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1 Motivation: Curves and the Abel-Jacobi
Map

Let X be a smooth irreducible projective curve over C, equivalently a compact connected
Riemann surface. Let g be its genus.

We recall some basic algebraic geometric notions:

Definition. The Divisor group of X is

Div(X) = Z[X] = {finite sums
∑
P∈X

mPP , mP ∈ Z}.

The degree-map is

deg : Div(X) −→ Z,∑
P∈X

mPP 7−→
∑
P∈X

mP .

Its kernel is denoted Div0(X) := ker deg.

The function field k(X) of X is the set of rational, equivalently meromorphic, functions
on X. To 0 ̸= f ∈ k(X) we associate the principal divisor

div(f) =
∑
P∈X

ordP (f)P ∈ Div0(X).

The class group of X is

Cl(X) =
Div(X)

{div(f) | f ∈ k(X)∗}

We also let Cl0(X) := ker(deg : Cl(X)→ Z).

Another interpretation of Cl(X) is given by invertible sheaves: A divisor D ∈ Div(X)
gives rise to an invertible sheaf OX(D). Then D is principal if and only if OX(D) is
trivial. This induces an isomorphism

Cl(X) ≃ {isomorphism classes of invertible sheaves} =: Pic(X).

The set of holomorphic differentials on X is written H0(X,ΩX). It is a complex vector
space of dimension g, so H0(X,ΩX) =

⊕
1≤i≤g Cωi, for some holomorphic differentials

ω1, . . . , ωg.

Let γ : [0, 1] → X be a piecewise C1 curve. Then we get a g-tuple of complex numbers
(
∫
γ ωi)1≤i≤g ∈ Cg. Better: It is an element of the dual space of H0(X,ΩX).
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If γ, γ′ are homologous with same endpoints, then
∫
γ =

∫
γ′ . In particular, if we take γ to

be a closed path, this gives a map

α : H1(X,Z)→ Cg,

γ −→
(∫

γ
ωi

)
i
.

It is called the period homomorphism.

Theorem 1.1 (Riemann). The map α is injective, and its image is a lattice in Cg.
Moreover, Cg/ imα is the set of complex points of a smooth algebraic variety over C,
called the Jacobian variety J(X) of X. The group law on C/ imα is given by a morphism
J(X)× J(X)→ J(X).

Recall that a lattice in Cg is a subgroup generated by 2g R-linearly independent vectors.

If A is an irreducible projective variety over C, together with a morphism m : A×A→ A
such that m(C) : A(C)× A(C)→ A(C) makes A(C) into a group, we say A is an abelian
variety.

Fix a point P0 ∈ X. If P ∈ X, let γP be a path from P0 to P . Any two such paths differ
by a closed path, so (

∫
γP
ωi)1≤i≤g is well-defined modulo Λ := im(α), giving a map

X −→ Cg/Λ = J(X),

P 7−→
(∫

γP

ωi

)
mod Λ.

This extends to a homomorphism

AJP0 : Div(X)→ Cg/Λ,

the Abel-Jacobi map.

Let P ′
0 ∈ X be another point, δ a path from P ′

0 to P0. Then

AJP ′
0
(P ) = AJP0(P ) +

(∫
δ
ωi

)
i
.

More generally, if D ∈ Div(X), then

AJP ′
0
(D) = AJP0(D) + (degD)

(∫
δ
ωi

)
i
.

So AJ = AJP0 : Div0(X)→ Cg/Λ is independent of P0.

Theorem 1.2 (Abel-Jacobi Theorem). AJ : Div0(X)→ Cg/Λ is surjective and its kernel
is the set of principal divisors. In other words, AJ induces an isomorphism

Cl0(X)
≃−→ Cg/Λ.
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2 Homology of Riemann Surfaces
Let X be as before. Then H1(X,Z) ∼= Z2g is generated by simple closed curves aj , bj
(1 ≤ j ≤ g) disjoint except for aj meeting bj transversally in one point, with the same
orientation.

genus 2 Riemann surface and the generators a1, a2, b1, b2 of H1(X,Z)

Let Aij =
∫
aj
ωi, Bij =

∫
bj
ωi. So Λ = im(α) is span of the columns of the g × 2g-matrix

(A | B).

To prove Theorem 1.1 we need some special properties of this matrix:

Theorem 2.1 (Riemann period relations).

(a) ABt is symmetric.

(b) The Hermitian matrix 1
i (BA

t −ABt
) is positive definite.

These properties can be restated as follows:

(a) ⇔
∑

j(AijBi′j −BijAi′j) = 0 for all i, i′.

(b) ⇔ Im
(∑

j

∫
aj
ω
∫
bj
ω
)
> 0 for all 0 ̸= ω ∈ H0(X,ΩX).

From this, it follows easily that A,B are invertible and that the columns of (A | B) linearly
independent over R, so Λ is a lattice. Later we will see that (b) is precisely the condition
that Cg/Λ is a projective variety.

Lemma 2.2. Let ω, η be closed (dω = 0 = dη) 1-forms on X (not necessarily holomor-
phic). Then ∫

X
ω ∧ η =

∑
j

∫
aj

ω

∫
bj

η −
∫
bj

ω

∫
aj

η.

Assume this for the moment. Take (ω, η) = (ωi, ωi′) where (ωi)i is our fixed basis for
holomorphic 1-forms. As dz ∧ dz = 0, the the left side vanishes, and the first Riemann
period relation follows. For the second take ω ∈ H0(X,ΩX) and consider (ω, ω). Locally
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ω = f(z)dz with holomorphic f , so

ω ∧ ω = ffdz ∧ dz = 2i|f |2dx ∧ dy.

So if ω ̸= 0, we get

0 <
1

i

∫
X
ω ∧ ω =

g∑
j=1

1

i

[∫
aj

ω

∫
bj

ω −
∫
bj

ω

∫
aj

ω

]
= 2

∑
j

Im

∫
aj

ω

∫
bj

ω

Proof of the Lemma. Cut X along the curves aj , bj ; Let X
∗ be the resulting surface with

boundary. It is a sphere with g holes. The gluing map π : X∗ → X induces the zero

Cutting X along aj , bj

map 0 = π∗ : H1(X
∗,Z) → H1(X,Z) since H1(X

∗,Z) is generated by the elements
a+i −b

+
i −a

−
i +b−i . So on X∗ there exists a single valued f such that ω = df .1 If p+, p− are

points on a+j , a
−
j with same image in X, then f(p+) − f(p−) =

∫ p+
p− df =

∫
bj
ω. Similarly

for points q± on b±j . The oriented boundary of X∗ is
⋃
j b

+
j − b

−
j −a

+
j +a−j . So, by Stokes’

Theorem we get∫
X
ω ∧ η =

∫
X∗

π∗(ω ∧ η) =
∫
X∗

d(fη)

=

∫
∂X∗

fη =
∑
j

(∫
b+j

−
∫
b−j

−
∫
a+j

+

∫
a−j

)
fη

=
∑
j

f(q+j )

∫
b+j

η − f(q−j )
∫
b−j

η − f(p+j )
∫
a+j

η + f(p−j )

∫
a−j

η

=
∑
j

∫
aj

ω

∫
bj

η −
∫
bj

ω

∫
aj

η

1Remark by L.T.: This can be seen as follows. For a smooth manifold X, let I : H∗
dR(X) → H∗(X,R) =

Hom(H∗(X),R) be the integration map. By naturality of I, we have I[π∗ω] = π∗I[ω] = 0 as π∗ dual
to the zero map π∗ = 0 on H1. Since I is injective, in fact an isomorphism by the de Rham Theorem,
[π∗ω] = 0, i.e. ω is exact.

5



Remark. What this actually says is that the intersection pairing H1(X,Z)×H1(X,Z)→
Z is dual to pairing on closed 1-forms given by (ω, η) 7→

∫
X ω ∧ η.

Let J =

(
0g Ig
−Ig 0g

)
which is the intersection matrix for a1, . . . , ag, b1, . . . , bg, i.e. aj ⌢

bj = −bj ⌢ aj = δij (this could be seen as the formal definition of the aj , bj). Let
P = (A | B). Then we can rewrite the Riemann relations as

(a) ⇔ PJ−1P t = 0,

(b) ⇔ Q := 1
iPJ

−1P
t
> 0.

If 0 ̸= λ ∈ Cg, then 0 < λtQλ = 2 Im(λtBA
t
λ), so A,B are invertible. Then we see that:

Corollary 2.3.

(i) There exists a basis (ω1, . . . , ωg) such that
∫
aj
ωi = δij (i.e. A = Ig) and then B is

symmetric and ImB positive definite.

(ii) The columns of (A | B) are linearly independent over R, so α : H1(X,Z) → Cg is
injective, and the image Λ = imα is a lattice.

How to prove the Abel-Jacobi theorem, i.e. AJ : Cl0(X)
≃−→ Cg/Λ = J(X)?

One way is by using cohomology: The exponential sequence (on any complex analytic
manifold X) is the short exact sequence

0→ Z→ OX
f 7→exp 2πif−−−−−−−→ O∗

X → 0.

Here Z is the constant sheaf and OX the sheaf of holomorphic functions. From this we
get the long exact sequence in cohomology which breaks up into two sequences:

0→ H0(X,Z)︸ ︷︷ ︸
=Z

→ H0(X,OX)︸ ︷︷ ︸
=C

→ H0(X,O∗
X)︸ ︷︷ ︸

=C∗

→ 0

0→ H1(X,Z)︸ ︷︷ ︸
Hom(H1(X,Z),Z)

→ H1(X,OX)→ H1(X,O∗
X)︸ ︷︷ ︸

=PicX

→ H2(X,Z)︸ ︷︷ ︸
≃Z for surface

This holds for any compact connected C manifold (except the last isomorphism). For a
Riemann surface, Pic(X) ≃ Cl(X) and Cl(X) → H2(X,Z) ≃ Z is the degree map. So

Cl0(X) ≃ H1(X,OX)
H1(X,Z) . We have a diagram:

Div0(X) Cl0(X) Pic(X)

J(X) = H0(X,Ω1)∨

α(H1(X,Z))
H1(X,OX)
H1(X,Z)

AJ

∃S
≃

exp(2πi·) ≃

Serre duality says that there exists an isomorphism S : H1(X,OX)
≃−→ H0(X,Ω1)∨ which

takes H1(X,Z) to H1(X,Z). It is also a nontrivial fact that this diagram commutes.
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It follows that AJ induces an isomorphism as claimed. For details, see the handout on
Moodle.
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3 Complex Tori
Recall: If w1, w2 ∈ C \ {0}, w2/w1 /∈ R, then C/(Zw1 + Zw2) is an elliptic curve over C,
embeddable in P2

C by Weierstrass ℘-function and its derivative. This gives a bijection

{lattices in C, up to homothety} ←→ {iso. classes of elliptic curves}

The higher dimensional case is more complicated. For more complete treatment, see
[Mum70, Chapter 1], [BL04, Chapters 1-4] or [Swi74, Chapters 1-4].

Let V be a finite-dimensional real vector space and Γ ⊆ V a lattice. Then V/Γ is a
commutative, compact and connected Lie group; also called a real torus. By a change of
basis we get a real analytic isomorphism V/Γ ≃ Rn/Zn ∼= (S1)n.

Now let V be a finite dimensional complex vector space. We call X = V/Γ a complex
torus.

• X is a complex manifold: If π : V → X is the quotient map and v ∈ V , then
there exists an open neighborhood v ∈ U ⊆ V such that π : V → π(V ) is a
homeomorphism and this defines a structure of complex manifold on X.

• Addition/subtraction maps X × X → X are holomorphic, so X is a complex Lie
group, compact and connected.

Proposition 3.1. Any compact connected complex Lie group is a complex torus (hence
is commutative).

Proof. See e.g. [Mum70, p. 1] or [BL04, Lemma 1.1.1.].

Notice: For any (real or complex) torus X = V/Γ, the map π : V → X is a connected
covering space. As V is simply connected, this means that V is the universal covering
space of X (with basepoints (say) 0 ∈ X, 0 ∈ V ), and Γ ≃ π1(X, 0) ≃ H1(X,Z) (by
Hurewicz isomorphism).

Let X = V/Γ, X ′ = V ′/Γ′ be complex tori. Let φ : V → V ′ be a linear map such that
φ(Γ) ⊆ Γ′. It induces a holomorphic map X → X ′ which is a homomorphism. Conversely:

Proposition 3.2. Let f : X → X ′ be a holomorphic map.

(i) If f(0) = 0, then there exists a linear f̃ : V → V ′ with Γ̃ ⊆ Γ′ that induces f . In
particular, f is a homomorphism.

(ii) In general, f(x) = f0(x) + y with y = f(0) ∈ X ′ and f0 is a homomorphism.

Proof. (ii) is clear from (i). As V is simply connected, we can lift f to a continuous
f̃ : V → V ′ such that f̃(0) = 0. Since π, π′ are local isomorphisms, f̃ is holomorphic.
For all v ∈ V, γ ∈ Γ, f̃(v + γ) = f̃(v) + gγ(v) with gγ(v) ∈ Γ′. So gγ : V → Γ′ ⊆ V ′

is holomorphic, so is constant. So the partial derivatives of f̃ are Γ-invariant, i.e. are
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holomorphic functions V/Γ→ V ′, hence constant as V/Γ is compact. Thus f̃ has constant
derivative and f̃(0) = 0, so f̃ is a linear map.

Corollary 3.3. Complex tori V/Γ, V ′/Γ′ are isomorphic as complex manifolds iff there
exists a C-linear isomorphism φ : V → V ′ with φ(Γ) = Γ′.

So any complex torus of dimension g is isomorphic to Cg/ΠZ2g where Π ∈ Cg×2g is a
matrix whose columns are R-linearly independent and Π,Π′ give isomorphic tori iff there
exist A ∈ GLg(C), B ∈ GL2g(Z) with Π′ = AΠB. As the columns of Π span Cg over R,
some subset of them is a C-basis. Hence

Proposition 3.4. Every complex torus of dimension g is isomorphic to Cg/(Zg ⊕ ΩZg)
where Ω is a g×g complex matrix such that the columns of Im(Ω) are linearly independent
over R.

E.g. if g = 1, then any complex torus of dimension 1 (i.e. any elliptic curve) is isomorphic
to a torus of the forem C/Z+ Zτ where τ ∈ C \ R.

Proposition 3.5. If X = V/Γ is a real torus of dimension d ≥ 1, then

H1(X,Z) = Hom(Γ,Z) ≃ Zd

and for 0 ≤ n ≤ d,
Hn(X,Z) =

∧n
H1(X,Z) ≃ Z(

n
d).

Proof. For n = 1 we have H1(X,Z) = Hom(H1(X,Z),Z) = Hom(Γ,Z).

We induct on d. If d = 1, we are done. Otherwise Γ = Γ1⊕Γ2, with Γi ̸= 0, soX = X1×X2

where Xi = Vi/Γi, Vi = RΓi. Since dimXi < d, by induction H∗(Xi,Z) ∼=
∧∗

ZHom(Γi,Z).
So by the Künneth formula:

Hn(X,Z) =
⊕
p+q=n

Hp(X1,Z)⊗Hq(X2,Z) =
⊕
p+q=n

∧p
(Hom(Γ1,Z))⊗

∧q
(Hom(Γ2,Z))

=
∧n

(Hom(Γ1,Z)⊕Hom(Γ2,Z))

=
∧n

Hom(Γ,Z) .

Remark. H∗ has ring structure Hp × Hq → Hp+q given by the cup-product ⌣. This
isomorphism is compatible with products (∧p × ∧q → ∧p+q), since in in the Künneth
formula, the isomorphism is given by

Hp(X1)×Hq(X2)
(pr∗1,pr

∗
2)−−−−−→ Hp(X1 ×X2)×Hq(X1 ×X2)

−⌣−−−−→ Hp+q(X1 ×X2).
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For K = R,C we have H∗(X,K) = H∗(K,Z) ⊗Z K. Another description is given by
differential forms.

Let X be a (C∞-)manifold. Let An(X) = {C∞ real-valued n-forms}. The exterior deriva-
tive is defined by:

d : An(X)→ An+1(X), fdxi1 ∧ · · · ∧ dxin 7→ df ∧ dxi1 ∧ · · · =
∑
j

∂f

∂xj
dxj ∧ dxi1 ∧ . . .

Then d2 = 0. De Rham cohomology of X is

Hn
dR(X,R) = An(X)d=0/dAn−1(X).

We can do the same with C coefficients AnC(X) = An(X) ⊗R C. Then Hn
dR(X,C) =

AnC(X)d=0/ im d ≃ Hn
dR(X,R)⊗R C.

Theorem (De Rham Theorem). The integration pairing Hn(X,Z) × Hn
dR(X,R) → R

gives an isomorphism Hn(X,R) = Hom(Hn(X,Z),R) ≃ Hn
dR(X,R) and this is compatible

with products.

Back to tori. Let X be a (real or complex) torus. Say ω ∈ An(X) is invariant if for all
y ∈ X, T ∗

y ω = ω, where Ty : X → X,x 7→ x+ y. Let

An(X)inv = {invariant n-forms} ⊆ An(X)

Note that A0(X)inv = R.

Proposition 3.6. If φ : V → R is linear, then dφ ∈ A1(X)inv. This induces isomor-
phisms

∧nHomR(V,R) ≃ An(X)inv for all n ≥ 0.

Proof. Clearly dφ defines an invariant 1-form on A1(X). Pick coordinates xi (i.e. a basis
of V ), so (xi)i is a basis for HomR(V,R). Then ω =

∑
fIdxI ∈ An(X) is invariant

iff each fI is invariant, i.e. constant, so (dxI)I is a basis for An(X)inv, hence the map∧nHomR(V,R)→ An(X)inv is an isomorphism.

Theorem 3.7. We have An(X)inv ⊆ An(X)d=0, and the map An(X)inv → Hn
dR(X,R) is

an isomorphism. Furthermore, the composite isomorphism
∧nHomR(V,R) ≃ An(X)inv ≃

Hn(X,R) ≃
∧nHom(Γ,R) is the

∧n of the restriction map HomR(V,R)
≃−→ Hom(Γ,R).

Proof. By the proposition, An(X)inv is spanned by elements of the form dφ1 ∧ · · · ∧ dφn,
φi ∈ HomR(V,R), and they are closed. Now consider the commutative diagram:

HomR(V,R) A1(X)inv A1(X)d=0

Hom(Γ,R) Hom(H1(X,Z),R) H1
dR(X,R)

(∗)

≃
φ7→dφ

= ≃

∫
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The map (∗) maps φ to Γ ∋ γ 7→
∫
γ∈H1

dφ =
∫ γ
0 dφ = φ(γ). So (∗) is the restriction map

which is an isomorphism, so A1(X)inv → H1(X,R) is an isomorphism. Taking
∧n gives

isomorphism in all degrees.

Addendum: The same works with complex coefficients: If we ⊗RC this, we get:∧n

C
HomR(V,C) ≃ AnC(X)inv ≃ Hn(X,C) ≃

∧n

C
Hom(Γ,C).

Now suppose X = V/Γ is a complex torus (so V is a complex vector space). Then

HomR(V,C) = HomC(C⊗R V,C)
≃←− HomC(V ⊕ V ,C) = V ∗ ⊕ V ∗

Then
V ∗ = HomC(V,C), V

∗
= Homanti-linear(V,C) ↪→ HomR(V,C).

In other words, we have an isomorphism V ∗ ⊕ V
∗ ≃−→ A1

C(X)inv ≃ H1(X,C), (φ,ψ) 7→
dφ+ dψ.

In higher degrees, we deduce

Hn(X,C) =
∧n

C
(V ∗ ⊕ V ∗

) =
⊕
p+q=n

∧p

C
V ∗ ⊗

∧q

C
V

∗
.

Definition. Let X be any complex manifold. A form ω ∈ AnC(X) is of Hodge type (p, q)
if locally

ω =
∑
I,J

fI,Jdzi1 ∧ · · · ∧ dzip ∧ dzj1 ∧ · · · ∧ dzjq

where zi are local holomorphic coordinates on X. We let

Ap,q(X) = {ω ∈ Ap+qC (X) of Hodge type (p, q)}.

Clearly, we have AnC(X) =
⊕

p+q=nA
p,q(X). But it is not obvious (and not true for

arbitrary complex manifolds X) that this decomposition passes to cohomology:

Theorem 3.8 (Hodge decomposition). Let X = V/Γ be a complex torus. Then for all
n ≥ 0,

Hn(X,C) =
⊕
p+q=n

Hp,q(X,C)

where Hp,q(X) ≃ Ap,q(X)inv ∼=
∧p V ∗⊗

∧q V
∗
. Also Hq,p(X) = Hp,q(X) inside Hn(X,C).

(For general compact X, with a Kähler metric, there is a similar decomposition, replacing
“invariant” with “harmonic”. This uses PDE theory, in particular the regularity properties
of elliptic operators. In our case, it was just easy linear algebra!)

Let X = V/Γ be a complex torus. What we have so far:

H1(X,R) ∼= Hom(Γ,R) = HomR(V,R),
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H1(X,C) = HomR(V,R)⊗R C = HomC(C⊗R V,C) = V ∗ ⊕ V ∗
,

Hn(X,C) =
∧n

C
H1(X,C) =

⊕
p+q=n

Hp,q(X),

Hp,q(X) =
∧p

C
V ∗ ⊗C

∧q

C
V

∗
= Ap,q(X)inv.

Concrete: If V = Cg, then Cg = V ∗ ∋ (ai) 7→
∑
aidzi ∈ H1 and (bi) ∈ V

∗ ∼= Cg 7→∑
bi
dzi.

Individual pieces:

Proposition 3.9. Let H0(X,ΩnX) = {holomorphic n-forms}. Then

H0(X,ΩX) = An,0(X)inv ≃
∧n

C
V ∗ = Hn,0(X).

Proof. Pick basis Cg ≃ V . We know that An,0(X)inv has basis {dzI = dzi1 ∧ · · · ∧ dzin |
I = (i1 < · · · < in)} and H0(X,ΩnX) = {ω =

∑
I fIdzI | fI holomorphic and Γ-invariant}.

By Liouville, these fI are constant, hence H0(X,ΩnX) = An,0(X)inv.

Theorem 3.10 (Dolbeault isomorphism). There is a canonical isomorphism

Hp,q(X) ≃ Hq(X,ΩpX).

It called the Dolbeault isomorphism.

We prove it by reducing to the special case p = 0. We know that ΩpX =
⊕

I OXdzI is
free, in coordinate-free words: H0(X,ΩpX) ⊗C OX ≃ ΩpX . Thus we get an isomorphism

H0(X,ΩpX) ⊗C H
q(X,OX)

∼−→ Hq(X,ΩpX). We know that H0(X,ΩpX) ≃
∧p V ∗, so it is

enough to show that Hq(X,OX) ≃
∧q

C V
∗
. More precisely:

Theorem 3.11. The map Hn(X,C)→ Hn(X,OX) factors as

Hn(X,C) =
⊕
p+q=n

Hp,q(X)→ H0,n(X) ≃ Hn(X,OX).

Proof sketch (Almost complete in g = 1). Fact: A0
C(X) = {C∞-functions} is given by

Fourier series (note X ≃ (R/Z)2g). Now suppose that g = 1, X = C/Γ where Γ =
Zγ1 ⊕ Zγ2 with Im(γ2/γ1) > 0. Write z = x1γ1 + x2γ2 with x1, x2 ∈ R. For f ∈ A0

C(X)
we get the Fourier series expansion:

f(z) =
∑

m1,m2∈Z
cme

2πi(m1x2−m2x1) =
∑
γ∈Γ

cγe
π(γz−γz)/A

where A is the area of the fundamental parallelogram and |cγ ||γ|N → 0 for all N as
|γ| → ∞.
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Let Ap,qX be the sheaf of C∞ (p, q) forms. By the Cauchy-Riemann equations we have

OX = ker
(
A0
X,C = A0,0

X
∂−→ A0,1

X

)
..

Now ∂ is surjective as a map of sheaves: If ω = fdz ∈ A0,1
X (U), then (possibly shrinking U

a bit) we can find g ∈ A0
C(X) such that g|U = f (using bump functions), with

∫
C/Γ g = 0.

So g has Fourier series with c0 = 0; then

gdz = ∂
∑
γ ̸=0

− A

πγ
cγe

π(γz−γz)/A ∈ ∂(A0(X)).

So there is a SES:

0→ OX → A0,0
X

∂−→ A0,1
X → 0

The sheaves Ap,qX are acyclic, i.e. H i(X,Ap,qX ) = 0 for i > 0. This is because they are fine
sheaves (partition of unity argument). Therefore we can calculate H∗(X,OX) using this
resolution of OX , so H1(X,OX) = coker(∂ : A0,0(X) → A0,1(X)) = A0,1(X)/∂A0,0(X).
We just saw: ω ∈ A0,1(X) lies in im(∂) iff its 0th Fourier coefficient is 0 and so A0,1(X) =
im(∂)⊕ Cdz and Cdz = A0,1(X)inv. So H1(X,OX) = A0,1(X)inv = H0,1(X).

In the general case,

0→ OX → A0,0
X

∂−→ A0,1
X

∂−→ · · · → A0,g
X → 0

is exact (∂-Poincare lemma) and A0,q(X)∂=0 = ∂A0,q−1(X) ⊕ A0,q(X)inv. See [Mum70,
Chapter 1], [BL04, Section 1.4].
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4 Pic of Complex Tori
Let X be a complex manifold.

Recall that the Picard-group

Pic(X) := {invertible OX -modules}/isomorphism

is a group under ⊗.

It is a basic fact that Pic(X) ≃ H1(X,O∗
X). We describe the isomorphism. Given an

invertible sheaf L with trivialization (si) on the open cover (Ui), let

cij = s−1
j si|Ui∩Uj ∈ O∗

X(Ui ∩ Uj).

Then cijcjk = cik on Ui∩Uj ∩Uk. Thus (cij)ij is a 1-Čech cocycle with values in O∗
X , so it

defines an element of H1(X,O∗
X). If (s′i) is another trivialization, then ti = s′i(1)/si(1) ∈

O∗
X(Ui), and c

′
ij = (s′−1

j s′i)|Ui∩Uj = cijti/tj and (i, j) 7→ ti/tj is a coboundary. Hence the

two trivializations give the same element in H1(X,O∗
X). Similarly, one checks that it is

independent of the cover Ui, so we get a well-defined map Pic(X)→ H1(X,O∗
X) which in

fact is an isomorphism.

Recall the exponential sequence:

0→ 2πiZ︸ ︷︷ ︸
=:Z(1)

→ OX
exp−−→ O∗

X → 0.

Suppose X is compact and connected, then H0 of this is

0→ Z(1)→ C exp−−→ C∗ → 0

and H1, H2 terms:

0→ H1(X,Z(1)) j−→ H1(X,OX)→ H1(X,O∗
X)︸ ︷︷ ︸

Pic(X)

c1−→ H2(X,Z(1))→ H2(X,OX).

So Pic(X) contains a subgroup Pic0(X) := coker j = ker c1. The quotient

Pic(X)/Pic0(X) =: NS(X)

is the Neron-Severi group ofX. Via c1 it is isomorphic to ker(H2(X,Z(1))→ H2(X,OX)).
H2(X,Z(1)) is finitely generated, hence so is NS(X).

Now suppose X = V/Γ is a complex torus. We inspect Pic0(X) and NS(X).

14



(1) Pic0(X) = H1(X,OX)/ im j. We have a commutative diagram:

H1(X,Z(1)) H1(X,C) H1(X,OX)

Hom(Γ,Z(1)) HomR(V,C) V
∗

HomR(V,R(1)) V ∗ ⊕ V ∗

=

j

= ≃

lattice

jR

≃ (∗)
pr2

The right isomorphism and commutativity is essentially Theorem 3.11 for n = 1.
(∗) is given by inclusions V ∗, V

∗ ⊆ HomR(V,C). The inverse of (∗) is given by
HomR(V,C) ∋ l 7→ (λ, µ) ∈ V ∗ ⊕ V ∗

where

λ(v) =
1

2
(l(v)− il(v)),

µ(v) =
1

2
(l(v) + il(iv)).

So jR, the R-linear extension of j : HomR(V,Z(1)) → V
∗
, is given by jR(l)(v) =

µ(v) = 1
2(l(v) + il(iv)) and so jR is an isomorphism, with inverse µ 7→ µ− µ (since l

is purely imaginary). Therefore j(H1(X,Z(1))) ⊆ V ∗
is a lattice.

Theorem 4.1. X̂ := Pic0(X) ≃ V
∗
/ im(j) is a complex torus (the dual of X) and

there are isomorphisms

X̂
j−1
R−−→
≃

Hom(Γ,R(1))
Hom(Γ,Z(1))

exp−−→
≃

Hom(Γ, U(1))

where U(1) = S1 ⊆ C∗.

(2) NS(X).

Definition. A Riemann form for X is a Hermitian form H : V × V → C for
which the alternating form E = ImH : V × V → R is integer-valued on Γ × Γ, i.e.
E ∈ Alt2Z(Γ).

From Exercise Sheet 1: To give a Riemann form H is equivalent to giving an alter-
nating map E : Γ× Γ→ Z such that its C-bilinear extension

EC : (C⊗ Γ)× (C⊗ Γ) = (V ⊕ V )× (V ⊕ V )→ C

satisfies EC(V, V ) = 0 (equivalently EC(V , V ) = 0). The correspondence is H 7→
E = ImH and E 7→ (H : (u, v) 7→ 2iEC((u, 0), (0, v))).

15



Theorem 4.2. NS(X) ≃ {Riemann forms on X}.

Proof.

0 NS(X) H2(X,Z(1)) H2(X,OX)

H2(X,Z) H2(X,OX)
(∗∗)

2πi≃ 2πi≃

Note that

H2(X,Z) =
∧2

Hom(Γ,Z) = Alt2Z(Γ) = {alternating bilinear E : Γ× Γ→ Z}

and H2(X,OX) =
∧2 V

∗
= Alt2C(V ).

Claim: (∗∗) takes E ∈ Alt2Z(Γ) to EC|V×V ∈ Alt2C(V ).

If so, we get

NS(X)
≃−→ {E ∈ Alt2Z(Γ) | EC|V×V = 0} = {Riemann forms}

Hence the theorem. Proof of claim:

H2(X,Z) H2(X,C) H2(X,OX)

Alt2Z(Γ) Alt2C(C⊗R V )︸ ︷︷ ︸
=Alt2C(V⊕V )

Alt2C(V )

= = =

The first map in the bottom line is given by E 7→ EC. By Theorem 3.11, the second
map is given by restriction to V × V ⊆ (V ⊕ V × V ⊕ V ).

Remark. c1 : Pic(X)→ H2(X,Z(1)) is the first Chern class homomorphism. It classifies
topological line bundles, i.e. c1(R) = 0 iff the corresponding C∞-line bundle is trivial.

So
0→ Pic0(X)→ Pic(X)→ NS(X)→ 0

and Pic0(X) ≃ Hom(Γ, U(1)) and NS(X) ≃ {Riemann forms} is free abelian. As NS(X)
is free, this splits (although not canoncially).

Definition.

P (X) :=
{
(H,α)

∣∣∣ H is a Riemann form, α : Γ→ U(1) s.t.

α(γ + δ) = α(γ)α(δ)eπiE(γ,δ), E = ImH

}
There is an exact sequence:

0→ Hom(Γ, U(1))→ P (X)→ {Riemann forms}.
α 7→ (0, α)

16



Lemma 4.3. This is exact on the right, i.e. for all H, there exists an α : Γ→ U(1) such
that (H,α) ∈ P (X).

Theorem 4.4 (Appell-Humbert). There is an isomorphism P (X) ≃ Pic(X) such that

0 Hom(Γ, U(1)) P (X) {Riemann forms} 0

0 Pic0(X) Pic(X) NS(X) 0

≃ ≃ ≃

commutes.

Proof. We will explicitly construct an invertible sheaf L(H,α) ∈ Pic(X) for each (H,α) ∈
P (X) so that this map makes the diagram commute. It is then clear that it must be an
isomorphism by the Five Lemma.

Let π : V → X = V/Γ be the quotient map. Idea: We will write down L with π∗L ≃ OV (in
fact every invertible OV -module is trivial). By adjunction, we find a subsheaf L ⊆ π∗OV .

We say that a connected open subset U ⊆ X is small if U = π(U ′), U ′ ⊆ V open, such
that the translates U ′ + γ, γ ∈ Γ, are disjoint. If so, then

• π−1(U) =
∐
{opens U ′ ⊆ V such that π : U ′ ≃−→ U},

• Γ permutes {U ′} simply transitively,

• π∗OV (U) = OV (π−1U) =
∏
U ′ OV (U ′).

Every open subset of X is a union of small opens, so to define a sheaf on X, it is enough
to define it on the set of small opens.

We want L(U) ∼= OX(U) for small U , so let

L(U) =
{
(sU ′) ∈

∏
π:U ′ ≃−→U

OV (U ′)
∣∣∀γ ∈ Γ, z ∈ U ′, sU ′+γ(z + γ) = sU ′(z)cγ(z) (∗)

}
for some family (cγ) with cγ : V → C× holomorphic, to be be determined. For example,
if we let cγ = 1 for all γ, we get L ≃ OX .

The condition (∗) implies that L(U) ↪→ OV (U ′) for each U ′. If γ, δ ∈ Γ, then by (∗),

cγ+δ(z)sU ′(z) = sU ′+γ+δ(z + γ + δ) = cδ(z + γ)sU ′γ(z + γ) = cδ(z + γ)cγ(z)sU ′(z)

So if L(U) ̸= 0, then (cγ) satisfies the cocycle condition cγ+δ(z) = cγ(z)cδ(z + γ).

Conversely, provided (cγ) satisfies the cocycle condition, L(U)
≃−→ OV (U ′) for every U ′.

Observe that if g : V → C∗ is holomorphic, and (cγ)γ∈Γ satisfies the cocycle condition, so
does c′γ(z) = cγ(z)g(z + γ)/g(z) and defines an isomorphic invertible sheaf L′ (multiply
sU ′+γ by g(z + γ)).
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Now we construct (cγ) starting from (H,α) ∈ P (X), thus defining the sheaf L(H,α).

Define

cγ(z) = α(γ) exp
(
π(H(z, γ) +

1

2
H(γ, γ))

)
For each γ, cγ : V → C∗ is holomorphic. We claim that it satisfies the cocycle relation:

cγ(z)cδ(z + γ) = α(γ)α(δ) expπ
(
H(z, γ) +

1

2
H(γ, γ) +H(z, δ) +H(γ, δ) +

1

2
H(δ, δ)

)
= α(γ + δ) expπ

(
H(z, γ + δ) +

1

2

(
H(γ + δ, γ + δ) +H(γ, δ)−H(δ, γ)

)
− iE(γ, δ)

)
= cγ+δ(z)

For the last equality note that H(γ, δ)−H(δ, γ) = H(γ, δ)−H(γ, δ) = 2iE(γ, δ).

Now let L(H,α) be the invertible OX -module given by (cγ)γ . If (H,α), (H ′, α′) ∈ P (X)
give cocycles (cγ), (c

′
γ), then

(H +H ′, α+ α′) 7−→ cocycle (cγc
′
γ)γ

So L(H +H ′, αα′) ≃ L(H,α)⊗ L(H ′, α′). Hence we obtain a homomorphism

P (X)→ Pic(X), (H,α) 7→ (isomorphism class of L(H,α))

A (non-trivial) computation shows that this is compatible with the other vertical maps in
the diagram.

Let L ∈ Pic(X), x ∈ X. Let Tx : X → X be translation by x. Then T ∗
xL and L have the

same image in NS(X). Indeed, NS(X) ⊆ H2(X,C) ≃ A2
C(X)inv, is invariant under T ∗

x . So
φL(x) := T ∗

xL ⊗ L−1 lies in Pic0(X).

Proposition 4.5. φL : X → Pic0(X) = X̂ is a homomorphism of complex tori, i.e. it is
holomorphic and a group homomorphism.

Proof. See Sheet 2, Exercise 1.

Theorem 4.6. Let L = L(H,α). The following are equivalent:

(i) H is positive definite.

(ii) H0(X,L) ̸= 0 and φL is an isogeny, i.e. kerφL is finite (as dimX = dim X̂).

(iii) L is ample.

Meaning of (iii). Let n ≥ 1, d = dn = dimH0(X,L⊗n). Let f0, . . . , fd−1 be a basis for
H0(X,Ln). Then L is ample iff for some n ≥ 1, f = (f0 : · · · : fd−1 : X → Pd−1(C) is
well-defined and gives an isomorphism between X and a subvariety of Pd−1. If so, then
Ln ≃ f∗OP(1). Note that while the fi themselves are not functions on X, their ratios are
(as L⊗n is of rank 1), so f makes sense (where not all fi vanish).
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Definition. A polarisation on X is a positive definite Riemann form H.

By the theorem, X is a projective variety iff X has a polarisation.
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5 Group Schemes over Fields
Let k be a field (often algebraically closed). In the following all schemes will be k-schemes.
The category of k-schemes (resp. affine schemes) will be denoted by Sch/k (resp. Aff/k).

Recall that ifX,S are k-schemes, then we writeX(S) := Mork(S,X) for the set of S-valued
points of X. If R is a k-algebra, we just write X(R) := X(SpecR).

In this course, a (k-)variety is a separated k-scheme of finite type over k which is geomet-
rically integral.

Definition. A group scheme (over k) is a k-scheme G, together with a morphism m :
G×G→ G such that for all k-algebras R, mR : G(R)×G(R)→ G(R) makes G(R) into
a group.

Examples.

• Additive group: Ga = Spec k[t] = A1
k and m : Ga×Ga = Spec k[t1, t2]→ Spec k[t] =

Ga is given by t 7→ t1 + t2. Then Ga(R) = R, with group operation +.

• Multiplicative group: Gm = Spec k[t, 1/t] = A1
k \ {0} and m : Gm × Gm

= Spec k[t1, t2, 1/(t1t2)] → Spec k[t, 1/t] is given by t 7→ t1 · t2. Then Gm(R) =
(R×,×).

• Linear groups: GLn = Spec k[(tij)ij ,
1

det(tij)
]. Then

m : GLn×GLn = Spec[(uij), (vij),
1

det(uij) det(vij)
] −→ GLn

is given by tij 7→
∑n

l=1 uilvlj . Then GLn(R) is what you think it is.

Recall the Yoneda Lemma:

Lemma 5.1 (Yoneda Lemma). Let C be a category, X,Y ∈ ob C. Then there is a bijection

Mor(X,Y )←→


natural transformations X(−)→ Y (−), i.e.
families (fS : X(S)→ Y (S))S∈ob C such that

fS(x) ◦ g = fS′(x ◦ g) for all g : S′ → S, x ∈ X(S)


where f : X → Y induces the natural transformation X(−)→ Y (−) given by fS : X(S)→
Y (S), g 7→ f ◦ g where S ∈ ob C. Conversely, given a natural transformation (fS)S, we get
a morphism f : X → Y where f = fX(idX).

In the case of C = Sch/k, we may restrict ourselves to affine S:

Lemma 5.2 (Yoneda for schemes). Let X,Y be k-schemes. The usual Yoneda correspon-
dence remains true if we restrict ourselves to S-valued points with S affine, i.e. there is a
bijection

{Morphisms X → Y } ←→

{
families X(S)

fS−→Y (S) with S affine such that
fS(x) ◦ g = fS′(x ◦ g)∀g : S′ → S, S, S′ affine

}
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Proof. Cover X =
⋃
α∈I Uα, where Uα are open affines with inclusions jα into X, so jα ∈

X(Uα). Then given (fS)S∈(Aff/k), get fUα(jα) ∈ Y (Uα) = Mork(Uα, Y ). If V ⊆ Uα ∩Uβ is
any open affine, then fUα(jα) and fUβ

(jβ) restrict to the same element of Y (V ). So they
glue to give a morphism f : X → Y .

Proposition 5.3. Let G be a group scheme. Then

(i) For all S ∈ (Sch/k), G(S) is a group where the group law is given by mS.

(ii) For all S′ f−→ S, G(S)
−◦f−−→ G(S′) is a homomorphism.

Proof. Suppose S′ = SpecR′ f−→ SpecR = S are affine. For (ii) we have to check that

(G×G)(S) G(S)×G(S) G(S)

(G×G)(S′) G(S′)×G(S′) G(S′)

= mS

= mS′

commutes. This is clear. Hence (ii) holds for S, S′ affine.

For (i) let (Ui)i∈I be an affine cover of S. Write Ui ∩ Uj =
⋃
k U

k
ij with affine Ukij . Then

for all X,

X(S) = {(xi) ∈
∏
i

X(Ui) | ∀i, j, k : xi|Uk
ij
= xj |Uk

ij
}. (∗)

Apply this to G and G×G. We check:

• mS : G(S)×G(S) is associative: SinceG(S) ↪→
∏
iG(Ui) preserves the multiplication

m and
∏
iG(Ui) is a group, multiplication on G(S) is associative. This argument

also shows that (ii) holds for any schemes S, S′.

• The two maps G(S)×G(S)→ G(S)×G(S), (x, y) 7→ (xy, y), (yx, y) are bijections.
Apply (∗): The claim follows from the fact that G(Ui) and G(U

k
ij) are groups.

Corollary 5.4. There exist e ∈ G(k), i : G→ G such that for all S, e 7→ (identity of G(S)),
and iS : G(S)→ G(S) is the inverse map.

Proof. Let e be the identity of G(k), by (ii) it is the identity of G(S) for all S. Define
i ∈ G(G) to be the inverse (for the group law) of idG : G→ G.

Example. Let Γ be any (abstract) group. The constant group scheme isG =
∐
γ∈Γ Spec k.

G is affine iff Γ is finite.
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Remark. Alternative way to define a group scheme: It is a triple (G,m : G×G→ G, e ∈
G(k), i : G→ G) satisfying certain axioms. For example, associativity is expressed by the
commutativity of the following diagram:

(G×G)×G G×G

G

G× (G×G) G×G

≃

m×idG

m

idG ×m m

The other properties (commutativity, identity, inverses) are similar. I.e. G is a group
object in Sch/k.

Definition. A homomorphism of group schemes is a morphism G
f−→ G′ such that for all

k-algebras R (equivalently for all S ∈ Sch/k), G(R) → G′(R) (or G(S) → G′(S)) is a
homomorphism.

Exercise. f : G→ G′ is a homomorphism iff the diagram

G×G G′ ×G′

G G′

f×f

m m′

f

commutes.

Definition. A closed subgroup scheme of G is a closed subscheme H ⊆ G such that for
all R (or equivalently for all S), H(R) ⊆ G(R) (or H(S) ⊆ G(S)) is a subgroup.

If so, H is a group scheme, and the inclusion i : H ↪→ G is a homomorphism:

(H ×H)(S) (G×G)(S)

H(S) G(S)

m′

The dotted arrow exists asH(S) is a subgroup. And the image of idH×H ∈ (H×H)(H×H)
in H(H ×H) is the desired morphism H ×H → H.

Examples.

(i) Spec k
e
↪−→ G is a closed subgroup scheme.

(ii) Kernels: Let f : G → G′ be a homomorphism. Define ker f to be the fibre of f at
e′ ∈ G′(k), i.e. there is a pullback square:

ker f G

Spec k G′

f

e′
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Since e′ is a closed immersion, ker(f) is a closed subscheme of G and ker(f)(S) =
ker(fS : G(S)→ G′(S)).

(iii) Let G = GLn, G
′ = Gm. For all R, have detR : GLn(R) → R∗ = Gm(R). So by

Yoneda, get a homomorphism det : GLn → Gm. Its kernel is ker det =: SLn which
is the closed subscheme given by det(xij) = 1 of GLn = Spec k[(xij), (det(xij))

−1].

Remark. Quotients are more subtle.

Let G be a group scheme, x ∈ G(k). The (left) translation by x is the unique morphism
Tx : G → G such that for all y ∈ G(S), Tx(y) = xy, i.e. Tx is the composite G =

Spec k ×G x×idG−−−−→ G×G m−→ G. Then Te = idG and Txy = Tx ◦ Ty.

Let X be a variety. Since we assume X to be geometrically integral, k is algebraically
closed in k(X)1, the function field of X. We say X is complete, if X is proper over k.

Definition. A group variety (or [connected] algebraic group) is a group scheme which is
a variety. An abelian variety is a complete group variety.

Examples. Gm, Ga, GLn are affine group varieties.

The simplest nontrivial example of an abelian variety is an elliptic curve E/k, e.g. given
as a nonsignular cubic E ⊆ P2

k with a given point e ∈ E(k)).

Completeness has strong implications (e.g. commutativity).

Theorem 5.5 (Mumford’s Rigidity Lemma). Let X,Y, Z be varieties with X complete,
y0 ∈ Y , f : X × Y → Z a morphism. If f(X × {y0}) is a single point, then there exists
g : Y → Z such that f factors as f = g ◦ pr2. In particular, for all y ∈ Y , f(X × {y}) is
a single point.

Remarks. Here X × {y0} means X × Spec k(y0) ↪→ X × Y , fibre of pr2 : X × Y → Y at
y0 ∈ Y . In general, it is not the set-theoretic product of X with {y0}. It is if y0 ∈ Y (k).

A1 × A1 → A1, (x, y) 7→ xy, so f(A1 × {0}) = {0}, but f |A1×{1} is an isomorphism. So
completeness of X is essential!

Corollary 5.6. Let X be an abelian variety, G a group variety, f : X → G a morphism
of schemes. Then if g = f(e), Tg−1 ◦ f is a homomorphism.

So taking G = X, we see that any isomorphism of schemes X
≃−→ X which takes e to e is

an isomorphism of group schemes.

Proof. It suffices to prove that if f(e) = e, then f is a homomorphism. Consider p :
X×X → G such that for all x, y ∈ X(S), p(x, y) = f(x)f(y)f(xy)−1. Then p(X×{e}) =
p({e}×X) = {e}. So by rigidity, p factors through (x, y) 7→ y and also through (x, y) 7→ x,
so p(x, y) = p(x, e) = p(e, e) = e for all x, y, so f is a homomorphism.

1Proof sketch: Let SpecA ⊆ X be an affine open. If k ⊆ k′ ⊆ A is a finite extension, then k′ ⊗k kalg ⊆
A⊗k kalg is not an integral domain, unless k′ = k.
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Corollary 5.7. Abelian varieties are commutative.

Proof. Apply the previous corollary to i : X → X. Since i(e) = e, i is a homomorphism.
But a group is commutative iff i : g 7→ g−1 is a homomorphism. So X(S) is commutative
for all S.

In general, we will state things for arbitrary k, but often give a proof only for k algebraically
closed.

Proof of Theorem 5.5. Suppose first k = kalg is algebraically closed, and let x0 ∈ X(k).
Define g : Y → Z by g(y) = f(x0, y), i.e.

Spec k × Y X × Y Z

Y

=

x0×idY f

g

commutes. We need to show that g ◦ pr2 = f . As everything is a variety, so separated, it
is enough to show this for a dense open subset of X × Y .

Let z0 be the point in f(X × {y0}) and W ⊆ Z be an open affine neighborhood of it. Set
S = Z −W , it is a closed subset. Then f−1(S) ⊆ X × Y is closed, so pr2(f

−1(S)) ⊆ Y
is closed since X → Spec k is proper. Then V := Y \ pr2(f−1(S)) ⊆ Y is open, and
f(X × V ) ⊆ W . So for all y ∈ V (k), f : X × {y} → W . As X is complete and W
is affine, f |X×{y} is constant, its image is {f(x0, y)} = {g(y)}. So for all y ∈ V (k),
f |X×{y} = g ◦ pr2|X×{y}, hence f |X×V = g ◦ pr2|X×V . Also V is non-empty, as z0 /∈ S, so
X × {y0} ∩ f−1(S) = ∅, so y0 /∈ pr2(f

−1(S)), so y0 ∈ V , hence V ̸= ∅.

Now suppose k is arbitrary, i.e. not necessarily algebraically closed. f factors through pr2
iff for affine opens U ⊆ X, V ⊆ Y , f(U×V ) ⊆W ⊆ Z the mapOZ(W )→ OX×Y (U×V ) =
OX(U)⊗k OY (V ) factors through k ⊗k OY (V ). We can check this after replacing k with
kalg, since k ⊗k OY (V ) = OX(U)⊗k OY (V ) ∩ kalg ⊗k OY (V ).
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6 Seesaw and Cube
Let f : X → Y be a morphism, L an invertible sheaf on X (or coherent sheaf). Then for
all y ∈ Y , let Xy be the fibre over y and Ly = i∗yL where iy : Xy ↪→ X is the inclusion.

Common questions:

(1) How does H0(Xy,Ly) vary with y? (or more generally H i)

(2) What conditions ensure that there existsM on Y with L ∼= f∗M?

(e.g. if L ∼= f∗M, then all Ly ∼= OXy are trivial. Converse?)

Examples.

(1) Let C be a complete nonsingular curve over k, D a divisor on C. Then
H0(C,OC(D)) = L(D) and Riemann-Roch gives an estimate for this. How does
this vary as you vary D? (We will use this later in construction of the Jacobian of
C)

(2) Let Y be a quadric cone in A3, say Y = Spec k[u, v, w]/(uv − w2) and char k ̸= 2.

Let X = Y \{0}
f
↪−→ Y . Let L be the line v = w = 0 through 0. Let L = OX(L∩X).

Obviously, as fibres of f are points (or empty), all Ly are trivial. But there does not
exist an invertible module M on Y such that f∗M ∼= L (because L ⊆ Y is not a
Cartier divisor, not locally principal).

Theorem 6.1 (“Seesaw Theorem”). Let X,Y be varieties, X complete, L an invertible
OX×Y -module. Then:

(i) F = {y ∈ Y | L|X×{y} is trivial} is closed in Y .

(ii) If F = Y , then there exists a invertible sheafM on Y such that L ≃ pr∗2M.

The proof uses:

Theorem 6.2. Let X be complete, S = SpecA, A any noetherian k-algebra, L invertible
sheaf on X × S. Then:

(i) H0(X × S,L) is a finite (= finitely generated) A-module.

(ii) There exists a morphism α : K0 → K1 of finite free A-modules such for all A-algebras
B, there are isomorphisms

H0(X × SpecB,LB) ≃ ker(αB = α⊗A idB : K0 ⊗A B → K1 ⊗A B),

functorial for B → B′. Here LB is the pullback of L along X×SpecB → X×SpecA.

See [Mum70, Chapter 2 §5], or [Har77, Chapter III §12], but still check out Mumford’s
Corollary 2. The theorem holds for all H i (with a complex K0 → K1 → . . . of finite free
A-modules), and in fact we need this to prove the i = 0 case.
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Corollary 6.3. Same hypotheses as in the previous theorem. There exists a finite A-
module M such that for all A-algebras B,

H0(X × SpecB,LB) ∼= HomA(M,B) = HomB(M ⊗A B,B).

Proof. Let M = coker(αt), so

(K1)∨
αt

−→ (K0)∨ →M → 0

is exact where (Ki)∨ = HomA(K
i, A). The Ki are finite free, so HomA((K

i)∨, B) =

Ki ⊗A B. Then 0→ HomA(M,B)→ K0 ⊗A B
αB−−→ K1 ⊗A B.

Corollary 6.4. Under the same hypotheses, for every d ≥ 0,

Zd = {s ∈ S | dimk(s)H
0(X × Spec k(s),Ls) ≥ d} ⊆ S

is a closed subset.

This is the Semicontinuity theorem for H0, it is true for all H i.]

Proof. Let K0 ≃ Am,K1 ≃ An, so αt is represented by an (m× n)-matrix C. Then

Zd = {s ∈ S | rank(αt ⊗ idk(s)) ≤ m− d}
= {s ∈ S | all (m− d+ 1) minors of C vanish in k(s)}

which is closed.

Lemma 6.5. Let V be a complete K-variety, L an invertible OV -module. Then L ≃ OV
iff both H0(V,L) and H0(V,L∨) are non-zero.

Proof. Exercise: Use HomOV
(L,L) = HomOV

(OV ,OV ) = K as V is a complete variety
and Hom(OV ,L) = H0(L).

Proof of the Seesaw theorem.

(i) We may assume that Y = SpecA is affine. We have

F = {y ∈ Y | L|X×{y} is trivial}
= {y ∈ Y | H0(X × {y},Ly) ̸= 0 ̸= H0(X × {y},L∨y )}.

This is closed by the above corollary.

Also, if y ∈ F , then dimk(y)M ⊗ k(y) = dimk(y)H
0(Ly) = 1. So as M is a finite

A-module, for any generator m⊗ 1 of M ⊗ k(y), m generates M in a neighborhood
of y by Nakayama’s Lemma. So M is cyclic in a neighborhood of y.
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(ii) Suppose F = Y . We want to show that L ∼= pr∗2M for someM on Y . We will show
that if M = pr2∗ L, then M is an invertible OY -module and the adjunction map
pr∗2M → L is an isomorphism. This statement is local on Y . So it is enough to
show that for all y ∈ Y , there exists an open affine U ∋ y such that L|X×U is trivial.
So we can assume Y = SpecA is affine. By the above, for all y ∈ Y (with M as
before) dimk(y)M⊗A k(y) = 1 since Ly ∼= O. Then by Nakayama again, M is locally
free of rank 1. Replacing Y by an affine neighborhood of y, may assume M = mA
is free, then HomOX×Y

(OX×Y ,L) = H0(X × Y,L) = HomA(M,A) = m∨A. So
m∨ gives a map OX×Y → L whose restriction to each X × {y} is the isomorphism

OX×{y}
m⊗id−−−→ Ly, similarly for L∨. Then m∨ : OX×Y → L is an isomorphism.

Remark. Proof gives something a bit stronger than (i): There exists a maximal closed
subscheme Z ⊆ Y such that L|X×Z ≃ pr∗2M for someM on Z. If Y is affine, and M is
cyclic, then Z = SpecA/I where I = AnnAM .

Particular case of Seesaw: Suppose L is an invertible sheaf on X × Y , L|X×{y} is trivial
for all y ∈ Y , and there exists x0 ∈ X(k) such that L|{x0}×Y is trivial. Then L ∼= pr∗2M,
so OY ≃ (pr∗2M)|{x0}×Y =M, i.e. L is trivial.

One can easily find non-trivial L on X × Y (e.g. X = Y = elliptic curve) such that for
some x0 ∈ X(k), y0 ∈ Y (k), L|{x0}×Y and L|X×{y0} are trivial.

For a product of three varieties, we however have:

Theorem 6.6 (Theorem of the cube). Let X,Y, Z be varieties, X,Y complete. Let x, y, z
be k-points of X,Y, Z, L an invertible sheaf on X × Y × Z. Suppose the restriction of L
to each of {x} × Y × Z, X × {y} × Z, X × Y × {z} is trivial. Then L is trivial.

Corollary 6.7. Let X be an abelian variety, L an invertible OX-module. For any variety
Y and f, g, h : Y → X:

(f + g + h)∗L ∼= (f + g)∗L ⊗ (f + h)∗L ⊗ (g + h)∗L ⊗ f∗L∨ ⊗ g∗L∨ ⊗ h∗L∨.

Here f + g : Y → X is the composite Y
(f,g)−−−→ X ×X m−→ X, etc.

Proof. Let pr3i : X × X × X → X, i = 1, 2, 3, and pr2i : X × X → X, i = 1, 2, be the
projections.

First consider the case Y = X×X×X, (f, g, h) = (pr3i )i=1,2,3. Let q : X×X → X×X×X,
(x, y) 7→ (x, y, e). Then

(pr31+pr32+pr33) ◦ q = (pr21+pr22) ◦ q = m : (x, y) 7→ x+ y,

(pr31+pr33) ◦ q = pr31 ◦q = pr21,

(pr32+pr33) ◦ q = pr32 ◦q = pr22,
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pr33 ◦q = e.

So ifM = (LHS)⊗ (RHS)∨ = (pr31+pr32+pr33)
∗L ⊗ (pr31+pr32)

∗L∨ ⊗ . . . , then

M|X×X×{e} = q∗M = m∗L⊗m∗L∨⊗pr2∗1 L∨⊗pr2∗2 L∨⊗pr2∗1 L⊗pr2∗2 L⊗OX×X ∼= OX×X

same for X × {e} ×X and {e} ×X ×X. Then L is trivial by the theorem of the cube.

In the general case consider Y
(f,g,h)−−−−→ X × X × X

pr1,pr2,pr3−−−−−−−→ X. Then Mf,g,h =
(f, g, h)∗Mpr1,pr2,pr3 , so it is trivial.

Corollary 6.8 (Theorem of the Square). Let X be an abelian variety, L an invertible
OX-module. Then for all x, y ∈ X(k), T ∗

x+yL = T ∗
xL ⊗ T ∗

yL ⊗ L∨

Proof. Take f to be the constant morphism x, i.e. the composite X → Spec k
x−→ X, g the

constant morphism y and h = idX . Then f + h = Tx, g + h = Ty, f + g + h = Tx+y, and
f+g is the constant morphism x+y. SoMf,g,h = T ∗

x+yL⊗T ∗
xL∨⊗T ∗

yL∨⊗L⊗OX ≃ OX ,
hence the claim.

Corollary 6.9. Let X be an abelian variety, L an invertible sheaf on X, n ∈ Z, [n] :
X → X multiplication by n. Then [n]∗L ∼= L⊗n(n+1)/2 ⊗ (i∗L)⊗n(n−1)/2 where i : X → X,
x 7→ −x.

Proof. n = 0 or 1 is trivial. Induction on n ≥ 2. Take f = [n − 1], g = idX = [1],
h = [−1] = i. ThenMf,g,h ≃ OX tells us that

[n− 1]∗L ≃ [n]∗L ⊗ [n− 2]∗L ⊗ [0]∗L ⊗ [n− 1]∗L∨ ⊗ L∨ ⊗ i∗L∨,

i.e.

[n]∗L ≃ [n− 1]∗L⊗2 ⊗ [n− 2]∗L∨ ⊗ L⊗ i∗L

≃ L⊗[n(n−1)− 1
2
(n−1)(n−2)+1] ⊗ (i∗L)⊗[(n−1)(n−2)− 1

2
(n−2)(n−3)+1]

≃ L⊗
1
2
n(n+1) ⊗ (i∗L)⊗

1
2
n(n−1)

The result then follows for n ≥ 0.

For n < 0 note that [−n]∗L = i∗[n]∗L, it follows from the n > 0 case.
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7 Pic of an Abelian Variety and Projectivity
Proposition 7.1. Let G/k be any group variety. Then G is non-singular.

Proof. Assume k = kalg. The set of nonsingular closed points is dense (as G is a variety).
Take y ∈ G(k) to be nonsingular. Then for every x ∈ G(k), Txy−1 : G → G is an
automorphism taking y to x, hence also x is nonsingular.

Definition. Let X an abelian variety over k, L an invertible OX-module.

(i) Define φL : X(kalg)→ Pic(Xkalg) by

φL(x) = T ∗
xL ⊗ L∨ ∈ Pic(Xkalg)

for x ∈ X(k). By the theorem of the square, φL : X(kalg) → Pic(Xkalg) is a homo-
morphism of groups.

(ii) K(L) := kerφL ⊆ X(kalg) is a subgroup. Pic0(X) := {L ∈ Pic(X) | φL = 0}. Let
NS(X) = Pic(X)/Pic0(X).

Remark. By definition, x ∈ K(L) iff T ∗
xL⊗L∨ is trivial. By Seesaw part (i), this implies

that K(L) is the set of kalg-points of a closed subscheme of X.

Proposition 7.2. LetM(L) = m∗L⊗pr∗1 L∨⊗pr∗2 L∨ on X×X (“Mumford line bundle”).
Then L ∈ Pic0(X) iff M(L) ≃ OX×X .

Proof. Assume k = kalg. Let x ∈ X(k). Then since

m ◦ (idX , x) = Tx,

pr1 ◦(idX , x) = idX ,

pr2 ◦(idX , x) = constant x : X → X,

we haveM|X×{x} ≃ T ∗
xL⊗L∨ and similarlyM|{e}×X ≃ OX . So by Seesaw (ii),M(L) ≃

OX×X iff for all x, T ∗
xL ⊗ L∨ ≃ OX i.e. L ∈ Pic0(X).

This is one of a number of different characterizations of Pic0.

Let D be an effective divisor on X, i.e. D =
∑

i niDi, Di ⊆ X integral closed subscheme of
codimension 1. Note that Weil divisors are the same as Cartier divisors asX is nonsingular.
Define H(D) = {x ∈ X(kalg) | TxD = D}. As OX(TxD) = T ∗

−xOX(D)1, H(D) ⊆
K(OX(D)) is a subgroup.

Remark. H(D) is the set of kalg-points of a closed subscheme of X, but for much more
obvious reasons than for K(L). Indeed, if Y ⊆ X is closed, then TxY = Y iff {x} × Y ⊆
m−1(Y ) ⊆ X×X iff x ∈

⋂
y∈Y {x ∈ X | (x, y) ∈ m−1(Y )} =

⋂
y∈Y pr1(X×{y}∩m−1(Y ))

which is closed since pr1 is proper.

1Suppose div(f) = D locally, then as (T ∗
x f)(y) = f(x+ y), we have div(T ∗

x f) = D − x = T−xD
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Theorem 7.3. Let L = OX(D), D an effective divisor. TFAE:

(i) L is ample, i.e. H0(X,L⊗m) for sufficiently large m gives an embedding X ↪→ PNk .

(ii) K(L) is finite.

(iii) H(D) is finite.

Proof. “(ii) ⇒ (iii)” is obvious. Assume k = kalg. “(i) ⇒ (ii)” Assume L is ample, but
K(L) is infinite. By a previous remark, K(L) is the set of k-points of some reduced closed
subscheme, necessarily a group scheme. Looking at the irreducible component containing
e we get that K(L) contains an abelian subvariety Y of positive dimension. The restriction
of L to Y is ample. So replacing X by Y we may assume K(L) = X(k), i.e. φL = 0 and
dimX > 0. Then for all x ∈ X(k), T ∗

xL ≃ L, so m∗L ≃ pr∗1 L ⊗ pr∗2 L on X × X by
Proposition 7.2 as L ∈ Pic0(X). Pullback via d : X → X×X, d(x) = (x,−x). Then m◦d
is the constant morphism e, pr1 ◦d = idX and pr2 ◦d = i = [−1]. So OX ≃ L ⊗ i∗L. L is
ample, so i∗L is ample as i is an automorphism, hence OX is ample which is not possible
as dimX > 0.

“(iii) ⇒ (i)” Consider OX(2D) = L⊗2 ≃ T ∗
xL ⊗ T ∗

−xL = OX(TxD + T−xD) (Theorem
of the Square), i.e. for all x ∈ X(k), there exists sx ∈ H0(X,OX(2D)) with div(sx) =
TxD + T−xD − 2D. If y ∈ X(k), then y ∈ TxD ∪ T−xD iff one of y ± x is in D. So given

y, there exists x such that y /∈ TxD ∪ T−xD = {zero set of sx}. So the map X
f−→ PN ,

where N = dimH0(X,O(2D))−1, given by sections of OX(2D) is a morphism, i.e. defined
everywhere. Claim: The fibres of f are finite. If so, then OX(2D) = f∗OPn(1) is ample,
hence so is L, because of the following general fact: If f : X → Y is a morphism of
complete varieties with finite fibres, and M on Y is ample, then f∗M is ample on X
[Har77, Chapter III, Exercise 5.7].

If some fibre of f is infinite, then it contains a curve C. Let y ∈ C(k). Then by above
there exists x ∈ X(k) such that y /∈ zero set of sx = TxD ∪ T−xD. Then as f(C) consists
of only a single point, for this x, C ∩ (TxD ∩ T−xD) = ∅.

Lemma 7.4. (k = kalg). Let C ⊆ X be any curve, Y ⊆ X an irreducible divisor with
C ∩ Y = ∅. Then for all y1, y2 ∈ C, Ty1−y2Y = Y .

Assume the lemma, and apply it to each irreducible component Y of TxD. So for all
y1, y2 ∈ C(k), Ty1−y2 maps TxD to itself, so it maps D to itself. Since C(k) is infinite,
H(D) is infinite.

Proof of the lemma. Let U = {x ∈ X(k) | TxY ⊉ C, i.e. TxY ∩ Y is finite}. We know
Y ∩ C = ∅. Then for all x ∈ U , T−xY ∩ C = ∅ = Y ∩ TxC (because the “degree of
divisor on a curve is constant in a family”, see next section). Let y1, y2 ∈ C(k), z ∈ Y (k).
Then z ∈ Tz−y2C ∩ Y ̸= ∅, so Y ⊇ Tz−y2C, hence z − y2 + y1 = Tz−y2(y1) ∈ Y , i.e.
Ty1−y2Y = Y .

Corollary 7.5. Abelian varieties are projective.
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Proof. Assume k = kalg. We need to find an ample line bundle L on X. Let U ⊆ X be any
nonempty open affine. Then D = X \U with the reduced subscheme structure is a reduced
divisor (see Example Sheet 3, Exercise 6). Let x ∈ H(D) = {x ∈ X(k) | TxD = D}.
Assume e ∈ U . Then TxU = U , so x ∈ U(k), i.e. H(D) ⊆ U(k). But U is affine, and
H(D) is the set of k-points of some closed subscheme of X, which is complete. So H(D)
is a complete subvariety of the affine scheme U , hence H(D) is finite and thus O(D) is
ample by the theorem.

So in theory one could write down equation for abelian varieties embedded in Pn, but
this is complicated, unless perhaps we are in the case of elliptic curves. See e.g. [Mum66;
Mum67a; Mum67b].

Corollary 7.6. For all n ≥ 1, ker([n] : X(kalg)→ X(kalg)) is finite, and [n] : X → X is
surjective. In particular, X(kalg) is a divisible group.

Proof. The first statement implies the second by dimension reasons since X is complete.
Assume k = kalg. Suppose ker[n] is infinite. Then ker[n] ⊇ V for some variety V of
dimension > 0. Let L be any ample invertible sheaf onX (exists by the previous corollary).
Then [n]∗L is trivial on the fibres of [n], so in particular [n]∗L|V is trivial. But [n]∗L =
L⊗n(n+1)/2⊗ i∗L⊗n(n−1)/2. As L is ample, so is i∗L, hence so is [n]∗L. So [n]∗L|V is ample,
contradicting dimV > 0.

Remark. One can show more precisely: If char k ∤ n, then ker[n] ≃ (Z/nZ)2g, if char k =
p | n, one always has #ker[n] < n2g. Here g = dimX.

Theorem 7.7. There exists a dual abelian variety X̂ to X, dim X̂ = dimX, together
with an isomorphism ψ : X̂(kalg)

∼−→ Pic0(Xkalg). Moreover, for all ample L on X, there

exists a unique surjective homomorphism X
λL−−→ X̂ such that the composition X(kalg)

λL−−→
X̂(kalg) ≃ Pic0(Xalg) is just φL.

In fact, X̂ parameterizes families of invertible sheaves: There exists an invertible sheaf P
on X × X̂, with the following property: Let S be any k-scheme. We let

Pic(X × S)0 = {L ∈ Pic(X × S) | ∀s ∈ S, L|X×{s} ∈ Pic0(X × {s})}.

Then:

(i) If L ∈ Pic(X × S)0, then there exists a unique f : S → X̂ such that

L ≃ (idX ×f)∗P ⊗ pr∗2M,

for someM∈ Pic(S).

(ii) This gives a (functorial in S) bijection

X̂(S)
∼−→ Pic(X × S)0

pr∗2 Pic(S)
∼= {L ∈ Pic(X × S)0 | L|e×S ∼= OS}.

Note that if we take S = Spec kalg, we recover X̂(kalg) ≃ Pic0(Xkalg).
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Idea of proof:

(1) Show that if L is ample, φL : X(kalg) ↠ Pic0(Xkalg). It is not difficult to show that
im(φL) ⊆ Pic0, see Example Sheet 3, Question 2.

(2) Define X̂ to be the quotient of X by ker(φL).

• If char k = 0, we just take the quotient of X by the finite group K(L) of
automorphisms of Xkalg .

• If char k = p > 0, have to work not withK(L), but the largest closed subscheme
K(L) such thatM(L)|X×K(L) is trivial, see [Mum70, Chapter III] for details.

Definition. A polarisation of an abelian variety X is an isogeny (i.e. a surjective homo-
morphism) λ : X → X̂ such that for some ample L ∈ Pic(Xkalg), ψ ◦ λ = φL.
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8 Jacobians of Curves
Throughout let X/k be a curve (i.e. nonsingular complete variety of dimension 1), g =
dimH0(X,ΩX/k) = dimH1(X,OX) the genus of X

div(X) is the free abelian group on closed points of X. There is a degree homomorphism
deg : div(X) → Z,

∑
niPi 7→

∑
ni[k(Pi) : k]. The divisor class group is Cl(X) =

Div(X)/{div(f) | f ∈ k(X)∗}. And Cl0(X) = ker(deg : Cl(X)→ Z).

Theorem 8.1. There exists an abelian variety J = J(X), the Jacobian of X, over k of
dimension g with an isomorphism J(kalg) ≃ Cl0(Xkalg).

Recall: (see e.g. [Har77, Chapter IV §1]) To a divisor D we associate the sheaf OX(D)
with

OX(D)(U) = {f ∈ k(X) | div(f) +D ≥ 0 on U}

for open subsets U ⊆ X. Then OX(D) ≃ OX(D′) iff there exists a function f with
div(f) = D′ −D. This gives an isomorphism Cl(X) ≃ Pic(X). Let L(D) = {f ∈ k(X) |
div(f)+D ≥ 0} = H0(X,OX(D)) and ℓ(D) = dimL(D). For L ∈ Pic(X), define degL =
degD where D is a divisor with L ≃ OX(D). Then Pic0(X) := {L ∈ Pic(X) | degL = 0}.

The canonical divisor class KX is such that OX(KX) ≃ Ω1
X/k, it has degree degKX =

2g − 2.

Theorem (Riemann-Roch Theorem).

Divisor version: ℓ(D)− ℓ(KX −D) = 1− g + degD.

Sheaf version:

• h0(L)− h1(L) = 1− g + degL for all L ∈ Pic(X). (easy part)

• (Serre duality) H1(X,L) ≃ H0(X,ΩX/k ⊗ L∨)∨ (not so easy)

So in particular h1(OX(D)) = h0(OX(KX −D)).

Proposition 8.2. Let V be a quasiprojective variety over k, G ⊆ Aut(V ) a finite sub-
group. Then there exists a unique variety V ′ = V/G and a proper morphism with finite
fibres φ : V → V ′ such that

(i) For all γ ∈ G, φ ◦ γ = φ.

(ii) φ induces a bijection V (kalg)/G
≃−→ V ′(kalg) and an isomorphism on function fields

k(V ′)
≃−→ k(V )G.

(iii) (“categorical quotient”) For all ψ : V → W , morphism of k-schemes such that
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ψ ◦ γ = ψ for all γ ∈ G, there is a unique θ : V ′ →W such that θ ◦ φ = ψ.

V W

V/G = V ′

φ

ψ

θ

Sketch of proof. (See e.g. [Mum70, Chapter III])

(1) V = SpecA is affine. Then B = AG is a k-algebra of finite type, and A is a finite
B-module. Then V ′ = SpecB satisfies the properties.

(2) V arbitrary quasi-projective. Let x ∈ V be a closed point. Then there exists an
open affine U ⊆ V containing the orbit xG (Take the complement of a hypersurface
not containing any elements of the finite set xG, e.g. take union of of hyperplane
over some k′/k missing xG and its conjugates).

So
⋂
γ∈G Uγ is an open affine (since V is separated) containing xG, i.e. V can be

covered by G-equivariant open affines. Then use (1) and glue.

Remark. The first step in (2), every Gx is contained in an open affine, is the key hypoth-
esis. There exists a proper V (3-fold in characteristic 0) and free Z/2-action such that
V/G does not exist as a scheme. It is proper but not projective, V is Hironaka’s famous
counterexample, see [Har77].

Remark. Proper + finite fibres ⇔ finite morphism.

Back to the curve X/k (smooth, projective). Recall Cl(X)
≃−→ Pic(X)

deg−→ Z.

Proposition 8.3. Let S be any connected k-scheme, L ∈ Pic(X × S). Then

(i) degLX×{s} is independent of s ∈ S.

(ii) For all m ≥ 0, {s ∈ S | dimk(s)H
0(X × {s},L|X×{s}) ≥ m} is closed.

Proof. (ii) follows from Seesaw, Corollary 6.4. (i) holds because the Euler characteristic
h0 − h1 = 1 − g + degD is constant in flat connected families, see [Har77, Chapter III
§9].

So Pic(X × S) =
∐
n∈Z Pic

n(X × S) if S is connected, where

Picn(X × S) = {L ∈ Pic(X × S) | ∀s ∈ S, degL|X×{s} = n}.

And for all G ∈ Picn(X),

Pic0(X × S) ∼−→ Picn(X × S)
L 7→ L ⊗ pr∗1 G
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In particular, if sayX(k) ̸= ∅, then Pic0 ≃ Picn for all n, and Pic(X×S) ∼= Pic0(X×S)×Z.

From now on assume k = kalg. Notation:

• D,D′, . . . will be divisors of some degree (usually g).

• E, . . . divisor of degree 0.

Proposition 8.4.

(i) If deg(D) = g, then ℓ(D) = h0(X,OX(D)) ≥ 1.

(ii) There exists D0 of degree g, with D0 ≥ 0 and ℓ(D0) = 1.

Proof.

(i) By Riemann Roch, h0(OX(D)) = h1(OX(D)) + 1 ≥ 1 if degD = g.

(ii) Let L ∈ Pic(X) with degL = d ≥ 2g + 1. Then h1(L) = h0(L∨ ⊗ Ω) = 0. Then
h0(L) = d + 1 − g. Also recall (e.g. [Har77, Chapter IV, Corollary 3.2(b)]) that

d ≥ 2g + 1 implies: Sections of L give a closed immersion X ↪→ Pd−gk (i.e. L is very
ample), and the image is not contained in any hyperplane1.

Since k = kalg is infinite, there exist P1, . . . , Pd−g ∈ X(k) ⊆ Pd−g(k) not lying on
any codimension 2 linear subspace. Then

H0(X,L ⊗O(−
∑

Pi)) = {s ∈ H0(X,L) | s(P1) = · · · = s(Pd−g) = 0}

has dimension H0(L)− (d−g) = 1, so L⊗OX(−
∑
Pi) ∼= OX(D0) for some D0 ≥ 0,

deg(D) = g, ℓ(D0) = 1.

Now fix a diviros D0 with D0 ≥ 0, degD0 = g and ℓ(D0) = 1. Then for all E ∈ Div0(X),
there exists D′ = P1 + · · ·+ Pg (say) with O(D′) ∼= O(D0 + E). So the map

πk : {D′ ≥ 0 of degree g} −→ Cl0(X),

D′ 7−→ OX(D′ −D0)

is surjective. Note that

{D′ ≥ 0 of degree g} = {unordered g-tuples of elements of X(k)}
= X(k)g/ Sym(g) = (Xg/ Sym(g))(k)

X(g) := Xg/ Sym(g) is a first approximation to the Jacobian J which we will construct
together with morphism π : X(k) → J . [N.B. “most” of the fibres of πk have just one
element]

1The map is defined by taking a basis of H0(X,L) and take these basis elements as coordinates in Pd−g
k .

They are linearly independent, so no linear form can vanish everywhere on the image
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Actually, X(g) is nonsingular (essential case is Ag/Sym(g) = Spec k[t1, . . . , tg]
Sym(g) =

Spec k[S1, . . . , Sg] where S1, . . . , Sg are the elementary symmetric polynomials).

We use this to construct J with J(k) ∼= Pic0(X). Precisely: Fix x0 ∈ X(k).

Theorem 8.1 (souped-up). There exists an abelian variety J/k, and P ∈ Pic0(X × J)
with P|{x0}×J ∼= OJ , such that for all k-schemes S:

J(S)
≃−→ {isomorphism classes of L ∈ Pic0(X × S) with L|{x0}×S ∼= S},

(f : S → J) 7−→ (idX ×f)∗P

In particular, J(k) ≃ Pic0(X).

Remark. If L ∈ Pic0(X × S), for any M ∈ Pic(S) let L′ = L ⊗ pr∗2M ∈ Pic0(X × S).
Then for all s ∈ S, L|X×{s} ≃ L′|X×{s}, hence L and L′ should correspond to the same
element of J(S). But L′⊗L∨|{x0}×S =M. So by fixing L|{x0}×S ≃ OS , we get rid of this
ambiguity.

Lemma 8.5 (Version 0). There exists a variety U0 (ultimately a dense open in J) and
P0 ∈ Pic0(X × U0), with P0|{x0}×U0

≃ OU0 such that for all varieties S,

U0(S)
≃−→

{
iso. classes L ∈ Pic0(X × S)

∣∣∣∣∣ L|{x0}×S ∼= OS and for all s ∈ S,
h0(L|X×{s} ⊗OX(D0)) = 1

}

via (f : S → U0) 7→ (idX ×f)∗P0.

Note that always h0(LX×{s} ⊗OX(D0)) ≥ 1 by Proposition 8.4.

Proof. Construct U0 as an open subset of X(g). There is M ∈ Pic(X × X(g)) with
M|X×{D′} ≃ OX(D′) for all D′ ∈ X(g)(k) and M|{x0}×X(g) ≃ OX(g) which we construct
as follows:

X ×Xg ∆X ×Xg−1 = {(x1, x1, . . . , xg)}

X ×X(g) Y = (idX ×φ)(∆X ×Xg−1)

⊇
quotient idX ×φ

⊇

Then for all D′ ∈ X(g)(k), Y |X×{D′} = D′. LetM′ = OX×X(g)(Y ). Then

M =M′ ⊗ pr∗2M′|∨{x0}×X(g)

satisfies the conditions.

Let W = {s ∈ X(g) | h0(M|X×{s}) = 1}. This is open in X(g) by semicontinuity, and
is nonempty, as D0 ∈ W (k) by definition of D0. Then take (U0,P0) = (W,M|W ⊗
pr∗1OX(−D0)). If f : S → U0 is any morphism, then L = (idX ×f)∗(M⊗OX(−D0)) ∈
Pic0(X×S) is trivial on {x0}×S and h0(L|X×{s}⊗O(D0)) = 1 for all s ∈ S by construction.

We want every L to arise in this way. Let L ∈ Pic0(X×S) and consider L⊗pr∗1OX(D0) =
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Q. Then h0(Q|X×{s}) = 1 for all s ∈ S. As in the proof of seesaw, locally on S, L has a
section, unique up to unit in OS , whose restriction to each fibre X × {s} is nonzero. The
zero-set of these sections the glue to give family of divisors of degree g in X × S which
determines a morphism S → X(g) and its image is in U0.

Having constructed U0, we just need to glue together some copies (translates!) to cover
J .

Let D1, D2, . . . be some divisors ≥ 0 of degree g, but we no longer assume ℓ(Di) = 1.

We modify the lemma by replacing 0 by i ≥ 1:

Lemma 8.5 (Version 1). There exists a variety Ui (ultimately a dense open in J) and
Pi ∈ Pic0(X × Ui), with Pi|{x0}×Ui

≃ OUi such that for all varieties S,

Ui(S)
≃−→

{
iso. classes L ∈ Pic0(X × S)

∣∣∣∣∣ L|{x0}×S ∼= OS and for all s ∈ S,
h0(L|X×{s} ⊗OX(Di)) = 1

}

via (f : S → Ui) 7→ (idX ×f)∗Pi.

For the proof, just take (Ui,Pi) = (W,M|W ⊗OX(−Di)).

Now glue: Let Uij ⊆ Ui, Uj be the open subscheme whose S-points are{
L ∈ Pic0(X × S)

∣∣∣∣∣ L|{x0}×S ∼= OS and for all s ∈ S,
h0(L|X×{s} ⊗OX(Di)) = 1 = h0(L|X×{s} ⊗OX(Dj))

}

The Uij are compatible for Ui, Uj , Ul. This defines a scheme J =
⋃
i Ui by gluing, once we

have chosen the Di’s. Go back to X(g) π−→ J defined locally as follows: W0 = W
≃−→ U0

and πi : Wi → Ui where Wi = {s ∈ X(g) | h0(M|X×{s} ⊗ OX(Di − D0)) = 1} is open

in X(g) and contains a point corresponding to D′ ∈ [2D0 −Di] since ℓ(D0) = 1. By the
lemma, πi ∈ Ui(Wi) corresponds to some Li on Wi. Take this Li to beM⊗O(−D0).

Every D ∈ X(g)(k) lies in Wi for some Di (Di ∈ [2D0 − D] will do). So X(g) being
quasi-compact is a finite union of Wi, for a suitable finite family (Di)0≤i≤n. The πi are
surjective, so J =

⋃n
i=0 Ui.

Now define the group law m : J × J → J . Define it on the open subsets Ui × Uj as
follows: Let (x, y) ∈ Ui(k) × Uj(k) correspond to Pi,x,Pj,y ∈ Pic0(X). Then Pi,x ⊗ Pj,y
corresponds to some z ∈ Ul(k) for some l. Take this to be the image of (x, y) under
m. Note that Pi,x ⊗ Pj,y is the fibre of L = pr∗1 Pi ⊗ pr∗2 Pj on Ui × Uj above (x, y) and
h0(L|(x,y) ⊗O(Dl)) = 1. Then there is a neighborhood V of (x, y) ∈ Ui × Uj on which h0

of L ⊗O(Dl) = 1. Hence this gives a morphism V → Ul and this is our m (locally).

Then one needs to check that this defines a morphism J×J → J , that J becomes a group
variety in this way, and that π : X(g) → J is surjective, thus proving that J is projective,
hence an abelian variety.
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9 Extra Lecture: Proof of Cube
Recall:

Theorem (Theorem of the cube). Let X,Y, Z be varieties, X,Y complete. Let x, y, z be
k-points of X,Y, Z, L an invertible sheaf on X × Y × Z. Suppose the restriction of L to
each of {x} × Y × Z, X × {y} × Z, X × Y × {z} is trivial. Then L is trivial.

Remark. This implies that

Pic(X × Y )⊕ Pic(X × Z)⊕ Pic(Y × Z) projections∗−−−−−−−→ Pic(X × Y × Z)

is surjective.

Proof. We will prove a slightly more general statement.

(a) First replace Z by SpecA, A a finite local k-algebra, e.g. k[t]/(tn). As z ∈ Z(k),
Z = {z}, and A/mA = k(z) = k. We induct on dimk A. If the dimension is 1, then
Z = Spec k, so we are done as L = L|X×Y×{z} ≃ O.

Now suppose dimk A > 1. Then there is an ideal I ⊆ A with dimk I = 1 (take any
minimal non-zero ideal). Let Z1 = SpecA/I ↪→ Z.

Lemma 9.1. Let V be a complete variety. Then H0(V × SpecB,O) = B for any
k-algebra B.

This is the special case A = k of Corollary 6.3

Lemma 9.2. Let V be a complete variety. There is an exact sequence (functorial in
V )

0→ H1(V,OV )→ Pic(V × Z)→ Pic(V × Z1)

A particular case of this is A = k[t]/(t2), Z1 = Spec k, I = (t). Then

H1(O) = ker(Pic(V × Spec k[t]/(t2))→ PicV ) = “tangent space to Pic”.

Proof.I = (t) = kt, t2 = 0, so (1 + a)(1 + b) = 1 + (a + b) for all a, b ∈ I. Then
0 → I → A× → (A/I)× → 0 is exact where the first map is given by a 7→ 1 + a.
We globalise this and get an exact sequence 0 → IOV×S → O×

V×Z → O
×
V×Z1

→ 0 of
abelian group sheaves on the topological space of V ≈ V × Z.

Also OV
t≃ IOV×Z . Note that H0(V × Z,O)× = A× → H0(V × Z1,O)× = (A/I)× is

still surjective, so the long exact sequence in cohomology becomes

0→ H1(V,OV )→ Pic(V × Z)→ Pic(V × Z1).
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Back to cube, Z = SpecA. By induction, we may assume L|X×Y×Z1 is trivial. By
Lemma 9.2 applied to X,Y and X × Y we get the following diagram:

0 H1(X × Y,O) Pic(X × Y × Z) Pic(X × Y × Z1)

0 H1(X,O)⊕H1(Y,O) Pic(X × Z)⊕ Pic(Y, Z) Pic(X × Z1)⊕ Pic(Y,Z1)

a

c

b

The vertical maps are (y∗, x∗) where Y
x
↪−→ X × Y

y
←−↩ X.

Then L ∈ ker b ∩ ker c ≃ ker a.

Lemma 9.3. a is an isomorphism.

This then implies L ≃ O, so we are done.

Lemma 9.3 is a special case of:

Theorem (Künneth formula). Let X,Y be varieties over k, F (resp. G) a quasi-
coherent OX-module (resp. OY -module). Let H = pr∗1F ⊗ pr∗2 G. Then:

Hn(X × Y,H) =
⊕
p+q=n

Hp(X,F)⊗Hq(Y,G).

In our case take F = OX ,G = OY . Then H1(X × Y,O) = H0(X,O) ⊗ H1(Y,O) ⊕
H1(X,O)⊗H0(Y,O) and H0(X,O) = k = H0(Y,O) as X,Y are complete.

Idea of proof of the Künneth formula: Let X =
⋃
Ui, Y =

⋃
Vj be open affine cover-

ings. Then X ×Y =
⋃
i,j Ui×Vj . Now compare qC•({Ui×Vj},H) and qC•({Ui},F)⊗k

qC•({Vj},G). See Stacks, 0BED.

(b) Z = SpecA, A a local noetherian k-algebra, z ∈ Z the closed point. Let Zn =
SpecA/mn

A for n ≥ 1. By (a), L|X×Y×Zn is trivial for all n. Recall from the see-
saw proof that there exist finite cyclic A-modules M,M ′ such that for all k-algebra
homomorphisms A → B, H0(X × Y × SpecB,LB) = HomA(M,B) and same with
L∨B,M ′. Since L|X×Y×Zn is trivial, Lemma 9.1 gives M ⊗ A/mn ∼= A/mn1. Therefore
AnnA(M) ⊆

⋂
n≥1m

n = {0}. So M ≃ A ≃M ′. Then LB and L∨B both have non-zero

H0, so L ≃ O.

This is a scheme-theoretic version of semicontinuity: there is a maximal closed sub-
scheme Z∗ ⊆ Z such that L|V×Z∗ ≃ O where V = X × Y . As Z∗ ⊇ Zn for all n we
get Z∗ = Z.

(c) Now let Z be a variety. Then L|X×Y×SpecOZ,z
≃ O by part (b), so F = {z′ ∈ Z |

L|X×Y××{z′} is trivial} is closed (by seesaw) and contains the generic point of Z as it

1L.T.: How do we get this from the Lemma? We get HomA(M,A/mn) ≃ A/mn, but how do we get
M ⊗A/mn from this? Anyway, it is also clear from HomA(M,A/mn) ≃ A/mn that AnnA M ⊆ mn.
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is also the generic point of SpecOZ,z. Then F = Z, hence L = pr∗3M by seesaw for
someM on Z. Then OZ ≃ L|{x}×{y}×Z ≃M. Then L is trivial.
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