18.1 Outline of Today’s Lecture

- Toric dynamical systems–systems with a complex balancing steady state
- Toric dynamical systems and binomials–the Matrix-Tree Theorem gives coordinates K_i in which the toric dynamical system condition is binomial
- Steady states
 - Birch’s Theorem
 - Special case: deficiency zero
- Global attractor conjecture–Is convergence to the Birch point guaranteed?
- Multiple steady states–What is the smallest instance of bistability?

18.2 Examples

Recall that we are considering chemical reaction network theory, in which we start with a labeled graph G and obtain from G a dynamical system $\left(\frac{dc}{dt} \right)$. We now recall two examples from the last lecture.

Example 18.1 (L-R-A-T). Here we have two types of receptors (R and T) and two types of ligands they might bind to (L and A). Then for example c_L is our concentration of unbound L and c_LT is our concentration of bound L and T.

\[
\begin{align*}
 c_Lc_R &\longrightarrow c_{LR} \\
 c_Ac_R &\longrightarrow c_{AR} \\
 c_Lc_T &\longrightarrow c_{LT} \\
 c_Ac_T &\longrightarrow c_{AT}
\end{align*}
\]
Example 18.2 (Triangle). In the “triangle example,” G is

There are parameters κ for each of the reactions. We recall that the dynamical system is given by $\frac{dc}{dt} = \Psi(c)A_\kappa Y$, where here $\Psi(c) = (c^2_1 c_2, c_1^2 c_2, c_1 c_2)$,

$$A_\kappa = \begin{pmatrix} -\kappa_{12} - \kappa_{13} & \kappa_{12} & \kappa_{13} \\ \kappa_{21} & -\kappa_{21} - \kappa_{23} & \kappa_{23} \\ \kappa_{31} & \kappa_{32} & -\kappa_{31} - \kappa_{32} \end{pmatrix} \quad \text{and} \quad Y = \begin{pmatrix} 2 & 0 \\ 1 & 1 \\ 0 & 2 \end{pmatrix}$$

A_κ is the Laplacian, so its row sums are 0. Recall that this is a toric dynamical system if there exists $c \in \mathbb{R}_{>0}^5$ such that $\Psi(c)A_\kappa = 0$, i.e. there is a complex balancing steady state. In this case, we have that this triangle example is a toric dynamical system if and only if $K_1 K_3 = K_2^2$, where the K_i come from the Matrix-Tree Theorem.

Note that if we change G to

by setting $\kappa_{12} = \kappa_{32} = 0$, the dynamical system is not toric for all positive rate constants.

18.3 Computing the Binomials

The Matrix-Tree Theorem gives us coordinates K_i. We define polynomials $K_i c^{y_i} - K_j c^{y_j} \in \mathbb{Q}[\kappa_{ij}, c_\ell]$, where the c^{y_i} are the vertices of the graph. Then we let $I = \langle K_i c^{y_i} - K_j c^{y_j} \rangle$ and eliminate the c coordinates by letting $J = I \cap \mathbb{Q}[\kappa_{ij}]$. We can compute J via Gröbner basis techniques. Then J is generated by binomials in the K_i and is called the moduli ideal of G, written later as M_G.

Theorem 18.3. A system is a toric dynamical system if and only if there exists a complex balancing steady state if and only if the κ_{ij} satisfy binomials.

18.4 Deficiency

Once we know that a toric dynamical system is defined by binomials, an obvious question arises: How many binomials do you need? The answer turns out to be (roughly) an integer called the deficiency.
Definition 18.4. For a reaction network G, define the subspace

$$S := \text{span}\{y_j - y_i | (i, j) \in E(G)\}.$$

S is called the stoichiometric subspace.

Definition 18.5. The deficiency of G is $\delta := n - \sigma - l$, where

- n is the number of complexes (the number of vertices of G),
- $\sigma = \dim(S)$, and
- l is the number of connected components of G.

Let’s find the deficiency of G in our earlier examples. In the triangle example, $n = 3$, $l = 1$ and $\sigma = \dim \text{span}\{y_i - y_j\} = \dim \text{span}\{(1, -1), (2, -2)\} = 1$. So $\delta = 3 - 1 - 1 = 1$.

In the L-R-A-T example, $n = 8$ and $l = 4$. If y_1 is associated to c_{LR}, $y_2 = c_{LT}$ and so on, then each reaction gives us a linearly independent vector in S so $\sigma = 4$. Thus $\delta = 0$. This means that there is always a steady state (see theorems below).

Theorem 18.6. The moduli ideal M_G is toric (i.e. generated by binomials), and its codimension equals the deficiency of G, δ.

This theorem tells us that the deficiency is essentially the number of binomials needed to define the ideal M_G.

Theorem 18.7 (Deficiency Zero Theorem). If $\delta = 0$, then G has a unique complex balancing steady state.

Since $\frac{dc}{dt} = \Psi(c)A_nY \in S$, the trajectories $\{c(t) | t \geq 0\}$ always stay parallel to S, i.e. $c(t) \in c(0) + S$.

Definition 18.8. The invariant polyhedron P is $(c(0) + S) \cap \mathbb{R}_{\geq 0}$. (Chemists call this the stoichiometric compatibility class.

Theorem 18.9 (Birch’s Theorem). The set of detailed balancing solutions intersects P at exactly on point $\tilde{p} := \tilde{p}(c, P)$. Further, this point \tilde{p}, which we call the Birch point, is in the interior of P and is the unique entropy minimal point of P.

The book *Algebraic Statistics for Computational Biology* gives a different version of Birch’s Theorem. Recall that a toric model given by a $d \times n$ integer matrix $A = (a_{ij})$, whose columns a_1, \ldots, a_n is the image of the map $f: \mathbb{R}_+^d \to \mathbb{R}^n$ given by

$$\theta \mapsto \frac{1}{\sum_{i=1}^{n} \theta^{a_i}}(\theta^{a_1}, \theta^{a_2}, \ldots, \theta^{a_n}).$$

The polytope $P_A(p(0))$ is defined by $P_A(p(0)) = \{q \in \mathbb{R}_{\geq 0}^n | A \cdot q = A \cdot p(0)\}$. Then Birch’s Theorem can be restated as follows.
Theorem 18.10. For the toric model given by the matrix A and some initial point $p(0) \in \delta_{n-1}$ in the interior of the probability simplex, the intersection of the polytope $P_A(p(0))$ with the c-shifted toric model f_c^d consists of exactly one point \tilde{p}. Further, this point \tilde{p} is the unique entropy minimal point of P.

Theorem 18.11 (Detailed-Balancing). The intersection of the detailed balancing steady states with the polytope yields one Birch point. These two theorems are equivalent. To prove this, we let the correspondence between matrices A and stoichiometric subspaces S be defined by $\ker A = S$. We then need to check that

- The two polytopes are the same, i.e. $P = P_A(p(0))$.
- The toric model $f(\mathbb{R}^d_{\geq 0})$ equals the detailed balancing steady states.

We can use a Lyapunov function and a more general “entropy function”. Then

Theorem 18.12. The Birch point c^* is the unique point in the invariant polyhedron P for which the transformed entropy function

$$E(C) = \sum_{i=1}^{s} (c_i \log(c_i) - c_i \log(c_i^*) - c_i + c_i^*)$$

is a strict Lyapunov function of the toric dynamical system.

That $E(C)$ is a strict Lyapunov function of the toric dynamical system means

(a) For all $c \in P$ we have $E(c) \geq 0$ and equality holds if and only if $c = c^*$.

(b) We have $\frac{dE(c)}{dt} \leq 0$ along any trajectory $c(t)$ in P.

(c) Equality in (b) holds at a point t of any trajectory $c(t)$ in P^o if and only if $c(t) = c^*$.

18.5 Global Attractor Conjecture

Definition 18.13. A steady state x in P^o is called a global attractor if any trajectory that begins in P^o converges to x.

Conjecture 18.14. For any toric dynamical system and any starting point c^o, the Birch point c^* is a global attractor of the polytope $P = (c^o + S) \cap \mathbb{R}_{\geq 0}^s$.

For the L-R-A-T example, the global attractor conjecture holds since there are no boundary steady states, meaning that since $E(c)$ is a Lyapunov function, trajectories all converge to the Birch point.

This conjecture has been proven under some restrictions, including on the dimension of the polyhedron.

Theorem 18.15. Consider a detailed balancing system whose stoichiometric subspace $S = \{y_j - y_i \mid (i, j) \in E\}$ is two-dimensional and assume that the invariant polygon P is bounded. Then the Birch point is a global attractor for P.

18-4
18.6 Multiple Steady States

We now turn our attention to systems having multiple steady states, in particular those that are not toric dynamical systems. We will focus on the Square network.

Example 18.16. The Square network shown below is a smallest reversible multistationary chemical reaction network.

![Square network diagram]

The number of complexes is $n = 4$, G has $l = 1$ connected components, the number of species is $s = 2$ and the dimension of any invariant polyhedron P is $\sigma = 1$.

Theorem 18.17. The square is a smallest multistationary, mass-preserving, reversible chemical reaction network with respect to each of the parameters $n, l, s,$ and σ.

Since $c_1(t) + c_2(t) = c_1(0) + c_2(0)$, we have $\frac{dc_1}{dt} = -\frac{dc_2}{dt}$. A steady state occurs when

$$0 = \frac{dc_1}{dt} = \alpha_1 c_1^3 + \alpha_2 c_1^2 c_2 + \alpha_3 c_1 c_2^2 + \alpha_4 c_2^3$$

for the appropriate $\alpha_i \in \mathbb{Q}[\kappa_{ij}]$. Then we can substitute $x = \frac{c_1}{c_2}$ to get

$$p_S(x) = (-2\kappa_{12} - \kappa_{14})x^3 + (\kappa_{41} - \kappa_{43})x^2 + (2\kappa_{21} - \kappa_{23})x + (\kappa_{32} + 2\kappa_{34}).$$

The steady states correspond to the positive roots of this polynomial. The binomials for determining when this is a toric dynamical system are the 2×2 minors of

$$\begin{pmatrix} K_1 & K_2 & K_4 \\ K_4 & K_3 & K_2 \end{pmatrix},$$

namely $K_1K_3 - K_2K_4$, $K_2^2 - K_3K_4$ and $K_1K_2 - K_4^2$. When the roots are positive, the last binomial can be derived from the first two. These binomials define the twisted cubic curve.