Abelian Varieties

Cambridge Part III, Lent 2023 Taught by Tony Scholl Notes taken by Leonard Tomczak

Contents

1 Motivation: Curves and the Abel-Jacobi Map

Let X be a smooth irreducible projective curve over \mathbb{C} , equivalently a compact connected Riemann surface. Let g be its genus.

We recall some basic algebraic geometric notions:

Definition. The Divisor group of X is

Div(X) =
$$
\mathbb{Z}[X]
$$
 = {finite sums $\sum_{P \in X} m_P P$, $m_P \in \mathbb{Z}$ }.

The degree-map is

$$
\deg: \text{Div}(X) \longrightarrow \mathbb{Z},
$$

$$
\sum_{P \in X} m_P P \longmapsto \sum_{P \in X} m_P.
$$

Its kernel is denoted $Div^0(X) := \ker \deg X$.

The function field $k(X)$ of X is the set of rational, equivalently meromorphic, functions on X. To $0 \neq f \in k(X)$ we associate the principal divisor

$$
\operatorname{div}(f) = \sum_{P \in X} \operatorname{ord}_P(f) P \in \operatorname{Div}^0(X).
$$

The class group of X is

$$
\operatorname{Cl}(X) = \frac{\operatorname{Div}(X)}{\{\operatorname{div}(f) \mid f \in k(X)^*\}}
$$

We also let $Cl^0(X) := \ker(\deg : Cl(X) \to \mathbb{Z}).$

Another interpretation of Cl(X) is given by invertible sheaves: A divisor $D \in Div(X)$ gives rise to an invertible sheaf $\mathcal{O}_X(D)$. Then D is principal if and only if $\mathcal{O}_X(D)$ is trivial. This induces an isomorphism

 $Cl(X) \simeq$ {isomorphism classes of invertible sheaves} =: Pic(X).

The set of holomorphic differentials on X is written $H^0(X, \Omega_X)$. It is a complex vector space of dimension g, so $H^0(X, \Omega_X) = \bigoplus_{1 \leq i \leq g} \mathbb{C} \omega_i$, for some holomorphic differentials $\omega_1, \ldots, \omega_q.$

Let $\gamma : [0,1] \to X$ be a piecewise C^1 curve. Then we get a g-tuple of complex numbers $(\int_{\gamma} \omega_i)_{1 \leq i \leq g} \in \mathbb{C}^g$. Better: It is an element of the dual space of $H^0(X, \Omega_X)$.

If γ , γ' are homologous with same endpoints, then $\int_{\gamma} = \int_{\gamma'}$. In particular, if we take γ to be a closed path, this gives a map

$$
\alpha: H_1(X, \mathbb{Z}) \to \mathbb{C}^g,
$$

$$
\gamma \longrightarrow \left(\int_{\gamma} \omega_i\right)_i.
$$

It is called the period homomorphism.

Theorem 1.1 (Riemann). The map α is injective, and its image is a lattice in \mathbb{C}^g . Moreover, \mathbb{C}^g im α is the set of complex points of a smooth algebraic variety over \mathbb{C} , called the Jacobian variety $J(X)$ of X. The group law on $\mathbb{C}/\text{im }\alpha$ is given by a morphism $J(X) \times J(X) \rightarrow J(X)$.

Recall that a *lattice* in \mathbb{C}^g is a subgroup generated by 2g R-linearly independent vectors.

If A is an irreducible projective variety over C, together with a morphism $m : A \times A \rightarrow A$ such that $m(\mathbb{C}) : A(\mathbb{C}) \times A(\mathbb{C}) \to A(\mathbb{C})$ makes $A(\mathbb{C})$ into a group, we say A is an abelian variety.

Fix a point $P_0 \in X$. If $P \in X$, let γ_P be a path from P_0 to P. Any two such paths differ by a closed path, so $(\int_{\gamma_P} \omega_i)_{1 \leq i \leq g}$ is well-defined modulo $\Lambda := \text{im}(\alpha)$, giving a map

$$
X \longrightarrow \mathbb{C}^g/\Lambda = J(X),
$$

$$
P \longmapsto \left(\int_{\gamma_P} \omega_i\right) \mod \Lambda.
$$

This extends to a homomorphism

$$
\mathrm{AJ}_{P_0}: \mathrm{Div}(X) \to \mathbb{C}^g/\Lambda,
$$

the Abel-Jacobi map.

Let $P'_0 \in X$ be another point, δ a path from P'_0 to P_0 . Then

$$
\mathrm{AJ}_{P'_0}(P) = \mathrm{AJ}_{P_0}(P) + \left(\int_{\delta} \omega_i\right)_i.
$$

More generally, if $D \in Div(X)$, then

$$
\mathrm{AJ}_{P_0'}(D) = AJ_{P_0}(D) + (\deg D) \Big(\int_{\delta} \omega_i\Big)_i.
$$

So $AJ = AJ_{P_0} : Div^0(X) \to \mathbb{C}^g/\Lambda$ is independent of P_0 .

Theorem 1.2 (Abel-Jacobi Theorem). AJ: $Div^0(X) \to \mathbb{C}^g/\Lambda$ is surjective and its kernel is the set of principal divisors. In other words, AJ induces an isomorphism

$$
\operatorname{Cl}^0(X) \xrightarrow{\simeq} \mathbb{C}^g/\Lambda.
$$

2 Homology of Riemann Surfaces

Let X be as before. Then $H_1(X,\mathbb{Z}) \cong \mathbb{Z}^{2g}$ is generated by simple closed curves a_j, b_j $(1 \leq j \leq g)$ disjoint except for a_j meeting b_j transversally in one point, with the same orientation.

genus 2 Riemann surface and the generators a_1, a_2, b_1, b_2 of $H_1(X, \mathbb{Z})$

Let $A_{ij} = \int_{a_j} \omega_i$, $B_{ij} = \int_{b_j} \omega_i$. So $\Lambda = \text{im}(\alpha)$ is span of the columns of the $g \times 2g$ -matrix $(A | B)$.

To prove Theorem [1.1](#page-2-0) we need some special properties of this matrix:

Theorem 2.1 (Riemann period relations).

- (a) AB^t is symmetric.
- (b) The Hermitian matrix $\frac{1}{i}(B\overline{A}^t A\overline{B}^t)$ is positive definite.

These properties can be restated as follows:

- (a) $\Leftrightarrow \sum_j (A_{ij}B_{i'j} B_{ij}A_{i'j}) = 0$ for all *i*, *i'*.
- (b) \Leftrightarrow Im $\left(\sum_j \int_{a_j} \overline{\omega} \int_{b_j} \omega\right) > 0$ for all $0 \neq \omega \in H^0(X, \Omega_X)$.

From this, it follows easily that A, B are invertible and that the columns of $(A | B)$ linearly independent over \mathbb{R} , so Λ is a lattice. Later we will see that (b) is precisely the condition that \mathbb{C}^g/Λ is a projective variety.

Lemma 2.2. Let ω, η be closed $(d\omega = 0 = d\eta)$ 1-forms on X (not necessarily holomorphic). Then

$$
\int_X \omega \wedge \eta = \sum_j \int_{a_j} \omega \int_{b_j} \eta - \int_{b_j} \omega \int_{a_j} \eta.
$$

Assume this for the moment. Take $(\omega, \eta) = (\omega_i, \omega_{i'})$ where $(\omega_i)_i$ is our fixed basis for holomorphic 1-forms. As $dz \wedge dz = 0$, the the left side vanishes, and the first Riemann period relation follows. For the second take $\omega \in H^0(X, \Omega_X)$ and consider $(\overline{\omega}, \omega)$. Locally $\omega = f(z)dz$ with holomorphic f, so

$$
\overline{\omega} \wedge \omega = f \overline{f} d\overline{z} \wedge dz = 2i|f|^2 dx \wedge dy.
$$

So if $\omega \neq 0$, we get

$$
0<\frac{1}{i}\int_X\overline{\omega}\wedge\omega=\sum_{j=1}^g\frac{1}{i}\left[\int_{a_j}\overline{\omega}\int_{b_j}\omega-\int_{b_j}\overline{\omega}\int_{a_j}\omega\right]=2\sum_j\text{Im}\int_{a_j}\overline{\omega}\int_{b_j}\omega
$$

Proof of the Lemma. Cut X along the curves a_j, b_j ; Let X^* be the resulting surface with boundary. It is a sphere with g holes. The gluing map $\pi : X^* \to X$ induces the zero

Cutting X along a_i, b_i

map $0 = \pi_* : H_1(X^*, \mathbb{Z}) \to H_1(X, \mathbb{Z})$ since $H_1(X^*, \mathbb{Z})$ is generated by the elements $a_i^+ - b_i^+ - a_i^- + b_i^-$. So on X^* there exists a single valued f such that $\omega = df$.^{[1](#page-4-0)} If p^+, p^- are points on a_j^+, a_j^- with same image in X, then $f(p^+) - f(p^-) = \int_{p^-}^{p^+} df = \int_{b_j} \omega$. Similarly for points q^{\pm} on b_j^{\pm} . The oriented boundary of X^* is $\bigcup_j b_j^+ - b_j^- - a_j^+ + a_j^-$. So, by Stokes' Theorem we get

$$
\int_{X} \omega \wedge \eta = \int_{X^*} \pi^* (\omega \wedge \eta) = \int_{X^*} d(f\eta)
$$

\n
$$
= \int_{\partial X^*} f\eta = \sum_{j} \Big(\int_{b_j^+} - \int_{b_j^-} - \int_{a_j^+} + \int_{a_j^-} \Big) f\eta
$$

\n
$$
= \sum_{j} f(q_j^+) \int_{b_j^+} \eta - f(q_j^-) \int_{b_j^-} \eta - f(p_j^+) \int_{a_j^+} \eta + f(p_j^-) \int_{a_j^-} \eta
$$

\n
$$
= \sum_{j} \int_{a_j} \omega \int_{b_j} \eta - \int_{b_j} \omega \int_{a_j} \eta
$$

 \Box

¹Remark by L.T.: This can be seen as follows. For a smooth manifold X, let $I: H^*_{dR}(X) \to H^*(X, \mathbb{R})$ Hom $(H_*(X), \mathbb{R})$ be the integration map. By naturality of I, we have $I[\pi^*\omega] = \pi^*I[\omega] = 0$ as π^* dual to the zero map $\pi_* = 0$ on H_1 . Since I is injective, in fact an isomorphism by the de Rham Theorem, $[\pi^*\omega] = 0$, i.e. ω is exact.

Remark. What this actually says is that the intersection pairing $H_1(X, \mathbb{Z}) \times H_1(X, \mathbb{Z}) \to$ Z is dual to pairing on closed 1-forms given by $(\omega, \eta) \mapsto \int_X \omega \wedge \eta$.

Let $J = \begin{pmatrix} 0_g & I_g \ I & 0 \end{pmatrix}$ $-I_g$ 0g which is the intersection matrix for $a_1, \ldots, a_g, b_1, \ldots, b_g$, i.e. $a_j \subset$ $b_j = -b_j \frown a_j = \delta_{ij}$ (this could be seen as the formal definition of the a_j, b_j). Let $P = (A | B)$. Then we can rewrite the Riemann relations as

- $(a) \Leftrightarrow PJ^{-1}P^t = 0,$
- (b) $\Leftrightarrow Q := \frac{1}{i} P J^{-1} \overline{P}^t > 0.$

If $0 \neq \lambda \in \mathbb{C}^g$, then $0 < \lambda^t Q \overline{\lambda} = 2 \operatorname{Im}(\lambda^t B \overline{A}^t \overline{\lambda})$, so A, B are invertible. Then we see that:

Corollary 2.3.

- (i) There exists a basis $(\omega_1, \ldots, \omega_g)$ such that $\int_{a_j} \omega_i = \delta_{ij}$ (i.e. $A = I_g$) and then B is symmetric and Im B positive definite.
- (ii) The columns of $(A | B)$ are linearly independent over \mathbb{R} , so $\alpha : H_1(X, \mathbb{Z}) \to \mathbb{C}^g$ is injective, and the image $\Lambda = \text{im } \alpha$ is a lattice.

How to prove the Abel-Jacobi theorem, i.e. $AJ: Cl⁰(X) \stackrel{\simeq}{\rightarrow} \mathbb{C}^g/\Lambda = J(X)$?

One way is by using cohomology: The exponential sequence (on any complex analytic manifold X) is the short exact sequence

$$
0 \to \mathbb{Z} \to \mathcal{O}_X \xrightarrow{f \mapsto \exp 2\pi i f} \mathcal{O}_X^* \to 0.
$$

Here $\mathbb Z$ is the constant sheaf and $\mathcal O_X$ the sheaf of holomorphic functions. From this we get the long exact sequence in cohomology which breaks up into two sequences:

$$
0 \to \underbrace{H^0(X, \mathbb{Z})}_{=\mathbb{Z}} \to \underbrace{H^0(X, \mathcal{O}_X)}_{=\mathbb{C}} \to \underbrace{H^0(X, \mathcal{O}_X)}_{=\mathbb{C}^*} \to 0
$$

\n
$$
0 \to \underbrace{H^1(X, \mathbb{Z})}_{\text{Hom}(H_1(X, \mathbb{Z}), \mathbb{Z})} \to H^1(X, \mathcal{O}_X) \to \underbrace{H^1(X, \mathcal{O}_X^*)}_{=\text{Pic } X} \to \underbrace{H^2(X, \mathbb{Z})}_{\simeq \mathbb{Z} \text{ for surface}}
$$

This holds for any compact connected $\mathbb C$ manifold (except the last isomorphism). For a Riemann surface, $Pic(X) \simeq Cl(X)$ and $Cl(X) \to H^2(X, \mathbb{Z}) \simeq \mathbb{Z}$ is the degree map. So $Cl^{0}(X) \simeq \frac{H^{1}(X,\mathcal{O}_{X})}{H^{1}(X,\mathbb{Z})}$. We have a diagram:

$$
\text{Div}^0(X) \longrightarrow \text{Cl}^0(X) \longrightarrow \text{Pic}(X)
$$
\n
$$
\downarrow \text{AJ} \qquad \qquad \text{exp}(2\pi i \cdot) \uparrow \simeq
$$
\n
$$
J(X) = \frac{H^0(X, \Omega^1)^\vee}{\alpha(H_1(X, \mathbb{Z}))} \leftarrow \cdots \frac{\simeq}{\exists S} \cdots \frac{H^1(X, \mathcal{O}_X)}{H^1(X, \mathbb{Z})}
$$

Serre duality says that there exists an isomorphism $S: H^1(X, \mathcal{O}_X) \xrightarrow{\simeq} H^0(X, \Omega^1)^{\vee}$ which takes $H^1(X,\mathbb{Z})$ to $H_1(X,\mathbb{Z})$. It is also a nontrivial fact that this diagram commutes.

It follows that AJ induces an isomorphism as claimed. For details, see the handout on Moodle.

3 Complex Tori

Recall: If $w_1, w_2 \in \mathbb{C} \setminus \{0\}, w_2/w_1 \notin \mathbb{R}$, then $\mathbb{C}/(\mathbb{Z}w_1 + \mathbb{Z}w_2)$ is an elliptic curve over \mathbb{C} , embeddable in $\mathbb{P}^2_{\mathbb{C}}$ by Weierstrass \wp -function and its derivative. This gives a bijection

{lattices in \mathbb{C} , up to homothety} \longleftrightarrow {iso. classes of elliptic curves}

The higher dimensional case is more complicated. For more complete treatment, see [\[Mum70,](#page-40-1) Chapter 1], [\[BL04,](#page-40-2) Chapters 1-4] or [\[Swi74,](#page-40-3) Chapters 1-4].

Let V be a finite-dimensional real vector space and $\Gamma \subseteq V$ a lattice. Then V/Γ is a commutative, compact and connected Lie group; also called a real torus. By a change of basis we get a real analytic isomorphism $V/\Gamma \simeq \mathbb{R}^n/\mathbb{Z}^n \cong (S^1)^n$.

Now let V be a finite dimensional complex vector space. We call $X = V/\Gamma$ a complex torus.

- X is a complex manifold: If $\pi : V \to X$ is the quotient map and $v \in V$, then there exists an open neighborhood $v \in U \subseteq V$ such that $\pi : V \to \pi(V)$ is a homeomorphism and this defines a structure of complex manifold on X.
- Addition/subtraction maps $X \times X \to X$ are holomorphic, so X is a complex Lie group, compact and connected.

 \Box

Proposition 3.1. Any compact connected complex Lie group is a complex torus (hence is commutative).

Proof. See e.g. [\[Mum70,](#page-40-1) p. 1] or [\[BL04,](#page-40-2) Lemma 1.1.1.].

Notice: For any (real or complex) torus $X = V/\Gamma$, the map $\pi : V \to X$ is a connected covering space. As V is simply connected, this means that V is the universal covering space of X (with basepoints (say) $0 \in X, 0 \in V$), and $\Gamma \simeq \pi_1(X,0) \simeq H_1(X,\mathbb{Z})$ (by Hurewicz isomorphism).

Let $X = V/\Gamma, X' = V'/\Gamma'$ be complex tori. Let $\varphi : V \to V'$ be a linear map such that $\varphi(\Gamma) \subseteq \Gamma'$. It induces a holomorphic map $X \to X'$ which is a homomorphism. Conversely:

Proposition 3.2. Let $f: X \to X'$ be a holomorphic map.

- (i) If $f(0) = 0$, then there exists a linear $\tilde{f}: V \to V'$ with $\tilde{\Gamma} \subseteq \Gamma'$ that induces f. In particular, f is a homomorphism.
- (ii) In general, $f(x) = f_0(x) + y$ with $y = f(0) \in X'$ and f_0 is a homomorphism.

Proof. (ii) is clear from (i). As V is simply connected, we can lift f to a continuous $\widetilde{f}: V \to V'$ such that $\widetilde{f}(0) = 0$. Since π, π' are local isomorphisms, \widetilde{f} is holomorphic. For all $v \in V, \gamma \in \Gamma$, $\tilde{f}(v + \gamma) = \tilde{f}(v) + g_{\gamma}(v)$ with $g_{\gamma}(v) \in \Gamma'$. So $g_{\gamma}: V \to \Gamma' \subseteq V'$ is holomorphic, so is constant. So the partial derivatives of \tilde{f} are Γ-invariant, i.e. are

holomorphic functions $V/\Gamma \to V'$, hence constant as V/Γ is compact. Thus \widetilde{f} has constant derivative and $\tilde{f}(0) = 0$, so \tilde{f} is a linear map.

Corollary 3.3. Complex tori V/Γ , V'/Γ' are isomorphic as complex manifolds iff there exists a C-linear isomorphism $\varphi: V \to V'$ with $\varphi(\Gamma) = \Gamma'$.

So any complex torus of dimension g is isomorphic to $\mathbb{C}^g/\Pi\mathbb{Z}^{2g}$ where $\Pi \in \mathbb{C}^{g \times 2g}$ is a matrix whose columns are $\mathbb R$ -linearly independent and Π , Π' give isomorphic tori iff there exist $A \in GL_g(\mathbb{C}), B \in GL_{2g}(\mathbb{Z})$ with $\Pi' = A \Pi B$. As the columns of Π span \mathbb{C}^g over $\mathbb{R},$ some subset of them is a C-basis. Hence

Proposition 3.4. Every complex torus of dimension g is isomorphic to $\mathbb{C}^g/(\mathbb{Z}^g \oplus \Omega \mathbb{Z}^g)$ where Ω is a $q \times q$ complex matrix such that the columns of Im(Ω) are linearly independent over R.

E.g. if $q = 1$, then any complex torus of dimension 1 (i.e. any elliptic curve) is isomorphic to a torus of the forem $\mathbb{C}/\mathbb{Z} + \mathbb{Z}\tau$ where $\tau \in \mathbb{C} \setminus \mathbb{R}$.

Proposition 3.5. If $X = V/\Gamma$ is a real torus of dimension $d > 1$, then

$$
H^1(X, \mathbb{Z}) = \text{Hom}(\Gamma, \mathbb{Z}) \simeq \mathbb{Z}^d
$$

and for $0 \leq n \leq d$,

$$
H^{n}(X,\mathbb{Z}) = \bigwedge\nolimits^{n} H^{1}(X,\mathbb{Z}) \simeq \mathbb{Z}^{\binom{n}{d}}.
$$

Proof. For $n = 1$ we have $H^1(X, \mathbb{Z}) = \text{Hom}(H_1(X, \mathbb{Z}), \mathbb{Z}) = \text{Hom}(\Gamma, \mathbb{Z})$.

We induct on d. If $d = 1$, we are done. Otherwise $\Gamma = \Gamma_1 \oplus \Gamma_2$, with $\Gamma_i \neq 0$, so $X = X_1 \times X_2$ where $X_i = V_i/\Gamma_i$, $V_i = \mathbb{R}\Gamma_i$. Since dim $X_i < d$, by induction $H^*(X_i, \mathbb{Z}) \cong \bigwedge_{\mathbb{Z}}^* \text{Hom}(\Gamma_i, \mathbb{Z})$. So by the Künneth formula:

$$
H^{n}(X,\mathbb{Z}) = \bigoplus_{p+q=n} H^{p}(X_{1},\mathbb{Z}) \otimes H^{q}(X_{2},\mathbb{Z}) = \bigoplus_{p+q=n} \bigwedge^{p} (\text{Hom}(\Gamma_{1},\mathbb{Z})) \otimes \bigwedge^{q} (\text{Hom}(\Gamma_{2},\mathbb{Z}))
$$

= $\bigwedge^{n} (\text{Hom}(\Gamma_{1},\mathbb{Z}) \oplus \text{Hom}(\Gamma_{2},\mathbb{Z}))$
= $\bigwedge^{n} \text{Hom}(\Gamma,\mathbb{Z}).$

Remark. H^* has ring structure $H^p \times H^q \to H^{p+q}$ given by the cup-product \smile . This isomorphism is compatible with products $(\wedge^p \times \wedge^q \rightarrow \wedge^{p+q})$, since in in the Künneth formula, the isomorphism is given by

 \Box

$$
H^p(X_1)\times H^q(X_2)\xrightarrow{\text{(pr}_1^*,pr_2^*)} H^p(X_1\times X_2)\times H^q(X_1\times X_2)\xrightarrow{\text{---}} H^{p+q}(X_1\times X_2).
$$

For $\mathbb{K} = \mathbb{R}, \mathbb{C}$ we have $H^*(X, \mathbb{K}) = H^*(K, \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{K}$. Another description is given by differential forms.

Let X be a (C^{∞}) manifold. Let $A^{n}(X) = \{C^{\infty} \text{ real-valued } n\text{-forms}\}\.$ The exterior derivative is defined by:

$$
d: A^{n}(X) \to A^{n+1}(X), f dx_{i_1} \wedge \cdots \wedge dx_{i_n} \mapsto df \wedge dx_{i_1} \wedge \cdots = \sum_{j} \frac{\partial f}{\partial x_j} dx_j \wedge dx_{i_1} \wedge \cdots
$$

Then $d^2 = 0$. De Rham cohomology of X is

$$
H_{\rm dR}^n(X, \mathbb{R}) = A^n(X)^{d=0} / dA^{n-1}(X).
$$

We can do the same with $\mathbb C$ coefficients $A^n_{\mathbb C}(X) = A^n(X) \otimes_{\mathbb R} \mathbb C$. Then $H^n_{\mathrm{dR}}(X,\mathbb C) =$ $A_{\mathbb{C}}^n(X)^{d=0}$ / im $d \simeq H^n_{\mathrm{dR}}(X,\mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C}$.

Theorem (De Rham Theorem). The integration pairing $H_n(X, \mathbb{Z}) \times H_{\text{dR}}^n(X, \mathbb{R}) \to \mathbb{R}$ gives an isomorphism $H^n(X,\mathbb{R}) = \text{Hom}(H_n(X,\mathbb{Z}),\mathbb{R}) \simeq H^n_{\text{dR}}(X,\mathbb{R})$ and this is compatible with products.

Back to tori. Let X be a (real or complex) torus. Say $\omega \in A^n(X)$ is *invariant* if for all $y \in X$, $T_y^* \omega = \omega$, where $T_y : X \to X$, $x \mapsto x + y$. Let

$$
A^{n}(X)^{inv} = \{ \text{invariant } n \text{-forms} \} \subseteq A^{n}(X)
$$

Note that $A^0(X)^{inv} = \mathbb{R}$.

Proposition 3.6. If $\varphi: V \to \mathbb{R}$ is linear, then $d\varphi \in A^1(X)^{inv}$. This induces isomorphisms $\bigwedge^n \text{Hom}_{\mathbb{R}}(V, \mathbb{R}) \simeq A^n(X)^{\text{inv}}$ for all $n \geq 0$.

Proof. Clearly $d\varphi$ defines an invariant 1-form on $A^1(X)$. Pick coordinates x_i (i.e. a basis of V), so $(x_i)_i$ is a basis for Hom_R(V, R). Then $\omega = \sum f_I dx_I \in A^n(X)$ is invariant iff each f_I is invariant, i.e. constant, so $(dx_I)_I$ is a basis for $Aⁿ(X)$ ^{inv}, hence the map $\bigwedge^n \text{Hom}_{\mathbb{R}}(V, \mathbb{R}) \to A^n(X)^{\text{inv}}$ is an isomorphism. \Box

Theorem 3.7. We have $A^n(X)^{inv} \subseteq A^n(X)^{d=0}$, and the map $A^n(X)^{inv} \to H_{dR}^n(X,\mathbb{R})$ is an isomorphism. Furthermore, the composite isomorphism $\bigwedge^n \text{Hom}_{\mathbb{R}}(V, \mathbb{R}) \simeq \overline{A^n}(X)^{\text{inv}} \simeq$ $H^n(X,\mathbb{R}) \simeq \bigwedge^n \text{Hom}(\Gamma,\mathbb{R})$ is the \bigwedge^n of the restriction map $\text{Hom}_{\mathbb{R}}(V,\mathbb{R}) \xrightarrow{\simeq} \text{Hom}(\Gamma,\mathbb{R})$.

Proof. By the proposition, $A^n(X)$ ^{inv} is spanned by elements of the form $d\varphi_1 \wedge \cdots \wedge d\varphi_n$, $\varphi_i \in \text{Hom}_{\mathbb{R}}(V,\mathbb{R})$, and they are closed. Now consider the commutative diagram:

$$
\text{Hom}_{\mathbb{R}}(V, \mathbb{R}) \xrightarrow{\varphi \mapsto d\varphi} A^{1}(X)^{\text{inv}} \longleftrightarrow A^{1}(X)^{d=0}
$$
\n
$$
\downarrow^{(*)} \qquad \qquad \downarrow^{(*)}
$$
\n
$$
\text{Hom}(\Gamma, \mathbb{R}) \xrightarrow{=} \text{Hom}(H_{1}(X, \mathbb{Z}), \mathbb{R}) \xleftarrow{f} H_{\text{dR}}^{1}(X, \mathbb{R})
$$

The map (*) maps φ to $\Gamma \ni \gamma \mapsto \int_{\gamma \in H_1} d\varphi = \int_0^{\gamma} d\varphi = \varphi(\gamma)$. So (*) is the restriction map which is an isomorphism, so $A^1(X)$ ^{inv} $\rightarrow H^1(X,\mathbb{R})$ is an isomorphism. Taking \bigwedge^n gives isomorphism in all degrees. \Box

Addendum: The same works with complex coefficients: If we $\otimes_{\mathbb{R}} \mathbb{C}$ this, we get:

$$
\bigwedge\nolimits_{\mathbb{C}}^n \mathrm{Hom}_{\mathbb{R}}(V, \mathbb{C}) \simeq A^n_{\mathbb{C}}(X)^{\mathrm{inv}} \simeq H^n(X, \mathbb{C}) \simeq \bigwedge\nolimits_{\mathbb{C}}^n \mathrm{Hom}(\Gamma, \mathbb{C}).
$$

Now suppose $X = V/\Gamma$ is a *complex* torus (so V is a complex vector space). Then

$$
\mathrm{Hom}_{\mathbb{R}}(V,\mathbb{C})=\mathrm{Hom}_{\mathbb{C}}(\mathbb{C}\otimes_{\mathbb{R}}V,\mathbb{C})\xleftarrow{\simeq}\mathrm{Hom}_{\mathbb{C}}(V\oplus\overline{V},\mathbb{C})=V^*\oplus\overline{V}^*
$$

Then

$$
V^* = \mathrm{Hom}_{\mathbb{C}}(V, \mathbb{C}), \overline{V}^* = \mathrm{Hom}_{\mathrm{anti-linear}}(V, \mathbb{C}) \hookrightarrow \mathrm{Hom}_{\mathbb{R}}(V, \mathbb{C}).
$$

In other words, we have an isomorphism $V^* \oplus \overline{V}^* \stackrel{\simeq}{\to} A^1_{\mathbb{C}}(X)^{inv} \simeq H^1(X, \mathbb{C}), (\varphi, \psi) \mapsto$ $d\varphi + d\psi$.

In higher degrees, we deduce

$$
H^{n}(X,\mathbb{C})=\bigwedge\nolimits_{\mathbb{C}}^{n}(V^*\oplus \overline{V}^*)=\bigoplus_{p+q=n}\bigwedge\nolimits_{\mathbb{C}}^{p}V^*\otimes \bigwedge\nolimits_{\mathbb{C}}^{q}\overline{V}^*.
$$

Definition. Let X be any complex manifold. A form $\omega \in A^n_{\mathbb{C}}(X)$ is of Hodge type (p, q) if locally

$$
\omega = \sum_{I,J} f_{I,J} dz_{i_1} \wedge \cdots \wedge dz_{i_p} \wedge d\overline{z}_{j_1} \wedge \cdots \wedge d\overline{z}_{j_q}
$$

where z_i are local holomorphic coordinates on X. We let

$$
A^{p,q}(X) = \{ \omega \in A^{p+q}_\mathbb{C}(X) \text{ of Hodge type } (p,q) \}.
$$

Clearly, we have $A^n_{\mathbb{C}}(X) = \bigoplus_{p+q=n} A^{p,q}(X)$. But it is not obvious (and not true for arbitrary complex manifolds X) that this decomposition passes to cohomology:

Theorem 3.8 (Hodge decomposition). Let $X = V/\Gamma$ be a complex torus. Then for all $n \geq 0$,

$$
H^n(X, \mathbb{C}) = \bigoplus_{p+q=n} H^{p,q}(X, \mathbb{C})
$$

where $H^{p,q}(X) \simeq A^{p,q}(X)^{\text{inv}} \cong \bigwedge^p V^* \otimes \bigwedge^q \overline{V}^*$. Also $H^{q,p}(X) = \overline{H^{p,q}(X)}$ inside $H^n(X, \mathbb{C})$.

(For general compact X, with a Kähler metric, there is a similar decomposition, replacing "invariant" with "harmonic". This uses PDE theory, in particular the regularity properties of elliptic operators. In our case, it was just easy linear algebra!)

Let $X = V/\Gamma$ be a complex torus. What we have so far:

$$
H^1(X,\mathbb{R}) \cong \text{Hom}(\Gamma,\mathbb{R}) = \text{Hom}_{\mathbb{R}}(V,\mathbb{R}),
$$

$$
H^{1}(X, \mathbb{C}) = \text{Hom}_{\mathbb{R}}(V, \mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C} = \text{Hom}_{\mathbb{C}}(\mathbb{C} \otimes_{\mathbb{R}} V, \mathbb{C}) = V^{*} \oplus \overline{V}^{*},
$$

\n
$$
H^{n}(X, \mathbb{C}) = \bigwedge_{\mathbb{C}}^{n} H^{1}(X, \mathbb{C}) = \bigoplus_{p+q=n} H^{p,q}(X),
$$

\n
$$
H^{p,q}(X) = \bigwedge_{\mathbb{C}}^{p} V^{*} \otimes_{\mathbb{C}} \bigwedge_{\mathbb{C}}^{q} \overline{V}^{*} = A^{p,q}(X)^{\text{inv}}.
$$

Concrete: If $V = \mathbb{C}^g$, then $\mathbb{C}^g = V^* \ni (a_i) \mapsto \sum a_i dz_i \in H^1$ and $(b_i) \in \overline{V}^* \cong \mathbb{C}^g \mapsto$ $\sum_{b_i} d\overline{z_i}.$

Individual pieces:

Proposition 3.9. Let $H^0(X, \Omega_X^n) = \{holomorphic n-forms\}$. Then

$$
H^{0}(X, \Omega_{X}) = A^{n,0}(X)^{\text{inv}} \simeq \bigwedge_{\mathbb{C}}^{n} V^{*} = H^{n,0}(X).
$$

Proof. Pick basis $\mathbb{C}^g \simeq V$. We know that $A^{n,0}(X)$ ^{inv} has basis $\{dz_I = dz_{i_1} \wedge \cdots \wedge dz_{i_n} \mid$ $I = (i_1 < \cdots < i_n)$ } and $H^0(X, \Omega_X^n) = \{ \omega = \sum_I f_I dz_I \mid f_I \text{ holomorphic and } \Gamma\text{-invariant} \}.$ By Liouville, these f_I are constant, hence $H^0(X, \Omega_X^n) = A^{n,0}(X)^{\text{inv}}$.

Theorem 3.10 (Dolbeault isomorphism). There is a canonical isomorphism

$$
H^{p,q}(X) \simeq H^q(X, \Omega_X^p).
$$

It called the Dolbeault isomorphism.

We prove it by reducing to the special case $p = 0$. We know that $\Omega_X^p = \bigoplus_I \mathcal{O}_X dz_I$ is free, in coordinate-free words: $H^0(X, \Omega_X^p) \otimes_{\mathbb{C}} \mathcal{O}_X \simeq \Omega_X^p$. Thus we get an isomorphism $H^0(X, \Omega_X^p) \otimes_{\mathbb{C}} H^q(X, \mathcal{O}_X) \xrightarrow{\sim} H^q(X, \Omega_X^p)$. We know that $H^0(X, \Omega_X^p) \simeq \bigwedge^p V^*$, so it is enough to show that $H^q(X, \mathcal{O}_X) \simeq \bigwedge^q_{\mathbb{C}} \overline{V}^*$. More precisely:

Theorem 3.11. The map $H^n(X, \mathbb{C}) \to H^n(X, \mathcal{O}_X)$ factors as

$$
H^{n}(X,\mathbb{C}) = \bigoplus_{p+q=n} H^{p,q}(X) \to H^{0,n}(X) \simeq H^{n}(X,\mathcal{O}_X).
$$

Proof sketch (Almost complete in g = 1). Fact: $A_{\mathbb{C}}^0(X) = \{C^\infty\text{-functions}\}\$ is given by Fourier series (note $X \simeq (\mathbb{R}/\mathbb{Z})^{2g}$). Now suppose that $g = 1, X = \mathbb{C}/\Gamma$ where $\Gamma =$ $\mathbb{Z}\gamma_1 \oplus \mathbb{Z}\gamma_2$ with $\text{Im}(\gamma_2/\gamma_1) > 0$. Write $z = x_1\gamma_1 + x_2\gamma_2$ with $x_1, x_2 \in \mathbb{R}$. For $f \in A^0_{\mathbb{C}}(X)$ we get the Fourier series expansion:

$$
f(z) = \sum_{m_1, m_2 \in \mathbb{Z}} c_m e^{2\pi i (m_1 x_2 - m_2 x_1)} = \sum_{\gamma \in \Gamma} c_{\gamma} e^{\pi (\overline{\gamma} z - \gamma \overline{z})/A}
$$

where A is the area of the fundamental parallelogram and $|c_{\gamma}| |\gamma|^{N} \rightarrow 0$ for all N as $|\gamma| \to \infty$.

Let $\mathcal{A}_X^{p,q}$ be the sheaf of $C^{\infty}(p,q)$ forms. By the Cauchy-Riemann equations we have

$$
\mathcal{O}_X = \ker \left(\mathcal{A}_{X,\mathbb{C}}^0 = \mathcal{A}_X^{0,0} \xrightarrow{\overline{\partial}} \mathcal{A}_X^{0,1} \right).
$$

Now $\overline{\partial}$ is surjective as a map of sheaves: If $\omega = fd\overline{z} \in \mathcal{A}^{0,1}_X(U)$, then (possibly shrinking U a bit) we can find $g \in A^0_{\mathbb{C}}(X)$ such that $g|_U = f$ (using bump functions), with $\int_{\mathbb{C}} \Gamma \cdot g = 0$. So g has Fourier series with $c_0 = 0$; then

$$
gd\overline{z} = \overline{\partial} \sum_{\gamma \neq 0} -\frac{A}{\pi \gamma} c_{\gamma} e^{\pi (\overline{\gamma} z - \gamma \overline{z})/A} \in \overline{\partial} (A^0(X)).
$$

So there is a SES:

$$
0 \to \mathcal{O}_X \to \mathcal{A}_X^{0,0} \xrightarrow{\overline{\partial}} \mathcal{A}_X^{0,1} \to 0
$$

The sheaves $\mathcal{A}_{X}^{p,q}$ are acyclic, i.e. $H^{i}(X, \mathcal{A}_{X}^{p,q}) = 0$ for $i > 0$. This is because they are fine sheaves (partition of unity argument). Therefore we can calculate $H^*(X, \mathcal{O}_X)$ using this resolution of \mathcal{O}_X , so $H^1(X, \mathcal{O}_X) = \text{coker}(\overline{\partial} : A^{0,0}(X) \to A^{0,1}(X)) = A^{0,1}(X)/\overline{\partial}A^{0,0}(X)$. We just saw: $\omega \in A^{0,1}(X)$ lies in $\text{im}(\overline{\partial})$ iff its 0th Fourier coefficient is 0 and so $A^{0,1}(X)$ = $\text{im}(\overline{\partial}) \oplus \mathbb{C}d\overline{z}$ and $\mathbb{C}d\overline{z} = A^{0,1}(X)^{\text{inv}}$. So $H^1(X, \mathcal{O}_X) = A^{0,1}(X)^{\text{inv}} = H^{0,1}(X)$.

In the general case,

$$
0 \to \mathcal{O}_X \to \mathcal{A}_X^{0,0} \xrightarrow{\overline{\partial}} \mathcal{A}_X^{0,1} \xrightarrow{\overline{\partial}} \cdots \to \mathcal{A}_X^{0,g} \to 0
$$

is exact ($\overline{\partial}$ -Poincare lemma) and $A^{0,q}(X)^{\partial=0} = \overline{\partial}A^{0,q-1}(X) \oplus A^{0,q}(X)^{inv}$. See [\[Mum70,](#page-40-1) Chapter 1], [\[BL04,](#page-40-2) Section 1.4]. \Box

4 Pic of Complex Tori

Let X be a complex manifold.

Recall that the Picard-group

 $Pic(X) := \{ invertible \ O_X\text{-modules}\}/isomorphism$

is a group under ⊗.

It is a basic fact that $Pic(X) \simeq H^1(X, \mathcal{O}_X^*)$. We describe the isomorphism. Given an invertible sheaf $\mathcal L$ with trivialization (s_i) on the open cover (U_i) , let

$$
c_{ij} = s_j^{-1} s_i |_{U_i \cap U_j} \in \mathcal{O}_X^*(U_i \cap U_j).
$$

Then $c_{ij}c_{jk} = c_{ik}$ on $U_i \cap U_j \cap U_k$. Thus $(c_{ij})_{ij}$ is a 1-Cech cocycle with values in \mathcal{O}_X^* , so it defines an element of $H^1(X, \mathcal{O}_X^*)$. If (s'_i) is another trivialization, then $t_i = s'_i(1)/s_i(1) \in$ $\mathcal{O}_X^*(U_i)$, and $c'_{ij} = (s'^{-1}_j s'_i)|_{U_i \cap U_j} = c_{ij}t_i/t_j$ and $(i, j) \mapsto t_i/t_j$ is a coboundary. Hence the two trivializations give the same element in $H^1(X, \mathcal{O}_X^*)$. Similarly, one checks that it is independent of the cover U_i , so we get a well-defined map $Pic(X) \to H^1(X, \mathcal{O}_X^*)$ which in fact is an isomorphism.

Recall the exponential sequence:

$$
0 \to \underbrace{2\pi i\mathbb{Z}}_{=: \mathbb{Z}(1)} \to \mathcal{O}_X \xrightarrow{\exp} \mathcal{O}_X^* \to 0.
$$

Suppose X is compact and connected, then H^0 of this is

$$
0 \to \mathbb{Z}(1) \to \mathbb{C} \xrightarrow{\exp} \mathbb{C}^* \to 0
$$

and H^1, H^2 terms:

$$
0 \to H^1(X, \mathbb{Z}(1)) \xrightarrow{j} H^1(X, \mathcal{O}_X) \to \underbrace{H^1(X, \mathcal{O}_X^*)}_{\text{Pic}(X)} \xrightarrow{c_1} H^2(X, \mathbb{Z}(1)) \to H^2(X, \mathcal{O}_X).
$$

So Pic(X) contains a subgroup $Pic^0(X) := \text{coker } j = \ker c_1$. The quotient

$$
Pic(X)/Pic^0(X) =: NS(X)
$$

is the Neron-Severi group of X. Via c_1 it is isomorphic to ker $(H^2(X, \mathbb{Z}(1)) \to H^2(X, \mathcal{O}_X)).$ $H²(X, \mathbb{Z}(1))$ is finitely generated, hence so is NS(X).

Now suppose $X = V/\Gamma$ is a complex torus. We inspect $Pic^0(X)$ and $NS(X)$.

(1) $Pic^{0}(X) = H^{1}(X, \mathcal{O}_{X})/$ im j. We have a commutative diagram:

The right isomorphism and commutativity is essentially Theorem [3.11](#page-11-0) for $n = 1$. (*) is given by inclusions V^*, \overline{V}^* ⊆ Hom_R(V, \mathbb{C}). The inverse of (*) is given by $\text{Hom}_{\mathbb{R}}(V,\mathbb{C}) \ni l \mapsto (\lambda,\mu) \in V^* \oplus \overline{V}^*$ where

$$
\lambda(v) = \frac{1}{2}(l(v) - il(v)), \n\mu(v) = \frac{1}{2}(l(v) + il(iv)).
$$

So $j_{\mathbb{R}}$, the R-linear extension of $j: \text{Hom}_{\mathbb{R}}(V, \mathbb{Z}(1)) \to \overline{V}^*$, is given by $j_{\mathbb{R}}(l)(v) =$ $\mu(v) = \frac{1}{2}(l(v) + il(iv))$ and so $j_{\mathbb{R}}$ is an isomorphism, with inverse $\mu \mapsto \mu - \overline{\mu}$ (since l is purely imaginary). Therefore $j(H^1(X,\mathbb{Z}(1))) \subseteq \overline{V}^*$ is a lattice.

Theorem 4.1. $\hat{X} := \text{Pic}^0(X) \simeq \overline{V}^* / \text{im}(j)$ is a complex torus (the dual of X) and there are isomorphisms

$$
\widehat{X} \xrightarrow[\simeq]{j_{\mathbb{R}}^{-1}} \frac{\mathrm{Hom}(\Gamma, \mathbb{R}(1))}{\mathrm{Hom}(\Gamma, \mathbb{Z}(1))} \xrightarrow[\simeq]{\mathrm{exp}} \mathrm{Hom}(\Gamma, U(1))
$$

where $U(1) = S^1 \subseteq \mathbb{C}^*$.

 (2) NS (X) .

Definition. A Riemann form for X is a Hermitian form $H: V \times V \rightarrow \mathbb{C}$ for which the alternating form $E = \text{Im } H : V \times V \to \mathbb{R}$ is integer-valued on $\Gamma \times \Gamma$, i.e. $E \in \text{Alt}^2_{\mathbb{Z}}(\Gamma).$

From Exercise Sheet 1: To give a Riemann form H is equivalent to giving an alternating map $E : \Gamma \times \Gamma \to \mathbb{Z}$ such that its C-bilinear extension

$$
E_{\mathbb{C}} : (\mathbb{C} \otimes \Gamma) \times (\mathbb{C} \otimes \Gamma) = (V \oplus \overline{V}) \times (V \oplus \overline{V}) \to \mathbb{C}
$$

satisfies $E_{\mathbb{C}}(V, V) = 0$ (equivalently $E_{\mathbb{C}}(\overline{V}, \overline{V}) = 0$). The correspondence is $H \mapsto$ $E = \text{Im } H$ and $E \mapsto (H : (u, v) \mapsto 2iE_{\mathbb{C}}((u, 0), (0, \overline{v}))).$

Theorem 4.2. NS(X) \simeq {Riemann forms on X}.

Proof.

$$
0 \longrightarrow \text{NS}(X) \longleftrightarrow H^2(X, \mathbb{Z}(1)) \longrightarrow H^2(X, \mathcal{O}_X)
$$

$$
\simeq \uparrow_{2\pi i} \simeq \uparrow_{2\pi i} \simeq \uparrow_{2\pi i} \searrow \uparrow_{2}(X, \mathcal{O}_X)
$$

Note that

$$
H^{2}(X,\mathbb{Z}) = \bigwedge^{2} \text{Hom}(\Gamma,\mathbb{Z}) = \text{Alt}_{\mathbb{Z}}^{2}(\Gamma) = \{\text{alternating bilinear } E : \Gamma \times \Gamma \to \mathbb{Z}\}
$$

and $H^{2}(X,\mathcal{O}_{X}) = \bigwedge^{2} \overline{V}^{*} = \text{Alt}_{\mathbb{C}}^{2}(\overline{V}).$
Claim: $(**)$ takes $E \in \text{Alt}_{\mathbb{Z}}^{2}(\Gamma)$ to $E_{\mathbb{C}}|_{\overline{V} \times \overline{V}} \in \text{Alt}_{\mathbb{C}}^{2}(\overline{V}).$

If so, we get

$$
\mathrm{NS}(X)\xrightarrow{\simeq}\{E\in\mathrm{Alt}_{\mathbb{Z}}^2(\Gamma)\mid E_{\mathbb{C}}|_{\overline{V}\times\overline{V}}=0\}=\{\text{Riemann forms}\}
$$

Hence the theorem. Proof of claim:

$$
H^{2}(X, \mathbb{Z}) \longrightarrow H^{2}(X, \mathbb{C}) \longrightarrow H^{2}(X, \mathcal{O}_{X})
$$

\n
$$
\Big| = \Big| = \Big| = \Big| =
$$

\n
$$
\text{Alt}^{2}_{\mathbb{Z}}(\Gamma) \longrightarrow \underbrace{\text{Alt}^{2}_{\mathbb{C}}(\mathbb{C} \otimes_{\mathbb{R}} V)}_{=\text{Alt}^{2}_{\mathbb{C}}(V \oplus \overline{V})} \longrightarrow \text{Alt}^{2}_{\mathbb{C}}(\overline{V})
$$

The first map in the bottom line is given by $E \mapsto E_{\mathbb{C}}$. By Theorem [3.11,](#page-11-0) the second map is given by restriction to $\overline{V} \times \overline{\overline{V}} \subseteq (V \oplus \overline{V} \times V \oplus \overline{V}).$ \Box

Remark. $c_1: Pic(X) \to H^2(X,\mathbb{Z}(1))$ is the *first Chern class homomorphism*. It classifies topological line bundles, i.e. $c_1(R) = 0$ iff the corresponding C^{∞} -line bundle is trivial.

So

$$
0 \to Pic^0(X) \to Pic(X) \to NS(X) \to 0
$$

and $Pic^0(X) \simeq Hom(\Gamma, U(1))$ and $NS(X) \simeq {\text{Riemann forms}}$ is free abelian. As $NS(X)$ is free, this splits (although not canoncially).

Definition.

$$
P(X) := \left\{ (H, \alpha) \middle| \begin{array}{l} H \text{ is a Riemann form, } \alpha : \Gamma \to U(1) \text{ s.t.} \\ \alpha(\gamma + \delta) = \alpha(\gamma)\alpha(\delta)e^{\pi i E(\gamma, \delta)}, E = \text{Im}\,H \end{array} \right\}
$$

There is an exact sequence:

$$
0 \to \text{Hom}(\Gamma, U(1)) \to P(X) \to \{\text{Riemann forms}\}.
$$

$$
\alpha \mapsto (0, \alpha)
$$

Lemma 4.3. This is exact on the right, i.e. for all H, there exists an $\alpha : \Gamma \to U(1)$ such that $(H, \alpha) \in P(X)$.

Theorem 4.4 (Appell-Humbert). There is an isomorphism $P(X) \simeq Pic(X)$ such that

$$
0 \longrightarrow \text{Hom}(\Gamma, U(1)) \longrightarrow P(X) \longrightarrow \{\text{Riemann forms}\} \longrightarrow 0
$$

$$
\downarrow \simeq \qquad \qquad \downarrow \simeq \qquad \qquad \downarrow \simeq
$$

$$
0 \longrightarrow \text{Pic}^0(X) \longrightarrow \text{Pic}(X) \longrightarrow \text{NS}(X) \longrightarrow 0
$$

commutes.

Proof. We will explicitly construct an invertible sheaf $\mathcal{L}(H,\alpha) \in \text{Pic}(X)$ for each $(H,\alpha) \in$ $P(X)$ so that this map makes the diagram commute. It is then clear that it must be an isomorphism by the Five Lemma.

Let $\pi: V \to X = V/\Gamma$ be the quotient map. Idea: We will write down \mathcal{L} with $\pi^* \mathcal{L} \simeq \mathcal{O}_V$ (in fact every invertible \mathcal{O}_V -module is trivial). By adjunction, we find a subsheaf $\mathcal{L} \subseteq \pi_* \mathcal{O}_V$.

We say that a connected open subset $U \subseteq X$ is small if $U = \pi(U')$, $U' \subseteq V$ open, such that the translates $\overline{U'} + \gamma$, $\gamma \in \Gamma$, are disjoint. If so, then

- $\pi^{-1}(U) = \coprod \{\text{opens } U' \subseteq V \text{ such that } \pi : U' \xrightarrow{\simeq} U \},\$
- Γ permutes $\{U'\}$ simply transitively,
- $\pi_* \mathcal{O}_V(U) = \mathcal{O}_V(\pi^{-1}U) = \prod_{U'} \mathcal{O}_V(U').$

Every open subset of X is a union of small opens, so to define a sheaf on X , it is enough to define it on the set of small opens.

We want $\mathcal{L}(U) \cong \mathcal{O}_X(U)$ for small U, so let

$$
\mathcal{L}(U) = \left\{ (s_{U'}) \in \prod_{\pi: U' \xrightarrow{\simeq} U} \mathcal{O}_V(U') \middle| \forall \gamma \in \Gamma, z \in U', s_{U'+\gamma}(z+\gamma) = s_{U'}(z)c_{\gamma}(z) \quad (*) \right\}
$$

for some family (c_{γ}) with $c_{\gamma}: V \to \mathbb{C}^{\times}$ holomorphic, to be be determined. For example, if we let $c_{\gamma} = 1$ for all γ , we get $\mathcal{L} \simeq \mathcal{O}_X$.

The condition (*) implies that $\mathcal{L}(U) \hookrightarrow \mathcal{O}_V(U')$ for each U' . If $\gamma, \delta \in \Gamma$, then by (*),

$$
c_{\gamma+\delta}(z)s_{U'}(z)=s_{U'+\gamma+\delta}(z+\gamma+\delta)=c_{\delta}(z+\gamma)s_{U'\gamma}(z+\gamma)=c_{\delta}(z+\gamma)c_{\gamma}(z)s_{U'}(z)
$$

So if $\mathcal{L}(U) \neq 0$, then (c_{γ}) satisfies the cocycle condition $c_{\gamma+\delta}(z) = c_{\gamma}(z)c_{\delta}(z + \gamma)$.

Conversely, provided (c_γ) satisfies the cocycle condition, $\mathcal{L}(U) \stackrel{\simeq}{\to} \mathcal{O}_V(U')$ for every U'.

Observe that if $g: V \to \mathbb{C}^*$ is holomorphic, and $(c_{\gamma})_{\gamma \in \Gamma}$ satisfies the cocycle condition, so does $c'_{\gamma}(z) = c_{\gamma}(z)g(z + \gamma)/g(z)$ and defines an isomorphic invertible sheaf \mathcal{L}' (multiply $s_{U'+\gamma}$ by $g(z+\gamma)$).

Now we construct (c_{γ}) starting from $(H, \alpha) \in P(X)$, thus defining the sheaf $\mathcal{L}(H, \alpha)$. Define

$$
c_{\gamma}(z) = \alpha(\gamma) \exp\left(\pi(H(z,\gamma) + \frac{1}{2}H(\gamma,\gamma))\right)
$$

For each $\gamma, c_{\gamma}: V \to \mathbb{C}^*$ is holomorphic. We claim that it satisfies the cocycle relation:

$$
c_{\gamma}(z)c_{\delta}(z+\gamma) = \alpha(\gamma)\alpha(\delta) \exp \pi \Big(H(z,\gamma) + \frac{1}{2}H(\gamma,\gamma) + H(z,\delta) + H(\gamma,\delta) + \frac{1}{2}H(\delta,\delta) \Big)
$$

= $\alpha(\gamma + \delta) \exp \pi \Big(H(z,\gamma + \delta) + \frac{1}{2} (H(\gamma + \delta,\gamma + \delta) + H(\gamma,\delta) - H(\delta,\gamma)) - iE(\gamma,\delta) \Big)$
= $c_{\gamma+\delta}(z)$

For the last equality note that $H(\gamma, \delta) - H(\delta, \gamma) = H(\gamma, \delta) - \overline{H(\gamma, \delta)} = 2iE(\gamma, \delta)$.

Now let $\mathcal{L}(H,\alpha)$ be the invertible \mathcal{O}_X -module given by $(c_\gamma)_\gamma$. If $(H,\alpha), (H',\alpha') \in P(X)$ give cocycles $(c_{\gamma}), (c'_{\gamma}),$ then

$$
(H + H', \alpha + \alpha') \mapsto \text{cocycle } (c_{\gamma} c'_{\gamma})_{\gamma}
$$

So $\mathcal{L}(H + H', \alpha \alpha') \simeq \mathcal{L}(H, \alpha) \otimes \mathcal{L}(H', \alpha')$. Hence we obtain a homomorphism

$$
P(X) \to Pic(X), (H, \alpha) \mapsto
$$
 (isomorphism class of $\mathcal{L}(H, \alpha)$)

A (non-trivial) computation shows that this is compatible with the other vertical maps in the diagram. \Box

Let $\mathcal{L} \in \text{Pic}(X)$, $x \in X$. Let $T_x : X \to X$ be translation by x. Then $T_x^* \mathcal{L}$ and \mathcal{L} have the same image in NS(X). Indeed, $NS(X) \subseteq H^2(X, \mathbb{C}) \simeq A_{\mathbb{C}}^2(X)^{inv}$, is invariant under T_x^* . So $\varphi_{\mathcal{L}}(x) := T_x^* \mathcal{L} \otimes \mathcal{L}^{-1}$ lies in Pic⁰(X).

Proposition 4.5. $\varphi_{\mathcal{L}} : X \to \text{Pic}^0(X) = \widehat{X}$ is a homomorphism of complex tori, i.e. it is holomorphic and a group homomorphism.

Proof. See Sheet 2, Exercise 1.

Theorem 4.6. Let $\mathcal{L} = \mathcal{L}(H, \alpha)$. The following are equivalent:

 (i) H is positive definite.

(ii) $H^0(X, \mathcal{L}) \neq 0$ and $\varphi_{\mathcal{L}}$ is an isogeny, i.e. ker $\varphi_{\mathcal{L}}$ is finite (as dim $X = \dim \widehat{X}$).

(*iii*) \mathcal{L} *is ample.*

Meaning of (iii). Let $n \geq 1$, $d = d_n = \dim H^0(X, \mathcal{L}^{\otimes n})$. Let f_0, \ldots, f_{d-1} be a basis for $H^0(X, \mathcal{L}^n)$. Then $\mathcal L$ is ample iff for some $n \geq 1$, $f = (f_0 : \cdots : f_{d-1} : X \to \mathbb{P}^{d-1}(\mathbb{C})$ is well-defined and gives an isomorphism between X and a subvariety of \mathbb{P}^{d-1} . If so, then $\mathcal{L}^n \simeq f^* \mathcal{O}_{\mathbb{P}}(1)$. Note that while the f_i themselves are not functions on X, their ratios are (as $\mathcal{L}^{\otimes n}$ is of rank 1), so f makes sense (where not all f_i vanish).

 \Box

Definition. A polarisation on X is a positive definite Riemann form H . By the theorem, X is a projective variety iff X has a polarisation.

5 Group Schemes over Fields

Let k be a field (often algebraically closed). In the following all schemes will be k-schemes. The category of k-schemes (resp. affine schemes) will be denoted by \mathbf{Sch}/k (resp. \mathbf{Aff}/k).

Recall that if X, S are k-schemes, then we write $X(S) := \text{Mor}_k(S, X)$ for the set of S-valued points of X. If R is a k-algebra, we just write $X(R) := X(\text{Spec } R)$.

In this course, a $(k-)$ variety is a separated k-scheme of finite type over k which is geometrically integral.

Definition. A group scheme (over k) is a k-scheme G, together with a morphism m : $G \times G \to G$ such that for all k-algebras $R, m_R : G(R) \times G(R) \to G(R)$ makes $G(R)$ into a group.

Examples.

- Additive group: $\mathbb{G}_a = \operatorname{Spec} k[t] = \mathbb{A}_k^1$ and $m : \mathbb{G}_a \times \mathbb{G}_a = \operatorname{Spec} k[t_1, t_2] \to \operatorname{Spec} k[t] =$ \mathbb{G}_a is given by $t \mapsto t_1 + t_2$. Then $\mathbb{G}_a(R) = R$, with group operation +.
- Multiplicative group: $\mathbb{G}_m = \operatorname{Spec} k[t, 1/t] = \mathbb{A}_k^1 \setminus \{0\}$ and $m : \mathbb{G}_m \times \mathbb{G}_m$ $=$ Spec k[t₁, t₂, 1/(t₁t₂)] \rightarrow Spec k[t, 1/t] is given by $t \mapsto t_1 \cdot t_2$. Then $\mathbb{G}_m(R)$ = $(R^{\times}, \times).$

• Linear groups: $\mathrm{GL}_n = \mathrm{Spec} k[(t_{ij})_{ij}, \frac{1}{\det(k)}]$ $\frac{1}{\det(t_{ij})}$. Then

$$
m: GL_n \times GL_n = \text{Spec}[(u_{ij}), (v_{ij}), \frac{1}{\det(u_{ij})\det(v_{ij})}] \longrightarrow GL_n
$$

is given by $t_{ij} \mapsto \sum_{l=1}^n u_{il}v_{lj}$. Then $GL_n(R)$ is what you think it is.

Recall the Yoneda Lemma:

Lemma 5.1 (Yoneda Lemma). Let C be a category, $X, Y \in ob\mathcal{C}$. Then there is a bijection

$$
Mor(X, Y) \longleftrightarrow \left\{ \begin{array}{c} natural \ transformations \ X(-) \to Y(-), \ i.e. \\ families \ (f_S: X(S) \to Y(S))_{S \in obC} \ such \ that \\ fs(x) \circ g = f_{S'}(x \circ g) \ for \ all \ g: S' \to S, x \in X(S) \end{array} \right\}
$$

where $f: X \to Y$ induces the natural transformation $X(-) \to Y(-)$ given by $f_S: X(S) \to Y$ $Y(S), g \mapsto f \circ g$ where $S \in ob \mathcal{C}$. Conversely, given a natural transformation $(f_S)_{S}$, we get a morphism $f: X \to Y$ where $f = f_X(\mathrm{id}_X)$.

In the case of $C = Sch/k$, we may restrict ourselves to affine S:

Lemma 5.2 (Yoneda for schemes). Let X, Y be k-schemes. The usual Yoneda correspondence remains true if we restrict ourselves to S-valued points with S affine, *i.e.* there is a bijection

{Morphisms
$$
X \to Y
$$
} \longleftrightarrow { families $X(S) \xrightarrow{fs} Y(S)$ with S affine such that $f_S(x) \circ g = f_{S'}(x \circ g) \forall g : S' \to S, S, S'$ affine }

Proof. Cover $X = \bigcup_{\alpha \in I} U_{\alpha}$, where U_{α} are open affines with inclusions j_{α} into X , so $j_{\alpha} \in$ $X(U_\alpha)$. Then given $(f_S)_{S \in (Aff/k)}$, get $f_{U_\alpha}(j_\alpha) \in Y(U_\alpha) = \text{Mor}_k(U_\alpha, Y)$. If $V \subseteq U_\alpha \cap U_\beta$ is any open affine, then $f_{U_{\alpha}}(j_{\alpha})$ and $f_{U_{\beta}}(j_{\beta})$ restrict to the same element of $Y(V)$. So they glue to give a morphism $f: X \to Y$. \Box

Proposition 5.3. Let G be a group scheme. Then

- (i) For all $S \in (\mathbf{Sch}/k)$, $G(S)$ is a group where the group law is given by m_S .
- (ii) For all $S' \xrightarrow{f} S$, $G(S) \xrightarrow{-\circ f} G(S')$ is a homomorphism.

Proof. Suppose $S' = \text{Spec } R' \xrightarrow{f} \text{Spec } R = S$ are affine. For (ii) we have to check that

$$
(G \times G)(S) \xrightarrow{= } G(S) \times G(S) \xrightarrow{m_S} G(S)
$$

$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$

$$
(G \times G)(S') \xrightarrow{=} G(S') \times G(S') \xrightarrow{m_{S'}} G(S')
$$

commutes. This is clear. Hence (ii) holds for S, S' affine.

For (i) let $(U_i)_{i\in I}$ be an affine cover of S. Write $U_i \cap U_j = \bigcup_k U_{ij}^k$ with affine U_{ij}^k . Then for all X ,

$$
X(S) = \{(x_i) \in \prod_i X(U_i) \mid \forall i, j, k : x_i|_{U_{ij}^k} = x_j|_{U_{ij}^k}\}.
$$
 (*)

Apply this to G and $G \times G$. We check:

- $m_S : G(S) \times G(S)$ is associative: Since $G(S) \hookrightarrow \prod_i G(U_i)$ preserves the multiplication m and $\prod_i G(U_i)$ is a group, multiplication on $G(S)$ is associative. This argument also shows that (ii) holds for any schemes S, S' .
- The two maps $G(S) \times G(S) \to G(S) \times G(S), (x, y) \mapsto (xy, y), (yx, y)$ are bijections. Apply [\(](#page-20-0)*): The claim follows from the fact that $G(U_i)$ and $G(U_{ij}^k)$ are groups.

 \Box

Corollary 5.4. There exist $e \in G(k)$, $i: G \to G$ such that for all S , $e \mapsto (identity \ of \ G(S))$, and $i_S : G(S) \to G(S)$ is the inverse map.

Proof. Let e be the identity of $G(k)$, by (ii) it is the identity of $G(S)$ for all S. Define $i \in G(G)$ to be the inverse (for the group law) of $id_G : G \to G$. \Box

Example. Let Γ be any (abstract) group. The constant group scheme is $G = \coprod_{\gamma \in \Gamma} \text{Spec } k$. G is affine iff Γ is finite.

Remark. Alternative way to define a group scheme: It is a triple $(G, m : G \times G \rightarrow G, e \in G)$ $G(k)$, $i : G \rightarrow G$) satisfying certain axioms. For example, associativity is expressed by the commutativity of the following diagram:

$$
(G \times G) \times G \xrightarrow{m \times \text{id}_G} G \times G
$$
\n
$$
\downarrow \cong
$$
\n
$$
G \times (G \times G) \xrightarrow{\text{id}_G \times m} G \times G
$$
\n
$$
G
$$

The other properties (commutativity, identity, inverses) are similar. I.e. G is a group object in \mathbf{Sch}/k .

Definition. A homomorphism of group schemes is a morphism $G \stackrel{f}{\to} G'$ such that for all k-algebras R (equivalently for all $S \in Sch/k$), $G(R) \to G'(R)$ (or $G(S) \to G'(S)$) is a homomorphism.

Exercise. $f: G \to G'$ is a homomorphism iff the diagram

$$
G \times G \xrightarrow{f \times f} G' \times G'
$$

\n
$$
\downarrow m
$$

\n
$$
G \xrightarrow{f} G'
$$

\n
$$
G'
$$

commutes.

Definition. A closed subgroup scheme of G is a closed subscheme $H \subseteq G$ such that for all R (or equivalently for all S), $H(R) \subseteq G(R)$ (or $H(S) \subseteq G(S)$) is a subgroup.

If so, H is a group scheme, and the inclusion $i : H \hookrightarrow G$ is a homomorphism:

$$
(H \times H)(S) \longleftrightarrow (G \times G)(S)
$$

$$
\downarrow \quad \qquad \downarrow m'
$$

$$
H(S) \longleftrightarrow G(S)
$$

The dotted arrow exists as $H(S)$ is a subgroup. And the image of $id_{H \times H} \in (H \times H)(H \times H)$ in $H(H \times H)$ is the desired morphism $H \times H \to H$.

Examples.

- (i) Spec $k \stackrel{e}{\hookrightarrow} G$ is a closed subgroup scheme.
- (ii) Kernels: Let $f: G \to G'$ be a homomorphism. Define ker f to be the fibre of f at $e' \in G'(k)$, i.e. there is a pullback square:

$$
\ker f \longrightarrow G
$$

$$
\downarrow \qquad \qquad \downarrow f
$$

$$
\operatorname{Spec} k \xrightarrow{e'} G'
$$

Since e' is a closed immersion, $\ker(f)$ is a closed subscheme of G and $\ker(f)(S)$ = $\ker(f_S: G(S) \to G'(S)).$

(iii) Let $G = GL_n$, $G' = \mathbb{G}_m$. For all R, have $\det_R : GL_n(R) \to R^* = \mathbb{G}_m(R)$. So by Yoneda, get a homomorphism det : $\mathrm{GL}_n \to \mathbb{G}_m$. Its kernel is ker det =: SL_n which is the closed subscheme given by $\det(x_{ij}) = 1$ of $GL_n = \operatorname{Spec} k[(x_{ij}), (\det(x_{ij}))^{-1}]$.

Remark. Quotients are more subtle.

Let G be a group scheme, $x \in G(k)$. The (left) translation by x is the unique morphism $T_x : G \to G$ such that for all $y \in G(S)$, $T_x(y) = xy$, i.e. T_x is the composite $G =$ Spec $k \times G \xrightarrow{x \times \text{id}_G} G \times G \xrightarrow{m} G$. Then $T_e = \text{id}_G$ and $T_{xy} = T_x \circ T_y$.

Let X be a variety. Since we assume X to be geometrically integral, k is algebraically closed in $k(X)^1$ $k(X)^1$, the function field of X. We say X is *complete*, if X is proper over k.

Definition. A group variety (or [connected] algebraic group) is a group scheme which is a variety. An abelian variety is a complete group variety.

Examples. \mathbb{G}_m , \mathbb{G}_a , GL_n are affine group varieties.

The simplest nontrivial example of an abelian variety is an elliptic curve E/k , e.g. given as a nonsignular cubic $E \subseteq \mathbb{P}^2_k$ with a given point $e \in E(k)$).

Completeness has strong implications (e.g. commutativity).

Theorem 5.5 (Mumford's Rigidity Lemma). Let X, Y, Z be varieties with X complete, $y_0 \in Y, f: X \times Y \to Z$ a morphism. If $f(X \times \{y_0\})$ is a single point, then there exists $g: Y \to Z$ such that f factors as $f = g \circ pr_2$. In particular, for all $y \in Y$, $f(X \times \{y\})$ is a single point.

Remarks. Here $X \times \{y_0\}$ means $X \times \text{Spec } k(y_0) \hookrightarrow X \times Y$, fibre of $\text{pr}_2 : X \times Y \to Y$ at $y_0 \in Y$. In general, it is not the set-theoretic product of X with $\{y_0\}$. It is if $y_0 \in Y(k)$.

 $\mathbb{A}^1 \times \mathbb{A}^1 \to \mathbb{A}^1$, $(x, y) \mapsto xy$, so $f(\mathbb{A}^1 \times \{0\}) = \{0\}$, but $f|_{\mathbb{A}^1 \times \{1\}}$ is an isomorphism. So completeness of X is essential!

Corollary 5.6. Let X be an abelian variety, G a group variety, $f: X \to G$ a morphism of schemes. Then if $g = f(e)$, $T_{a^{-1}} \circ f$ is a homomorphism.

So taking $G = X$, we see that any isomorphism of schemes $X \xrightarrow{\simeq} X$ which takes e to e is an isomorphism of group schemes.

Proof. It suffices to prove that if $f(e) = e$, then f is a homomorphism. Consider p: $X \times X \to G$ such that for all $x, y \in X(S)$, $p(x, y) = f(x)f(y)f(xy)^{-1}$. Then $p(X \times \{e\}) =$ $p({e} \times X) = {e}.$ So by rigidity, p factors through $(x, y) \mapsto y$ and also through $(x, y) \mapsto x$, so $p(x, y) = p(x, e) = p(e, e) = e$ for all x, y , so f is a homomorphism. \Box

¹Proof sketch: Let Spec $A \subseteq X$ be an affine open. If $k \subseteq k' \subseteq A$ is a finite extension, then $k' \otimes_k k^{alg} \subseteq A$ $A \otimes_k k^{\text{alg}}$ is not an integral domain, unless $k' = k$.

Corollary 5.7. Abelian varieties are commutative.

Proof. Apply the previous corollary to $i : X \to X$. Since $i(e) = e$, i is a homomorphism. But a group is commutative iff $i : g \mapsto g^{-1}$ is a homomorphism. So $X(S)$ is commutative for all S. \Box

In general, we will state things for arbitrary k , but often give a proof only for k algebraically closed.

Proof of Theorem [5.5.](#page-22-1) Suppose first $k = k^{\text{alg}}$ is algebraically closed, and let $x_0 \in X(k)$. Define $q: Y \to Z$ by $q(y) = f(x_0, y)$, i.e.

commutes. We need to show that $g \circ pr_2 = f$. As everything is a variety, so separated, it is enough to show this for a dense open subset of $X \times Y$.

Let z_0 be the point in $f(X \times \{y_0\})$ and $W \subseteq Z$ be an open affine neighborhood of it. Set $S = Z - W$, it is a closed subset. Then $f^{-1}(S) \subseteq X \times Y$ is closed, so $pr_2(f^{-1}(S)) \subseteq Y$ is closed since $X \to \text{Spec } k$ is proper. Then $V := Y \setminus \text{pr}_2(f^{-1}(S)) \subseteq Y$ is open, and $f(X \times V) \subseteq W$. So for all $y \in V(k)$, $f: X \times \{y\} \to W$. As X is complete and W is affine, $f|_{X\times \{y\}}$ is constant, its image is $\{f(x_0,y)\} = \{g(y)\}\$. So for all $y \in V(k)$, $f|_{X\times\{y\}}=g\circ pr_2|_{X\times\{y\}},$ hence $f|_{X\times V}=g\circ pr_2|_{X\times V}.$ Also V is non-empty, as $z_0\notin S$, so $X \times \{y_0\} \cap f^{-1}(S) = \emptyset$, so $y_0 \notin \text{pr}_2(f^{-1}(S))$, so $y_0 \in V$, hence $V \neq \emptyset$.

Now suppose k is arbitrary, i.e. not necessarily algebraically closed. f factors through pr_2 iff for affine opens $U \subseteq X, V \subseteq Y, f(U \times V) \subseteq W \subseteq Z$ the map $\mathcal{O}_Z(W) \to \mathcal{O}_{X \times Y}(U \times V) =$ $\mathcal{O}_X(U) \otimes_k \mathcal{O}_Y(V)$ factors through $k \otimes_k \mathcal{O}_Y(V)$. We can check this after replacing k with k^{alg} , since $k \otimes_k \mathcal{O}_Y(V) = \mathcal{O}_X(U) \otimes_k \mathcal{O}_Y(V) \cap k^{\text{alg}} \otimes_k \mathcal{O}_Y(V)$. \Box

6 Seesaw and Cube

Let $f: X \to Y$ be a morphism, $\mathcal L$ an invertible sheaf on X (or coherent sheaf). Then for all $y \in Y$, let X_y be the fibre over y and $\mathcal{L}_y = i_y^* \mathcal{L}$ where $i_y : X_y \hookrightarrow X$ is the inclusion.

Common questions:

- (1) How does $H^0(X_y, \mathcal{L}_y)$ vary with y? (or more generally H^i)
- (2) What conditions ensure that there exists M on Y with $\mathcal{L} \cong f^*\mathcal{M}$?

(e.g. if $\mathcal{L} \cong f^*\mathcal{M}$, then all $\mathcal{L}_y \cong \mathcal{O}_{X_y}$ are trivial. Converse?)

Examples.

- (1) Let C be a complete nonsingular curve over k, D a divisor on C. Then $H^0(C, \mathcal{O}_C(D)) = L(D)$ and Riemann-Roch gives an estimate for this. How does this vary as you vary D? (We will use this later in construction of the Jacobian of $C)$
- (2) Let Y be a quadric cone in \mathbb{A}^3 , say $Y = \text{Spec } k[u, v, w]/(uv w^2)$ and char $k \neq 2$. Let $X = Y \setminus \{0\} \stackrel{f}{\hookrightarrow} Y$. Let L be the line $v = w = 0$ through 0. Let $\mathcal{L} = \mathcal{O}_X(L \cap X)$. Obviously, as fibres of f are points (or empty), all \mathcal{L}_y are trivial. But there does not exist an invertible module M on Y such that $f^*\mathcal{M} \cong \mathcal{L}$ (because $L \subseteq Y$ is not a Cartier divisor, not locally principal).

Theorem 6.1 ("Seesaw Theorem"). Let X, Y be varieties, X complete, \mathcal{L} an invertible $\mathcal{O}_{X\times Y}$ -module. Then:

- (i) $F = \{y \in Y \mid \mathcal{L}|_{X \times \{y\}} \text{ is trivial} \}$ is closed in Y.
- (ii) If $F = Y$, then there exists a invertible sheaf M on Y such that $\mathcal{L} \simeq \text{pr}_2^* \mathcal{M}$.

The proof uses:

Theorem 6.2. Let X be complete, $S = \text{Spec } A$, A any noetherian k-algebra, L invertible sheaf on $X \times S$. Then:

- (i) $H^0(X \times S, \mathcal{L})$ is a finite (= finitely generated) A-module.
- (ii) There exists a morphism $\alpha: K^0 \to K^1$ of finite free A-modules such for all A-algebras B, there are isomorphisms

$$
H^{0}(X \times \operatorname{Spec} B, \mathcal{L}_{B}) \simeq \ker(\alpha_{B} = \alpha \otimes_{A} id_{B} : K^{0} \otimes_{A} B \to K^{1} \otimes_{A} B),
$$

functorial for $B \to B'$. Here \mathcal{L}_B is the pullback of $\mathcal L$ along $X \times \operatorname{Spec} B \to X \times \operatorname{Spec} A$.

See [\[Mum70,](#page-40-1) Chapter 2 §5], or [\[Har77,](#page-40-4) Chapter III §12], but still check out Mumford's Corollary 2. The theorem holds for all H^i (with a complex $K^0 \to K^1 \to \ldots$ of finite free A-modules), and in fact we need this to prove the $i = 0$ case.

Corollary 6.3. Same hypotheses as in the previous theorem. There exists a finite A module M such that for all A-algebras B,

$$
H^0(X \times \operatorname{Spec} B, \mathcal{L}_B) \cong \operatorname{Hom}_A(M, B) = \operatorname{Hom}_B(M \otimes_A B, B).
$$

Proof. Let $M = \text{coker}(\alpha^t)$, so

$$
(K^1)^{\vee} \xrightarrow{\alpha^t} (K^0)^{\vee} \to M \to 0
$$

is exact where $(K^i)^{\vee} = \text{Hom}_A(K^i, A)$. The K^i are finite free, so $\text{Hom}_A((K^i)^{\vee}, B) =$ $K^i \otimes_A B$. Then $0 \to \text{Hom}_A(M, B) \to K^0 \otimes_A B \xrightarrow{\alpha_B} K^1 \otimes_A B$. \Box

Corollary 6.4. Under the same hypotheses, for every $d \geq 0$,

$$
Z_d = \{ s \in S \mid \dim_{k(s)} H^0(X \times \operatorname{Spec} k(s), \mathcal{L}_s) \ge d \} \subseteq S
$$

is a closed subset.

This is the Semicontinuity theorem for H^0 , it is true for all H^i .

Proof. Let $K^0 \simeq A^m, K^1 \simeq A^n$, so α^t is represented by an $(m \times n)$ -matrix C. Then

$$
Z_d = \{ s \in S \mid \text{rank}(\alpha^t \otimes \text{id}_{k(s)}) \le m - d \}
$$

= $\{ s \in S \mid \text{all } (m - d + 1) \text{ minors of } C \text{ vanish in } k(s) \}$

which is closed.

Lemma 6.5. Let V be a complete K-variety, \mathcal{L} an invertible \mathcal{O}_V -module. Then $\mathcal{L} \simeq \mathcal{O}_V$ iff both $H^0(V, \mathcal{L})$ and $H^0(V, \mathcal{L}^{\vee})$ are non-zero.

Proof. Exercise: Use $\text{Hom}_{\mathcal{O}_V}(\mathcal{L}, \mathcal{L}) = \text{Hom}_{\mathcal{O}_V}(\mathcal{O}_V, \mathcal{O}_V) = K$ as V is a complete variety and $\text{Hom}(\mathcal{O}_V, \mathcal{L}) = H^0(\mathcal{L}).$ \Box

Proof of the Seesaw theorem.

(i) We may assume that $Y = \text{Spec } A$ is affine. We have

$$
F = \{ y \in Y \mid \mathcal{L}|_{X \times \{y\}} \text{ is trivial} \}
$$

= $\{ y \in Y \mid H^0(X \times \{y\}, \mathcal{L}_y) \neq 0 \neq H^0(X \times \{y\}, \mathcal{L}_y^{\vee}) \}.$

This is closed by the above corollary.

Also, if $y \in F$, then $\dim_{k(y)} M \otimes k(y) = \dim_{k(y)} H^0(\mathcal{L}_y) = 1$. So as M is a finite A-module, for any generator $m \otimes 1$ of $M \otimes k(y)$, m generates M in a neighborhood of y by Nakayama's Lemma. So M is cyclic in a neighborhood of y .

 \Box

(ii) Suppose $F = Y$. We want to show that $\mathcal{L} \cong \text{pr}_2^* \mathcal{M}$ for some \mathcal{M} on Y. We will show that if $\mathcal{M} = \text{pr}_{2*}\mathcal{L}$, then $\mathcal M$ is an invertible \mathcal{O}_Y -module and the adjunction map $\text{pr}_2^* \mathcal{M} \to \mathcal{L}$ is an isomorphism. This statement is local on Y. So it is enough to show that for all $y \in Y$, there exists an open affine $U \ni y$ such that $\mathcal{L}|_{X \times U}$ is trivial. So we can assume $Y = \operatorname{Spec} A$ is affine. By the above, for all $y \in Y$ (with M as before) $\dim_{k(y)} M \otimes_A k(y) = 1$ since $\mathcal{L}_y \cong \mathcal{O}$. Then by Nakayama again, M is locally free of rank 1. Replacing Y by an affine neighborhood of y, may assume $M = mA$ is free, then $\text{Hom}_{\mathcal{O}_{X\times Y}}(\mathcal{O}_{X\times Y}, \mathcal{L}) = H^0(X \times Y, \mathcal{L}) = \text{Hom}_A(M, A) = m^{\vee}A$. So m^{\vee} gives a map $\mathcal{O}_{X\times Y} \to \mathcal{L}$ whose restriction to each $X \times \{y\}$ is the isomorphism $\mathcal{O}_{X\times\{y\}} \xrightarrow{m\otimes id} \mathcal{L}_y$, similarly for \mathcal{L}^{\vee} . Then $m^{\vee} : \mathcal{O}_{X\times Y} \to \mathcal{L}$ is an isomorphism.

Remark. Proof gives something a bit stronger than (i): There exists a maximal closed subscheme $Z \subseteq Y$ such that $\mathcal{L}|_{X \times Z} \simeq \text{pr}_2^* \mathcal{M}$ for some \mathcal{M} on Z . If Y is affine, and M is cyclic, then $Z = \text{Spec } A/I$ where $I = \text{Ann}_A M$.

 \Box

Particular case of Seesaw: Suppose $\mathcal L$ is an invertible sheaf on $X \times Y$, $\mathcal L|_{X \times \{y\}}$ is trivial for all $y \in Y$, and there exists $x_0 \in X(k)$ such that $\mathcal{L}|_{\{x_0\}\times Y}$ is trivial. Then $\mathcal{L} \cong \text{pr}_2^* \mathcal{M}$, so $\mathcal{O}_Y \simeq (\text{pr}_2^* \mathcal{M})|_{\{x_0\} \times Y} = \mathcal{M}$, i.e. \mathcal{L} is trivial.

One can easily find non-trivial $\mathcal L$ on $X \times Y$ (e.g. $X = Y =$ elliptic curve) such that for some $x_0 \in X(k)$, $y_0 \in Y(k)$, $\mathcal{L}|_{\{x_0\} \times Y}$ and $\mathcal{L}|_{X \times {\{y_0\}}}$ are trivial.

For a product of three varieties, we however have:

Theorem 6.6 (Theorem of the cube). Let X, Y, Z be varieties, X, Y complete. Let x, y, z be k-points of X, Y, Z, L an invertible sheaf on $X \times Y \times Z$. Suppose the restriction of L to each of $\{x\} \times Y \times Z$, $X \times \{y\} \times Z$, $X \times Y \times \{z\}$ is trivial. Then $\mathcal L$ is trivial.

Corollary 6.7. Let X be an abelian variety, L an invertible \mathcal{O}_X -module. For any variety Y and $f, g, h: Y \to X$:

$$
(f+g+h)^*\mathcal{L}\cong (f+g)^*\mathcal{L}\otimes (f+h)^*\mathcal{L}\otimes (g+h)^*\mathcal{L}\otimes f^*\mathcal{L}^\vee\otimes g^*\mathcal{L}^\vee\otimes h^*\mathcal{L}^\vee.
$$

Here $f + g : Y \to X$ is the composite $Y \xrightarrow{(f,g)} X \times X \xrightarrow{m} X$, etc.

Proof. Let $pr_i^3: X \times X \times X \to X$, $i = 1, 2, 3$, and $pr_i^2: X \times X \to X$, $i = 1, 2$, be the projections.

First consider the case $Y = X \times X \times X$, $(f, g, h) = (\text{pr}_i^3)_{i=1,2,3}$. Let $q: X \times X \to X \times X \times X$, $(x, y) \mapsto (x, y, e)$. Then

$$
(\text{pr}_1^3 + \text{pr}_2^3 + \text{pr}_3^3) \circ q = (\text{pr}_1^2 + \text{pr}_2^2) \circ q = m : (x, y) \mapsto x + y,
$$

$$
(\text{pr}_1^3 + \text{pr}_3^3) \circ q = \text{pr}_1^3 \circ q = \text{pr}_1^2,
$$

$$
(\text{pr}_2^3 + \text{pr}_3^3) \circ q = \text{pr}_2^3 \circ q = \text{pr}_2^2,
$$

27

$$
\operatorname{pr}_3^3 \circ q = e.
$$

So if $\mathcal{M} = (LHS) \otimes (RHS)^{\vee} = (\text{pr}_1^3 + \text{pr}_2^3 + \text{pr}_3^3)^* \mathcal{L} \otimes (\text{pr}_1^3 + \text{pr}_2^3)^* \mathcal{L}^{\vee} \otimes \dots$, then

$$
\mathcal{M}|_{X\times X\times\{e\}}=q^*\mathcal{M}=m^*\mathcal{L}\otimes m^*\mathcal{L}^\vee\otimes \mathrm{pr}_1^{2*}\mathcal{L}^\vee\otimes \mathrm{pr}_2^{2*}\mathcal{L}^\vee\otimes \mathrm{pr}_1^{2*}\mathcal{L}\otimes \mathrm{pr}_2^{2*}\mathcal{L}\otimes \mathcal{O}_{X\times X}\cong \mathcal{O}_{X\times X}
$$

same for $X \times \{e\} \times X$ and $\{e\} \times X \times X$. Then $\mathcal L$ is trivial by the theorem of the cube.

In the general case consider $Y \xrightarrow{(f,g,h)} X \times X \times X \xrightarrow{\text{pr}_1,\text{pr}_2,\text{pr}_3} X$. Then $\mathcal{M}_{f,g,h}$ $(f, g, h)^* \mathcal{M}_{\text{pr}_1, \text{pr}_2, \text{pr}_3}$, so it is trivial.

Corollary 6.8 (Theorem of the Square). Let X be an abelian variety, \mathcal{L} an invertible \mathcal{O}_X -module. Then for all $x, y \in X(k)$, $T^*_{x+y} \mathcal{L} = T^*_x \mathcal{L} \otimes T^*_y \mathcal{L} \otimes \mathcal{L}^{\vee}$

Proof. Take f to be the constant morphism x, i.e. the composite $X \to \text{Spec } k \stackrel{x}{\to} X$, g the constant morphism y and $h = id_X$. Then $f + h = T_x$, $g + h = T_y$, $f + g + h = T_{x+y}$, and $f + g$ is the constant morphism $x + y$. So $\mathcal{M}_{f,g,h} = T^*_{x+y} \mathcal{L} \otimes T^*_x \mathcal{L}^\vee \otimes T^*_y \mathcal{L}^\vee \otimes \mathcal{L} \otimes \mathcal{O}_X \simeq \mathcal{O}_X$, hence the claim. \Box

Corollary 6.9. Let X be an abelian variety, $\mathcal L$ an invertible sheaf on X, $n \in \mathbb Z$, $[n]$: $X \to X$ multiplication by n. Then $[n]^* \mathcal{L} \cong \mathcal{L}^{\otimes n(n+1)/2} \otimes (i^* \mathcal{L})^{\otimes n(n-1)/2}$ where $i : X \to X$, $x \mapsto -x$.

Proof. $n = 0$ or 1 is trivial. Induction on $n \geq 2$. Take $f = [n-1], g = id_X = [1],$ $h = [-1] = i$. Then $\mathcal{M}_{f,g,h} \simeq \mathcal{O}_X$ tells us that

$$
[n-1]^{\ast}\mathcal{L}\simeq[n]^{\ast}\mathcal{L}\otimes[n-2]^{\ast}\mathcal{L}\otimes[0]^{\ast}\mathcal{L}\otimes[n-1]^{\ast}\mathcal{L}^{\vee}\otimes\mathcal{L}^{\vee}\otimes i^{\ast}\mathcal{L}^{\vee},
$$

i.e.

$$
[n]^*\mathcal{L} \simeq [n-1]^*\mathcal{L}^{\otimes 2} \otimes [n-2]^*\mathcal{L}^\vee \otimes \mathcal{L} \otimes i^*\mathcal{L}
$$

\simeq $\mathcal{L}^{\otimes [n(n-1)-\frac{1}{2}(n-1)(n-2)+1]} \otimes (i^*\mathcal{L})^{\otimes [(n-1)(n-2)-\frac{1}{2}(n-2)(n-3)+1]}$
\simeq $\mathcal{L}^{\otimes \frac{1}{2}n(n+1)} \otimes (i^*\mathcal{L})^{\otimes \frac{1}{2}n(n-1)}$

The result then follows for $n \geq 0$.

For $n < 0$ note that $[-n]^* \mathcal{L} = i^* [n]^* \mathcal{L}$, it follows from the $n > 0$ case.

 \Box

7 Pic of an Abelian Variety and Projectivity

Proposition 7.1. Let G/k be any group variety. Then G is non-singular.

Proof. Assume $k = k^{\text{alg}}$. The set of nonsingular closed points is dense (as G is a variety). Take $y \in G(k)$ to be nonsingular. Then for every $x \in G(k)$, $T_{xy^{-1}} : G \to G$ is an automorphism taking y to x , hence also x is nonsingular. \Box

Definition. Let X an abelian variety over k, \mathcal{L} an invertible \mathcal{O}_X -module.

(i) Define $\varphi_{\mathcal{L}} : X(k^{\text{alg}}) \to \text{Pic}(X_{k^{\text{alg}}})$ by

$$
\varphi_{\mathcal L}(x)=T_x^*{\mathcal L}\otimes{\mathcal L}^\vee\in{\rm Pic}(X_{k^{\rm alg}})
$$

for $x \in X(k)$. By the theorem of the square, $\varphi_{\mathcal{L}} : X(k^{\text{alg}}) \to Pic(X_{k^{\text{alg}}})$ is a homomorphism of groups.

(ii) $K(\mathcal{L}) := \ker \varphi_{\mathcal{L}} \subseteq X(k^{\text{alg}})$ is a subgroup. $\operatorname{Pic}^0(X) := \{ \mathcal{L} \in \operatorname{Pic}(X) \mid \varphi_{\mathcal{L}} = 0 \}.$ Let $NS(X) = Pic(X)/Pic^{0}(X)$.

Remark. By definition, $x \in K(\mathcal{L})$ iff $T_x^* \mathcal{L} \otimes \mathcal{L}^{\vee}$ is trivial. By Seesaw part (i), this implies that $K(\mathcal{L})$ is the set of k^{alg} -points of a closed subscheme of X.

Proposition 7.2. Let $\mathcal{M}(\mathcal{L}) = m^*\mathcal{L} \otimes pr_1^*\mathcal{L}^\vee \otimes pr_2^*\mathcal{L}^\vee$ on $X \times X$ ("Mumford line bundle"). Then $\mathcal{L} \in \text{Pic}^0(X)$ iff $M(\mathcal{L}) \simeq \mathcal{O}_{X \times X}$.

Proof. Assume $k = k^{\text{alg}}$. Let $x \in X(k)$. Then since

$$
m \circ (\mathrm{id}_X, x) = T_x,
$$

\n
$$
\text{pr}_1 \circ (\mathrm{id}_X, x) = \mathrm{id}_X,
$$

\n
$$
\text{pr}_2 \circ (\mathrm{id}_X, x) = \text{constant } x : X \to X,
$$

we have $\mathcal{M}|_{X\times\{x\}}\simeq T_x^*\mathcal{L}\otimes \mathcal{L}^\vee$ and similarly $\mathcal{M}|_{\{e\}\times X}\simeq \mathcal{O}_X$. So by Seesaw (ii), $\mathcal{M}(\mathcal{L})\simeq$ $\mathcal{O}_{X \times X}$ iff for all $x, T^*_x \mathcal{L} \otimes \mathcal{L}^{\vee} \simeq \mathcal{O}_X$ i.e. $\mathcal{L} \in \text{Pic}^0(X)$. \Box

This is one of a number of different characterizations of $Pic⁰$.

Let D be an effective divisor on X, i.e. $D = \sum_i n_i D_i$, $D_i \subseteq X$ integral closed subscheme of codimension 1. Note that Weil divisors are the same as Cartier divisors as X is nonsingular. Define $H(D) = \{x \in X(k^{alg}) \mid T_x D = D\}$. As $\mathcal{O}_X(T_x D) = T^*_{-x} \mathcal{O}_X(D)^1$ $\mathcal{O}_X(T_x D) = T^*_{-x} \mathcal{O}_X(D)^1$, $H(D) \subseteq$ $K(\mathcal{O}_X(D))$ is a subgroup.

Remark. $H(D)$ is the set of k^{alg} -points of a closed subscheme of X, but for much more obvious reasons than for $K(\mathcal{L})$. Indeed, if $Y \subseteq X$ is closed, then $T_xY = Y$ iff $\{x\} \times Y \subseteq Y$ $m^{-1}(Y) \subseteq X \times X$ iff $x \in \bigcap_{y \in Y} \{x \in X \mid (x, y) \in m^{-1}(Y)\} = \bigcap_{y \in Y} \text{pr}_1(X \times \{y\} \cap m^{-1}(Y))$ which is closed since pr_1 is proper.

¹Suppose div(f) = D locally, then as $(T_x^* f)(y) = f(x + y)$, we have div $(T_x^* f) = D - x = T_{-x}D$

Theorem 7.3. Let $\mathcal{L} = \mathcal{O}_X(D)$, D an effective divisor. TFAE:

- (i) L is ample, i.e. $H^0(X, \mathcal{L}^{\otimes m})$ for sufficiently large m gives an embedding $X \hookrightarrow \mathbb{P}_k^N$.
- (*ii*) $K(\mathcal{L})$ *is finite.*
- (iii) $H(D)$ is finite.

Proof. " $(ii) \Rightarrow (iii)$ " is obvious. Assume $k = k^{\text{alg}}$. " $(i) \Rightarrow (ii)$ " Assume $\mathcal L$ is ample, but $K(\mathcal{L})$ is infinite. By a previous remark, $K(\mathcal{L})$ is the set of k-points of some reduced closed subscheme, necessarily a group scheme. Looking at the irreducible component containing e we get that $K(\mathcal{L})$ contains an abelian subvariety Y of positive dimension. The restriction of L to Y is ample. So replacing X by Y we may assume $K(\mathcal{L}) = X(k)$, i.e. $\varphi_{\mathcal{L}} = 0$ and $\dim X > 0$. Then for all $x \in X(k)$, $T_x^* \mathcal{L} \simeq \mathcal{L}$, so $m^* \mathcal{L} \simeq \text{pr}_1^* \mathcal{L} \otimes \text{pr}_2^* \mathcal{L}$ on $X \times X$ by Proposition [7.2](#page-28-2) as $\mathcal{L} \in \text{Pic}^0(X)$. Pullback via $d: X \to X \times X$, $d(x) = (x, -x)$. Then $m \circ d$ is the constant morphism e , $pr_1 \circ d = id_X$ and $pr_2 \circ d = i = [-1]$. So $\mathcal{O}_X \simeq \mathcal{L} \otimes i^* \mathcal{L}$. \mathcal{L} is ample, so $i^*\mathcal{L}$ is ample as i is an automorphism, hence \mathcal{O}_X is ample which is not possible as dim $X > 0$.

"(iii) \Rightarrow (i)" Consider $\mathcal{O}_X(2D) = \mathcal{L}^{\otimes 2} \simeq T_x^* \mathcal{L} \otimes T_{-x}^* \mathcal{L} = \mathcal{O}_X(T_x D + T_{-x} D)$ (Theorem of the Square), i.e. for all $x \in X(k)$, there exists $s_x \in H^0(X, \mathcal{O}_X(2D))$ with $\text{div}(s_x) =$ $T_xD + T_{-x}D - 2D$. If $y \in X(k)$, then $y \in T_xD \cup T_{-x}D$ iff one of $y \pm x$ is in D. So given y, there exists x such that $y \notin T_x D \cup T_{-x} D = \{$ zero set of $s_x\}$. So the map $X \stackrel{f}{\to} \mathbb{P}^N$, where $N = \dim H^0(X, \mathcal{O}(2D)) - 1$, given by sections of $\mathcal{O}_X(2D)$ is a morphism, i.e. defined everywhere. Claim: The fibres of f are finite. If so, then $\mathcal{O}_X(2D) = f^*\mathcal{O}_{\mathbb{P}^n}(1)$ is ample, hence so is \mathcal{L} , because of the following general fact: If $f : X \to Y$ is a morphism of complete varieties with finite fibres, and M on Y is ample, then $f^*\mathcal{M}$ is ample on X [\[Har77,](#page-40-4) Chapter III, Exercise 5.7].

If some fibre of f is infinite, then it contains a curve C. Let $y \in C(k)$. Then by above there exists $x \in X(k)$ such that $y \notin$ zero set of $s_x = T_x D \cup T_{-x} D$. Then as $f(C)$ consists of only a single point, for this $x, C \cap (T_x D \cap T_{-x} D) = \emptyset$.

Lemma 7.4. $(k = k^{\text{alg}})$. Let $C \subseteq X$ be any curve, $Y \subseteq X$ an irreducible divisor with $C \cap Y = \emptyset$. Then for all $y_1, y_2 \in C$, $T_{y_1-y_2}Y = Y$.

Assume the lemma, and apply it to each irreducible component Y of T_xD . So for all $y_1, y_2 \in C(k)$, $T_{y_1-y_2}$ maps T_xD to itself, so it maps D to itself. Since $C(k)$ is infinite, $H(D)$ is infinite. \Box

Proof of the lemma. Let $U = \{x \in X(k) \mid T_xY \not\supseteq C$, i.e. $T_xY \cap Y$ is finite}. We know $Y \cap C = \emptyset$. Then for all $x \in U$, $T_{-x}Y \cap C = \emptyset = Y \cap T_xC$ (because the "degree of divisor on a curve is constant in a family", see next section). Let $y_1, y_2 \in C(k)$, $z \in Y(k)$. Then $z \in T_{z-y_2}C \cap Y \neq \emptyset$, so $Y \supseteq T_{z-y_2}C$, hence $z - y_2 + y_1 = T_{z-y_2}(y_1) \in Y$, i.e. $T_{y_1-y_2}Y = Y.$ \Box

Corollary 7.5. Abelian varieties are projective.

Proof. Assume $k = k^{\text{alg}}$. We need to find an ample line bundle \mathcal{L} on X. Let $U \subseteq X$ be any nonempty open affine. Then $D = X \setminus U$ with the reduced subscheme structure is a reduced divisor (see Example Sheet 3, Exercise 6). Let $x \in H(D) = \{x \in X(k) \mid T_x D = D\}.$ Assume $e \in U$. Then $T_xU = U$, so $x \in U(k)$, i.e. $H(D) \subseteq U(k)$. But U is affine, and $H(D)$ is the set of k-points of some closed subscheme of X, which is complete. So $H(D)$ is a complete subvariety of the affine scheme U, hence $H(D)$ is finite and thus $\mathcal{O}(D)$ is ample by the theorem. \Box

So in theory one could write down equation for abelian varieties embedded in \mathbb{P}^n , but this is complicated, unless perhaps we are in the case of elliptic curves. See e.g. [\[Mum66;](#page-40-5) [Mum67a;](#page-40-6) [Mum67b\]](#page-40-7).

Corollary 7.6. For all $n \geq 1$, $\text{ker}([n]: X(k^{\text{alg}}) \to X(k^{\text{alg}}))$ is finite, and $[n]: X \to X$ is surjective. In particular, $X(k^{\text{alg}})$ is a divisible group.

Proof. The first statement implies the second by dimension reasons since X is complete. Assume $k = k^{\text{alg}}$. Suppose ker $[n]$ is infinite. Then ker $[n] \supseteq V$ for some variety V of dimension > 0 . Let $\mathcal L$ be any ample invertible sheaf on X (exists by the previous corollary). Then $[n]^* \mathcal{L}$ is trivial on the fibres of $[n]$, so in particular $[n]^* \mathcal{L}|_V$ is trivial. But $[n]^* \mathcal{L} =$ $\mathcal{L}^{\otimes n(n+1)/2} \otimes i^* \mathcal{L}^{\otimes n(n-1)/2}$. As \mathcal{L} is ample, so is $i^* \mathcal{L}$, hence so is $[n]^* \mathcal{L}$. So $[n]^* \mathcal{L}|_V$ is ample, contradicting dim $V > 0$. \Box

Remark. One can show more precisely: If char $k \nmid n$, then ker $[n] \simeq (\mathbb{Z}/n\mathbb{Z})^{2g}$, if char $k =$ $p \mid n$, one always has $\#\ker[n] < n^{2g}$. Here $g = \dim X$.

Theorem 7.7. There exists a dual abelian variety \hat{X} to X, dim $\hat{X} = \dim X$, together with an isomorphism $\psi : \widehat{X}(k^{\text{alg}}) \xrightarrow{\sim} \text{Pic}^0(X_{k^{\text{alg}}})$. Moreover, for all ample $\mathcal L$ on X , there exists a unique surjective homomorphism $X \xrightarrow{\lambda_{\mathcal{L}}} \hat{X}$ such that the composition $X(k^{\text{alg}}) \xrightarrow{\lambda_{\mathcal{L}}}$ $\widehat{X}(k^{\text{alg}}) \simeq \text{Pic}^0(X^{\text{alg}})$ is just $\varphi_{\mathcal{L}}$.

In fact, \hat{X} parameterizes *families* of invertible sheaves: There exists an invertible sheaf P on $X \times \widehat{X}$, with the following property: Let S be any k-scheme. We let

$$
\operatorname{Pic}(X \times S)^0 = \{ \mathcal{L} \in \operatorname{Pic}(X \times S) \mid \forall s \in S, \mathcal{L}|_{X \times \{s\}} \in \operatorname{Pic}^0(X \times \{s\}) \}.
$$

Then:

(i) If $\mathcal{L} \in \text{Pic}(X \times S)^0$, then there exists a unique $f : S \to \widehat{X}$ such that

$$
\mathcal{L} \simeq (\mathrm{id}_X \times f)^* \mathcal{P} \otimes \mathrm{pr}_2^* \mathcal{M},
$$

for some $\mathcal{M} \in Pic(S)$.

(ii) This gives a (functorial in S) bijection

$$
\widehat{X}(S) \xrightarrow{\sim} \frac{\operatorname{Pic}(X \times S)^0}{\operatorname{pr}_2^* \operatorname{Pic}(S)} \cong \{ \mathcal{L} \in \operatorname{Pic}(X \times S)^0 \mid \mathcal{L}|_{e \times S} \cong \mathcal{O}_S \}.
$$

Note that if we take $S = \text{Spec } k^{\text{alg}}$, we recover $\widehat{X}(k^{\text{alg}}) \simeq \text{Pic}^0(X_{k^{\text{alg}}}).$

Idea of proof:

- (1) Show that if $\mathcal L$ is ample, $\varphi_{\mathcal L}: X(k^{\text{alg}}) \to \text{Pic}^0(X_{k^{\text{alg}}})$. It is not difficult to show that $\text{im}(\varphi_{\mathcal{L}}) \subseteq \text{Pic}^0$, see Example Sheet 3, Question 2.
- (2) Define \widehat{X} to be the quotient of X by ker($\varphi_{\mathcal{L}}$).
	- If char $k = 0$, we just take the quotient of X by the finite group $K(\mathcal{L})$ of automorphisms of $X_{k^{\text{alg}}}$.
	- If char $k = p > 0$, have to work not with $K(\mathcal{L})$, but the largest closed subscheme $\underline{K}(\mathcal{L})$ such that $\mathcal{M}(\mathcal{L})|_{X\times\underline{K}(\mathcal{L})}$ is trivial, see [\[Mum70,](#page-40-1) Chapter III] for details.

Definition. A polarisation of an abelian variety X is an isogeny (i.e. a surjective homomorphism) $\lambda : X \to X$ such that for some ample $\mathcal{L} \in Pic(X_{k^{\text{alg}}})$, $\psi \circ \lambda = \varphi_{\mathcal{L}}$.

8 Jacobians of Curves

Throughout let X/k be a curve (i.e. nonsingular complete variety of dimension 1), $q =$ $\dim H^0(X, \Omega_{X/k}) = \dim H^1(X, \mathcal{O}_X)$ the genus of X

 $div(X)$ is the free abelian group on closed points of X. There is a degree homomorphism deg : div(X) $\to \mathbb{Z}$, $\sum n_i P_i \mapsto \sum n_i [k(P_i) : k]$. The divisor class group is Cl(X) = $Div(X)/\{div(f) | f \in k(X)^*\}$. And $Cl^0(X) = ker(\text{deg}: Cl(X) \to \mathbb{Z})$.

Theorem 8.1. There exists an abelian variety $J = J(X)$, the Jacobian of X, over k of dimension g with an isomorphism $J(k^{\text{alg}}) \simeq \text{Cl}^0(X_{k^{\text{alg}}}).$

Recall: (see e.g. [\[Har77,](#page-40-4) Chapter IV §1]) To a divisor D we associate the sheaf $\mathcal{O}_X(D)$ with

$$
\mathcal{O}_X(D)(U) = \{ f \in k(X) \mid \text{div}(f) + D \ge 0 \text{ on } U \}
$$

for open subsets $U \subseteq X$. Then $\mathcal{O}_X(D) \simeq \mathcal{O}_X(D')$ iff there exists a function f with $div(f) = D' - D$. This gives an isomorphism $Cl(X) \simeq Pic(X)$. Let $L(D) = \{f \in k(X) \mid$ $div(f) + D \ge 0$ = $H^0(X, \mathcal{O}_X(D))$ and $\ell(D) = \dim L(D)$. For $\mathcal{L} \in Pic(X)$, define $\deg \mathcal{L} =$ deg D where D is a divisor with $\mathcal{L} \simeq \mathcal{O}_X(D)$. Then $\text{Pic}^0(X) := \{ \mathcal{L} \in \text{Pic}(X) \mid \text{deg } \mathcal{L} = 0 \}.$

The canonical divisor class K_X is such that $\mathcal{O}_X(K_X) \simeq \Omega^1_{X/k}$, it has degree deg $K_X =$ $2g - 2$.

Theorem (Riemann-Roch Theorem).

Divisor version: $\ell(D) - \ell(K_X - D) = 1 - q + \deg D$.

Sheaf version:

- $h^0(\mathcal{L}) h^1(\mathcal{L}) = 1 g + \deg \mathcal{L}$ for all $\mathcal{L} \in Pic(X)$. (easy part)
- (Serre duality) $H^1(X, \mathcal{L}) \simeq H^0(X, \Omega_{X/k} \otimes \mathcal{L}^{\vee})^{\vee}$ (not so easy)

So in particular $h^1(\mathcal{O}_X(D)) = h^0(\mathcal{O}_X(K_X - D)).$

Proposition 8.2. Let V be a quasiprojective variety over k, $G \subseteq \text{Aut}(V)$ a finite subgroup. Then there exists a unique variety $V' = V/G$ and a proper morphism with finite fibres $\varphi: V \to V'$ such that

- (i) For all $\gamma \in G$, $\varphi \circ \gamma = \varphi$.
- (ii) φ induces a bijection $V(k^{\text{alg}})/G \stackrel{\simeq}{\to} V'(k^{\text{alg}})$ and an isomorphism on function fields $k(V') \xrightarrow{\simeq} k(V)^G$.
- (iii) ("categorical quotient") For all $\psi : V \to W$, morphism of k-schemes such that

 $\psi \circ \gamma = \psi$ for all $\gamma \in G$, there is a unique $\theta : V' \to W$ such that $\theta \circ \varphi = \psi$.

Sketch of proof. (See e.g. [\[Mum70,](#page-40-1) Chapter III])

- (1) $V = \text{Spec } A$ is affine. Then $B = A^G$ is a k-algebra of finite type, and A is a finite B-module. Then $V' = \text{Spec } B$ satisfies the properties.
- (2) V arbitrary quasi-projective. Let $x \in V$ be a closed point. Then there exists an open affine $U \subseteq V$ containing the orbit xG (Take the complement of a hypersurface not containing any elements of the finite set xG , e.g. take union of of hyperplane over some k'/k missing xG and its conjugates).

So $\bigcap_{\gamma\in G}U\gamma$ is an open affine (since V is separated) containing xG, i.e. V can be covered by G-equivariant open affines. Then use (1) and glue.

 \Box

Remark. The first step in (2) , every Gx is contained in an open affine, is the key hypothesis. There exists a proper V (3-fold in characteristic 0) and free $\mathbb{Z}/2$ -action such that V/G does not exist as a scheme. It is proper but not projective, V is Hironaka's famous counterexample, see [\[Har77\]](#page-40-4).

Remark. Proper + finite fibres \Leftrightarrow finite morphism.

Back to the curve X/k (smooth, projective). Recall $Cl(X) \stackrel{\simeq}{\longrightarrow} Pic(X) \stackrel{\deg}{\longrightarrow} \mathbb{Z}$.

Proposition 8.3. Let S be any connected k-scheme, $\mathcal{L} \in \text{Pic}(X \times S)$. Then

- (i) deg $\mathcal{L}_{X\times\{s\}}$ is independent of $s\in S$.
- (ii) For all $m \geq 0$, $\{s \in S \mid \dim_{k(s)} H^0(X \times \{s\}, \mathcal{L}|_{X \times \{s\}}) \geq m\}$ is closed.

Proof. (ii) follows from Seesaw, Corollary [6.4.](#page-25-0) (i) holds because the Euler characteristic $h^0 - h^1 = 1 - g + \deg D$ is constant in flat connected families, see [\[Har77,](#page-40-4) Chapter III] §9]. \Box

So Pic($X \times S$) = $\coprod_{n \in \mathbb{Z}}$ Picⁿ($X \times S$) if S is connected, where

$$
\operatorname{Pic}^n(X \times S) = \{ \mathcal{L} \in \operatorname{Pic}(X \times S) \mid \forall s \in S, \deg \mathcal{L}|_{X \times \{s\}} = n \}.
$$

And for all $\mathcal{G} \in \text{Pic}^n(X)$,

$$
\text{Pic}^0(X \times S) \xrightarrow{\sim} \text{Pic}^n(X \times S)
$$

$$
\mathcal{L} \mapsto \mathcal{L} \otimes \text{pr}_1^* \mathcal{G}
$$

In particular, if say $X(k) \neq \emptyset$, then $Pic^0 \simeq Pic^n$ for all n, and $Pic(X \times S) \cong Pic^0(X \times S) \times \mathbb{Z}$. From now on assume $k = k^{\text{alg}}$. Notation:

- D, D', \ldots will be divisors of some degree (usually g).
- E, \ldots divisor of degree 0.

Proposition 8.4.

- (i) If $deg(D) = g$, then $\ell(D) = h^0(X, \mathcal{O}_X(D)) \ge 1$.
- (ii) There exists D_0 of degree g, with $D_0 \geq 0$ and $\ell(D_0) = 1$.

Proof.

- (i) By Riemann Roch, $h^0(\mathcal{O}_X(D)) = h^1(\mathcal{O}_X(D)) + 1 \ge 1$ if $\deg D = g$.
- (ii) Let $\mathcal{L} \in \text{Pic}(X)$ with $\deg \mathcal{L} = d \geq 2g + 1$. Then $h^1(\mathcal{L}) = h^0(\mathcal{L}^{\vee} \otimes \Omega) = 0$. Then $h^0(\mathcal{L}) = d + 1 - g$. Also recall (e.g. [\[Har77,](#page-40-4) Chapter IV, Corollary 3.2(b)]) that $d \geq 2g + 1$ implies: Sections of $\mathcal L$ give a closed immersion $X \hookrightarrow \mathbb P_k^{d-g}$ \int_k^{a-g} (i.e. $\mathcal L$ is very ample), and the image is not contained in any hyperplane^{[1](#page-34-0)}.

Since $k = k^{\text{alg}}$ is infinite, there exist $P_1, \ldots, P_{d-g} \in X(k) \subseteq \mathbb{P}^{d-g}(k)$ not lying on any codimension 2 linear subspace. Then

$$
H^{0}(X, \mathcal{L} \otimes \mathcal{O}(-\sum P_{i})) = \{ s \in H^{0}(X, \mathcal{L}) \mid s(P_{1}) = \cdots = s(P_{d-g}) = 0 \}
$$

has dimension $H^0(\mathcal{L}) - (d - g) = 1$, so $\mathcal{L} \otimes \mathcal{O}_X(- \sum P_i) \cong \mathcal{O}_X(D_0)$ for some $D_0 \ge 0$, $deg(D) = g, \ell(D_0) = 1.$

$$
\Box
$$

Now fix a diviros D_0 with $D_0 \ge 0$, $\deg D_0 = g$ and $\ell(D_0) = 1$. Then for all $E \in Div^0(X)$, there exists $D' = P_1 + \cdots + P_g$ (say) with $\mathcal{O}(D') \cong \mathcal{O}(D_0 + E)$. So the map

$$
\pi_k: \{D' \ge 0 \text{ of degree } g\} \longrightarrow Cl^0(X),
$$

$$
D' \longmapsto \mathcal{O}_X(D'-D_0)
$$

is surjective. Note that

$$
\{D' \ge 0 \text{ of degree } g\} = \{\text{unordered } g\text{-tuples of elements of } X(k)\}
$$

$$
= X(k)^g / \text{Sym}(g) = (X^g / \text{Sym}(g))(k)
$$

 $X^{(g)} := X^g/Sym(g)$ is a first approximation to the Jacobian J which we will construct together with morphism $\pi: X^{(k)} \to J$. [N.B. "most" of the fibres of π_k have just one element]

¹The map is defined by taking a basis of $H^0(X, \mathcal{L})$ and take these basis elements as coordinates in \mathbb{P}_k^{d-g} . They are linearly independent, so no linear form can vanish everywhere on the image

Actually, $X^{(g)}$ is nonsingular (essential case is $\mathbb{A}^g/\operatorname{Sym}(g) = \operatorname{Spec} k[t_1,\ldots,t_g]^{\operatorname{Sym}(g)} =$ Spec $k[S_1, \ldots, S_g]$ where S_1, \ldots, S_g are the elementary symmetric polynomials).

We use this to construct J with $J(k) \cong Pic^0(X)$. Precisely: Fix $x_0 \in X(k)$.

Theorem 8.1 (souped-up). There exists an abelian variety J/k , and $P \in Pic^0(X \times J)$ with $\mathcal{P}|_{\{x_0\}\times J}\cong \mathcal{O}_J$, such that for all k-schemes S:

$$
J(S) \xrightarrow{\simeq} \{ isomorphism \ classes \ of \ \mathcal{L} \in \text{Pic}^0(X \times S) \ with \ \mathcal{L}|_{\{x_0\} \times S} \cong S \},
$$

$$
(f : S \to J) \longmapsto (\text{id}_X \times f)^* \mathcal{P}
$$

In particular, $J(k) \simeq Pic^0(X)$.

Remark. If $\mathcal{L} \in \text{Pic}^0(X \times S)$, for any $\mathcal{M} \in \text{Pic}(S)$ let $\mathcal{L}' = \mathcal{L} \otimes \text{pr}_2^* \mathcal{M} \in \text{Pic}^0(X \times S)$. Then for all $s \in S$, $\mathcal{L}|_{X\times\{s\}} \simeq \mathcal{L}'|_{X\times\{s\}}$, hence $\mathcal L$ and $\mathcal L'$ should correspond to the same element of $J(S)$. But $\mathcal{L}' \otimes \mathcal{L}^{\vee}|_{\{x_0\} \times S} = \mathcal{M}$. So by fixing $\mathcal{L}|_{\{x_0\} \times S} \simeq \mathcal{O}_S$, we get rid of this ambiguity.

Lemma 8.5 (Version 0). There exists a variety U_0 (ultimately a dense open in J) and $\mathcal{P}_0 \in \text{Pic}^0(X \times U_0)$, with $\mathcal{P}_0|_{\{x_0\} \times U_0} \simeq \mathcal{O}_{U_0}$ such that for all varieties S,

$$
U_0(S) \xrightarrow{\simeq} \left\{ \text{iso. classes } \mathcal{L} \in \text{Pic}^0(X \times S) \middle| \begin{array}{c} \mathcal{L}|_{\{x_0\} \times S} \cong \mathcal{O}_S \text{ and for all } s \in S, \\ h^0(\mathcal{L}|_{X \times \{s\}} \otimes \mathcal{O}_X(D_0)) = 1 \end{array} \right\}
$$

via $(f : S \to U_0) \mapsto (\mathrm{id}_X \times f)^* \mathcal{P}_0$.

Note that always $h^0(\mathcal{L}_{X\times\{s\}}\otimes\mathcal{O}_X(D_0))\geq 1$ by Proposition [8.4.](#page-34-1)

Proof. Construct U_0 as an open subset of $X^{(g)}$. There is $\mathcal{M} \in Pic(X \times X^{(g)})$ with $\mathcal{M}|_{X\times\{D'\}}\simeq\mathcal{O}_X(D')$ for all $D'\in X^{(g)}(k)$ and $\mathcal{M}|_{\{x_0\}\times X^{(g)}}\simeq\mathcal{O}_{X^{(g)}}$ which we construct as follows:

$$
X \times X^g \supseteq \Delta_X \times X^{g-1} = \{(x_1, x_1, \dots, x_g)\}
$$

quotient
$$
\downarrow \text{idx} \times \varphi
$$

$$
X \times X^{(g)} \supseteq Y = (\text{id}_X \times \varphi)(\Delta_X \times X^{g-1})
$$

Then for all $D' \in X^{(g)}(k)$, $Y|_{X\times\{D'\}} = D'$. Let $\mathcal{M}' = \mathcal{O}_{X\times X^{(g)}}(Y)$. Then

$$
\mathcal{M}=\mathcal{M}'\otimes\mathrm{pr}_2^*\mathcal{M}'|_{\{x_0\}\times X^{(g)}}^\vee
$$

satisfies the conditions.

Let $W = \{s \in X^{(g)} \mid h^0(\mathcal{M}|_{X \times \{s\}}) = 1\}.$ This is open in $X^{(g)}$ by semicontinuity, and is nonempty, as $D_0 \in W(k)$ by definition of D_0 . Then take $(U_0, \mathcal{P}_0) = (W, \mathcal{M}|_W \otimes$ $pr_1^* \mathcal{O}_X(-D_0)$. If $f: S \to U_0$ is any morphism, then $\mathcal{L} = (\text{id}_X \times f)^* (\mathcal{M} \otimes \mathcal{O}_X(-D_0)) \in$ $Pic^0(X\times S)$ is trivial on $\{x_0\}\times S$ and $h^0(\mathcal{L}|_{X\times \{s\}}\otimes \mathcal{O}(D_0))=1$ for all $s\in S$ by construction. We want every L to arise in this way. Let $\mathcal{L} \in Pic^0(X \times S)$ and consider $\mathcal{L} \otimes pr_1^* \mathcal{O}_X(D_0) =$

Q. Then $h^0(\mathcal{Q}|_{X\times\{s\}})=1$ for all $s\in S$. As in the proof of seesaw, locally on S, $\mathcal L$ has a section, unique up to unit in \mathcal{O}_S , whose restriction to each fibre $X \times \{s\}$ is nonzero. The zero-set of these sections the glue to give family of divisors of degree g in $X \times S$ which determines a morphism $S \to \widetilde{X}^{(g)}$ and its image is in U_0 . \Box

Having constructed U_0 , we just need to glue together some copies (translates!) to cover J.

Let D_1, D_2, \ldots be some divisors ≥ 0 of degree g, but we no longer assume $\ell(D_i) = 1$.

We modify the lemma by replacing 0 by $i \geq 1$:

Lemma 8.5 (Version 1). There exists a variety U_i (ultimately a dense open in J) and $\mathcal{P}_i \in \text{Pic}^0(X \times U_i)$, with $\mathcal{P}_i|_{\{x_0\} \times U_i} \simeq \mathcal{O}_{U_i}$ such that for all varieties S,

$$
U_i(S) \xrightarrow{\simeq} \left\{ \text{iso. classes } \mathcal{L} \in \text{Pic}^0(X \times S) \middle| \begin{array}{c} \mathcal{L}|_{\{x_0\} \times S} \cong \mathcal{O}_S \text{ and for all } s \in S, \\ h^0(\mathcal{L}|_{X \times \{s\}} \otimes \mathcal{O}_X(D_i)) = 1 \end{array} \right\}
$$

via $(f : S \to U_i) \mapsto (\mathrm{id}_X \times f)^* \mathcal{P}_i$.

For the proof, just take $(U_i, \mathcal{P}_i) = (W, \mathcal{M}|_W \otimes \mathcal{O}_X(-D_i)).$

Now glue: Let $U_{ij} \subseteq U_i, U_j$ be the open subscheme whose S-points are

$$
\left\{\mathcal{L}\in \mathrm{Pic}^0(X\times S)\middle|\ \underset{h^0(\mathcal{L}|_{X\times\{s\}}\otimes \mathcal{O}_X(D_i))}{\mathcal{L}|_{\{x_0\}\times S}\cong \mathcal{O}_S \text{ and for all } s\in S,}_{h^0(\mathcal{L}|_{X\times\{s\}}\otimes \mathcal{O}_X(D_j))} \right\}
$$

The U_{ij} are compatible for U_i, U_j, U_l . This defines a scheme $J = \bigcup_i U_i$ by gluing, once we have chosen the D_i 's. Go back to $X^{(g)} \stackrel{\pi}{\to} J$ defined locally as follows: $W_0 = W \stackrel{\simeq}{\to} U_0$ and $\pi_i: W_i \to U_i$ where $W_i = \{s \in X^{(g)} \mid h^0(\mathcal{M}|_{X \times \{s\}} \otimes \mathcal{O}_X(D_i - D_0)) = 1\}$ is open in $X^{(g)}$ and contains a point corresponding to $D' \in [2D_0 - D_i]$ since $\ell(D_0) = 1$. By the lemma, $\pi_i \in U_i(W_i)$ corresponds to some \mathcal{L}_i on W_i . Take this \mathcal{L}_i to be $\mathcal{M} \otimes \mathcal{O}(-D_0)$.

Every $D \in X^{(g)}(k)$ lies in W_i for some D_i $(D_i \in [2D_0 - D]$ will do). So $X^{(g)}$ being quasi-compact is a finite union of W_i , for a suitable finite family $(D_i)_{0 \leq i \leq n}$. The π_i are surjective, so $J = \bigcup_{i=0}^n U_i$.

Now define the group law $m: J \times J \rightarrow J$. Define it on the open subsets $U_i \times U_j$ as follows: Let $(x, y) \in U_i(k) \times U_j(k)$ correspond to $\mathcal{P}_{i,x}, \mathcal{P}_{j,y} \in \text{Pic}^0(X)$. Then $\mathcal{P}_{i,x} \otimes \mathcal{P}_{j,y}$ corresponds to some $z \in U_l(k)$ for some l. Take this to be the image of (x, y) under m. Note that $\mathcal{P}_{i,x} \otimes \mathcal{P}_{j,y}$ is the fibre of $\mathcal{L} = \text{pr}_1^* \mathcal{P}_i \otimes \text{pr}_2^* \mathcal{P}_j$ on $U_i \times U_j$ above (x, y) and $h^0(\mathcal{L}|_{(x,y)} \otimes \mathcal{O}(D_l)) = 1.$ Then there is a neighborhood V of $(x,y) \in U_i \times U_j$ on which h^0 of $\mathcal{L} \otimes \mathcal{O}(D_l) = 1$. Hence this gives a morphism $V \to U_l$ and this is our m (locally).

Then one needs to check that this defines a morphism $J \times J \to J$, that J becomes a group variety in this way, and that $\pi: X^{(g)} \to J$ is surjective, thus proving that J is projective, hence an abelian variety.

9 Extra Lecture: Proof of Cube

Recall:

Theorem (Theorem of the cube). Let X, Y, Z be varieties, X, Y complete. Let x, y, z be k-points of X, Y, Z, $\mathcal L$ an invertible sheaf on $X \times Y \times Z$. Suppose the restriction of $\mathcal L$ to each of $\{x\} \times Y \times Z$, $X \times \{y\} \times Z$, $X \times Y \times \{z\}$ is trivial. Then $\mathcal L$ is trivial.

Remark. This implies that

$$
Pic(X \times Y) \oplus Pic(X \times Z) \oplus Pic(Y \times Z) \xrightarrow{projection^*} Pic(X \times Y \times Z)
$$

is surjective.

Proof. We will prove a slightly more general statement.

(a) First replace Z by Spec A, A a finite local k-algebra, e.g. $k[t]/(t^n)$. As $z \in Z(k)$, $Z = \{z\}$, and $A/\mathfrak{m}_A = k(z) = k$. We induct on dim_k A. If the dimension is 1, then $Z = \operatorname{Spec} k$, so we are done as $\mathcal{L} = \mathcal{L}|_{X \times Y \times \{z\}} \simeq \mathcal{O}$.

Now suppose $\dim_k A > 1$. Then there is an ideal $I \subseteq A$ with $\dim_k I = 1$ (take any minimal non-zero ideal). Let $Z_1 = \operatorname{Spec} A/I \hookrightarrow Z$.

Lemma 9.1. Let V be a complete variety. Then $H^0(V \times \text{Spec } B, \mathcal{O}) = B$ for any k-algebra B.

This is the special case $A = k$ of Corollary [6.3](#page-24-1)

Lemma 9.2. Let V be a complete variety. There is an exact sequence (functorial in $V)$

$$
0 \to H^1(V, \mathcal{O}_V) \to Pic(V \times Z) \to Pic(V \times Z_1)
$$

A particular case of this is $A = k[t]/(t^2)$, $Z_1 = \text{Spec } k, I = (t)$. Then

$$
H^{1}(\mathcal{O}) = \ker(\text{Pic}(V \times \text{Spec } k[t]/(t^{2})) \to \text{Pic } V) = \text{``tangent space to Pic".}
$$

Proof.I = (t) = kt, $t^2 = 0$, so $(1 + a)(1 + b) = 1 + (a + b)$ for all $a, b \in I$. Then $0 \to I \to A^{\times} \to (A/I)^{\times} \to 0$ is exact where the first map is given by $a \mapsto 1 + a$. We globalise this and get an exact sequence $0 \to I\mathcal{O}_{V\times S} \to \mathcal{O}_{V\times Z}^{\times} \to \mathcal{O}_{V\times Z_1}^{\times} \to 0$ of abelian group sheaves on the topological space of $V \approx V \times Z.$

Also $\mathcal{O}_V \stackrel{t}{\simeq} I\mathcal{O}_{V\times Z}$. Note that $H^0(V\times Z,\mathcal{O})^{\times} = A^{\times} \to H^0(V\times Z_1,\mathcal{O})^{\times} = (A/I)^{\times}$ is still surjective, so the long exact sequence in cohomology becomes

$$
0 \to H^1(V, \mathcal{O}_V) \to Pic(V \times Z) \to Pic(V \times Z_1).
$$

 \Box

Back to cube, $Z = \text{Spec } A$. By induction, we may assume $\mathcal{L}|_{X \times Y \times Z_1}$ is trivial. By Lemma [9.2](#page-37-1) applied to X, Y and $X \times Y$ we get the following diagram:

$$
0 \longrightarrow H^{1}(X \times Y, \mathcal{O}) \longrightarrow Pic(X \times Y \times Z) \longrightarrow Pic(X \times Y \times Z_{1})
$$

\n
$$
\downarrow^{a} \qquad \qquad \downarrow^{b} \qquad \qquad \downarrow^{b}
$$

\n
$$
0 \longrightarrow H^{1}(X, \mathcal{O}) \oplus H^{1}(Y, \mathcal{O}) \longrightarrow Pic(X \times Z) \oplus Pic(Y, Z) \longrightarrow Pic(X \times Z_{1}) \oplus Pic(Y, Z_{1})
$$

The vertical maps are (y^*, x^*) where $Y \stackrel{x}{\hookrightarrow} X \times Y \stackrel{y}{\hookleftarrow} X$.

Then $\mathcal{L} \in \ker b \cap \ker c \simeq \ker a$.

Lemma 9.3. a is an isomorphism.

This then implies $\mathcal{L} \simeq \mathcal{O}$, so we are done.

Lemma [9.3](#page-38-0) is a special case of:

Theorem (Künneth formula). Let X, Y be varieties over k, F (resp. \mathcal{G}) a quasicoherent \mathcal{O}_X -module (resp. \mathcal{O}_Y -module). Let $\mathcal{H} = \text{pr}_1^* \mathcal{F} \otimes \text{pr}_2^* \mathcal{G}$. Then:

$$
H^{n}(X \times Y, \mathcal{H}) = \bigoplus_{p+q=n} H^{p}(X, \mathcal{F}) \otimes H^{q}(Y, \mathcal{G}).
$$

In our case take $\mathcal{F} = \mathcal{O}_X, \mathcal{G} = \mathcal{O}_Y$. Then $H^1(X \times Y, \mathcal{O}) = H^0(X, \mathcal{O}) \otimes H^1(Y, \mathcal{O}) \oplus$ $H^1(X, \mathcal{O}) \otimes H^0(Y, \mathcal{O})$ and $H^0(X, \mathcal{O}) = k = H^0(Y, \mathcal{O})$ as X, Y are complete.

Idea of proof of the Künneth formula: Let $X = \bigcup U_i, Y = \bigcup V_j$ be open affine coverings. Then $X \times Y = \bigcup_{i,j} U_i \times V_j$. Now compare $\check{C}^{\bullet}(\{U_i \times V_j\}, \mathcal{H})$ and $\check{C}^{\bullet}(\{U_i\}, \mathcal{F}) \otimes_k$ $\check{C}^{\bullet}(\{V_j\}, \mathcal{G})$. See [Stacks, 0BED.](https://stacks.math.columbia.edu/tag/0BED)

(b) $Z = \text{Spec } A$, A a local noetherian k-algebra, $z \in Z$ the closed point. Let $Z_n =$ Spec A/\mathfrak{m}_A^n for $n \geq 1$. By (a), $\mathcal{L}|_{X \times Y \times Z_n}$ is trivial for all n. Recall from the seesaw proof that there exist finite cyclic A-modules M, M' such that for all k-algebra homomorphisms $A \to B$, $H^0(X \times Y \times \text{Spec } B, \mathcal{L}_B) = \text{Hom}_A(M, B)$ and same with $\mathcal{L}_{B}^{\vee}, M'$. Since $\mathcal{L}|_{X\times Y\times Z_n}$ is trivial, Lemma [9.1](#page-37-2) gives $M\otimes A/\mathfrak{m}^n \cong A/\mathfrak{m}^{n}$. Therefore $\text{Ann}_A(M) \subseteq \bigcap_{n \geq 1} \mathfrak{m}^n = \{0\}.$ So $M \simeq A \simeq M'.$ Then \mathcal{L}_B and \mathcal{L}_B^{\vee} both have non-zero H^0 , so $\mathcal{L} \simeq \mathcal{O}$.

This is a scheme-theoretic version of semicontinuity: there is a maximal closed subscheme $Z^* \subseteq Z$ such that $\mathcal{L}|_{V \times Z^*} \simeq \mathcal{O}$ where $V = X \times Y$. As $Z^* \supseteq Z_n$ for all n we get $Z^* = Z$.

(c) Now let Z be a variety. Then $\mathcal{L}|_{X\times Y\times \operatorname{Spec} \mathcal{O}_{Z,z}} \simeq \mathcal{O}$ by part (b), so $F = \{z' \in Z \mid$ $\mathcal{L}|_{X\times Y\times \times \{z'\}}$ is trivial is closed (by seesaw) and contains the generic point of Z as it

¹L.T.: How do we get this from the Lemma? We get $\text{Hom}_A(M, A/\mathfrak{m}^n) \simeq A/\mathfrak{m}^n$, but how do we get $M \otimes A/\mathfrak{m}^n$ from this? Anyway, it is also clear from $\text{Hom}_A(M, A/\mathfrak{m}^n) \simeq A/\mathfrak{m}^n$ that $\text{Ann}_A M \subseteq \mathfrak{m}^n$.

is also the generic point of Spec $\mathcal{O}_{Z,z}$. Then $F = Z$, hence $\mathcal{L} = \text{pr}_3^* \mathcal{M}$ by seesaw for some M on Z. Then $\mathcal{O}_Z \simeq \mathcal{L}|_{\{x\} \times \{y\} \times Z} \simeq \mathcal{M}$. Then \mathcal{L} is trivial.

 \Box

Bibliography

- [BL04] Christina Birkenhake and Herbert Lange. Complex Abelian Varieties. Second, Augmented Edition. Vol. 302. Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics. Berlin, Heidelberg: Springer Berlin / Heidelberg, 2004.
- [Har77] Robin Hartshorne. Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977.
- [Mum66] D. Mumford. "On the equations defining abelian varieties. I". In: Inventiones mathematicae 1.4 (1966).
- [Mum67a] D. Mumford. "On the equations defining abelian varieties. II". In: Inventiones mathematicae 3.2 (1967).
- [Mum67b] D. Mumford. "On the equations defining abelian varieties. III". In: Inventiones mathematicae 3.3 (1967).
- [Mum70] David Mumford. Abelian varieties. Tata Institute of Fundamental Research Studies in Mathematics. Published for the Tata Institute of Fundamental Research, Bombay by Oxford University Press, London, 1970.
- [Swi74] Peter Swinnerton-Dyer. Analytic theory of Abelian varieties. London Mathematical Society lecture note series 14. 1974.

Index

Pic⁰ of an abelian variety, [29](#page-28-3) Abel-Jacobi map, [3](#page-2-1) Theorem, [3](#page-2-1) abelian variety over C, [3](#page-2-1) over arbitrary k, [23](#page-22-2) Appell-Humbert theorem, [17](#page-16-0) closed subgroup scheme, [22](#page-21-0) constant group scheme, [21](#page-20-1) divisor, [2](#page-1-1) class group, [2](#page-1-1) divisor group, [2](#page-1-1) principal divisor, [2](#page-1-1) Dolbeaut isomorphism, [12](#page-11-1) dual abelian variety, [31](#page-30-0) exponential sequence, [6](#page-5-0) group scheme, [20](#page-19-1) group variety, [23](#page-22-2) Hodge decomposition, [11](#page-10-0) Jacobian variety over C, [3](#page-2-1) over arbitrary k , [33](#page-32-1)

kernel of a group scheme homomorphism, [22](#page-21-0) lattice, [3](#page-2-1) Mumford line bundle, [29](#page-28-3) Mumford's Rigidity Lemma, [23](#page-22-2) Neron-Severi group over C, [14](#page-13-1) over arbitary k , [29](#page-28-3) period homomorphism, [3](#page-2-1) polarisation over C, [19](#page-18-0) over arbitrary k, [32](#page-31-0) quotient variety, [33](#page-32-1) Riemann form, [15](#page-14-0) Riemann period relations, [4](#page-3-1) Riemann-Roch theorem, [33](#page-32-1) Seesaw Theorem, [25](#page-24-2) Serre duality, [6](#page-5-0) theorem of the cube, [27,](#page-26-0) [38](#page-37-3) theorem of the square, [28](#page-27-0) Yoneda Lemma, [20](#page-19-1)