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1. Preliminaries

1.1. Topological Stuff.

Definition. A locally profinite group is a totally disconnected locally compact topological group.

Here we assume topological groups to be Hausdorff.

Remark. This is the terminology from [BH06]. Sometimes, e.g. in [GH] or [Bor+79], these groups
are called td-groups.

Theorem. A topological group is locally profinite if and only the identity element has a neighborhood
basis consisting of open compact subgroups.

Proof. “If” is easy. The other direction is in [DE09, Proposition 4.1.5]. □
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This justifies the terminology: A topological group is profinite if and only it is compact and locally
profinite.

Definition. Let G be a locally profinite group. A function f : G→ C is smooth if it is locally constant.
The vector space of smooth (resp. smooth and compactly supported) functions on G is denoted C∞(G)
(resp. C∞

c (G)).

1.2. Representations of Locally Profinite Groups. Let G be a locally profinite group.

Definition. A representation (V, π) of G is a complex vector space V , together with a group homo-
morphism π : G → AutC(V ). If K ⊆ G is a subgroup, let V K be the set of K-fixed vectors. (V, π) is
called

• smooth if every vector is fixed by some open compact subgroup (such a vector is called smooth),
i.e. if V =

⋃
K V

K where the union runs over the open compact subgroups,

• admissible if it is smooth and V K is finite-dimensional for every open compact subgroup K,

• irreducible if V has no proper G-invariant non-zero subspace.

Of course we also have the usual definitions of homomorphisms of representations, subrepresentations,
quotients...

Theorem 1. Let K be a compact locally profinite group. Let (V, π) be a smooth representation of
K. Then π is semisimple, i.e. V is the direct sum of irreducible subrepresentations. Any irreducible
smooth representation of K is finite-dimensional.

Proposition 2 (Schur’s Lemma). Let G be a locally profinite group and (V, π) a smooth irreducible
representation. Assume that one of the following holds:

(1) G/K is countable for some compact open subgroup K, or

(2) π is admissible.

Then EndG(V ) = C, i.e. if T : V → V is an intertwining operator, there is λ ∈ C such that T = λ idV .

Corollary 3. Assumptions as in the previous proposition. There is a quasi-character ω : Z(G) → C×,
called the central quasi-character of π, such that π(z)v = ω(z)v for all z ∈ Z(G), v ∈ V .

Corollary 4. Assumptions as in the previous proposition. If G is abelian, then dimV = 1.

Remark. Unlike in the case of finite groups (or more generally unitarizable representations), the
converse of Schur’s lemma does not hold, i.e. EndG(V ) = C does not imply that V is irreducible.
For example if F is a local nonarchimedean field, χ a quasi-character of F×, then the principal series
representation (V, π) = B(χ, χ |·|) is reducible (Theorem 23), but dimC EndG V = 1 (Theorem 25).

Definition. Let G be a locally profinite group, K a compact open subgroup. We denote by K̂ the set of
equivalence classes of irreducible smooth representations of K. Let (V, π) be a smooth representation

of G. If ρ ∈ K̂, denote by V ρ the sum of all subspaces of V which are isomorphic to ρ as K-
representations. We call it the ρ-isotypic component of (V, π).

Theorem 5 ([Bum97, Proposition 4.2.2]). In the setup as in the definition we have

V =
⊕
ρ∈K̂

V ρ.
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V is admissible if and only if each V ρ is finite-dimensional.

Definition. Let G be locally profinite and (V, π) a smooth representation. The contragredient repre-

sentation (V̂ , π̂) is the representation of G where V̂ is the space of smooth vectors in the algebraic dual
of (V, π), i.e.

V̂ = {f : V → C linear : ∃compact open subgroup K ⊆ G with f(kv) = f(v) for all k ∈ K, v ∈ V },

and π̂ acts on this space by (π̂(g)f)(v) = f(π(g−1)v).

If f ∈ V̂ , v ∈ V we also denote f(v) by ⟨v, f⟩. Then ⟨π(g−1)v, f⟩ = ⟨v, π(g)f⟩.

Definition. Let (V, π) be a smooth representation of G. A matrix coefficient of π is a function G→ C
of the form g 7→ ⟨π(g)v, v̂⟩ with v ∈ V, v̂ ∈ V̂ .

Proposition 6. Let (V, π) be an admissible representation of G and K a compact open subgroup. Then

the pairing between V, V̂ induces a non-degenerate pairing between V K and V̂ K , so we can naturally

identify (V K)∗ = V̂ K . V̂ is admissible and the natural map V → ̂̂
V is an isomorphism.

Let G be a locally profinite group and H ⊆ G a closed subgroup. Denote by δG, δH the modular
quasi-characters of G,H respectively. Let (U, σ) be a smooth representation of H. This induces two
representations of G in the following way: Let V the vector space of functions f : G→ U satisfying

(i) f(hg) = δG(h)
−1/2δH(h)1/2f(g) for h ∈ H, g ∈ G.

(ii) There is a compact open subgroup K ⊆ G such that f(gk) = f(g) for g ∈ G, k ∈ K.

Let Vc be the subspace of V of functions f additionally satisfying

(iii) f has compact support modulo H, i.e. the image of the support of f is compact in G/H.

Letting G act on V (resp. Vc) gives us a representation, denoted IndGH σ (resp. c-IndGH σ) and called the

induced representation (resp. induced representation with compact support). Both IndGH σ and c-IndGH σ
are smooth representations of G. Note that if G/H is compact, then they coincide.

Remark. In [BH06] the notation is slightly different, there this would be denoted ιιιGHσ = IndGH(δ
−1/2
G |H⊗

δ
1/2
H ⊗ σ). The inclusion of the modular quasi-characters has the advantage that c-IndGH σ will be uni-
tarizable if σ is (see e.g. Theorem 27) and it behaves nicely under taking the contragredient, see
Theorem 8.

Theorem 7 (Frobenius reciprocity, [BH06, 2.4, 2.5]). Let (V, π), (U, σ) be smooth representations of
G,H respectively. Then there are canonical isomorphisms

HomG(π, Ind
G
H σ)

∼= HomH(π|H , σ ⊗ δ
−1/2
G δ

1/2
H ),

HomG(c-Ind
G
H σ, π)

∼= HomH(σ ⊗ δ
−1/2
G δ

1/2
H , π|H).

Theorem 8 ([BH06, 3.5]). Let (U, σ) be a smooth representation of H. Then there is an isomorphism

̂c-IndGH σ
∼= IndGH σ̂.
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Let G be a locally profinite unimodular group and fix a Haar measure dg = µ. The Hecke algebra
of G is H = H(G) = C∞

c (G) the space of compactly supported locally constant functions on G. If
f1, f2 ∈ H, define the convolution f1 ∗ f2 by

(f1 ∗ f2)(g) =
∫
G

f1(h)f2(h
−1g) dh.

Then H becomes an algebra with the convolution as multiplication. If (V, π) is a smooth representation
of G, then V becomes a module over H via

π(f)v :=

∫
G

f(g)π(g)v dg

where f ∈ H(G), v ∈ V . To make sense of the integral one can note that that it is really a finite sum,
since f is locally constant of compact support and v is fixed by an open compact subgroup of G. If
K is a compact open subgroup, let HK be the subalgebra of H consisting of those functions that are

biinvariant under K. Given ρ ∈ K̂, define a function eρ ∈ H by eρ(k) =
dim ρ
µ(K) Tr ρ(k

−1) when k ∈ K

and eρ(k) = 0 otherwise. If ρ is the trivial representation we also denote eρ by eK . It is 1
µ(K) times

the characteristic function of K. We then have HK = eK ∗ H ∗ eK and HK is a unital algebra with
unit eK .

Theorem 9 ([BH06, Proposition 4.4]). Let (V, π) be a smooth representation of G. Then π(eρ) is the

projection V =
⊕

ρ′∈K̂ V
ρ′ → V ρ.

For the next definition, note that if T : V → V is an endomorphism of a vector space V with finite-
dimensional imageW , then we may define the trace of T by TrT := TrT |W ′→W ′ whereW ′ ⊆ V is any
finite-dimensional subspace containing W . A distribution on a locally compact totally disconnected
space X is a linear functional C∞

c (X) → C.1

Definition. Let (V, π) be an admissible representation of G. The character of π is the distribution
Trπ : C∞

c (G) → C, defined by

Trπ(f) = Tr(π(f) : V → V ).

Note that if f ∈ C∞
c (G), then π(f) has finite rank, so the trace is well-defined by the remark before

the definition.

Theorem 10 ([JL70, Lemma 7.1]). Let (V1, π1), . . . , (Vn, πn) be pairwise non-isomorphic irreducible
admissible representation of G. Then their characters Trπ1, . . . ,Trπn are linearly independent.

Note that if 0 → π′ → π → π′′ → 0 is a short exact sequence of admissible representations, then
Trπ = Trπ′ +Trπ′′. Together with the theorem this easily implies

Corollary 11 ([Cas+08, Corollary 2.3.3]). Let (V, π), (V ′, π′) be admissible representations of G of
finite length. Then the irreducible composition factors and their multiplicities of π, π′ coincide (i.e.
π, π′ have isomorphic semisimplifications) if and only if Trπ = Trπ′.

1Note that unlike in the analytic case no continuity restriction is placed on such functionals.
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1.3. Matrix Decompositions. Let F be any field and G(F ) = GL2(F ). We introduce the following
subgroups of G:

B(F ) :=

{(
∗ ∗
0 ∗

)}
(Standard Borel subgroup)

M(F ) :=

{(
∗ ∗
0 1

)}
(Mirabolic group)

N(F ) :=

{(
1 ∗
0 1

)}
(Standard unipotent group)

T (F ) :=

{(
∗ 0
0 ∗

)}
(Standard split maximal torus)

Z(F ) := Z(G(F )) = F×I2.

We will usually drop the F in the notation. Note that B = NT = TN = ZM . We note the following
matrices

w0 =

(
0 −1
1 0

)
,

w1 =

(
0 1
−1 0

)
,

w =

(
0 1
1 0

)
.

We have the Bruhat decomposition

G = B∪̇Bw0B.

Now assume that F is a nonarchimedean local field. Let OF be its ring of integers and ϖ a uniformizer.
Let K = GL2(OF ). This is a compact open subgroup of G and every compact subgroup of G is
conjugate to a subgroup of K. We have the following decompositions:

G = BK(Iwasawa decomposition)

G =
⋃̇

n1≥n2

K

(
ϖn1 0
0 ϖn2

)
K(Cartan decomposition)

1.4. Haar Measures. Let F be a local nonarchimedean field. We introduce the Haar measures on
the various matrix groups from the previous section.

G G is unimodular and the Haar measure is up to scalar given by dx
|det x|2 where dx is the Haar

measure on the additive group M2×2(F ) ∼= F 4.

B Write an element of B as b =

(
1 x
0 1

)(
y1 0
0 y2

)
. Then a right Haar measure on B is given

by dRb = dxd×y1d
×y2 and left Haar measure by dLb = |y2/y1|dRb. The modular function is

δ(b) = δB(b) = |y1/y2|.
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2. Representations of GL2

In this section, let F be a local nonarchimedean field and G = GL2(F ). We will also use the matrix
groups introduced in 1.3. The residue field cardinality is denoted by q.

2.1. Generalities.

Proposition 12. Let (V, π) be a finite-dimensional irreducible smooth representation of G. Then V
is one-dimensional and there is a quasi-character χ of F× such that π = χ ◦ det.

Proof sketch. Since V is finite-dimensional kerπ is an open normal subgroup. One can show that every
open normal subgroup of G contains SL2(F ) from which the result follows. □

In the following given a quasi-character ϕ of F× we identify it with a quasi-character of G by compo-
sition with det, but we will omit this from the notation and just write χ.

Theorem 13. Let (V, π) be an irreducible admissible representation of G. The contragredient repre-
sentation π̂ is isomorphic to the representation g 7→ π(g−T ) on V . If ω is the central quasi-character,
then it is also isomorphic to ω−1 ⊗ π.

Theorem 14 ([JL70, Theorem 7.7]). Let (V, π) be an irreducible admissible representation of G. Then
its character Trπ is represented by a function in the following sense: There is a continuous function
χπ : G→ C such that for every f ∈ C∞

c (G) we have

Trπ(f) =

∫
G

f(g)χπ(g) dg.

Let ψ be an additive character of F .

Definition. Let (V, π) be a smooth representation of N . Let V (ψ) denote the subspace of V spanned
by elements of the form π(n)v − ψ(n)v with n ∈ N, v ∈ V . The quotient is Vψ := V/V (ψ). If ψ is the
trivial character we also write V (N), VN for V (ψ), Vψ and call J(V ) := VN the Jacquet module of V .

Note that VN is the module of coinvariants, or the 0-th homology group H0(N,V ).

Proposition 15. Let (V, π) be a smooth representation of N and v ∈ V . Then v ∈ V (ψ) if and only
if ∫

p−n

ψ(−x)π
((

1 x
0 1

))
v dx = 0

for sufficiently large n.

Note that if the integral is zero for some n0, it will be zero for all n ≥ n0 as well (split it up into cosets
p−n/p−n0).

Corollary 16. The functor (V, π) 7→ Vψ is exact.

Proof. It is clearly right exact and the proposition implies it is left exact. □

If (V, π) is a representation of B, note that V (N) is an invariant subspace for T , so J(V ) is a T -module.

Theorem 17 ([Bum97, Theorem 4.4.4]). Suppose (V, π) is an admissible representation of G. Then
J(V ) is admissible as a representation of T .
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Theorem 18. Suppose (V, π) is an irreducible admissible representation of G. Then J(V ) is at most
two-dimensional.

Proof. This requires some techniques from later sections. If J(V ) = 0, there is nothing to show.
Otherwise π is isomorphic to a subrepresentation of a principal series representation B(χ1, χ2) by
Theorem 34 where χ1, χ2 are quasi-characters of F×. By exactness of the Jacquet functor it thus
suffices to prove the statement for B(χ1, χ2). We make use of the following general fact:

Lemma 19 ([BH06, Restriction-Induction Lemma 9.3]). Let (U, σ) be a smooth representation of T

which we view as a representation of B via inflation. Let (V, π) = IndGB σ. Then we have a short exact
sequence of representations of T :

0 → σw ⊗ δB |1/2T → J(V ) = πN → σ ⊗ δB |1/2T → 0, 2

where σw(t) = σ(wtw−1) with w =

(
0 1
1 0

)
. The right map is given by f 7→ f(1).

We apply this with σ the one-dimensional representation of T given by χ1 ⊗ χ2 so that (V, π) =
B(χ1, χ2). Then we get a short exact sequence of vector spaces

0 → C → J(V ) → C → 0

and the claim follows. □

Now fix a non-trivial additive character ψ of F .

Definition. Let (V, π) be a smooth representation of G. A Whittaker functional on V is a linear map
Λ : V → C satisfying Λ(π(u)v) = ψ(u)Λ(v) for all u ∈ N .

Equivalently a Whittaker functional is a linear functional on V/V (ψ) = Vψ.

Theorem 20. Let (V, π) be an irreducible admissible representation of G. Then the dimension of the
space of Whittaker functionals on V is 1 if V is infinite-dimensional and 0 if V is one-dimensional.

Let (V, π) be an infinite-dimensional irreducible admissible representation of G. Fix a non-zero Whit-
taker functional Λ on V . For v ∈ V define the function Wv : G→ C by

Wv(g) = Λ(π(g)v).

Let W = {Wv | v ∈ V }. This is a vector space of functions on G. Since Wπ(g)v(h) = Wv(hg), G acts
on it by right translation and the map V → W, v 7→ Wv is an isomorphism of representations. W is
the Whittaker model of π. Note that W is a subrepresentation of the induction IndGN ψ.

Similarly we can identify π with a space of functions on F×: For v ∈ V define the function ϕv : F
× → C

by

ϕv(a) =Wv

((
a 0
0 1

))
= Λ

(
π

((
a 0
0 1

))
v

)
.

Let K be the space of functions of this form. Then the map V → K, v 7→ ϕv is bijective (surjective
by definition, injective is not obvious) and thus identifies V with a representation of G on a space of

2Note that in [BH06] they use another convention for the modular quasi-character, our δB is their δ−1
B .



8 LEONARD TOMCZAK

functions on F×. This is called the Kirillov model of π. We can’t easily describe the full action of G
on K, but the action of special subgroups is as follows: If ϕ ∈ K, then

π

((
a 0
0 1

))
ϕ(x) = ϕ(ax),(∗)

π

((
1 b
0 1

))
ϕ(x) = ψ(bx)ϕ(x),(∗∗)

π

((
a 0
0 a

))
ϕ(x) = ω(a)ϕ(x).

for a ∈ F×, b ∈ F where ω is the central character of V . This tells us how B acts on K. By the Bruhat
decomposition, it would be be enough to know how w acts on K in order to understand the full action
of G on K.

Let ϕ ∈ K. ϕ(ax) = π

((
a 0
0 1

))
ϕ(x) = ϕ(x) for a ∈ F× close to 1 since the representation is smooth.

Therefore K ⊆ C∞(G). Furthermore, if b is close to 0 we also have ϕ(x) = ψ(bx)ϕ(x) for all x ∈ F×. If
|x| is large enough, we can find b close to 0 such that ψ(bx) ̸= 1 (this is possible since ψ is non-trivial),
so ϕ(x) = 0 for |x| large enough.

Theorem 21. The Kirillov model contains C∞
c (F×), in fact this is the kernel of the projection V →

J(V ) onto the Jacquet module.

Proof. We may assume that V = K is equal to its Kirillov model. By definition the kernel of V → J(V )

is V (N), the subspace generated by elements of the form π

((
1 b
0 1

))
ϕ− ϕ with b ∈ F , ϕ ∈ V . We

have π

((
1 b
0 1

))
ϕ(x) − ϕ(x) = (ψ(bx) − 1)ϕ(x). Since ψ is continuous, this is 0 if |x| is small.

Since we already saw above that all functions in V are locally constant and vanish for |x| large, this
shows that V (N) ⊆ C∞

c (F×). By Theorem 18, V (N) ̸= 0. Both V (N) and C∞
c (F×) are modules for

M =

{(
∗ ∗
0 1

)}
via (∗) and (∗∗). It is not too difficult to show that C∞

c (F×) is irreducible, hence

V (N) = C∞
c (F×). □

2.2. Principal Series Representations. Let χ1, χ2 be quasi-characters of F× and view χ = χ1⊗χ2

as a quasi-character of T and via the the quotient map B → B/N = T also as a quasi-character of B.

Definition. A principal series representation of G is a representation of the form B(χ1, χ2) :=

IndGB(χ).

Explicitly the space B(χ1, χ2) consists of all locally constant functions f : G→ C satisfying

f

((
a x
0 b

)
g

)
= δ

((
a x
0 b

))
χ

((
a x
0 b

))
f(g) =

∣∣∣a
b

∣∣∣1/2 χ1(a)χ2(b)f(g)

for all a, b ∈ F×, x ∈ F, g ∈ G, and G acts on this space by right translation. Because of the Iwasawa
decomposition G = BK, f ∈ B(χ1, χ2) is uniquely determined by its restriction to K. Since K is
compact, this easily implies that B(χ1, χ2) is admissible.
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Note that if χ0 is another quasi-character of F×, we have B(χ0χ1, χ0χ2) = χ0 ⊗ B(χ1, χ2).

Remark. Write χj = |·|sj ξj with ξj unitary characters of F×. In [GH11] this principal series repre-
sentation is denoted V((s1 + 1

2 , s2 −
1
2 ), (ξ1, ξ2)).

Theorem 22. Let χ1, χ2 be quasi-characters of F×. The pairing

B(χ1, χ2)× B(χ−1
1 , χ−1

2 ) −→ C

f, g 7−→
∫
K

f(k)g(k) dk

is invariant and induces an isomorphism of B(χ−1
1 , χ−1

2 ) with the contragredient representation of
B(χ1, χ2).

Theorem 23. Let χ1, χ2 be quasi-characters of F×. The principal series representation B(χ1, χ2)

is irreducible except when χ1χ
−1
2 = |·|±1

. If χ1χ
−1
2 = |·|−1

, then B(χ1, χ2) has a one-dimensional
subrepresentation and the quotient is irreducible, if χ1χ

−1
2 = |·|, then B(χ1, χ2) has an irreducible

codimension one subrepresentation.

In the case χ1χ
−1
2 = |·|−1

, the one-dimensional subrepresentation is spanned by

f(g) = χ1(det g) |det g|1/2 .

Conversely, every one-dimensional representation χ◦det of G occurs as a subspace of a principal series

representation simply take χ1 = χ |·|−1/2
, χ2 = χ |·|1/2.

If χ1χ
−1
2 = |·|±1

, the infinite-dimensional irreducible factor in the composition series of B(χ1, χ2) is
called a special representation of G and is denoted σ(χ1, χ2).

Theorem 24 (Jacquet module of a principal series representation). Let χ1, χ2 be quasi-characters of
F×. Let (V, π) = B(χ1, χ2). Then J(V ) is two-dimensional and the T -module structure is given as
follows. Let χ = χ1 ⊗ χ2, χ

′ = χ2 ⊗ χ1 the characters of T . If χ1 ̸= χ2, then J(V ) ∼= δ1/2 ⊗ (χ⊕ χ′).
If χ1 = χ2, then J(V ) is isomorphic to the representation given by

t 7→ (δ1/2χ)(t)

(
1 v(t1/t2)
0 1

)
where v : F× → Z is the valuation map.

Proof. In the notation of Lemma 19 we have a short exact sequence

0 → χw ⊗ δ1/2 → J(V ) → χ⊗ δ1/2 → 0.

Note that χw = χ′. If χ1 ̸= χ2, we have χw ⊗ δ1/2 ̸= χ ⊗ δ1/2 and it is not difficult to see that this
implies that J(V ) ∼= (χw ⊗ δ1/2)⊕ (χ⊗ δ1/2).3 For the other case see [Bum97, Theorem 4.5.4]. □

3Suppose G is an abelian group and (V, π) a two-dimensional representation that fits into a short exact sequence

0 → χ1 → V → χ2 → 0 with χ1, χ2 distinct one-dimensional representations. Then V ∼= χ1 ⊕ χ2. Indeed, fix g0 ∈ G

such that χ1(g0) ̸= χ2(g0). Then π(g0) has matrix

(
χ1(g0) ∗

0 χ2(g0)

)
in some basis, so it has distinct eigenvalues

χ1(g0), χ2(g0) and is thus diagonalizable. Since all the operators π(g), g ∈ G, commute with π(g0), they preserve the
one-dimensional eigenspaces and that implies that V ∼= χ1 ⊕ χ2.
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Theorem 25. Let χ1, χ2, µ1, µ2 be quasi-characters of F×. Then

dimC HomG(B(χ1, χ2),B(µ1, µ2)) =

{
1 if (χ1, χ2) = (µ1, µ2) or (χ1, χ2) = (µ2, µ1),

0 otherwise.

Corollary 26. Assume B(χ1, χ2) ∼= B(µ1, µ2). Then either (χ1, χ2) = (µ1, µ2) or (χ1, χ2) = (µ2, µ1).
If B(χ1, χ2) is irreducible, then B(χ1, χ2) ∼= B(χ2, χ1).

Proof sketch of Theorem 25. Write µ = µ1 ⊗ µ2, χ = χ1 ⊗ χ2 for the quasi-characters on T and also
for the quasi-characters on B obtained by inflation. By Frobenius reciprocity we have

HomG(B(χ1, χ2),B(µ1, µ2)) = HomB(B(χ1, χ2)|B , µ⊗ δ1/2).

Since N acts trivially on µ, we get HomB(B(χ1, χ2)|B , µ⊗ δ1/2) = HomT (B(χ1, χ2)N , µ⊗ δ1/2) as the
Jacquet module B(χ1, χ2)N is the largest quotient on which N acts trivially. If χ1 ̸= χ2, we have
B(χ1, χ2)N ∼= δ1/2 ⊗ (χ ⊕ χ′) with χ′ = χ2 ⊗ χ1. In this case the result immediately follows. Next
assume χ1 = χ2. Then [BH06] says in Proposition 9.10 that “in this case, Indχ is irreducible and
the result again follows”, but it is not clear to me why that is the case. Note that if we knew the
conclusion of the previous theorem on the structure of B(χ1, χ2)N in the case χ1 = χ2, it would be
easy. However, the proof in [Bum97] of that result makes use of the current theorem we are proving
(or rather its corollary). □

[Bum97] approaches this differently. He proves the first part of the corollary using distributions and
the second part as follows: We may assume χ1 ̸= χ2. Write χj = |·|sj ξj where ξj is a unitary character.
Given f ∈ B(χ1, χ2), define

(Mf)(g) :=

∫
F

f

((
0 −1
1 0

)(
1 x
0 1

)
g

)
dx.

If Re(s1 − s2) > 0, this integral converges and then defines a non-zero intertwining operator M :
B(χ1, χ2) → B(χ2, χ1). The integral can be analytically continued to all s1, s2 (except for χ1 = χ2, i.e.
if ξ1 = ξ2, there will be a singularity at (s1, s2) with q

s1−s2 = 1), hence giving a non-zero intertwining
operator in the remaining cases as well. To make sense of the analytic continuation we define flat
sections: Fix the unitary characters ξ1, ξ2 and let (Vs1,s2 , πs1,s2) = B(|·|s1 ξ1, |·|s2 ξ2). A flat section
is a mapping that associates to each (s1, s2) ∈ C2 a function fs1,s2 ∈ Vs1,s2 such that fs1,s2 |K is
independent of s1, s2. For every function f : K → C satisfying

f

((
a x
0 b

)
k

)
= ξ1(a)ξ2(b)f(k),

for a, b ∈ O×
F , x ∈ OF , k ∈ K, there is a unique flat section (s1, s2) 7→ fs1,s2 such that f is the

restriction of the functions in the flat section to K. By analytic continuation of Mf we now mean
that for every flat section the function (s1, s2) 7→ (Mfs1,s2)(g) admits an analytic continuation. Then
M extends to a non-zero intertwining operator Vs1,s2 → B(|·|s2 ξ2, |·|s1 ξ1).

Useful matrix identity to keep in mind:(
0 −1
1 0

)(
1 x
0 1

)
=

(
x−1 −1
0 x

)(
1 0
x−1 1

)
.
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Theorem (Kirillov model of a principal series representation). Let χ1, χ2 be quasi-characters of F×

such that χ1χ2 ̸= |·|±1
. Let V be the Kirillov model of B(χ1, χ2). Define ϕj : F× → C by ϕj(t) =

|t|1/2 χj(t) for |t| < 1 and ϕj(t) = 0 otherwise, for j = 1, 2. If χ1 ̸= χ2, then

V = Cϕ1 + Cϕ2 + C∞
c (F×),

and if χ1 = χ2, then
V = Cϕ1 + Cvϕ1 + C∞

c (F×),

where v : F× → C is the valuation map.

Proof sketch. We know from Theorem 24 that C∞
c (F×) is of codimension 2 in V . So it suffices to

prove that V is contained in the right hand side of the equation. For that also use Theorem 24. □

Theorem 27 ([Bum97, Theorem 4.6.7]). Let χ1, χ2 be quasi-characters of F×. Then B(χ1, χ2) is
unitarizable if and only if both χ1 and χ2 are unitary, or there is a unitary character ξ and a real
number − 1

2 < s < 1
2 such that χ1 = |·|s ξ, χ2 = |·|−s ξ.

We can write down an explicit expression for the Whittaker functional on the principal series represen-
tation. So let ψ be a non-trivial additive character of F , χ1, χ2 be quasi-characters on F× and write
χj = |·|sj ξj with ξj unitary. Define Λ : B(χ1, χ2) → C by

Λ(f) =

∫
F

f

((
0 −1
1 0

)(
1 x
0 1

))
ψ(−x) dx.

If Re(s1 − s2) > 0 this converges absolutely and defines a Whittaker functional on B(χ1, χ2). This
integral can be analytically continued to all s1, s2.

2.3. Spherical Representations. Let (V, π) be an irreducible admissible representation of G. Recall
that K = GL2(OF ) is the standard maximal compact subgroup of G.

Definition. π is called spherical if there is a non-zero K-fixed vector, i.e. if V K ̸= 0. Such a vector
is called spherical.

Proposition 28. If π is spherical, so is π̂.

Proof. This follows from Theorem 13. □

Recall that HK is the space of locally constant compactly supported K-biinvariant functions G→ C.
It is an algebra under convolution. Matrix involution induces an involution on HK and the (Cartan
decomposition) implies that it must be the identity, so HK is commutative. As a C-algebra, HK is

generated by T,R,R−1 where T,R are the characteristic functions of K

(
ϖ 0
0 1

)
K and K

(
ϖ 0
0 ϖ

)
K

respectively.

Theorem 29. If π is spherical, dimV K = 1, so a spherical vector is unique up to scalars.

Proof. V K is a finite dimensional simple module for the commutative ring HK . □

Denote by vK any spherical vector in V (unique up to scalars by the theorem). Then there is a
homomorphism ξ : HK → C such that π(ϕ)vK = ξ(ϕ)vK for ϕ ∈ HK . This is the character of HK

associated to π.
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Theorem 30. Two irreducible admissible spherical representations are isomorphic if and only if the
corresponding characters of HK coincide.

Example. A finite-dimensional irreducible admissible representation of G is one-dimensional and of
the form χ ◦ det for a quasi-character χ of F×. It is spherical if and only if χ is unramified, i.e. trivial
on O×

F .

Example. Let χ1, χ2 be unitary unramified quasi-characters of F× (hence of the form |·|s). Assume

that χ1χ
−1
2 ̸= |·|±1

, so that (V, π) = B(χ1, χ2) is irreducible. Write χ for the character of B. Consider
the function ϕK : G→ C defined by

ϕK(g) = (δ1/2χ)(b)

where we write g = bk with b ∈ B, k ∈ K. This is independent of the choice of b, k. Then ϕK is a
spherical vector in V .

Let α1 = χ1(ϖ), α2 = χ2(ϖ). Since χ1, χ2 are unramified, these numbers determine the quasi-
characters uniquely. To find the character ξ of HK for this spherical representation, it suffices to know
ξ(T ), ξ(R) which are given by:

Proposition 31. Notation as above, we have π(T )ϕK = λϕK and π(R) = µϕK where

λ = q1/2(α1 + α2),

µ = α1α2.

Proof. Evaluate both sides of π(T )ϕK = λϕK at I2 ∈ G to get

λ = (π(T )ϕK)(I2) =

∫
K

ϖ 0
0 1

K ϕK(g) dg.

Then split it up into left cosets mod K and use explicit Hermite normal form coset representatives to
compute this. Same for π(R)ϕK . □

In fact the above two examples are exhaustive:

Theorem 32. Let (V, π) be an irreducible admissible spherical representation of G. Then π is iso-
morphic to one of the two examples above.

Proof. We make use of Theorem 30. Let ξ be the character of HK . Let λ = ξ(T ), µ = ξ(R). Let α1, α2

be the roots of X2−q1/2λX+µ = 0 and χ1, χ2 the unramified quasi-characters of F× with χj(ϖ) = αj .
If B(χ1, χ2) is irreducible, it is spherical and the corresponding character of HK is ξ by construction of
α1, α2, the proposition and since HK is generated by T,R,R−1. Hence (V, π) ∼= B(χ1, χ2). If B(χ1, χ2)
is not irreducible, one argues similarly that π is isomorphic to the one-dimensional subrepresentation
or quotient of B(χ1, χ2). □

2.4. Supercuspidal Representations.

Definition. Let (V, π) be an admissible representation of G. π is called supercuspidal if VN = 0.

Explicitly π is supercuspidal if for every v ∈ V there is some n ∈ Z such that
∫
p−n π

((
1 x
0 1

))
v dx = 0

(Proposition 15).
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Theorem 33 ([Cas+08, Proposition 5.4.2]). Any admissible supercuspidal representation of G is a
countable direct sum of irreducible supercuspidal representations.

Theorem 34. Let (V, π) be an irreducible admissible representation of G. The following are equivalent:

(i) π is supercuspidal.

(ii) π is not isomorphic to a subrepresentation of a principal series representation.

(iii) There is a matrix coefficient of π that is compactly supported modulo Z (i.e. whose support has
compact image in G/Z).

(iv) The matrix coefficients of π are compactly supported modulo Z.

Proof. For “(i) ⇔ (ii)” use Frobenius reciprocity: HomG(π,B(χ1, χ2)) = HomB(π|B , χ ⊗ δ1/2) =
HomT (πN , χ⊗δ1/2). This immediately gives “(i) ⇒ (ii)”, for the other direction, one has to show that
if πN ̸= 0, there is some quasi-character χ of T such that HomT (πN , χ⊗ δ1/2) ̸= 0. This can be seen
quickly as follows. πN is admissible, hence so is its contragredient. Any admissible representation of
(F×)k has a one-dimensional invariant subspace (see [Bum97, Proposition 4.2.9]), hence there exists

0 ̸= L ∈ V̂N such that L(πN (t)v) = (δ1/2χ)(t)v for some quasi-character χ of T = F× ⊕ F×. Then
L ∈ HomT (πN , χ ⊗ δ1/2). A different argument given in [BH06, Proposition 9.1] is to argue that V
is finitely generated as a representation of G, hence VN is finitely generated over T , and any finitely
generated representation admits an irreducible quotient.

For “(iii) ⇔ (iv)” see [BH06, Theorem 10.2]. □

Corollary 35. Let (V, π) be an irreducible admissible representation of G. Then π is isomorphic to
exactly one of the following:

• A one-dimensional representation χ for some quasi-character χ of F×,

• A special representation σ(χ1, χ2) for some quasi-characters χ1, χ2 of F× with χ1χ2 = |·|±1
,

• A principal series representation B(χ1, χ2) for some quasi-characters χ1, χ2 of F× with χ1χ2 ̸=
|·|±1

,

• A supercuspidal representation.

We can construct supercuspidal representations as follows. Let k = OF /m be the residue field of F .
Let (V0, π0) be a cuspidal representation4 of GL2(k). Via inflation along GL2(OK) → GL2(k) this
gives a smooth representation of K = GL2(OK). Let ω0 : k× → C× be the central character of π0,
we can lift it to a character of O×

K and extend it to a unitary character ω of F×. Then extend the

representation π0 on K to a representation π1 on KZ by letting Z act via ω. Let (V, π) = c-IndGKZ π1.

4An irreducible representation (V0, π0) of GL2(k) is cuspidal if it has no N(k)-fixed vector (note given the decompo-
sition V0 = V N0 ⊕V0(N) we see that this is analogous to the definition of supercuspidality for representation of GL2(F )).

The cuspidal representations of G(k) are obtained as follows. Let l/k be the quadratic field extension and θ a character
of l× with θq ̸= θ. By viewing l as a two-dimensional k-vector space identify l× with a subgroup E of G(k). Let ψ a

non-trivial character of N(k). Define a character θψ of Z(k)N(k) by θψ

((
a 0

0 a

)
u

)
= θ(a)ψ(u) for a ∈ k×, u ∈ N(k).

Then Ind
G(k)
Z(k)N(k)

θψ − Ind
G(k)
E θ is an irreducible cuspidal representation. It is of dimension q− 1 and every irreducible

cuspidal representation of G(k) is of this form. See [BH06, 6.4] for more. See also [Bum97, 4.1] for another method of
constructing cuspidal representations of G(k) via the Weil representation.
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Theorem 36 ([Bum97, Theorem 4.8.1]). The representation constructed this way is irreducible, ad-
missible, supercuspidal and unitarizable.
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