IGUSA’S ZETA FUNCTIONS AND GENERALIZATIONS

LEONARD TOMCZAK

1. IcusA’s ZETA FUNCTION

Main reference for this part: [Igu07].

Let F be a p-adic field, Op its ring of integers and p the maximal ideal. ¢ denotes the cardinality of
the residue field. Let f € Op[Xy,..., X;n] be nonconstant. We are interested in the sequence

N, = #{xz mod p" | f(x) =0 mod p"}
counting the number of solutions of f = 0 mod p". Note that Ny = 1. Let P(t) = >, > ; Nut™.
Theorem 1 (Igusa). P(t) is a rational function in t.

Remark. This is easy if f = 0 is non-singular mod p. Then Hensel’s lemma gives that each z € Op/p
has exactly ¢~ D*=1 lifts to Op/p™, hence N,, = N1g»~Dm=D for n > 1 and we get

t

PH)=1+N (n=D(k—Dyn 1 L Nj—
( ) + 1Zq + 11_qm—1t

n=1
How do we prove the general case? The strategy is as follows:
(1) Relate P(t) to the integral Z(s) = fok |f(2)]° dx where t = q*.
F
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(2) Use Hironaka’s desingularization result to reduce to the case of [, |1
F

(3) Compute this last integral.
In fact (2) and (3) generalize to the following [Igu07} Theorem 8.2.1]:

Theorem 2. Let ® be a Schwartz Bruhat function on F* (i.e. locally constant and compactly sup-
ported), x a character of F*, and f € F[X1,...,Xu| \ F. For s € C with Res > 0 define

Z@%@=/|mmmmmwmm.

Fm

Then Z is a rational function of t = q~* (for fized ®,x).
Note that Z(s) above is the special case where y is trivial and ® = 1om.
We now go through steps (1), (2) and (3).

Step (1). Let x1,...,2n, be representatives of the solutions of f(z) = 0 mod p”. Then we have
F7HP™) = iy (@ + (") *™), s0 vol(f 7 (p™)) = Npug™™™. Then
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= > (vl ) = ol ) a7 = 3 (Nag ™ = Nugag ™I )

n>0 n>0
=P(gmt)(1—t") +t!

Hence showing the rationality of P(t) reduces to rationality of Z(s) as a function of t = ¢~*.

Step (2). We use the resolution of singularities in the following form:

Theorem. Let F be a complete field of characteristic 0 and f € F[Xy,...,Xn]. There is an m-
dimensional K-analytic manifold and a proper K-analytic map h : Y — K™, with the following
property: For every b € Y there are local coordinates yi,...,Yp,--.,Ym such that in a neighborhood of

b we have
h*f —5Hyl, “(dxy A+ Aday) =1 H yg"_l /\ dy;

1<i<p 1<i<n

for some integers k;,l; and functions €,1, non-zero at b. Furthermore h is an isomorphism away from
the singular locus of f.

The general statement is more precise, for example h is a composition of monoidal transformations,
the y1,...,y, are local defining equations of submanifolds whose union is f~*(0).

Apply this to our situation. Let Yy = h=1(O%). Since h is an isomorphism up to measure 0 sets, we
have

| @ras= [ im@r i @

Now we can write Y; as a finite union of small enough open sets on which we have coordinates as
in the theorem. By making them even smaller we may assume that the €, functions have constant
absolute value on the coordinate neighborhoods, and that the coordinates 1, . . ., ¥, are parameterized
by (p™)*™ for some n. Hence the result is a sum of integrals of the form

/( . ety Py Tyl dy - dy
-

After rescaling we may replace p™ by O and the reduction step (2) is done.
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Step (3). We wish to compute [, |1 ™ dz. This is a straightforward
F

computation using the geometric series:

/ |$1|a18+b1 |$2|a25+b2 . |1: ‘am?-i-bm dr = H/ 9(17+b7, dr = H Z qfa ins 7nb
Ok
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Examples. [[gu07] pp. 168, 169, 171]

(1) Suppose f € Op[X1,...,X] is a homogeneous polynomial of degree d such that 0 is the only
singular point of f =0 mod p. Let N = Ny, then

Z(s)=[(1—qg A =g ™t+1—g "N)A-8)] (1 —qg 't) (1 —g ™!
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(2) If f=X?— X3, then
Z(s)=1—qgHA—g ) (1 — g7 (1 — g 21 —t) — ¢ 515).

Remark. Everything can be generalized to the case of multiple simultaneous equations, i.e. let
fi,ooy fx € Op[X1,..., X)) be given and denote by N,, the number of solutions of f; =--- = f, =0
in Op/p™. Then ) -, Nyt" is a rational function. Again in the case where the variety defined is
non-singular mod p, this is easy. In the general case one proceeds in a similar way as above. The
problem reduces to computing the integral

; max{[f1(2)[ ;[ f2(2)[ ..., [fr(2)[}*da.
F
In this case the integrals to compute in Step (3) become more complicated. See [Meu81].

Remark. Archimedean analog also important! E.g. meromorphic continuation of [, |f(z)|* ®(x)dx
for Schwartz functions ®(z) gives the Malgrange-Ehrenpreis theorem [Ber73] Corollary 4.8].

Remarks. Some more things about Z(f,s). Let K be a number field.

(1) If f is homogeneous and there exists a resolution of singularities such that Y is nonsingular
mod p, then deg, Z(f,s) = —deg f Theorem 4.1]. A counterexample that some kind
of restriction is necessary is f = 22 +2y? over Q. In particular if f € K[X1,..., X,,]\K, then
deg, Z,(f,s) = —deg f for almost all primes p of K.

(2) Functional Equation: If f is homogeneous, there are a1, . .., aj and a rational function Z(z1, ..., Zg41)

such that Zp(s) = Z(a1 %, ..., 0, % q.°) =: Z(s,e) for all finite extensions L/F with residue
field degree e (yes, this seems to be the standard notation here). Furthermore, if f €
K[X1,...,X;»]\K then for almost all places, Z satisfies the functional equation Z(s,—e) =

g e f 7 (s, e) [DMI1].
(3) (Monodromy) Conjecture: For f € K[Xq,...,X»]\K, for almost all primes p, if s is a pole
of Z,(f,s), then Re s is a root of by, the Bernstein-Sato polynomial of f.

2. GENERALIZATION

Define a language £ with ([DvdD88| 0.6])

e For each m > 0 and f € Z,{X1,..., X} (power series whose coefficients go to 0) an m-ary
operation symbol f,

e a binary operation symbol D,
e for each n > 0 a unary relation P,.
We are interested in its structure Z, where the operation symbols f are interpreted in the obvious way

by evaluation; D is defined by D(z,y) = 7 if |2| < [y| and y # 0, D(x,y) = 0 otherwise; and P, is the

set of n-th powers in Z,.

Theorem 3. Suppose S C Z;" is a definable subset and f,g: Z;' — Z, definable functions. Then

20, f.9.5) = /S F@)[* [9(x)] da

s a rational function int = p~°.
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Applications:

This was first used (in a slightly weaker form) to prove a conjecture of Serre: In the setup as in the
beginning let N,, := #{z mod p™ | f(x) = 0} be the number of solutions to f = 0 mod p™ that can be
lifted to solutions in Op. Let P(t) = 300 | N,t"

Theorem 4 ([Den84|). P(t) is a rational function.
The point is that again we can express P(t) as a p-adic integral: If
I(s) = / |w|® dz dw
D
where D = {(z,w) € OF x Op | Jy € O : x =y mod w, f(y) = 0}, then I(s) = q;—lﬁ(q_m_lt).

Theorem 5 ([dSau93] Theorem B]). Let G be a compact p-adic analytic group. If a, denotes the
number of subgroups of index n. Then (g p(t) = > o~ apnt™ is a rational function.

See ([dSau93| for more of these results.

Idea of proof: First one considers the case where G is a uniformly powerful pro-p group. For a

topological generating set x1, ..., x4 of G with d minimal consider the function Zg =G, (MA,..., ) —
xi‘l - ~x2d. This is a homeomorphism. In this way we can associate to any finite-index subgroup

H C @G, a subset M(H) C Myx4(Z,) consisting of “good bases” for H. The measure of M(H) is
related to the index of H and one can define functions f, g : M, «,(Z,), independent of H, such that
[G:H|™* = fM(H) |f(2)|” |g(z)| dz. Summing over all H gives (g ,(t), and one only has to show that
everything is definable. In the general case there is at least a uniformly powerful pro-p group G of
finite index in G. Then a finite index subgroup H can be split up into H N G; = H; and a set of coset
representatives for H; in H. Then combining the set M(H;) as in the first part together with these
coset representatives one can represent (¢ , as a definable integral.

Here are two more rationality results that use Theorem

Theorem 6 ([dSau00, Theorem 1.6]). Fiz integers ¢,d. Let a,, be the number of isomorphism classes
of finite groups of order p", nilpotency class < c¢ and at most d generators. Then ) ., a,t™ is a
rational function. B

Theorem 7 ([Jai06, Theorem 1.1]). Let G be a compact p-adic analytic group with p > 2. Let r,, be
the number of isomorphism classes of irreducible complex continuous representation of dimension n.

Then there are integers ni,...,n, and rational functions f1, ..., fr such that

00 k

D_ranTt =3 ni filpT).

n=1 i=1
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