cr(8) = [loejo) (1 = (N:v)_s)_1 where |C] is the set of closed points on C' (i.e. orbits of

Gal(F48/F,) on C(F2%)) and Nz = ¢%°&% where degz is the size of the orbit. We have
(k(s) = F(q=°) for F(T) =[] /c)(1 — T98*)~" € Q[t]. Then

log F(T Z Z deegx

z€|C|m= 1"
d oo
_ — deg
deTlogF T)= Z Zdega:Tm v
z€|C|m=1
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Thus we get

Definition. The zeta function of a smooth projective curve C/Fy is

Zc(T) = exp (Z #C(Fq")T")

n
n=1

Definition. For ¢,1 € End E we put (¢,v) = deg(¢ + ¢) — deg ¢ — deg ) and tr(¢) =
(¢, 1).
Lemma 7.3. If ¢ € End(E), then ? — [tr ¢ + [deg )] = 0.

Proof. See Exercise Sheet 2. O

Theorem 7.4. Let E/F, be an elliptic curve and #E(F;) =q+1—a. Then

1 —aT + qT?
(1=T)(1—qT)

Zp(T) =

Proof. Let ¢ : E — E be the g-power Frobenius map. By the proof of Hasse’s theorem
#E(F,) = deg(l —¢) = ¢+ 1 — tr(¢) and tr(¢) = a, deg¢p = ¢q. By the lemma we
have ¢? — a¢ + ¢ = 0, hence tr(¢"2) — atr(¢"!) + gtr(¢") = 0. This second order
difference equation with initial conditions tr(1) = 2, tr(¢) = a has solution tr(¢™) = a"+5"
where o, 3 € C are the roots of X? — aX + ¢ = 0. Then #E(Fn) = deg(l — ¢") =
1+ deg(¢™) —tr(¢") =14 ¢" — o™ — ". We then obtain

n n n n

Zg(T) = exp (Z (g + (qT)" B (a)™ <5T)n)>

n=1
(1—aT)(1—pT)
(1-T)(1 —qT)
1 —aT + qT?
A-T)1—qT)’
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8 Formal Groups

Definition. Let R be a ring, I C R an ideal. The I-adic topology on R has basis
{r+I"|reRn>1}.

A sequence (zn)n in R is Cauchy if for all k there exists N such that x, — x, € I* for
all m,n > N.

R is (I-adically) complete if
(i) nnzo I ={o},
(ii) every Cauchy sequence converges.
Useful remark: If R is complete and = € I, then ﬁ =14z+2’+---€R,s01l—xz € R*.
Examples. The following rings are [-adically complete:
o R= 17y, I = ply,.
o R=Z[t], I = ().

Lemma 8.1 (Hensel’s Lemma). Let R be complete w.r.t. an ideal I. Let F' € R[X], s > 1.
Suppose a € R satisfies F(a) = 0 mod I°* and F'(a) € R*. Then there exists a unique
b € R such that F(b) =0 and a = b mod I°.

Proof. Let uw € R* with F'(a) = u mod I. Replacing F(X) by F(X +a)/u we may assume
a=0and F'(0) =1 mod I. We put o = 0 and 2,41 = x, — F'(25,). An easy induction
shows that x, =0 mod I® for all n. Also F(X)— F(Y)=(X -Y)(F'(0)+ XG(X,Y) +
YH(X,Y)) for some polynomials G, H € R[X,Y].

Claim: x,41 = z, mod I"" for alln > 0. Proof: By induction on n, the case n = 0 is clear.
Suppose T, = z,,_1 mod I"*5~1. By the above we get F(z,)—F(zn_1) = (zp—2p_1)(1+c)
for some ¢ € I. Hence F(x,) — F(2p—1) = p — ©5—1 mod I, Rearranging this gives
the claim.

Hence (z,,)n>0 is Cauchy, so x,, — b as n — oo for some b € R since R is complete. Taking
the limit n — oo in zp41 = @, — F(x5,) shows f(b) = 0. Also we get b =0 mod I°.

Uniqueness: Use F(X)—F(Y)=(X-Y)(F'(0)+ XG(X,Y)+YH(X,Y)) and the useful
remark (need R domain for uniqueness 7). O
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Consider an elliptic curve with Weierstrafl equation

E:Y’Z 4+ XYZ+a3sYZ?= X3+ ayX?Z + ay X Z? + agZ°.

On the affine piece Y # 0 we set t = —X/Y,w = —Z/Y and get the equation

w = t3 + artw + apt?w + azw? + agtw® + agw® =: f(t,w)

We apply Hensel’s Lemma with R = Zlay, ..., ag][t], I = (t) and F(X) = f(t,X) €
R[X], s = 3,a = 0. We check F(0) = —f(t,0) = —t> = 0 mod I*® and F’( ) =1-
ait — ast? € R*. Therefore there exists a unique w(t) € Z[as, . .., ag][t] such that w(t) =

f(t,w(t)) and w(t) =0 mod t.
Remarks:
(i) In fact w(t) = t3(1 + Ayt + Agt? +...) where
Al =ay, As :a%—i—ag, Asg :a§+2a1a2—|—2a3,...
(ii) Taking u = 1 in the proof of Hensel’s Lemma gives w(t) = lim, o, wy,(t), where
wo(t) = 0, wnp1(t) = f(t, wn(?)).

Lemma 8.2. Let R be an integral domain, complete with respect to an ideal I. Let
ai,...,as € R and K = FracR. Then E(I) = {(t,w) € E(K) | t,w € I} is a subgroup of

N.B. By the uniqueness in Hensel’s lemma this set is {(¢,w(t)) | t € I}.

Proof. Taking (t,w) = (0,0) shows Op € E(I). So its suffices to show that if Py, P €
E(I), then —P; — P> € E(I). Let

N = IR
w'(t1), t; = to
tn+1 tn+1

—ZAnZ t —to

= Z Ay o+ " g -+t e T
n=2

Let v = w — At € I. Substituting w = X\t + v in w = f(t,w) gives
M4 v =t 4+ art( M+ v) + ast? (At + v) + az(M\t + v)? + agt(\ + 1) + ag(Mt + v)?
Let

A = Coef of 2 =1+ as\ + ay\? + aﬁ)\g,
B = Coef of 2 = a1\ + agv + as\? + 2a4\v + 3ag\v.

Note that A € R*,B € R. Thenty = —& —#; —ty € I and ws(t3) = M3 +v € I. O
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We apply this:

e R=7Z[ai,...,a¢][t],I = (t), then the Lemma shows that there exists ¢ € Z[a1, ..., ag][t]
with ¢(0) = 0 and [—1](¢, w(t)) = (¢(2), w(e(t))).

e R =Zay,...,a6][t1,t2], I = (t1,t2), then the Lemma shows that there exists F' €
Zlay, ..., ag][t1,t2] with F/(0,0) = 0 and ({1, w(t1))+(t2, w(t2)) = (F(t1, t2), w(F (t1,t2))).

In fact

UX) ==X —a1 X2 —apX® — (a3 + a3) X + ...
FX,Y)=X+Y —a1 XY —aa(X?Y + XY?) + ...

The group law implies the following properties:
(i) F(X,Y)=F(Y,X)

(i) F(X,0)=X and F(0,Y) =Y

(iii) F(X,F(Y,Z))=F(F(X,Y),2)

(iv) F(X, (X)) =0.

X
X

Definition. Let R be a ring. A formal group over R is a power series F' € R[X,Y]
satisfiying (i), (ii), (iii) above.
N.B. One can show that property (iv) is automatically satisfied (see Example Sheet 2).
Examples.

(i) F(X,Y) =X +Y, the additive group G,.

(i) F(X,Y)=(1+4+X)1+Y)—1=X +Y + XY, the multiplicative group G,,.

(iii) The power series F' associated to an elliptic curve E as above.

Definition. Let F,G be formal groups over R given by power series F' and G. A morphism
f:F — G is a power series f € R[t] with f(0) = 0 satisfying f(F(X,Y)) = G(f(x), f(y)).
F and G are isomorphic if there exist morphisms F EN G, G L F such that g(f(X)) =
X = f(9(X)).

Theorem 8.3. If char R = 0, then any formal group F over R is isomorphic to G, over
R® Q. More precisely:

(i) There is a unique power series
log(T) :T+%T2+%T2+...
with a; € R such that log(F(X,Y)) =log X +logY .
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(ii) There is a unique power series

b2T2+b—3T3+...

exp(T):T—i—E 30

with b; € R such that exp(logT) = log(expT) =T.

Proof. Notation: F(X,Y) = 9£(X.Y).

(i)

Uniqueness: Let p(T') = % logT = 14-asT+a3T?+. ... Differentiating log F(X,Y) =
log X + logY w.r.t. X gives p(F(X,Y)) - F1(X,Y) = p(X). Then plug in X =0 to
get p(Y)F1(0,Y) =1, s0 p(Y) = F1(0,Y)" L.

Existence: Let p(T) = Fy(0,7)"! = 1+ asT + a3T? + ... for some a; € R. Then let
log(T) = [p(T) =T+%T?*+%T3+.... Weknow F(F(X,Y),Z) = F(X,F(Y, Z)).
Differentiate w.r.t. X to get F1(F(X,Y),Z2)F1(X,Y) = Fi(X,F(Y,Z)) and put
X =0,s0 Fi(Y,2)F1(0,Y) = F1(0, F(Y, Z)). So Fi(Y,Z)p(Y)™! = p(F(Y,Z))~!,
so (Y, Z)p(F(Y,Z)) = p(Y). Integrate w.r.t. Y and get log F(Y, Z) =logY +h(Z)
for some power series h. By symmetry we see that h(Z) = log Z.

This part follows from Q12 on Example Sheet 2 and the following Lemma;:

Lemma. Let f(T) = aT + --- € R[T] with a € R*. Then there exists a unique
g(T) =a™'T +--- € R[T] such that f(g(T)) = g(f(T)) =T.

Proof. We construct polynomials g, (T) € R[T] such that f(g,(T)) = T mod T™*!
and g1 1(T) = gn(T) mod T™F. Then set g(T) = lim, o0 gn(T) satisfies f(g(T)) =
T. To start the induction set g1 (T') = a~'T. Now suppose n > 2 and g,,_1(T) exists,
0 f(gn-1(T)) = T +bT™ mod T™*! for some b € R. We put g,(T) = gn—1(T) +\T"
for some A € R to be chosen later. Then

f(gn(T)) = f(gn—1(T) + XT™)
= f(gn_1(T)) + XaT™ mod T" !
=T+ (b4 Xa)T" mod T

So take A = —b/a using a € R*.

Hence we get g(T) = a T + --- € R[T] with f(g(T)) = T. Applying the same
construction to g gives h(T') = aT + --- € R[T] such that g(h(T")) =T, so f(T)
f(g(h(T))) = h(T), hence g(f(T')) =T

o oo

Notation: Let F be a formal group given by a power series F' € R[X,Y]. Suppose R is
complete w.r.t. the ideal I. For z,y € I put x @ry = F(z,y) € I. Then F(I):= (I, Dr)
is an abelian group.

Examples.
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o Gull) = (I+),
o Con(I) = (141, x),
e E(I) = subgroup of E(K) in Lemma
Corollary 8.4. Let F be a formal group over R and n € Z. Suppose n € R*. Then
(i) [n] : F — F is an isomorphism of formal groups.
(ii) If R is complete w.r.t. an ideal I, then F(I) =2 F(I) is an isomorphism of groups.

In particular, F(I) has no n-torsion.

Proof. We have [1|(T) = T and [n](T) = F([n — 1)(T),T) for n > 2, for n < 0 use
[—1](T) = «(T"). A straightforward induction then shows that [n|(T) = nT + --- € R[T],
so the claim is immediate from the lemma above. O
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9 Elliptic Curves over Local Fields

Let K be a field, complete w.r.t. a (normalized) discrete valuation v : K* — Z. Let k
denote its residue field and 7 a uniformizer. We assume char K = 0 and chark =p > 0

(e.g. K=Q)).
Let E/K be an elliptic curve.

Definition. A Weierstraf$ equation for E with coefficients aq,...,a¢ € K is integral if
ai,...,ag € Og. An integral WeierstrafS equation is minimal if v(A) is minimal among
all integral Weierstraf$ equations for E.

Remarks:

(i) Putting z = u?a’,y = w3y gives a; = u'a). Therefore integral Weierstral equations
exist,.

(ii) If a1,...,a6 € Ok, then A € Ok, so v(A) > 0, so minimal Weierstrafl equations
exist.

(iii) If chark # 2,3, then there exist minimal Weierstral equations of the form 3? =
3+ ax +b.

Lemma 9.1. Let E/K have integral Weierstrafi equation
2 _ .3 2
y* +arxy +azy = x° 4+ ax” + a4 + ag

Let O # P = (z,y) € E(K). Then either z,y € Ok or v(z) = —2s,v(y) = —3s for some
s> 1.

Proof. 1t is easy to see that if v(x) > 0, then v(y) > 0 and also conversely. So suppose
v(z),v(y) < 0. Then on LHS and RHS the dominating terms w.r.t. v are y* and 22, so
v(y?) = v(2®) and the result follows. O

Since K is complete, Ok is complete w.r.t. to the ideal 7" Ok for any r > 1.

Fix a minimal Weierstral equation for E/K, so we get a formal group E over Ok. Taking
I = m"Ok in Lemma [8.2] shows that

-2,

E(r"Ok) = {(z,y) € B(K) ;€ O} U {0}

={(z,y) € E(K) |v(z/y) >, —v(y) > r} U{0}
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(z,y) € E(K) |v(z) = =25, v(y) = =3s, s 2 r} U{O}
(z,y) € B(K) | v(z) < =2r, v(y) < =3r} U{0}
is a subgroup of E(K). We denote it by E,(K). This gives a filtration ... C E3(K)

Ey(K) C Ei(K). More generally for any formal group F over O we have ...
F(m30k) C F(r?0k) C F(nOk).

= { €eFE
= { €eFE

-
-

We now show that the isomorphism F = G, of formal groups induces an isomorphism
F(r"Ok) = (Ok, +) of genuine groups for r sufficiently large.

Theorem 9.2. Let F be a formal group over Ok. Let e =v(p). If r > zﬁ’ then
log : F(7"Ok) = Gu(n"Ok)

18 an isomorphism of groups with inverse
exp : Go(7"Ok) = F(n" Ok).

Remark: G, (7" Ok) = (1" Ok, +) = (O, +).

Proof. For x € m" Ok we must show that the power series log z and exp x converge. Recall
exp(T) =T + BT? + BT + ... with b; € O.

Claim: v,(n!) < Z=1. Proof of claim:

-
> n Oon n

vp(n!) = —| < —=—

P ZL?’“J ;p’“ p—1

So (p — 1)vp(n!) < n, so (p—1)vy(n!) <n —1 since the LHS is € Z.

Now _— 1
v( T;: )2717’—62:1 :(n—l)(T—pil)-i-r
——
>0

This is always > r and goes to co as n — co. So expx converges and belongs to 7" O
A similar method works for log. O

Lemma 9.3. We have F(n"Ok)/F (7" 0k) = (k, +).

Proof. By the definition of a formal group, F(X,Y)=X+Y + XY (...). Soifz,y € Ok,

F(rn"z,7"y) = 7" (z 4+ y) mod 7" 1.

Therefore
F(r"Or) — (k,+)
m'x— r mod T
is a surjective group homomorphism with kernel F(n"1Ox). O
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Corollary. If #k < oo, then F(nOg) has a subgroup of finite index isomorphic to

We denote the reduction O — Ok /1O =k by = +— .
Proposition 9.4. Let E/K be an elliptic curve. Then the reductions mod 7 of any two

minimal Weierstrafl equations for E define isomorphic curves over k.

Proof. Say the Weierstrafy equations are related by the usual coordinate change with pa-
rameters w € K*,r,s,t € K. Then Ay = u'?A,. Since both equations are minimal, we
get u € O. From the transformation formulae for the a; and b;, one can also see that
r,s,t € O. So the coordinate change descends to a valid coordinate change mod w. [

Definition. The reduction E/k of E/K is defined by the reduction of a minimal Weier-
straf§ equation.

E has good reduction if E is nonsingular (and so an elliptic curve). Otherwise E has
bad reduction.

For an integral Weierstrafl equation

v(A) =0 = good reduction
0 <v(A) < 12 = bad reduction

There is a well-defined map

P*(K) — P?(k)
(x:y:2)— (T:y:2)
by choosing x,y, z such that min{v(z),v(y),v(z)} = 0.
We restrict to get E(K) — E(k), P+ P.

If P= (z,y) € E(K), then by Lemma either 2,y € Ok, so that P = (Z,7), or
v(z) = —2s,v(y) = —3s and P = (7%%z : w35y : 13%) — P = (0:1:0).

Therefore E(nOk) = E1(K) = {P € E(K) | P = O} is called the kernel of reduction.

~ E if F has good reduction,
Let Eps =4 ~ ) : . .
E\ {singular point} if E hs bad reduction.

The chord and tangent process still defines a group law on E,,s. In cases of bad reduction
E,s =2 G, (over k) or E,s = Gy, (over k or possibly a quadratic extension of k).

For simplicity, suppose char k # 2. Then E : y?> = f(z) with deg f = 3. Then E is singular
iff f has a repeated root.

If the singularity is a node (resp. a cusp), we get multiplicative (resp. additive) reduction.
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Assume that the singularity is a cusp and that E is given by y? = z3. Then consider

the map E,s — G, (x,y) — x/y with inverse t — (t72,¢73). Let Py, P, P lie on the
line ax + by = 1. Write P, = (x4,v:), t; = x;/yi. Then 2} = y? = y2(ax; + by;). So
t? —at;—b=0. Then t1, to, t3 are the roots of T% —aT —b = 0, so t; + t2 + t3 = 0. Hence
the map above is a group isomorphism.

The case of a node is an exercise.
Definition. Ey(K)={P c E(K) | P € E,s(k)}.
Proposition 9.5. Ey(K) is a subgroup of E(K), and reduction mod 7 is a surjective

group homomorphism Eo(K) — E,(k).

Proof. Group homomorphism: A line [ in P? defined over K has equation [ : aX +bY +cZ =
0 with a,b,c € K. We may assume that min(v(a),v(b),v(c)) = 0. Then reducing mod 7
gives a line 1:aX4+bY +¢Z=0. It P,,P,,P5 € E(K) with Py + P, + P3 = O, then
these points lie on a line [. Then P, Py, Ps lie on the line [. If Py, Py € EnS(K), then
P3 € Eps(k). Soif P, Py € Eg(K), then Py € Fy(K) and Py + Py + P3 = 0 (exercise:
Show this also works if some of the points are repeated).

Surjective: Let f(z,y) = %? + a1xy + agy — (23 + ...). Let P € E,4(k)\ {0}, say
P = (Zg,70). For some g,y € Ok. Since P is non-singular, either %(mo, yo) Z 0 mod 7

or %(aﬁo,yg) # 0 mod 7. In the first case we put g(t) = f(¢t,y0) € Oxk]|t] and apply
Hensel’s lemma to the approximate root xg, the second case is similar. O

It follows that Eo(K)/Fy(K) = E,(k).
A compactness argument will show that if #k < oo, then Ey(K) is of finite index in F(K).
We deduce:

Theorem 9.6. If[K : Q] < oo, then E(K) contains a subgroup of finite index isomorphic
to (Ok,+).

In the following let [K : @,] < oco. We denote the unique unramified extension of degree
m of K by Ky,. We also let K =J,,51 K.

Theorem 9.7. Let [K : Q,] < oco. Suppose E/K has good reduction and p t n. If
P € E(K), then K([n]"'P)/K is unramified. Here [n]"'P = {Q € E(K*28) : nQ = P}.

Proof. For each m > 1 there is a SES

0— E1(Kp) = E(Ky) = E(kyn) =0
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Taking J,,~; gives a commutative diagram with exact rows

0 —— B (KY) —— B(KY) —— E(k¥8) —— 0

[ [ [xn

0 —— B (KY) —— B(KY) —— E(k¥8) —— 0

The left vertical map is an isomorphism by Corollary (ii) applied over each K,,. The
right vertical map is surjective with kernel = (Z/nZ)2. By the Snake lemma we get
E(K™)[n] = (Z/nZ)? and E(K™)/nE(K™) = 0.

So if P € E(K), there exists Q € E(K") such that nQ = P. Then [n]"'(P) = {Q + T :
T € E[n]} C E(K™). Hence K([n]"1P) C K™. O
Lemma 9.8. If #k < 0o, then Eo(K) C E(K) has finite index.

Proof. Since #k < oo, Ok /n"Of is finite for all r > 1. So O = l'mr Ok /m"Ok is a
profinite group and hence compact. P"(K) is the union of sets {(ap : -+ :aj—1 : 1: ajy1 :

tap) | aj € Ok} = O, hence compact. E(K) C P?(K) is a closed subset, hence
compact. The group operations are continuous. So F(K) is a compact topological group.
If E has singular point (Zo, %), then E(K)\ Eo(K) = {(z,y) € E(K) | v(z — zg) >
1,v(y —yo) > 1} is a closed subset of F(K). Therefore Ey(K) is an open subgroup of
E(K). As E(K) is compact, this implies that Ey(K) has finite index in E(K). O

The index [E(K) : Ey(K)] =: cx(FE) is called the “Tamagawa number” (of E).
Remarks:
(i) If E has good reduction, then cx(E) = 1, but the converse is false.

(ii) It can be shown that either cx(F) = v(A) or cx(F) < 4 (essential that we work
with a minimal Weierstrafl equation).

29



10 Elliptic Curves over Number Fields - The
Torsion Subgroup

Let K be a finite extension of Q, E/K an elliptic curve.

Notation: p is a prime of K (i.e. of Ok), write K, for the completion of K at p, O, for
its valuation ring and k, = O /p for its residue field.

Definition. p is a prime of good reduction for E/K if E/K, has good reduction.
Lemma 10.1. E/K has only finitely many primes of bad reduction.

Proof. Take a Weierstrafl equation for E with coefficients a1, ...,a¢ € Og. As F is non-
singular, A # 0. Then E has good reduction at any prime not dividing A. O

Remark: If K has class number 1 (e.g. K = Q), then we can always find a Weierstrafl
equation for F with aq,...,as € O which is minimal at all primes p.
Lemma 10.2. E(K)ios is finite.

Proof. Take any prime p. We saw that E(K,) has a subgroup A of finite index with
A = (Op,+). In particular A is torsionfree. Then E(K )ors € E(Kp)tors — E(Ky)/A. O

Lemma 10.3. Let p be a prime of good reduction with p t n. Then reduction mod p gives
an injective group homomorphism E(K)[n| — E(ky).

Proof. We know that E(K,) — E(ky) is a group homomorphism with kernel E;(K,). By
corollary and p {n, E1(Kp) has no n-torsion. O

Example. Let E/Q be defined by 3? +y = 23 — 22. Then A = —11. So E has good
reduction at all p # 11. We calculate:

p |2 3 5 7 11 13
E(F,) |5 5 5 10 - 10

Thus by the lemma #E(Q)tors | 5-2% for some a > 0 and #E(Q)tors | 5-3° for some b > 0,
hence #E(Q)tors | 5. Let T'=(0,0) € E(Q). Then 57 = O, so E(Q)tors = (T) = Z/5Z.
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Example. Let E/Q be defined by y? +y = 2%+ 2%. Then A = —43. Again we calculate:

p |2 3 5 7 11 13
E(F,) |5 6 10 8 9 19

Therefore #E(Q)tors | 5 - 2% for some a > 0 and #E(Q)tors | 9 - 11° for some b > 0. Hence
E(Q)tors = {O}. Therefore P = (0,0) must have infinite order. In particular E(Q) is
infinite.

Example. Ep : y?> = 23 — D%z with D € Z squarefree, A = 26D%. Then Ep(Q)ors 2
{0,(0,0), (£D,0)} = (Z/2Z)*. Let f(z) = 23 — D?z. If p{ 2D, then

wboy =1+ 5 ((12) 1)

z€F,

If p = 3 mod 4, then since f is an odd function, (%) =—( ;)) Therefore #Ep(F,) =
p+1. Let m = #Ep(Q)tors. We have 4 | m | p + 1 for all sufficiently large (i.e.
p 1 2Dm) primes p with p = 3 mod 4. Therefore m = 4 since otherwise this contradicts
Dirichlet’s theorem on primes in arithmetic progressions. So Ep(Q)iors = (Z/27)%. Hence
rank Ep(Q) > 1 iff there exist 2,y € Q with y # 0 such that y?> = 2% — D2z iff D is a
congruent number.

Lemma 10.4. Let E/Q be given by a WeierstrafS equation with ay,...,as € Z. Suppose
04T = (x,y) € E(Q)tors- Then

(i) 4z,8y € 7Z.
(i) If 2| ay or 2T # 0, then z,y € Z.

Proof. The Weierstrafl equation defines a formal group E over Z. For r > 1 we have

E(p'Z,) = {(x,y) € E(Q) | vp(x) < —2r,v,(y) < —3r} U{O}. By Theorem
E(W'Zy) = (Zp,+) if r > 1%' So E(4Z3) and E(pZ,) for p odd are torsionfree. So if
0#T = (z,y) € E(Q)tors, it follows that va(z) > —2,v2(y) > —3 and vy(x) > 0,v,(y) >0
for odd primes p. This proves (i).

For (i) suppose T' € E(2Z)\E(4Zs), i.e. va(z) = —2,va(y) = —3. Since E(2Zy)/E(4Zy) =
(Fa,4) and E(47Zs) is torsionfree, we get 27" = 0. So (z,y) =T = -T = (z,—y—a1x—a3),
s0 2y + a1z + ag = 0. From this it follows easily that 21 a;.

So if 2T # O or a; is even, then T ¢ E(2Z5). O

Example. E:y? +y =a%+4x+ 1. Then (—1,3) € E(Q)[2].

Theorem 10.5 (Lutz-Nagell). Let E/Q be an elliptic curve with Weierstraf§ equation
y? = f(x) = 2% + ax + b with a,b € Z. Suppose 0 # T = (z,y) € E(Q)tors- Then x,y € Z
and either y =0 or y? | (4a® + 27b%).
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Proof. The previous lemma shows that xz,y € Z. If 2T = O, then y = 0, so suppose that

2T # O. Write 2T = (x2,y2). Then by the lemma again z2,y2 € Z. But x2 = (f;(;))2—21:,

soy | f'(z). As E is non-singular, f and f’ are coprime, so there exist g, h € Q[X] such
that g(X)f(X)+h(X)f'(X)? = 1. Doing this calculation and clearing denominators gives

(3X2% 4 4a) f/(X)? — 27(X> + aX — b) f(X) = 4a> + 27b*
Since y | f'(z) and y? = f(x), we get y? | (4a® + 27b%). O
Remark: Mazur showed that if £/Q is an elliptic curve, then

Z/nZ 1<n<12,n#11,

E >~
Qo {Z/ZZ X Z)2nZ 1<n<A4
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11 Kummer Theory

Let K be a field, char K tn. Assume p, C K.

Lemma 11.1. Let A C K*/(K*)" be a finite subgroup. Let L = K(Y/A). Then L/K is
Galois and

Gal(L/K) = Hom(A, py,).

Proof. L/K is Galois since p, € K and char K { n. Define the Kummer pairing (,) :
Gal(L/K) x A — pp, (0,z) — U(%\/\/g) Note that this is well-defined and bilinear. It is

also non-degenerate: If o € Gal(L/K) such that (o,z) = 1 for all z € A, then clearly
o = 1. If z € A such that (o,2) =1 for all ¢ € Gal(L/K), so o({/x) = {/z for all o and
so Yr e K, ie. xe (K*"

Thus we get injective group homomorphisms
(i) Gal(L/K) — Hom(A, p),
(ii) A — Hom(Gal(L/K), fin,)-
By (i) Gal(L/K) is abelian of exponent dividing n.

N.B. If G is a finite abelian group of exponent dividing n, then Hom(G, ) = G (non-
canonically). So # Gal(L/K) < #A < #Gal(L/K), hence the injections above are
isomorphisms. O

Example. Gal(Q(vZ. V3.v5)/Q) = (2/22)"
Theorem 11.2. There is a bijection
finite subgroups PN finite abelian extensions L/K
ACK*/(K*)" of exponent dividing n
A—s K(V/A)
(L)"NK*/(K*)" <— L.
Proof. (i) Let A C K*/(K*)" be a finite subgroup. Let L = K({/A) and A’ = (L*)" N

K*/(K*)*. We must show A = A’. Clearly A C A’. So L = K(V/A) C K(/A') C L. In
particular K (¥/A) = K(/A’), so by Lemma #A = #AN. Tt follows that A = A’.

(ii) Let L/K be a finite abelian extension of exponent dividing n. Let A = (L*)" N
K*/(K*)". Then K (3/A) C L and we aim to prove this is an equality. Let G = Gal(L/K).
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The Kummer pairing gives an injection A — Hom(G, p,). Claim: This is a surjection.
From this we would get [K(VA) : K] = #A = #G, so L = K(V/A). Proof of claim: Let
X : G — u, be a homomorphism. Distinct automorphisms are linearly independent, so
there exists a € L such that y := > . x(7)"'7(a) # 0. Let o € G. Then

o(y) =Y x(r)'or(a)

TEG

=Y x(o ') r(a)

T7€G
=x(o)y

Therefore o(y™) = y™ for all 0 € G, so y" € K*. Let x = y". Then x € K* N (L*)". Note

that x : o — % = J(,\;g). So the map A — Hom(G, p1y,) sends z to x which proves the
claim. O

Proposition 11.3. Let K be a number field, u, C K. Let S be a finite set of primes of
K. There are only finitely many extensions L/K such that

(i) L/K is finite abelian of exponent dividing n.

(i1)) L/K is unramified at allp ¢ S.
Proof. Let L be such an extension. By Theorem L = K(¥/A) for some finite subgroup
A C K*/(K*)". Let p be a prime of K. Write pOr, = B7' ... P& If x € K* represents an
element of A. Then nvy, ({/z) = vy, (z) = e;vp(z). If p ¢ S, then all e; = 1, so n | vy(z).

So A C K(S,n) where K(S,n) = {z € K*/(K*)" | vp(z) = 0 mod nVp ¢ S}. The claim
then follows from the following Lemma. O

Lemma 11.4. K(S,n) is finite.

Proof. The map K (S,n) — (Z/nZ)*%, z — (vy(x) mod n)pes is a group homomorphism
with kernel K (0, n). So it suffices to prove that K (), n) is finite, i.e. we may assume S = ().

If z € K* represents an element of K ((),n), then (x) = a™ for some fractional ideal a.
There is a short exact sequence

0 — O%/(O%)" — K(B,n) — Clg|n] — 0.

We know that Clg is finite and O}, is finitely generated, so it follows that K ((,n) is
finite. O
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12 Elliptic Curves over Number Fields - The
Mordell-Weil Theorem

Let K be a field.

Lemma 12.1. Let E/K be an elliptic curve, L/K a finite Galois extension. The natural
map E(K)/nE(K) — E(L)/nE(L) has finite kernel.

Proof. For each element in the kernel we pick a coset representative P € E(K), and then
Q € E(L) with nQQ = P. For any o € Gal(L/K) we have n(cQ — Q) = oP — P = O,
so 0Q — @ € E[n]. Since Gal(L/K) and E[n] are finite, there are only finitely many
possibilities for the map Gal(L/K) — Eln|, 0 — 0Q — Q. But if P, P, € E(K), P; =
nQ;i,Q; € E(L) for i = 1,2 and 0@Q; — Q1 = 0Q2 — Q2 for all o € Gal(L/K), then
O'(Ql — QQ) =Q1— Q2,8 @1 — Q2 € E(K), hence P, — Py = n(Q1 — Qz) € nE(K) OJ

Lemma 12.2. Let E/K be an elliptic curve. If P € E(K), then K([n]"'P)/K is a Galois
extension, and moreover if E[n] C E(K), the Galois group is abelian of exponent dividing
n.

Proof. Since Gal(K®#/K) acts on [n]~!(P), we see that Gal(K®8/K ([n]~'P)) is a normal
subgroup of Gal(K?®8/K), so the extension K ([n]™'P)/K is Galois.

Suppose that E[n] C E(K). Pick Q € [n]"'P. Then [n]'P = {Q + T | T € E[n]}. So
K([n]7'P) = K(Q). There is a map Gal(K(Q)/K) — E[n] & (Z/nZ)?, 0 — oQ — Q.
This is a group homomorphism as c7Q —Q = o (TQ —Q)+0Q—Q = (70— Q)+0Q—Q and
injective: If cQ—Q = O, then 0@ = Q, so o fixes K(Q), so o = 1. Hence Gal(K(Q)/K) —
(Z/nZ)2. O

Theorem 12.3 (Weak Mordell-Weil Theorem). Let K be a number field, E/K an elliptic
curve, n > 2 an integer. Then E(K)/nE(K) is finite.

Proof. By Lemma we may replace K by a finite Galois extension, and thus wlog
assume p, C K and E[n] C E(K). The field extensions K ([n]"'P)/K as P runs over
E(K) are abelian of exponent dividing n and unramified outside the finite set of primes

S = {p | n} U {primes of bad reduction}

by Theorem By Proposition there are only finitely many such extensions. The
composite (L say) of all these field extensions is therefore a finite Galois extension of K.
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By construction of L the map F(K)/nE(K) — E(L)/nE(L) is the zero map. By Lemma
again its kernel, which is F(K)/nE(K), is finite. O

Remark: If K = R or C or [K : Q] < oo, then #(F(K)/nE(K)) < oo, yet E(K) is
uncountable and so not finitely generated. For an example of a field K and an elliptic
curve E/K for which E(K)/2E(K) is not finitely generated, see Example Sheet 4.

~

Fact: If K is a number field, there exists a quadratic form (= canonical height), h :
E(K) — R>( with the property that for any B > 0, the set {P € E(K) | h(P) < B} is
finite. We will show this in the next chapter.

Theorem 12.4 (The Mordell-Weil Theorem). Let K be a number field, E/K an elliptic
curve. Then E(K) is a finitely generated abelian group.

Proof. Fix an integer n > 2. By Weak Mordell-Weil E(K)/nE(K) is finite, so let
Py,...,P, € E(K) be a finite list of coset representatives. Let ¥ = {P € E(K) |
h(P) < maxi<i<m h(P;)}. Claim: ¥ generates E(K). If not, there exists P € E(K) of
minimal height which is not in the subgroup A generated by 3. Then P = P; + nQ for
some 1 < i < m and Q € E(K). Note that Q ¢ A, so by minimality of h(P), we get
1(P) < 1(Q), hence

So h(P) < h(P;). Then P € ¥ C A, a contradiction.
Hence ¥ generates E(K) and thus F(K) is finitely generated. O
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13 Heights

For simplicity take K = Q. Write P € P*(Q) as P = (ap : a1 : -+ - : ap,) where ag,...,a, €
Z with ged(ag, ..., an) = 1. The height of P is H(P) := maxo<i<n |ail.

Lemma 13.1. Let f1, fo € Q[X1, X3] be coprime homogeneous polynomials of the same
degree d. Let

F:P' - P!,
(z1 1 22) = (fi(z1,22) : fo(w1, 22)).

Then there exist c1,c3 > 0 such that ¢ H(P)? < H(F(P)) < coH(P)%.

Proof. WLOG fi, fo € Z[X1,X5]. For the upper bound write P = (a : b) with a,b €
Z coprime. Then H(F(P)) < max(|fi(a,b)|,|fa(a,b)]) < comax{|a|?,|b|?} where c; =
max;—1 2(sum of absolute values of coeffs. of f;). Hence H(F(P)) < coH(P)<.

Lower bound: We claim there exist homogeneous polynomials g;; € Z[X1, X3] of de-
gree d — 1 and k € Z~( such that 232‘:1 9ijfj = /inQd_l for ¢ = 1,2. Indeed, running
Euclid’s algorithm on f1(X,1) and fo(X,1) gives r,s € Q[X] of degree < d such that
r(X)fi(X,1) + s(X)f2(X,1) = 1. Homogenizing and clearing denominators gives the
claim with ¢ = 2. Likewise with ¢ = 1. Write P = (a1 : a2) with a1,a2 € Z coprime.
Then Z?:l gij(a1,a2) fj(a1, az) = ka?*~! for i = 1,2. Therefore ged(f1(a1, az), fa(a1,az))
divides ged(ka2?™ !, ka2?™1) = k. Also

2

ka?™t| < max | f;(a1, 62)] > lgij(ar,a)]
9 ]:1
< kH(F(P))y:H(P)*!

where 7; = Z?Zl(sum of absolute values of coeffs. of g;;).  Therefore H(P)?"! <
max(y1,v2)H(F(P))H(P)? ! and so ¢; H(P)? < H(F(P)) where ¢; = m O

Notation: For z € Q, let H(z) = H((x : 1)) = max(|al, |b|) where » = § with a,b € Z
coprime.

Let £/Q be an elliptic curve given by 3? = 2 + ax + b.
Definition. The height on E is

H: E(Q) — R21
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- {H<as> if P =(zy),
1 if P = Og.

The logarithmic height is

h: E(@) — Rzo,
P+ log H(P).

Lemma 13.2. Let E, E’ be elliptic curves over Q, ¢ : E — E' an isogeny defined over Q.
Then there exists ¢ > 0 such that |h(¢(P)) — (deg ¢)h(P)| < ¢ for all P € E(Q).

Proof. Recall that by Lemma there is a map & : P! — P! such that

Eli)Eg

lxl lm

Pt —* p!

commutes. By Lemma there exist cj,co > 0 such that c;H(P)? < H(¢(P)) <
coH(P)? for all P € E(Q) where d = deg¢ = deg ¢. Taking log gives

|h(¢(P)) — dH(P)| < max(logca, —logey).
O

Let ¢ = [2] : E — E. Then there exists ¢ > 0 such that |h(2P) — 4h(P)| < C for all
P e E(Q).

The canonical height is
- 1
h(P) = lim 4—nh(2"P).

n—oo

We check that this converges: Let m > n, then

—_

4™ R(2mP) —4 " h(2"P)| < Y [A= D p 2t P) — 47T h(27P)|

3

i
3

3
L

4= D |p(2(27P)) — 4h(27P)|

(]

ﬁ
Il

n

4—(T+1)

IA
Q
(]2

n

Qi

:3 4n—>0 as n — oo

So the sequence is Cauchy and h(P) exists.
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Lemma 13.3. |h(P) — h(P)| is bounded for P € E(Q).

Proof. Putting n = 0 in the above calculation gives |4 "h(2™P) — h(P)| < %, hence
[h(P) —h(P)| < §. O

Corollary 13.4. For any B > 0, the set {P € E(Q) | h(P) < B} is finite.

Proof. By the previous lemma we can replace h by h. It is clear that there are only finitely
many x with H(xz) < B, each such x leaves at most 2 choices for y. O

Lemma 13.5. Let ¢ : E — E' be an isogeny defined over Q. Then h(¢P) = (deg ¢)h(P)
for all P € E(Q).

Proof. By Lemma there exists ¢ > 0 such that |h(¢pP)—(deg ¢)h(P)| < ¢ for all E(Q).
Replace P by 2" P, divide by 4™ and then take the limit n — oo to get the claim. O

Remark: This shows that & (unlike i) does not depend on the choice of Weierstrafl equation
for E.
Taking ¢ = [n] shows h(nP) = n2h(P) for all P € E(Q),n € Z.

Lemma 13.6. Let E/Q be an elliptic curve curve, say with Weierstraf§ equation y? =
2 +ax+b, a,b € Z. Then there exists ¢ > 0 such that

H(P+Q)H(P - Q) < cH(P)*H(Q)?
for all P,Q € E(Q) with P,Q,P+Q,P —Q # O.

Proof. Let P,Q, P+ @, P — @ have x coordinates z1,...,x4. Write x; = % with r;,s; € Z
coprime. As in the proof of Theorem there are polynomials Wy, Wi, Wa such that
(8384 : 1384 + 1483 2 rary) = (Wy : Wi : Wa). The Wy, Wi, Wy have degree 2 in 71, s; and
degree 2 in 73, s9.

Then
H(P+ Q)H(P — Q) = max(|r3|, |s3|) max(|ra], |sa])
< 2max(|s384], |r3sa + rassl,|r374])
< 2max(|Wol, [Wil, [W2])
< (const.) max(|ry, |s1])* max(|ra], |s2|)?
= (const.)H(P)*H(Q)>.

Theorem 13.7. h : E(Q) — Rxg is a quadratic form.
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Proof. Using Lemma and that |h(2P) — 4h(P)| is bounded (in one of the exceptional
cases where the lemma does not apply) we get h(P+ Q)+ h(P — Q) < 2h(P)+2h(Q)+C
for some constant C for all P,Q € E(Q). Then replace P,Q by 2"P,2"Q, divide by 4™
and take the limit n — oo. We get h(P + Q)+ h(P — Q) < 2h(P) + 2h(Q) Replacing P, Q
by P+ Q, P — Q and using h(2P) = 4h(P) we get the reverse inequality.

So h satisfies the parallelogram law and is thus a quadratic form. O

Remark: Over a general number field K, define the height H(P) of P = (ap : a1 : -+~ :
ap) € P"(K) by
H(P) = || max |ai|o

0<i<n
v

where the product ranges over the places v of K (using a suitable normalization of | - |,).
This is well-defined by the product formula. All results in this section generalize from Q
to K.
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14 Dual Isogenies and the Weil Pairing

Let K be a perfect field, E/K an elliptic curve.

Proposition 14.1. Let ® C E(K?2) be a finite Gal(K*8/K)-stable subgroup. Then there
exists an elliptic curve E'/K and a separable isogeny ¢ : E — E' defined over K, with
kernel ®. Moreover, every isogeny v : E — E" with ® C ker ¢ uniquely factors through ¢.

P

1) 7
\ o3

El

E//

Proof. Omitted, see Silverman AEC, Chapter III, Corollary 11 and Proposition 4.12. [

Proposition 14.2. Let ¢ : E — E’ be an isogeny of degree n. Then there exists a unique
isogeny ¢ : E' — E such that ¢¢ = [n]. ¢ is called the dual isogney of ¢.

Proof. Uniqueness: 11¢ = 1pa¢p = [n], so (1 — 2)¢ = 0, so 11 = 12 as ¢ is surjective.
Case ¢ is separable: #ker ¢ = n, so ker ¢ C E[n]. Apply the proposition to ¢ = [n].
Case ¢ inseparable: Omitted (Silverman AEC, Chapter III, Theorem 6). O

Remarks:
(i) Write By ~ Ej if Eq, E5 are isogenous. Then ~ is an equivalence relation.
(i)
(ifi) If By % By % Es, then o9 = 000,
(iv) ¢pgp = é[nlg = [n]p ¢, hence b = [n]gr. In particular g = ¢. If ¢ € End(E),

then ¢* — [tr ¢]¢ + [deg ¢] = 0, so ([tr ] — )¢ = [deg ¢]. So ¢ = [tr¢] — ¢ and so
[tr o] = ¢ + ¢.

Lemma 14.3. If ¢, € Hom(E, E'), then

deg[n] = n2, so deg ¢ = deg ¢ and [/n\] = [n].

—

b+ =0+14.
Proof.
(i) If E = F’, this follows from tr(¢ + ) = tr ¢ + trep.
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(ii) In general, let @ : E' — FE be any isogeny (e.g. a = g/b\) Then by (i), a(p+1v) =
ad+a = ad+ ap. So ¢+ Pa = (¢ + 1)a. The claim follows.

O
Remark: In Silverman’s AEC, the lemma is used to show that deg : Hom(E, E’) is a
quadratic form.

Let sum : Div(E) — E, Y. np(P) +— Y. npP. Recall E = Pic’(E) via P +— [(P) — (Og)]
and sum(D) — [D] if deg D = 0.

We deduce:
Lemma 14.4. Let D € Div(E). Then D ~ 0 iff deg D = 0 and sum D = Og.
Let¢p: B — E' lle an isogeny of degree n with dual isogeny a : ' — E. Assume char K {n
(so both ¢ and ¢ are separable). We define the Weil pairing

E[¢] x E'[¢] = pin.
Let T € E'[¢]. Then nT = 0, so there exists f € K*8(E')* such that div(f) = n(T)—n(0).
Pick Ty € FE(K®#) such that ¢Tp = T. Then ¢*(T) — ¢*(0) = >perg (P + To) —
> pepjg (P) has sum nTy = $¢pTy = $T = 0. So there is g € KE(E)* such that

div(g) = ¢ (T) — 6*(0).
Now div(¢* ) = ¢*(div f) = ¢*(n(T)~n(0)) = n(¢*(T)~¢*(0)) = div(g"). So¢*f = cg"

for some ¢ € K?8", Rescaling f we may assume ¢ = 1, so ¢*f = g".

If S € E[¢], then ¢poT1g = ¢, so 75(div g) = divg. Then div(r§g) = div(g) and so 759 = (g
for some ¢ € K?&*. Therefore

¢ = M for all X € E(K ang) where this is defined.
9(X)
Now (" = 9(;((;)572" = f(f‘i’(((;((;;)) =1 since S € E[¢]. So ¢ € pip,. We define €4(S,T) =( =
g(X+59)
g(X) -

Proposition 14.5. ey is bilinear and non-degenerate.

Proof. (i) Linearity in first argument:

_ g(X + 851+ 852) g(X + 57)
Wt R =T NSy oY)

= 6¢(Sl, T)6¢(52, T).

~

(ii) Linearity in second argument: Let T1,Ty € E’[¢], we get f1, f2, g1, g2 with div(f;) =
n(T;) —n(O) and ¢* f; = g%, i = 1,2. There exists h € K*8(E')* such that div(h) =
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(T1) + (Tz) — (T1 + 1) — (O). Then put f = L2, Then div(f) = div(f1) +div(f2) —

ndiv(h) = n(T1 + T2) — n(0O) and ¢* f = (12%"’ so set g = £.92. Then

9 X +5) _ (X +5)g(X +5) h(e(X))
9(X) a(X) g X) h(eX+S9))
= gll(gi;)s) 92.(92?;(‘)5) = 8¢(S, T1)6¢(S, TQ)

e¢(S, T+ 1) =

~

(ili) Nondegeneracy: For T € E'[¢] suppose €,(S,T) =1 for all S € E[¢]. Then 7ég =g
for all S € E[¢]. Note that K*8(E)/¢* K*8(E") is Galois with Galois group E[¢]
(where S € E[¢] acts as 7%). Then g = ¢*h for some h € K*8(E') (see also
Proposition [14.1]). Then ¢*f = g" = ¢*(h"), so f = h" and thus div(h) = (T) — (O).

Then T' = O. Hence E’'[¢] — Hom(E[¢@], in) is injective. Since #E[¢] = #E'[¢] = n,
this map is an isomorphism. O

Remarks:

(i) If E,E', ¢ are defined over K, then e, is Galois equivariant, i.e. ey(0S,0T) =
o(e(S,T)) for all o € Gal(K*¢/K), S € E[¢],T € E'[4).

(ii) Taking ¢ = [n] : E — E (so ¢ = n) gives e, : E[n] x E[n] — u, (note that since
E[n] is n-torsion the image is actually in g, C p,2).

Corollary 14.6. If E[n| C E(K), then p, C K.

Proof. e, is nondegenerate, so there exists S,T € E|[n| such that e,(S,T) is a primitive
n-th root of unity (,. Then o((,) = o(en(S,T)) = en(0S,0T) = ey(S,T) for all o €
Gal(K?®®8/K), hence ¢, € K. O

Remark: In fact the Weil pairing e,, is alternating, i.e. e,(7,T) =1 for all T' € Eln|.
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15 Galois Cohomology

Let G be a group, A a G-module.

Definition.
HY(G,A) =AY ={a € A|oa=aVo € G}
CHG, A) = {maps G — A}
ZHG, A) = {(ay)secn € CHG, A) | agr = 0(ar) + as}
BYG, A) = {(ob—b)yec | b€ A}
HY(G, A) = 7G,A)/BY (G, A)

Elements in CY1(G, A) (resp. Z1(G,A), BY(G,A)) are called cochains (resp. cocycles,
coboundaries ).

Remark: If G acts trivially on A, then H'(G, A) = Hom(G, A).
Theorem 15.1. A short exact sequence of G modules
0545 BY% 050
induces a long exact sequence of abelian groups:
0 A% % B¢ Y ¢ % glia, A) 2 HYG, B) L HY(G, 0).
Proof. Omitted (straightforward, Snake lemma). O

Definition of 6: Let ¢ € C¢. Then there exists b € B such that (b) = c¢. Then ¢)(cb—b) =
oc—cforall 0 € G, so ob— b = ¢(a,) for some ay, € A. Then (ay)oeq € Z*(G, A). We
define §(c) = (ay)seq + B (G, A) € H(G, A).

Theorem 15.2. Let A be a G-module, H a normal subgroup of G. There is an inflation-
restriction exact sequence:

0— HYG/H, A" 25 HY (G, A) £ HY(H, A).
Proof. Omitted (straightforward). O

Let K be a perfect field. Then Gal(K?8/K) is a topological group. If G = Gal(K*#8/K),
we modify the definition of H!(G, A) by insisting:
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(1) The stabilizer of each a € A is an open subgroup of G.
(2) All cochains G — A are continuous where A carries the discrete topology.
Theorem (Hilbert’s Theorem 90). Let L/K be a finite Galois extension. Then
HY(Gal(L/K),L*) = 1.

Proof. Let G = Gal(L/K). Let (as)seq € Z'(G,L*). Distinct automorphisms are
linearly independent, so there exists y € L such that = := Y. _,a;7'7(y) # 0. For

c€G o) =3, ¢ o(ar)"tor(y) = as Y. e @orioT(y) = apx. Hence a, = ?, )
(as)sec € B(G, LX), so H(G,L*) = 0. 0
We have

H'(Gal(K™#/K), A) = limg HY(Gal(L/K), AGal(K™¢/L))

L/K finite Galois
where the direct limit is taken with respect to the inflation maps.
Corollary. H! (Gal(Kalg/K), Kalgx) =0.

Example. Assume char K { n. There is a short exact sequence of Gal(K 8 /K)-modules:

n

0 — pp — K8% 2 galex 5
This is gives a long exact sequence
K* 2 K%Y HYGal(K™8/K), uy) — H' (Gal(K™8/K), K<) = 0.
Hence H'(Gal(K®8/K), u,) = K> /(K*)™.
If y1, C K, then Homs(Gal(K™8/K), p,,) = H' (Gal(K™8/K), p,,) = K> /(K*)".
And there is a bijection:

finite abelian extensions L/K finite subgroups of
of exponent dividing n Homes(Gal(K28 /K), py) [

L — Hom(Gal(L/K), un)
This gives another proof of Theorem [11.2]/"
Notation: H'(K,—) means H'(Gal(K¥#/K), —).

Let ¢ : E — E' be an isogeny of elliptic curves over K. There is a short exact sequence of
Gal(K?®8/K)-modules:

0 E[¢] > ES B —0.

'Remark by L.T.: To get the precise statement of Theorem we probably need something like Pon-
tryagin duality so that we have a canonical bijection between open subgroups of Gal(K*#/K) and
finite subgroups of Homes(Gal(K*8/K), tin)...
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This gives the long exact sequence:

B(K) % B'(K) Y HY(K, E[¢]) » H(K, E) LN HY(K,E').

So we get a short exact sequence:

E'(K)
0 — JE(E) HY(K,E[¢]) — HY(K, E)[¢.] — 0.

Now take K to be a number field. For each place v of K fix an embedding K?& — K3,
Then Gal(K2¢/K,) < Gal(K*$/K). Then we get:

0 L ——— H\(K, Bl¢]) ——— H'(K,E)[6.] — 0
l J]—LJ res\ JHU resy
0 ]._[v ¢>EE/](([I((Z)) HU & Hv Hl(KU7E[¢]) — Hv Hl(K’UuE)[¢*] — 0

Definition. The ¢-Selmer group is

SO (E/K) = ker \, = ker (Hl(K, Elg)) - [[ H'(K., E)).

The Tate-Shafarevich group is

[I(E/K) = ker (Hl(K, E) - [[H'(K., E)).

We get a short exact sequence

E'(K) s
SE(K) SY(B/K) = LL(E/K)[¢.] — 0.

Taking ¢ = [n] gives

E(K)

B % SM(B/K) — HI(E/K)[n] — 0.

Rearranging the proof of the weak Mordell Weil Theorem gives:
Theorem 15.3. S (E/K) is finite.
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Proof. For a finite Galois extension L/K there is an exact sequence:

0 —— HY(Gal(L/K), E(L)[n]) -2 HY(K, E[n]) == H'(L, E[n])

J J

SM(E/K) —— SM™(E/L)

By extending our field we may thus assume E[n] C E(K) (and hence u, C K). So
E[n] = py, X pyn as Galois modules. Then HY(K, E[n]) & HY(K,u,) x HY(K, u,) =
XS x K ()"

Let S = {primes of bad reduction for £} U{v | noo}.
Definition. The subgroup of H'(K, A) unramified outside S is
HY(K, A; S) = ker (Hl(K, A) = [ B (& A)).
vgS
There is a commutative diagram with exact rows

E(K,) —" E(K,) —>— HY(K,, E[n])

| |

E(K}r) =" B(K)") —— H'(K}", E[n))
The map E(K™) =% E(KY) is surjective for v ¢ S. So E(K") LN HY(KY, E[n]) is the
zero map. Then Im(d,) C ker(]). Then

SM(E/K) = {a € H'(K, E[n]) | resy () € im(6,) Vo}
C H'(K, E[n; S)
= H1<Ka fin; S) X Hl(K“un;S)
C K(S,n) x K(S,n).

We know that K (S,n) is finite by Lemma Hence S (E/K) is finite. O
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16 Descent by Cyclic Isogeny

Let E, E' be elhptlc curves over a number field K and ¢ : E — E’ an isogeny of degree
n. Suppose E'[¢p] = Z/nZ is cyclic and generated by T € E'(K). Then E[¢] & pu, as
Gal(K*8/K)-modules via S — es(S,T). There is a short exact sequence of Gal( K8 /K)-
modules

0— pp — E Y E S0

This gives a long exact sequence

B(K) 2 B/(K) —2—~ HY(K,u,) — HY(K, E)

.

KX J(KX)n

Theorem 16.1. Let f € K(E') and g € K(E) with div(f) = n(T) —n(O) and ¢*f = g".
Then a(P) = f(P) mod (K*)" for all P € E'(K)\ {Opg,T}.

Proof. Let Q € ¢~'P. Then §(P) is represented by the cocycle ¢ — 0Q — Q € Elg].

And E[¢] = p, via S = ey(S,T). Then ey(c@Q — Q,T) = W for any X €

E \ {zeros, poles of g}. Take X = Q, so e4(cQ — Q,T) = 90Q) _ ol(Q) _ s VIP)

9(Q) 9(Q) Y/ (P)
So §(P) is represented by the cocycle o \/7”() But HY(K, u,) = K*/(K*)" where
x € K* corresponds to o Uﬁ . Therefore
a(P) = f(P) mod (K™)".
O

16.1 Descent by 2-Isogeny
Let

E:y? =x(z* +ax +b)
B y? =x@@®+de+ V)
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where b(a? — 4b) # 0 and @’ = —2a, ' = a® — 4b. Consider the isogenies:

¢:E—E, (z,y)— (<Z>27y($12_b))
e o (4(2) )

The kernels are:

El¢] ={0g, T} T =(0,0) € E(K),
E'[¢] = {Op,T'} T' =(0,0) € E'(K).

Proposition 16.2. There is a group homomorphism
E'(K) — K*/(K*)?

(2.9) — r mod (K*)? ifx #0,
Y ¥ mod (K*)? ifzx=0

with kernel ¢(E(K)).

Proof. Either apply the theorem with f =z € K(E'), g = + € K(E), or use direct

calculation (see Example Sheet 4). O
We get maps
B AE(K) KX/<K><)2
OE'(K)
E'(K)
=z K*/(K*)?
ap s o K (K)

Lemma 16.3. 2rankE(K) — #Im(aE);l#Im(aE/)‘

Proof. If A i> B4 C homomorphisms of abelian groups, then there is an exact sequence

0 — ker f — ker(gf) EN ker g — coker f % coker(gf) — coker g — 0.

Since <$¢ = [2] g, we get an exact sequence
o o . E(K) § E(K) E(K)
0— E(K)[¢] — E(K)[2] = E'(K)[¢] — SE(K) — SE(K) — 2B K)

——
~7,/22 ~7,/22 —— NI
>Im(og) >Im(ag)

Counting orders gives

#(E(K)/2E(K)) _ #Im(ag)# Im(ap)
#E(K)[2] 4 .
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By the Mordell-Weil Theorem, E(K) = A X Z" where r is the rank and A is a finite group.
Then

B(K)/2E(K) = AJ2A x (Z/2Z)",
BE(K)[2] = A[2).

Since A is finite, A[2] and A/2A have the same order, so % =2". O

Lemma 16.4. If K is a number field and a,b € Ok, then Im(ag) C K(S,2) where
S = {primes dividing b}.

Proof. We must show that if z,y € K with y*> = z(2% 4+ az + b) and v,(b) = 0, then
vp(x) = 0 mod 2.

e Case vp(x) < 0: then vy(x) is even by Lemma
e Case vp(x) > 0: then vy(z% + az + b) = 0, s0 vp(x) = vy(y?) = 20p(y) is even. O
Lemma 16.5. If biby = b, then b1 (K*)? € Im(ag) iff
w? = bt + au®v? + byt (%)
1s solvable for u,v,w € K, not all zero.

Proof. If by € (K*)? or by € (K*)?, then both conditions are satisfied. So we may assume
b1,bz ¢ (KX)2. Then
bi(K*)? €Im(ag)
— 3(z,y) € E(K) such that z = bit? for some t € K*
— y? = bit?((b1t*)? + abyt* +b)

Y )2 4 2 b
(blt g
So has a solution v = t,v = 1,w = %. Conversely, if (u,v,w) is a solution to
then uv # 0 and (bl(%)Q,bl%’) € E(K). O
Take K = Q.
Examples.

—1. Then Im(ag) = (-1) € Q*/(Q*)%. We have

(1) BE:y?=2°—z,%0a=0,b=
) C (—1,2) CQ*/(Q*)2. We get the equations:

E':y? =2 + 4z, Im(ap

by =—-1 — w?=—-u*—4t
by =2 —  w?=2u*+ 20
by = -2 — w?=—2u*— 2



The first and last equation are insolvable over R, the second has solution (u,v,w) =
(1,1,2).

Hence Im(apr) = (2) € Q*/(Q*)2. Therefore 227k E(Q@) = 22 — 1 5o rank E(Q) =
0, so 1 is not a congruent number as we have already seen in Theorem 1.3

(2) E :y? = 23+px where pis a prime, p = 5 mod 8. For b; = —1 we get w? = —u*—pv*
which is insolvable over R, hence Im(ag) = (p) C Q*/(Q*)?%.

E':y? = 2% — 4pz. Then Im(ag) C (—1,2,p) € Q% /(Q*)2.
N.B. ap(T") = (—4p)(Q*)? = (—p)(Q*)*. We get

by=2 — w?=2u'-2p? (1)
by =—-2 — w?=—2u*+ 2pvt (2)
bh=p — w?=pu' -4’ (3)

We continue it below.

We have the exact sequence

0 —— E'(Q)/¢E(Q) — SYW(E/Q) — LI(E/Q)[¢:] — 0
Q*/(Q*)?
Consider the equation

w? = byut + d'uv? + (V' /by)vt. (%)

Then:

Im(aE/) = {b1(Q*)? |[(x)] is soluble over Q},
@)(E/Q) = {b(Q*)? )% |[(¥)] is soluble over Q, for all primes p and over R}.

Fact (use Exercise Sheet 3, Question 9 and Hensel’s lemma): If a/,b1,00 € Z and p ¢{
2b(a? — 4b), then |(x)|is soluble over Q,.

Continuation of Example |(2)| above: Suppose (1) is soluble, WLOG u,v,w € Z with
ged(u,v) = 1. If p | u, then p | w and then p | v, so we get p{u. So w? = 2u* #Z 0 mod p,
SO (%) = 1, contradicting p = 5 mod 8. Likewise (2) is insoluble over Q since (_72) =-1.
The same arguments show that (1) and (2) are insoluble over Q,,.

if (3) is insoluble over Q,

0
Therefore rank E(Q) = ) )
1 if (3) is soluble over Q.
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e (3) is soluble over Q, since (%) =1, s0 by —1 € (Z})? by Hensel’s Lemma.
e (3) is soluble over Qq since p —4 =1 mod 8, so p — 4 € (Z5)2.
e (3) is soluble over R, since \/p € R.

So we see that (3) is soluble in Q, for all primes ¢ and also ¢ = co. Over Q7

plu v w
511 1 1
13|11 1 3
2911 1 5
3715 3 151
531 1 7

Conjecture: rank E(Q) = 1 for all primes p with p =5 mod 8.

Example 3 (Lind): E : 3? = 23 4+ 172. Then Im(ag) = (17) € Q*/(Q*)%. E' is defined
by y? = 23 — 682. Then:
by =2 — w® =2u' — 38"

Replace w by 2w and divide by 2 to get

C:2w? =u* — 170?

Notation: C(K) = {(u,v,w) € K3\ {0} satisfying the equation}/ ~ where (u,v,w) ~
(Au, Mv, \2w) for all A € K, (i.e. consider the equation in a weighed projective space).

Then:
o C(Q2) # 0 since 17 € (Q)™.
o C(Qur) # 0 since 2 € (Q%)>
e C(R) # ) since v2 € R.

But we claim that C(Q) = ). Suppose (u,v,w) € C(Q), wlog u,v,w € Z and gc
w > 0. Note that 17 + w. So if p | w, then p # 17 and (%) =1, so (%) =1 by
Quadratic Reciprocity if p # 2. If p = 2, then also (1%) = 1. Therefore (%) = 1. But
2w? = u? mod 17, so 2 € (F;3)* = {£1, +4}, a contradiction. Hence C(Q) = 0.

(o}
—~~
S

<
~

I
l_‘

So C' is a counterexample to the Hasse principle. It represents a nontrivial element of

HI(E/Q).

52



17 The Birch Swinnerton-Dyer Conjecture

Let E/Q be an elliptic curve.

Definition.
L(E,s) := [[ Lp(E,s)
P
where
(1 —app~®+p'72%)~Y if E has good reduction at p,
Ly(E,s) =4 (1£p 51 if E has multiplicative reduction,

1 if E has additive reduction.

By Hasse’s Theorem, we have |a,| < 2,/p. This implies that L(, s) converges for Re s > %

Theorem (Wiles, Breuil, Conrad, Diamond, Taylor). L(E,s) is the L-function of a weight
2 modular form and hence has an analytic continuation to all of C and a functional
equation relating L(E,s) and L(E,2 — s).

Weak BSD: ords—; L(E,s) = rank E(Q) (= r say).
Strong BSD:

. | QpReg BQ#II(E/Q) [T, ¢y ()
L(B,s) = FE@)ron)?

li
31—>H% (S — 1)r

where
e ¢,(E) is the Tamagawa number of E/Q,, i.e. [E(Q,) : Eo(Qp)].

e Reg E(Q)A = det([Pi,APj]) where Py, ..., P, form a basis for E(Q)/E(Q)tors and
[P, Q] = h(P + Q) — h(P) = hQ).

o Op = f E(R) 2yFa125as +a1x Tas using a globally minimal Weierstrafl minimal equation.
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