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Abstract. The renormalization group flow for σ-models with base space of
dimension 1 or 2 is investigated. In two dimensions it is shown that the flow is
singular towards the UV for a generic target space. In one dimension it is
shown that there are IR fixed points coming from negatively curved symmetric
spaces.

The quantum σ-model based on a Riemannian manifold M is the quantum field
theory of harmonic maps from IRd to M. This is a perturbatively renormalizable
theory (in dim. reg.) when d ̂  2. For d — 2 the classical theory has a scale invariance
which is generally broken on the quantum level, the breaking being given by the
jβ-function. This function was first computed to the two-loop level in [1], which
also studied the flow toward the infra-red. Such is the region of interest in
statistical mechanics, in which IR fixed points give the long distance limits of scalar
theories for d < 4 [2]. In other areas, the tree level of (super) string theories is given
by (super) quantum σ-models. There is evidence that for various degrees of
supersymmetry the β-function is given exactly by its one-loop approximation,
which would imply that in order to have the scale invariance desired for string
theory, it suffices that M be a ((hyper)-Kahler) Ricci-flat manifold [3]. Finally, the
Hamiltonian of the quantum σ-model is a renormalized version of the formal
Laplacian + potential term acting on functions on the loop space ΩM. This may be
of mathematical interest.

It is an open question as to when the quantum σ-model exists as a continuum
field theory. So far it has been constructed in the d = 2 case when M = SN and a
hierarchical propagator is used [4]. It is generally believed that for a continuum
QFT based on perturbation theory to exist, one must have asymptotic freedom at
short distance. This is needed so that one can solve the renormalization group
(RG) flow without singularities toward the UV. For the d = 2 σ-model, the
asymptotic freedom condition means that M must be Ricci-nonnegative. We wish
to look more carefully at the flow toward the UV. We find that asymptotic freedom
is not enough. One also needs an exceptional smoothness of the metric which
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roughly indicates that the only interesting manifolds for which the σ-model exists
are homogeneous spaces and nonnegatively-curved Einstein manifolds. This may
affect approaches to the construction of these models.

Another question is whether the perturbation predictions for the renormali-
zation flow are accurate. An interesting case is that of d = 1. There are then no UV
divergences, but the bad IR divergences require renormalization. The one-loop
perturbation theory predicts a nontrivial IR fixed point when M is a negatively-
curved Einstein manifold. As the d = 1 QFT is just quantum mechanics, one can
solve this theory exactly in the Hamiltonian approach and check the perturbation
results. (I thank J. Zinn-Justin for this observation.) Using harmonic analysis on
symmetric spaces, we show that for negatively curved symmetric spaces there is
indeed a nontrivial IR fixed point and compute its location in coupling-
constant space for the case when M is a simply-connected hyperbolic manifold.
We also show that there are some nonsymmetric IR fixed points.

I. The UV Flow ford = 2

There are two reasons that one wishes to have a singularity-free RG flow [5].
1. The flow gives the effective coupling constants at different energy scales in

the renormalized field theory, and one needs finite coupling constants in order to
have finite Green's functions.

2. In order to construct a continuum field theory, the RG equation tells how
the bare coupling constants must depend on the UV cutoff. Recent work shows
that for a number of asymptotically free field theories, in order to obtain a
continuum limit it is enough to compute the bare couplings at a cutoff A using the
two-loop β-function. Then if one integrates down to a fixed energy scale and takes
the A-*co limit, one obtains some continuum limit [6].

Reason 2 indicates that when flowing toward a Gaussian fixed point, it is
enough to consider the two-loop RG flow. In the case of the σ-model we will only
consider the one-loop flow for technical simplicity; the results should extend to the
two-loop case. As mentioned above, the one-loop result should be exact given
enough supersymmetry.

Using dimensional regularization, the one-loop RG equation is

with T-voo being the UV limit [1]. In the other direction (the Γ->oo IR limit) this
same equation has coincidentally been studied in order to find which topological
types of manifolds can support a metric of positive Ricci curvature [7]. In order to
see the qualitative nature of the flow of (1), consider a C2 metric g on S2. By the
Riemann mapping theorem, we can choose isothermal coordinates so that
g = e2φg0, with g0 being the standard S2 metric. Then (1) becomes

—-e2φ = ί/2(R(gQ) — V2φ). This is a nonlinear heat equation going backwards in
ai

time, and one would not expect that there is a solution for arbitrary smooth
initial data.
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A trivial solution is given by homotheities of g0 :

Linearizing (1) around this solution we have that δφ satisfies

A.(e2*δφ)=-l/4V2δφ.

i«. / 0 T i A \ 4-u:^ u ~, s: x Λ IΛ Γ72;Defining S = — In —- T+1 , this becomes — δψ=- l/4V2δφ. If this is to have
R \2c J dso \ J

a smooth solution for all s^O one needs that e~sl4rV2δφ(0)eL2 for all s^O. That
is, if δφ(ΰ) = ΣciXi is the eigenfunction decomposition of δφ(O), then one needs that
\c.\2 = o(e~κλi) for all K7>0. Clearly the generic smooth variation δφ(O) will not
satisfy this.

In order to do such a linearization analysis in higher dimensions, note that
there is a trivial class of solutions to (1) given by nonnegatively-curved Einstein
manifolds. If Rij(g0) = tt(go)ij, α^O, then a solution is g(T)~{\ +aT)g0. As there
are no longer isothermal coordinates, one wishes to formulate a smoothness
criterion for the metric which is diffeomorphism invariant. There is a natural
operator on symmetric 2-tensors heΓ(S2TM) given by the Lichnerowicz
Laplacian: (Ah)ij=-hij.k

k + Rikh
k

j + Rjkh
k

i-2Rikjlh
k

ι. We show that to linear-
ized order, any smooth solution of (1) must be such that the coefficients in the
eigenfunction decomposition of R^gfO)) (with respect to A) fall off faster than any
exponential in the eigenvalue.

Proposition. Let Jί denote the affίne space of C00 metrics on a compact manifold M,
in the Frechet topology. Suppose that g: [0,1] x [0, oo]->,/# is a smooth map such

that 0(0, T) = (l+ αΓ)0(0,0) for some α ̂  0, and V<f, — g{δ, T) = Ric#(<f, T). Then

Vi ^O,

d
, 0)| |2 are all finite.

dβ

and

Proof First, \evΔ Ric#(0,0)|2 = \evΔag(0,0)|2 = α%(0,0)|2 < oo. To proceed, we need
the linearization formula for the Ricci tensor. For heΓ(S2TM), one has

Ric(g + βh) = l/2Δh — div* divG/i, where (Gh)ij = hij—l/2gijh
k

k, (divft)j

= -hij;

j and (div*F)i<7 = l/2(^; +F;.;ί) [8]. If h=— g(δ,T\ then —h
dω g-Q dl

= (ί/2Δ— div*divG)/z, where the operators are with respect to g(0, T). Equiva-
lently, -—h = (ί +αΓ)"1(l/2zl— div*divG)/z, where the operators are now with

di

respect to g(0,0), or—h = {ί/2Δ - div* div G)h with S = 1/α ln(l + αΓ). By hypo-
CIS

thesis, h(s)eL2(S2TM) for all s^0. Given z>0, we have a solution of

dk
— = -{ί/2Δ-di\*divG)k for ΓG[0,Z] given by k(f) = h(z-r). (2)
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Let us solve the equations — l= — l/2Al and — X= -(aX — l/2divGl) for
dr dr

re[0,z] with leΓ(S2TM\ XeΓ(TM\ J(0) = fc(0) and JT(O) = O. Then

d

dr"
= -(1/2A -div* divG)(/ + JSfjfflf).

By the uniqueness of solutions to (2), [7], we have k =

interval we can assume that h has the form

. Thus over any

with — m = 1/2Am.
ds

Lemma. —— g=-Δh.

Proof. Because Ag+gh\

d

We need that at Γ=0,

<?=o

xdA

Ric+l/A(evA-I)

= 0. O

eiv"w)AdwRic

dA
Ric

Ric-u(evΔ-ϊ)h.

Also,

<? = o

d2Δ

e(v-w)Δ u

Ricdw

f = 0

V W zΔdΔ

0 0 CIΘ

xe
{w'z)A

dΔ
Jv-w)A Ric dzdw.

Let Qfaη') denote the inner product on Γ(S2TM). Then

\evA Ric|2

d_

ΊLS

dQ

dS

dQ

dS

dQ

Q{evΔ Ric, evΔ Ric)

(evA Ric, evA Ric) + 2 β ( evA Ric, -£-

d

e^ Ric

A A

Ric) +2i;g( Ric, Ric).

J
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By the smoothness assumption on the m a p g, this is finite.

Similarly, ,

d \evΔRic\2=-—^Q(evΔRicie
vΔRic)

r = o dS

d2Q
(evΔ Ric, evΔ Ric)

evA Ric

^ R i c , ^ - evΔ Ric I
> /

>^Ric,- evΔ Ric

Ric,

evΔ Ric

evΔ Ric

? = o

+ 2β Ric, Ric + 2-
evΔ-I dA

+ v-
d2Δ

Ric + 2-

Ric

Ric I.

The only part involving ,0)is

d2Q . d2A. \ / « Δ

Ric +2»β Ric,—2
Ric ,(Ric,Ric) + 2β Ric,

which is finite by the smoothness assumption. For the terms only involving

' f, 0), under the decomposition h = m + J£γg, the i£Ύg term is an

infinitesimal diffeomorphism which preserves Q(evΔ Ric, evΔ Ric), and so can be

dropped. Thus WLOG we can assume — =ί/2Δh with h(s)eL2(S2TM) for all
CIS

5^0. That is, h0 e e~ 1i2Δs(i}) for all s^O. To finish the proposition, it suffices to

prove that — ev Ric and the terms of
?=o

e Ric only involving first

derivatives are all finite.

We have -— evΔ Ric = eΌA{\βΔ - div* div G)h0 - oc(evΔ - I)h0. N o w

(1/2 J - div* div G) div* div Gh0 = (1/2 J - div* div G ) i ? 1 / 2 d i v G Λ o ^
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and so A div* div G = 2((div* div G)2 + α div* G), from which ^ div* div G
= div*divGe 2 ϋ ( d i v*d i v G + α). Choose constants w and j8 such that 2u|div*divG + α|
SwA+β. Then the formal expression e2«,(div divG+α)β-<Wzi+/o defines a bounded
quadratic form on £- 2 y ( d i v * d i v G + α )*(χ 2 ) 5 a n ( j s o extends to a bounded operator on
L2. Write h0 as e~zΔίϊϊor z>max(w,ι;) and heL2(S2TM). Then

is in L2(S2TM).

The terms remaining of

x div* div G(e2v{diΎ*div G+a)e~{wA+β))e ~{z~ w)Ah

d2

dS

eυΛ Ric are

evΔ-I d
Ric

and

The first is

dA
(evΛ-υA-I)

dA
Ric.

dA evΔ-I

= o Δ

dA

(!/2zJ-div*divG)/ι0

div* div G—
1

div*divG + α

which is in L2(S2TM) by the above argument. The second is

- 2 α — —2(eυA-vΔ-Γ)Δh0, which is also in L2(S2TM). D
dS S = OA

The above smoothness condition on the Ricci tensor is clearly not satisfied for
a generic smooth metric. Some classes of metrics for which it is satisfied are those of
nonnegatively curved homogeneous and Einstein spaces, for which we know that
the RG equation is solvable. Thus it seems to be a reasonable conjecture that the
above condition is necessary to have a smooth RG flow. Otherwise, the flowed
metric may become bumpy and blow up, possibly in infinitesimal time. Converse-
ly, the metric will become smoother when flowing toward the IR, although the
average curvature may increase.

We have shown in a linearized approximation that the condition of the
proposition is necessary for a smooth flow. One may ask whether this is a good
approximation, because if the metric blows up then nonlinear effects could be
important. It is easy to see that some smoothness condition on the initial metric is
necessary. A priori, one could conceive of a solution of (1) for which g(0) is in Cα,

α< oo. This gives a solution of—g— — Ric(#) for re [0,<f] with g{$) in Cα. Using
d

the trick of [9], fix a metric ρeCco(S2TM) and consider the equation —-γ
ar
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= — Ric(y) + div*ρ~1divGρ, y(O) = g(O). By parabolic theory [10], γ(r) is in

CGO(S2TM) for all r>0. Solve — φ=-l/lg'1 divGρ for φ(r)eΌffiM, with

φ(Q) = I. Then φ is C00 for all r ̂ 0 and — (φ*y) = - Ric(< *̂y), (φ*y)(O) = g(0), from

which g(v) = (φ*y)(r) is C00 for r>0. Thus g(0) = g(δ) must be C00.
As for the physical interpretation of a flow singularity, it is conceivable that it is

due to a perturbative expansion around a false vacuum. For example, in the large
N Gross-Neveu model [5] the perturbative /̂ -function obtained by summing
bubble diagrams predicts tachyons. However, if one allows a vacuum expectation
of ψψ, then there is a dynamical mass generation whose bare coupling constant
dependence is given by the jβ-function. The supposed singularity occurs when
flowing toward the IR and the interpretation is that the IR behaviour of the true
vacuum (with mass generation) is different from that of the perturbative vacuum,
while the UV behavior is the same. For the σ-model one would need a new vacuum
with different UV behaviour, which would seem to be difficult to have in a UV
asymptotic free theory.

One could also ask whether there is a nontrivial UV fixed point. For constant
curvature spaces the β-functίon has been computed to 3-loop order and also to
1/JV order in the 1/JV expansion [11], but the evidence is inconclusive.

II. The IR Flow for d=l

Given a complete Riemannian manifold (M,g) and a C00 map ^:R->M, the
1 °° dφμ dφv

energy of φ is E(φ) = ^— f gUv(Φ(T))-r= -τ~dT, where μ is a constant with units
2μ-oo di uΓ

of energy. Let us approximate this by a map φ'.ΊL^M and a functional ££(φ)

= w~ Σ d2{φ(ι), φ(i +1)). We want to look at the scaling behaviour of the measure
2μ iez

μ0 e Jί{Mπ) given by μ0 = e^LΠ]fg{φ^dφi. Let T: MZ->MZ be defined by (Tφ)(i)
= φ(2ϊ)9 and let D\Jί{MΈ)^Ji{M^\ the decimation operator, be the push-
forward 7 .̂ A scaling limit is given by a sequence {cj^o s u c r i that ctD^0 has a
limit; the cf's give a rescaling of the ground state energy. First, the structure

is preserved under D; one has

Dμ0 = exp- Σ f'(φ(ΐ), ψ(i
i

with

e~r(mum2)= f Qxp-

^For example, if M = R" and f(m1,m2)^ ^-\m1-m2\
2, then f'(ml9m2)

zμ
= —\m1—m2\

2 — χln — , in accord with the result β(g)= —g.
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We will consider M's which are simply-connected irreducible noncompact
symmetric spaces G/K. The decimation operator becomes

Dh(mx,m2) = f h(mx, m)h(m, m2) 1/g(m)dm.
M

Lemma. Suppose that h is G-invariant; that is, \/yeG, h(ym1,ym2) = h(m1,m2).
Then Dh is G-invariant.

Proof.

Dh(ymx,ym2) = J h{ymx, m)h{m, ym2)]/g(m)dm

= J h(m1,y~1rn)h(y~1m, m2)^ g(m)dm

= j h(ml9 m')h(m'9 m2)γg{ymf)d{ymf)

= J h(mx,m')h(m', m2)\fg(γγ]!)dm>' = Dh(mί9 m2). D

Thus the property of G-invariance is preserved by D.

Lemma. There is an isomorphism between the G-invariant elements of C^iM x M)
and the C00 radial functions on M (i.e. the K-bivariant functions on G). Under this
isomorphism, D becomes convolution on radial functions.

Proof. Let us write m e M as yK for some yeG. Given a G-invariant h, define
/ e C™(M) by l(yK) = h(K, yK). Because h(K, yK) - h(K, ykK), this is well-defined.
Then l(kyK) = h(K,kyK) = h(k~1K,yK) = h(K,yK) = l(yK), showing that I is
radial. Conversely, given a radial Z, define h by h(y1K,y2K) = l(yx

1y2K). Because
K(y1k1)~ίy2k2K) = l(kx

 1y1"
 1y2k2K) = l(yx

 xy2K), this is well-defined. Then
h(yyίK,yy2K) = l((yyί)~1yy2K) = l(yϊ1y2K) = h(y1K,y2K), showing that h is
G-invariant. Putting vol(K) = l, one has

= (Dh)(K, yK) = f h(K, YK)h(YK, yK)dyf

G

D

For all reference on harmonic analysis on G/K, we refer to [12]. If G = NΛK is
the Iwasawa decomposition of G, the radial functions φλ are defined by φλ(yK)
= j exp((ϊ/l + ρ)Λ(ky))dk for λ G α*, where ^4(y) G α is given uniquely by y G NΛ(y)K

K

and ρ = 1/2 Σ α. The Fourier transform of a C^ radial function / is given by f(λ)
pos.
roots

= J f(yK)φ_λ(yK)dy, and the inverse transform is f(yK)
G

= c J f(λ)φλ(λK)\c(λ)\~2dλ, where c is some constant and c(λ) is the Harish-
a* ^ ^

Chandra ofunction. Furthermore, Df=f2. First, consider the case that — / is in
the Weyl group W.

Proposition. Suppose that fe C£(M) is nonnegative and \f\2 has a unique maximum
in a* modulo the action of W. Then for some sequence {ci}^L1, cfi^-^φ^ pointwise.

Proof We have that Df=f2i and / 2 i 6L 2 (α*, |c(A)Γ 2 ). Because -IeW,
φf = φ_λ = φλy and so / i s real. By the Paley-Wiener theorem, f21 falls off faster
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than any power on a*. We also need that c{λ) is meromorphic on a% and
polynomially bounded on α*, and c(O)φO.

Because / 2 ι = (/2)2 t~\ we can assume that / is positive. For all JV>0,
?N\c\-2eI}(a*) and μN=fN\cΓ2dλ/ίfN\c\~2dλ is a probability measure on α*
which is W invariant. First, suppose that the maximum of / is away from the
origin. If C is a Weyl chamber, suppose that the maximum is at z e C. Then it
suffices to show that the sequence of prob. measures viv = ( # W)μN\c on C
converges to δz. WLOG, assume that /(z) = l. Choose δ>0 such that
\λ - z\ < δ => \c(λ)\" 2 <; oc\λ - z\j for some j ^ 0. V0 < δ < 2δ9 choose open balls D(<?)
and E(δ) in C around z such that D W c / ' ^ l - ^ ^ C E W . As £->0,
rad£(<ί)-+0. Now

and

C\E{S) C\E{S)

ί p\c\-H»λ^(\-sΛ\ J μpd-λ
D(g/2) \ I) D(Sβ)

Thus

vN(C\E(<$))^

as iV->oo for all δ. Thus v^-xS, and (DNf)(γK)/ίfN\c\~2dnλ->φz(γK) for all 7.
However, φz is only nonnegative when z = 0 [16], which is a contradiction. Thus
the maximum of /must be at the origin. The same argument shows that μN-*φ0,
and so (DNf)(γK)/jfN\c\-2dnλ-+φ0(γK) for all γ. Ώ

The Weyl group contains — / for M = Hn, the simply connected rc-dim
hyperbolic space, and so the above proposition applies. It is clear in the proof that
the only property of/needed is that it falls off faster than some power, which will
be the case for f(yK) = exp( — (l/2d2(K, yK)). Thus the scaling limit for μQ is given
by the 2-site energy E(yίK, y2K) = —\nφo(yΐ 1y2K). To write this more explicitly,
take an Hn of some constant curvature and represent it as conformally equivalent
to the flat metric on the unit ball Bn in 1RΛ We will write the scaling limit as a
function of coordinates in Bn; the scaling limit cannot depend on the original
sectional curvature, and so we can assume that it is — 1. The metric on Bn is then
ds2 = 4ΣdXf/(l — ΣXf) and the φλ are radial eigenfunctions of A with φ0

corresponding to the lowest eigenvalue (l/4)(n — I)2. In terms of the hyperbolic
distance r from the origin, the eigenvalue equation is / t Γ r + (n + l)cothrjΓr= - α /

For a = (l/4)(n— I)2 the solution is φo(r)= 2^i\ , - — sinh 2-). Thus

the scaling limit is given by the energy £(m1? m2) = — In φo(d(mu m2)), where d is the
(curvature = —1) hyperbolic distance from m1 to m2; this is independent of the
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V

original sectional curvature. For n = 3,φ0 has the simple form . t . Note that φ0

smhr
is not in L2(M) and Dφ0 does not exist; this is due to the infinite scaling given by
{cf} and is why a sequence must used to approach the fixed point φ0.

All of the information about the scaling limit is given by φ0. However, one
could ask where the fixed point is in terms of the renormalized metric. For
example, let Λγ denote the Laplacian with respect to the (sect. curv. = — 1) metric.
Define the renormalized sect. curv. to be α = I Zl 1 ln^ o(0,m)|m = o)~ 1 . This is

designed so that if < 0̂(0, m) were equal to exp — i^ 2 (0, m) with d the geodesic
distance coming from the (sect. curv. = — K) metric, then α = — K. One finds that

1 4

this gives « = " ( n _ 1 ) 2 -
For general symmetric spaces, one can also see the fixed point as a scaling limit

of expectation values. Because of the IR divergences in one dimension, the usual
expectation of products of field values does not exist even for the free field. In order
to come up with well-defined expectations, consider the lattice σ-model on Έ and
require the fields to satisfy <̂ (0) = mo,φ(T) = mί. Upon taking the continuum limit,
the mass of this set of fields becomes e~TA(rn0,m1). That is, we are looking at the
expectation G(ra0, mί; T) = (δmoφ(0)δmιφ(T)}. This is well-defined for the free field

\ 00

with action L= — -g\ \φ(s)\2ds, and one has
2 oo

/2πT\~n/2

G(mo,m1;Γ)=( J expC-^ΓK-mJ2).

The factor T~n/2 gives the canonical scaling dimension of δm to be n/4.

In the case of H2 one can write e~TA(mu m2) explicitly as

(4πTy3l2e-τl* J βe-β2l4T/(coshβ-coshd(ml9m2))-ll2dβ,
d(m1,m2)

where d is the geod. distance in the (sect. curv. = - 1 ) metric. The e~ τ/4 factor comes
from the fact that the ίΛspectrum starts at 1/4, and can be removed by a change in
the energy scale. The (4πT)~ 3 / 2 factor gives the anomalous scaling dimension for
the operator δm to be 3/4. Upon removing these factors, there is a T-> oo limit given

oo

by J β(coshβ — coshd(mί,m2))~ll2dβ, which equals φo(d(mί,m2)) up to a
d(mi,m2)

constant.
For general irreducible noncompact symmetric spaces, one has

e-TΛ(K,γK) = (const) J e~TEWφλ{yK)\c{λT2dλ,
a*

where E(λ) satisfies Aφλ = E(λ)φλ and has a minimum at Oeα*. As in the above

proposition, there is a function s(T) such that VyeG lim s(T)e~TΛ(K,yK)
Γ->oo

= φo(yK). The large T behaviour of s is given as follows: let H be the Hessian of
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E(λ) around 0 and suppose that |c(/l)|~2 = O(|/l|J) along each ray going to 0. Then

-jLj 2 T~nl2dnλ~T 2 \

Thus the scaling dimension of δm is — — .

We have shown that all constant curvature metrics on Bn flow to — \nφ0. One
could ask whether this is true of all negatively curved metrics. Such is not the case,
as is shown by the following construction. Inside H", patch a large region with sect,
curv. — α, 0 < α < l , to make a manifold (M9g). By making the patched region
sufficiently large, one can make an CQ function on M whose energy is arbitrarily

close to α - — - — . Thus the spectrum extends below

Proposition. Let Ao denote the self-adjoint extension of the Laplacian on CQ°
functions on Hn and let Δg denote the closure of the Laplacian on CQ functions on

in-Λ)2

4
(M,g). Then the spectrum of Δg below — is discrete.

Proof. We will show, using WeyΓs theorem [13], that the essential spectrum of Δg

is that of Δ 0 , namely — - — , oo . For this it suffices to show that T = (A 0 +1) ~1

— (Δg + / ) " x is compact. Let σ be a Q? function on M which is 1 on the patching
region, and let Mσ be the corresponding multiplication operator. Then

and T* (with respect to g) is (Δ% + Γ)~1Mσ(Δg-A*)Mσ(Ag +1)~x. The Hilbert-
Schmidt norm of Tn, if it exists, is ΊτT*nTn = ΊτMσAMσB, where

and

In terms of operator kernels,

Tr T*NTN = j σ(x)A(x9 y)σ(y)B(y, x)]/g(x)]/g(y)dxdy.

Because A and B are pseudo-differential operators of order — 2iV, A(x, y) and
B(y9 x) are continuous when ]V > w/2, and so Tr τ*NTN is finite. Thus TN is Hilbert-
Schmidt and T is compact. D

Thus there is a minimal L2 eigenvalue β< — - — . By the results of [14], the

/?-eigenspace is one-dimensional and has a positive L2-eigenfunction χ. Then

lim e~TΔ(x,y) = e~Tβ'χ(x)χ(y\ and after rescaling the energy the scaling limit is
Γ->-oo

given by χ, which could be almost anything. Thus there is no unique scaling limit
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for arbitrary negatively curved metric. On the other hand, one might suspect that
there is a neighborhood of the constant curvature metrics in some norm which
flows to ψ0. This seems plausible because almost all Brownian paths on a
negatively curved manifold go to the boundary at oo [15]. The Brownian motion is
nonrecurrent, as on flat ]R" for n > 3 as opposed to R" for n ̂  2. In the flat case this
is responsible for the fact that A + V has a bound state for arbitrary negative V
when rc^2, but not when n^3 (by the Birman-Schwinger bound [13]).
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