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We define the equivariant analytic torsion for a compact Lie group action and
study its dependence on the geometric data. € 1994 Academic Press, Inc.

1. INTRODUCTION

The Ray-Singer analytic torsion 7 (Z, F; g%, h") is a real-valued spec-
tral invariant of a closed connected Riemannian manifold Z and a flat
complex vector bundle F on Z, which are equipped with a Riemannian
metric g’% and a Hermitian metric A, respectively [10,9]. When dim(Z)
is odd, F(Z, F; g™, h") is independent of the choices of g™ and A" and
hence gives a smooth topological invariant 7 (Z, F) of the pair (Z, F).
In the original case considered by Ray and Singer, F admits a unitary
structure and Z(Z, F) equals the Reidemeister torsion of (Z, F), a
homeomorphism invariant [5, 87].

It turned out to be fruitful to consider an equivariant extension of the
analytic torsion, in which a finite group acts by isometries on (Z, F) [6, 7].
A natural question is then whether one can extend the definition of the
analytic torsion to the case of the action of a compact Lie group G on
(Z, F) by isometries. The right approach to this question was not clear. A
hint is given by the recent work of the present author with J.-M. Bismut
[3], in which the analytic torsion of a fiber bundle is defined as a differen-
tial form on the base. Morally speaking, one would apply the fiber bundle
results to the following situation. Let BG be a classifying space for G and
let EG be the contractible space upon which G acts freely, with BG = EG/G.
As G acts on Z, there is a fibration with fiber Z, total space EG x4 Z, and
base BG. Thus one may hope to obtain a torsion invariant for the G-action
on (Z, F) which lies in H*(BG; C).
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Inspired by the fiber bundle results, in this note we give a direct con-
struction of the equivariant analytic torsion for the action of G on (Z, F).
We must make the further assumption that the G-action on the flat bundle
F has vanishing moment. Then we define the equivariant torsion of
(Z, F; g™, h") as a G-invariant formal power series on the Lie algebra g.
As the vector space of such formal power series is a completion of
H*(BG;C), our construction fits into the framework of equivariant
cohomology. We show that if dim(Z) is odd then the nonconstant part of
the formal power series expansion of the torsion is independent of g”# and
h*. Thus we obtain smooth topological invariants of the G-action on
(Z, F). To show that these invariants are nontrivial, we compute them in
the case of U(1) acting on a circle.

We refer to [ 1, Chaps. 7, 8] for background on equivariant differential
forms and equivariant local index theory techniques. We note that many of
these techniques are due to Bismut [2]. As many of the propositions in this
note are analogs of those in [3], we are sketchy in some of the proofs.

2. THE EQUIVARIANT ANALYTIC TORSION

We follow the notation of [1]. In particular, [, -] denotes a graded
commutator. The Einstein summation convention is used freely. We let tr
and tr, denote traces and supertraces on finite-dimensional vector spaces.
If W is a finite-dimensional vector bundle on a manifold Z, the trace of an
endomorphism 7 e End(W) is denoted by tr[ T ] e C*(Z).

Let G be a compact Lie group, with Lie algebra g. Let C[ g]€ denote the
space of G-invariant complex-valued formal power series on g.

Let Z be a closed connected oriented Riemannian manifold of dimension
n upon which G acts by orientation-preserving isometries. The tangent
bundle of Z is denoted by TZ, the Riemannian metric is denoted by g™,
a local orthonormal basis of TZ is denoted by {e;}7_,, and the dual basis
is denoted by {t'}7_,. When convenient, we may assume that the {e;}7_,
have vanishing covariant derivative at a point. The complexified exterior
bundle of Z is denoted by A*(Z), and its space of smooth sections is
denoted by Q*(Z). The Riemannian metric on Z induces an inner product
(- Dawz on Q%(Z). Given xeg, let X be the corresponding vector field
on Z. Let Ly:0Q*%(Z)— Q*(Z) be Lie differentiation in the X-direction.
Let iy:Q*(Z)— Q*~Y(Z) be interior multiplication by X and let
ey: Q*(Z)— Q**(Z) be exterior multiplication by the dual 1-form to X.
Then e, and i, are adjoint operators. If Y is a vector field on Z, put

Y)=e,—i
i‘( )=e I.Y (1)
{Y)=ey+iy.



440 JOHN LOTT

Then we have
c(Y)e(Y)+e(Yy)e(Y )= —2<Y,, Y2D 1z,
é(Yl)é(Y2)+é(Y2)5(Y1):2<Y1aY2>Tz’ (2)
o(Y,) é(Y,) +é(Y,) e(Y,)=0.

Thus ¢ and ¢ generate two graded-commuting Clifford algebras.

The space of equivariant differential forms Q4(Z) is ((C[g] ® 2*(Z)))°,
the G-invariant Q*(Z)-valued formal power series on g. It is convenient to
write an equivariant differential form « as if it were actually an Q*(Z)-
valued function on g. Thus we write « as «,, where xeg and o, e Q*(Z).
The equivariant differential d, is then given by (d,a), =da, — i a..

Let V7“ be the Levi-Civita connection on TZ. We also let V7# denote

the induced connection on A*(Z). Let R”Z be the curvature 2-form. Define
R™ e Q*Z;End(A*Z)) by

R™ =1¢e;, R™e,) 1y ¢7¢~. (3)

The Riemannian moment u’“e End(7Z) of xeg acts on YeTZ by
[1, Example 7.8

ur?y=-Vi‘x. (4)
Define i’ e C™(Z; End(A*Z)) by
A7 =5 uitey rz € (5)
The equivariant curvature is given by
RTZ= R4 7. (©)

Define Pf: so(n) — R to be the Pfaffian if # is even and zero if n is odd.
Then the equivariant Euler class y € Q,(Z) is given by

TZ
x=Pf (Rx ) (7)

2n

It is equivariantly closed.

Let F be a flat G-equivariant complex vector bundle on Z. Let V¥ denote
the flat connection on F. Let Q*(Z; F) denote the space of smooth F-valued
differential forms on Z. It is a Z-graded vector space, with the number
operator N acting as multiplication by j on 2/(Z; F). The action of xeg
on 2*(Z; F) is denoted by L,. We extend iy, ey, ¢(X), and é(X) to act
on Q*(Z;F). If @ is a trace-class operator on the L’-completion of
Q*(Z; F), we let Tr,[¢] € C denote the supertrace of ¢ with respect to the
Z,-grading on Q*(Z; F).
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Let A" be a G-invariant Hermitian metric on F. We do not require that A
be covariantly constant with respect to V¥. Let (VF)* be the adjoint con-
nection to V¥, with respect to 4*. Define a Hermitian connection on F by

VF‘u=%((VF)* _+_VF) (8)
and define ¥ € 2'(Z; End(F)) by
Y=(VA)*x -V~ 9
Then
vmzvu% (10)
The curvature of V¥ ¥ is
§ lj/z
Fou__ _ T
R = % (11)

We let VT2@F« denote the tensor product of the connections V’# and
V- Define # € Q%(Z: End(A*(Z)® F)) by

R=(RZ®I:)+ (Ipezy®R™). (12)

The Hodge duality operator on 2*(Z) extends to a linear operator * on
Q*(Z; F). There is an inner product on 2*(Z; F) given by

<w1’w2>ﬂ‘(z;t‘)=jz (o (2) A*xw{z2) ). (13)

Let dp: Q%(Z; F)— Q*(Z; F) denote exterior differentiation and let 4 be
its adjoint.
The moment of x e g relative to V¥ is defined to be [1, Definition 7.5]
py=Ly—(dpiy+iydp). (14)
Assumption 1. The flat bundle F is such that x* vanishes for all xeg.

DErINITION 1, For xeg and ¢ > 0, define operators on 2*(Z; F) by

ix
D, .= dp——= 15

D =J1df+—X (16)

i

HX,I=_(D;,I—D.\'.I)2' (17)



442 JOHN LOTT

LEMMA 1. We have

1

(D, )=(D, )= —3Lx (18)
[LX’ Dx,r]=[LX’ D.”(,l]=0 (19)
H., =D, +D, ) +Ly (20)
(D.H. J=ID,,,H, ]=0 (21)
d

[N, D..J=2t—D., (22)
[N, D’ ]——2111)' (23)

’ x, rd = dt X, 1’

Proof. The proof follows from a simple calculation. |

Equation (20) shows that H,, is essentially the same as the Bismut
Laplacian [1, Definition 8.9]. It is precisely the same if A" is covariantly
constant with respect to V¥,

Define a connection 2, , on A*(Z)® F by saying that for Y a vector
field on Z and se Q*(Z; F),

<X, Y>TZ
e ——

(2,,)ys =V ehes 22

(24)
Let 4, , be the corresponding rough Laplacian on Q*(Z;F). Let
Ke C*(Z) be the scalar curvature.

PROPOSITION 1. We have the Lichnerowicz-type formula

K 1 ..
H, =t (Ax, A+ Z+5 c'c'Ae,, e,-)) +4r”

1 1, 1 .
+t<zwf+gé"é"[|/1j, l//k]—icféngZ@’F'“ k). (25)

Proof. If h* is covariantly constant with respect to V¥ then Eq. (25)
follows from [1, Proposition 8.127. If G is trivial then Eq. (25) is equivalent
to [4, Theorem 4.13]. The proof in the general case is done by combining
the proofs of the two above special cases. We omit the details. |

We see from Proposition 1 that H, , is an elliptic operator. The heat kernel
e M~ris a trace-class operator whose supertrace can be formally expanded in
x, to give an element of C[g]° From [1, Proposition 8.11], for all ¢>0,
Tr.[e~#~1] equals indg(e *, d-+d}), the equivariant index of d.+ d¥:
Qv(Z; F)— Q°%(Z; F) evaluated at the group element e ~*. The homotopy
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invariance of cohomology implies that ind (e ™ ~, d-+ d}) equals rk(F) y(Z)
for all xeg. Thus Tr,[e~ =] is independent of both ¢ and x.

From small-time heat-kernel asymptotics, it follows that Tr,[ Ne =] has
a small-r asymptotic expansion of the form ¢~ (a power series in ¢). In fact,
by adapting the arguments of [4, Theorem 7.10] and [3, Theorem 3.21], one
can show that the t°-term in the asymptotic expansion is given by

o CHeq nrk(F) y(Z)/2 if niseven
t°-term of Tr,[ Ne 1= {O £ nisodd (26)
Put

Y(Z;FY=Y (—1)jtk(H/(Z; F)). 27)

=0

Following [3, Theorem 3.21], the r — oo asymptotics of Tr,[Ne™¥~/] are
given by

Trs[Ne”’~']=x’(Z;F)+O<—l—). (28)

N

DerNITION 2. The equivariant analytic torsion J € C[ g1 is such that
for all xe g,

d

ds

a
X

1 o
—— £ Y Tr,[Ne o] —y(Z; F))dr 29
Tl eantve - pzip) (29
It follows from Egs. (26) and (28) that the expression being differentiated
in (29) is well-defined for Re(s) >> 0, and its meromorphic extension to the
complex plane is holomorphic near s=0. Clearly, 9, coincides with the
Ray-Singer analytic torsion [10, 9].

PrROPOSITION 2. Let {h"(¢)},.x be a smooth 1-parameter family of
G-invariant Hermitian metrics on F. Define (h*)~' (dh*/de)e C = (Z; End(F)),
with an obvious notation. Then

d H d dh®
— “Hy Y = — T hF -1 77 s~ Hxu .
. I'r [ Ne 1=¢ ? rs[( ) A € , (30)

Proof. We abbreviate (A7)~ (dh*/de) by V. Clearly,

d

—D_,=0.
de ™!
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Let F* be the antidual bundle to F. A Hermitian metric #* induces an
isomorphism 4”: F— F*. Define an operator Df;'}, on (Z; F*) by

=/ 1 dp.

Then

and so

d iy dh*
— D' = =[D’ V.
dE x, r i: X, f (h ) dE :I [ x, r? ]

As the supertrace of a graded commutator vanishes, we may equally well
assume that

d 1 d
D =——[D Vv — D, _—_ D' . V] 1
dB x, ¢ 2 [ x, 1 ]’ d [ X, 1 ] (3 )

Then

d 1 aH
STnNe "= =] Tr, [Ne St o0 umw} du

1t —uHy

_EL Tr,[ Ne
x[(Dh,—D. ). (D, +D, ), V1le " ] dy
1! ’ -uHy

_5«{0 Trs[[N’ (D,\:r_Dx.r)] €

x (D} +D, ), Ve ' ] du

1 d(D’ D
=—IJ Tl’s[( rtd’i’ XY')E"uHx"

x (DY, + D, ) V] e“")Hm:l du

=—z] Tr [[d(D - WDt Dri) (., +D_,(,,)]e"“”*-'

X Ve“”“’”-‘*‘] du

! dH
- _ —{l —wu) Hy, X, ¢ —uHy,
t L Tr, [ Ve i e ] du

d —Hy
=12 Tr[Ve % ] (32), (33)
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By Hodge theory, we can identify the Z-graded vector space H*(Z; F)
with Ker(d* —d;). Then H*(Z; F) inherits a Hermitian inner product
hH‘(Z: F). Let

P:Q%Z,F)—Ker(d¥ —d,) (34)
be the orthogonal projection operator.

PROPOSITION 3. As operators on H¥(Z; F),

i dh*
TzP(hF)il—dTe_P. (35)

(hH‘(Z:Fi)‘l

Proof. 1t is enough to prove the validity of (35) when ¢ =0. Let {v;(¢)}
be a l-parameter family of bases of Ker(d} —d,) which is orthonormal
when £ =0 and whose de Rham cohomology classes are independent of &.
Then dv,/de € im(d,) and

d{v;, vj>{2‘(z;lr]__ dv; dvj dh® (26
—_——= — ,U,‘ + U, +‘——‘(Ui’ Ui)
de de QYZ,F) de Q7. F) de

dh.Q’(Z; £y
= T (vi Uj)

dh®
= (v, (hF)"——v->
< de QY(Z:F)

. dh*
=<U,—, P(ht}\l'gs—PUj> . (36)
QZ;F)

However,

H*Z, F
d(”n”j)(r(z;m_dh ( )

de de (v, v)). (37)

Combining (36) and (37) gives the validity of (35) when ¢=0. |

PRrROPOSITION 4. We have

F F
lim Tr, [(h")’1 —‘ih—e“”-‘-'] =Tr, [P(h’")" ElIh—P] (38)
[e) de ds

Proof. The heuristic idea of the proof is that as t — oo, the 1 /\/7 terms
of (15) and (16) become irrelevant. Then H, , approaches —t(d* —d,)*
and e~ = approaches P. The special feature of the present situation is that
there are no terms of order ¢° in (15) or (16). The details of the proof are
as in [3, Theorem 2.13] and we omit them.
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PROPOSITION 5. The expression Tr [ (h")~ (dh¥/de) e~ "~] has a limit
as t — 0 given by

. ¥ . dh®
lim Tr, (h’)”ih—e’”‘-’ =f Lo tr (h’)"he"”“jl. (39)
t—-0 de VA de

Proof. The proof follows from local index theory techniques as in [2,
Section 2] or [1, Section 8.37]. That is, doing an appropriate rescaling and
using Proposition 1, one finds

lim Tr, [(hF) *”w} fxr [hF) ldh: *R“]. (40)

t—0

The proposition now follows from combining (11) and (40). 1

PROPOSITION 6. We have

. th‘(Z:F) th
trsl:(h” 7y ——————]+j Lo tr [(hf)l —e“’z/"]. (41)
z de

de

Proof. Put W=Ilim,_  Tr, [(h") ' (dh¥/de) e~ "="]. We can switch
the order of differentiation and integration to obtain

dfx d d » o o
de  deds|,_, r(g).[ CA(Tr,[Ne™ "] =y (Z; F)) dr
d ! ®pd -lth -He
T ds s=or(s)f u ["’ ) e ]dt

d

1 = d -/
o —_— s T Fy—-L 2" ,—Hx:|_ .
& ok zd[( rj':(h )t ] W>a’t (42)

One then integrates by parts, and as in [6, pp. 4374381, one obtains

T dh”
e _ lim Trxl:(hF)l -—e”"’]
de

— oo de

. dh®
+ (the 1° term in the small-¢ expansion of Tr, [(h' ) ! - e‘”"']).
(43)

The proposition now follows from combining (43) and Propositions
351

Now fix A" and let {g"%(¢)}..r be a smooth l-parameter family of
G-invariant Riemannian metrics on Z. Let *(g) be the corresponding
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Hodge duality operators on $2(Z; F). There is a canonically defined class
7 €Q(Z)/im(d,), constructed from g’* and dg"*/dg, such that

dy i
A =d,¥. (44)
Define c(A”)e 2*(Z) by
Py e T['[l//zj+l]
el )_,-i‘:o Qi+ 1)a1 (43)

It is easy to check that c(h”) is closed and that its de Rham cohomology
class is independent of h*. As h* is G-invariant, ¢(h") is equivariantly
closed as an element of Q;(Z).

ProprosiTION 7. We have

Rtz F)
de

d7,
x___t hH'(Z;F) 1
e, | ()

] +f gty )

Proof. The analogs of Propositions 2, 3, and 4 hold, with (h%)"!
(dh"/de) replaced by »~'(d+/de). The proofs are virtually the same as
before. In order to compute the ¢ -0 limit of Tr [+~ '(d*/de) e *~*], one
can introduce an auxiliary variable ¢ as in [4, Section 4]. Upon rescaling
o as in [4, Section 4] and the other variables as in [1, Section 8.3, one
uses Proposition 1 to show

lim Tr, l:* N e'”"’] =J. R Ar[(VE 4, ) e, (47)
d£ z

t—0

where 2% is a certain tensor constructed from g’“ and dg”#/de. (The last
term in (25) is responsible for the (V5 *y,) term in (47).) Then

lim Trs[* ’”ﬂ:l J'ggk tr[‘E”(VeTjZ@F'”(//k)ewzm]
t—0
= | e[V Py, o]
z
=j .@.‘i.vz;zc(hf”)
z

[ vIzat ey, (48)
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One computes that —V!”#% =5 . Thus the analog of Proposition 5 is

| dx

: S By . S I F
lim Trs[* e ] L 7o clh"). (49)

The proposition now follows as in the proof of Proposition 6. |

If g7 and g'’? are two G-invariant Riemannian metrics on Z, let
{g(e)};c 0,17 be a smooth 1-parameter family of G-invariant Riemannian
metrics on Z such that g(0)=g’* and g(1)=g'"% Define #(g’* g'"*)e
Qs(Z)/im(d,) by

1
e g ™) = qde) e (50)
One can check that #(g"%, g’"%) depends only on g”“ and g’7%, and not on
the 1-parameter family chosen. By construction,

x(g"%). (51)

Similarly, if #* and 4’ are two G-invariant Hermitian metrics on F, let
{h(e)},cro, 17 be a smooth l-parameter family of G-invariant Hermitian
metrics on F such that A(0)=h" and A(1)=Hh". Define &(h", e
Q*(Z)/im(d) by

TZ L V4 )

d.i(g" " g

/TZ)_

=yx(g

1 ) .
ah, = [h(s)' %"M“]' (52)

One can check that &(h%, #'*") depends only on 4% and #'”, and not on the
I-parameter family chosen. By construction,

de(h”, h'F) = c(W'F) — c(h"), (53)

Let pf7ZF) and p'#"ZF) be the Hermitian metrics on H*¥(Z; F)
induced by (g7%, h*) and (g'"%, h'"), respectively. Let the corresponding
volume forms on H”(Z; F) be vol(h"#:)) and vol(h'H"#:£7),

ProrosiTiION 8. We have
g;(ngZ, h’F)—,Z(gTZ, hF)=J zx(g’fz, g/TZ) 'C(hF)
V4
+[ xdg ™) a0
zZ

~ Y (=1)’In (—————VO]("’HF(Z;“)). (54)

vol(hH"(Z: )y
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Proof. 1t follows from Propositions 6 and 7 and Egs. (50)-(53) that the
difference between the two sides of (54) is independent of g'7% and A'F. As
both sides vanish when g'"# = g”# and h'F = h*, the proposition follows.

If G is trivial then Eq. (54) is equivalent to [4, Theorem 0.17].

CoRrOLLARY 1. If dim(Z) is odd then . — J, is independent of g™* and
h* and is thus a smooth topological invariant of the G-pair (Z, F).

Proof. If dim(Z) is odd then y=j=0, and so the corollary follows
from Proposition 8. §

If dim(Z) is odd and H*(Z; F)=0 then it follows from Proposition 8

that 7, is also independent of g"# and h*. However, this is simply a conse-
quence of [10, 9], as 7, is the same as the Ray-Singer analytic torsion.

PropoSITION 9. If dim(Z) is even and h* is covariantly constant with
respect to V¥, then 7 =0.

Proof. This follows from a Hodge duality argument, as in [10] and
[3, Theorem 3.26]. |

We now compute the equivariant analytic torsion for U(1) acting on a
circle by an r-fold covering. First, let r> 1 be a positive integer, let { # 1
be an rth root of unity, and let p:Z — Aut(C) be the corresponding
representation. Put F=R x, C. Then F is a U(!)-equivariant flat complex
line bundle over S' with vanishing moment. There is a U(l)-invariant
Hermitian metric on F induced from the standard inner product on C.
Define the jth polylogarithm function of { by

xx m

L= ¥ o

PROPOSITION 10. For iy e u(l), we have

7 =2 Re(Li,, ~ 2 Im(Li,, |
z(j) e(ti, () () ,§d<1)‘“" ().

(55)

Proof. The calculation proceeds by means of the Poisson summation
formula, as in [3, Theorem 4.13], and we omit the details. |

Now let U(1) act on S' in the standard way and let F be the trivial flat
complex line bundle on S*.

ProOPOSITION 11. For iyeu(l), we have

_ 20 4k ] y 2k
7,-7%=2 % (5t (&) - (56)
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Proof. The proof is similar to that of Proposition 10. §

Although Eq. (56) is derived using standard metrics on S' and F, by
Corollary 1 the result is independent of the metrics chosen. Similarly, the
result of Proposition 10 is independent of the metrics chosen.

Note 1. Recall that if D is a G-invariant Dirac-type operator on Z and
H, ,is the corresponding Bismut Laplacian, then [1, Section 8.3]

Tr[e 7~ ]=Tr,[e “e " ]=indg(e ", D). (57)
One may ask if there is a similar relationship for the equivariant analytic
torsion. Namely, as in [6, Section X], put
d 1
dsis_o I'(s)

Then the question is whether Z, equals (¢~ *). One finds by explicit
calculation that this is not the case even for a circle.

T (e ¥)=—

[7 o T Ne e ) gz FYydi (58)
V]

Note 2. The numerical coefficients in (55) differ from those of [3,
Theorem 4.137] because of a slightly different definition of the analytic tor-
sion. Essentially, instead of using the exponential function in Definition 2,
Ref. [3] uses the function (1 + 2x)e™.

Note 3. The analytic torsion .7 is localized around the identity element
e of G, in that it is the germ of a function defined around e. We see no
reason why it should extend analytically to a function on the connected
component G, of G, especially in view of the arbitrariness of definition
mentioned in Note 2.

Given 7 € G, one can define an analytic torsion which is localized around
y as follows. Put

Xy, Z,F)= _Z (=1 jtrlylaiz, 1 (59)

Jj=0
Let g, be the Lie algebra of the centralizer G, of y. Define 7 "’ e C[g,]
by saying that for xeg,,
4
ds

L
=0 1(s)

T W=

[ o T IVe "~y (5, 23 F))dr. (60)
0

If G is finite, one recovers the equivariant torsion of [6, 7].

Note 4. Tt should be possible to define an equivariant Reidemeister tor-
sion by means of a decomposition of Z as a G-CW complex. In particular,
given a G-Morse function on Z, one obtains such a decomposition, and it
should be possible to study the relationship between the analytic and
cellular torsion invariants, along the lines of [4].
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