ADELIC FOURIER SERIES

LEONARD TOMCZAK

Contents

1.	Generanties	1
2.	Application: Whittaker models of cuspidal automorphic representations	2
Re	ferences	4

1. Generalities

Let F be a number field. A denotes the additive group of adeles over F. Recall that F sits discretely and cocompactly in \mathbb{A} . Let ψ be a non-trivial character of \mathbb{A} , i.e. a continuous homomorphism $\psi : \mathbb{A} \to \mathbb{C}^{\times}$ with $|\psi(a)| = 1$ for every $a \in \mathbb{A}$. We assume that ψ is trivial on F. If $a \in \mathbb{A}$, we get another character ψ_a via $\psi_a(x) = \psi(ax)$.

Theorem 1. The map $\mathbb{A} \to \widehat{\mathbb{A}}$ given by $a \mapsto \psi_a$ is an isomorphism of topological groups. Under this isomorphism F^{\perp} corresponds to F.

Proof. The first part essentially follows from the corresponding fact for local fields, see [Tat67, Theorem 4.1.1]. The second part is [Tat67, Theorem 4.1.4]. \Box

From this we deduce that $F \cong F^{\perp} = \widehat{\mathbb{A}/F}$ via $F \ni k \mapsto \psi_k \in F^{\perp}$. Take the Haar measure on \mathbb{A}/F to be normalized so that \mathbb{A}/F has volume 1. Then the dual measure on F is the counting measure. From general abstract harmonic analysis, see e.g. [Fol15, Chapter 4], we get the following definition and the subsequent statements.

Definition. Let $f \in L^1(\mathbb{A}/F)$. The Fourier transform of f is the function $\widehat{f}: F \to \mathbb{C}$, given by

$$\widehat{f}(k) = \int_{\mathbb{A}/F} f(x)\psi(-kx) \,\mathrm{d}x$$

The Fourier series of f is

Q ---- 1:4: ---

$$\sum_{k \in F} \widehat{f}(k) \psi(kx).$$

Theorem 2 (Plancherel theorem). The map

$$L^{2}(\mathbb{A}/F) \longrightarrow \ell^{2}(F),$$
$$f \longmapsto \widehat{f}$$

LEONARD TOMCZAK

is a unitary isomorphism.

Theorem 3 (Fourier inversion). If $f \in L^2(\mathbb{A}/F)$, then $\sum_{k \in F} \widehat{f}(k)\psi(kx)$ converges in $L^2(\mathbb{A}/F)$ to f. If $f \in C(\mathbb{A}/F)$ and $\widehat{f} \in \ell^1(F)$, then $\sum_{k \in F} \widehat{f}(k)\psi(kx)$ converges uniformly to f.

Let $F_{\infty} = F \otimes_{\mathbb{Q}} \mathbb{R} = \prod_{v \mid \infty} F_v$ be the product of the infinite places of F. Let $\mathbb{A}_f = \prod'_{v \nmid \infty} (F_v, \mathcal{O}_v)$ be the set of finite adeles. Then we have $\mathbb{A} = F_{\infty} \times \mathbb{A}_f$. If $a \in \mathbb{A}$ we write $a = a_{\infty}a_f$ with $a_{\infty} \in F_{\infty}, a_f \in \mathbb{A}_f$.

Recall that a function on \mathbb{R} or \mathbb{C} is smooth if it is infinitely often differentiable, and a function on a non-archimedean local field is smooth if it is locally constant. A function $\varphi : \mathbb{A} \to \mathbb{C}$ is called *smooth* if it is smooth at every place in a uniform way, more precisely: For every $x \in \mathbb{A}$ there is an open neighborhood $x \in U \subseteq \mathbb{A}$ and a smooth function $f : F_{\infty} \to \mathbb{C}$ such that $\varphi(a) = f(a_{\infty})$ for all $a \in U$.

Proposition 4. Let $\varphi : \mathbb{A} \to \mathbb{C}$ be smooth and periodic, i.e. $\varphi(a+x) = \varphi(a)$ for $a \in \mathbb{A}, x \in F$, so that φ defines a function on \mathbb{A}/F . Then $\widehat{\varphi} \in \ell^1(F)$, so the Fourier series of φ converges uniformly to φ .

Proof. This is basically taken from an answer by Will Sawin on Math Overflow¹. Using that \mathbb{A}_f/F is compact and φ smooth and periodic, it is easy to show that there is an open subgroup $H \subseteq \mathbb{A}_f$ such that $\varphi(a+x) = \varphi(a)$ for $a \in \mathbb{A}, x \in x \in H$. Then φ descends to a function on $\mathbb{A}/(F+H)$. Consider the map $F_{\infty} \to \mathbb{A}/(F+H)$. Its kernel is a lattice Λ in F_{∞} and by the strong approximation theorem it is surjective. Thus $F_{\infty}/\Lambda \cong \mathbb{A}/(F+H)$. Pulling back the function φ gives a smooth (in the usual sense) function on $F_{\infty}/\Lambda \cong (\mathbb{R}/\mathbb{Z})^{[F:\mathbb{Q}]}$. It is a basic fact that on a torus the Fourier coefficients of a smooth function are absolutely summable (by integration by parts). In fact one could even better decay bounds and explicitly relate the characters on \mathbb{A}/F vanishing on H with the characters on F_{∞}/Λ . \Box

2. Application: Whittaker models of cuspidal automorphic representations

We continue to fix a non-trivial character ψ on A/F.

Theorem 5 ([Bum97, Theorem 3.5.5]). Let $V \subseteq \mathcal{A}_0(\operatorname{GL}_2(F) \setminus \operatorname{GL}_2(\mathbb{A}), \omega)$ be a cuspidal automorphic representation where ω is a unitary character on $\mathbb{A}^{\times}/F^{\times}$. Then V has a Whittaker model. This means there is a space \mathcal{W} of "nice"² functions W on $\operatorname{GL}_2(\mathbb{A})$ satisfying $W\left(\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}g\right) = \psi(x)W(g)$ for $x \in F, g \in \operatorname{GL}_2(\mathbb{A})$, such that \mathcal{W} is closed under the action of the global Hecke algebra \mathcal{H} and is isomorphic to V as an \mathcal{H} -module.

More precisely: For $\varphi \in V$ define the function $W_{\varphi} : \operatorname{GL}_2(\mathbb{A}) \to \mathbb{C}$ by

$$W_{\varphi}(g) = \int_{A/F} \varphi\left(\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} g
ight) \psi(-x) \, \mathrm{d}x.$$

 $[\]label{eq:linear} {}^{1} \mbox{https://mathoverflow.net/questions/321284/sufficient-condition-for-the-absolute-convergence-of-fourier-series-of-a-function} \mbox{function} \mbox{function}$

²This means: smooth and K-finite functions of moderate growth. Smoothness is defined similarly as for functions $\mathbb{A} \to \mathbb{C}$. K-finite means that the K-right translates generate a finite dimensional vector space, where $K = \prod_{v} K_{v}$ and $K_{v} = \mathcal{O}_{v}$ if $v \nmid \infty$ and $K_{v} = O(2)$ resp. U(n) if v is real resp. complex. Moderate growth means that $W\left(\begin{pmatrix} y & 0 \\ 0 & 1 \end{pmatrix}g\right)$ is bounded by a polynomial in |y|. See [Bum97, p. 326].

Then the space \mathcal{W} of functions W_{φ} with $\varphi \in V$ is a Whittaker model for V, and the map $V \to \mathcal{W}, \varphi \mapsto W_{\varphi}$ is an isomorphism of representations. Finally the following holds:

$$\varphi(g) = \sum_{k \in F^{\times}} W_{\varphi} \left(\begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix} g \right)$$

Proof. Fix $g \in \operatorname{GL}_2(\mathbb{A})$ and define the function $f : \mathbb{A} \to \mathbb{C}$ by $f(x) = \varphi\left(\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}g\right)$. f is smooth since φ is. Since φ is invariant by $\operatorname{GL}_2(F)$ on the left, f is periodic. Therefore we can apply the theory of Fourier series to f and get that

$$f(x) = \sum_{k \in F} \widehat{f}(k) \psi(kx)$$

uniformly where

$$\widehat{f}(k) = \int_{A/F} f(x)\psi(-kx) \, \mathrm{d}x = \int_{A/F} \varphi\left(\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} g\right)\psi(-kx) \, \mathrm{d}x.$$

Since the Fourier series converges pointwise, we may plug in x = 0 and obtain

$$\varphi(g) = f(0) = \sum_{k \in F} \widehat{f}(k).$$

We have $\widehat{f}(0) = 0$ since φ is cuspidal. For $k \neq 0$ we have

$$\begin{split} \widehat{f}(k) &= \int_{A/F} \varphi \left(\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} g \right) \psi(-kx) \, \mathrm{d}x \\ &= \int_{A/F} \varphi \left(\begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} g \right) \psi(-kx) \, \mathrm{d}x \\ &= \int_{A/F} \varphi \left(\begin{pmatrix} 1 & kx \\ 0 & 1 \end{pmatrix} \begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix} g \right) \psi(-kx) \, \mathrm{d}x \\ &= \int_{A/F} \varphi \left(\begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} \begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix} g \right) \psi(-y) \, \mathrm{d}y \\ &= W_{\varphi} \left(\begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix} g \right). \end{split}$$

In the last step we used that elements k in F^{\times} have |k| = 1. Therefore

$$\varphi(g) = \sum_{k \in F^{\times}} W_{\varphi} \left(\begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix} g \right).$$

It is relatively easy to see that the functions W_{φ} are "nice" in the desired sense, that $W_{\varphi}\left(\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}g\right) = \psi(x)W_{\varphi}(g)$ and that $\varphi \mapsto W_{\varphi}$ is a map of representations. It remains to show that it is injective. If $\varphi \neq 0$, then $\varphi(g) \neq 0$ for some $g \in \text{GL}_2(\mathbb{A})$. In the above notation we then must have $\widehat{f}(k) \neq 0$ for some $k \neq 0$, and therefore $W_{\varphi}\left(\begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix}g\right) \neq 0$, so $W_{\varphi} \neq 0$.

LEONARD TOMCZAK

References

- [Bum97] D. Bump. Automorphic Forms and Representations. Vol. 55. Cambridge Studies in Advanced Mathematics. Cambridge, GBR: Cambridge University Press, 1997.
- [Fol15] G. B. Folland. A course in abstract harmonic analysis. Second edition. Textbooks in mathematics; 29. 2015.
- [Tat67] J. Tate. "Fourier Analysis in Number Fields and Hecke's Zeta-Functions". In: Algebraic Number Theory. Ed. by J. W. S. Cassels and A. Fröhlich. 1967.

DEPARTMENT OF MATHEMATICS, EVANS HALL, UNIVERSITY OF CALIFORNIA, BERKELEY, CA 94720, USA

 $Email \ address: \verb"leonard.tomczak@berkeley.edu"$