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The relationship between global anomalies of quantum theory and the topology of spaces of
real Fredholm operators is shown. The spectral properties of such operators and how they are
seen in examples of global anomalies on both compact and noncompact space-times are

discussed.

I. INTRODUCTION

It has become clear that many of the anomalies of quan-
tum field theory are due to the nontrivial topology of various
moduli spaces, such as the space of connections on a fixed
vector bundle modulo the group of gauge transformations.'
More abstractly, one can view the moduli space as parame-
trizing a family of Dirac-type operators, and so one is using
the particular family of operators in order to view the space
F of all complex Fredholm operators.

If one captures a nontrivial cohomology class of .# by
means of a family of operators then this may prevent one
from defining the renormalized determinant of the operators
in a nice way. To be more precise, in free fermionic path
integrals there are two types of determinants which arise. In
the Lagrangian the relevant differential operator (the in-
verse of the covariance) may either map one function space
to itself, or to another.

In the second case the determinant can be complex and
its anomalous symmetry properties reflect the topology of
% . In the first case the determinant is always real. One can
view the underlying function space as a real vector space and
because fermion fields anticommute, the differential opera-
tor must be real and skew adjoint. It turns out that the space
F R of real skew-adjoint Fredholm operators has a very
rich topology” and we wish to show that much of this topol-
ogy can be seen in quantum field theories (QFT’s). This is
manifested both in the existence of zero eigenvalues for
Dirac-type operators and in the occurrence of global anoma-
lies, the original example of which is Witten’s SU(2) anoma-
ly.?

When one rotates fermions from Minkowski space to
Euclidean space, one may seem to lose special properties,
such as the existence of Majorana or Weyl representations.
In Euclidean space, these special Minkowski properties are
seen in the existence of operators which anticommute with
the Euclidean Dirac operator. In general, one can consider
the spaces % R which consist of the elements of %R
which anticommute with a Clifford algebra of operators.
These spaces have a topology which is different but related to
that of % ,R. We also give examples of how this refined
structure is seen in QFT’s.

The structure of this paper is as follows. In Sec. I, we
review the topology of some spaces of Fredholm operators.
In Sec. III, we discuss how this topology is seen in terms of
the spectra of such operators. In Sec. IV, we give examples of
QFT’s on compact space-times which see the topology of the
F « R’s. These examples are more-or-less known, but we
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hope that it may help to see them in a unified way, and that
the derivations of the indices may be new. In Sec. V, we give
some new examples of global anomalies on noncompact
space-times. These examples are analogs of the Gell-Mann-
Lévy o model* and show that the existence of a global anom-
aly does not necessarily ruin consistency of a QFT. In Sec.
VI, we sketch how the anomalies involving real operators
can be understood in terms of analogs of the determinant line
bundle of Quillen.’
Notation: {o”’ }_ | will denote the Pauli matrices:

R

{v’4}3_, will denote the ( — + + + ) real Dirac matri-
ces: Yy =Ieir, yy=Ie7, py=o0'®7r, and
yu =0 87, and y;, will denote 1,7 Vr Vs Satisfying
(ru)=—-1I (3))"= -9 {yi}_, will denote
(+ + + +) complex Dirac matrices satisfying
VeV + v%v s = 269, and y3; will denote Y% yLv% 7%, satis-
fying (2)? =1, (v%)' = 73%. A handy reference for Clifford
algebra structures is Ref. 6.

il. REVIEW OF TOPOLOGY OF OPERATOR SPACES

Let H'be acomplex Hilbert space and consider the space
of Fredholm operators

F ={TeB(%#°): dimker T< o and dimker T* < « }.

(If one wishes to consider unbounded Fredholm operators
one can generally modify the function spaces to reduce the
bounded case.) Put.%¥ , = {Te#: T* = — Tand the essen-
tial spectrum of ;T intersects both components of R — {0}}.
One has that ¥ is a classifying space for complex X theory,
i.e., for all compact topological spaces X, the Grothendieck
group K(X) of virtual vector bundles over X satisfies
K(X)=[X, %], where [X,#] denotes the homotopy
classes of maps from X to.%.” The relationship is as follows:
over # one has the virtual vector bundle Index with fiber
[Ker T]-[Coker T] over an element 7% . Then any ele-
ment of K(X) can be written as ¢* Index for some ¢e[ X,.7 ].
As a consequence, ¥ has the homotopy type of ZX BU( w0 )
where the Z factor refers to the ordinary index of an operator
and BU( 0 ) is the classifying space for the group U( o ). By
Bott periodicity, 7, , , (%) = 7, (¥ ) and these homotopy
groups 7, (.7 ) =K (S') are listed in Table I.

Similarly, .%, is a classifying space for K ~', i.e.,
K '(X)=[X,#,]. Then 7, , ,(F,) = 7, (F,) and the
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TABLE I. Homotopy groups of complex operator spaces.

TABLE II. Homotopy groups of real operator spaces.

F F, FR FR F, FR FR FR FR FR
7o zZ 0 L Z, 7, 0 Z 0 0 0
™ 0 VA 2 Z, 0 A 0 0 0 zZ

™ Z 0 Z 0 0 0 Z z,
7 0 Z 0 0 0 z z, Z,
T, Z 0 0 0 z Z, A 0
m 0 0 0 zZ A z, 0 z
homotopy group are listed in Table I. The relationship T, 0 0 Z Z, Z, 0 z 0
between .%¥ and .7 , can be seen as a suspension.® Let .5 m 0 z Z Z, 0 [/ 0 0

denote the paths in F from I to — I. Then there is a map ¢:
F - OF given by ¢(T) = {cos 7t + T'sin 7t: 0<t<1},
which can be shown to a homotopy equivalence. Similarly,
let J be an operator unitarily equivalent to (; °;) and put

F,={TeF, TJ+JT=0}

Let Q.5 , denote the paths in .% | from J to — J. Then there
is a homotopy equivalence ¢;: ¥ ,-Q%, given by
#,(T) = {J cos mt + T'sin 7t, 0<t<1}. Because .7, is iso-
morphic to .%, one has ¥ ~% ,~ Q% , ~Q%F, which
shows the Bott periodicity.

It is now easy to state the relationship between the axial
anomaly of QFT and the topology of % . Consider, for exam-
ple, the space .7 of connections on S*X SU(N), N> 2, and
the group ¥ of gauge transformations which are the identity
at a point o on S *. Then the determinant line bundle A™
Index has first Chern class which is a nontrivial element of
H*(¥ ,R) = m,(F ) ® R =R, and which is pulled back via
the Dirac operator to give a nontrivial element of H?(.<//
% ,R) = H*(Q*(SU(N)),R) = R.! (More precisely, under
8. o/ -7, the pullback d * A™* Index is a ¥ -equivariant
line bundle over .« which pushes forward to a line bundle on
/% .) To see this another way, fix 4, such that d,,_is
invertible. Put

% ={TeB(H): T — I is compact and T is invertible}.

Then there is amap p: 9 % given by p(g) =8 1 '6,.4,.
Now % is homotopically equivalent to U(« ), or ¥ |, and
p*H' (% R)—H'(% R)isnontrivial from R toR. This is
a precise form of the intuitive idea that the phase of the chiral
determinant changes by a nontrivial multiple of 27 when
going around a nontrivial loop in & . Finally, from the Ham-
iltonian viewpoint consider the analogous spaces for
S3%SU(N). The Dirac Hamiltonian 8,: T'(S) - T'(S) is
skew adjoint and givesamap o: &/ /¥ —.5 ,. The nontrivia-
lity of 0*H3(.¥ ,R)eH *( o/ /% ,R) leads to a Hamiltonian
interpretation of the axial anomaly.®

Let us now consider the space .# (R of real Fredholm
operators on a real Hilbert space 7 . For a compact topo-
logical space X with involution 7, let KR(X) denote the
Grothendieck group of virtual complex vector bundles over
X with an antilinear involution covering 7.'° [ If 7 is the iden-
tity then KR (X) = KO(X)]. One has KR(X) =[X,¥ ,R].
It follows that ¥ ,R is homotopically equivalent to
ZXBO(w)and 7, , ¢(F oR) = 7, (F (R). The homotopy
groups are listed in Table II.

In order to get the higher KR functors, let C;, denote the
real Clifford algebra generated by {e,}/_, with relations
ee; +ee = —25,,er= —e.Letp: C, -B(Hg) bea
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faithful * representation of C,.. Put
G, ={TeF,R: T= —T*, Tp(e,)
+p(e;)T=0 for 1<i<k —1}.

For k= —-1 (mod4) put ¥, R=Y,. For k=—1
(mod 4) there is a slight subtlety: put % R = {Te¥,: the
essential spectrum of p(e,) - -p(e, _,)T intersects both
components of R — 0}. Then KR ~* (X) =[X,. ¥ ,R].>Asa
consequence, the homotopy groups are those listed in Table
IL. The various . , R ’s are again linked by suspension maps:
put %, _,R={paths in F,_ R from p(e,_,) to
—p(ex_,)}. Then ¢: F  R—QF  _ R is given by

#(T) ={p(e,_,)cos 7t + Tsin 7z, 0<t<1}.

The various spaces # , R have simple interpretations.

k=1: % |R is the space of real skew-adjoint Fredholm
operators on H .

k=2: Because .# ,R consists of the elements of ¥ R
which anticommute with (% g), they all have the form
(3 _%) with 4 and B real and skew adjoint. Then
(v,w) - (Av + Bw,Bv — Aw) and v+iw-(4 +iB)
(v — iw), showing that % ,R is the space of skew-adjoint
antilinear Fredholm operators on a complex Hilbert space.
Note that

\TrA4 B (V)_ Lot , ,
(W) (B —A) W = Re(v — iw)"(4 + iB) (v + iw),

showing that % ,R can also be thought of as skew-symmetric

Fredholm operators from a complex Hilbert space to its
complex conjugate. Finally, because

WG _D0)
W, — A \W,
=Re(v+ iw)7(4 + iB) (v + iw),

these operators arise when writing complex Berezin inte-
grals (i.e., Berezin integrals whose total integral is a complex
Pfaffian).

k=3: .7 4R consists of the underlying real Fredholm
operators coming from skew-adjoint operators on Hy ® C?
of the form igy+c'a,+ Pa,+0a,  with
ao,a,a,,a:eB(Hyg ), which satisfy the essential spectrum
property. This anticommutes with the operators p(e,) and
p(e;) given by p(e,)x = 0,X, p(e,)x = io,X: the complex
structure comes from p(e,)p(e,).

k=4: # ,R consists of Fredholm operators of the form
(_sr o) acting on (Hg®X)e (Hg %), where
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BeB(H g ® 7#°) commutes with the quaternions 5. The op-
erators p(e,), p(e,), and p(e;) are i @ 05, j ® 05, and k ® 0.

k=>5: % sR consists of Fredholm operators of the form
(%¢) acting on Hg ® (# & 57) where BeB(Hg ® 5°) is
skew and commutes with 7#°. The operators p(e,), p(e,),
ples), and p(e,) are 1 @ igy, i® 03, j® 03, and k@ 3.

k=6: For MeM(2,5¢), let L(M) denote left multipli-
cation by M on 7% & 7 and for g7, let R(gq) denote right
multiplication by g on 5% @ 5. Then .% (R consists of Fred-
holm operators of the form B,R(j) + B,R(k) acting on
(Hgp ) & (Hg ® 7°), with B, and B, being self-adjoint
operators in B(#°g). The operators p(e,),...p(es) are
L(So)RWD, L(SHRD, L(5%s)RWD,
L Y)YRM,andL (5 %) R().

k=7: Because Cs=M(8R), F R consists of
{ple)) pleg)T: TeB(F g ), T* =T, Tis Fredholm and
the essential spectrum of T lies on both sides of R — {0}}.

k=38:LetJ,,...,.Jo denote a representation of the genera-
tors of Cg on R® and put € = J,,...,Js. Then # 4R consists of
Fredholm operators of the form (% _4) acting on
Hy o (R®oR®) with AcB(H i ) skew and BeB(Hyg) self-
adjoint. The operators p(e,),...,p(e;) are J, 8 0y,....Jc @ 0,
and / ® io,. The Bott periodicity is seen in the fact that % ¢R
is isomorphic to ¥ ,R.

lii. SPECTRAL PROPERTIES OF REAL INDEX THEORY

We will be interested in the 7, and 7, homotopy groups
of operator spaces. First, for the complex Fredholm opera-
tors 7,(.% ) = Z shows that .% breaks into connected com-
ponents labeled by the index of an operator. That 7 (% ,)
equals Z can be seen using spectral flow. Given a smooth
map: S ' —.% |, we have that the spectrum of i® (¢>™*) is uni-
formly bounded away from zero as € variesin [0,1], with the
possible exception of a finite number of eigenvalues. Because
the spectrum for € = 1 is the same as that for € =0, the
generic circle of operators will have a finite number of eigen-
values which flow from negative to positive when going from
€ =0 to € = 1; this number defines the spectral flow F:
[S!.# '] - Z. If the operators i®(e*™) are actually self-ad-
joint first-order elliptic differential operators acting on cross
sections of a vector bundle E over a compact manifold M,
one can compute F(®) by means of the eta invariant.'' Giv-
en such an operator H, define

p(H) =lim 3 A,|4, ="

50 fiZo

If H(e) is a one-parameter family of such operators then
n(H (€)) can have integer jumps as eigenvalues cross the ori-
gin, but (d /de)n(7°(€)) has a smooth extension which can
be computed in terms of local quantities. Then

1

0= 2F(®) +f 2 (0 (7))de (1)
o de

gives an effective way to compute F(®). One can also com-
pute F as an index by means of a ““desuspension.” Consider
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the operator D = d /Je + i® (e*™) acting on cross sections
of the pullback of E to S'!x M. Then F($) = Index D.!"
Similarly, for some Fredholm operators on a noncompact
complete manifold, one can define a generalized eta invar-
iant'? and the spectral flow is again given by (1); however,
the expression (d /de)n(H(€)) then depends both on local
quantities and on the behavior of H(¢€) at infinity.

For an operator Te# , R, one has that ker Tisa C,, _,
module.? If it is not a C;, module then T represents a nontri-
vial element of 7,(.% , R). Thus the connected components
of 7 , R are labeled as follows:

k=0:IndexT, k=1:dimker T (mod2),
k=2:idimker T (mod 2),

k = 4: } dim ker T = Index 4 B.

In order to see 7,(F ; R) spectrally, consider first the
case k = 1. Then one has a one-parameter family i7(¢€) of
self-adjoint operators, each of which has spectrum symmet-
ric around the origin. As € ranges from 0 to 1 the spectral
flow of iT'(¢€) is zero because of the symmetry, but a finite
number of pairs of eigenvalues can be switched. This number
{(mod 2) then labels the class of 7,(¥% ,R) = Z, in which
T'(€) lies. [Because the switching can be seen by watching
what happens near the origin of the spectrum, the definition
makes sense even if the operators i7(e) have continuous
spectrum. }

For the case k = 3, let T(€) be a one-parameter family
in # ;R. Viewing T(€) as a complex operator as in Sec. II,
one sees that if x is an eigenvector of iT'(€) with real eigenval-
ue A then o,X is also an eigenvector with an eigenvalue A.
Thus there is an action of the complex Clifford algebra C§
on the discrete eigenspaces of iT'(€) given by x—0,Xx and so
the eigenspaces have even complex dimension (one cannot
solve o,x =ax with aeC). The class of T(e) in
7, (F 3R) = Z is labeled by | of the spectral flow of T'(¢).

Finally, for k = 7 the operators are self-adjoint and
m,(F ;R) is labeled by the spectral flow.

For real first-order differential operators there is a de-
suspension which maps 7, (F (R) to 7o(.F . R). If T(¢)
is a one-parameter family of operatorsin % ; R then formal-
ly (}9(‘6) 7)) isin F, . R, as a differential operator on
S M. However, there is a slight subtlety, since to obtain
the isomorphism between 7, (%  R) and 7y(F ; , R) one
must also twist the bundles over S' by the Hopf bundle H,
the flat R bundle over S' with holonomy — 1. To be more
precise, we state the following.

Proposition 1: Let T(€) be a circle of elliptic first-order

E
real differential operators acting on I'(E), with | being a
M

real vector bundle over a compact manifold M. Suppose that
each T'(e) is in ¥, R. Let ®: S'XM-S' and P,
S'' X M — M be the projection maps. Consider the first-order
operator D acting on I'(PTH ® (PFE & PFE)) given locally
by D= ( }3&, g ) - Then under the isomorphism
KR ~*(S")—KR ~* *Y(pt), the topological index of the
family 7(e) is mapped to the topological index of D.

Proof: Let T*" denote the vertical directions in
T(S'XM),ie,T*" =8'XTM.Letnbeafixed elementof
KR ~'(TS"). Consider the diagram
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“en a
KR ~X(T*") - KR ~¥(T*")®KR ~(TS') KR ~*+D(T(S'XM)) tind

t-ind
e

KR ~*+D(pt,)

B
KR ~*(S'") - KR " X(TS")® KR "Y(TS')-KR ~ %+ (TS tind

where the maps are as follows: 7-ind is the topological index "’
which generally maps KR *(P X TX) to KR *(P), where P
and X are compact manifolds. 7*: KR *(S') - KR *(TS ") is
the map induced from the projection 7: 7S ' - S . a is multi-
plication in KR *(T(S'XM)) and B is multiplication in
KR *(TS"). The multiplicative property of t-ind ensures
that that diagram commutes. Thus the only problem is to
find % such that t-indoBo(7* @ %) is the identity map from
KR ~%(S') to KR ~*+ D (pt.). Itis easily checked that this
7 is the symbol of the operator d, acting on I'(H), which
proves the proposition. |

One can easily generalize the Proposition to the case of a
fibration over S'. In a special case, the element of 7, (% ,R)
represented by a circle of real skew-adjoint operators can be
computed by means of spectral flow. Suppose that for all &7
eS!, T(e) commutes with a fixed JeB(Hyg) satisfying

J>= —I,J* = —J. Then J provides a complex structure
on Hy and we can write T(€) as ( _42 45 ) . Over the
A+ iB(e) O

complexes this is equivalent to (“; (A— ibye ) and for
each eigenvector xeH g ® Cof (4 + iB) (€) with eigenvalue
iA, there is a corresponding eigenvector X of (4 — iB) (¢€)
with eigenvalue — il. It follows that each eigenvalue id of
A + iB gives a pair (il, — iA) of eigenvalues of 7, and the
spectral flow of i(4 + iB) equals the number of eigenvalue
rearrangements of 7T(mod2). Thus the class in
7,(F |R) = Z, represented by T(e) is labeled by the spec-
tral flow of i(4 + iB)(€) (mod 2).

IV.QFT’s ON COMPACT SPACES

The topology of real operator spaces arises in two dis-
tinct ways in QFT. The first way uses the 7, invariant to
ensure zero eigenvalues for some differential operator 7. The
physical interpretation of such a zero eigenvalue depends on
whether the operator arises from a Lagrangian or a Hamilto-
nian. If T enters in a Euclidean fermionic Lagrangian in the
form (¥,7¥) then a zero eigenvalue can prevent tunnelling
between different “@ vacua.” '*'> On the other hand, if T
gives the spatial Hamiltonian for a fermionic theory then
there are degenerate ground states arising from ker 7.'¢

The second way uses the 7, invariant to label global
anomalies. This means that there may be an obstruction to
defining a renormalized determinant function for a family of
operators. If one is dealing with a circle of operators then it is
possible that when one attempts to define the the determi-
nant smoothly along the loop, the spectral properties of the
operator force the putative determinant to change sign when
going around the circle. (For a more precise interpretation,
see Sec. VL.)

Our examples all involve Dirac-type operators. Because
the Clifford algebra structure depends strongly on the di-
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mension of the manifold, we will list examples by dimension
and restrict to the case of perturbatively renormalizable field
theories, i.e., dimg4. Of course, there are mathematically
interested examples in all dimensions. In general, one has
that on a k-dimensional manifold, the real Dirac operator
(involving only the metric) lies in .% . R."

A. One dimension

Let M be an oriented Riemannian manifold with
m,(M) =0, let : S'—= M be a smooth path in M, and let
(7,¥): S'—TM cover y. The Lagrangian for N =} super-
symmetric geodesic motion is

Lo =~ f (72 = (L.V,%)]dT,
S|

where the ¥ fields are formally anticommuting. Upon doing
a formal integration over W in the functional integral
fe b Dy DV, one is left with fe  (MPITIT
X (det'/? V) D y. If one tries to define det'/? V,, by a regu-
larized product of the positive eigenvalues of iV, then the
obstruction to a smooth definition is the possibility of an odd
number of eigenvalue rearrangements of iV, when going
around aloop of ¥’s, i.e., the possibility of amap S ' - [.S !, M]
giving a nontrivial element of 77, (% |R). In this example one
can compute |det'/? V. | explicitly and see whether there is a
smooth definition of det'/? V., '® but one can also see this via
Proposition 1.

Proposition 2: There is a loop in Map (S ',M) whose im-
age is nontrivial in 7, (% ,R) iff M is not spin.

Proof: Let y: T?— M be aloop in Map (S ',M). Because
M is oriented, y*TM is an SO(N) bundle over T2 Let 4 be
the pullback of the Riemannian connection on TM to y*TM.
LetSbetheflatRbundleon 72 = S ' X S ' with the holonomy
— 1 on the first S ! factor. By Proposition 1, the element of
(% ,R) given by ¥ is the same as the element of 7,(.% ,R)
given by (. Ah* acting on T'(E),
E=(y*TM o y*TM) & S. Because the index of D in
mo(F ,R) is a homotopy invariant, it only depends on the
topological class of the real vector bundle E. For n> 2 the
SO(n) bundles on T2 are classified by H*(T*Z,) = Z,,
which can be considered to be the element of 7, (SO (7)) used
in gluing the ends of S ' X I to construct a bundle over T2

Let ¥ denote a nontrivial R? bundle over T,. Now y*TM
is classified as a real bundle by y*w,(M), where
w,(M)ed?(M,Z,) is the second Stiefel-Whitney class, and
so we can instead compute the index of D= %’. ~ g ') acting
on either T((72XRY™M) g §) if y*w,(M) is trivial, or
C((T*XRImM -3 o V)eS) if y*w,(M) is nontrivial.
However, thisis computed to be y*w, (M) [ T *]€Z,, the eval-
uation of y*w, (M) on T2 As one can pick up a nontrivial
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w,(M) by some mapping of T2, it follows that the index of
V. in7,(F |R) is zero for all y: T* > Miffw,(M) =0, i.e,
M is spin. One has the same story for n = 2. [

Under canonical quantization one sees that the Hamil-
tonian corresponding to L(y,¥) is § P2,,'® which makes
sense iff M is spin. Thus in this case a global anomaly causes
nonexistence of the quantum theory.

B. Two dimensions

As one has Majorana-Weyl spinors in two-dimensional
Minkowski spaces, one can consider the fermionic Lagran-
gian L(¥) = ¥4, ¥, where d, maps S, to S_. The total
integral § ¢XY) W is formally det'/? ., which Wick ro-
tates to det'/2 3;. Now on a compact two-dimensional Rie-
mannian spin manifold one only has Majorana spinors, and
the real Dirac operator can be written as B = o' D, + o°D,.
The Minkowski-Weyl property can be seen in the fact that &
lies in % ,R, as it anticommutes with ic,. Then D, + iD; is
skew symmetric and one can form the complex Berezin inte-
gral {DV exp — (VT (D, + iD,)V¥, with total formal inte-
gral det'/? ;.

The class of B in 7(.% ,R) is labeled by } dimg ker B
(mod 2). On a Riemann surface of genus g there are
28 ~1(28 + 1) spin structures for which it is nontrivial and
28 —1(2%8 — 1) for which it is trivial.'®

C. Three dimensions

Let A be a real gauge field and consider the Minkowski—
Majorana action

L= f V(io*D, + o'D, + o°D,) ¥ d *x.

After integrating out the fermions in fe“™ 2V one is left
with det'/2 B,,.

As there are no Euclidean Majorana spinors in three
dimensions, let S be the complex spinor bundle over S, let E
be an R” vector bundle over S * with connection 4, and con-
sider the Euclidean Lagrangian

L.—.f W'(0'D, + 0°D, + &*D;)¥, for Yel'(So E).
SJ

The Minkowski-Majorana property is seen in the fact
that B, = o'D, + 0*D, + o°D, lies in ¥ ,R, which implies
that all eigenspaces of i, are even dimensional. We may try
to define the formal integral fe ~ LW = det'/> B, by
multiplying the eigenvalues of iP, with half-multiplicity.
This will only be well-defined when going around a circle of
operators if one-half of the spectral flow around the circle is
even, i.e., if the circle is trivial in 7, (% ;R) (mod 2).

Proposition 3: Let A(€) be a one-parameter family of
connections on E, 0<e<1, with A(1) = g-4(0) for a gauge
transformation g: S°—SO(N). Then the class of B, ., in
7 (F3R) = Zisg*w([S>], where w € H3SO(N),Z) s given
by the three-form w = ( — 1/487%)Tr(g~ ' dg)>. This can
be odd for some choice of 4(€) if N> 3.

Proof’ Let L be the RY bundle over S ! X S formed from
the trivial bundle over 7 X .S? by identifying the fiber over
{1} x5 ? with the g-twisted fiber over {0} XS, and by then
tensoring with the pullback of Hto.S ' X.S>. Let T denote the
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real Dirac operator on S ' X S > twisted by L and let 7 denote
the complex Dirac operator on S'XS? from S*®L to
S ~ @ L. By Proposition 1, the class of B, ., in 7,(%;R)
equals the class of T in 7y (.# ,R), which is one-half of the
index of 7. Now the family of connections 4 (¢) give a con-
nection B on the trivial bundle over 7 XS? by B,=0,
B, (e,X) = A, (€) (X), which extends to a connection on L.
We can homotopy B to B, =0, B; (€,X) = (g~ ' dg),; with-
out changing the index. Then the index of 7 is given by

J‘ Tr 5 B)/2m
S'xS?

1
= ——_ TrldeAg—'d,
877 S (deNg™ " dg

+(e—€)(g ' dg))= — f‘Tr(g"dg)ﬂ

1
2472 Js

so the class in 7y (F ,R) is

T ~1dg)3.

One can check that for N = 3, the pullback of @ from
SO(3) to SU(2) is twice the generator of #°(SU(2),Z).
Since every map from S > to SO(3) factors through SU(2), it
follows the evaluation of g*w on .S 3 on S 3 is always even. On
the other hand, for N 4 the pullback of @ from SO(4) to

SU(2) via SU(2) —»SU(2) X SU(2) -SO(4) gives the gen-

erator of ##7(SU(2),Z). As one can embed SO(4) in SO(N)
for N>4, it follows that g*w[.$ ] can always be odd for some
gif N>4. |

One could also compute this invariant by computing
one-half of the spectral flow directly. This is perhaps more
physical, as for fixed € there will be a term in the Euclidean
effective action equal to + 1 imn(iD, , ).

D. Four dimensions

In four-dimensional Minkowski space we have massive
or massless Majorana spinors, or massless Weyl spinors, but
not both simultaneously. To see how this is reflected in the
Euclidean action, consider the real Euclidean Dirac opera-
torB =X} _ 9D, withy’ = ¥4, ® i"and ' =y}, ® I As
D anticommutes with the operators p(e;,) =5, ®7',
pley) =¥ ®7, and p(e;) = 73, ®1, it lies in % ,R and
gives a quaternionic operator. The natural way to form a
massive Dirac operatorisby B,, = B 1 + mp(e,), which lies
in # 4R, as it anticommutes with p(e,) and p(e,). Using the
complex structure provided by p(e,)p(e,), one can see that
D,, is the underlying real operator for the complex skew-
adjoint operator T, =iy3 (2, _,¥%sD, + m). One can
then use the action L(¥) = \I’*T,,,\I’ to form a complex
Berezin integral f ¥ e~ “¥ to describe massive Euclidean
Dirac spinors. This Berezin integral satisfies reflection posi-
tivity and the reconstructed Hilbert space is the Fock space
of the massive Minkowski Dirac spinor, with the standard
second-quantized Dirac Hamiltonian. Although this way of
handling Euclidean Dirac spinors may be unconventional,
one can see, for example, that the total Berezin integral is
formally det iy (2], _o¥%D, + m), which formally equals
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det(Zf,:(,ﬁD“ + m), the result obtained from the usual
field-doubling method.?

In order to deal with Euclidean Majorana spinors, one
must use the symmetries of B,, . Because B, is % ;R, thereis
an operator 4 satisfying 47 = — 4 and AT%* + T, 4A=0.
Then (4 ~'T,,)" = — A~!'T,, andonecanuse 4 ~'T,, to
form the action L(¥) = f¥74 ~ 'T W for complex four-
component V. In terms of the charge conjugation operator,
L can be written in the following way. In a given representa-
tion {yf},_, of the Dirac algebra, let C satisfy
CrC 1= —p#T,C"= —C,C"=C~'= — C* Then
the charge conjugation operator ¥ —¥* = C ~'¥* is intrin-
sically defined and one can write L(¥) as
SOV (Z3 _op*D, + m)Y, with C(Z,_o#D, +m) a
skew-symmetric operator. One can form the complex Bere-
zin integral fe ~ (W) 2V whose total integral is the com-
plex Pfaffian det'/? C(Z}_o1*Z, + m), the | reflecting
that one is dealing with Majorana spinors. This gives the
same way to handle Euclidean Majorana spinors as was
probably by Nicolai.??

The Weyl property is seen in the fact that P anticom-
mutes with the self-adjoint operator p(e,)p(e,)p(es). Writ-
ingPas ( %+ ), the quaternionic operator Bis the Euclid-
ean equivalent of the chiral Minkowski Dirac operator d and
det!/? P=det B is the Wick rotation of det 4. One can cou-
ple an O(N) gauge field 4 to D to obtain an operator B, in
Z 4R, but one can go further and use the quaternionic nature
of P to naturally couple an Sp(N) gauge field V. Let us write
V oas VO4pv9i4 v v®k with VP skew
symmetric and ¥, ¥, and ¥*’ symmetric. Then

3
By=Y 7@, + VL +V2i+VIi+ViPk)

n=0
lies in & | R and anticommutes with p(e,)p(e,)p(e;).

The class of Bin 7o(.F ,R) = Zis labeled by § Index B,
which is § A(M) for a pure Dirac operator acting on the real
spinors I'(S). As the other homotopy groups of # ,R vanish
up to 75, a more interesting example is given by B coupled to
an Sp(N) gauge field, the original global anomaly of Wit-
ten.? If V(¢) is a one-parameter family of Sp(N) connections
onan &~ vector bundle E over M, with V(1) differing from
V(0) by a gauge transformation g, then by Proposition 1 the
class of B, in 7 (F R) =Z, is given by | dimy ker T
(mod 2), with T = ( ;;m D_"‘g: ) acting on cross sections of
the #2¥ vector bundle over S ' X M created by twisting the
ends of I X ((E®S) @ (E®.S)) together by — g. Now
i dimg ker T = } dim¢ ker T

=1 dim¢ ker p(e))p(e)p(e) T
=} dim¢ ker p(e,)p(e,)p(es)

( 0 — i3, + b,,(e))
x|\ .
id, + Dy, 0

=} dim ker p(e;)p(e;)p(e3) (. + iDy,)
+ 1 dim. ker p(e()p(e,)p(es)

X (8, — iDye )
However, over the complexes both p(e,)p(e;)p(e;)
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X (3 +iDy,) and p(e))p(e)ples)(d, —iBy.,) are
equivalent to the real operator p(e,)p(e,)p(e;)d,
+ Dy, Thus

} dimy ker T = dimg ker(p(e,)p(e,)p(e3)d, + Dy)):

In the case of M = S*, the Sp(NV) bundles over S ' X S* are
classified by #7°(S ' X §4,Z,) = Z,, which can be thought of
as the element of 7,(Sp(N)) = Z,, used to join the ends of
I xS*. Upon twisting by the Hopf bundle over S, one can
check that dimg ker(o(e,)p(e,)p(e3)3, + Dy(e,) (mod 2),
equals the class of g in 7,(Sp(NV)), which is Witten’s orignal
calculation. [In this case, because one is dealing with chiral
spinors, one can also see that there is a global anomaly using
the results of Witten-Bismut—Freed.?* They showed that the
holonomy of the Quillen connection on the determinant line
bundle is, when going around the loop V¥(e),
exp — mi(n( &) + dimc ker ) where, in our case,
D =ilp(e,))pley)ples)di, + P o) Because — i lies
in 7 |R, the spectral symmetry ensures that 77(# ) is zero.
Thus the holonomy is 1 if dimc ker & is even and — 1 if
dim¢ ker & is odd, showing that in the latter case thereis a
global anomaly in the sense that the Quillen connection has
nontrivial holonomy.]

V. QFT’s ON NONCOMPACT SPACES

In general the index of a family of Fredholm operators
on a noncompact space is harder to compute than in the
compact case. We will only consider complex skew-adjoint
operators T whose underlying real operator Ty liesin ¥ R.
In general det'/2 Ty = |det T'|, and so an odd spectral flow
in a family 7(e) prevents the smooth definition of
det'/2 Tg (€). Thisis seenin the fact thataclass [ T (€)] in
7 (F ,R) = Z, can be computed using the spectral flow
(mod 2) of a circle of operators 7T(¢e), which in turn can be
computed using the generalized eta invariant. If H(e€) is a
skew-adjoint operator which arises in the Lagrangian of a d-
dimensional Euclidean QFT, the most practical way that we
know to compute 7(H(¢€)) is to regard H(¢) as the Hamilto-
nian for a (d + 1)-dimensional Minkowski QFT and com-
pute the vacuum expectation of the change operator
Q=,<j%X)>d*X, which then gives 7(H(€)) via the
equation @ = — }7."> One can calculate Q (or more precise-
ly, dQ /de) for the (d + 1)-dimensional theory via a gradi-
ent expansion”® and then the spectral flow is simply the
change in Q when going around the circle.

One way of producing the d-dimensional Lagrangian is
as follows: let {M,}?*? ! be mutually anticommuting self-
adjoint matrices and for a map ¢: RY > R?*!, consider the
operator T'= 2¢_, M/9; + 22! | iM’¢’ with ¢ approach-
ing constants radially. This will be Fredholm iff |¢(x)|? is
bounded away from zero for large x and then the large x
behavior of ¢/|¢| gives a map ¢: S¢ ~' - 5¢. We will show
that under the one-parameter family of ¢’s that starts and
ends with a point map, and covers S¢, there is an odd spec-
tral flow and so a global anomaly.

A d-dimensional Euclidean Lagrangian incorporating
Tis
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The ¢-y couplings are Yukawa type, and these Lagrangians
can be thought to be analogs of the Gell-Mann-Lévy o mod-
el* (as opposed to the more recent definitions of a o mod-
el®®!). L has an SO(d + 1) global symmetry, which we will
argue to be broken by the global anomaly.

A. One dimension

Consider the Euclidean action
LYg9) = f L0+ O+ VB + D)
R

+3¥N(* 9, + id's, + io’$,) Y,

for ¢,, $,C> (R') and YeC> (R') ® C?, where ¥ goes to «o
asits argument goes to oo . Here L " has an SO(2) symmetry
given by

(¢,) ( cosa  sin a) (¢,)

$,) \—sina cosa/\¢,/’

¥, /2@y First consider the case that ¥ has a minimum
away from the origin. Then there will be finite action bosonic
paths which (as x, ranges from — o to «) go from one
point in the minimum well to another. Formally, the integra-
tion over these paths gives the SO(2) symmetry in the quan-
tum theory.

Let T denote the skew operator o° d, + io'd, + ic’d,.
Consider a family ¢(€) of background bosonic configura-
tions with ¢,.(— 0) =¢,(— 0) =0 and ¢, ()

= C0s €, @, (0 ) = sin ¢, as sketched in Fig. 1. As the fer-

mionic integration in fe X" D¢ PV leaves a factor of
|det T'|, if there is an odd spectral flow in T(¢) then one
might expect that the instanton sum is ill-defined and the
SO(2) symmetry is broken.

For the operator iT'(¢) one can show that the derivative
of the generalized 7 invariant is

2 piTe >>——¢2i¢2 ("""¢2 Beg)||”
L4y
1Td6 /3 I

(Refs. 12 and 25). This can be seen by computing the vacu-
um charge for the two-dimensional Minkowski Lagrangian

LPW) = if -—ZI—W((Z, + 073, + id'$, + id’d,) ¥,
RZ

as was done in Ref. 25; the relevant Feynman diagram is that
of Fig. 2. Thus there is odd spectral flow as € goes from 0 to
277,

=

FIG. 1. A one-parameter family of background ¢’s in one dimension.
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As our model is quantum mechanical, one can also ana-
lyze it in a Hamiltonian approach. The Hamiltonian 77,
acting on C* (R?) ® A*(C?), is

XK =4(—-3d}-397)

+ V(X1 +X3) +1¥N(7X, —o'X)¥
where the operators ¥, satisfy {¥*,¥;} = 26,,. The U(1)
charge is
= —i(X'3,—X?9)) + W09,

and commutes with J¥°. Representing the complex Clifford
algebra generated by the ¥’s on A*(C?) via ¥, —\2/(e,),
W*_.\2E(e;), we can split H as H, ® H, where H, and H,
act on C* (R?) ® A®*" (C?) and C= (R?) @ A®(C?), re-
spectively, and are given by

H =}(—-3d1 -3d3)+V(Xi+X3)
and

H, = §( —3% —3%)

—iX, - X 2)
X, - X, 0 '
Because Q has integer spectrum on C* (R?) ® A" (C?)
and half-integer spectrum on C°(R?) ® A% (C?), the
SO(2) symmetry of the ground state will be broken iff the
ground state is in C* (R?) ® A% (C?). However, for all
WeC g (R?), (V|H,|¥) = (Yo (¢)|H,|¥® ()) and so

+ V(X? +X2)+(

(mf\Vec”(R ) @ A4(C?) <\P‘H2N’))
(mfwcw(n ) @ ATVN(CY) (‘I‘|H1|\l’)),
implying that the ground state is indeed in

C= (R?) ® A° (C?). In this example it is clear that the exis-
tence of a global anomaly does not make a theory inconsis-
tent but merely breaks a global symmetry; this appears to be
related to the fact that the anomaly occurs in a global rather
than local symmetry.

The functional integral argument for global symmetry
breaking required that ¥ have a nontrivial minimum in order
that the fermionic operator in the background field be Fred-
holm. However, from the Hamiltonian argument one sees
that symmetry is broken no matter what ¥ is. This can be
seen in the functional integral approach by compactifying
the space-time from R to [ — 3,8]. If there is a symmetry
breaking for each B then one would expect the same as 8
goes to «. A convenient choice of fermionic boundary
conditions which preserves the SO(2) symmetry is the
Atiyah-Patodi-Singer (APS) boundary condition.'' This
requires that W(B) lie in the positive eigenspace of
— 0°¢,(B) + 0'$,(B) and that W( — p) lie in the negative
eigenspace of — 0°¢,( — B) + o'¢,( — B).

Proposition 4: Let T(€) be a family of operators on
C= ([ —B.B)) @ C*givenby 09, + ic'd, + io”$, with the

» ¢, FIG. 2. One-dimensional spectral flow.
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APS boundary condition, where ( ﬁﬁ _ g; ) isanonzero vec-

tor independent of € and (ﬁ;:ig; ) = (Gn<) -Then as € goes

from O to 27, there is an odd spectral flow of iT(€).
Proof: Let V(¢) denote the vector ( _“(ﬁf ,-f, (=2 ) and

let W(e) denote the vector ( (”ff,.i 2 2 ); the APS condition
is that ¥_ ( — B) is proportionate to ¥ (€) and ¥ (B) is pro-
portionate to W(e). Because the spectral flow is a homotopy
invariant, we can compute it for any loop in ¥ ; homotopic
to T(¢€). In particular, for 0<a<1, consider the loop of oper-
ators on C* ([ —B,8])e®C? given by o°d, + aic's,

+ aio®$, with the boundary condition that ¥ ( — f) is
proportionate to F(€) and ¥ (f) is proportionate to W(e).
One can check that this gives a smooth homotopy within the
class of elliptic self-adjoint boundary value problems®’ and
so it suffices to compute the spectral flow at @ = 0. Then the
spectrum is

<—$[(2n+ 1)i7r+ln—¢‘—ﬂ(—ﬁ)

Vo + &3

_ 1n_¢l_+."¢;2_ B ]> neZ,
V& + &3

which has an odd spectral flow as € goes fromOto27. B

In higher dimensions, we will only consider the case
when V has a minimum away from the origin, so that the
instantonlike background fields give Fredholm fermionic
operators. Presumably one could put the theory in a finite
volume, as we have done in one dimension, and conclude
that there is a global anomaly with no restriction on V.

B. Two dimensions

Consider the two-dimensional Euclidean Lagrangian
3

L?— S -;— (3.8, + V(i ¢12)

R>j=1 =1

42 (S 140, + it + irsba + i) ¥

=1

for ¢,,6.,6,cC* (R?) and WeC= (R?) ® C*. Here L ® hasan
SO(3) symmetry which rotates the ¢’s. If T(¢) is a one-
parameter family of skew Fredholm operators of the form

T= i Vjéaj + iVed, + iveds + iveds

j=1
then we will compute the generalized 7 invariant of 7€) by
considering /T to be equivalent to the Hamiltonian of the
three-dimensional Minkowski Lagrangian

r’d,
» FIG. 3. Three-dimensional spectral flow.
7’és
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€e=0,1
——

FIG. 4. A one-parameter family of background ¢’s (at « ) in two dimen-
sions.

L(3)= -\17

R’

X( =A%+ 3 6l + 61— irids— i) ¥

Jj=1
The Feynman diagram to compute the vacuum charge is
that of Fig. 3 and letting n° denote ¢° /||, one finds

g _d 1 ag b A dne
de de ) sn wchdn’ Ndn®.

This is simply the infinitesimal change in the volume on
S2 swept out by the curve ¢/|¢|: S' —S? where the S'is a
large circle in R?, and we have normalized the volume form
on S? to have mass 1. Consider a one-parameter family of
loops on $? as in Fig. 4. If each loop represents the behavior
of ¢/|#| for large radius in R?, for some ¢, then as € goes from
0 to 1 it follows that there is an odd change in the vacuum
charge, and so an odd spectral flow in iT(€). Presumably
this spectral flow breaks the global SO(3) symmetry.

C. Three dimensions

Consider the three-dimensional Euclidian Lagrangian
1 3 3
Lo=[ 25 @er+v(S #)
R 2 j=0 =0

1 5 . . = o
+ 2V (3 e, + o+ i 037) ¥,
=

with @,,...,4,6C* (R?) and ¥YeC* (R*) ® C®. There is a na-
ive SO(4) symmetry which rotates the ¢’s, and as before we
will compute the spectral flow for the fermionic differential
operator by computing the vacuum charge of the four-di-
mensional Minkowski Langrangian

1 &= . A . 57 =
L(4)=f7W(—l7/%30+ Z VEaj +¢0+17’5¢'7') v.
R i=1
This calculation was done in Ref. 25 and the relevant Feyn-
man diagram is that of Fig. 5. Letting n° denote ¢°/|#|, the

result was

Pém
7 Ys¢zfz

V’$s7s
FIG. 5. Three-dimensional spectral flow.
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FIG. 6. Four-dimensional spectral flow.

dQ _d 1

de deJr 1277 ©
As before, this is the infinitesimal change in the normalized
volume on S ? swept out by a family of immersed S *’s, and by
choosing the family to cover 53, we ensure that there is an
odd spectral flow in the fermionic differential operator.

bean® dn® Adnc Adn®.

D. Four dimensions

Let {#}¢_, be another copy of the Dirac matrices

{¥e}_, and put ° = 5'5p**5*. Consider the four-dimen-
sional Euclidean action

L =L. > @)+ V(Jgo #)

j=0
1 u : -
+= wt (,2. Y5, + vz (don’ + ¢'n)) v,

where d,,...,6,6C* (R*) and WYeC~ (R*) ® C'°. This is an
analog of the linear o model® with the target space being R®
instead of R®. The naive SO(5) global symmetry rotates the
#’s. The corresponding five-dimensional Minkowski La-
grangian is
LY = i @

R 2

4 -

x( —ivz0o+ Y v%0, + o’ + ¢'17) v,
u=1

The Feynman diagram to compute the vacuum charge is

that of Fig. 6, and the result is (letting n* = ¢°/|4|)

dg _d 1

de de 64 Jn

Once again, this is the infinitesimal volume on S * swept out
by the ¢ field at «, and by a suitable choice of ¢(€) there will
be an odd spectral flow in the fermionic differential operator.

€ peae® An° Ndn® Adn® Adne.

VI. DETERMINANT BUNDLES

Over the space of Fredholm operators ¥ one has the
virtual index bundle Index and its highest exterior power,
the line bundle Det. For Dirac-type operators Quillen
showed how to define a natural metric on Det.> We wish to
show how to extend these constructions to the other classes
of Fredholm operators.

First, consider the space .# ;| of skew-adjoint complex
Fredholm operators. The heuristic obstruction to defining a
determinant function on # | is the possible change of sign in
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going around a loop, that is, the mod 2 reduction of
m,(F ;) = Z. Abstractly one can form a flat R bundle over
&, via the homomorphism p: 7,(%¥,) —End(R) which
takes 1 €7,(% ;) to the operator of multiplication by — 1.
To be more concrete, let us consider a space . of skew-
adjoint Dirac type operators B, on a compact spin manifold,
possibly coupled to an external vector bundle. As in Ref. 5,
% can be covered by open sets {U_ } ,cx+ , 50 that for seU,,,
iD, has no eigenvalue of + a. Then the transition functions
(for a <B) 8ag(S) = I, 4, s A, (iB,)define an R bundle

DET over .%°. That is, v, €R in a trivialization over U g COI-
responds to vz = g4V, in trivialization over Ug, and so

there is a well-defined Quillen metric on DET given by

o> = 2 ( i A%m)),
|4 >a

where the product is understood to be defined using zeta-
function regularization. The unique connection on I' (DET)
which preserves ||| is given in trivialization a by

A" VdA,

A > a

A, =lm
50

and is flat. Thus under parallel transport in patch «, the
quantity (I, ,|4:])v, is constant. One can convince one-
self that the holonomy around a loop is the spectral flow
(mod 2).

Now consider the space # | R of real skew-adjoint Fred-
holm operators. We can abstractly define a flat R bundle via
the homomorphism p: 7,(¥,R) = Z,—»End(R) which
takes 1 to — 1. For a space % of real skew-adjoint Dirac-
type operators, define the covering {U_},x-, as above.
Over U, we have the R bundle A™*(V,), where V,

= @, {eigenspaces of eigenvalue ,, |4;| <a}.If@ < B then
over U,NUg, T defines a two-form on Vg — ¥V, (by
2, ca,<phi€i \N€;, e; orthonormal) and an isomorphism
from A™** (V) to A™** (V) via exterior multiplication by
T 1/ dime Ve~ dima Vay . then the bundles A™* (¥, ) patch to-
gether to give an R bundle Pfaff over .%. There is a metric on
Pfaff given by

ACea N> =[ACen 3 [T 4768y,
A>a
where |*|5- denotes the metric induced from the Hilbert
space 5% and there is a compatible flat connection. One can
see that the holonomy of the connection around a loop is the
number of eigenspace rearrangements (mod 2).

Because the elements of % ,R, can be written as 4 + (B
with 4 and B skew symmetric, the natural function to con-
sider is the complex Pfaffian. Freed has shown that for
Dirac-type operators in & ,R, the determinant line bundle of
Quillen has a natural square root, the complex Pfaffian line
bundle, with induced metric and connection.?*

Finally, the elements of .% ;R can be considered to be
skew-adjoint complex operators which anticommute with a
complex antilinear map. Then the even dimensionality of the
eigenspaces allows us to canonically take the square root of
the transition functions used to define DET for the % | case.
In this way one obtains a flat line bundle DET'/? which has
holonomy around a loop given by § (spectral flow) (mod 2).
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