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R/Z INDEX THEORY 

JOHN LOTT 

ABSTRACT. We define topological and analytic indices in R/Z K- 
theory and show that they are equal. 

1. INTRODUCTION 

The purpose of this paper is to introduce an index theory in which the 

indices take value in R/Z. In order to motivate this theory, let us first recall 

the integral analog, the Atiyah-Singer families index theorem. 

Let Z —► M —► B be a smooth fiber bundle whose fiber Z is a closed 

even-dimensional manifold and whose base B is a compact manifold. Suppose 

that the vertical tangent bundle TZ has a spinc-structure. Then there is a 

topologically defined map indtop • K0(M) —> K0(B) [1], which in fact predates 

the index theorem. It is a if-theory analog of "integration over the fiber" in 

de Rham cohomology. Atiyah and Singer construct a map indan : K0(M) —> 

K0(B) by analytic means as follows. Given V G K0(M), we can consider it to 

be a virtual vector bundle on M, meaning the formal difference of two vector 

bundles on M. The base B then parametrizes a family of Dirac operators on 

the fibers, coupled to the fiberwise restrictions of V. The kernels of these Dirac- 

type operators are used to construct a virtual vector bundle indan(V) G K0(B) 

on £?, and the families index theorem states that mdan(V) = indtop(V) [4]. 

Upon applying the Chern character, one obtains an equality in H*(B; Q): 

(1) ch(indan(T/)) = J A(TZ) U e^ u ch(F), 

where Lz is the Hermitian line bundle on M which is associated to the spinc- 

structure on TZ. 

Partially supported by NSF grant DMS-9101920. 
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The Atiyah-Singer families index theorem is an integral theorem, in that 

iir0(pt.) = Z. It is conceivable that one could have a more refined index 

theorem, provided that one considers a restricted class of vector bundles. What 

is relevant for this paper is the simple observation that from (1), if ch(V) = 0 

then ch(indan(V)) = 0. Thus it is consistent to restrict oneself to virtual 

vector bundles with vanishing Chern character. 

We will discuss an index theorem which is an R/Z-theorem, in the sense 

that it is based on a generalized cohomology theory whose even coefficient 

groups are copies of R/Z. To describe this cohomology theory, consider mo- 

mentarily a single manifold M. There is a notion of KQ/Z(M), the if-theory 

of M with C/Z coefficients, and Karoubi has given a geometric description of 

KQ^Z(M). In this description, a generator of KQJZ(M) is given by a complex 

vector bundle E on M with trivial Chern character, along with a connection 

on E whose Chern character form is written as an explicit exact form [16, 17]. 

By adding Hermitian structures to the vector bundles, we obtain a geomet- 

ric description of K^]Z(M), the i^-theory of M with R/Z coefficients. The 

ensuing generalized cohomology theory has K^z(pt.) = R/Z. 

One special way of constructing an element of K^]Z(M) is by taking the 

formal difference of two flat Hermitian vector bundles on M of the same rank. 

It is well-known that flat Hermitian vector bundles have characteristic classes 

which take value in R/Z, and R/Z-valued iT-theory provides a way of extend- 

ing these constructions to the framework of a generalized cohomology theory. 

We show that one can detect elements of K^]Z(M) analytically by means of 

reduced eta-invariants. This extends the results of Atiyah-Patodi-Singer on 

flat vector bundles [3]. 

Returning to the fiber bundle situation, under the above assumptions on the 

fiber bundle Z —> M —> B one can define a map indi0p : K^]Z(M) —> K^]Z(B) 

by topological means. A major point of this paper is the construction of a 

corresponding analytic index map. Given a cocycle £ for K^]Z(M), we first 

define an analytic index mdan(£) G K^]Z(B) when £ satisfies a certain techni- 

cal assumption. To define indan(£), we endow TZ with a metric and Lz with 

a Hermitian connection. The technical assumption is that the kernels of the 

fiberwise Dirac-type operators form a vector bundle on B. The construction 
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of mdan{£) involves this vector bundle on B, and the eta-form of Bismut and 

Cheeger [8, 10]. If £ does not satisfy the technical assumption, we effectively 

deform it to a cocycle which does, and again define indan(£). 

We prove that indan(£) = indt0p(£). Our method of proof is to show that 

one has an equality after pairing both sides of the equation with an arbitrary 

element of the odd-dimensional if-homology of B. These pairings are given by 

eta-invariants and the main technical feature of the proof is the computation 

of adiabatic limits of eta-invariants. 

The paper is organized as follows. In Section 2 we define K^]z^ the Chern 

character on K^]Zl and describe the pairing between K^]z and K_i in terms of 

reduced eta-invariants. Section 3 contains a short digression on the homotopy 

invariance of eta-invariants, and the vanishing of eta-invariants on manifolds 

of positive scalar curvature. In Section 4 we define the index maps mdtop(£) 

and indan(£) in R/Z-valued if-theory, provided that the cocycle £ satisfies 

the technical assumption. We prove that indan(£) = indt07?(£). In Section 5 

we show how to remove the technical assumption. In Section 6 we look at the 

case when B is a circle and relate indan to the holonomy of the Bismut-Freed 

connection on the determinant line bundle. Finally, in Section 7 we briefly 

discuss the case of odd-dimensional fibers. 

I thank Xianzhe Dai and Dan Freed for helpful discussions and the referee 

for his/her comments. I thank the UC-Berkeley Mathematics Department for 

its hospitality while this paper was written. 

2. R/Z K-THEORY 

Let M be a smooth compact manifold. Let f2*(M) denote the smooth 

real-valued differential forms on M. 

One way to define K0(M) (see, for example, [18]) is to say that it is the 

quotient of the free abelian group generated by complex vector bundles E on 

M, by the relations that E2 — Ei + E3 if there is a short exact sequence 

(2) 0^^! ^E2M £3-^0. 

Let V^ be a connection on a complex vector bundle E. The geometric 

Chern character of Vs, which we will denote by diQ(VE) G neven(M) ® C, is 
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given by 

(3) chQ(VE) = tr(e-^ 

Then chpfV^) is a closed differential form which, under the de Rham map, 

goes to image of the topological Chern character ch.Q(E) G Heven(M]Q) in 

Heven(M',C). 

If Vf and Vf are two connections on E^ there is a canonically-defined 

Chern-Simons class CS(Vf, Vf) G (nodd(M) ® C)/im(d) [2, Section 4] such 

that 

(4) dCS(Vf, Vf) = chQ(Vf) - chQ(Vf). 

To construct C5(Vf, Vf), let 7(i) be a smooth path in the space of connec- 

tions on i?, with 7(0) = Vf and 7(1) = Vf. Let A be the connection on the 

vector bundle [0,1] x E, with base [0,1] x M, given by 

(5) A = dtdt + 'y(t). 

Then 

(6) CS(Vf,Vf)= /    chQ(A)      (mod im(d)). 
J[0,1] 

One has 

(7) C5(Vf, V3B) = C75(Vf, Vf) + C5(Vf, Vf). 

Given a short exact sequence (2) of complex vector bundles on M, choose 

a splitting map 

(8) s : Ez -y E2. 

Then 

(9) i © 5 : E1 0 E3 —> E2 

is an isomorphism. Suppose that E\, E2 and E3 have connections V^1, V^2 

and V^3, respectively. We define CS(WE\ VB\ V^3) € {Q,odd{M)®C)/im{d) 

by 

(10) CS(VBl,V^VB3) = CS((i©s)*VB2,VBl©VB3). 
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One can check that CS(VEl, V^2, V^3) is independent of the choice of the 

splitting map s. By construction, 

(11) dCS(VBl, VE\ V£3) = chQ(V£2) - chQ(VEl) - chQ(V£3). 

DEFINITION 1. A C/Z K-generator of M is a triple 

where 

• E is a complex vector bundle on M. 

• V^ is a connection on E. 

• uo e (nodd(M) (g) C)/im(d) satisfies du = chQ(VE) - ik(E). 

DEFINITION 2. A C/Z K-relation is given by three C/Z if-generators £1, £2 

and £3 of M, along with a short exact sequence 

(12) 0—>E1 -^E2^-> E3—>0 

such that UJ2 = Vi + UJ3 + CS{VEl, V^2, V^3). 

DEFINITION 3. [16, Section 7.5] The group MKc/z{M) is the quotient of 

the free abelian group generated by the C/Z if-generators, by the C/Z K- 

relations £2 — £1 + £3. The group K^Z(M) is the subgroup of MKc/z(M) 

consisting of elements of virtual rank zero. 

The group K^L is part of a 2-periodic generalized cohomology theory K£/Z 

whose fi-spectrum {Gn}
<^)

=_00 can be described as follows. Consider the map 

ch : BGL —> fl^Li K(C,2ri) corresponding to the Chern character. Let Q be 

the homotopy fiber of ch. Then for all j G Z, G2J = C/Z x QQ and G2J+1 = ^ 

[16, Section 7.21]. 

DEFINITION 4. We write K^{M) for the usual if-groups of M, and we put 

if£(M) - Heven{M- C), ifc1 W = Hodd(M; C). 

There is an exact sequence [16, Section 7.21] 

(13) 

... - ifzl(M) ^ Kc^M) A ^(M) £ KUM) $ K0
C(M) -»..., 
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where ch is the Chern character, 

(14) a(uj) = ([CN], Vfla\uj) - ([C% Vfla\0) 

and (3 is the forgetful map. 

It will be convenient for us to consider generalized cohomology theories 

based on Hermitian vector bundles. Let E be a complex vector bundle on 

M which is equipped with a positive-definite Hermitian metric hE. A short 

exact sequence of such Hermitian vector bundles is defined to be a short exact 

sequence as in (2), with the additional property that i : Ei —* E2 and j* : 

Es —» E2 are isometrics with respect to the given Hermitian metrics. Then 

there is an equivalent description of K0(M) [18, Exercise 6.8, p. 106] as the 

quotient of the free abelian group generated by Hermitian vector bundles E 

on M, by the relations E2 = Ei +E3 whenever one has a short exact sequence 

(2) of Hermitian vector bundles. The equivalence essentially follows from the 

fact that the group of automorphisms of a complex vector bundle E acts 

transitively on the space of Hermitian metrics hE. 

Hereafter, we will only consider connections VE on E which are compatible 

with hE. Then chQ(V^) G neven(M), CS(Vf,Vf) G fiodd(M)/im(d) and 

CS(VEl, V^2, V^3) G nodd(M)/im(d). We can take the splitting map in (8) 

to be j*. 

DEFINITION 5. An R/Z if-generator of M is a quadruple 

E = (E,hE,VE,Lj) 

where 

• E is a complex vector bundle on M. 

• hE is a positive-definite Hermitian metric on E. 

• Vs is a Hermitian connection on E. 

• cuG nodd(M)/im(d) satisfies duj = chQ(yE) - rkCE). 

DEFINITION 6. An R/Z if-relation is given by three R/Z if-generators £1, 

£2 and £3 of M, along with a short exact sequence of Hermitian vector bundles 

(15) 0—>£?! -^ E2 M E3—+0 

such that UJ2 = wi + UJ3 + CS{VE\VE\VEz). 
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DEFINITION 7. The group MKK/Z(M) is the quotient of the free abelian 

group generated by the R/Z K-generators, by the R/Z if-relations £2 = 

Sx + 63. The group K^Z(M) is the subgroup of MKR/Z(M) consisting of 

elements of virtual rank zero. 

A simple extension of the results of [16, Chapter VII] gives that the group 

K^]z is part of a 2-periodic generalized cohomology theory K^z whose Q- 

spectrum {Fn}^L:_00 is follows. Consider the map ch : BU —> O^Li ^"0^ 2n) 

corresponding to the Chern character. Let J7 be the homotopy fiber of ch. 

Then for all j G Z, F2j = R/Z x VLF and F2j+1 = F. 

DEFINITION 8. We put i^(M) = iJeven(M;R) and ^(M) - Hodd(M]R). 

There is an exact sequence 

(16) 

... -> K^(M) $ K^(M) A K^Z(M) A K0
Z(M) £ K^M) -,.... 

Remark. As seen above, the Hermitian metrics play a relatively minor role. 

We would have obtained an equivalent K-theory by taking the generators to 

be triples (E, VE
JUJ) where VE is a connection on E with unitary holonomy 

and cj is as above. That is, VE is consistent with a Hermitian metric, but the 

Hermitian metric is not specified. The relations would then be given by short 

exact sequences of complex vector bundles, with the u;'s related as above. 

It will be useful for us to use Z2-graded vector bundles. We will take the 

Chern character of a Z2-graded Hermitian vector bundle E — E+ © E_ with 

Hermitian connection VE = VE+ 0 VE- to be 

(17) cMV*) = chQ(VB+) - cMV*"). 

We define the Chern-Simons class C5(Vf, Vf) similarly. 

There is a description of elements of K^]Z(M) by Z2-graded cocycles, mean- 

ing quadruples £ = (E±, hE±, V^, u) where 

• E = E+ @ E- is a ^-graded vector bundle on M. 

• hE — hE+ ® hE- is a Hermitian metric on E. 

• V^ = V^ © VE- is a Hermitian connection on E. 

• cue nodd(M)/im(d) satisfies du - chQ(VE). 
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Given a cocycle for K^Z(M) in the sense of Definition 7, of the form J2i ci^u 

one obtains a Z2-graded cocycle by putting 

• E± = ®±Ci>()ciEi 

• hE±=®±Ci>0h^ 

. v^ = e±Ci>0v^ 

Conversely, given a Z2-graded cocycle, let F be a vector bundle on M such 

that E- © F is topologically equivalent to the trivial vector bundle [C^] for 

some iV. Let {hF', VF) be a Hermitian metric and Hermitian connection on F. 

There is a 6 G fiocW(M)/im(d) such that chQ(V£;- © VF) = TV + d@. Then 

(£;+ © F, ^+ © /iF, vE+ © vF, e + UJ) - (£;_ © F, ^- © /iF, vF- © vF, e) 

is a cocycle for K^j^M) in the sense of Definition 7, whose class in K^j^M) 

is independent of the choices made. 

An important special type of Z2-graded cocycle occurs when dim(i?+) = 

dim(£,_), VE+ and VE- are flat and u = 0. In this case, the class of 5 in 

2T^yz(M) lies in the image of a map from algebraic if-theory. (The analogous 

statement for C/Z if-theory is described in detail in [16, Sections 7.9-7.18].) 

More precisely, let KU*lg be the generalized cohomology theory whose coeffi- 

cients are given by the unitary algebraic K-groups of C, and let KUaig be the 
— o , 

reduced groups. In particular, KUalg(M) = [M,BU(C)s ], where 6 indicates 

the discrete topology on /7(C) and + refers to Quillen's plus construction. 

The flat Hermitian vector bundle E± on M is classified by a homotopy class 

of maps u± G [M, Z x BU(C)s]. There is a homology equivalence 

a : Z x BU(C)6 -> Z x BU(C)6
+ 

, -—o 
and (cr o i/+ - a o v_) G [M, Z x ^[/(C)^] defines an element e G KUalg(M). 

Furthermore, there is a natural transformation £ : KUalg(M) —> if^z(M) 

and the class of £ in K^Z(M) is given by t(e). 

The spectrum F is a module-spectrum over the if-theory spectrum.  The 

multiplication of KZ(M) on K^]Z(M) can be described as follows. Let £ be 

a Z2-graded cocycle. Let £ be a vector bundle on M. Let h$ be an arbitrary 
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Hermitian metric on £ and let V? be a Hermitian connection on £. Put 

(18) 

(£, tf, V€) • 5 = (e ® Si, ^ ® hE±, (Ve ® /±) + (/ ® Vs±), chQ(V^) A a;) . 

This extends to a multiplication of K^{M) on /{^^(M). 

There is a homology equivalence cR/z : J7 —> H^Li -^(R/Z, 2n — 1). Thus 

one has R/Z-valued characteristic classes in R/Z K-theory. It seems to be 

difficult to give an explicit description of these classes without using maps 

to classifying spaces [23]. We will instead describe R/Q-valued characteristic 

classes. We will define a map 

(19) chR/Q : i^;z(M) - H°dd{M; R/Q) 

which fits into a commutative diagram 

...  ►     K^\M)     ^      K^(M)      -£->      K°(M)        ►   . 

- Id. chR/Q chq 

...  > Hodd(M;TL)  > Hodd(M;Il/Q)  ► Heven(M]Q)  > . 

where the bottom row is a Bockstein sequence. Upon tensoring everything 

with Q, it follows from the five-lemma that CIIR/Q is a rational isomorphism. 

(Note that f3 is rationally zero.) 

We define CIIR/Q on M.KR/Z(M). Let £ be an R/Z if-generator. Put 

iV = Yk(E). The existence of the form OJ implies that the class of E — [CN] in 

Kz(M) has vanishing Chern character. Thus there is a positive integer k such 

that kE is topologically equivalent to the trivial vector bundle [CkN] on M. 

Let VQ^ be a Hermitian connection on kE with trivial holonomy. It follows 

from the definitions that j:CS(kVE, V^) - u is an element of Hodd{M'1 R). 

DEFINITION 9. Let chR/Q(£) be the image of \CS(kVE, V^) - u under the 

map tf0^(M;R) -> if^(M;R/Q). 

Lemma 1. chR/Q(£) is independent of the choices of VQ
E
 and k. 

Proof First, let V^ be another Hermitian connection on kE with trivial 

holonomy. It differs from VQ^ by a gauge transformation specified by a map 

g : M —> U(kN). We can think of g as specifying a class [g] G K^1{M). 

Then £CS(fcVE, V§B) - ±CS(kVE, V^) = ^C5(V^, Vk
0
E) is the same, up 
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to multiplication by rational numbers, as the image of chqQg]) G Hodd{M] Q) 

in Hodd(M;R), and so vanishes when mapped into Hodd(M;K/Q). Thus 

chR/Q(£) is independent of the choice of VQ^. 

Now suppose that kf is another positive integer such that k'E is topologically 

equivalent to [C*^]. Let VfE be a Hermitian connection on k'E with trivial 

holonomy. Then 

(20) = -L (cS(kkVE, k'Vk
0
E) - CS(kkVE, feVfB)) 

= -^;CS(kVk
1'
E,k'Vk

0
E). 

By the previous argument, the image of this in Hodd(Af; R/Q) vanishes. Thus 

chji/Q(£) is independent of the choice of k.    D 

Proposition 1. chR/Q extends to a linear map from     MKJI/Z(M)     to 

Hodd(M;K/Q). 

Proof. We must show that CIIR/Q vanishes on ^-relations. Suppose that £2 = 

£1 + £3 is a ii^-relation. By multiplying the vector bundles by a large enough 

positive integer, we may assume that Ei, E2 and E^ are topologically trivial. 

Let V^1 and V^3 be Hermitian connections with trivial holonomy. Using the 

isometric splitting of E2 as Ei®E3, we can take Vf2 = V^1 © Vf3. It follows 

that 

chR/Q(£2) - chR/Q(f1) - diR/Q^) 

- C^V^2, Vf) - CS(VEl, Vf1) - C5(VSs, V^) - a;2 + a;i + a;3 

(21) = CS(V^2, V^1 0 Vf) - CS(VE\ VEl) 

- CS(VE3,VE3) - CS(VE^VEl © V^3) 

= 0.  □ 

One can check that the restriction of chR/Q to K^)Z(M) does fit into the 

commutative diagram, as claimed. 

We now describe chR/Q in terms of Z2-graded cocyles for K^)Z(M). Let 

£ = (E±,hE±,VE±,uj) be a Z2-graded cocycle. Let us first assume that E+ 
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and E- are topologically equivalent. Let Isom(.E+,i?_) denote the space of 

isometries from JS+ to E-. 

DEFINITION 10. For j e Isom(£;+,£?_), put 

(22) chR(£,j) - CS(VE+J*VE-) -u. 

By construction, chR(£, j) is an element of Hodd(M;TV). 

Proposition 2. We /iave that chR(£, j) depends on j only through its class 

in 7ro(Isom(^+,E_)). 

Proof. Acting on sections of £+, we have j*WE- = j~1VE- j. Let j(e) be a 

smooth 1-parameter family in Isom(J5+, E-). From the construction of the 

Chern-Simons class, we have 

schR(«,J(£)) = — tr^OWV^-),        ... 

.,<iOW^-).-!Z 

(23) 
2Slr ^W) *      - 

^tr(f,y(£).,e.^) 

27rz 

Thus      — chji(£, j(e))      is represented by an exact form and vanishes in 
de 

Hodd(M',Tl).    D 

The topological interpretation of chR(£, j). is as follows. In terms of (16), 

the isometry j gives an explicit trivialization of/?([£]) G K^M). This lifts [5] 

to an element of K^f^M) = #odd(M;R), which is given by chR(£, j). 

For a general Z2-graded cocycle £ = (E±,hE± ,VE±,uo), there is a pos- 

itive integer k such that kE+ is topologically equivalent to hE-. Let fc£ 

denote the Z2-graded cocycle (kE±,khE±,kVE±,kuj). Choose an isometry 

j e Isom(/cE,
+ ,/c£_). Then chR/Q(£) is the image of |chR(fc^,j) under the 

map Hodd(M;R) -> Hodd(M;R/Q). This is independent of the choices of k 

and j. 
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With respect to the product (18), one has 

(24) chQ(0 chR/Q(£) = chR/Q (£•£). 

On general grounds, there is a topological pairing 

(25) (-, •) : K.^M) x K$Z(M) -> R/Z. 

We describe this pairing analytically. Recall that cycles for the iT-homology 

group K-i(M) are given by triples /C = (X, F, /) consisting of a smooth closed 

odd-dimensional spinc-manifold X, a complex vector bundle F on X and a 

continuous map / : X —> M [5]. In our case, we may assume that / is 

smooth. The spinc-condition on X means that the principal GL(dim(X))- 

bundle on X has a topological reduction to a principal spinc-bundle P. There 

is a Hermitian line bundle L on X which is associated to P. Choosing a 

soldering form on P [20], we obtain a Riemannian metric on X. Let us choose 

a Hermitian connection VL on L, a Hermitian metric hF on F and a Hermitian 

connection VF on F. Let A(VTX) G neven(X) be the closed form which 

represents A(TX) G ifeven(X;Q) and let e21^1 G fieven(X) be the closed 

form which represents e-2— £ iJe?;en(X; Q). Let Sx denote the spinor bundle 

ofX. 

Given a Z2-graded cocycle £ for K^)Z(M), let D^VE± be the Dirac-type 

operator acting on L2-sections of Sx ® F ® f*E±. Let 

(26) 7i{DrvE±) = J- J-  (mod Z) 

be its reduced eta-invariant [2, Section 3]. 

DEFINITION 11. The reduced eta-invariant of f*£ on X, an element of R/Z, 

is given by 

(27) 

fi(rS) = v(Df,v»+) - 7?(IVv»-) - / A(VTX) A e^ A chQ(VF) A /*w. 

Proposition 3. Given a cycle JC for K-i(M) and a ^-graded cocycle £ for 

i£j^z(M), we have 

(28) <[£m>=^(m 
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Proof. The triple (X, [C],Id) determines a cycle X for K-i(X), and [/C] = 

/,([*! n [*]). Then 

m, m = am n t^), [f]> = ([F] n Mrw) 
= miF}-m). 

Without loss of generality, we may assume that £ is defined on X and that F 

is trivial. We now follow the method of proof of [3, Sections 5-8], where the 

proposition is proven in the special case when VE+ and V^- are flat and ou 

vanishes. (Theorem 5.3 of [3] is in terms of K1(TX), but by duality and the 

Thorn isomorphism, this is isomorphic to K_1(X).) By adding a Hermitian 

vector bundle with connection to both E+ and £L, we may assume that E_ 

is topologically equivalent to a trivial bundle [C^]. Then E+ is rationally 

trivial, and so there is a positive integer k such that both kE+ and kE_ are 

topologically equivalent to [C*^]. Choose an isometry j G Isom(/cJE+, kE_). 

As in [2, Section 5], the triple (£■+, i£_, j) defines an element of K^}kz(X)^ 

which maps to KQ]Z(X). The method of proof of [3] is to divide the problem 

into a real part [3, Section 6] and a torsion part [3, Sections 7-8]. In our case, 

the torsion part of the proof is the same as in [3, Sections 7-8], and we only 

have to deal with the modification to [3, Section 6]. 

Replacing E± by kE±, we may assume that E+ and .EL are topologically 

trivial, with a fixed isometry j between them. Then CS(yE+, j*VE-) —a; is an 

element of Hodd(X;l\) which, following the notation of [3, p. 89], we write as 

b{£:,j). As explained in [3, Section 6], under these conditions there is a lifting 

of 77(f) to an R-valued invariant ind^j), which vanishes if VE+ = j*VE- 

and u) = 0. Using the variational formula for the eta-invariant [2, Section 4], 

one finds 

(29) md(SJ) - / A(VTX) Ae^ A {CS(VE+J*VE-)-u;) . 
Jx 

Then the analog of [3, Proposition 6.2] holds, and the rest of the proof proceeds 

as in [3].    □ 
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Note that if we rationalize (28), we obtain that as elements of R/Q, 

rj(rS) = {chQ([lC}),chK/Q([£})) 
(30) = (A(TX) Ue^U chQ(F) U chn/Q(rSJ) [X]. 

Remark. As mentioned in Definition 3, by removing the Hermitian structures 

on the vector bundles, one obtains C/Z-valued iT-theory. Although the en- 

suing Dirac-type operators may no longer be self-adjoint, the reduced eta- 

invariant can again be defined and gives a pairing (•, •) : K-i(M) xK^z(M) —> 

C/Z. In [15], this was used to detect elements of Ks(R) for certain rings R. 

For analytic simplicity, in this paper we only deal with self-adjoint operators. 

3. HOMOTOPY INVARIANTS 

Let M be a closed oriented odd-dimensional smooth manifold. Let F be a 

finitely-presented discrete group. As UF may be noncompact, when discussing 

a generalized cohomology group of .BF we will mean the representable coho- 

mology, given by homotopy classes of maps to the spectrum, and similarly for 

generalized homology. 

Upon choosing a Riemannian metric g™ on M, the tangential signature 

operator aM = ±(*d — d*) of M defines an element [CTM] of K_1(M) which is 

independent of the choice of g™. 

DEFINITION 12. We say that F has property (A) if whenever M and M' are 

manifolds as above, with / : M' —* M an orientation-preserving homotopy 

equivalence and u G [M, BF] a homotopy class of maps, there is an equality 

in K-xiBT): 

(31) ^(M) = (^o/),([aM,]). 

We say that F satisfies the integral Strong Novikov Conjecture (SNCz) if the 

assembly map 

(32) 0 : K+iBT) ^> K*(C;r) 

is injective, where C*r is the reduced group C*-algebra of F. 
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The usual Strong Novikov Conjecture is the conjecture that (3 is always 

rationally injective [19, 26]. One knows [19] that 

(33) /?(^(M)) = /?((^o/),([aM,])). 

Thus SNCz implies property (A). Examples of groups which satisfy SNCz 

are given by torsion-free discrete subgroups of Lie groups with a finite number 

of connected components, and fundamental groups of complete Riemannian 

manifolds of nonpositive curvature [19]. It is conceivable that all torsion- 

free finitely-presented discrete groups satisfy SNCz- Groups with nontrivial 

torsion elements generally do not have property (A). 

Given S G K^Z(BT), let fjsig(u*S) G R/Z denote the reduced eta-invariant 

of Definition 11, defined using <TM as the Dirac-type operator. 

Proposition 4. IfT has property (A) thenr}sig(v*£) is an (orientation-preserving) 

homotopy-invariant of M. 

Pf.    This is a consequence of Proposition 3 and Definition 12.    □ 

Suppose now that M is spin and has a Riemannian metric g™. Let DM 

be the Dirac operator on M, acting on L2-sections of the spinor bundle. Its 

class [DM] in if-i(M) is independent of g™. Given £ € K^^BT), let 

TJDiraciy*^) ^ R/Z denote the reduced eta-invariant of Definition 11, defined 

using DM. 

Proposition 5. // g™ has positive scalar curvature and T satisfies SNCz 

then rjDirac(v*£) = 0. 

Pf.   From [26], the positivity of the scalar curvature implies that /3(V*([.DM])) 

vanishes.   Then by the assumption on F, we have that V*([DM]) = 0.   The 

proposition now follows from Proposition 3.    □ 

Let p± : F —> U(N) be two representations of F. Let E± — ETxp±C
N be the 

associated flat Hermitian vector bundles on BT. By simplicial methods, one 

can construct an element £ of K^]z(Br) such that v*£ equals the Z2-graded 

cocycle on M constructed from the flat Hermitian vector bundles v*E±. (If 

BT happens to be a manifold then £ can be simply constructed from the flat 
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Hermitian vector bundles E±.) Because of the de Rham isomorphism between 

the kernel of the (twisted) tangential signature operator and the (twisted) 

cohomology groups of M, in this case one can lift fjsig(u*£) to a real-valued 

diffeomorphism-invariant r]Sig(u*£) of M [2, Theorem 2.4]. Similarly, let 7Z 

denote the space of Riemannian metrics on M and let IZ^ denote those with 

positive scalar curvature. If M is spin then one can lift Voirad^^) to a Tes^~ 

valued function r]Dirac(v*£) on TZ which is locally constant on 7Z+ [2, Section 

3]. 

It was shown in [28] that if the L-theory assembly map of F is an isomor- 

phism then r]Sig(is*£) is an (orientation-preserving) homotopy-invariant of M. 

If the assembly map /3 is an isomorphism (for the maximal group C*-algebra) 

then one can show that r)Sig(v*£) is an (orientation-preserving) homotopy- 

invariant of M, and that r}Dirac{y*£) vanishes on 7^+ [14]. The comparison of 

these statements with those of Propositions 4 and 5 is the following. Proposi- 

tions 4 and 5 are more general, in that there may well be elements oi K^^BT) 

which do not arise from flat vector bundles. However, when dealing with flat 

vector bundles the results of [28] and [14] are more precise, as they are state- 

ments about unreduced eta-invariants. The results of [28] and [14] can perhaps 

be best considered to be statements about the terms in the surgery exact se- 

quence [29] and its analog for positive-scalar-curvature metrics [12, 27]. 

4. INDEX MAPS IN R/Z ^-THEORY 

Let Z —> M A B be a smooth fiber bundle with compact base i?, whose 

fiber Z is even-dimensional and closed. Suppose that TZ has a spinc-structure. 

Then TT is if-oriented and general methods [11, Chapter ID] show that there 

is an Umkehr, or "integration over the fiber", homomorphism 

(34) TT, : K^M) -> K^/Z(B). 

To describe TH explicitly, we denote the Thorn space of a vector bundle V over 

a manifold X by Xv, and we denote its basepoint by *. Let i : M —> Rd be 

an embedding of M. Define an embedding TT : M —> B x Rd by TT = TT X i. 

Let v be the normal bundle of TT(M) in B x Rd. With our assumptions, is is 

if-oriented, and as ifR/z-theory is a module-theory over ordinary if-theory, 
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there is a Thorn isomorphism 

n-.K^m^K^M",*). 

The collapsing map BBxK< —> Mu induces a homomorphism 

r3:K^{M\*)^K^{BB^\*). 

Finally, there is a desuspension map 

The homomorphism TTI is the composition 

K^Z{M) ^ K^i\M\ *) -^ K$?{BB**-\ *) ^ KK}Z{B). 

For notation, we will also write TH as the topological index : 

(35) indt0p = 7r!. 

Let A(TZ) G Heven(M\Cl) be the 1-class of the vertical tangent bundle 

TZ. Let e'1 ^ E Heven(M\Q) be the characteristic class of the Hermitian 

line bundle Lz on M which is associated to the spinc-structure on TZ. One 

has 

(36) chR/Q (indtopCf)) = / A{TZ) U e^1 U chR/Q (f). 

Give TZ a positive-definite metric ^TZ. Let Lz have a Hermitian connection 

VLz. Given a Z2-graded cocycle £ = (jE-t, /i^, V^, a;) on M, we have vertical 

Dirac-type operators D^E±. As Z is even-dimensional, for each fiber, the 

kernels of ■D£E+ and £>£/?_ are Z2-graded vector spaces: 

Ker^O = (Ker(D|B+))+ 0 (Kev(D^_))_ , 

Ker(D^_) = (Ker(^E_))+ 0 (Ker(I>^+))_ . 

ASSUMPTION 1. The kernels of -D^R± form vector bundles on B. 

That is, we have a Z2-graded vector bundle Ind on B with 

. ■Jnd+ = (Ker(D^+))+© 

Ind- = (Ker(D$B+))_ 0 (Ker(D^_))+ . 

Then Ind inherits an L2-Hermitian metric hInd±. 
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In order to define an analytic index, we put additional structure on the fiber 

bundle. Let s e Rom^TB, TM) be a splitting of the exact sequence 

(39) 0 —► TZ —> TM —► 7r*rS —► 0. 

Putting THM = im(5), we have 

(40) TM = THM ® TZ 

Then there is a canonical metric-compatible connection VTZ on TZ [7]. Let 

A(yTZ) G Vteven{M) be the closed form which represents A(TZ). Let e^ ^ G 

ne7;en(M) be the closed form which represents e    2    . 

One also has an I/2-Hermitian connection \7Ind± on Ind. There is an 

analytically-defined form rj G nodd(B)/ im(d) such that [8, 10] 

(41) drj =  f 2(VTZ) A e£i^i£I A chQ(VE) - chQ(V/nd). 
Jz 

DEFINITION 13. The analytic index, indon(£) G K^Z(B), of £ is the class of 

the Z2-graded cocycle 

(42) 1 = (lnd±, hInd±, VInd±, / A(VTZ) A e21^1 Au-fjY 

It follows from (41) that X does indeed define a Z2-graded cocycle for 

K^]Z(B). One can show directly that indan(£) is independent of the splitting 

map s. (This will also follow from Corollary 1.) 

Proposition 6. If the 2*2-graded cocycle £ for K^Z(M) satisfies Assumption 

1 then for all x G K-i(B), we have 

(43) (x, indan(£)) = (x, mdtop(£)). 

Pf. It suffices to show that for all cycles /C = (X,F,f) for K-i{B), we 

have 

(44) <[£], indan(£:)} = {[/C], indtop(£)). 

As in the proof of Proposition 3, by pulling the fiber bundle and the other 

structures back to X, by means of /, we may assume that the base of the fiber 

bundle is X. By changing £ to (7r*F) • £, we may assume that F is trivial. 

That is, [/C] is the fundamental if-homology class Xx of X. 
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By Proposition 3, we have (xx,indan(f)) = fj(l). Let TM have the spinc- 

structure which is induced from those oiTZ and TX. Let LM = Lz(g)7r*Lx be 

the associated Hermitian line bundle. Let XM ^ ^-i(A^) be the fundamental 

K-homology class of M. There is a homomorphism TT : K*(X) -^ K*(M) 

which is dual to the Umkehr homomorphism, and one has TX\XX) — XM- 

Then 

(45) (xx,mdtop(£)) = (xx,7ri(f)> = <7r!(xx),^) = (XM,£) =V(£)- 

Thus it suffices to show that as elements of R/Z, we have 

(46) r}(?)=m- 

Let gTX be a Riemannian metric on X and let g™ = gTZ + n*gTX be the 

Riemannian metric on M which is constructed using THM. Let VZ/X be a 

Hermitian connection on Lx and define a Hermitian connection on LM by 

(47) V
LM

 = (VLz<g)J) + (J<g>7r*VLx). 

Let -Dvc± be the Dirac-type operators on M and let Dvind± be the Dirac- 

type operators on X. From the definitions, we have 

Ae      2       ACJ, 

A e      2       A 

m    =   rj{Dv*+)-rj(Dv*-)- [ A{V™) 
JM 

rj(T)   =   rj(Dv,^)-rj(DvM-)- I A{VTX) 
Jx 

(48) (^ A (VTZ) A e211^2 A u - TJ\ . 

Thus 

rj(£)-rj(2)    =   rj(Dv,+ )-rj(Dv,.) 

- (ri(D^l+) - r7(iV"«-) + Jx & (VTX) A e^^ A fj 

-([ A(V™)Ae"^Au;- 
\JM 

1 A (V™) A e^1^1 A  [ A (V^) A e^1 

JX Jz Jx Jz 
(49) 
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For e > 0, consider a rescaling of the Riemannian metric on X to 

(50) £x = ±9TX. 

Prom [10, Theorem 0.1'], in R/Z we have 

0    =    lim^ZVJ-^V-)- 

(51) (TJ(2V»"+ ) - ^v'--) + fx A (Vrx) A e"1^ A ^ 

(Theorem 0.1/ of [10] must be slightly corrected. The correct statement is 

(52) ]imTj(Dx) = [ A I —- ) Arj+7i(DB ®KerDY)       (mod Z). 

This follows from [10, Theorem 0.1] as follows. Following the notation of [10], 

we have trivially 

(53) lim   Y,   sign(Ax) = lim   ^   1       (mod 2), 
Ao,Ai=0 Ao,Ai=0 

and this last term is the number of small nonzero eigenvalues. The total 

number of small eigenvalues is dim(Ker(i?J5 (8) Ker Dy)), and so 

lim    V    sign(Arc) = dim(Ker(£>B®KerDY))-KX& dim(Ker(AT))      (mod 2). 
x—^0     ^—' x—>0 

Ao,Ai=0 

Dividing the result of [10, Theorem 0.1] by 2 and taking the mod Z reduction 

yields (52). The stabilization assumption of [10, Theorem 0.1] is not necessary 

here, as a change in the sign of a small nonzero eigenvalue will change the left- 

hand-side of (53) by an even number. I thank X. Dai for a discussion of these 

points.) 

Furthermore, in the e —> 0 limit, V™ takes an upper-triangular form with 

respect to the decomposition (40) [8, Section 4a], [10, Section 1.1]. Then the 

curvature form also becomes upper-triangular. As 

(54) c1(V
L-) = CxCV^) + 7r*c1(VL*), 
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we obtain 

0   =   lim 
£-►0 JM 

(VLM) 
2       f\u - 

(55) / A (VT*) A (T^ A [ A (Vrz) 
Jx Jz 

^i(v/y^) 
A e     2      A a; 

Now r](£) — r)(T) is topological in nature, and so is independent of the Rie- 

mannian metric on X, and in particular of e. Combining the above equations, 

(46) follows.    □ 

Corollary 1. // the ^-graded cocycle £ for K^]Z(M) satisfies Assumption 1 

then indan(£) = ind£op(£). 

Pf. The Universal Coefficient Theorem of [30, eqn. (3.1)] implies that 

there is a short exact sequence 

(56) 0 -► Ext(if_2(£),R/Z) -* K^/ziB) -> Bom^^B^K/Z) «► 0. 

As R/Z is divisible, Ext(K_2(£),R/Z)  = 0.    The corollary follows from 

Proposition 6.    □ 

Corollary 2. If the ^-graded cocycle £ for K^]Z[M) satisfies Assumption 1 

then 

(57) chR/Q (indan(f)) - / A(TZ) U e"1^1 U chR/Q (£). 
Jz 

Pf.    This follows from Corollary 1 and equation (36).    Q 

Remark. It follows a posteriori from Corollary 1 that if £i and £2 are Z2- 

graded cocycles which satisfy Assumption 1 and represent the same class in 

K^/Z(M) then in4an(£i) = md^^) in K^/Z(B). 

Remark. Suppose that there is an isometry j G Isom(/h(i+,/nd_). As in 

Definition 10, we can use j to lift indan(£) to chR(X, j) G ifodd(B;R). In 

particular, we get a unique such lifting when Ind+ = Ind- = 0, given by 

fzA(VTZ) Ae*-*—Au-r). 
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5. THE GENERAL CASE 

In this section we indicate how to remove Assumption 1. The technical 

trick, taken from [22], is a time-dependent modification of the Bismut super- 

connection. Let us first discuss eta-invariants and adiabatic limits in general. 

Let M be a closed manifold. Let V be a smooth 1-parameter family of 

first-order self-adjoint elliptic pseudo-differential operators D(t) on M such 

that 

• There is a 8 > 0 and a first-order self-adjoint elliptic pseudo-differential 

operator D0 on M such that for t € (0,5), we have D(t) = \ft DQ. 

• There is a A > 0 and a first-order self-adjoint elliptic pseudo-differential 

operator D^ on M such that for t > A, we have D(t) = y/tD^. 

For s e C, Re(s) » 0, put 

(58) **)(.) ^ft-^-M.-™-)*. 

Lemma 2. r](V)(s) extends to a meromorphic function on C which is holo- 

morphic near 5 = 0. 

Pf.    Write rj(V)(s) = 771(5) + 772(5), where 

and 

It is known [13] that 771(5) extends to a meromorphic function on C which is 

holomorphic near 5 = 0. It is not hard to see that 772(5) extends to a holomor- 

phic function on C.    □ 

Define the eta-invariant of V by 

(61) 7/(P) = 77(D)(0) 
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and the reduced eta-invariant of V by 

(62) ^.lOT+dMKMA.))      (modz) 

Lemma 3. r](V) only depends on D0 and D^, andfj(V) only depends on D0. 

Pf.    For x E R, define 

(63) erf(x) = -5= [* e^dt. 
V TT Jo 

Then erf(0) = 0 and erf(±oo) - ±1. 

Let Vi and X^ be two families such that (I?i)o = (^2)0 = -Do- We may 

assume that there is a 6 > 0 such that for t G (0,(5), Di(t) = I?2(*) = V^-Do- 

Formally, we have 

y/^Je        \    dt dt J 

a:—00 y/Tr Jg \      dt dt ) 

=    Urn   r4Tr(erf(-D2(t))-erf(JD1(t)))dt :r->00 J*   dt 
=    lim Tr (erffDaCx)) - erf(D1(x))) 

X—>CXD 

(64) -    lim Tr (erf(V5 (r>2)oo) - erf(v^ (^i)oo)) • 
x—»oo 

It is not hard to justify the formal manipulations in (64). The first statement of 

the lemma follows. For the second statement, as (-Di)oo and (^2)00 can both be 

joined to DQ by a smooth 1-parameter family of first-order self-adjoint elliptic 

pseudo-differential operators, it follows that there is a smooth 1-parameter 

family {T(e)}e^[i^} of such operators with T(l) = (-Di)oo and T(2) = (1^2)00, 

which can even be taken to be an analytic family. Then 

(65) 

Tr (erf(v^ (1)2)00) - erf (^ (D^)) = j* ^ TV f^-e-^A de. 
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For /i > 0, let Pe(/x) be the spectral projection onto the eigenfunctions ^i(e) 

of T(e) with eigenvalue |Ai(e)| < fi. Then 

(66) +jyTt(p,Xn)^-e-'T^)<k. 

From the spectral decomposition of T(e), we have 

(67) lim   I" v^ Tr ((I - Pe(^) ^p-e-*neA de = ^ 
x^ooj1 \ de J 

showing that 

(68) r?(P2) - 7/(2?!) = Jim j* Jl Tr [p^I^e-^?^ de> 

From eigenvalue perturbation theory, 

(69) /2 ^ Tr (p^)^^e-^A de = f*    T    ^ erf (v^ ^(c)) de. 

Define the spectral flow of the family {T(e)}eG[i?2] as in [3, Section 7]. Tak- 

ing /J, sufficiently small, we see from (68) and (69) that 77(2^2) — viVi) equals 

dim(Ker((Z)1)00)) — dim(Ker((Z)2)oo)) P^s twice the spectral flow. As the 

spectral flow is an integer, the lemma follows.    □ 

In the special case when D(t) — yfiDQ for all t > 0, r](V) and rj(V) are the 

usual eta-invariant and reduced eta-invariant of DQ. 

Now let X be a closed spinc-manifold with a Riemannian metric gTX. Let 

VL be a Hermitian connection on the associated Hermitian line bundle L. Let 

Sx be the spinor bundle on X. Let V be a Z2-graded Hermitian vector bundle 

on X and let A be a superconnection on V [25, 6]. Explicitly, 

00 

(70) 4 = I>m. 
j=0 

where 

• Ai is a grading-preserving connection on V. 

• For k > 0, Apfe] is an element of n2k(X;Endodd(V)). 

• For k> 0, Apfc+i] is an element of n2k+1(X;Endeven(V)). 
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We also require that A be Hermitian in an appropriate sense. Let A be the self- 

adjoint Dirac-type operator obtained by "quantizing" A [6, Section 3.3]. This 

is a linear operator on C00{X] Sx <8> V) which is essentially given by replacing 

the Grassmann variables in A by Clifford variables. For t > 0, define a rescaled 

super connection At by 

i CO 

(71) "^ = £ ***%]■ 

Let A be a smooth 1-parameter family of superconnections A(i) on V. 

Suppose that 

• There is a 8 > 0 and a superconnection AQ on V such that for £ 6 (0, 6), 

we have A(t) — {Ao)t, 

• There is a A > 0 and a superconnection A^ on V such that for £ > A, 

we have A{t) = {A^t. 

Suppose that (A^)^ is invertible. Let 71 : Q*(X) —> fi*(-X") be the linear 

operator which acts on a homogeneous form LJ by 

(72) nu; = (2m)-tJ:^1w. 

For s e C,  Re(s) » 0, define r/(,4)(s) € fi0^(X)/im(d) by 

(73) 7?(^)(5) - (27ri)-* H  fV tr5 f^le-A^2) dt. 

Lemma 4. 77(^4) (s) extends to a meromorphic vector-valued function on C 

with simple poles. Its residue at zero vanishes in Qodd(X)/ im(d). 

Pf.    As the s-singularities in (73) are a small-£ phenomenon, it follows that 

the poles and residues of fj(A)(s) are the same as those of 

(74) 

(2*1)"* TZ fir tr. (^Me-^)9) dt = (27rt)-4 K ft* trs (^ic-(^) di. 

It is known that the right-hand-side of (74) satisfies the claims of the lemma 

[8, (A.l.5-6)].   □ 



304 JOHN LOTT 

Define the eta-form of A by 

(75) TJ(A)=rj(Am. 

As in Lemma 3, fj(A) only depends on A0 and A^. 

For e > 0, define a family of operators Ve by 

(76) V€(t) = >/rf A(t)jL. 

Then a generalization of [8, eqn. (A.1.7)], which we will not prove in detail 

here, gives 

(77) limr/(Pe) = / A(VTX) A e"1^1 A rj(A). 

Example. Suppose that B is a superconnection on V with Bjo] invertible and 

put A(t) = A for all t > 0. Then 

(78) De(t) = Vet Bl. 

It follows that 

(79) V(Ve) = r,(vreBl)) 

where the right-hand-side of (79) is the eta-invariant of the operator y/e Bi 

in the usual sense. Similarly, rj(A) is the eta-form of the superconnection B 

in the usual sense. Thus (77) becomes 

(so) liss77^ ^ = / ^vTX)A e£i^:l A ^5)' 
which is the same as [8, eqn. (A.1.7)]. 

End of Example. 

Now let Z —> M A X be a smooth fiber bundle whose fiber is even- 

dimensional and closed. Suppose that TZ has a spinc-structure. As in Section 

4, we endow TZ with a positive-definite metric gTZ and Lz with a Hermitian 

connection VLz. Let £ be a Z2-graded R/Z-cocycle on M and let D^E be 

the vertical Dirac-type operators on the fiber bundle. We no longer suppose 

that Assumption 1 is satisfied. Let W = W+ © W^ be the infinite-dimensional 

Z2-graded Hermitian vector bundle TT^SM ® E) over X. A standard result 

in index theory [21] says that there are smooth finite-dimensional subbundles 
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F± of W± and complementary subbundles G± such that D^E is diagonal with 

respect to the decomposition W± = G± © F±, and writing DyE = DG © Z?^, 

in addition DG± : C00(G'±) -^ ^^(G^) is LMnvertible. The vector bundle 

F acquires a Hermitian metric hF from W. Let VF be a grading-preserving 

Hermitian connection on F. 

Let THM be a horizontal distribution on M.  One has the Bismut super- 

connection AB on W [7], [6, Chapter 10]. Symbolically, 

(81) AB = DfE + Vw-ic(T), 

where Vw is a certain Hermitian connection on W and c(T) is Clifford mul- 

tiplication by the curvature 2-form of the fiber bundle. Put 

(82) H± = W±®F^ = G±®F±®F^. 

Let <f)(t) : [0, oo] —» [0,1] be a smooth bump function such that there exist 

6, A > 0 satisfying 

• 0(t) = 0if t€ (0,6). 

• 0(t) = 1 if t > A. 

For a e R, define i?±(t) : C0O(if±) -» C00^^) by 

/ 0       0 0 
(83) R±(t) =     0       0       a<£(*) 

V 0   a4>(t)       0 

Define a family A of superconnections on if by 

(84) A(t) = UAB(BVF) + R(t))t. 

Put 

(85) A0 = AB®V
F
,    A^ = .(AB e VF) + i?(oo). 

Then for t€ (0,5), 

(86) A(t) = (Ao)t 

and for t > A, 

(87) A(t) = (Aoo),. 
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Furthermore, (^oo)[o]± : Cfoo(fl"±)-^ C00^) is given by 

/ DG±      0       0 

(88) (4x>)[o]± = 0      DF±   a 
\    0 a      0 

If a is sufficiently large then (^4oo)[o] is L2-invertible. We will assume hereafter 

that a is so chosen. 

We are now formally in the setting described previously in this section. The 

only difference is that the finite-dimensional vector bundle V is replaced by 

the infinite-dimensional vector bundle if. Nevertheless, as in [8, Section 4], 

equations (73)-(77) all carry through to the present setting. 

Let gjx be the rescaled metric of (50). Let g™ be the corresponding metric 

on M. Let DVE be the Dirac-type operator on M, defined using the metric 

gJM. Let DVF be the Dirac-type operator on X, defined using the metric gfx. 

Putting 

(89) DO = DVE®DVF) 

we see from (76) that for t € (0, (5), 

(90) D€(t) = y/iD0. 

Furthermore, there is a first-order self-adjoint elliptic pseudo-differential op- 

erator Doo on M U X such that for t > A, 

(91) i?£(t) = v/tAx>. 

As rj(V) only depends on DQ, it follows that 

(92) rj(Vt) = fj(DvE+) - rj(DVE_) - (fj(DVp+) - fj(D^.)), 

where the terms on the right-hand-side are ordinary reduced eta-invariants. 

Then equation (77) becomes 

(93) Urn [v(Dv,+) - 77(DV,_) - (r](Dv,+) - rj{D^)) ] 

/ A{VTX) A e^ A ri{A),       (mod Z) 
Jx 

which is the replacement for (51). 
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One has 

(94) drj(A) = I A{VTZ) A e*^1 A chQ(VB) - chQ(VF), 

which is the replacement for equation (41). 

DEFINITION 14. The analytic index, indon(£) G K^^B), of £ is the class of 

the Z2-graded cocycle 

(95) X = (F±,h
F±,VF±, f A{VTZ) A e"1^ AUJ - rj(A)\ . 

It follows from (94) that X does indeed define a Z2-graded cocycle for 

Proposition 7. For all x £ K_i(B), we have 

(96) (x, indan(£)) = (x, mdtop{£)). 

Pf.    The proof is virtually the same as that of Proposition 6.    □ 

Corollary 3. indan(£) = indt0p(£). 

Pf.    The proof is virtually the same as that of Corollary 1.    □ 

Corollary 4.  We have 

(97) chR/Q (indan(f)) = J A{TZ) U e"1^1 U chR/Q {£). 

Pf.    The proof is virtually the same as that of Corollary 2.    □ 

6. CIRCLE BASE 

We now consider the special case of a circle base. Fixing its orientation, S1 

has a unique spinc-structure. There is an isomorphism i : K^^S1) —> R/Z 

which is given by pairing with the fundamental K-homology class of Sl. More 

explicitly, let £ be a Z2-graded cocycle for ^R/Z(5'
1
). Then a; is a 1-form on 

51 (mod Im(d)) and E+ and E_ are both topologically equivalent to a trivial 

vector bundle [C^] on Sl. Choose an isometry j G Isom(.E+,i£_). Then 

(98) t([5]) = |si (-^Ltr(VB+ - j*VB-) -w)        (mod Z). 
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Let Z —> M —* S1 be a fiber bundle as before and let £ be a Z2-graded cocy- 

cle for K^jz(M). In this special case of a circle base, we can express indon(£) 

in an alternative way. For simplicity, suppose that Assumption 1 is satisfied. 

There is a determinant line bundle DET = (Amax(Ind+)y <g> (Ama*(/nd_)) 

on 51, which is a complex line bundle with a canonical Hermitian metric 

hDET and compatible Hermitian connection \/DET [24, 9], [6, Section 9.7]. Let 

hol(S/DET) e U(l) be the holonomy of S7DET around the circle. Explicitly, 

(99) hol(VDET) = e-fs*vn*T. 

As chQ(.E+) = chQ(i?_), it follows from the Atiyah-Singer index theorem 

that dim(Ind+) = dim(Ind-). 

Proposition 8. In R/Z, we have 

(100) i (indan(£)) = --L In hol(VDBT) - / A(VTZ) A e"1^ A u. 

Pf. Choose an isometry j G Isom(/n<i+,/nd_). From the definition of 

indan(£), in R/Z we have 

(101) 

i(indan(5)) = J   (-^r tr(V/nd+ - fVInd-) - ^ 1(VTZ) A e"1^1 Au + fj 

Let VL   denote the L2-connection on DET. Then 

(102)  [ tv(VInd+ -fVInd-) = - J- in hol(VL2)       (mod Z). 
27ri Jsl Svrz 

Following the notation of [8], one computes 

(103) ^=-22^]    Trs(^,Dv,}Dv,e-uD^)du. 

On the other hand, 

(104) 

VDET = V^ + I d(in det'p^)) - l- j°°Trs (\V,D^}D^e-uDl-) du. 

Thus 

(105)     --^ In hol(VDBT) = --^r In hol(VL2) + /  rj       (mod Z). 
27ri 27r2 Js1 
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The proposition follows.    □ 

The fact that mdan(£) = mdtop(£) is now a consequence of the holonomy 

theorem for VDET [9, Theorem 3.16]. Proposition 8 remains true if Assump- 

tion 1 is not satisfied. 

7. ODD-DIMENSIONAL FIBERS 

Let Z —> M A B be a smooth fiber bundle with compact base J9, whose 

fiber Z is odd-dimensional and closed. Suppose that the vertical tangent 

bundle TZ has a spinc-structure. As before, there is a topological index map 

(106) indtop : K^/Z(M) -> K^/Z(B). 

One can define a Chern character chR/Q : K^Z(B) —> jffeuen(S;R/Q), and 

one has 

(107) chR/Q (mdtop{£)) = [ AiTZ) U e^ U chR/Q {£). 

Let £ be a Z2-graded cocycle for i^^z(M). Due to well-known difficulties 

in constructing analytic indices in the odd-dimensional case, we will not try 

to define an analytic index indan(£) G -KpyZ(.B), but will instead say what 

its Chern character should be. Let gTZ be a positive-definite metric on TZ 

and let VLz be a Hermitian connection on Lz- For simplicity, suppose that 

Assumption 1 is satisfied. Give M a horizontal distribution THM. Let rj £ 

VLeven(B)/ im(d) be the difference of the eta-forms associated to (£"4-, V^) and 

(E_,VB-). We have [8, 10] 

(108) dry -  / i(VTZ) A e^1^1 A chQ(V£;). 

It follows from (108) that rj ~ Jz A(VTZ) A e^~^       A u; is an element of 

Heven(B]Il). 

DEFINITION 15. The Chern character of the analytic index, chR/Q(indan), is 

the image of rj - Jz A(VTZ) A ecli^Z) A a; in Heven(B; R/Q). 

Making minor modifications to the proof of Corollary 2 gives 
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Proposition 9. If the Z2-graded cocycle £ for K^]Z(M) satisfies Assumption 

1 then 

(109) chR/Q (indan(£)) = Jz A(TZ) U e51^1 U chR/Q (£). 

Consider now the special case when B is a point. There is an isomorphism 

i : i^R/Z(pt.) —> R/Z. Let £ be a Z2-graded cocycle for K^]Z(M). Using 

the Dirac operator corresponding to the fundamental iT-homology class of M, 

define the analytic index indan(£) G ^R/Z(P^-) of £ by 

(110) i(mdan(£))=rj(£). 

Proposition 3 implies that indan(£) = mdt0p(£). 
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