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SUPERCONNECTIONS
AND HIGHER INDEX THEORY

J. LoTT

Abstract

Let M be a smooth closed spin manifold. The higher index theorem,
as given for example in Proposition 6.3 of [CM], computes the pairing
between the group cohomology of 71 (M) and the Chern character of the
“higher” index of a Dirac-type operator on M. Using superconnections,
we give a heat equation proof of this theorem on the level of differential
forms on a noncommutative base space. As a consequence, we obtain a
new proof of the Novikov conjecture for hyperbolic groups.

I. Introduction

Let M be a smooth closed connected spin manifold. Let V' be a Hermitian
vector bundle on M. If M is even-dimensional, the Atiyah-Singer index
theorem identifies the topological expression [, K(M ) A Ch(V) with the
index of the Dirac-type operator acting on L2-sections of the bundle S(M)®
V, where S(M) is the spinor bundle on M [AS1].

When M is not simply-connected, one can refine the index theorem
to take the fundamental group into account [Co3, Kas, Mo]. Let I" denote
the fundamental group of M. Let v : M — BT be the classifying map
for the universal cover M of M. For [y] € H*(BT;C), higher index theory
attempts to identify [,, A(M) A Ch(V)) Av*[n] with an analytic expression.
The main topological and geometric applications of higher index theory are
to Novikov’s conjecture on homotopy-invariants of non-simply-connected
manifolds [No}, and to questions of the existence of positive-scalar-curvature
metrics on M [Ro).

In order to motivate the statement of the higher index theorem, let
us first recall how Lusztig used the index theorem for families of operators
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to prove a higher index theorem in the case of I' = Z* [Lu]. Let 7% =
Hom(I', U(1)) be the dual group to I' and let Ly be the flat unitary line
bundle over M whose holonomy is specified by 8 € T*. Consider the product
fibration M — M x T* — T*. Suppose for simplicity that M is even-
dimensional; then there is a bundle H over T* of Z,-graded Hilbert spaces,
where Hyg, the fiber over § € T*, consists of the L2-sections of S(M)®V ® L.
There is also a family Q of vertical Dirac-type operators parametrized by
T*, where Qg acts on Hg. The analytic index Index(Q) of the family of
elliptic operators, as defined in [AS2], lies in K°(T*). An element [5] of the
group cohomology H*(Z¥; C) gives a homology class 7, € H,(T*; C), against
which the Chern character Ch (Index(Q)) € H*(T*; C) can be paired. The
families index theorem [AS2] then implies

Ch (Index(Q)) = const.(l) [ A(M) A Ch(V) Av*[n], (%)
Ty M

giving the desired analytic interpretation of the right-hand-side. The pur-
pose of [Lu] was to apply (*) to the Novikov conjecture.

In order to extend these methods to nonabelian I', let us note some
algebraic properties of the above construction. The algebra of continuous
functions C(T*) acts on the vector space C(H) of continuous sections of H
by multiplication. Upon performing Fourier transform over T, C C(H) maps
to a certain subspace of the L?-sections of the pullback bundle S (M ) ®V on
M this subspace thus being a C(T*)-Hilbert module in the sense of [Kas].

The generalization of Lusztig’s method to nonabelian I' is based on a
“fibration” M — P — B which exists only morally, where B is a noncom-
mutative space whose “algebra of continuous functions” is taken to be the
algebra A = CT, the reduced group C*-algebra [Co3]. (When I' = ZF,
A = C(T*).) Mishchenko and Kasparov define a Hilbert A-module of L*-
sections of S(M ) ® V, upon which a Dirac-type operator D acts. The
analytic index of D lies in “K®(B)”, or more precisely in Ko(A) [Mi, Kas].
The Mishchenko-Fomenko index theorem identifies the analytic index with
a topological index [MF].

In order to pair these indices with the group cohomology of I', one needs
additional structure on B. Let ‘B be a dense subalgebra of A containing
CT* which is stable under the holomorphic functional calculus of A [Col]-
(For example, if I' = Z*, one can take B> to be C>(T*).) Then Ko(A)
Ko(B°°). One can think of the image of Index(D) under this isomorphism
as being a “smoothing” of Index(D)
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One can then use the fact that Ko(B°°) pairs with the cyclic coho-
mology HC*(B>=) of B [Col] to extract numbers from Index(D). In
loose but more familiar terms, the Chern character Ch (Index(D)) lies in
the “cobomology” of B. More precisely, it lies in the cyclic homology group
HC,.("B8*) [Col, Ka]. One then wants to define a “homology class” of B
which one can pair with Ch (Index(D)). The correct notion of homology for
B is given by the (periodic) cyclic cohomology of 8. In particular, given
a group cocycle n € Z(T;C), one obtains an cyclic cocycle 7, € ZC'(CT)
(eqn. (62)). If 7, extends to an element of ZC!(®B>) then Proposition 6.3
of [CM] gives

(Ch (1ndex(D)), 7, ) = const.(1) /M AM)ACRV)A V). (+)

The special case when ! = 0 is the L2-index theorem [At].

An equivalent and more concrete description of the above “fibration” is
given by a vector bundle £ over M whose fibers are finitely-generated right
projective *B-modules for an appropriate algebra 8 [Mi]. We will use this
latter description in making things precise, although we will move back and
forth freely between the two pictures.

In another direction, using Quillen’s theory of superconnections [Q],
Bismut gave a heat equation proof of the Atiyah-Singer families index the-
orem on the level of differential forms on the base space [Bi]. Equation (*)
is a consequence.

Analogously, we wish to give a heat equation proof of (*x). Our original
purpose was to study higher versions of spectral invariants, such as the
eta invariant [Lol]. These higher eta invariants should enter into a higher
index theorem for manifolds with boundary. However, it turned out to be
necessary to first understand the case of closed manifolds, i.e. equation (**),
in terms of superconections. This is what we present here.

As in [Bi], we wish to produce an explicit differential form on B which
represents Ch (Index(D)). First, one needs to know what a form on the
noncommutative space B should mean. A differential complex (2, (B) was
defined in [Ka], and its homology can be identified with a subspace of the
cyclic homology of the relevant algebra ®B. In Section II we briefly review
this theory. In this section we also consider integral operators on sections
of £ and define their traces and supertraces.

In the case at hand, the relevant vector bundles £ come from a flat 98-
bundle over M. There is some choice in exactly which subalgebra 8 of A is
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taken. In Section I1I we consider a subalgebra 8“ of A consisting of elements
whose coefficients decay faster than any exponential in a word-length metric.
If ' = Z then B“ is isomorphic to the restrictions of holomorphic functions
on C ~ 0 to the unit circle, and so B“ is like an algebra of “analytic”
functions on B. (The technical reason for the appearance of this algebra
is the existence of finite-propagation-speed estimates for heat kernels on
M. ) The smooth sections I'*°(£“) of the corresponding vector bundle £
are shown to correspond to smooth sections of S(M )® V with rapid decay.
Using this description, we make the trace of Section II more explicit.

By construction, the vector space of smooth sections of £“ is a right
8“-module. Let V : I'°(£¥) — T°(EY @g« 01(B“)) be a connection on
E¥. This is, in a sense, a connection in the vertical direction of £, when
thought of as a vector bundle over M. Let @ be the Dirac-type operator
on I'*(£v). Applying Quillen’s formalism [Q], for any 8, s > 0, the Chern
character of £“ is defined to be

chg (€)= STRexp (- B(V + sQ)z) € 0.(B%) . (% * %)

To make this expression useful, one needs an explicit description of a con-
nection on £“. In Section IV we show that the simplest such connection
comes from a function h € C§° (ﬁ ) with the property that the sum of the
translates of A is 1. Then (#* %) is a well-defined closed element of Q2. (B“),
and its homology class is independent of s.

Given a group cocycle € Z!(T; C), if the corresponding cyclic cocycle
T, € ZC*(CT) extends to an element of ZC!(B*) then the pairing

(chg s(E€), ) €C (% % *%)

is well-defined and independent of s. As usual with heat equation ap-
proaches to index theory, the s — 0 limit of (* * **) becomes the integral
of a local expression on M. In Section V we compute this limit. (The local
analysis-is easier than in [Bi], as there is no need to use a Levi-Civita su-
perconnection.) The limit must involve »*[], and it may seem strange that
this could become a local expression on M, but this is where the choice of
h enters. In Proposition 12 we find

g (cha,o(£°), o) = BY2/(1) [ AM) ACB(V) Aw,
s—0 M
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where w is a closed I-form on M whose pullback to M is given by
W = ZR;.dhA ... ARy dh (e, g1,...,q1) € Al(ﬂ) .

We then show that w represents v*[n] € H!(M;C).
It remains to show that

(chg,s(E¥), 1) = <Chg (Index(ﬁ)), T,,> . ( % * * %)

For this, we find it necessary to work with the algebra B°° and assume that
7, extends to a cyclic cocycle of B°°. In Section VI we sketch a proof of
(* * * % %x). We reduce to the case of invertible D, and then use a trick of
[Bi] to show the equality. This completes the proof of (*x).

One application of (x*) is to the Novikov conjecture. Taking D to be the
signature operator, the right-hand-side of (+*) becomes const.(l) f,, L(M)A
v*[n], where L(M) € H*(M;C) is the Hirzebruch L-polynomial. The
Novikov conjecture states that this “higher” signature is an (orientation-
preserving) homotopy invariant of M. One can show that Index(D) € Ko(A)
is a homotopy invariant of M [Mi, Kas, HS]. If the group I is such that
one can apply (**) then the validity of the Novikov conjecture follows. In
particular, in [CM] it was shown that if I is hyperbolic in the sense of Gro-
mov [GH] then (**) applies. Thus our proof of (**) gives a new proof of
the validity of the Novikov conjecture for hyperbolic groups. One can also
apply () to find obstructions to the existence of positive-scalar-curvature
metrics on M [Ro]. If one takes D to be the pure Dirac operator then if
M has positive scalar curvature, Index(f)) vanishes. Thus if the group T
is such that one can apply (x*), [,, A\(M ) A v*[n] is an obstruction to the
existence of a positive-scalar-curvature metric on M.

In [Lol] a bivariant Chern character was proposed in the case of finitely-
generated projective modules. The obstacle to defining a bivariant Chern
character for more general projective modules was the lack of a good trace
theory for Hilbert modules. In the present case there is such a trace. The
smooth sections of £®° = £¥ ®g« B> form a (C°°(M), %"")-bivariant mod-
ule, and the pairing (chg,s, 7;) of the bivariant Chern character with 7, is a
cocycle in the space C* (C°(M)) of entire cyclic cochains [Co2]. In Section
VII we compute the s — 0 limit of (chg,s, 7).

Heat equation methods were also used in the paper of Connes and
Moscovici [CM] to attack the Novikov conjecture, and it is worth comparing
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the two approaches. One difference is that we use heat kernels to form the
Chern character of a superconnection as in (***), whereas in [CM] the heat
kernels are used to form an idempotent matrix over an algebra of smoothing
operators [CM, Section 2]. Theorem 5.4 of [CM] is similar to our Corollary 2,
but is stronger in that it is a statement about CI', whereas Corollary 2 is
a statement about B“. We believe that there is some point to taking a
superconnection approach to these questions, as there should be interesting
extensions.

This paper is an extension of [Lol], in which the finite-dimensional
analog was worked out. An exposition of the Mischenko-Fomenko theorem
and related results appears in [Hi].

I wish to thank Dan Burghelea and Jeff Cheeger for useful suggestions,
and Henri Moscovici for helpful discussions.

II. Algebraic Preliminaries

Let B be a Fréchet locally m-convex algebra with unit, i.e. the projective
limit of a sequence of Banach algebras with unit [Mal]. We first define
a graded differential algebra (GDA) ﬁ*(%). This will be an appropriate
completion of

0.(8) = D 2%u(®) )

k=0
the universal GDA of B {Col, Ka]. As a vector space, x(B) is given by
0 (B) = B® (®" (B/C)) . 2

As a GDA, Q,("8) is generated by B and dB with the relations
dl=0, d*=0, d(wewe)=/(dwp)we+ (—1)Fw(dwe) 3)

for wr € Qi(B), we € Q(B). It will be convenient to write an element
wi of Qx(B) as a finite sum 3 bodb; ...dbx. Recall that the homology of
the differential complex Q,(B) = Q,(B)/[Q.(8), Q.(B)] is isomorphic to a
subspace of the reduced cyclic homology of B [Ka]. (This statement must
be modified in degree zero, for which we refer to [Ka].)

Let ©.(8B) denote the GDA

0.(3) = @ ("), @

k=0
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with the product given by

(be®0®...0b)(co®c1®...®c) =bp®b1 Q... Qbrco®1®...Qce (5)

and the differential given by

dbo®b1Q..0b) =106 ¥b1Q..Qb—b 16} ...

6
Qb +...+(-D)"*h @0 ®...0091. (©)

Give ©;("B) the projective tensor product topology, with closure ék(‘B).
Let

6.(8) = [] 6x(®) )
k=0

denote the completion of ©,(*8) in the product topology.
PROPOSITION 1. ©,(%B) is a Fréchet GDA.

There is a natural embedding e of Q.(B), as a graded differential alge-
bra, in ©.(8), with

e(b)y=>b, e(db)=10b-b®1. (8)

Let ©,(B) denote the closure of ¢(Q2,('B)) in 6.(B).
CoROLLARY 1. (,(B) is a Fréchet GDA.

Define {.(B) to be {1, (B)/[Q.(B), 0.(B)]. Let H,(B) denote the

homology of the differential complex Q.(B).

Let & be a Fréchet space which is a (continuous) right B-module. If §
is a Fréchet space which is a (continuous) left ®B-module, let €®F be the
projective topological tensor product of € and §. Let ) be the closure in
ERF of

span{eb@ f —~e®bf:e €€, fE€F, be B} . (9)

We put € @gF to be the Fréchet space (€RF)/9H.

With this definition, € QuQ4(B) is isomorphic to the closure of the
algebraic tensor product € @y % (B) C €®n (®F+18) = € ® (®*B) in
e@((@k(%)) , where the latter has the projective tensor product topology.
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For-the rest of this section, we assume that & is a finitely generated
right projective B-module. Let § be a Fréchet B-bimodule. Then there is
a trace

Tr : Homg (€, €R2F) — 3/[B,3] . (10)

To define Tr, write € as eB™, with e a projector in M,(*8). Then an
operator T € Homg (€, €®nF) = Homg(eB",eF") can be represented by
a matrix T € M, (J) satisfying eT' = Te = T. Put

T(T) =) Ti (mod[B,3]). (11)

=1

This is independent of the choices made. (We quotient by the closure of
[B, §] to ensure that the trace takes value in a Fréchet space.)

LEMMA 1. Suppose that € and &' are finitely generated right projective 8-
modules and § is a Fréchet algebra containing B. Given T €
Homg (€, € @uF) and T' € Homg (€', € ®x3F), let T'T € Homg (€, € R33F)
and TT' € Homg(€', & ®®3) be the induced products. Then Tr(T'T) =
T (TT') € §/[3, 3.

We omit the proof.

In the case that € is Z,-graded by an operator I'¢ € End (&) satisfying
I'Z =1, we can extend the trace to a supertrace by Try(T) = Tr(I'¢T).

Let M be a closed connected oriented smooth Riemannian manifold.
Let £ be a smooth B-vector bundle on M with fibers isomorphic to €. This
means that if £ is defined using charts {U,}, then a transition function is
a smooth map dap : Us N Up — End g(€). We will denote the fiber over
m € M by En. If § is a Fréchet algebra containing B, let £ @3 § denote the
B-vector bundle with fibers (£ @g&)m = &n QuF and transition functions
bap @mldg € End m(E@gS). Let T'°°(£) denote the right B-module of
smooth sections of £.

DEFINITION: Let Homg (£,£ ®uF) be the algebra of integral operators
T : T®E) — TI'*°(EQwF) with smooth kernels T(m;,mp) €
Homp(Em,, Em, @8F). That is, for s € I'®(€),

(Ts)(my) = fM T(my, mg)s(msa)dvol(my) € Em, BuF - (12)



Vol.2, 1992 SUPERCONNECTIONS AND HIGHER INDEX THEORY 429

DEFINITION: For T € Homy (€, £ ®53F),

TR(T) = /M Tr (T(m, m)) dvol(m) € 3/T5, 3] (13)
PRrROPOSITION 2. TR is a trace.

Proof: We have
(TT"Y(m, m') = f T(m,m") T'(m", m')dvol(m") . (14)
M
Then

TR(TT") =/M Tt (T(m, m")T’ (m", m))dvol(m” )dvol(m) =

/M Tr (T(m", m)T(m, m")) dvol(m)dvol (m"") = TR(T'T) .
(15)

[w]
If the fibers of £ are Z,-graded, we can extend TR to a supertrace STR
on Homgy (£, £ 8sF) by

STR(T) = /M Tr, (T(m, m))dvol(m) € §/[5, 3] - (16)

I11. ®8“-Bundles

Let T be a finitely-generated discrete group and let || o|| be a right-invariant
word-lerigth metric on I'. For g € Z, define the Hilbert space

ey = {57~ 1= Tew @alal)lf@) <0} ()
g
and let 8% be the vector space
B =(]9T) . (18)
q

LEMMA 2.

B = {f :T—C: forallgel, S‘;P(GXP (allgll) | £(9)]) < 00} :
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Proof: If f € B“ then for all ¢ € Z, exp (2q||g||)|f(g)|2 is bounded in g,

and so exp (ql|gl|)| f(g)| is bounded in g. Suppose that f : I' — C is such
that for all r € Z,

sup (exp (rllgl)(9)]) = Cr < o0

2
Then 3, exp (2qligll)|f(9)|” < C2 3, exp (2(g — r)llgll). As T has at most
exponential growth, by taking r large enough we can ensure that the last
sum is finite. D

PROPOSITION 3. B“ is independent of the choice of || o||, and is an algebra

with unit under convolution.

Proof: As all word-length metrics are quasi-isometric [GH], the indepen-
dence follows. If T € B“ and f € £24(T), we will show that

IT * flqg < const.(q,T)|flq- (19)

If we then take both T and f in 8%, the proposition will follow.
Let fi denote f(h). Then

gh—1 fh

2
(ZGXP - gllhll)IT, 1ll/legh—ll”zexp(flllhll)lfhl) < (20)

(zexp — 2q)[A]) Ton- 1|)(Z|Tgh'-1|exp (2qnh'll)lfh'I2) .
hl

Thus

T+ f12 =

3 (Zp (2a(lall - uhn)h) or=1) (X o oA ) <
5 (e Calan T ) (5w loxp @alb D) < (21
(S Catetyin) (i) (Sewe Calriis) -

(Zexp 24[K1) lTk|)(2:|Te|)af|2 ’
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Let A denote the reduced group C*-algebra of I, namely the completion
of CT' with respect to the operator norm on B(¢%(T')), where CT' acts on
¢2(T") by convolution.

There is a Fréchet topology on B“ coming from its definition as a
projective limit of Hilbert spaces. There is also a description of B“ as a
Fréchet locally m-convex algebra. Namely, put

P={T € A:forall g€ ZT acts as a bounded operator by

22
convolution on ¢>9(T)} . @2)

By its definition, P is equipped with a sequence of norms.

PROPOSITION 4. As topological vector spaces, B“ = P.

Proof: By the proof of Proposition 3, B“ injects continuously into P. Ap-
plying an element T' of P to the element e € [, £29(T") gives a continous
injection of P into B“. These two maps are clearly inverses of each other.o

It follows that B has a holomorphic functional calculus.

Note. ‘B“ is generally not holomorphically closed in A. For example, if
I' = Z then an element T of B can be identified with its Fourier transform
T = Y.T,29, a holomorphic function on C — 0. This identification gives
2B« = H(C — 0). On the other hand, in this case A = C(S'). Taking for
example T = z € H(C—0) C C(S'), the spectrum of T in C(S*) consists of
the unit circle. If f is the holomorphic function defined on a neighborhood
of the unit circle by f(w) = (w — 2)7*, f(T) is well-defined in C(S'), but
does not lie in H(C — 0).

Let I' denote the fundamental group of M. Let M denote the universal
cover of M, on which g € I' acts on the right by R, € lef(M ). Denote the
covering map by 7 : M — M. AsT acts on B* on the left, we can form
M xp 8%, a flat B“-bundle over M. Let E be a Hermitian vector b bundle
with Hermitian connection on M and let E be the pullback of E to M with
the pulled-back connection. Let Ry € Aut(E) denote the action of g € T

on E.
DEFINITION: &% = (M xr B*) ® E, a B“-bundle over M.

Fix a base point zg € M.
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PRrOPOSITION 5. There is an isomorphism

L:T(E&¥) — {f € C®(M,E) : for all q € Z and all multi-indices a ,

sgp (exp (gd(zo, z)) lV"‘f(a:)I) < oo} .

Proof: By the construction of £, ['*°(£¥) consists of the I'-equivariant
elements of C°°(M E ® 98“). Writing s € T°(£¥) as 2y 8¢9 With s4 €

C °°(M , E), the equivariance means that
Rlys=sforally€T. (23)

This becomes ) (R3354)79 = 2_, S+¢79, and so Rysg = sy forall v,g € T.
Thus s, = Rys;, and so s = 5 (R3s1) g.

Let L be the map which takes s to s;. We will show that L is the
desired isomorphism. First, if m € M then

s() =) (Rys1)(7) g € B~ @ B . (24)

Thus for all q € Z, sup, (exp (q||g||)|sl(r7zg)|) < 00. By the smoothness of
s, we have such an estimate uniformly for m lying within a fundamental
domain of M containing zo. As M is quasi-isometric to I' [GH], there are
constants A > 0 and B > 0 such that for all z € M and gerl,

A7igll - B < d(zg™,2) < Allgll + B . (25)

Then

exp (gd(20, 7)) |s1(2)| <

exp (gd(zo,2g™")) exp (gd(zg ™", 2)) |81 (297 9)| < (26)

const. exp (qd(zo,297")) exp (aAllgll) [s1(zg~"9)] -
By choosing g so that zg~! lies within a fundamental domain containing
gy, we obtain from (26) that exp (gd(zo, z)) |sl(x)‘ is uniformly bounded in
z. The same argument applies to the covariant derivatives of s;.

Now suppose that f € C°°(M E) is such that for all ¢ € Z and all
multi-indices o,

sup (exp (gd(zo, 7)) |V f(2)]) < 0. (27)
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Put L'(f) = 3_,(R;f) g. We must show that L'(f) € I'°(£¥). It will then
follow that L’ is an inverse to L.

By construction, L'(f) is [-equivariant. Let {V,} be a collection of
charts on M over which FE is trivialized. Then we can reduce to the case
that E is a trivial C-bundle and f € C>(V, x I', C), with the above decay
conditions. It is enough to show that when restricted to Vo x{e}, 3, (Rg f)g
represents a smooth map from V,, to B“. For m € V, x {e},

O (R f)g) () =Y f(mg)g (28)

and so for all g € Z,

exp (gllgll) | f(mg)| <

const. exp (qA d(m, mg) |f (mg) I <
const. exp (gA d(m, zo)) exp (g4 d(a:o,mg) If(mg)l < (29)

const. sup (exp (gA d(xo, ) |f(z |)
x
Thus Y, JBof } g is a map from V, to B“. Doing the same estimates using
covariant derivatives gives the smoothness. o

PROPOSITION 6. The algebra End . (£*) = Homg. (£, £*) is isomorphic
to the algebra of I'-invariant ~mtegm] operators T on L2(M E) with smooth
kernels T(x,y) € Hom(E,, E,) such that for all ¢ € Z and multi-indices o
and (3,

sup (exp (gd(z,)) | VEVET(2,y)|) < o .

We omit the proof, which is similar to that of Proposition 5.

Let ¢ € C3°(M) be such that

S Ryg=1. (30)

Let tr denote the local trace on End(E'z).
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Note. We now have defined three traces: tr is the trace on End(E‘x),Tr
is the trace on End g.(£%) and TR is the trace on End §.(€¥). If E is

Z,-graded, the corresponding supertraces are denoted tr,, Trs and STR.

PROPOSITION 7. Representing an element T € End g. (£*) by an operator
T € B(L*(M,E)) as in Proposition 6, its trace is given by

TR(T) = Z [/A? #(z) tr ((R;T)(a:,a:))dvol(x)]g (mod [B«, B«]) (31)
=. Z [/JTJ #(z) tr (T(zg, a:))dvol(a:)]g (mod [Bw, SB‘*’]) . (32)

Proof: The proof is a matter of unraveling the isomorphisms of Proposi-
tions 5 and 6. Let {V,} be a collection of charts on M over which FE is
trivialized. Then we can reduce to the case that E is a trivial C-bundle.
We have 7=1(V,,) & V,,xT. For my, My € V, X {e}, we can use isomorphisms
to represent

T(my,m2) € Homg. (5., € ) = Homp. (BY, BY) = B (33)

27

by 3, T(ii1g, 2)g. Then

/ Tt (T(m, m))dvol(m) =

o

/v,, ; T(mg,m)g dvol(m)‘ (mod [B=, B]) =

/V ) %—: Z: (my) T(mgy, my)g dvol(m) (mod [B=,B=]) =

/V a }; ; $(my) T(myy~'gy,my)g dvol(m) (mod[B,B+]) =

/V ,, ; 27: $(mv) T(myg, my) 797" dvol(m) (mod [B¥,B*]) =

/V . ; ; $(my)T(myg, mv)(g + [vg,7~*])dvol(m) (mod[B~,B]) =

/V E Z #(my) f(m*yg, my)g dvol(m) (mod[Bv,B*]) =
« v g
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e )Zd)(a:) T(zg, z)gdvol(z) (mod[B~,B<]) . (34)

Using a partition of unity subordinate to {V, } and adding the contributions
of the various charts gives (31). o

We now give the extension of the previous propositions to form-valued
sections of £, With the notation of Section II, put F = 2, (B). As in
Proposition 5, we can represent an element f of (£ ®pwF) of degree
kas  fo..q:491 .. .dge, with each fg, g, € Cw(ﬁ, E) a smooth rapidly
decreasing section of E. Asin Proposition 6, we can represent an element
K of Homgg., (£, £ ®pwF«) of degree k by smooth rapidly decreasing ker-
nels Kg,. 0. (z,y) € Hom(Ey,Ex) such that K = Y K, g.dg1...dgk is
[-invariant. Then for f € I'*°(£“) we have

KN =Y /;4 Kopr..o0(z0)f()dvol(y)dgs ..dgs . (35)

As in Proposition 7, we have

TR(K) = Z /1\7 é(x) tr (Kgl_._g,‘ (xgo,a:))dvol(z‘) godg; . . .dg (36)

(mod [, (B), Q. (B))]) .

IV. The Chern Character

Now suppose in addition that M™ is even-dimensional and spin. Let S be
the Z,-graded spinor bundle on M, with the Levi-Civita connection, and let
V be a Hermitian bundle on M with Hermitian connection. Take E to be
S® V. Let Q denote the self-adjoint extension of the Dirac-type operator
acting on C°(M, E) [At]. In terms of a local framing of the tangent bundle,

Q=~iY 7Dy, (37)
p=1

with the Dirac matrices {y*}};-; satisfying
Y+t =280 (38)

ProposiTiON 8. For T > 0, e~T@" € End B (E£9).
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Proof: First, e-79" is a D-invariant operator. By elliptic regularity,
e~ TR (z,y) is smooth. Put N = [n/4]+1. Let € be a fixed sufficiently small

number. If d(z,y) > €, put R = d(z,y) — €. By the finite-propagation-speed
estimates of [CGT), we have the estimate [Lo2]

(@79 Q*)(z,y)| <
CORSt.(RZ/T)_1/2[R—2(k+£) + R—2(k+£}-4N+ (39)
RZ(k+€)T—2(k+l) + RZ(k+£)+4NT—2(k+£)—4N] e—R2/4T .

The requisite bounds on the covariant derivatives of e~7?” (z,y) follow by
standard methods. Then the proposition follows from Proposition 6. o

Note. In the “fibration” picture, the fact that e~T9* commutes with B
means that it corresponds to a family of vertical operators.

Let h € C3°(M) be such that

> Rjh=1. (40)
g

Given f € I'°(£¥), considering it as an element of C°°(]T/f ,E) by Proposi-
tion 5, define its covariant derivative to be

V,f=hR.,f € C*(M,E) . (41)

Note that C'>°(M) acts on sections of ['*°(£“ ®m«F“) by multiplication.

PROPOSITION 9.
Vi=) VefBu.dg
g

defines a connection
V : T®(€%) = I (£ g1 (BY)) (42)

which commutes with the action of C>°(M).
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Proof: We first show that V formally commutes with the action of C*°(M).
Given a € C®(M), o acts on C*(M, E) by multiplication by r* (). Then

V(a-f) =V(z*(e)f) = Y _ hR}(z*(0)f) Bmedg =
) (43)
Zhn*(a)R;f@)gwdg=a-Vf .

Thus V acts fiberwise on the vector bundle £“. To make this explicit,
as in the proof of Proposition 5 we can consider the element s of I*°(£)
corresponding to f to be a sum s = Y s, g, where s, € C™ (M E) and
sg = R;f. Then Vs becomes

S Ry (hRif)gdk = Ryh(R},f)gdk =) Rjhsegdk . (44)

g:k g,k g,k

Applied to a point m € M , we have

V(S esl)s) = X h) son() o (45)
g g,k
Let R
Vo : EL — £ Repo 1 (BY) (46)

be the restriction of V to the fiber £2 & E,, ® B“ over m = n(m). Then
V. can be represented by

Vo ((Ttas) = S iig)t (47)
g 9.k

where ¢, € E~
By hypothes1s, t=3,ts9 €L = E,, ® B“. We must show that
m(t) is in 8“’ Bwﬂl(%w) =2 F.® Ql(%w)
As in Section II, let us think of B ® ,(B) as embedded in En, ®
B« @®B«. Then V,(t) is formally represented as

Valt) = Y h(fg) tge g(1@k -k ®1) =
g,k
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Y h(ig) toe g@ k— Y h(fg) tor gk @ 1=

g,k 9.k

> h(ig) tee gk — D _ h(ng) tk k® 1=

gk g,k

(Zh(ﬁzg)g@Z tok k) -t®1l=
g k
(T hmage ) -tor. (19)

As h has compact support, the g-sum in 3  h(fg)g ® (g~1t) is finite, and
it follows that (48) makes sense in E,, @ B* ® BY.
‘We now show that V,, is a connection. If y € T',

Valt) =V Sty 97) = I ( Ltors 9) =

> h(ing) tgey-1 gdk =Y h(fg) ter gd(ky) =

9.k g,k
> h(ing) tor g(dk)y + Y h(ig) tox gkdy =
9.k 9.k
Vm(t)y + ) h(fg) tx kdy = Vi (t)y + tdy . (49)
g,k -
Then
Vo (th) = (Vnt)b+ t Dpewdb (50)
for any b € 8.
As h is smooth, it follows that V is also a connection. o

Note. There is a strong relationship between the connections V considered
here and the partially flat connections of [Ka, Chapitre 4].

Define the superconnection o
D, =V + 5Q € Hom™ (£, €% 8. (B)) . (51)
Then D? € Homg. (£¥, £ ®p-.(B*)) is given by
D? = széz +s(VQ+QV)+ V2. (52)
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Here VQ + QV is given explicitly by

(VQ+QV)(f) =) (8h) Ry f Bw-dg , (53)

9

where f € C°°(M, E) and

Oh =[Q,h) = —i ) v*d,h, (54)
"
and V? is given by
V2(f)=>_) hRjh Ry f mudgdg’ . (55)
g g
Put
P=-(s(VR+QV)+V?), (56)
and for 8 > 0 define
exp(~AD?) € Homg. (£, £ 8p- 0. (B)) (57)

to be
B
exp(—BD?) = exp(—Bs>Q?) +/0 exp(—u1s2Q*)P
exp(— (8- u1)s?Q”)du; +
B pur

/ / exp(—u15°Q%) P exp a(—u2s’Q*)P
o Jo

exp(—(B—u— Uup)s*Q?)dugduy + . ..

(58)

As only a finite number of terms of the expansion of (58) contribute to the
degree-k component of exp(—3D?), it is clear that (58) converges.

DEFINITION: For s > 0, the Chern character chg (£“) € ﬁeven(‘B“’) is
given by

chp s(€¥) =STR exp(—BD?) . (59)
ProrosITiON 10. chg(EY) is closed.
We omit the proof, which is straightforward.

PROPOSITION 11. The class of chg ,(£¥) in H,(*8*) is independent of s €
(0,00). .
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Proof: Formally,

2 chg o(£°) = d(~f STRQe%) (60)

It is straightforward to check that this equation is valid. Then if sq,s, €
(0? w)’

chg s, (%) — chp s, (E¥) = d( -8 / K STRQe—ﬂDst) ) (61)

D

Let 77 be an antisymmetric left-invariant (unnormalized) group k-cocycle.
Then n defines a cyclic k-cocycle 7, on CI' by

T'I(gﬂa . --,gk) = 77(90,9091,909192, «v-y 9091 - - ~9k) if gog1...gr=¢e

: (62)
To(g0s---,9k) =0 if gog ... g £ € [Col].
Suppose that there are constants C and D so that
|7n(g0,-- -, 9)| < Cexp (D(ligoll + .- + llgell)) - (63)

Then 7, extends to a k-cocycle on B“ and so can be paired with chg ;. By
Proposition 11, the pairing (chg (£“), 7,) is independent of s.

V. Small-Time Limit

ProprosIiTION 12.
lin% (chg s (E¥), Tn) = ,Bk/z/(k!)/ K(M) ACh(V)Aw, (64)
8§ M

where w is the closed k-form on M given by

w*w= R} dhA.. AR dhn(e,g,...,9¢) € A¥(M).  (63)
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Proof: First, let us consider the contribution to (chg s, 7,) coming from the
term

g Uk -1
(0 [ [ expl-usQ?)5(VQ + QV) exp(-uas’Q?)

s(VQ+QV)...s(VQ+QV)exp(—~(8 —u; —... — uz)s?Q%)du .. . duy
(66)
of exp(—BD?). Written out explicitly, this will be

( l)k/ / /‘tgﬁ(:v:(,)tr8 > exp(—u15°Q?)s(0h)R;,
exp(—u25°Q*)s(OR)R;, ... s(Bh)R;, o

exp(—(B—-uy—...— uk)s°Q%)](zo, zo)
dvol(zg)du . . . duy 74(go, ..., 9k) = (67)

Z(“l)k /Oﬂ”./"k—l ./1\71 d(z0) trs [exp(—u15°Q?)s R, (Bh)

eXp(—u282Q2) SR;ogl(ah) SR;u Gk~ 1(8h)
eXp( (B—uy — ... —up)s’Q?)
Ry,.. yk](xo’xo)del(xO)duk duy T(go, -1 9k) = (68)

Y (-1)F /(;ﬂ...‘/ouk—l /j}/ﬂ d(x0) trs [exp(—u1 $2Q?)(wo, 21)

s(0h)(z1 go) exp(—u25>Q*)(x1, 72) 5(Oh)(229081) - - - $(Oh)(TcGogs - - - G—1)
€Xp ( -(B-u—...— uk)82Q2)($kgogl ---gkaxo)]dvd(fck) . - - dvol(zo)
d’u,k Ve du1 Tn'(go, N ,g}c) . (69)

Because for small s the heat kernels are concentrated near the diagonal, the
only terms which will survive in the s — O limit will have go...gx = e.
Furthermore, the s — 0 limit reduces to a question of local asymptotlcs on
M. By the Getzler calculus [G], (69) equals (27)~" fTM trg(0P)g-1dz d€,
where P denotes the operator appearing in (69), o P is its symbol in the
Getzler calculus and (0 P),-: is the rescaled symbol. A straightforward
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calculation gives that in the limit s — 0, this becomes

Z(-—1)kﬁ-k/2( /0 o /0 - duk...dul) /ﬁ () A(z) A Ch(V)(z)A

dh(zgo) A ... Adh(zgo - . .9k-1)1(g0, G091, 909192, - - -1 9091 - - - Gk—1,€) =
(70)

S(—1)*BH/2(kY) /~ ¢ ABE) ACh(V) AR R A ... AR, ;. .dh
M
1(go, 9091909192, - - -, 9o - - - Gk—~1,€) = (71)
pH2 /() [ 6 A ACB(T) AT, ()
M
where & € A¥(M) is given by
=) RjdhA...AR; dhnlegi, .. 9x) - (73)

Now let us consider the contribution to (chg s, 7,) coming from a term
of exp(—BD?) which contains a V2, such as, for example,

B U1
(—1)'“/ .. / exp(—u152Q?) V? exp(—u25°Q?) s(VQ + QV)...
0 0
s(VQ+QV)exp (— (B —u1 — ... - ux)s’Q*) duy... . du, . (74)

Written out explicitly, this gives

2(—-1)k /:.../:kd /ﬁ.../ﬁd)(:ﬂo)trs [exp(—u182Q*) (%0, 71)

h(zx1g0)h{x19091) eXP(—U232Q2)(3’1 ) :cz)s(ah)(ngoglgﬂ) cee

s(0h)(zk90910,92 - - - Gk—1) exp (= (B — w1 — ... — ug)s*Q?)
(k90919192 - - - Gk, To)] dvol(zy) . ..
dvol(z)duy, . . . du1y(go, 91,91, 92, - - - Gk) - (75)

By the Getzler calculus, in the s — 0 limit, (75) becomes

T (-1yep-enre ( /0 - /0 o duk...dul) /;4 $(z)A(z) Ch(V)(2)

h(zgo)h(zgog1)dh(zgog1g1) A ... A dh(zgog19192 - - - Gk-1)
(g0, 9091, 9091915 - - -, 90919192 - - - Gk—1,€) = (76)
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Z(_l)kg(kﬂ)/?/(k!)
_ ¢ A(MYACR(V) AR, h AR, A AR, L dRA ...
M !

ARy 60100 R 1(90, 9091, 909191 - - - 90919192 - - - Gr—-1,€) = (77)

+ BFD/2 (k1) /~ é X(J\A/f) ACR(VYAT | (78)
M
where &' € Ak(ﬁ) is given by

& =3 RyhARyhA...AR;dhn(e,01,6},9298) - (79)

As (e, 91,91, 92, .-, 9x) is antisymmetric in g; and g} , it follows that &’
vanishes. The same argument shows that all of the terms involving V?
vanish. . o

LEMMA 3. The form & of (73) is a closed I'-invariant form on M.

Proof: & is clearly closed. For all v € I', we have

Y9 Y9k
SRy dh AL ARy dhn(ey T g, v gk = (80)
Y Ry dh A .. ARG dh (Y, 01,5 GK)-

R;(:,:ZR* dhn... AR dhnlegi,...,g5) =

From the cocycle condition, this equals

SR A ARy dAR[n(egrs .o gk) = (€ Y: G205 gk) F ot

(81)
(—1)]677(6775 g1y - - 3gk—l)] .
But for all r,

ZR;’dh/\.‘./\R;kdha}(e,'y,gl,...,'g},...,gk)=
+ (ZR;ﬂh) AS Ry dhA.. ARj_ dhAR; dhA  (82)
gr

...AR; dh D€y Yy Gy .- sTrr- -1 k)

and

Y Ridh= d(z RZz,h) =d(1)=0. (83)
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Thus only the first term of (81) contributes, and so

R =Y Ry dhA...AR,dhn(e,g,...,gc) = 0. (84)

a]

End of Proof of Proposition 12: From Lemma 3, there is a closed form w
on M such that @ = 7*(w). Then

/~ ¢ A(M)ACh(V)AD = / AM)ACh(V)Aw . (85)
M M

D

We now wish to show that the cohomology class of the closed form @
is the pullback to M of the cohomology class [n] on BI'. To do so, it is
convenient to first relax the smoothness conditions on @.

Let h be a Lipschitz function on M of compact support with

Y Rjh=1. (86)

As the distributional derivatives of a Lipschitz function are L*-functions,
it makes sense to define wy by

a}h:ZRZIC?}Z/\.../\R;kdhn(e,gla--':gk) ) (87)

a closed I-invariant L* k-form on M , and let w, € A¥(M) be such that
7*wp, = Wy. It is known that one can compute the de Rham cohomology of
M using flat forms (i.e. L®-forms 7 such that dr is also L) [Te].

LEMMA 4. The cohomology class of wy, is independent of h.

Proof : Let h' be another choice for h. Then
Oh— T =Y [Ryd(h—K)A...AR; dh+...+
R: dh A.. AR, d(h—1)]n(e,91,-..,9¢) - o (89)
Put

Gr=Y Ry dhA...R; (h—HK)A...AR; dhn(e,g,...,98), (8)
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a flat (k — 1)-form on M. Then

k
T — Ope = d(Z(-wHa) . (90)
r=1
Furthermore, for all v € T,
R}, =Y Ry dh A...R, (h—H)A... ARy dhn(v,01,...,x) =
S R db AR (h—H)A.. ARy dh[n(e,g,...,g)~ (91)

72(‘3,% g2, .. -agk) +...+ ('_1)]677(637:91’ v agk—l)] .

S Ridh =Y Rydh' =) Ri(h-Hh)=0, (92)
g g g

it follows that &, is [-invariant. Then w — w’ = do, where o € A*~}(M) is
such that

D™t (93)

M?r

-

r=

a

Let X be the simplicial complex whose ordered cochain complex is the
standard complex of ' [Br]. The k-simplices of X are (k + 1)-tuples of
distinct elements of I. We will take IT' to act on the right on X. Then the
simplicial complex X/T" is a model for BI'. For a vertex v, let b, denote the
barycentric coordinate (on a simplex containing v) corresponding to v. Let
j be the continuous piecewise linear function on X given by

j(z) =0if z € [go,- - -, k] and go £e,...,0ck F# €

. (94)
be if = € [go, . .., gx] and g; = e for some i .

Lemma 5. 3 R;j=1.
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Proof: Suppose that = € [go,...,gk]. Then
k

> (Ryj)(x) = ZJ(W E (zg7!) = Zbexg,l)—Zbg,(z_l

g =0 i=0
(95)

[s]

Let &; be the polynomial form on X, with coefficients in C, given by

Bj=Y RydiA.. . ARydjinle,g,...,0)- (96)
Let w; be the polynomial form on X/T such that &; = 7*w;.
We define a k-cocycle 77 € C*(X; C) by putting
(T bros vy ) = (%57 ) - (97)

By the left invariance of the group cocycle n, 77 is right-invariant on X. With
abuse of notation, let 7 denote the corresponding simplicial cocycle on X/T.

PROPOSITION 13. As elements of H*(X/T; C), [w;] = [n].

Proof: Let A denote the de Rham map from polynomial forms on X to
C*(X). Then

(Aw;j)vos -+ -] =

S (e g1y 98) (Rl di A A R, [0, 1]y = (08)

277(@,7;1, o vih <R7;1-1*dj A AR, -1"dj, ['yo,...,'yk]> ,
where iy,...,1% € {0,1,...,k}. Now (98) equals

277(3,7{;1,---»’7’;1)<db’nl /\.../\dba,,.k,['yo,...,'yk]> . (99)

A simple calculation gives that (99) in turn equals

k
S D) nle, 7 e B T = a0 . (100)

r=0
Thus A(w;) is the cochain 7. As the de Rham map is an isomorphism on
complex cohomology [GM], the proposition follows. D

Let v be the canonical (up to homotopy) map v : M — BT classifying
the universal cover M, with lift v : M — ET.

PROPOSITION 14. As elements of H*(M,C),[w] = v*([n]).
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Proof: Let us triangulate M. Upon subdivision, we can homotop v to be a
simplicial map. Then with h = v*j, we have wj = v*w;. Thus as elements
of H*(M,C),

[wa] = [v*wj] = v*[w;j] = v*[n] - (101)

By Lemma 4, [wy] is independent of the particular choice of h, and the
proposition follows, D

COROLLARY 2. For all s > 0,
(chan(€),m) = 842k [ AOHACKW) AV ([ . (102)
M

Note. One can equally well pair chg (£%) with any element of HC*(B8*).
Modulo growth conditions, there is a way of producing an element 7 €
HCk(8%) from a conjugacy class (z) of I' and a k-cocycle of the group
T./{z}, where I'; is the centralizer of z in I' and {z} is the subgroup
generated by z [Bu]. {The cocycle (62) comes from the special case when
(z) = (e).) However, the cyclic cohomology classes corresponding to (z) #
(e} will pair with chg ((£“) to give zero. The reason is that a cyclic k-cocycle
7 based on {x) will have 7{(go,...,gx) = 0 if gog: ... gr & (z). However, by
the proof of Proposition 12, in the s — 0 limit one sees that the terms with
9091 - - . gk # e do not contribute to (chg (£¥), 7).

VI. Reduction to the Index Bundle

We first review some of the results of [MF]. Recall that A is the reduced
group C*-algebra of . Let £ denote the Z,-graded A-bundle over M
given by £ = (M xp A) @ E. The L%sections T'°(£) of £ form a right
A-Hilbert module. The Dirac-type operator D is an odd densely-defined
unbounded operator on I'°(£). One can find finitely-generated right pro-
jective A-Hilbert submodules F* of I‘O(S *) and complementary A-Hilbert
modules G* C T°(£%) such that D is diagonal with respect to the de-
composition () =G*o F *  and writing D = Dg ® Dp, in addition
Dg : G* — G7¥ is invertible. By deﬁmtlon the index of D is

Index(D) = [F*] - [F] € Ko(A) ; (103)

this is independent of the choice of F%,
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Now suppose that B is a densely-defined subalgebra of A which is
stable with respect to the holomorphic functional calculus on A, and 8% C
B> C A. A standard result in K-theory is that Ko(A) & Ko(*B>°) [Bo,
Appendice]. There is a Chern character Chyg from Ko(B>) to HC.(B>),
the reduced cyclic homology of B [Ka]. Let n be a group k-cocycle on CT'
which extends to an element 7, of the cyclic cohomology of 8°°. By the
explicit formula (62), 7, is a reduced cyclic cohomology class if k£ > 0.

We will sketch a proof of the following proposition. Many of the details
are as in [Bi].

ProrosiTION 15.

<Chﬁ (Index(ﬁ)),7,7> = BE12 (kY /M A(M) ACh(V) A v*([n]) .

Proof: Define £ to be (M xr B>*°)® E. An examination of the proof of
[MF] shows that F* and G* can be chosen to be of the form F* = F¥@g«
A and G* = G* ®@g~ A, where F* and G* are subspaces of I'*°(£>). (This
uses the fact that B is stable with respect to the holomorphic functional
calculus in A.) Write D+ and Dgi for the restrictions of D to F* and G*
respectively. Put

HE=g*aFto F¥. (104)
For o € C, define R : H* — HF by
Dgz 0 0
RE=| 0 Ds ol - (105)
0 o 0

We have that Dgs is invertible. Put

£_ (Drs o 106
st= (P %) (106)

and let
S Que A: FE@Q FF 5 FF o F* (107)

be the extension to a bounded operator on finitely-generated Hilbert A-
modules. As Dy is a bounded operator, it follows that Sff g A is invert-
ible for o large. Then the fact that B> is stable under the holomorphic
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functional calculus in A implies that SZ is also invertible for o large. Thus

R is invertible for « large. We define exp(— TR2) by the Duhamel expan-

sion in a. As R, differs from D &0 by a finite-rank operator in the sense

of [Kas], there is no problem in showing that exp(— TR2) is well-defined.
Extend the B“-connection V on £“ to a B°°-connection on

£ =&Y Qgo B>, (108)
Let V£ be a B°°-connection on F and let
V=VeVysr (109)
be the sum connection on H. Define the Chern character
chp s.0(H) = STRexp ( — B(V' + sRa)?) € Q(B>) (110)
by a Duhamel expansion in V’. For o = 0, we have

chg s 0(H) = chg () — STR exp(—BV%) . (111)

Now STRexp(—8V%) € 6(?8“’) represents Chg ([F]) [Ka]. If we can show
that chg,o(H) is zero in H,(®B>°) then we will have that as classes in

H.,(B%),
chp o(£%°) = STR exp(—BV%) = Chg([F]) = Chy (Index(D)) ,  (112)

and the proposition will follow.

A standard homotopy argument shows that the class of chg ; o(H) in
F*(‘BC"’) is independent of . Take « large enough that R, is invertible.

We define a pseudodifferential calculus as in [MF], except that the
symbol o(m, ) will take value in End g (£,7). Then Ry, is an elliptic first-
order ¢do. (In terms of the “fibration” picture, it corresponds to a smooth
family of elliptic first-order vertical ido’s.) As in the usual calculus of
¥do’s, R, has a parametrix Py, an order -1 1/do, such that

I —RuPy = Ky and I — PoRy = Ko, (113)
where K, and K,, are smoothing operators. It follows that

(Ra)™ = Py + Koa(Ro)™ (114)
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is also an order -1 ydo.
Define a connection V4,_ on H~ by

/o = (R)" Vi R: (115)
and define V" to be V4, @ V},_. Then

and
n-— V- = (B3)7" (Vi Ry — Ry Vi) (117)

is an order -1 operator. We have a homotopy of connections on H from V'
to V” given by V/ + (V" — V'), u € [0,1]. It follows as in [Bi, Prop. 2.10]
that chg s, (H) = STRexp ( — B(V' + sRa)?) represents the same class in
H.(B>) as STRexp ( — 3(V" + sR,)?).

We - claim that if STR exp(—8(V” + sR,)?) is expanded in V", the
terms vanish algebraically. To see this formally, write V" 4+ sR,, in terms of
the decomposition H = H+* @ H™ as

V! sRZ
1 . H+ (o3 _
o= (8 (o) )

(6 ) (omtie ot ) (6 i)

and so formally,

v I\
_ " 2y _ _ H+
STRexp (~ (V" + sRa) )—STRexp( g (szR;Rz '71+) )

€ 0, (B>) .
(119)
However, expanding (119) in V7 ., one finds that (119) vanishes for alge-
braic reasons. . :
(To see this last point, consider an analogous statement in the finite-
dimensional case. For A, B € My(C) put

M= (g i) € Myn(C) . (120)
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Then det(M) = det(A? — B) and if A% — B is invertible,

-1 A2 - B) A —(A% — B)-!
M™ = (I_(A(Az _)B)_IA AgAz _ Bg-l) . (121)

Thus StrM™! = 0. If A € Spec(M), by changing A to A— AI, we obtain that
Str(M — AI)~! = 0. Then by the functional calculus, if f is a holomorphic
function in a neighborhood of Spec(M), Str f(M) = 0.)

This formal argument can be made rigorous as in [Bi, Prop. 2.17].

Note. If M is odd-dimensional then one can use Quillen’s formalism [Q]
to define the odd Chern character

chg o (E%°) = Troexp (- B(V + sQ0)?) € Qoaa(B®) . (122)

The operator D gives an element Index(D) of K;(8>) [Kas]. Using a
suspension argument as in [BF], one can show that Proposition 15 also
holds in the odd case.

CoOROLLARY 3 {CM]. If T is a hyperbolic group in the sense of Gromov
[GH] then for all [y] € H*(T; C), the higher-signature [,, L(M) Av*([n]) is
an (orientation-preserving) homotopy invariant of M.

Proof: Let 8 be the algebra

B> = {A € A:*(A) is bounded for all k € N} , (123)

where 8 is the operator of [CM, p. 383]. By [CM, p. 385], if [7] € H*(T'; C)
then [n] can be represented by a group cocycle n such that 7, extends to a
cyclic cocycle on B, Letting D be the signature operator, the result of
Mishchenko and Kasparov [Mi, Kas, HS] on the homotopy invariance of

Index(D) € Ko(A) = Ko(B>) (124)

along with Corollary 2 implies the result. (As usual when dealing with the
signature operator, it is irrelevant whether or not M is spin.) o
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VII. Bivariant Extension

Let 2 be the C*-algebra C(M). Then (I°(€),D) forms an unbounded
(A, A) Kasparov module, and so gives an element of KK(2,A) [BJ]. A
bivariant Chern character chg, was defined in [Lol] in the case of finite-
dimensional projective modules, and it was indicated that the bivariant
Chern character should be well-defined whenever there is a good notion of
trace on the Hilbert modules. Such is the case here. The bivariant Chern
character is a combination of Quillen’s superconnection Chern character
[Q] and the entire cyclic cocycle of [JLO). In the setup of Section IV, given
n € Z*(T;C) such that 7, pairs with 8, there is a corresponding entire
cyclic cocycle (chgs, ;) € C¥(C™(M)). It is given explicitly as follows:

DEFINITION: For ao,...,am € C®(M),

B8 Um —1
(chg s, ) (@0 - - -y Q) = IB"m/2</ .. / STRay exp(—ulDf)
0 0

[Ds, a1] exp(—u2D?)[Ds, ag] . .. [Ds,amlexp (— (B —u1 = ... — up)D?)
i, . ..duy, T,,> . (125)

(Note that the (chg,,7,)(1) of equation (125) equals the (chg,7,) of
Proposition 12.)

As before, the class of {chg,, 7y) in H}(C*™(M)) is independent of s.
As in Section V, we can take the s — 0 limit to obtain that (chg,,7,) is
cohomologous to the entire cyclic cocycle (chgg, ) given by

(chg0, ™) (a0, - .-, am) =B*/2/(kml) / A(M) A Ch(V)A
M
wAagday Adag A ... Ada,, .

Here w is the differential form of (65).

If W € K°%M) is represented by a projection p € M,(C™(M)), let
Ch.(p) be the entire cyclic cycle of [GS]. Then we obtain that
(chps, ™) (Chi(p)) is proportionate to [, A(M) A Ch(V) A w A Ch(W).
Note that in the case of the signature operator, the entire cyclic cohomol-
ogy class of {chg s, ;) is not a homotopy invariant, as otherwise one could
take [n] to be a 0-group cocycle and conclude that the rational L-class is a
homotopy invariant, which is false.

(126)
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