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Suppose on every lattice point in Z2 we write a real number in such a way that each value is the
average of its four neighbors. Assume furthermore the set of all these values is bounded. Claim: All
the values are equal.

I learned about this problem when taking the Cambridge Part III Functional Analysis examination1.
It seems surprising that Functional Analysis could help here, but it turns out that a short proof of
this is possible using the Krein-Milman theorem about convex subsets of locally convex spaces. As I
liked this application of that theorem very much I decided to write it up in this short note. The proof
also highlights a certain strategy which turns up in various places: Instead of taking just one such
configuration of values and working with it, we will look at the set of all possible configurations and
exploit some of its geometric characteristics, in particular its extreme points.

Let’s call a function f : Z2 → R harmonic if

f(m,n) =
1

4
(f(m,n+ 1) + f(m,n− 1) + f(m+ 1, n) + f(m− 1, n))

holds for all (m,n) ∈ Z2, in other words each value is the average of its four neighbors. Note that
this is analogous to the mean value property of harmonic functions on Rn, hence the name. We now
rephrase the above problem:

Theorem 1. Let f : Z2 → R be a bounded harmonic function. Then f is constant.

Of course, there is no loss in generality in assuming that f takes values in, say, [−1, 1].

We recall the notion of extreme points in order to state the Krein-Milman theorem. Let V be a real
or complex vector space and C ⊆ V . A point x ∈ C is called an extreme point of C if whenever
x = ty + (1− t)z with y, z ∈ C and t ∈ [0, 1], we must have y = z = x. The set of all extreme points
of C is denoted by ExtC. The Krein-Milman theorem states that under suitable conditions one can
reconstruct C from its set of extreme points.

Theorem (Krein-Milman). Let V be locally convex space and C ⊆ V a compact, convex subset. Then

C = convExtC.

Here convX denotes the convex hull of a subset X ⊆ V . The proof uses a clever application of Zorn’s
lemma and the Hahn-Banach separation theorem, see [Rud91, Theorem 3.23] or [Con85, Theorem V
7.4].

We can now prove Theorem 1. Let C be the set of harmonic functions f : Z2 → [−1, 1]. Note that
C is a convex subset of V := ℓ∞(Z2). The idea is to show that the extreme points of C are constant
functions and then apply the Krein-Milman theorem.

1see here, Problem 3
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Lemma. The extreme points of C are the constant functions −1 and 1.

Proof. Suppose f ∈ C is an extreme point of C. The definition of extreme points easily extends
inductively to convex combinations of more than two elements, i.e. if f =

∑
i tifi with ti ≥ 0,

∑
i ti = 1

and fi ∈ C, then fi = f for all i. In this case the definition of harmonic functions writes f as a convex
combination of the shifts (m,n) 7→ f(m,n± 1), f(m± 1, n). Clearly, these shifts are again in C, hence
f(m,n) = f(m± 1, n) = f(m,n± 1) for all (m,n) ∈ Z2, and so f is constant. Finally, it is clear that
among the the constant functions only those with values −1, 1 can be extreme points and conversely
these are indeed extreme points of C. □

To apply the Krein-Milman theorem, we need a topology on V which makes it into a locally convex
vector space and for which C is compact. The topology we choose is the weak-∗ topology we obtain
when viewing V as the dual of ℓ1(Z2). By the Banach-Alaoglu theorem ([Con85, Theorem V.3.1]), the
closed unit ball B of V is w∗-compact and clearly C ⊆ B, so it suffices to prove that C is a closed
subset in the w∗ topology. Given (m,n) ∈ Z2, let δ(m,n) : V → R be defined by δ(m,n)(f) = f(m,n).
This is (by definition) continuous for the w∗ topology. We can now write

C = B ∩
⋂

(m,n)∈Z2

(
δ(m,n) −

1

4
(δ(m,n+1) + δ(m,n−1) + δ(m+1,n) + δ(m−1,n))

)−1
(0),

showing that C is indeed closed. Thus, the conditions in the Krein-Milman theorem are satisfied and
we obtain C = convw

∗
{−1, 1}. Note that conv{−1, 1} is the set of all constant functions on Z2 with

values in [−1, 1], so from

conv{−1, 1} = B ∩
⋂

(m,n)∈Z2

(δ(m,n) − δ(0,0))
−1(0)

we see that it is already w∗-closed. In particular, C consists of constant functions only.
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