Problem Set 10 (due November 19)
MATH 110: Linear Algebra

Each problem is worth 10 points.

PART 1

2. Curtis p. 131 12.

PART 2

Problem 1 (20)
Let V be a real Euclidean space of dimension n. An orthogonal transformation $T : V \to V$ with determinant 1 is called a rotation. If n is odd, prove that 1 is an eigenvalue for T.

Problem 2 (10)
If $T : V \to V$ is unitary and Hermitian, prove that $T^2 = I$.

Problem 3 (10)
If A is a unitary matrix and if $I + A$ is nonsingular, prove that $(I - A)(I + A)^{-1}$ is skew-Hermitian.

Problem 4 (18)
A square matrix is called normal if $AA^* = A^*A$ (i.e. the matrix commutes with the conjugate of its transpose). Determine which of the following matrices are normal (with proof or counterexample)
 a) Hermitian matrices.
 b) Skew-Hermitian matrices.
 c) Symmetric matrices.
 d) Skew-symmetric matrices.
 e) Unitary matrices.
 f) Orthogonal matrices.

Problem 5 (10)
Show that if A is a real orthogonal 2×2 matrix with determinant 1 then

$$A = \begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}$$

for some θ.

1