Elliptic Curves Cambridge Part III, Lent 2023 Taught by Tom Fisher Notes taken by Leonard Tomczak

Contents

1	Fermat's Method of Infinite Descent	2
2	Some Remarks on Algebraic Curves	4
3	Weierstraß Equations	6
4	The Group Law	8
5	Isogenies	11
6	The Invariant Differential	15
7	Elliptic Curves over Finite Fields	18
8	Formal Groups	20
9	Elliptic Curves over Local Fields	25
10	Elliptic Curves over Number Fields - The Torsion Subgroup	30
11	Kummer Theory	33
12	Elliptic Curves over Number Fields - The Mordell-Weil Theorem	35
13	Heights	37
14	Dual Isogenies and the Weil Pairing	41
15	Galois Cohomology	44
16	Descent by Cyclic Isogeny	48
17	The Birch Swinnerton-Dyer Conjecture	53

1 Fermat's Method of Infinite Descent

We consider a right angle triangle Δ with side lengths a, b, c > 0 such that $a^2 + b^2 = c^2$ and area $\frac{1}{2}ab$. Δ is rational if $a, b, c \in \mathbb{Q}$. Δ is primitive if $a, b, c \in \mathbb{Z}$ are coprime.

Lemma 1.1. Every primitive triangle is of the form $\{a, b\} = \{u^2 - v^2, 2uv\}, c = u^2 + v^2$ for some integers u > v > 0.

Proof. It is easy to see that exactly one of a, b (wlog say b) is even. So $(b/2)^2 = \frac{c+a}{2}\frac{c-a}{2}$. The factors on the right are coprime positive integers. By unique factorization in \mathbb{Z} we get that $\frac{c+a}{2} = u^2$, $\frac{c-a}{2} = v^2$ for suitable $u, v \in \mathbb{Z}$. The claim follows.

Definition. $D \in \mathbb{Q}_{>0}$ is a congruent number if there exists a rational (right angled) triangle Δ with area D.

N.B. It suffices to consider $D \in \mathbb{Z}_{>0}$ squarefree.

E.g. D = 5, 6 are congruent.

Lemma 1.2. $D \in \mathbb{Q}_{>0}$ is congruent iff $Dy^2 = x^3 - x$ for some rational numbers $x, y \in \mathbb{Q}$, $y \neq 0$.

Proof. The first lemma shows that D is congruent iff $Dw^2 = uv(u^2 - v^2)$ for some $u, v, w \in \mathbb{Q}, w \neq 0$. Then put $x = u/v, y = w/v^2$.

Fermat showed that 1 is not a congruent number:

Theorem 1.3. There is no solution to

$$w^2 = uv(u+v)(u-v) \tag{(*)}$$

with $u, v, w \in \mathbb{Z}, w \neq 0$.

Proof. Wlog u, v coprime, u > 0, w > 0. If v < 0, then replace (u, v, w) by (-v, u, w). If $u \equiv v \mod 2$, then replace (u, v, w) by $(\frac{u+v}{2}, \frac{u-v}{2}, \frac{w}{2})$. Then u, v, u + v, u - v are pairwise positive integers with product a square. By unique factorization in $\mathbb{Z} u = a^2, v = b^2, u+v = c^2, u - v = d^2$ for some $a, b, c, d \in \mathbb{Z}_{>0}$. Since $u \not\equiv v \mod 2$, both c and d are odd. Hence

$$\left(\frac{c+d}{2}\right)^2 + \left(\frac{c-d}{2}\right)^2 = \frac{c^2+d^2}{2} = u = a^2$$

This is a primitive triangle. Its area is $\frac{c^2-d^2}{8} = \frac{v}{4} = (b/2)^2$. Let $w_1 = b/2$. By the first lemma we get again $w_1^2 = u_1v_1(u_1 + v_1)(u_1 - v_1)$ for some $u_1, v_1 \in \mathbb{Z}$. So we have a new solution to (*). But $4w_1^2 = b^2 = v \mid w^2$, so $w_1 \leq \frac{1}{2}w$. So by Fermat's method of infinite descent, there is no solution to (*)

1.1 A Variant for Polynomials

Let K be a field of characteristic not equal to 2 with algebraic closure K^{alg} .

Lemma 1.4. Let $u, v \in K[t]$ coprime. If $\alpha u + \beta v$ is a square for four distinct $(\alpha : \beta) \in \mathbb{P}^1$, then $u, v \in K$.

Proof. Wlog $K = K^{\text{alg}}$. Changing coordinates on \mathbb{P}^1 we may assume the ratios $(\alpha : \beta)$ are $(1:0), (0:1), (1:-1), (1:-\lambda)$ for some $\lambda \in K \setminus \{0,1\}$. We have $u = a^2, v = b^2, u - v = (a+b)(a-b), u-\lambda v = (a+\mu b)(a-\mu b)$ where $\mu = \sqrt{\lambda}$. By unique factorization in K[t] we get that $a+b, a-b, a+\mu b, a-\mu b$ are all squares. But $\max(\deg a, \deg b)) \leq \frac{1}{2} \max(\deg u, \deg v)$. So by Fermat's method of infinite descent $u, v \in K$.

Definition.

(i) (Preliminary definition) An elliptic curve E/K is the projective closure of the plane affine curve defined by

$$y^2 = f(x)$$

where $f \in K[x]$ is a monic cubic separable polynomial.

(ii) For L/K any field extension we let

$$E(L) = \{(x, y) \in L^2 \mid y^2 = f(x)\} \cup \{O\}$$

where O = (0:1:0) is the point at infinity.

The previous results show that for $E: y^2 = x^3 - x$ we have $E(\mathbb{Q}) = \{O, (0, 0), (\pm 1, 0)\}.$

Corollary 1.5. Let E/K be an elliptic curve. Then E(K(t)) = E(K).

Proof. Wlog $K = K^{\text{alg}}$. By a change of coordinates we may assume $E : y^2 = x(x-1)(x-\lambda)$ for some $\lambda \in K \setminus \{0, 1\}$.

Suppose $(x, y) \in E(K(t))$. Write x = u/v where $u, v \in K[t]$ are coprime. Then we get $w^2 = uv(u - v)(u - \lambda v)$ for some $w \in K[t]$. By unique factorization in K[t], the four polynomials $u, v, u - v, u - \lambda v$ are squares. So by our previous result $u, v \in K$, so $x, y \in K$.

This shows that elliptic curves are not rational.

2 Some Remarks on Algebraic Curves

For this section we assume $K = K^{\text{alg}}$.

Proposition 2.1. Let C be a smooth projective curve and g(C) its genus.

- (i) C is rational iff g(C) = 0.
- (ii) C is an elliptic curve (in our sense) iff g(C) = 1.

Recall that a *uniformizer* of a curve C at a smooth point P is a function $t \in K(C)^*$ such that $\operatorname{ord}_P t = 1$.

Example. Let $C = \{g = 0\} \subseteq \mathbb{A}^2$ be a plane curve with $g \in K[x, y]$ irreducible. Suppose $P = (0, 0) \in C$ and write $g = g_0 + g_1(x, y) + g_2(x, y) + \ldots$ and where g_i is homogeneous of degree *i*. Write $g_1(x, y) = \alpha x + \beta y$. Assume that *C* is non-singular so that α, β are not both zero. Then $\gamma x + \delta y \in K(C)$ is a uniformizer at *P* iff $\alpha \delta - \beta \gamma \neq 0$.

Example. Let $\{y^2 = x(x-1)(x-\lambda)\} \subseteq \mathbb{A}^2$ where $\lambda \neq 0, 1$. The projective closure is

$$\{Y^2 Z = X(X - Z)(X - \lambda Z)\} \subseteq \mathbb{P}^2$$

where x = X/Z, y = Y/Z. P = (0 : 1 : 0). Put t = X/Y, w = Z/Y. Then $w = t(t - w)(t - \lambda w)$ (dehomogenize w.r.t. y) Now P is the point (t, w) = (0, 0). This is a smooth point with $\operatorname{ord}_p(t) = \operatorname{ord}_p(t - w) = \operatorname{ord}_p(t - \lambda w) = 1$, so $\operatorname{ord}_p(w) = 3$. Then $\operatorname{ord}_p(x) = \operatorname{ord}_p(t/w) = -2$, $\operatorname{ord}_p(y) = -3$.

Recall the Riemann-Roch Theorem for smooth curves of genus 1. If D is a divisor, then:

$$\dim \mathcal{L}(D) = \begin{cases} \deg D & \text{if } \deg D > 0, \\ 0 \text{ or } 1 & \text{if } \deg D = 0, \\ 0 & \text{if } \deg D < 0. \end{cases}$$

Assume $K = K^{\text{alg}}$ and char $K \neq 2$.

Proposition 2.2. Let $C \subseteq \mathbb{P}^2$ be a smooth plane cubic $P \in C$ a point of inflection. Then we may change coordinates such that $C : Y^2Z = X(X - Z)(X - \lambda Z)$ for some $\lambda \neq 0, 1$ and P = (0 : 1 : 0).

Proof. We may change coordinates such that P = (0:1:0) and $T_pC = \{Z = 0\}$. Let C be defined by F(X, Y, Z). P is a point of inflection, so $F(t, 1, 0) = t^3$, i.e. F has no terms

 X^2Y, XY^2, Y^3 . Therefore $F \in \langle Y^2Z, XYZ, YZ^2, X^3, X^2Z, XZ^2, Z^3 \rangle$. The monomials Y^2Z, X^3 must appear in F, as P is non-singular and $\{Z = 0\} \not\subseteq C$. We are free to rescale X, Y, Z and F. Wlog C is defined by

$$Y^{2}Z + a_{1}XYZ + a_{3}YZ^{2} = X^{3} + a_{2}X^{2}Z + a_{4}XZ^{2} + a_{6}Z^{3}$$
. "Weierstraß equation"

Substituing $Y \mapsto Y - \frac{1}{2}a_1X - \frac{1}{2}a_3Z$ we may assume $a_1 = a_3 = 0$. Now $C : Y^2Z = Z^3f(X/Z)$ for some monic cubic polynomial f. Since C is smooth, f has distinct roots, wlog $0, 1, \lambda$. Then C has the equation

$$Y^2 Z = X(X - Z)(X - \lambda Z)$$
. "Legendre form"

Remark: It can be shown that the points of inflection on a plane curve $C = \{F(X_1, X_2, X_3) = 0\} \subseteq \mathbb{P}^2$ are given by

$$F = 0 = \det\left(\frac{\partial^2 F}{\partial X_i \partial X_j}\right).$$

3 Weierstraß Equations

In this chapter, K is a perfect field with algebraic closure K^{alg} .

Definition. An elliptic curve E/K is a smooth projective curve of genus 1 defined over K, with a specified K-rational point O_E .

A morphisms of elliptic curves is a morphism of algebraic curves preserving the base point O.

Example. $\{X^3 + pY^3 + p^2Z^3 = 0\} \subseteq \mathbb{P}^2$ is a smooth projective curve of genus 1 defined over \mathbb{Q} , but it is not an elliptic curve over \mathbb{Q} , since it has no \mathbb{Q} -rational points.

Theorem 3.1. Every elliptic curve E is isomorphic over K to a curve in Weierstraß form, via an isomorphism taking O_E to (0:1:0).

Fact: If $D \in \text{Div}(E)$ is defined over K (i.e. fixed by $\text{Gal}(K^{\text{alg}}/K)$), then $\mathcal{L}(D)$ has a basis in K(E).

Proof. Pick bases 1, x resp. 1, x, y of $\mathcal{L}(2O_E) \subseteq \mathcal{L}(3O_E)$. Note that $\operatorname{ord}_{O_E}(x) = -2$ and $\operatorname{ord}_{O_E}(y) = -3$. The seven elements $1, x, y, x^2, xy, x^3, y^2$ in the 6-dimensional vector space $\mathcal{L}(6O_E)$ must satisfy a dependence relation. Leaving out x^3 or y^2 gives a basis for $\mathcal{L}(6O_E)$ since each term has a different order pole at O_E . Therefore the coefficients of x^3 and y^2 are non-zero. Rescaling x, y and the whole equation we get

$$y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$

for some $a_i \in K$. Let $\phi : E \to E' \subseteq \mathbb{P}^2$, $P \mapsto (x(P), y(P) : 1)$. This is a morphism and $\phi(P) = ((x/y)(P) : 1 : (1/y)(P))$, hence $\phi(O_E) = (0 : 1 : 0)$. We have deg $\phi = [K(E) : \phi^*K(E')]$ and $\phi^*K(E') = K(x, y)$. Since x, y have degree 2 resp. 3, we see that deg $\phi = 1$, so ϕ is birational.

If E' is singular, then E, E' are rational, so E' is non-singular and ϕ is thus an isomorphism.

Proposition 3.2. Let E, E' be elliptic curves over K in Weierstraß form. Then $E \cong E'$ over K iff the equations are related by a change of variables of the form

$$x = u^{2}x' + r$$
$$y = u^{3}y' + u^{2}sx' + t$$

for some $u, r, s, t \in K$, $u \neq 0$.

Proof. $\langle 1, x \rangle = \mathcal{L}(2, O_E) = \langle 1, x' \rangle$, so $x = \lambda x' + r$ for some $\lambda, r \in K, \lambda \neq 0$. Similarly for y, we get that $y = \mu y' + \sigma x' + t$ for some $\mu, \sigma, t \in K, \mu \neq 0$. looking at the coefficients of x^3, y^2 we see that $\lambda^3 = \mu^2$, so $\lambda = u^2, \mu = u^3$ for some $u \neq 0$. Put $s = \sigma/u^2$. \Box

A Weierstraß equation defines an elliptic curve iff it defines a smooth curve which is the case iff

$$\Delta(a_1,\ldots,a_6)\neq 0$$

where $\Delta \in \mathbb{Z}[a_1, \ldots, a_6]$ is a certain polynomial.

If char $K \neq 2,3$ we can reduce to the case $E: y^2 = x^3 + ax + b$ with discriminant $\Delta := -16(4a^3 + 27b^2)$.

Corollary 3.3. Assume char $K \neq 2, 3$. Then two elliptic curves

$$E: y2 = x3 + ax + b$$
$$E': y2 = x3 + a'x + b'$$

are isomorphic over K iff $a' = u^4 a, b' = u^6 b$ for some $u \in K^*$.

Proof. E and E' are related by a substitution as in the proposition with r = s = t = 0. \Box

Definition. The *j*-invariant of E is $j(E) = \frac{1728(4a^3)}{4a^3+27b^2}$. **Corollary 3.4.** $E \cong E' \implies j(E) = j(E')$. The converse holds if $K = K^{\text{alg}}$.

Proof. By the previous corollary

$$E \cong E' \Leftrightarrow a' = u^4 a, b' = u^6 b \text{ for some } u \in K^*$$
$$\Rightarrow (a^3 : b^2) = ((a')^3 : (b')^2)$$
$$\Leftrightarrow j(E) = j(E')$$

and the converse holds if $K = K^{\text{alg}}$.

4 The Group Law

Let $E \subseteq \mathbb{P}^2$ be a smooth plane cubic. E meets any line in 3 points counted with multiplicity. Let $O_E, P, Q \in E$. Let S be the third point of intersection of E and PQ. Let Rbe the third point of intersection of E and $O_E S$. Define $P \oplus Q := R$. If P = Q, then take the tangent line $T_P E$ at P instead of PQ, etc.

This is called "the cord and tangent process".

Theorem 4.1. (E, \oplus) is an abelian group.

Proof.

- (i) commutativity of \oplus is clear.
- (ii) O_E is the identity.
- (iii) Inverses: Let S be the third point of \cap of E and $T_{O_E}E$. Let Q be the third point of \cap of E and PS. Then $P \oplus Q = O_E$.
- (iv) Associativity: Harder!

Define $\psi: E \to \operatorname{Pic}^0(E)$ by $P \mapsto [(P) - (O_E)].$

Proposition 4.2.

- (i) $\psi(P \oplus Q) = \psi(P) + \psi(Q)$.
- (ii) ψ is a bijection.

Proof.

- (i) Let l resp. m be the linear forms whose zero sets are the lines PQ resp. O_ES . Then $\operatorname{div}(l/m) = (P) + (S) + (Q) - (O_E) - (S) - (R) = (P) + (Q) - (O_E) - (P \oplus Q).$ Therefore $(P \oplus Q) - (O_E) \sim (P) - (O_E) + (Q) - (O_E)$, i.e. $\psi(P \oplus Q) = \psi(P) + \psi(Q).$
- (ii) Injective: Suppose $\psi(P) = \psi(Q)$, for $P \neq Q$. So there exists $f \in K^{\text{alg}}(E)$ such that div f = (P) (Q). Then the map $f : E \to \mathbb{P}^1$ has degree 1, so E is rational, a contradiction.

Surjective: Let $[D] \in \operatorname{Pic}^{0}(E)$. Then $D + (O_{E})$ has degree 1, so by Riemann-Roch, dim $\mathcal{L}(D + (O_{E})) = 1$, so there exists $f \in K^{\operatorname{alg}}(E)^{*}$ such that div $f + D + (O_{E}) \geq 0$. The divisor on the left has degree 1, so div $f + D + (O_{E}) = (P)$ for some $P \in E$ and hence $\psi(P) = [D]$.

So ψ identifies (E, \oplus) with $(\operatorname{Pic}^{0}(E), +)$, hence \oplus is associative.

4.1 Formulae for E in Weierstraß Form

Let

$$E: y^{2} + a_{1}xy + a_{3}y = x^{3} + a_{2}x^{2} + a_{4}x + a_{6}.$$
(*)

Let P_1, P_2, P_3, P' be points such that P' is the third point of intersection of E with P_1P_2 and P_3 is the third point of intersection of E with $P'O_E$. Write $P_i = (x_i, y_i), i = 1, 2, 3, P' = (x', y')$.

The inverse $\ominus P_1$ of P_1 is the third point of intersection of P_1O_E with E. So $\ominus P_1 = (x_1, -(a_1x_1 + a_3) - y_1)$.

Suppose the line through P_1, P_2 has equation $y = \lambda x + \nu$. Substituting this into (*) and looking at the coefficient of x^2 gives

$$\lambda^2 + a_1\lambda - a_2 = x_1 + x_2 + x'.$$

Note that $x' = x_3$, so

$$x_3 = \lambda^2 + a_1\lambda - a_2 - x_1 - x_2,$$

$$y_3 = -(a_1x' + a_3) - y' = -(\lambda + a_1)x_3 - \nu - a_3.$$

Formulae for λ, ν :

- Case I: $x_1 = x_2$ and $P_1 \neq P_2$, then $P_1 \oplus P_2 = O_E$.
- Case II: $x_1 \neq x_2$. Then $\lambda = \frac{y_2 y_1}{x_2 x_1}$ and $\nu = y_1 \lambda x_1 = \frac{x_2 y_1 x_1 y_2}{x_2 x_1}$.
- Case III: $P_1 = P_2$. See formula sheet.

Corollary 4.3. E(K) is an abelian group.

Proof. It is a subgroup (E, \oplus) . We need to check that it is closed under \oplus, \ominus . This follows from the explicit formulas (they only involve the coefficients of the Weierstraß equation which lie in K).

Theorem 4.4. Elliptic curves are group varieties, i.e. the maps $[-1] : E \to E, P \mapsto \ominus P$ and $\oplus : E \times E \to E, (P,Q) \mapsto P \oplus Q$ are morphisms.

Proof. The above formula show that $[-1]: E \to E$ is a rational map, hence extends to a morphism (and this extension still agrees with [-1]).

The above formulae show that $\oplus : E \times E \to E$ is a rational map, regular on

$$U = \{ (P,Q) \in E \times E \mid P,Q, P \oplus Q, P \ominus Q \neq O_E \}.$$

For $P \in E$ let $\tau_P : E \to E$ be translation by P. τ_P is rational map and thus extends to a morphism (which still agrees with τ_P). We factor \oplus as

$$E \times E \xrightarrow{\tau_{\Theta A} \times \tau_{\Theta B}} E \times E \xrightarrow{\oplus} E \xrightarrow{\tau_{A \oplus B}} E$$

This shows that \oplus is regular on $(\tau_A \times \tau_B)(U)$ for all $A, B \in E$. Thus \oplus is regular on $E \times E$.

4.2 Statement of Results on E(K)

- (i) $K = \mathbb{C}$. Then $E(\mathbb{C}) \cong \mathbb{C}/\Lambda$ for a lattice Λ .
- (ii) $K = \mathbb{R}$. Then $E(\mathbb{R}) \cong \begin{cases} \mathbb{Z}/2\mathbb{Z} \times \mathbb{R}/\mathbb{Z} & \text{if } \Delta > 0, \\ \mathbb{R}/\mathbb{Z} & \text{if } \Delta < 0. \end{cases}$
- (iii) $K = \mathbb{F}_q$. Then $|\#E(\mathbb{F}_q) (q+1)| \le 2\sqrt{q}$.
- (iv) $[K:\mathbb{Q}_p] < \infty$. Then E(K) has a subgroup of finite index isomorphic to $(\mathcal{O}_K, +)$.
- (v) $[K:\mathbb{Q}] < \infty$. Then E(K) is finitely generated.

In the subsequent chapters we will prove (iii), (iv) and (v).

5 Isogenies

Let E_1, E_2 be elliptic curves.

Definition.

- (i) An isogeny $\phi: E_1 \to E_2$ is a nonconstant morphism with $\phi(O_{E_1}) = \phi(O_{E_2})$.
- (ii) We say E_1, E_2 are isogenous if there is an isogeny $E_1 \to E_2$.

By basic theorems about curves, $\phi : E_1 \to E_2$ is nonconstant iff it is surjective on K^{alg} points. Hence if $E_1 \xrightarrow{\phi} E_2 \xrightarrow{\psi} E_3$ are isogenies, then so is $\psi \phi : E_1 \to E_3$. Furthermore, $\deg(\psi \phi) = \deg \psi \deg \phi$ which also holds if we allow $\phi = 0$ and set $\deg 0 = 0$.

Definition. Hom $(E_1, E_2) = \{ \text{isogenies } E_1 \rightarrow E_2 \} \cup \{0\}.$ This is an abelian group with pointwise operations.

Definition. For $n \in \mathbb{Z}$ let $[n] : E \to E$ be defined by $P \mapsto P + \cdots + P$ (n times) if n > 0and $[-n] = [-1] \circ [n]$ for n < 0.

The n-torsion subgroup of E is $E[n] = \ker(E \xrightarrow{[n]} E)$.

If $K = \mathbb{C}$, then $E(\mathbb{C}) \cong \mathbb{C}/\Lambda$, so (1) $E[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$ and (2) $\deg[n] = n^2$ in this case.

We will show that (2) holds over any field K and (1) holds if char $K \nmid n$

Lemma 5.1. Assume char $K \neq 2$ and let E be given by $y^2 = f(x) = (x-e_1)(x-e_2)(x-e_3)$ with $e_i \in K^{\text{alg}}$. Then $E[2] = \{O, (e_1, 0), (e_2, 0), (e_3, 0)\} \cong (\mathbb{Z}/2\mathbb{Z})^2$.

Proof. Let $P = (x, y) \in E \setminus \{O\}$. Then [2]P = O iff P = -P iff (x, y) = (x, -y) iff y = 0.

Proposition 5.2. If $0 \neq n \in \mathbb{Z}$, then $[n] : E \to E$ is an isogeny.

Proof. [n] is a morphism since the group law is given by a morphism, so we must show $[n] \neq [0]$. Assume that char $K \neq 2$.

- Case n = 2: By the previous Lemma we have $E[2] \neq E$, so $[2] \neq 0$.
- Case n odd: By the Lemma there exists $O \neq T \in E[2]$. Then $[n]T = T \neq 0$, so $[n] \neq [0]$.
- General case: Write $[n] = [2^k][m]$ with m odd.

If char K = 2, then we could replace the Lemma with an explicit lemma about 3-torsion points.

Corollary. Hom (E_1, E_2) is a torsion-free \mathbb{Z} -module.

Theorem 5.3. Let $\phi : E_1 \to E_2$ be an isogeny. Then ϕ is a group homomorphism.

Proof. ϕ induces a map $\phi_* : \operatorname{Div}^0(E_1) \to \operatorname{Div}^0(E_2), \sum_{P \in E_1} n_P P \mapsto \sum_{P \in E_1} n_P \phi(P)$. Fact: If $f \in K(E_1)^*$, then div $N_{K(E_1)/K(E_2)}(f) = \phi_*(\operatorname{div} f)$. So ϕ_* sends principal divisors to principal divisors and hence descends to a map $\operatorname{Pic}^0(E_1) \to \operatorname{Pic}^0(E_2)$. Since $\phi(O_{E_1}) = O_{E_2}$, the following diagram commutes:

Since ϕ_* is clearly a group homomorphism, ϕ is a homomorphism.

Lemma 5.4. Let $\phi : E_1 \to E_2$ be an isogeny. Then there exists a morphism ξ making the following diagram commute:

$$E_1 \xrightarrow{\phi} E_2$$
$$\downarrow x_1 \qquad \qquad \downarrow x_2$$
$$\mathbb{P}^1 \xrightarrow{\xi} \mathbb{P}^1$$

Here x_i is an x-coordinate of a Weierstraß equation for E_i .

Moreover if $\xi(t) = \frac{r(t)}{s(t)}$ with $r, s \in K[t]$ coprime, then $\deg \phi = \deg \xi = \max(\deg r, \deg s)$.

Proof. For $i = 1, 2, K(E_i)/K(x_i)$ is a degree 2 Galois extension with with Galois group generated by $[-1]^*$. By the theorem $\phi[-1] = [-1]\phi$. So if $f \in K(x_2)$, then $[-1]^*\phi^*f = \phi^*[-1]^*f = \phi^*f$, so $\phi^*f \in K(x_1)$. Now under the field embedding $K(x_2) \hookrightarrow K(x_1)$ induced by ϕ^* , x_2 maps to some $\xi(x_1)$. This ξ defines a morphism $\mathbb{P}^1 \to \mathbb{P}^1$ making the above diagram commute. Then $2 \deg \phi = 2 \deg \xi$, so $\deg \phi = \deg \xi$. Write $\xi(x_1) = \frac{r(x_1)}{s(x_1)}$ with $r, s \in K[t]$ coprime. We claim that the minimal polynomial of x_1 over $K(x_2)$ is $f(t) = r(t) - s(t)x_2 \in K(x_2)[t]$. Since r, s are coprime, f is irreducible in $K[x_2, t]$. By Gauss' Lemma it is irreducible in $K(x_2)[t]$, hence $\deg \phi = \deg \xi = [K(x_1) : K(x_2)] =$ $\deg_t f = \max(\deg r, \deg s)$.

Lemma 5.5. deg[2] = 4.

Proof. Assume char $K \neq 2, 3$. $E: y^2 = x^3 + ax + b = f(x)$. If P = (x, y), then $x(2P) = \left(\frac{3x^2+a}{2y}\right)^2 - 2x = \frac{(3x^2+a)^2-8xf(x)}{4f(x)} = \frac{x^4+\dots}{4f(x)}$. So we have to prove that numerator and denominator are coprime. Indeed, otherwise there would be $\theta \in K^{\text{alg}}$ with $f(\theta) = 0 = 3x^2 + a = f'(\theta)$ which is not possible, hence deg[2] = max(4,3) = 4. \square

Definition. Let A be an abelian group. $q: A \to \mathbb{Z}$ is a quadratic form if

- (i) $q(nx) = n^2 q(x)$ for all $n \in \mathbb{Z}, x \in A$,
- (ii) $(x, y) \mapsto q(x+y) q(x) q(y)$ is \mathbb{Z} -bilinear.

Lemma 5.6. $q : A \to \mathbb{Z}$ is a quadratic form iff it satisfies the parallelogram law, i.e. q(x+y) + q(x-y) = 2q(x) + 2q(y) for all $x, y \in A$.

Proof. " \Rightarrow " Let $\langle x, y \rangle = q(x+y) - q(x) - q(y)$. Then $\langle x, x \rangle = q(2x) - 2q(x) = 2q(x)$. But by (ii), $q(x+y) + q(x-y) = \frac{1}{2}\langle x+y, x+y \rangle + \frac{1}{2}\langle x-y, x-y \rangle = \langle x, x \rangle + \langle y, y \rangle = 2q(x) + 2q(y)$. " \Leftarrow " On Example Sheet 2.

Theorem 5.7. deg : Hom $(E_1, E_2) \rightarrow \mathbb{Z}$ is a quadratic form (N.B. we define deg 0 = 0).

Proof. We assume that char $K \neq 2, 3$, so that we can write $E_2 : y^2 = x^3 + ax + b$. Let $P, Q \in E_2$ with $P, Q, P + Q, P - Q \neq 0$. Let x_1, \ldots, x_4 be their x-coordinates.

Lemma 5.8. There exist polynomials $W_0, W_1, W_2 \in \mathbb{Z}[a, b][x_1, x_2]$ of degree ≤ 2 in x_1 and degree ≤ 2 and x_2 such that $(1: x_3 + x_4: x_3x_4) = (W_0: W_1: W_2)$.

Proof. Method 1: Direct calculation, $W_0 = (x_1 - x_2)^2, W_1 = \dots, W_2 = \dots$, see formula sheet.

Method 2: Let $y = \lambda x + \nu$ be the equation of the line through P, Q. Then $x^3 + ax + b - (\lambda x + \nu)^2 = (x - x_1)(x - x_2)(x - x_3) = x^3 - s_1 x^2 + s_2 x - s_3$.

Comparing coefficients gives:

$$\lambda^2 = s_1$$
$$-2\lambda\nu = s_2 - a$$
$$\nu^2 = s_3 + b$$

Eliminating λ, ν gives $(s_2 - a)^2 - 4s_1(s_3 + b) = 0$. The left side is a polynomial in x_1, x_2, x_3 . We denote it by $F(x_1, x_2, x_3)$. It has degree at most 2 in each x_i (separately). x_3 is a root of the quadratic $W(t) = F(x_1, x_2, t)$. Note that the same is true for x_4 (as -Q has also x-coordinate x_2).

So $W_0(t-x_3)(t-x_4) = W(t) = W_0t^2 - W_1t + W_2$. Then $(1:x_3 + x_4:x_3x_4) = (W_0:W_1:W_2)$.

We show that if $\phi, \psi \in \text{Hom}(E_1, E_2)$, then $\deg(\phi + \psi) + \deg(\phi - \psi) \le 2 \deg \phi + 2 \deg \psi$. We may assume $\phi, \psi, \phi + \psi, \phi - \psi \ne 0$. Otherwise trivial (or use $\deg[-1] = 1, \deg[2] = 4$).

We can write

$$\phi : (x, y) \mapsto (\xi_1(x), \dots),$$

$$\psi : (x, y) \mapsto (\xi_2(x), \dots),$$

$$\phi + \psi : (x, y) \mapsto (\xi_3(x), \dots),$$

$$\phi - \psi : (x, y) \mapsto (\xi_4(x), \dots).$$

By the Lemma, $(1 : \xi_3 + \xi_4 : \xi_3\xi_4) = ((\xi_1 - \xi_2)^2 : ...)$. Put $\xi_i = r_i/s_i$ with $r_i, s_i \in K[t]$ coprime. Then $(s_3s_4 : r_3s_4 + r_4s_3 : r_3r_4) = ((r_1s_2 - r_2s_1)^2 : ...)$. The three polynomials on the left are (not necessarily pairwise) coprime.

Therefore

$$deg(\phi + \psi) + deg(\phi - \psi) = \max(deg r_3, deg s_3) + \max(deg r_4, deg s_4)$$
$$= \max(deg(s_3s_4), deg(r_3s_4 + r_4s_3), deg(r_3r_4))$$
$$\leq 2\max(deg r_1, deg s_1) + 2\max(deg r_2, deg s_1)$$
$$= 2 deg \phi + 2 deg \psi$$

Now replace ϕ, ψ by $\phi + \psi, \phi - \psi$, so that $\deg(2\phi) + \deg(2\psi) \le 2 \deg(\phi + \psi) + 2 \deg(\phi - \psi)$. Since $\deg[2] = 4$, we get the desired reversed inequality.

Hence deg satisfies the parallelogram law and is thus a quadratic form.

Corollary 5.9. deg $(n\phi) = n^2 \deg \phi$ for all $n \in \mathbb{Z}, \phi \in \text{Hom}(E_1, E_2)$, in particular deg $[n] = n^2$.

Example (2-isogeny). Let E/K be an elliptic curve. Suppose char $K \neq 2$ and $0 \neq T \in E(K)[2]$. WLOG $E: y^2 = x(x^2 + ax + b)$, with $a, b \in K$, $b(a^2 - 4b) \neq 0$ and T = (0, 0). If P = (x, y), then P' = P + T = (x', y') where $x' = (y/x)^2 - a - x = \frac{x^2 + ax + b}{x} - a - b = \frac{b}{x}$, and $y' = -(y/x)x' = -\frac{by}{x^2}$. Let

$$\xi = x + x' + a = (y/x)^2, \eta = y + y' = (y/x)(x - b/x)$$

Then $\eta^2 = (y/x)^2((x+b/x)^2-4b) = \xi((\xi-a)^2-4b) = \xi(\xi^2-2a\xi+a^2-4b)$. Thus $\phi = (\xi,\eta)$ is a map from E to $E': y^2 = x(x^2+a'x+b')$ with $a' = -2a, b' = a^2-4b$. This is an isogeny: $\phi(x,y) = ((y/x)^2: (y(x^2-b))/x^2: 1)$. The orders of these functions at O_E are -2, -3, 0, so by multiplying through by the cube of a uniformizer gives 1, 0, 3, so $\phi(O_E) = (0:1:0) = O'_E$. Note that $(y/x)^2 = (x^2 + ax + b)/x$, and $x^2 + ax + b, x$ are coprime as $b \neq 0$. So deg $\phi = 2$ and we say that ϕ is a 2-isogeny.

6 The Invariant Differential

Let C be an algebraic curve over $K = K^{\text{alg}}$.

Definition. The space of differentials Ω_C is the K(C)-vector space generated by df for $f \in K(C)$ subject to the relations

- $(i) \ d(f+g) = df + dg,$
- (ii) d(fg) = fdg + gdf,
- (iii) da = 0 for $a \in K$.

Fact: Ω_C is a 1-dimensional K(C)-vector space.

Let $0 \neq \omega \in \Omega_C$. Let $P \in C$ be a smooth point and $t \in K(C)$ a uniformizer at P. Then $\omega = fdt$ for some $f \in K(C)^*$. We define $\operatorname{ord}_P(\omega) = \operatorname{ord}_P(f)$. It is independent of the choice of t.

Fact: Suppose $f \in K(C)^*$, $\operatorname{ord}_P(f) = n \neq 0$. If $\operatorname{char} K \nmid n$, then $\operatorname{ord}_P(df) = n - 1$.

We now assume that C is a smooth projective curve.

Definition. div $\omega := \sum_{P \in C} \operatorname{ord}_P(\omega) P \in \operatorname{Div}(C)$ (using that $\operatorname{ord}_P(\omega) = 0$ for all but finitely many $P \in C$). The genus is $g(C) = \dim_K \{ \omega \in \Omega_C \mid \operatorname{div}(\omega) \ge 0 \}$.

Consequence of Riemann-Roch: If $0 \neq \omega \in \Omega_C$, deg div $(\omega) = 2g - 2$.

Lemma 6.1. Assume char $K \neq 2$ and let $E: y^2 = (x - e_1)(x - e_2)(x - e_3)$ with e_1, e_2, e_3 distinct. Then $\omega = \frac{dx}{y}$ is a differential on E with no poles or zeros. In particular the K-vector space of regular differentials on E is 1-dimensional, spanned by ω .

Proof. Let $T_i = (e_i, 0), E[2] = \{0, T_1, T_2, T_3\}$. Then div $(y) = (T_1) + (T_2) + (T_3) - 3(O_E)$. For $O_E \neq P \in E$ we have div $(x - x_P) = (P) + (-P) - 2(O_E)$. If $P \in E \setminus E[2]$, then ord $_P(x - x_P) = 1$, so ord $_P(dx) = 0$. If $P = T_i$, then ord $_P(x - x_P) = 2$, so ord $_P(dx) = 1$. If $P = O_E$, then ord $_P(x) = -2$, so ord $_P(dx) = -3$. Therefore div $(dx) = (T_1) + (T_2) + (T_3) - 3(O_E)$. Thus div(dx/y) = 0. □

Definition. For a nonconstant morphism $\phi : C_1 \to C_2$ we define $\phi^* : \Omega_{C_2} \to \Omega_{C_1}$ by $fdg \mapsto \phi^* fd(\phi^*g)$

Lemma 6.2. Let $P \in E$ and $\tau_P : E \to E, X \mapsto P + X$. Let $\omega = dx/y$ as above. Then $\tau_P^* \omega = \omega$.

Proof. $\tau_P^*\omega$ is a regular differential on E, so $\tau_P^*\omega = \lambda_P\omega$ for some $\lambda_P \in K^*$. The map $E \to \mathbb{P}^1, P \mapsto \lambda_P$ is a morphism of smooth projective curves, but not surjective (misses 0 and ∞). Hence this morphism is constant. Since $\lambda_{O_E} = 1$, we deduce that $\lambda_P = 1$ for all P.

Remark: If $K = \mathbb{C}$, $\mathbb{C}/\Lambda \cong E(\mathbb{C})$ via $z \mapsto (\wp(z), \wp'(z))$. Then $dx/y = (\wp'(z)dz)/\wp'(z) = dz$.

Lemma 6.3. Let $\phi, \psi \in \text{Hom}(E_1, E_2)$, ω an invariant differential on E_2 . Then $(\phi + \psi)^* \omega = \phi^* \omega + \psi^* \omega$.

Proof. Write $E = E_2$. Define the following maps:

$$E \times E \longrightarrow E,$$

$$\mu : (P,Q) \longmapsto P + Q,$$

$$\mathrm{pr}_1 : (P,Q) \longmapsto P,$$

$$\mathrm{pr}_2 : (P,Q) \longmapsto Q.$$

Fact: $\Omega_{E\times E}$ is a 2-dimensional $K(E\times E)$ -vector space with basis $\operatorname{pr}_1^*\omega, \operatorname{pr}_2^*\omega$. Therefore $\mu^*\omega = f \operatorname{pr}_1^*\omega + g \operatorname{pr}_2^*\omega$ for some $f, g \in K(E \times E)$. For fixed $Q \in E$ let

$$\iota_Q: E \longrightarrow E \times E$$
$$P \longmapsto (P,Q)$$

Applying ι_Q^* to the above equation gives

$$(\mu \iota_Q)^* \omega = (\iota_Q^* f) (\operatorname{pr}_1 \iota_Q)^* \omega + (\iota_Q^* g) (\underbrace{\operatorname{pr}_2 \iota_Q}_{\text{constant map}})^* \omega$$
$$\Rightarrow \tau_Q^* \omega = (\iota_Q^* f) \omega + 0$$
$$\Rightarrow \omega = (\iota_Q^* f) \omega$$

Therefore $\iota_Q^* f = 1$ for all $Q \in E$, so f(P,Q) = 1 for all $P, Q \in E$. Similarly g(P,Q) = 1 for all $P, Q \in E$. Therefore $\mu^* \omega = \operatorname{pr}_1^* \omega + \operatorname{pr}_2^* \omega$. Now pullback by $E_1 \to E_2 \times E_2, P \mapsto (\phi(P), \psi(P))$ to get $(\phi + \psi)^* \omega = \phi^* \omega + \psi^* \omega$.

Lemma 6.4. Let $\phi : C_1 \to C_2$ be a morphism. Then ϕ is separable iff $\phi^* : \Omega_{C_2} \to \Omega_{C_1}$ is non-zero.

Proof. Omitted.

Example. Let $\mathbb{G}_m = \mathbb{A}^1 \setminus \{0\}$ be the multiplicative group. Consider the map $\phi : \mathbb{G}_m \to \mathbb{G}_m, x \mapsto x^n$. Then $\phi^*(dx) = d(x^n) = nx^{n-1}dx$. So if char $K \nmid n$, then ϕ is separable, so $\#\phi^{-1}(Q) = \deg \phi$ for all but finitely many $Q \in \mathbb{G}_m$. Since ϕ is a group homomorphism, $\#\phi^{-1}(Q) = \# \ker \phi$ for all $Q \in \mathbb{G}_m$. Therefore $\# \ker \phi = \deg \phi = n$. So K contains exactly n n-th roots of unity (unsurprisingly).

Theorem 6.5. If char $K \nmid n$, then $E[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$.

Proof. By Lemma 6.3 and induction we get $[n]^*\omega = n\omega$. Since char $K \nmid n$, we get that [n] is separable, so $\#[n]^{-1}(Q) = \deg[n]$ for all but finitely many $Q \in E$. As in the example above, since [n] is a group homomorphism, $\#[n]^{-1}(Q) = \#E[n]$ for all $Q \in E$, so $\#E[n] = \deg[n] = n^2$. We know that $E[n] = \mathbb{Z}/d_1\mathbb{Z} \times \ldots \mathbb{Z}/d_t\mathbb{Z}$ with $d_1 \mid \cdots \mid d_t \mid n$. If p is a prime with $p \mid d_1$, then $E[p] \cong (\mathbb{Z}/p\mathbb{Z})^t$. But what we just proved is also true for p, i.e. $\#E[p] = p^2$, hence t = 2 and then $d_1 = d_2 = n$.

Remark: If char K = p, then [p] is inseparable. It can be shown that either $E[p^r] \cong \mathbb{Z}/p^r\mathbb{Z}$ for all $r \ge 1$ or $E[p^r] = 0$ for all $r \ge 1$. In the first case E is "ordinary", in the second "supersingular".

7 Elliptic Curves over Finite Fields

Lemma 7.1. Let A be an abelian group and $q: A \to \mathbb{Z}$ be a positive definite quadratic form. Then $|q(x+y) - q(x) - q(y)| \le 2\sqrt{q(x)q(y)}$.

Proof. We denote $\langle x, y \rangle = q(x+y) - q(x) - q(y)$. We may assume $x \neq 0$, so that q(x) > 0. Let $m, n \in \mathbb{Z}$. Then $0 \leq q(mx+ny) = \frac{1}{2}\langle mx+ny, mx+ny \rangle = m^2q(x) + mn\langle x, y \rangle + n^2q(y) = q(x)(m + \frac{\langle x, y \rangle}{2q(x)}n)^2 + (q(y) - \frac{\langle x, y \rangle^2}{4q(x)})n^2$. Now take $m = -\langle x, y \rangle, n = 2q(x)$ to deduce $4q(x)q(y) \geq \langle x, y \rangle^2$.

Theorem 7.2. Let E/\mathbb{F}_q be an elliptic curve. Then $|\#E(\mathbb{F}_q) - (q+1)| \leq 2\sqrt{q}$.

Proof. Recall $\operatorname{Gal}(\mathbb{F}_q^{\operatorname{alg}}/\mathbb{F}_q)$ is topologically generated by the Frobenius $x \mapsto x^q$. Define the Frobenius endomorphism $\phi : E \to E, (x, y) \mapsto (x^q, y^q)$ (after fixing a Weierstraß equation). It is an isogeny of degree q. Then $E(\mathbb{F}_q) = \{P \in E \mid \phi(P) = P\} = \ker(1-\phi)$. Note that $\phi^*\omega = \phi^*(dx/y) = d(x^q)/y^q = qx^{q-1}dx/y^q = 0$. By Lemma 6.3 $(1-\phi)^*\omega = \omega - \phi^*\omega = \omega \neq 0$, so $1-\phi$ is separable. Hence $\#E(\mathbb{F}_q) = \#\ker(1-\phi) = \deg(1-\phi)$. Now deg : $\operatorname{Hom}(E, E) \to \mathbb{Z}$ is a positive definite quadratic form, so by the lemma we get

$$|\#E(\mathbb{F}_q) - (q+1)| = |\deg(1-\phi) - 1 - \deg\phi| \le 2\sqrt{\deg\phi} = 2\sqrt{q}.$$

7.1 Zeta Functions

For K a function field, i.e. $K = \mathbb{F}_q(C)$ where C/\mathbb{F}_q is a smooth projective curve, we define $\zeta_K(s) = \prod_{x \in |C|} (1 - (Nx)^{-s})^{-1}$ where |C| is the set of closed points on C (i.e. orbits of $\operatorname{Gal}(\mathbb{F}_q^{\operatorname{alg}}/\mathbb{F}_q)$ on $C(\mathbb{F}_q^{\operatorname{alg}})$) and $Nx = q^{\deg x}$ where $\deg x$ is the size of the orbit. We have $\zeta_K(s) = F(q^{-s})$ for $F(T) = \prod_{x \in |C|} (1 - T^{\deg x})^{-1} \in \mathbb{Q}[t]$. Then

$$\log F(T) = \sum_{x \in |C|} \sum_{m=1}^{\infty} \frac{1}{m} T^{m \deg x},$$
$$\Rightarrow T \frac{d}{dT} \log F(T) = \sum_{x \in |C|} \sum_{m=1}^{\infty} \deg x T^{m \deg x}$$

$$= \sum_{n=1}^{\infty} \Big(\sum_{\substack{x \in |C| \\ \deg x \mid n}} \deg x\Big) T^n$$
$$= \sum_{n=1}^{\infty} \# C(\mathbb{F}_{q^n}) T^n.$$

Thus we get

$$F(T) = \exp\left(\sum_{n=1}^{\infty} \frac{\#C(\mathbb{F}_{q^n})}{n} T^n\right).$$

Definition. The zeta function of a smooth projective curve C/\mathbb{F}_q is

$$Z_C(T) = \exp\left(\sum_{n=1}^{\infty} \frac{\#C(\mathbb{F}_{q^n})}{n} T^n\right).$$

Definition. For $\phi, \psi \in \text{End } E$ we put $\langle \phi, \psi \rangle = \deg(\phi + \psi) - \deg \phi - \deg \psi$ and $\operatorname{tr}(\phi) = \langle \phi, 1 \rangle$.

Lemma 7.3. If $\psi \in \text{End}(E)$, then $\psi^2 - [\operatorname{tr} \psi]\psi + [\operatorname{deg} \psi] = 0$.

Proof. See Exercise Sheet 2.

Theorem 7.4. Let E/\mathbb{F}_q be an elliptic curve and $\#E(\mathbb{F}_q) = q + 1 - a$. Then

$$Z_E(T) = \frac{1 - aT + qT^2}{(1 - T)(1 - qT)}.$$

Proof. Let $\phi : E \to E$ be the *q*-power Frobenius map. By the proof of Hasse's theorem $\#E(\mathbb{F}_q) = \deg(1-\phi) = q+1-\operatorname{tr}(\phi)$ and $\operatorname{tr}(\phi) = a$, $\deg \phi = q$. By the lemma we have $\phi^2 - a\phi + q = 0$, hence $\operatorname{tr}(\phi^{n+2}) - a\operatorname{tr}(\phi^{n+1}) + q\operatorname{tr}(\phi^n) = 0$. This second order difference equation with initial conditions $\operatorname{tr}(1) = 2$, $\operatorname{tr}(\phi) = a$ has solution $\operatorname{tr}(\phi^n) = \alpha^n + \beta^n$ where $\alpha, \beta \in \mathbb{C}$ are the roots of $X^2 - aX + q = 0$. Then $\#E(\mathbb{F}_{q^n}) = \operatorname{deg}(1-\phi^n) = 1 + \operatorname{deg}(\phi^n) - \operatorname{tr}(\phi^n) = 1 + q^n - \alpha^n - \beta^n$. We then obtain

$$Z_E(T) = \exp\left(\sum_{n=1}^{\infty} \left(\frac{T^n}{n} + \frac{(qT)^n}{n} - \frac{(\alpha T)^n}{n} - \frac{(\beta T)^n}{n}\right)\right)$$

= $\frac{(1 - \alpha T)(1 - \beta T)}{(1 - T)(1 - qT)}$
= $\frac{1 - aT + qT^2}{(1 - T)(1 - qT)}.$

Г			
L			

8 Formal Groups

Definition. Let R be a ring, $I \subseteq R$ an ideal. The I-adic topology on R has basis $\{r + I^n \mid r \in R, n \ge 1\}.$

A sequence $(x_n)_n$ in R is Cauchy if for all k there exists N such that $x_m - x_n \in I^k$ for all $m, n \geq N$.

R is (I-adically) complete if

(*i*)
$$\bigcap_{n>0} I^n = \{0\},\$$

(ii) every Cauchy sequence converges.

Useful remark: If R is complete and $x \in I$, then $\frac{1}{1-x} = 1 + x + x^2 + \cdots \in R$, so $1 - x \in R^{\times}$.

Examples. The following rings are *I*-adically complete:

- $R = \mathbb{Z}_p, I = p\mathbb{Z}_p.$
- $R = \mathbb{Z}\llbracket t \rrbracket, I = (t).$

Lemma 8.1 (Hensel's Lemma). Let R be complete w.r.t. an ideal I. Let $F \in R[X]$, $s \ge 1$. Suppose $a \in R$ satisfies $F(a) \equiv 0 \mod I^s$ and $F'(a) \in R^{\times}$. Then there exists a unique $b \in R$ such that F(b) = 0 and $a \equiv b \mod I^s$.

Proof. Let $u \in \mathbb{R}^{\times}$ with $F'(a) \equiv u \mod I$. Replacing F(X) by F(X+a)/u we may assume a = 0 and $F'(0) \equiv 1 \mod I$. We put $x_0 = 0$ and $x_{n+1} = x_n - F(x_n)$. An easy induction shows that $x_n \equiv 0 \mod I^s$ for all n. Also F(X) - F(Y) = (X - Y)(F'(0) + XG(X, Y) + YH(X, Y)) for some polynomials $G, H \in \mathbb{R}[X, Y]$.

Claim: $x_{n+1} \equiv x_n \mod I^{n+s}$ for all $n \ge 0$. Proof: By induction on n, the case n = 0 is clear. Suppose $x_n \equiv x_{n-1} \mod I^{n+s-1}$. By the above we get $F(x_n) - F(x_{n-1}) = (x_n - x_{n-1})(1+c)$ for some $c \in I$. Hence $F(x_n) - F(x_{n-1}) \equiv x_n - x_{n-1} \mod I^{n+s}$. Rearranging this gives the claim.

Hence $(x_n)_{n\geq 0}$ is Cauchy, so $x_n \to b$ as $n \to \infty$ for some $b \in R$ since R is complete. Taking the limit $n \to \infty$ in $x_{n+1} = x_n - F(x_n)$ shows f(b) = 0. Also we get $b \equiv 0 \mod I^s$.

Uniqueness: Use F(X) - F(Y) = (X - Y)(F'(0) + XG(X, Y) + YH(X, Y)) and the useful remark (need R domain for uniqueness ?).

Consider an elliptic curve with Weierstraß equation

$$E: Y^2Z + a_1XYZ + a_3YZ^2 = X^3 + a_2X^2Z + a_4XZ^2 + a_6Z^3.$$

On the affine piece $Y \neq 0$ we set t = -X/Y, w = -Z/Y and get the equation

$$w = t^3 + a_1 t w + a_2 t^2 w + a_3 w^2 + a_4 t w^2 + a_6 w^3 =: f(t, w)$$

We apply Hensel's Lemma with $R = \mathbb{Z}[a_1, \ldots, a_6][t]$, I = (t) and $F(X) = X - f(t, X) \in R[X]$, s = 3, a = 0. We check $F(0) = -f(t, 0) = -t^3 \equiv 0 \mod I^3$ and $F'(0) = 1 - a_1t - a_2t^2 \in R^{\times}$. Therefore there exists a unique $w(t) \in \mathbb{Z}[a_1, \ldots, a_6][t]$ such that w(t) = f(t, w(t)) and $w(t) \equiv 0 \mod t^3$.

Remarks:

(i) In fact
$$w(t) = t^3(1 + A_1t + A_2t^2 + \dots)$$
 where
 $A_1 = a_1, \quad A_2 = a_1^2 + a_2, \quad A_3 = a_1^3 + 2a_1a_2 + 2a_3, \dots$

(ii) Taking u = 1 in the proof of Hensel's Lemma gives $w(t) = \lim_{n \to \infty} w_n(t)$, where $w_0(t) = 0, w_{n+1}(t) = f(t, w_n(t))$.

Lemma 8.2. Let R be an integral domain, complete with respect to an ideal I. Let $a_1, \ldots, a_6 \in R$ and K = Frac R. Then $\widehat{E}(I) = \{(t, w) \in E(K) \mid t, w \in I\}$ is a subgroup of E(K).

N.B. By the uniqueness in Hensel's lemma this set is $\{(t, w(t)) \mid t \in I\}$.

Proof. Taking (t, w) = (0, 0) shows $O_E \in \widehat{E}(I)$. So its suffices to show that if $P_1, P_2 \in \widehat{E}(I)$, then $-P_1 - P_2 \in \widehat{E}(I)$. Let

$$\lambda = \begin{cases} \frac{w(t_2) - w(t_1)}{t_2 - t_1}, & t_1 \neq t_2 \\ w'(t_1), & t_1 = t_2 \end{cases}$$
$$= \sum_{n=2}^{\infty} A_{n-2} \frac{t_1^{n+1} - t_2^{n+1}}{t_1 - t_2}$$
$$= \sum_{n=2}^{\infty} A_{n-2} (t_1^n + t_1^{n-1} t_2 + \dots + t_2^n) \in I$$

Let $\nu = w - \lambda t \in I$. Substituting $w = \lambda t + \nu$ in w = f(t, w) gives

$$\lambda t + \nu = t^3 + a_1 t (\lambda t + \nu) + a_2 t^2 (\lambda t + \nu) + a_3 (\lambda t + \nu)^2 + a_4 t (\lambda t + \nu)^2 + a_6 (\lambda t + \nu)^3$$

Let

$$A = \text{Coef of } t^3 = 1 + a_2\lambda + a_4\lambda^2 + a_6\lambda^3,$$

$$B = \text{Coef of } t^2 = a_1\lambda + a_2\nu + a_3\lambda^2 + 2a_4\lambda\nu + 3a_6\lambda^2\nu.$$

Note that $A \in \mathbb{R}^{\times}$, $B \in \mathbb{R}$. Then $t_3 = -\frac{B}{A} - t_1 - t_2 \in I$ and $w_3(t_3) = \lambda t_3 + \nu \in I$.

We apply this:

- $R = \mathbb{Z}[a_1, \ldots, a_6]\llbracket t \rrbracket, I = (t)$, then the Lemma shows that there exists $\iota \in \mathbb{Z}[a_1, \ldots, a_6]\llbracket t \rrbracket$ with $\iota(0) = 0$ and $[-1](t, w(t)) = (\iota(t), w(\iota(t)))$.
- $R = \mathbb{Z}[a_1, \dots, a_6][[t_1, t_2]], I = (t_1, t_2)$, then the Lemma shows that there exists $F \in \mathbb{Z}[a_1, \dots, a_6][[t_1, t_2]]$ with F(0, 0) = 0 and $(t_1, w(t_1)) + (t_2, w(t_2)) = (F(t_1, t_2), w(F(t_1, t_2)))$.

In fact

$$\iota(X) = -X - a_1 X^2 - a_2 X^3 - (a_1^3 + a_3) X^4 + \dots$$

$$F(X, Y) = X + Y - a_1 X Y - a_2 (X^2 Y + X Y^2) + \dots$$

The group law implies the following properties:

- (i) F(X, Y) = F(Y, X)
- (ii) F(X, 0) = X and F(0, Y) = Y
- (iii) F(X, F(Y, Z)) = F(F(X, Y), Z)
- (iv) $F(X, \iota(X)) = 0.$

Definition. Let R be a ring. A formal group over R is a power series $F \in R[X, Y]$ satisfying (i), (ii), (iii) above.

N.B. One can show that property (iv) is automatically satisfied (see Example Sheet 2).

Examples.

- (i) F(X,Y) = X + Y, the additive group $\widehat{\mathbb{G}}_a$.
- (ii) F(X,Y) = (1+X)(1+Y) 1 = X + Y + XY, the multiplicative group $\widehat{\mathbb{G}}_m$.
- (iii) The power series F associated to an elliptic curve E as above.

Definition. Let \mathcal{F}, \mathcal{G} be formal groups over R given by power series F and G. A morphism $f: \mathcal{F} \to \mathcal{G}$ is a power series $f \in R[t]$ with f(0) = 0 satisfying f(F(X,Y)) = G(f(x), f(y)). \mathcal{F} and \mathcal{G} are isomorphic if there exist morphisms $\mathcal{F} \xrightarrow{f} \mathcal{G}, \mathcal{G} \xrightarrow{g} \mathcal{F}$ such that g(f(X)) = X = f(g(X)).

Theorem 8.3. If char R = 0, then any formal group \mathcal{F} over R is isomorphic to $\widehat{\mathbb{G}}_a$ over $R \otimes \mathbb{Q}$. More precisely:

(i) There is a unique power series

$$\log(T) = T + \frac{a_2}{2}T^2 + \frac{a_3}{3}T^2 + \dots$$

with $a_i \in R$ such that $\log(F(X, Y)) = \log X + \log Y$.

(ii) There is a unique power series

$$\exp(T) = T + \frac{b_2}{2!}T^2 + \frac{b_3}{3!}T^3 + \dots$$

with $b_i \in R$ such that $\exp(\log T) = \log(\exp T) = T$.

Proof. Notation: $F_1(X, Y) = \frac{\partial F}{\partial X}(X, Y).$

(i) Uniqueness: Let $p(T) = \frac{d}{dT} \log T = 1 + a_2 T + a_3 T^2 + \dots$ Differentiating $\log F(X, Y) = \log X + \log Y$ w.r.t. X gives $p(F(X, Y)) \cdot F_1(X, Y) = p(X)$. Then plug in X = 0 to get $p(Y)F_1(0, Y) = 1$, so $p(Y) = F_1(0, Y)^{-1}$.

Existence: Let $p(T) = F_1(0, T)^{-1} = 1 + a_2T + a_3T^2 + ...$ for some $a_i \in R$. Then let $\log(T) = \int p(T) = T + \frac{a_2}{2}T^2 + \frac{a_3}{3}T^3 + ...$ We know F(F(X, Y), Z) = F(X, F(Y, Z)). Differentiate w.r.t. X to get $F_1(F(X, Y), Z)F_1(X, Y) = F_1(X, F(Y, Z))$ and put X = 0, so $F_1(Y, Z)F_1(0, Y) = F_1(0, F(Y, Z))$. So $F_1(Y, Z)p(Y)^{-1} = p(F(Y, Z))^{-1}$, so $F_1(Y, Z)p(F(Y, Z)) = p(Y)$. Integrate w.r.t. Y and get $\log F(Y, Z) = \log Y + h(Z)$ for some power series h. By symmetry we see that $h(Z) = \log Z$.

(ii) This part follows from Q12 on Example Sheet 2 and the following Lemma:

Lemma. Let $f(T) = aT + \cdots \in R[T]$ with $a \in R^{\times}$. Then there exists a unique $g(T) = a^{-1}T + \cdots \in R[T]$ such that f(g(T)) = g(f(T)) = T.

Proof. We construct polynomials $g_n(T) \in R[T]$ such that $f(g_n(T)) \equiv T \mod T^{n+1}$ and $g_{n+1}(T) \equiv g_n(T) \mod T^{n+1}$. Then set $g(T) = \lim_{n \to \infty} g_n(T)$ satisfies f(g(T)) = T. To start the induction set $g_1(T) = a^{-1}T$. Now suppose $n \ge 2$ and $g_{n-1}(T)$ exists, so $f(g_{n-1}(T)) \equiv T + bT^n \mod T^{n+1}$ for some $b \in R$. We put $g_n(T) = g_{n-1}(T) + \lambda T^n$ for some $\lambda \in R$ to be chosen later. Then

$$f(g_n(T)) = f(g_{n-1}(T) + \lambda T^n)$$

$$\equiv f(g_{n-1}(T)) + \lambda a T^n \mod T^{n+1}$$

$$\equiv T + (b + \lambda a) T^n \mod T^{n+1}$$

So take $\lambda = -b/a$ using $a \in \mathbb{R}^{\times}$.

Hence we get $g(T) = a^{-1}T + \cdots \in R[T]$ with f(g(T)) = T. Applying the same construction to g gives $h(T) = aT + \cdots \in R[T]$ such that g(h(T)) = T, so f(T) = f(g(h(T))) = h(T), hence g(f(T)) = T.

Notation: Let \mathcal{F} be a formal group given by a power series $F \in R[\![X,Y]\!]$. Suppose R is complete w.r.t. the ideal I. For $x, y \in I$ put $x \oplus_{\mathcal{F}} y = F(x, y) \in I$. Then $\mathcal{F}(I) := (I, \oplus_{\mathcal{F}})$ is an abelian group.

Examples.

- $\widehat{\mathbb{G}}_a(I) = (I, +),$
- $\widehat{\mathbb{G}}_m(I) \cong (1+I, \times),$
- $\widehat{E}(I) =$ subgroup of E(K) in Lemma 8.2.

Corollary 8.4. Let \mathcal{F} be a formal group over R and $n \in \mathbb{Z}$. Suppose $n \in R^{\times}$. Then

- (i) $[n]: \mathcal{F} \to \mathcal{F}$ is an isomorphism of formal groups.
- (ii) If R is complete w.r.t. an ideal I, then $\mathcal{F}(I) \xrightarrow{\times n} \mathcal{F}(I)$ is an isomorphism of groups. In particular, $\mathcal{F}(I)$ has no n-torsion.

Proof. We have [1](T) = T and [n](T) = F([n-1](T), T) for $n \ge 2$, for n < 0 use $[-1](T) = \iota(T)$. A straightforward induction then shows that $[n](T) = nT + \cdots \in R[T]$, so the claim is immediate from the lemma above.

9 Elliptic Curves over Local Fields

Let K be a field, complete w.r.t. a (normalized) discrete valuation $v : K^{\times} \to \mathbb{Z}$. Let k denote its residue field and π a uniformizer. We assume char K = 0 and char k = p > 0 (e.g. $K = \mathbb{Q}_p$).

Let E/K be an elliptic curve.

Definition. A Weierstraß equation for E with coefficients $a_1, \ldots, a_6 \in K$ is integral if $a_1, \ldots, a_6 \in \mathcal{O}_K$. An integral Weierstraß equation is minimal if $v(\Delta)$ is minimal among all integral Weierstraß equations for E.

Remarks:

- (i) Putting $x = u^2 x', y = u^3 y'$ gives $a_i = u^i a'_i$. Therefore integral Weierstraß equations exist.
- (ii) If $a_1, \ldots, a_6 \in \mathcal{O}_K$, then $\Delta \in \mathcal{O}_K$, so $v(\Delta) \ge 0$, so minimal Weierstraß equations exist.
- (iii) If char $k \neq 2, 3$, then there exist minimal Weierstraß equations of the form $y^2 = x^3 + ax + b$.

Lemma 9.1. Let E/K have integral Weierstraß equation

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

Let $O \neq P = (x, y) \in E(K)$. Then either $x, y \in \mathcal{O}_K$ or v(x) = -2s, v(y) = -3s for some $s \geq 1$.

Proof. It is easy to see that if $v(x) \ge 0$, then $v(y) \ge 0$ and also conversely. So suppose v(x), v(y) < 0. Then on LHS and RHS the dominating terms w.r.t. v are y^2 and x^3 , so $v(y^2) = v(x^3)$ and the result follows.

Since K is complete, \mathcal{O}_K is complete w.r.t. to the ideal $\pi^r \mathcal{O}_K$ for any $r \ge 1$.

Fix a minimal Weierstraß equation for E/K, so we get a formal group \widehat{E} over \mathcal{O}_K . Taking $I = \pi^r \mathcal{O}_K$ in Lemma 8.2 shows that

$$\widehat{E}(\pi^{r}\mathcal{O}_{K}) = \{(x,y) \in E(K) \mid -\frac{x}{y}, -\frac{1}{y} \in \pi^{r}\mathcal{O}_{K}\} \cup \{O\} \\ = \{(x,y) \in E(K) \mid v(x/y) \ge r, -v(y) \ge r\} \cup \{O\}$$

$$= \{ (x, y) \in E(K) \mid v(x) = -2s, v(y) = -3s, s \ge r \} \cup \{ O \} \\= \{ (x, y) \in E(K) \mid v(x) \le -2r, v(y) \le -3r \} \cup \{ O \}$$

is a subgroup of E(K). We denote it by $E_r(K)$. This gives a filtration $\ldots \subseteq E_3(K) \subseteq E_2(K) \subseteq E_1(K)$. More generally for any formal group \mathcal{F} over \mathcal{O}_K we have $\ldots \subseteq \mathcal{F}(\pi^3 \mathcal{O}_K) \subseteq \mathcal{F}(\pi^2 \mathcal{O}_K) \subseteq \mathcal{F}(\pi \mathcal{O}_K)$.

We now show that the isomorphism $\mathcal{F} \cong \widehat{\mathbb{G}}_a$ of formal groups induces an isomorphism $\mathcal{F}(\pi^r \mathcal{O}_K) \cong (\mathcal{O}_K, +)$ of genuine groups for r sufficiently large.

Theorem 9.2. Let \mathcal{F} be a formal group over \mathcal{O}_K . Let e = v(p). If $r > \frac{e}{p-1}$, then

$$\log: \mathcal{F}(\pi^r \mathcal{O}_K) \xrightarrow{\simeq} \widehat{\mathbb{G}}_a(\pi^r \mathcal{O}_K)$$

is an isomorphism of groups with inverse

$$\exp: \widehat{\mathbb{G}}_a(\pi^r \mathcal{O}_K) \xrightarrow{\simeq} \mathcal{F}(\pi^r \mathcal{O}_K).$$

Remark: $\widehat{\mathbb{G}}_a(\pi^r \mathcal{O}_K) = (\pi^r \mathcal{O}_K, +) \cong (\mathcal{O}_K, +).$

Proof. For $x \in \pi^r \mathcal{O}_K$ we must show that the power series $\log x$ and $\exp x$ converge. Recall $\exp(T) = T + \frac{b_2}{2!}T^2 + \frac{b_3}{3!}T^3 + \dots$ with $b_i \in \mathcal{O}_K$.

Claim: $v_p(n!) \leq \frac{n-1}{p-1}$. Proof of claim:

$$v_p(n!) = \sum_{r=1}^{\infty} \left\lfloor \frac{n}{p^r} \right\rfloor \le \sum_{r=1}^{\infty} \frac{n}{p^r} = \frac{n}{p-1}$$

So $(p-1)v_p(n!) < n$, so $(p-1)v_p(n!) \le n-1$ since the LHS is $\in \mathbb{Z}$.

Now

$$v\left(\frac{b_n x^n}{n!}\right) \ge nr - e\frac{n-1}{p-1} = (n-1)(\underbrace{r - \frac{e}{p-1}}_{>0}) + r$$

This is always $\geq r$ and goes to ∞ as $n \to \infty$. So $\exp x$ converges and belongs to $\pi^r \mathcal{O}_K$. A similar method works for log.

Lemma 9.3. We have $\mathcal{F}(\pi^r \mathcal{O}_K)/\mathcal{F}(\pi^{r+1} \mathcal{O}_K) \cong (k, +)$.

Proof. By the definition of a formal group, F(X, Y) = X + Y + XY(...). So if $x, y \in \mathcal{O}_K$,

$$F(\pi^r x, \pi^r y) \equiv \pi^r (x+y) \mod \pi^{r+1}.$$

Therefore

$$\mathcal{F}(\pi^r \mathcal{O}_K) \longrightarrow (k, +)$$
$$\pi^r x \longmapsto x \bmod \pi$$

is a surjective group homomorphism with kernel $\mathcal{F}(\pi^{r+1}\mathcal{O}_K)$.

Corollary. If $\#k < \infty$, then $\mathcal{F}(\pi \mathcal{O}_K)$ has a subgroup of finite index isomorphic to $(\mathcal{O}_K, +)$.

We denote the reduction $\mathcal{O}_K \to \mathcal{O}_K / \pi \mathcal{O}_K = k$ by $x \mapsto \tilde{x}$.

Proposition 9.4. Let E/K be an elliptic curve. Then the reductions mod π of any two minimal Weierstraß equations for E define isomorphic curves over k.

Proof. Say the Weierstraß equations are related by the usual coordinate change with parameters $u \in K^{\times}, r, s, t \in K$. Then $\Delta_1 = u^{12}\Delta_2$. Since both equations are minimal, we get $u \in \mathcal{O}_K^{\times}$. From the transformation formulae for the a_i and b_i , one can also see that $r, s, t \in \mathcal{O}_K$. So the coordinate change descends to a valid coordinate change mod π . \Box

Definition. The reduction \tilde{E}/k of E/K is defined by the reduction of a minimal Weierstraß equation.

E has good reduction if \tilde{E} is nonsingular (and so an elliptic curve). Otherwise E has bad reduction.

For an integral Weierstraß equation

$$v(\Delta) = 0 \implies$$
 good reduction
 $0 < v(\Delta) < 12 \implies$ bad reduction

There is a well-defined map

$$\mathbb{P}^{2}(K) \longrightarrow \mathbb{P}^{2}(k)$$
$$(x:y:z) \longmapsto (\widetilde{x}:\widetilde{y}:\widetilde{z})$$

by choosing x, y, z such that $\min\{v(x), v(y), v(z)\} = 0$.

We restrict to get $E(K) \to \widetilde{E}(k), P \mapsto \widetilde{P}$.

If $P = (x, y) \in E(K)$, then by Lemma 9.1 either $x, y \in \mathcal{O}_K$, so that $\widetilde{P} = (\widetilde{x}, \widetilde{y})$, or v(x) = -2s, v(y) = -3s and $P = (\pi^{3s}x : \pi^{3s}y : \pi^{3s}) \longmapsto \widetilde{P} = (0:1:0).$

Therefore $\widehat{E}(\pi \mathcal{O}_K) = E_1(K) = \{P \in E(K) \mid \widetilde{P} = O\}$ is called the *kernel of reduction*.

Let $\widetilde{E}_{ns} = \begin{cases} \widetilde{E} & \text{if } E \text{ has good reduction,} \\ \widetilde{E} \setminus \{\text{singular point}\} & \text{if } E \text{ hs bad reduction.} \end{cases}$

The chord and tangent process still defines a group law on \widetilde{E}_{ns} . In cases of bad reduction $\widetilde{E}_{ns} \cong \mathbb{G}_a$ (over k) or $\widetilde{E}_{ns} \cong \mathbb{G}_m$ (over k or possibly a quadratic extension of k).

For simplicity, suppose char $k \neq 2$. Then $\tilde{E} : y^2 = f(x)$ with deg f = 3. Then \tilde{E} is singular iff f has a repeated root.

If the singularity is a node (resp. a cusp), we get multiplicative (resp. additive) reduction.

Assume that the singularity is a cusp and that \widetilde{E} is given by $y^2 = x^3$. Then consider the map $\widetilde{E}_{ns} \to \mathbb{G}_a$, $(x, y) \mapsto x/y$ with inverse $t \mapsto (t^{-2}, t^{-3})$. Let P_1, P_2, P_3 lie on the line ax + by = 1. Write $P_i = (x_i, y_i)$, $t_i = x_i/y_i$. Then $x_i^3 = y_i^2 = y_i^2(ax_i + by_i)$. So $t_i^3 - at_i - b = 0$. Then t_1, t_2, t_3 are the roots of $T^3 - aT - b = 0$, so $t_1 + t_2 + t_3 = 0$. Hence the map above is a group isomorphism.

The case of a node is an exercise.

Definition. $E_0(K) = \{P \in E(K) \mid \widetilde{P} \in \widetilde{E}_{ns}(k)\}.$

Proposition 9.5. $E_0(K)$ is a subgroup of E(K), and reduction mod π is a surjective group homomorphism $E_0(K) \to \widetilde{E}_{ns}(k)$.

Proof. Group homomorphism: A line l in \mathbb{P}^2 defined over K has equation l: aX+bY+cZ = 0 with $a, b, c \in K$. We may assume that $\min(v(a), v(b), v(c)) = 0$. Then reducing mod π gives a line $\tilde{l}: \tilde{a}X + \tilde{b}Y + \tilde{c}Z = 0$. If $P_1, P_2, P_3 \in E(K)$ with $P_1 + P_2 + P_3 = O$, then these points lie on a line l. Then $\tilde{P}_1, \tilde{P}_2, \tilde{P}_3$ lie on the line \tilde{l} . If $\tilde{P}_1, \tilde{P}_2 \in \tilde{E}_{ns}(K)$, then $\tilde{P}_3 \in \tilde{E}_{ns}(k)$. So if $P_1, P_2 \in E_0(K)$, then $P_3 \in E_0(K)$ and $\tilde{P}_1 + \tilde{P}_2 + \tilde{P}_3 = 0$ (exercise: Show this also works if some of the points are repeated).

Surjective: Let $f(x,y) = y^2 + a_1xy + a_3y - (x^3 + ...)$. Let $\tilde{P} \in \tilde{E}_{ns}(k) \setminus \{O\}$, say $\tilde{P} = (\tilde{x}_0, \tilde{y}_0)$. For some $x_0, y_0 \in \mathcal{O}_K$. Since \tilde{P} is non-singular, either $\frac{\partial f}{\partial x}(x_0, y_0) \not\equiv 0 \mod \pi$ or $\frac{\partial f}{\partial y}(x_0, y_0) \not\equiv 0 \mod \pi$. In the first case we put $g(t) = f(t, y_0) \in \mathcal{O}_K[t]$ and apply Hensel's lemma to the approximate root x_0 , the second case is similar. \Box

It follows that $E_0(K)/E_1(K) \cong \widetilde{E}_{ns}(k)$.

A compactness argument will show that if $\#k < \infty$, then $E_0(K)$ is of finite index in E(K).

We deduce:

Theorem 9.6. If $[K : \mathbb{Q}_p] < \infty$, then E(K) contains a subgroup of finite index isomorphic to $(\mathcal{O}_K, +)$.

In the following let $[K : \mathbb{Q}_p] < \infty$. We denote the unique unramified extension of degree m of K by K_m . We also let $K^{\text{ur}} = \bigcup_{m \ge 1} K_m$.

Theorem 9.7. Let $[K : \mathbb{Q}_p] < \infty$. Suppose E/K has good reduction and $p \nmid n$. If $P \in E(K)$, then $K([n]^{-1}P)/K$ is unramified. Here $[n]^{-1}P = \{Q \in E(K^{alg}) : nQ = P\}$.

Proof. For each $m \ge 1$ there is a SES

$$0 \to E_1(K_m) \to E(K_m) \to \widetilde{E}(k_m) \to 0$$

Taking $\bigcup_{m>1}$ gives a commutative diagram with exact rows

$$\begin{array}{cccc} 0 & \longrightarrow & E_1(K^{\mathrm{ur}}) & \longrightarrow & E(K^{\mathrm{ur}}) & \longrightarrow & \widetilde{E}(k^{\mathrm{alg}}) & \longrightarrow & 0 \\ & & & & & \downarrow \times n & & \downarrow \times n \\ 0 & \longrightarrow & E_1(K^{\mathrm{ur}}) & \longrightarrow & E(K^{\mathrm{ur}}) & \longrightarrow & \widetilde{E}(k^{\mathrm{alg}}) & \longrightarrow & 0 \end{array}$$

The left vertical map is an isomorphism by Corollary 8.4 (ii) applied over each K_m . The right vertical map is surjective with kernel $\cong (\mathbb{Z}/n\mathbb{Z})^2$. By the Snake lemma we get $E(K^{\mathrm{ur}})[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$ and $E(K^{\mathrm{ur}})/nE(K^{\mathrm{ur}}) = 0$.

So if $P \in E(K)$, there exists $Q \in E(K^{\mathrm{ur}})$ such that nQ = P. Then $[n]^{-1}(P) = \{Q + T : T \in E[n]\} \subseteq E(K^{\mathrm{ur}})$. Hence $K([n]^{-1}P) \subseteq K^{\mathrm{ur}}$.

Lemma 9.8. If $\#k < \infty$, then $E_0(K) \subseteq E(K)$ has finite index.

Proof. Since $\#k < \infty$, $\mathcal{O}_K/\pi^r \mathcal{O}_K$ is finite for all $r \geq 1$. So $\mathcal{O}_K \cong \lim_{K \to T} \mathcal{O}_K/\pi^r \mathcal{O}_K$ is a profinite group and hence compact. $\mathbb{P}^n(K)$ is the union of sets $\{(a_0 : \cdots : a_{i-1} : 1 : a_{i+1} : \cdots : a_n) \mid a_j \in \mathcal{O}_K\} \cong \mathcal{O}_K^n$, hence compact. $E(K) \subseteq \mathbb{P}^2(K)$ is a closed subset, hence compact. The group operations are continuous. So E(K) is a compact topological group. If \widetilde{E} has singular point $(\widetilde{x}_0, \widetilde{y}_0)$, then $E(K) \setminus E_0(K) = \{(x, y) \in E(K) \mid v(x - x_0) \geq 1, v(y - y_0) \geq 1\}$ is a closed subset of E(K). Therefore $E_0(K)$ is an open subgroup of E(K). As E(K) is compact, this implies that $E_0(K)$ has finite index in E(K).

The index $[E(K) : E_0(K)] =: c_K(E)$ is called the "Tamagawa number" (of E).

Remarks:

- (i) If E has good reduction, then $c_K(E) = 1$, but the converse is false.
- (ii) It can be shown that either $c_K(E) = v(\Delta)$ or $c_K(E) \le 4$ (essential that we work with a minimal Weierstraß equation).

10 Elliptic Curves over Number Fields - The Torsion Subgroup

Let K be a finite extension of \mathbb{Q} , E/K an elliptic curve.

Notation: \mathfrak{p} is a prime of K (i.e. of \mathcal{O}_K), write $K_{\mathfrak{p}}$ for the completion of K at \mathfrak{p} , $\mathcal{O}_{\mathfrak{p}}$ for its valuation ring and $k_{\mathfrak{p}} = \mathcal{O}_K/\mathfrak{p}$ for its residue field.

Definition. \mathfrak{p} is a prime of good reduction for E/K if $E/K_{\mathfrak{p}}$ has good reduction.

Lemma 10.1. E/K has only finitely many primes of bad reduction.

Proof. Take a Weierstraß equation for E with coefficients $a_1, \ldots, a_6 \in \mathcal{O}_K$. As E is non-singular, $\Delta \neq 0$. Then E has good reduction at any prime not dividing Δ .

Remark: If K has class number 1 (e.g. $K = \mathbb{Q}$), then we can always find a Weierstraß equation for E with $a_1, \ldots, a_6 \in \mathcal{O}_K$ which is minimal at all primes \mathfrak{p} .

Lemma 10.2. $E(K)_{\text{tors}}$ is finite.

Proof. Take any prime \mathfrak{p} . We saw that $E(K_{\mathfrak{p}})$ has a subgroup A of finite index with $A \cong (\mathcal{O}_{\mathfrak{p}}, +)$. In particular A is torsionfree. Then $E(K)_{\text{tors}} \subseteq E(K_{\mathfrak{p}})_{\text{tors}} \hookrightarrow E(K_{\mathfrak{p}})/A$. \Box

Lemma 10.3. Let \mathfrak{p} be a prime of good reduction with $\mathfrak{p} \nmid n$. Then reduction mod \mathfrak{p} gives an injective group homomorphism $E(K)[n] \hookrightarrow \widetilde{E}(k_{\mathfrak{p}})$.

Proof. We know that $E(K_{\mathfrak{p}}) \to \widetilde{E}(k_{\mathfrak{p}})$ is a group homomorphism with kernel $E_1(K_{\mathfrak{p}})$. By corollary 8.4 and $\mathfrak{p} \nmid n, E_1(K_{\mathfrak{p}})$ has no *n*-torsion.

Example. Let E/\mathbb{Q} be defined by $y^2 + y = x^3 - x^2$. Then $\Delta = -11$. So E has good reduction at all $p \neq 11$. We calculate:

Thus by the lemma $\#E(\mathbb{Q})_{\text{tors}} | 5 \cdot 2^a$ for some $a \ge 0$ and $\#E(\mathbb{Q})_{\text{tors}} | 5 \cdot 3^b$ for some $b \ge 0$, hence $\#E(\mathbb{Q})_{\text{tors}} | 5$. Let $T = (0,0) \in E(\mathbb{Q})$. Then 5T = O, so $E(\mathbb{Q})_{\text{tors}} = \langle T \rangle \cong \mathbb{Z}/5\mathbb{Z}$. **Example.** Let E/\mathbb{Q} be defined by $y^2 + y = x^3 + x^2$. Then $\Delta = -43$. Again we calculate:

Therefore $\#E(\mathbb{Q})_{\text{tors}} | 5 \cdot 2^a$ for some $a \ge 0$ and $\#E(\mathbb{Q})_{\text{tors}} | 9 \cdot 11^b$ for some $b \ge 0$. Hence $E(\mathbb{Q})_{\text{tors}} = \{O\}$. Therefore P = (0,0) must have infinite order. In particular $E(\mathbb{Q})$ is infinite.

Example. $E_D: y^2 = x^3 - D^2 x$ with $D \in \mathbb{Z}$ squarefree, $\Delta = 2^6 D^6$. Then $E_D(\mathbb{Q})_{\text{tors}} \supseteq \{0, (0, 0), (\pm D, 0)\} \cong (\mathbb{Z}/2\mathbb{Z})^{\times}$. Let $f(x) = x^3 - D^2 x$. If $p \nmid 2D$, then

$$\#\widetilde{E}_D(\mathbb{F}_p) = 1 + \sum_{x \in \mathbb{F}_p} \left(\left(\frac{f(x)}{p} \right) + 1 \right).$$

If $p \equiv 3 \mod 4$, then since f is an odd function, $\left(\frac{f(-x)}{p}\right) = -\left(\frac{f(x)}{p}\right)$. Therefore $\#\widetilde{E}_D(\mathbb{F}_p) = p + 1$. Let $m = \#E_D(\mathbb{Q})_{\text{tors}}$. We have $4 \mid m \mid p + 1$ for all sufficiently large (i.e. $p \nmid 2Dm$) primes p with $p \equiv 3 \mod 4$. Therefore m = 4 since otherwise this contradicts Dirichlet's theorem on primes in arithmetic progressions. So $E_D(\mathbb{Q})_{\text{tors}} \cong (\mathbb{Z}/2\mathbb{Z})^2$. Hence rank $E_D(\mathbb{Q}) \ge 1$ iff there exist $x, y \in \mathbb{Q}$ with $y \neq 0$ such that $y^2 = x^3 - D^2x$ iff D is a congruent number.

Lemma 10.4. Let E/\mathbb{Q} be given by a Weierstraß equation with $a_1, \ldots, a_6 \in \mathbb{Z}$. Suppose $0 \neq T = (x, y) \in E(\mathbb{Q})_{\text{tors}}$. Then

- (i) $4x, 8y \in \mathbb{Z}$.
- (ii) If $2 \mid a_1 \text{ or } 2T \neq 0$, then $x, y \in \mathbb{Z}$.

Proof. The Weierstraß equation defines a formal group \widehat{E} over \mathbb{Z} . For $r \geq 1$ we have $\widehat{E}(p^r \mathbb{Z}_p) = \{(x, y) \in E(\mathbb{Q}_p) \mid v_p(x) \leq -2r, v_p(y) \leq -3r\} \cup \{O\}$. By Theorem 9.2, $\widehat{E}(p^r \mathbb{Z}_p) \cong (\mathbb{Z}_p, +)$ if $r > \frac{1}{p-1}$. So $\widehat{E}(4\mathbb{Z}_2)$ and $\widehat{E}(p\mathbb{Z}_p)$ for p odd are torsionfree. So if $0 \neq T = (x, y) \in E(\mathbb{Q})_{\text{tors}}$, it follows that $v_2(x) \geq -2, v_2(y) \geq -3$ and $v_p(x) \geq 0, v_p(y) \geq 0$ for odd primes p. This proves (i).

For (ii) suppose $T \in \widehat{E}(2\mathbb{Z}_2) \setminus \widehat{E}(4\mathbb{Z}_2)$, i.e. $v_2(x) = -2$, $v_2(y) = -3$. Since $\widehat{E}(2\mathbb{Z}_2)/\widehat{E}(4\mathbb{Z}_2) \cong (\mathbb{F}_2, +)$ and $\widehat{E}(4\mathbb{Z}_2)$ is torsionfree, we get 2T = 0. So $(x, y) = T = -T = (x, -y - a_1x - a_3)$, so $2y + a_1x + a_3 = 0$. From this it follows easily that $2 \nmid a_1$.

So if $2T \neq O$ or a_1 is even, then $T \notin \widehat{E}(2\mathbb{Z}_2)$.

Example. $E: y^2 + y = x^3 + 4x + 1$. Then $(-\frac{1}{4}, \frac{1}{8}) \in E(\mathbb{Q})[2]$.

Theorem 10.5 (Lutz-Nagell). Let E/\mathbb{Q} be an elliptic curve with Weierstraß equation $y^2 = f(x) = x^3 + ax + b$ with $a, b \in \mathbb{Z}$. Suppose $0 \neq T = (x, y) \in E(\mathbb{Q})_{\text{tors}}$. Then $x, y \in \mathbb{Z}$ and either y = 0 or $y^2 \mid (4a^3 + 27b^2)$.

Proof. The previous lemma shows that $x, y \in \mathbb{Z}$. If 2T = O, then y = 0, so suppose that $2T \neq O$. Write $2T = (x_2, y_2)$. Then by the lemma again $x_2, y_2 \in \mathbb{Z}$. But $x_2 = \left(\frac{f'(x)}{2y}\right)^2 - 2x$, so $y \mid f'(x)$. As E is non-singular, f and f' are coprime, so there exist $g, h \in \mathbb{Q}[X]$ such that $g(X)f(X) + h(X)f'(X)^2 = 1$. Doing this calculation and clearing denominators gives

$$(3X2 + 4a)f'(X)2 - 27(X3 + aX - b)f(X) = 4a3 + 27b2$$

Since y | f'(x) and $y^2 = f(x)$, we get $y^2 | (4a^3 + 27b^2)$.

Remark: Mazur showed that if E/\mathbb{Q} is an elliptic curve, then

$$E(\mathbb{Q})_{\text{tors}} \cong \begin{cases} \mathbb{Z}/n\mathbb{Z} & 1 \le n \le 12, n \ne 11, \\ \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2n\mathbb{Z} & 1 \le n \le 4. \end{cases}$$

11 Kummer Theory

Let K be a field, char $K \nmid n$. Assume $\mu_n \subseteq K$.

Lemma 11.1. Let $\Delta \subseteq K^*/(K^*)^n$ be a finite subgroup. Let $L = K(\sqrt[n]{\Delta})$. Then L/K is Galois and

$$\operatorname{Gal}(L/K) \cong \operatorname{Hom}(\Delta, \mu_n).$$

Proof. L/K is Galois since $\mu_n \subseteq K$ and char $K \nmid n$. Define the Kummer pairing \langle, \rangle : Gal $(L/K) \times \Delta \to \mu_n$, $(\sigma, x) \mapsto \frac{\sigma(\sqrt[n]{x})}{\sqrt[n]{x}}$. Note that this is well-defined and bilinear. It is also non-degenerate: If $\sigma \in \text{Gal}(L/K)$ such that $\langle \sigma, x \rangle = 1$ for all $x \in \Delta$, then clearly $\sigma = 1$. If $x \in \Delta$ such that $\langle \sigma, x \rangle = 1$ for all $\sigma \in \text{Gal}(L/K)$, so $\sigma(\sqrt[n]{x}) = \sqrt[n]{x}$ for all σ and so $\sqrt[n]{x} \in K$, i.e. $x \in (K^*)^n$.

Thus we get injective group homomorphisms

- (i) $\operatorname{Gal}(L/K) \hookrightarrow \operatorname{Hom}(\Delta, \mu_n),$
- (ii) $\Delta \hookrightarrow \operatorname{Hom}(\operatorname{Gal}(L/K), \mu_n).$

By (i) $\operatorname{Gal}(L/K)$ is abelian of exponent dividing n.

N.B. If G is a finite abelian group of exponent dividing n, then $\operatorname{Hom}(G, \mu_n) \cong G$ (noncanonically). So $\#\operatorname{Gal}(L/K) \leq \#\Delta \leq \#\operatorname{Gal}(L/K)$, hence the injections above are isomorphisms.

Example. Gal $(\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5})/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^3$.

Theorem 11.2. There is a bijection

$$\begin{cases} \text{finite subgroups} \\ \Delta \subseteq K^*/(K^*)^n \end{cases} \longleftrightarrow \begin{cases} \text{finite abelian extensions } L/K \\ \text{of exponent dividing } n \end{cases} \\ \\ \Delta \longmapsto K(\sqrt[n]{\Delta}) \\ (L^*)^n \cap K^*/(K^*)^n \longleftrightarrow L. \end{cases}$$

Proof. (i) Let $\Delta \subseteq K^*/(K^*)^n$ be a finite subgroup. Let $L = K(\sqrt[n]{\Delta})$ and $\Delta' = (L^*)^n \cap K^*/(K^*)^n$. We must show $\Delta = \Delta'$. Clearly $\Delta \subseteq \Delta'$. So $L = K(\sqrt[n]{\Delta}) \subseteq K(\sqrt[n]{\Delta'}) \subseteq L$. In particular $K(\sqrt[n]{\Delta}) = K(\sqrt[n]{\Delta'})$, so by Lemma 11.1 $\#\Delta = \#\Delta'$. It follows that $\Delta = \Delta'$.

(ii) Let L/K be a finite abelian extension of exponent dividing n. Let $\Delta = (L^*)^n \cap K^*/(K^*)^n$. Then $K(\sqrt[n]{\Delta}) \subseteq L$ and we aim to prove this is an equality. Let $G = \operatorname{Gal}(L/K)$.

The Kummer pairing gives an injection $\Delta \hookrightarrow \operatorname{Hom}(G, \mu_n)$. Claim: This is a surjection. From this we would get $[K(\sqrt[n]{\Delta}): K] = \#\Delta = \#G$, so $L = K(\sqrt[n]{\Delta})$. Proof of claim: Let $\chi: G \to \mu_n$ be a homomorphism. Distinct automorphisms are linearly independent, so there exists $a \in L$ such that $y := \sum_{\tau \in G} \chi(\tau)^{-1} \tau(a) \neq 0$. Let $\sigma \in G$. Then

$$\sigma(y) = \sum_{\tau \in G} \chi(\tau)^{-1} \sigma \tau(a)$$
$$= \sum_{\tau \in G} \chi(\sigma^{-1}\tau)^{-1} \tau(a)$$
$$= \chi(\sigma)y$$

Therefore $\sigma(y^n) = y^n$ for all $\sigma \in G$, so $y^n \in K^*$. Let $x = y^n$. Then $x \in K^* \cap (L^*)^n$. Note that $\chi : \sigma \mapsto \frac{\sigma(y)}{y} = \frac{\sigma(\sqrt[n]{x})}{\sqrt[n]{x}}$. So the map $\Delta \hookrightarrow \operatorname{Hom}(G, \mu_n)$ sends x to χ which proves the claim.

Proposition 11.3. Let K be a number field, $\mu_n \subseteq K$. Let S be a finite set of primes of K. There are only finitely many extensions L/K such that

- (i) L/K is finite abelian of exponent dividing n.
- (ii) L/K is unramified at all $\mathfrak{p} \notin S$.

Proof. Let L be such an extension. By Theorem 11.2, $L = K(\sqrt[n]{\Delta})$ for some finite subgroup $\Delta \subseteq K^*/(K^*)^n$. Let \mathfrak{p} be a prime of K. Write $\mathfrak{p}\mathcal{O}_L = \mathfrak{P}_1^{e_1} \dots \mathfrak{P}_r^{e_r}$. If $x \in K^*$ represents an element of Δ . Then $nv_{\mathfrak{P}_i}(\sqrt[n]{X}) = v_{\mathfrak{P}_i}(x) = e_i v_{\mathfrak{p}}(x)$. If $\mathfrak{p} \notin S$, then all $e_i = 1$, so $n \mid v_{\mathfrak{p}}(x)$. So $\Delta \subseteq K(S, n)$ where $K(S, n) = \{x \in K^*/(K^*)^n \mid v_{\mathfrak{p}}(x) \equiv 0 \mod n \,\forall \mathfrak{p} \notin S\}$. The claim then follows from the following Lemma.

Lemma 11.4. K(S, n) is finite.

Proof. The map $K(S,n) \to (\mathbb{Z}/n\mathbb{Z})^{\#S}$, $x \mapsto (v_{\mathfrak{p}}(x) \mod n)_{\mathfrak{p} \in S}$ is a group homomorphism with kernel $K(\emptyset, n)$. So it suffices to prove that $K(\emptyset, n)$ is finite, i.e. we may assume $S = \emptyset$.

If $x \in K^*$ represents an element of $K(\emptyset, n)$, then $(x) = \mathfrak{a}^n$ for some fractional ideal \mathfrak{a} . There is a short exact sequence

$$0 \to \mathcal{O}_K^*/(\mathcal{O}_K^*)^n \to K(\emptyset, n) \to \operatorname{Cl}_K[n] \to 0.$$

We know that Cl_K is finite and \mathcal{O}_K^* is finitely generated, so it follows that $K(\emptyset, n)$ is finite.

12 Elliptic Curves over Number Fields - The Mordell-Weil Theorem

Let K be a field.

Lemma 12.1. Let E/K be an elliptic curve, L/K a finite Galois extension. The natural map $E(K)/nE(K) \rightarrow E(L)/nE(L)$ has finite kernel.

Proof. For each element in the kernel we pick a coset representative $P \in E(K)$, and then $Q \in E(L)$ with nQ = P. For any $\sigma \in \operatorname{Gal}(L/K)$ we have $n(\sigma Q - Q) = \sigma P - P = O$, so $\sigma Q - Q \in E[n]$. Since $\operatorname{Gal}(L/K)$ and E[n] are finite, there are only finitely many possibilities for the map $\operatorname{Gal}(L/K) \to E[n]$, $\sigma \mapsto \sigma Q - Q$. But if $P_1, P_2 \in E(K)$, $P_i = nQ_i, Q_i \in E(L)$ for i = 1, 2 and $\sigma Q_1 - Q_1 = \sigma Q_2 - Q_2$ for all $\sigma \in \operatorname{Gal}(L/K)$, then $\sigma(Q_1 - Q_2) = Q_1 - Q_2$, so $Q_1 - Q_2 \in E(K)$, hence $P_1 - P_2 = n(Q_1 - Q_2) \in nE(K)$. \Box

Lemma 12.2. Let E/K be an elliptic curve. If $P \in E(K)$, then $K([n]^{-1}P)/K$ is a Galois extension, and moreover if $E[n] \subseteq E(K)$, the Galois group is abelian of exponent dividing n.

Proof. Since $\operatorname{Gal}(K^{\operatorname{alg}}/K)$ acts on $[n]^{-1}(P)$, we see that $\operatorname{Gal}(K^{\operatorname{alg}}/K([n]^{-1}P))$ is a normal subgroup of $\operatorname{Gal}(K^{\operatorname{alg}}/K)$, so the extension $K([n]^{-1}P)/K$ is Galois.

Suppose that $E[n] \subseteq E(K)$. Pick $Q \in [n]^{-1}P$. Then $[n]^{-1}P = \{Q + T \mid T \in E[n]\}$. So $K([n]^{-1}P) = K(Q)$. There is a map $\operatorname{Gal}(K(Q)/K) \to E[n] \cong (\mathbb{Z}/n\mathbb{Z})^2, \ \sigma \mapsto \sigma Q - Q$. This is a group homomorphism as $\sigma \tau Q - Q = \sigma(\tau Q - Q) + \sigma Q - Q = (\tau \sigma - Q) + \sigma Q - Q$ and injective: If $\sigma Q - Q = O$, then $\sigma Q = Q$, so σ fixes K(Q), so $\sigma = 1$. Hence $\operatorname{Gal}(K(Q)/K) \hookrightarrow (\mathbb{Z}/n\mathbb{Z})^2$.

Theorem 12.3 (Weak Mordell-Weil Theorem). Let K be a number field, E/K an elliptic curve, $n \ge 2$ an integer. Then E(K)/nE(K) is finite.

Proof. By Lemma 12.1 we may replace K by a finite Galois extension, and thus wlog assume $\mu_n \subseteq K$ and $E[n] \subseteq E(K)$. The field extensions $K([n]^{-1}P)/K$ as P runs over E(K) are abelian of exponent dividing n and unramified outside the finite set of primes

 $S = \{ \mathfrak{p} \mid n \} \cup \{ \text{primes of bad reduction} \}$

by Theorem 9.7. By Proposition 11.3 there are only finitely many such extensions. The composite (L say) of all these field extensions is therefore a finite Galois extension of K.

By construction of L the map $E(K)/nE(K) \to E(L)/nE(L)$ is the zero map. By Lemma 12.1 again its kernel, which is E(K)/nE(K), is finite.

Remark: If $K = \mathbb{R}$ or \mathbb{C} or $[K : \mathbb{Q}_p] < \infty$, then $\#(E(K)/nE(K)) < \infty$, yet E(K) is uncountable and so not finitely generated. For an example of a field K and an elliptic curve E/K for which E(K)/2E(K) is not finitely generated, see Example Sheet 4.

Fact: If K is a number field, there exists a quadratic form (= canonical height), \hat{h} : $E(K) \to \mathbb{R}_{\geq 0}$ with the property that for any $B \geq 0$, the set $\{P \in E(K) \mid \hat{h}(P) \leq B\}$ is finite. We will show this in the next chapter.

Theorem 12.4 (The Mordell-Weil Theorem). Let K be a number field, E/K an elliptic curve. Then E(K) is a finitely generated abelian group.

Proof. Fix an integer $n \geq 2$. By Weak Mordell-Weil E(K)/nE(K) is finite, so let $P_1, \ldots, P_m \in E(K)$ be a finite list of coset representatives. Let $\Sigma = \{P \in E(K) \mid \hat{h}(P) \leq \max_{1 \leq i \leq m} \hat{h}(P_i)\}$. Claim: Σ generates E(K). If not, there exists $P \in E(K)$ of minimal height which is not in the subgroup A generated by Σ . Then $P = P_i + nQ$ for some $1 \leq i \leq m$ and $Q \in E(K)$. Note that $Q \notin A$, so by minimality of $\hat{h}(P)$, we get $\hat{h}(P) \leq \hat{h}(Q)$, hence

$$\begin{aligned} 4\hat{h}(P) &\leq 4\hat{h}(Q) \leq n^{2}\hat{h}(Q) \\ &= \hat{h}(P - P_{i}) \\ &\leq \hat{h}(P - P_{i}) + \hat{h}(P + P_{i}) = 2\hat{h}(P) + 2\hat{h}(P_{i}). \end{aligned}$$

So $\hat{h}(P) \leq \hat{h}(P_i)$. Then $P \in \Sigma \subseteq A$, a contradiction.

Hence Σ generates E(K) and thus E(K) is finitely generated.

13 Heights

For simplicity take $K = \mathbb{Q}$. Write $P \in \mathbb{P}^n(\mathbb{Q})$ as $P = (a_0 : a_1 : \cdots : a_n)$ where $a_0, \ldots, a_n \in \mathbb{Z}$ with $gcd(a_0, \ldots, a_n) = 1$. The *height* of P is $H(P) := \max_{0 \le i \le n} |a_i|$.

Lemma 13.1. Let $f_1, f_2 \in \mathbb{Q}[X_1, X_2]$ be coprime homogeneous polynomials of the same degree d. Let

$$F : \mathbb{P}^1 \to \mathbb{P}^1,$$

(x₁ : x₂) \mapsto (f₁(x₁, x₂) : f₂(x₁, x₂)).

Then there exist $c_1, c_2 > 0$ such that $c_1 H(P)^d \leq H(F(P)) \leq c_2 H(P)^d$.

Proof. WLOG $f_1, f_2 \in \mathbb{Z}[X_1, X_2]$. For the upper bound write P = (a : b) with $a, b \in \mathbb{Z}$ coprime. Then $H(F(P)) \leq \max(|f_1(a, b)|, |f_2(a, b)|) \leq c_2 \max\{|a|^d, |b|^d\}$ where $c_2 = \max_{i=1,2}(\text{sum of absolute values of coeffs. of } f_i)$. Hence $H(F(P)) \leq c_2 H(P)^d$.

Lower bound: We claim there exist homogeneous polynomials $g_{ij} \in \mathbb{Z}[X_1, X_2]$ of degree d-1 and $\kappa \in \mathbb{Z}_{>0}$ such that $\sum_{j=1}^2 g_{ij}f_j = \kappa X_i^{2d-1}$ for i = 1, 2. Indeed, running Euclid's algorithm on $f_1(X, 1)$ and $f_2(X, 1)$ gives $r, s \in \mathbb{Q}[X]$ of degree < d such that $r(X)f_1(X, 1) + s(X)f_2(X, 1) = 1$. Homogenizing and clearing denominators gives the claim with i = 2. Likewise with i = 1. Write $P = (a_1 : a_2)$ with $a_1, a_2 \in \mathbb{Z}$ coprime. Then $\sum_{j=1}^2 g_{ij}(a_1, a_2)f_j(a_1, a_2) = \kappa a_i^{2d-1}$ for i = 1, 2. Therefore $\gcd(f_1(a_1, a_2), f_2(a_1, a_2))$ divides $\gcd(\kappa a_1^{2d-1}, \kappa a_2^{2d-1}) = \kappa$. Also

$$|\kappa a_i^{2d-1}| \le \max_{j=1,2} |f_j(a_1, a_2)| \sum_{j=1}^2 |g_{ij}(a_1, a_2)| \le \kappa H(F(P))\gamma_i H(P)^{d-1}$$

where $\gamma_i = \sum_{j=1}^{2} (\text{sum of absolute values of coeffs. of } g_{ij})$. Therefore $H(P)^{2d-1} \leq \max(\gamma_1, \gamma_2) H(F(P)) H(P)^{d-1}$ and so $c_1 H(P)^d \leq H(F(P))$ where $c_1 = \frac{1}{\max(\gamma_1, \gamma_2)}$.

Notation: For $x \in \mathbb{Q}$, let $H(x) = H((x : 1)) = \max(|a|, |b|)$ where $x = \frac{a}{b}$ with $a, b \in \mathbb{Z}$ coprime.

Let E/\mathbb{Q} be an elliptic curve given by $y^2 = x^3 + ax + b$.

Definition. The height on E is

$$H: E(\mathbb{Q}) \longrightarrow \mathbb{R}_{\geq 1}$$

$$P \longmapsto \begin{cases} H(x) & \text{if } P = (x, y), \\ 1 & \text{if } P = O_E. \end{cases}$$

The logarithmic height is

$$h: E(\mathbb{Q}) \longrightarrow \mathbb{R}_{\geq 0},$$
$$P \longmapsto \log H(P).$$

Lemma 13.2. Let E, E' be elliptic curves over $\mathbb{Q}, \phi : E \to E'$ an isogeny defined over \mathbb{Q} . Then there exists c > 0 such that $|h(\phi(P)) - (\deg \phi)h(P)| \le c$ for all $P \in E(\mathbb{Q})$.

Proof. Recall that by Lemma 5.4 there is a map $\xi : \mathbb{P}^1 \to \mathbb{P}^1$ such that

$$E_1 \xrightarrow{\phi} E_2$$

$$\downarrow x_1 \qquad \qquad \downarrow x_2$$

$$\mathbb{P}^1 \xrightarrow{\xi} \mathbb{P}^1$$

commutes. By Lemma 13.1 there exist $c_1, c_2 > 0$ such that $c_1 H(P)^d \leq H(\phi(P)) \leq c_2 H(P)^d$ for all $P \in E(\mathbb{Q})$ where $d = \deg \xi = \deg \phi$. Taking log gives

$$|h(\phi(P)) - dH(P)| \le \max(\log c_2, -\log c_1).$$

Let $\phi = [2] : E \to E$. Then there exists c > 0 such that $|h(2P) - 4h(P)| \leq C$ for all $P \in E(\mathbb{Q})$.

The canonical height is

$$\widehat{h}(P) = \lim_{n \to \infty} \frac{1}{4^n} h(2^n P).$$

We check that this converges: Let $m \ge n$, then

$$\begin{aligned} |4^{-m}h(2^{m}P) - 4^{-n}h(2^{n}P)| &\leq \sum_{r=n}^{m-1} |4^{-(r+1)}h(2^{r+1}P) - 4^{-r}h(2^{r}P)| \\ &= \sum_{r=n}^{m-1} 4^{-(r+1)} |h(2(2^{r}P)) - 4h(2^{r}P)| \\ &\leq C \sum_{r=n}^{\infty} 4^{-(r+1)} \\ &= \frac{C}{3 \cdot 4^{n}} \to 0 \text{ as } n \to \infty \end{aligned}$$

So the sequence is Cauchy and $\hat{h}(P)$ exists.

Lemma 13.3. $|h(P) - \hat{h}(P)|$ is bounded for $P \in E(\mathbb{Q})$.

Proof. Putting n = 0 in the above calculation gives $|4^{-m}h(2^mP) - h(P)| \leq \frac{C}{3}$, hence $|\hat{h}(P) - h(P)| \leq \frac{C}{3}$.

Corollary 13.4. For any B > 0, the set $\{P \in E(\mathbb{Q}) \mid \hat{h}(P) \leq B\}$ is finite.

Proof. By the previous lemma we can replace \hat{h} by h. It is clear that there are only finitely many x with $H(x) \leq B$, each such x leaves at most 2 choices for y.

Lemma 13.5. Let $\phi : E \to E'$ be an isogeny defined over \mathbb{Q} . Then $\hat{h}(\phi P) = (\deg \phi)\hat{h}(P)$ for all $P \in E(\mathbb{Q})$.

Proof. By Lemma 13.2 there exists c > 0 such that $|h(\phi P) - (\deg \phi)h(P)| \le c$ for all $E(\mathbb{Q})$. Replace P by $2^n P$, divide by 4^n and then take the limit $n \to \infty$ to get the claim.

Remark: This shows that \hat{h} (unlike h) does not depend on the choice of Weierstraß equation for E.

Taking $\phi = [n]$ shows $\widehat{h}(nP) = n^2 \widehat{h}(P)$ for all $P \in E(\mathbb{Q}), n \in \mathbb{Z}$.

Lemma 13.6. Let E/\mathbb{Q} be an elliptic curve curve, say with Weierstraß equation $y^2 = x^3 + ax + b$, $a, b \in \mathbb{Z}$. Then there exists c > 0 such that

$$H(P+Q)H(P-Q) \le cH(P)^2H(Q)^2$$

for all $P, Q \in E(\mathbb{Q})$ with $P, Q, P + Q, P - Q \neq O$.

Proof. Let P, Q, P + Q, P - Q have x coordinates x_1, \ldots, x_4 . Write $x_i = \frac{r_i}{s_i}$ with $r_i, s_i \in \mathbb{Z}$ coprime. As in the proof of Theorem 5.7 there are polynomials W_0, W_1, W_2 such that $(s_3s_4 : r_3s_4 + r_4s_3 : r_3r_4) = (W_0 : W_1 : W_2)$. The W_0, W_1, W_2 have degree 2 in r_1, s_1 and degree 2 in r_2, s_2 .

Then

$$\begin{aligned} H(P+Q)H(P-Q) &= \max(|r_3|, |s_3|) \max(|r_4|, |s_4|) \\ &\leq 2 \max(|s_3s_4|, |r_3s_4 + r_4s_3|, |r_3r_4|) \\ &\leq 2 \max(|W_0|, |W_1|, |W_2|) \\ &\leq (\text{const.}) \max(|r_1|, |s_1|)^2 \max(|r_2|, |s_2|)^2 \\ &= (\text{const.}) H(P)^2 H(Q)^2. \end{aligned}$$

с			
н			
н			
н			

Theorem 13.7. $\hat{h}: E(\mathbb{Q}) \to \mathbb{R}_{>0}$ is a quadratic form.

Proof. Using Lemma 13.6 and that |h(2P) - 4h(P)| is bounded (in one of the exceptional cases where the lemma does not apply) we get $h(P+Q) + h(P-Q) \leq 2h(P) + 2h(Q) + C$ for some constant C for all $P, Q \in E(\mathbb{Q})$. Then replace P, Q by $2^n P, 2^n Q$, divide by 4^n and take the limit $n \to \infty$. We get $\hat{h}(P+Q) + \hat{h}(P-Q) \leq 2\hat{h}(P) + 2\hat{h}(Q)$ Replacing P, Q by P + Q, P - Q and using $\hat{h}(2P) = 4\hat{h}(P)$ we get the reverse inequality.

So \hat{h} satisfies the parallelogram law and is thus a quadratic form.

Remark: Over a general number field K, define the height H(P) of $P = (a_0 : a_1 : \cdots : a_n) \in \mathbb{P}^n(K)$ by

$$H(P) = \prod_{v} \max_{0 \le i \le n} |a_i|_v$$

where the product ranges over the places v of K (using a suitable normalization of $|\cdot|_v$). This is well-defined by the product formula. All results in this section generalize from \mathbb{Q} to K.

14 Dual Isogenies and the Weil Pairing

Let K be a perfect field, E/K an elliptic curve.

Proposition 14.1. Let $\Phi \subseteq E(K^{\text{alg}})$ be a finite $\text{Gal}(K^{\text{alg}}/K)$ -stable subgroup. Then there exists an elliptic curve E'/K and a separable isogeny $\phi : E \to E'$ defined over K, with kernel Φ . Moreover, every isogeny $\psi : E \to E''$ with $\Phi \subseteq \ker \psi$ uniquely factors through ϕ .

Proof. Omitted, see Silverman AEC, Chapter III, Corollary 11 and Proposition 4.12. \Box

Proposition 14.2. Let $\phi : E \to E'$ be an isogeny of degree *n*. Then there exists a unique isogeny $\hat{\phi} : E' \to E$ such that $\hat{\phi}\phi = [n]$. $\hat{\phi}$ is called the dual isogney of ϕ .

Proof. Uniqueness: $\psi_1 \phi = \psi_2 \phi = [n]$, so $(\psi_1 - \psi_2)\phi = 0$, so $\psi_1 = \psi_2$ as ϕ is surjective. Case ϕ is separable: $\# \ker \phi = n$, so $\ker \phi \subseteq E[n]$. Apply the proposition to $\psi = [n]$.

Case ϕ inseparable: Omitted (Silverman AEC, Chapter III, Theorem 6).

Remarks:

- (i) Write $E_1 \sim E_2$ if E_1, E_2 are isogenous. Then \sim is an equivalence relation.
- (ii) deg $[n] = n^2$, so deg $\phi = \text{deg } \hat{\phi}$ and $[\widehat{n}] = [n]$.
- (iii) If $E_1 \xrightarrow{\psi} E_2 \xrightarrow{\phi} E_3$, then $\widehat{\phi\psi} = \widehat{\psi\phi}$.
- (iv) $\phi \widehat{\phi} \phi = \phi[n]_E = [n]_{E'} \phi$, hence $\phi \widehat{\phi} = [n]_{E'}$. In particular $\widehat{\phi} = \phi$. If $\phi \in \text{End}(E)$, then $\phi^2 - [\text{tr }\phi]\phi + [\text{deg }\phi] = 0$, so $([\text{tr }\phi] - \phi)\phi = [\text{deg }\phi]$. So $\widehat{\phi} = [\text{tr }\phi] - \phi$ and so $[\text{tr }\phi] = \phi + \widehat{\phi}$.

Lemma 14.3. If $\phi, \psi \in \text{Hom}(E, E')$, then

$$\widehat{\phi + \psi} = \widehat{\phi} + \widehat{\psi}.$$

Proof.

(i) If E = E', this follows from $tr(\phi + \psi) = tr \phi + tr \psi$.

(ii) In general, let $\alpha : E' \to E$ be any isogeny (e.g. $\alpha = \hat{\phi}$). Then by (i), $\alpha(\phi + \psi) = \alpha \phi + \alpha \psi$. So $\phi + \psi \hat{\alpha} = (\hat{\phi} + \hat{\psi})\hat{\alpha}$. The claim follows.

Remark: In Silverman's AEC, the lemma is used to show that deg : Hom(E, E') is a quadratic form.

Let sum : $\operatorname{Div}(E) \to E$, $\sum n_P(P) \mapsto \sum n_P P$. Recall $E \xrightarrow{\sim} \operatorname{Pic}^0(E)$ via $P \mapsto [(P) - (O_E)]$ and sum $(D) \mapsto [D]$ if deg D = 0.

We deduce:

Lemma 14.4. Let $D \in \text{Div}(E)$. Then $D \sim 0$ iff deg D = 0 and sum $D = O_E$.

Let $\phi: E \to E'$ be an isogeny of degree *n* with dual isogeny $\widehat{\phi}: E' \to E$. Assume char $K \nmid n$ (so both ϕ and $\widehat{\phi}$ are separable). We define the Weil pairing

$$E[\phi] \times E'[\widehat{\phi}] \to \mu_n.$$

Let $T \in E'[\widehat{\phi}]$. Then nT = 0, so there exists $f \in K^{\mathrm{alg}}(E')^*$ such that $\operatorname{div}(f) = n(T) - n(O)$. Pick $T_0 \in E(K^{\mathrm{alg}})$ such that $\phi T_0 = T$. Then $\phi^*(T) - \phi^*(O) = \sum_{P \in E[\phi]} (P + T_0) - \sum_{P \in E[\phi]} (P)$ has sum $nT_0 = \widehat{\phi}\phi T_0 = \widehat{\phi}T = 0$. So there is $g \in K^{\mathrm{alg}}(E)^*$ such that

$$\operatorname{div}(g) = \phi^*(T) - \phi^*(O).$$

Now $\operatorname{div}(\phi^* f) = \phi^*(\operatorname{div} f) = \phi^*(n(T) - n(O)) = n(\phi^*(T) - \phi^*(O)) = \operatorname{div}(g^n)$. So $\phi^* f = cg^n$ for some $c \in K^{\operatorname{alg}^*}$. Rescaling f we may assume c = 1, so $\phi^* f = g^n$.

If $S \in E[\phi]$, then $\phi \circ \tau_S = \phi$, so $\tau_S^*(\operatorname{div} g) = \operatorname{div} g$. Then $\operatorname{div}(\tau_S^* g) = \operatorname{div}(g)$ and so $\tau_S^* g = \zeta g$ for some $\zeta \in K^{\operatorname{alg}*}$. Therefore

$$\zeta = \frac{g(X+S)}{g(X)}$$
 for all $X \in E(K^{\text{alg}})$ where this is defined.

Now $\zeta^n = \frac{g(X+S)^n}{g(X)^n} = \frac{f(\phi(X+S))}{f(\phi(X))} = 1$ since $S \in E[\phi]$. So $\zeta \in \mu_n$. We define $e_{\phi}(S,T) = \zeta = \frac{g(X+S)}{g(X)}$.

Proposition 14.5. e_{ϕ} is bilinear and non-degenerate.

Proof. (i) Linearity in first argument:

$$e_{\phi}(S_1 + S_2, T) = \frac{g(X + S_1 + S_2)}{g(X + S_2)} \frac{g(X + S_2)}{g(X)} = e_{\phi}(S_1, T)e_{\phi}(S_2, T).$$

(ii) Linearity in second argument: Let $T_1, T_2 \in E'[\widehat{\phi}]$, we get f_1, f_2, g_1, g_2 with div $(f_i) = n(T_i) - n(O)$ and $\phi^* f_i = g_i^n$, i = 1, 2. There exists $h \in K^{\mathrm{alg}}(E')^*$ such that div $(h) = n(T_i) - n(O)$

 $(T_1) + (T_2) - (T_1 + T_2) - (O)$. Then put $f = \frac{f_1 f_2}{h^n}$. Then $\operatorname{div}(f) = \operatorname{div}(f_1) + \operatorname{div}(f_2) - n \operatorname{div}(h) = n(T_1 + T_2) - n(O)$ and $\phi^* f = \frac{g_1^n g_2^n}{(\phi^* h)^n}$, so set $g = \frac{g_1 g_2}{\phi^* h}$. Then

$$e_{\phi}(S, T_1 + T_2) = \frac{g(X+S)}{g(X)} = \frac{g_1(X+S)}{g_1(X)} \frac{g_2(X+S)}{g_2(X)} \frac{h(\phi(X))}{h(\phi(X+S))}$$
$$= \frac{g_1(X+S)}{g_1(X)} \frac{g_2(X+S)}{g_2(X)} = e_{\phi}(S, T_1) e_{\phi}(S, T_2)$$

(iii) Nondegeneracy: For $T \in E'[\widehat{\phi}]$ suppose $e_{\phi}(S,T) = 1$ for all $S \in E[\phi]$. Then $\tau_S^*g = g$ for all $S \in E[\phi]$. Note that $K^{\mathrm{alg}}(E)/\phi^*K^{\mathrm{alg}}(E')$ is Galois with Galois group $E[\phi]$ (where $S \in E[\phi]$ acts as τ_S^*). Then $g = \phi^*h$ for some $h \in K^{\mathrm{alg}}(E')$ (see also Proposition 14.1). Then $\phi^*f = g^n = \phi^*(h^n)$, so $f = h^n$ and thus div(h) = (T) - (O). Then T = O. Hence $E'[\widehat{\phi}] \to \mathrm{Hom}(E[\phi], \mu_n)$ is injective. Since $\#E[\phi] = \#E'[\widehat{\phi}] = n$, this map is an isomorphism.

Remarks:

- (i) If E, E', ϕ are defined over K, then e_{ϕ} is Galois equivariant, i.e. $e_{\phi}(\sigma S, \sigma T) = \sigma(e_{\phi}(S,T))$ for all $\sigma \in \text{Gal}(K^{\text{alg}}/K), S \in E[\phi], T \in E'[\widehat{\phi}].$
- (ii) Taking $\phi = [n] : E \to E$ (so $\widehat{\phi} = n$) gives $e_n : E[n] \times E[n] \to \mu_n$ (note that since E[n] is *n*-torsion the image is actually in $\mu_n \subseteq \mu_{n^2}$).

Corollary 14.6. If $E[n] \subseteq E(K)$, then $\mu_n \subseteq K$.

Proof. e_n is nondegenerate, so there exists $S, T \in E[n]$ such that $e_n(S,T)$ is a primitive *n*-th root of unity ζ_n . Then $\sigma(\zeta_n) = \sigma(e_n(S,T)) = e_n(\sigma S, \sigma T) = e_n(S,T)$ for all $\sigma \in \operatorname{Gal}(K^{\operatorname{alg}}/K)$, hence $\zeta_n \in K$.

Remark: In fact the Weil pairing e_n is alternating, i.e. $e_n(T,T) = 1$ for all $T \in E[n]$.

15 Galois Cohomology

Let G be a group, A a G-module.

Definition.

$$H^{0}(G, A) = A^{G} = \{a \in A \mid \sigma a = a \,\forall \sigma \in G\}$$

$$C^{1}(G, A) = \{maps \ G \to A\}$$

$$Z^{1}(G, A) = \{(a_{\sigma})_{\sigma \in A} \in C^{1}(G, A) \mid a_{\sigma\tau} = \sigma(a_{\tau}) + a_{\sigma}\}$$

$$B^{1}(G, A) = \{(\sigma b - b)_{\sigma \in G} \mid b \in A\}$$

$$H^{1}(G, A) = Z^{1}(G, A) / B^{1}(G, A)$$

Elements in $C^1(G, A)$ (resp. $Z^1(G, A)$, $B^1(G, A)$) are called cochains (resp. cocycles, coboundaries).

Remark: If G acts trivially on A, then $H^1(G, A) = \text{Hom}(G, A)$.

Theorem 15.1. A short exact sequence of G modules

$$0 \to A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0$$

induces a long exact sequence of abelian groups:

$$0 \to A^G \xrightarrow{\phi} B^G \xrightarrow{\psi} C^G \xrightarrow{\delta} H^1(G, A) \xrightarrow{\phi_*} H^1(G, B) \xrightarrow{\psi_*} H^1(G, C).$$

Proof. Omitted (straightforward, Snake lemma).

Definition of δ : Let $c \in C^G$. Then there exists $b \in B$ such that $\psi(b) = c$. Then $\psi(\sigma b - b) = \sigma c - c$ for all $\sigma \in G$, so $\sigma b - b = \phi(a_{\sigma})$ for some $a_{\sigma} \in A$. Then $(a_{\sigma})_{\sigma \in G} \in Z^1(G, A)$. We define $\delta(c) = (a_{\sigma})_{\sigma \in G} + B^1(G, A) \in H^1(G, A)$.

Theorem 15.2. Let A be a G-module, H a normal subgroup of G. There is an inflationrestriction exact sequence:

$$0 \to H^1(G/H, A^H) \xrightarrow{\text{inf}} H^1(G, A) \xrightarrow{\text{res}} H^1(H, A).$$

Proof. Omitted (straightforward).

Let K be a perfect field. Then $\operatorname{Gal}(K^{\operatorname{alg}}/K)$ is a topological group. If $G = \operatorname{Gal}(K^{\operatorname{alg}}/K)$, we modify the definition of $H^1(G, A)$ by insisting:

- (1) The stabilizer of each $a \in A$ is an open subgroup of G.
- (2) All cochains $G \to A$ are continuous where A carries the discrete topology.

Theorem (Hilbert's Theorem 90). Let L/K be a finite Galois extension. Then

 $H^1(\operatorname{Gal}(L/K), L^*) = 1.$

Proof. Let $G = \operatorname{Gal}(L/K)$. Let $(a_{\sigma})_{\sigma \in G} \in Z^{1}(G, L^{\times})$. Distinct automorphisms are linearly independent, so there exists $y \in L$ such that $x := \sum_{\tau \in G} a_{\tau}^{-1} \tau(y) \neq 0$. For $\sigma \in G, \ \sigma(x) = \sum_{\tau \in G} \sigma(a_{\tau})^{-1} \sigma \tau(y) = a_{\sigma} \sum_{\tau \in G} a_{\sigma\tau}^{-1} \sigma \tau(y) = a_{\sigma} x$. Hence $a_{\sigma} = \frac{\sigma(x)}{x}$, so $(a_{\sigma})_{\sigma \in G} \in B^{1}(G, L^{\times})$, so $H^{1}(G, L^{\times}) = 0$.

We have

$$H^{1}(\operatorname{Gal}(K^{\operatorname{alg}}/K), A) = \varinjlim_{L/K \text{ finite Galois}} H^{1}(\operatorname{Gal}(L/K), A^{\operatorname{Gal}(K^{\operatorname{alg}}/L)})$$

where the direct limit is taken with respect to the inflation maps.

Corollary. $H^1(\operatorname{Gal}(K^{\operatorname{alg}}/K), K^{\operatorname{alg}\times}) = 0.$

Example. Assume char $K \nmid n$. There is a short exact sequence of $\operatorname{Gal}(K^{\operatorname{alg}}/K)$ -modules:

$$0 \to \mu_n \to K^{\text{alg} \times} \xrightarrow{n} K^{\text{alg} \times} \to 0$$

This is gives a long exact sequence

$$K^{\times} \xrightarrow{n} K^{\times} \xrightarrow{\delta} H^1(\operatorname{Gal}(K^{\operatorname{alg}}/K), \mu_n) \to H^1(\operatorname{Gal}(K^{\operatorname{alg}}/K), K^{\operatorname{alg}\times}) = 0.$$

Hence $H^1(\operatorname{Gal}(K^{\operatorname{alg}}/K), \mu_n) \cong K^{\times}/(K^{\times})^n$.

If $\mu_n \subseteq K$, then $\operatorname{Hom}_{\operatorname{cts}}(\operatorname{Gal}(K^{\operatorname{alg}}/K), \mu_n) = H^1(\operatorname{Gal}(K^{\operatorname{alg}}/K), \mu_n) \cong K^{\times}/(K^{\times})^n$. And there is a bijection:

$$\left\{ \begin{array}{l} \text{finite abelian extensions } L/K \\ \text{of exponent dividing } n \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{l} \text{finite subgroups of} \\ \operatorname{Hom}_{\operatorname{cts}}(\operatorname{Gal}(K^{\operatorname{alg}}/K), \mu_n) \end{array} \right\}, \\ L \longmapsto \operatorname{Hom}(\operatorname{Gal}(L/K), \mu_n) \end{array} \right\},$$

This gives another proof of Theorem 11.2.¹

Notation: $H^1(K, -)$ means $H^1(\text{Gal}(K^{\text{alg}}/K), -)$.

Let $\phi: E \to E'$ be an isogeny of elliptic curves over K. There is a short exact sequence of $\operatorname{Gal}(K^{\operatorname{alg}}/K)$ -modules:

$$0 \to E[\phi] \to E \xrightarrow{\phi} E' \to 0.$$

¹Remark by L.T.: To get the precise statement of Theorem 11.2 we probably need something like Pontryagin duality so that we have a canonical bijection between open subgroups of $\operatorname{Gal}(K^{\operatorname{alg}}/K)$ and finite subgroups of $\operatorname{Hom}_{\operatorname{cts}}(\operatorname{Gal}(K^{\operatorname{alg}}/K), \mu_n)$...

This gives the long exact sequence:

$$E(K) \xrightarrow{\phi} E'(K) \xrightarrow{\delta} H^1(K, E[\phi]) \to H^1(K, E) \xrightarrow{\phi_*} H^1(K, E').$$

So we get a short exact sequence:

$$0 \to \frac{E'(K)}{\phi E(K)} \to H^1(K, E[\phi]) \to H^1(K, E)[\phi_*] \to 0.$$

Now take K to be a number field. For each place v of K fix an embedding $K^{\text{alg}} \hookrightarrow K_v^{\text{alg}}$. Then $\text{Gal}(K_v^{\text{alg}}/K_v) \hookrightarrow \text{Gal}(K^{\text{alg}}/K)$. Then we get:

Definition. The ϕ -Selmer group is

$$S^{(\phi)}(E/K) = \ker \searrow = \ker \left(H^1(K, E[\phi]) \to \prod_v H^1(K_v, E) \right).$$

The Tate-Shafarevich group is

$$\operatorname{III}(E/K) = \ker \left(H^1(K, E) \to \prod_v H^1(K_v, E) \right).$$

We get a short exact sequence

$$0 \to \frac{E'(K)}{\phi E(K)} \xrightarrow{\delta} S^{(\phi)}(E/K) \to \operatorname{III}(E/K)[\phi_*] \to 0.$$

Taking $\phi = [n]$ gives

$$0 \to \frac{E(K)}{nE(K)} \xrightarrow{\delta} S^{(n)}(E/K) \to \operatorname{III}(E/K)[n] \to 0.$$

Rearranging the proof of the weak Mordell Weil Theorem gives: **Theorem 15.3.** $S^{(n)}(E/K)$ is finite. *Proof.* For a finite Galois extension L/K there is an exact sequence:

By extending our field we may thus assume $E[n] \subseteq E(K)$ (and hence $\mu_n \subseteq K$). So $E[n] \cong \mu_n \times \mu_n$ as Galois modules. Then $H^1(K, E[n]) \cong H^1(K, \mu_n) \times H^1(K, \mu_n) \cong K^{\times}/(K^{\times})^n \times K^{\times}/(K^{\times})^n$.

Let $S = \{ \text{primes of bad reduction for } E \} \cup \{ v \mid n\infty \}.$

Definition. The subgroup of $H^1(K, A)$ unramified outside S is

$$H^{1}(K,A;S) = \ker \left(H^{1}(K,A) \to \prod_{v \notin S} H^{1}(K_{v}^{\mathrm{ur}},A) \right).$$

There is a commutative diagram with exact rows

The map $E(K_v^{\mathrm{ur}}) \xrightarrow{\times n} E(K_v^{\mathrm{ur}})$ is surjective for $v \notin S$. So $E(K_v^{\mathrm{ur}}) \xrightarrow{\delta_v} H^1(K_v^{\mathrm{ur}}, E[n])$ is the zero map. Then $\mathrm{Im}(\delta_v) \subseteq \ker(\downarrow)$. Then

$$S^{(n)}(E/K) = \{ \alpha \in H^1(K, E[n]) \mid \operatorname{res}_v(\alpha) \in \operatorname{im}(\delta_v) \,\forall v \}$$
$$\subseteq H^1(K, E[n]; S)$$
$$= H^1(K, \mu_n; S) \times H^1(K, \mu_n; S)$$
$$\subseteq K(S, n) \times K(S, n).$$

We know that K(S,n) is finite by Lemma 11.4. Hence $S^{(n)}(E/K)$ is finite.

16 Descent by Cyclic Isogeny

Let E, E' be elliptic curves over a number field K and $\phi : E \to E'$ an isogeny of degree n. Suppose $E'[\widehat{\phi}] \cong \mathbb{Z}/n\mathbb{Z}$ is cyclic and generated by $T \in E'(K)$. Then $E[\phi] \cong \mu_n$ as $\operatorname{Gal}(K^{\operatorname{alg}}/K)$ -modules via $S \mapsto e_{\phi}(S, T)$. There is a short exact sequence of $\operatorname{Gal}(K^{\operatorname{alg}}/K)$ -modules

$$0 \to \mu_n \to E \xrightarrow{\phi} E' \to 0$$

This gives a long exact sequence

$$E(K) \xrightarrow{\phi} E'(K) \xrightarrow{\delta} H^1(K, \mu_n) \longrightarrow H^1(K, E)$$

$$\swarrow^{\alpha} \qquad \qquad \downarrow \simeq$$

$$K^{\times}/(K^{\times})^n$$

Theorem 16.1. Let $f \in K(E')$ and $g \in K(E)$ with $\operatorname{div}(f) = n(T) - n(O)$ and $\phi^* f = g^n$. Then $\alpha(P) = f(P) \mod (K^{\times})^n$ for all $P \in E'(K) \setminus \{O_{E'}, T\}$.

Proof. Let $Q \in \phi^{-1}P$. Then $\delta(P)$ is represented by the cocycle $\sigma \mapsto \sigma Q - Q \in E[\phi]$. And $E[\phi] \cong \mu_n$ via $S \mapsto e_{\phi}(S,T)$. Then $e_{\phi}(\sigma Q - Q,T) = \frac{g(X + \sigma Q - Q)}{g(X)}$ for any $X \in E \setminus \{\text{zeros, poles of } g\}$. Take X = Q, so $e_{\phi}(\sigma Q - Q,T) = \frac{g(\sigma Q)}{g(Q)} = \frac{\sigma(g(Q))}{g(Q)} = \frac{\sigma \sqrt[n]{f(P)}}{\sqrt[n]{f(P)}}$. So $\delta(P)$ is represented by the cocycle $\sigma \mapsto \frac{\sigma \sqrt[n]{f(P)}}{\sqrt[n]{f(P)}}$. But $H^1(K,\mu_n) \cong K^{\times}/(K^{\times})^n$ where $x \in K^{\times}$ corresponds to $\sigma \mapsto \frac{\sigma \sqrt[n]{x}}{\sqrt[n]{x}}$. Therefore

$$\alpha(P) = f(P) \mod (K^{\times})^n$$

С			
L			
L			
L			
L			

16.1 Descent by 2-Isogeny

Let

$$E : y^{2} = x(x^{2} + ax + b)$$

$$E' : y^{2} = x(x^{2} + a'x + b')$$

where $b(a^2 - 4b) \neq 0$ and a' = -2a, $b' = a^2 - 4b$. Consider the isogenies:

$$\phi: E \to E', \quad (x, y) \mapsto \left(\left(\frac{y}{x}\right)^2, \frac{y(x^2 - b)}{x^2}\right)$$
$$\widehat{\phi}: E' \to E, \quad (x, y) \mapsto \left(\frac{1}{4}\left(\frac{y}{x}\right)^2, \frac{y(x^2 - b')}{8x^2}\right)$$

The kernels are:

$$E[\phi] = \{O_E, T\} \quad T = (0, 0) \in E(K),$$

$$E'[\widehat{\phi}] = \{O_{E'}, T'\} \quad T' = (0, 0) \in E'(K).$$

Proposition 16.2. There is a group homomorphism

$$E'(K) \longrightarrow K^{\times}/(K^{\times})^{2}$$
$$(x,y) \longmapsto \begin{cases} x \mod (K^{\times})^{2} & \text{if } x \neq 0, \\ b' \mod (K^{\times})^{2} & \text{if } x = 0 \end{cases}$$

with kernel $\phi(E(K))$.

Proof. Either apply the theorem with $f = x \in K(E')$, $g = \frac{x}{y} \in K(E)$, or use direct calculation (see Example Sheet 4).

We get maps

$$\alpha_E : \frac{E(K)}{\widehat{\phi}E'(K)} \hookrightarrow K^{\times}/(K^{\times})^2$$
$$\alpha_{E'} : \frac{E'(K)}{\phi E(K)} \hookrightarrow K^{\times}/(K^{\times})^2$$

Lemma 16.3. $2^{\operatorname{rank} E(K)} = \frac{\# \operatorname{Im}(\alpha_E) \cdot \# \operatorname{Im}(\alpha_{E'})}{4}.$

Proof. If $A \xrightarrow{f} B \xrightarrow{g} C$ homomorphisms of abelian groups, then there is an exact sequence

$$0 \to \ker f \to \ker(gf) \xrightarrow{f} \ker g \to \operatorname{coker} f \xrightarrow{g} \operatorname{coker}(gf) \to \operatorname{coker} g \to 0$$

Since $\hat{\phi}\phi = [2]_E$, we get an exact sequence

$$0 \to \underbrace{E(K)[\phi]}_{\cong \mathbb{Z}/2\mathbb{Z}} \to E(K)[2] \xrightarrow{\phi} \underbrace{E'(K)[\widehat{\phi}]}_{\cong \mathbb{Z}/2\mathbb{Z}} \to \underbrace{\frac{E'(K)}{\phi E(K)}}_{\cong \operatorname{Im}(\alpha_{E'})} \xrightarrow{\widehat{\phi}} \frac{E(K)}{2E(K)} \to \underbrace{\frac{E(K)}{\widehat{\phi}E'(K)}}_{\cong \operatorname{Im}(\alpha_{E})} \to 0$$

Counting orders gives

$$\frac{\#(E(K)/2E(K))}{\#E(K)[2]} = \frac{\#\operatorname{Im}(\alpha_E)\#\operatorname{Im}(\alpha_{E'})}{4}.$$

By the Mordell-Weil Theorem, $E(K) \cong \Delta \times \mathbb{Z}^r$ where r is the rank and Δ is a finite group. Then

$$E(K)/2E(K) = \Delta/2\Delta \times (\mathbb{Z}/2\mathbb{Z})^r,$$
$$E(K)[2] = \Delta[2].$$

Since Δ is finite, $\Delta[2]$ and $\Delta/2\Delta$ have the same order, so $\frac{\#(E(K)/2E(K))}{\#E(K)[2]} = 2^r$.

Lemma 16.4. If K is a number field and $a, b \in \mathcal{O}_K$, then $\operatorname{Im}(\alpha_E) \subseteq K(S, 2)$ where $S = \{ \text{primes dividing } b \}.$

Proof. We must show that if $x, y \in K$ with $y^2 = x(x^2 + ax + b)$ and $v_{\mathfrak{p}}(b) = 0$, then $v_{\mathfrak{p}}(x) \equiv 0 \mod 2$.

- Case $v_{\mathfrak{p}}(x) < 0$: then $v_{\mathfrak{p}}(x)$ is even by Lemma 9.1.
- Case $v_{\mathfrak{p}}(x) > 0$: then $v_{\mathfrak{p}}(x^2 + ax + b) = 0$, so $v_{\mathfrak{p}}(x) = v_{\mathfrak{p}}(y^2) = 2v_{\mathfrak{p}}(y)$ is even. \Box

Lemma 16.5. If $b_1b_2 = b$, then $b_1(K^{\times})^2 \in \text{Im}(\alpha_E)$ iff

$$w^2 = b_1 u^4 + a u^2 v^2 + b_2 v^4 \tag{(*)}$$

is solvable for $u, v, w \in K$, not all zero.

Proof. If $b_1 \in (K^{\times})^2$ or $b_2 \in (K^{\times})^2$, then both conditions are satisfied. So we may assume $b_1, b_2 \notin (K^{\times})^2$. Then

$$b_1(K^{\times})^2 \in \operatorname{Im}(\alpha_E)$$

$$\iff \exists (x,y) \in E(K) \text{ such that } x = b_1 t^2 \text{ for some } t \in K^{\times}$$

$$\implies y^2 = b_1 t^2 ((b_1 t^2)^2 + a b_1 t^2 + b)$$

$$\implies \left(\frac{y}{b_1 t}\right)^2 = b_1 t^4 + a t^2 + \frac{b}{b_1}$$

So (*) has a solution $u = t, v = 1, w = \frac{y}{b_1 t}$. Conversely, if (u, v, w) is a solution to (*), then $uv \neq 0$ and $\left(b_1\left(\frac{u}{v}\right)^2, b_1\frac{uw}{v^3}\right) \in E(K)$.

Take $K = \mathbb{Q}$.

Examples.

(1) $E: y^2 = x^3 - x$, so a = 0, b = -1. Then $\operatorname{Im}(\alpha_E) = \langle -1 \rangle \subseteq \mathbb{Q}^{\times}/(\mathbb{Q}^{\times})^2$. We have $E': y^2 = x^3 + 4x$, $\operatorname{Im}(\alpha_{E'}) \subseteq \langle -1, 2 \rangle \subseteq \mathbb{Q}^{\times}/(\mathbb{Q}^{\times})^2$. We get the equations:

The first and last equation are insolvable over \mathbb{R} , the second has solution (u, v, w) = (1, 1, 2).

Hence $\operatorname{Im}(\alpha_{E'}) = \langle 2 \rangle \subseteq \mathbb{Q}^{\times}/(\mathbb{Q}^{\times})^2$. Therefore $2^{\operatorname{rank} E(\mathbb{Q})} = \frac{2 \cdot 2}{4} = 1$, so $\operatorname{rank} E(\mathbb{Q}) = 0$, so 1 is not a congruent number as we have already seen in Theorem 1.3.

- (2) $E: y^2 = x^3 + px$ where p is a prime, $p \equiv 5 \mod 8$. For $b_1 = -1$ we get $w^2 = -u^4 pv^4$ which is insolvable over \mathbb{R} , hence $\operatorname{Im}(\alpha_E) = \langle p \rangle \subseteq \mathbb{Q}^{\times}/(\mathbb{Q}^{\times})^2$.
 - $E': y^2 = x^3 4px. \text{ Then } \operatorname{Im}(\alpha_{E'}) \subseteq \langle -1, 2, p \rangle \subseteq \mathbb{Q}^{\times}/(\mathbb{Q}^{\times})^2.$

N.B.
$$\alpha_{E'}(T') = (-4p)(\mathbb{Q}^{\times})^2 = (-p)(\mathbb{Q}^{\times})^2$$
. We get

$$b_1 = 2 \quad \to \ w^2 = 2u^4 - 2pv^4 \tag{1}$$

$$b_1 = -2 \rightarrow w^2 = -2u^4 + 2pv^4$$
 (2)

$$b_1 = p \quad \rightarrow \ w^2 = pu^4 - 4v^4 \tag{3}$$

We continue it below.

We have the exact sequence

Consider the equation

$$w^{2} = b_{1}u^{4} + a'u^{2}v^{2} + (b'/b_{1})v^{4}.$$
(*)

Then:

$$\operatorname{Im}(\alpha_{E'}) = \{ b_1(\mathbb{Q}^{\times})^2 \mid (*) \text{ is soluble over } \mathbb{Q} \},\$$

$$S^{(\phi)}(E/\mathbb{Q}) = \{ b_1(\mathbb{Q}^{\times})^2 \mid (*) \text{ is soluble over } \mathbb{Q}_p \text{ for all primes } p \text{ and over } \mathbb{R} \}.$$

Fact (use Exercise Sheet 3, Question 9 and Hensel's lemma): If $a', b_1, b_2 \in \mathbb{Z}$ and $p \nmid 2b(a^2 - 4b)$, then (*) is soluble over \mathbb{Q}_p .

Continuation of Example (2) above: Suppose (1) is soluble, WLOG $u, v, w \in \mathbb{Z}$ with gcd(u, v) = 1. If $p \mid u$, then $p \mid w$ and then $p \mid v$, so we get $p \nmid u$. So $w^2 \equiv 2u^4 \not\equiv 0 \mod p$, so $\left(\frac{2}{p}\right) = 1$, contradicting $p \equiv 5 \mod 8$. Likewise (2) is insoluble over \mathbb{Q} since $\left(\frac{-2}{p}\right) = -1$. The same arguments show that (1) and (2) are insoluble over \mathbb{Q}_p .

Therefore rank
$$E(\mathbb{Q}) = \begin{cases} 0 & \text{if } (3) \text{ is insoluble over } \mathbb{Q}, \\ 1 & \text{if } (3) \text{ is soluble over } \mathbb{Q}. \end{cases}$$

- (3) is soluble over \mathbb{Q}_p since $\left(\frac{-1}{p}\right) = 1$, so by $-1 \in (\mathbb{Z}_p^{\times})^2$ by Hensel's Lemma.
- (3) is soluble over \mathbb{Q}_2 since $p-4 \equiv 1 \mod 8$, so $p-4 \in (\mathbb{Z}_2^{\times})^2$.
- (3) is soluble over \mathbb{R} , since $\sqrt{p} \in \mathbb{R}$.

So we see that (3) is soluble in \mathbb{Q}_q for all primes q and also $q = \infty$. Over \mathbb{Q} ?

p	u	v	w
5	1	1	1
13	1	1	3
29	1	1	5
37	5	3	151
53	1	1	7

Conjecture: rank $E(\mathbb{Q}) = 1$ for all primes p with $p \equiv 5 \mod 8$.

Example 3 (Lind): $E: y^2 = x^3 + 17x$. Then $\operatorname{Im}(\alpha_E) = \langle 17 \rangle \subseteq \mathbb{Q}^{\times}/(\mathbb{Q}^{\times})^2$. E' is defined by $y^2 = x^3 - 68x$. Then:

$$b_1 = 2 \to w^2 = 2u^4 - 38v^4$$

Replace w by 2w and divide by 2 to get

$$C: 2w^2 = u^4 - 17v^4$$

Notation: $C(K) = \{(u, v, w) \in K^3 \setminus \{0\} \text{ satisfying the equation}\} / \sim \text{ where } (u, v, w) \sim (\lambda u, \lambda v, \lambda^2 w) \text{ for all } \lambda \in K^{\times}, \text{ (i.e. consider the equation in a weighed projective space).}$

Then:

- $C(\mathbb{Q}_2) \neq \emptyset$ since $17 \in (\mathbb{Q}_2^{\times})^4$.
- $C(\mathbb{Q}_{17}) \neq \emptyset$ since $2 \in (\mathbb{Q}_{17}^{\times})^2$.
- $C(\mathbb{R}) \neq \emptyset$ since $\sqrt{2} \in \mathbb{R}$.

But we claim that $C(\mathbb{Q}) = \emptyset$. Suppose $(u, v, w) \in C(\mathbb{Q})$, wlog $u, v, w \in \mathbb{Z}$ and gcd(u, v) = 1, w > 0. Note that $17 \nmid w$. So if $p \mid w$, then $p \neq 17$ and $\left(\frac{17}{p}\right) = 1$, so $\left(\frac{p}{17}\right) = 1$ by Quadratic Reciprocity if $p \neq 2$. If p = 2, then also $\left(\frac{2}{17}\right) = 1$. Therefore $\left(\frac{w}{17}\right) = 1$. But $2w^2 \equiv u^4 \mod 17$, so $2 \in (\mathbb{F}_{17}^{\times})^4 = \{\pm 1, \pm 4\}$, a contradiction. Hence $C(\mathbb{Q}) = \emptyset$.

So C is a counterexample to the Hasse principle. It represents a nontrivial element of $\operatorname{III}(E/\mathbb{Q})$.

17 The Birch Swinnerton-Dyer Conjecture

Let E/\mathbb{Q} be an elliptic curve.

Definition.

$$L(E,s) := \prod_{p} L_p(E,s)$$

where

$$L_p(E,s) = \begin{cases} (1 - a_p p^{-s} + p^{1-2s})^{-1} & \text{if } E \text{ has good reduction at } p, \\ (1 \pm p^{-s})^{-1} & \text{if } E \text{ has multiplicative reduction,} \\ 1 & \text{if } E \text{ has additive reduction.} \end{cases}$$

By Hasse's Theorem, we have $|a_p| \leq 2\sqrt{p}$. This implies that L(E, s) converges for $\operatorname{Re} s > \frac{3}{2}$.

Theorem (Wiles, Breuil, Conrad, Diamond, Taylor). L(E, s) is the L-function of a weight 2 modular form and hence has an analytic continuation to all of \mathbb{C} and a functional equation relating L(E, s) and L(E, 2 - s).

Weak BSD: $\operatorname{ord}_{s=1} L(E, s) = \operatorname{rank} E(\mathbb{Q}) (= r \operatorname{say}).$

Strong BSD:

$$\lim_{s \to 1} \frac{1}{(s-1)^r} L(E,s) = \frac{\Omega_E \operatorname{Reg} E(\mathbb{Q}) \# \operatorname{III}(E/\mathbb{Q}) \prod_p c_p(E)}{(\# E(\mathbb{Q})_{\operatorname{tors}})^2}$$

where

- $c_p(E)$ is the Tamagawa number of E/\mathbb{Q}_p , i.e. $[E(\mathbb{Q}_p): E_0(\mathbb{Q}_p)]$.
- Reg $E(\mathbb{Q}) = \det([P_i, P_j])$ where P_1, \ldots, P_r form a basis for $E(\mathbb{Q})/E(\mathbb{Q})_{\text{tors}}$ and $[P, Q] = \hat{h}(P+Q) \hat{h}(P) \hat{h}(Q).$
- $\Omega_E = \int_{E(\mathbb{R})} \frac{dx}{2y + a_1 x + a_3}$ using a globally minimal Weierstraß minimal equation.