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Abstract. If M is a smooth compact connected Riemannian manifold, let
P (M) denote the Wasserstein space of probability measures onM . We describe
a geometric construction of parallel transport of some tangent cones along
geodesics in P (M). We show that when everything is smooth, the geometric
parallel transport agrees with earlier formal calculations.

1. Introduction

Let M be a smooth compact connected Riemannian manifold without boundary.
The space P (M) of probability measures of M carries a natural metric, the Wasser-
stein metric, and acquires the structure of a length space. There is a close relation
between minimizing geodesics in P (M) and optimal transport between measures.
For more information on this relation, we refer to Villani’s book [13].

Otto discovered a formal Riemannian structure on P (M), underlying the Wasser-
stein metric [10]. One can do formal geometric calculations for this Riemannian
structure [6]. It is an interesting problem to make these formal considerations into
rigorous results in metric geometry.

If M has nonnegative sectional curvature, then P (M) is a compact length space
with nonnegative curvature in the sense of Alexandrov [8, Theorem A.8], [12, Propo-
sition 2.10]. Hence one can define the tangent cone TμP (M) of P (M) at a measure
μ ∈ P (M). If μ is absolutely continuous with respect to the volume form dvolM ,
then TμP (M) is a Hilbert space [8, Proposition A.33]. More generally, one can de-
fine tangent cones of P (M) without any curvature assumption on M , using Ohta’s
2-uniform structure on P (M) [9]. Gigli showed that TμP (M) is a Hilbert space if
and only if μ is a “regular” measure, meaning that it gives zero measure to any
hypersurface which, locally, is the graph of the difference of two convex functions
[3, Corollary 6.6]. For examples of tangent cones at nonregular measures, if S is
an embedded submanifold of M , and μ is an absolutely continuous measure on S,
then TμP (M) was computed in [7, Theorem 1.1].

If γ : [0, 1] → M is a smooth curve in a Riemannian manifold, then one can
define the (reverse) parallel transport along γ as a linear isometry from Tγ(1)M to
Tγ(0)M . If X is a finite-dimensional Alexandrov space, then the replacement of a
tangent space is a tangent cone. If one wants to define a parallel transport along
a curve c : [0, 1] → X, as a map from Tc(1)X to Tc(0)X, then there is the problem
that the tangent cones along c may not look much alike. For example, the curve c
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may pass through various strata of X. One can deal with this problem by assuming
that c is in the interior of a minimizing geodesic. In this case, Petrunin proved the
tangent cones along c are mutually isometric, by constructing a parallel transport
map [11]. His construction of the parallel transport map was based on passing to
a subsequential limit in an iterative construction along c. It is not known whether
the ensuing parallel transport is uniquely defined, although this is irrelevant for
Petrunin’s result.

In the case of a smooth curve c : [0, 1] → P∞(M) in the space of smooth prob-
ability measures, one can do formal Riemannian geometry calculations on P∞(M)
to write down an equation for parallel transport along c [6, Proposition 3]. It is a
partial differential equation in terms of a family of functions {ηt}t∈[0,1]. Ambrosio
and Gigli noted that there is a weak version of this partial differential equation
[1, (5.9)]. By a slight extension, we will define weak solutions to the formal parallel
transport equation; see Definition 2.4.

Petrunin’s construction of parallel transport cannot work in full generality on
P (M), since Juillet showed that there is a minimizing Wasserstein geodesic c with
the property that the tangent cones at measures on the interior of c are not all
mutually isometric [5]. However one can consider applying the construction on
certain convex subsets of P (M). We illustrate this in two cases. The first and
easier case is when c is a Wasserstein geodesic of δ-measures (Proposition 3.1). The
second case is when c is a Wasserstein geodesic of absolutely continuous measures,
lying in the interior of a minimizing Wasserstein geodesic, and satisfying a regularity
condition. Suppose that ∇η1 ∈ Tc(1)P (M) is an element of the tangent cone at the

endpoint. Here ∇η1 ∈ L2(TM, dc(1)) is a square-integrable gradient vector field on
M and η1 is in the Sobolev space H1(M,dc(1)). For each sufficiently large integer
Q, we construct a triple

(∇ηQ,∇ηQ(0),∇ηQ(1))(1.1)

∈ L2([0, 1];L2(TM, dc(t)))⊕ L2(TM, dc(0))⊕ L2(TM, dc(1))

with ∇ηQ(1) = ∇η1, which represents an approximate parallel transport along c.

Theorem 1.1. Suppose that M has nonnegative sectional curvature. Then a
subsequence of {(∇ηQ,∇ηQ(0),∇ηQ(1))}∞Q=1 converges weakly to a weak solution

(∇η∞,∇η∞,0,∇η∞,1) of the parallel transport equation with ∇η∞,1 = ∇η1. If c is
a smooth geodesic in P∞(M), η1 is smooth, and there is a smooth solution η to the
parallel transport equation (2.6) with η(1) = η1, then

lim
Q→∞

(∇ηQ,∇ηQ(0),∇ηQ(1)) = (∇η,∇η(0),∇η(1))

in norm.

Remark 1.2. In the setting of Theorem 1.1, we can say that ∇η∞,0 is the parallel
transport of ∇η1 along c to Tc(0)P (M).

Remark 1.3. We are assuming that M has nonnegative sectional curvature in order
to apply some geometric results from [11]. It is likely that this assumption could
be removed.

Remark 1.4. A result related to Theorem 1.1 was proven by Ambrosio and Gigli
when M = R

n [1, Theorem 5.14], and extended to general M by Gigli [4, Theorem
4.9]. As explained in [1,4], the construction of parallel transport there can be con-
sidered to be extrinsic, in that it is based on embedding the (linear) tangent cones
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into a Hilbert space and applying projection operators to form the approximate par-
allel transports. Although we instead use Petrunin’s intrinsic construction, there
are some similarities between the two constructions; see Remark 3.3. We use some
techniques from [1], especially the idea of a weak solution to the parallel transport
equation.

Remark 1.5. Besides its inherent naturality, the intrinsic construction of parallel
transport given here is likely to allow for extensions. For example, using the results
of [7], it seems likely that Petrunin’s construction could be extended to define
parallel transport along Wasserstein geodesics of absolutely continuous measures on
submanifolds of M . In the present paper we have done this when the submanifolds
have dimension zero or codimension zero.

The structure of this paper is as follows. In Section 2 we discuss weak solutions
to the parallel transport equation. In Section 3 we prove Theorem 1.1.

2. Weak solutions to the parallel transport equation

Let M be a compact connected Riemannian manifold without boundary. Put

(2.1) P∞(M) = {ρ dvolM : ρ ∈ C∞(M), ρ > 0,

∫
M

ρ dvolM = 1}.

Given φ ∈ C∞(M), define a vector field Vφ on P∞(M) by saying that for F ∈
C∞(P∞(M)),

(2.2) (VφF )(ρ dvolM ) =
d

dε

∣∣∣
ε=0

F
(
ρ dvolM − ε∇i(ρ∇iφ) dvolM

)
.

The map φ → Vφ passes to an isomorphism C∞(M)/R → Tρ dvolMP∞(M). Otto’s
Riemannian metric on P∞(M) is given [10] by

〈Vφ1
, Vφ2

〉(ρ dvolM ) =

∫
M

〈∇φ1,∇φ2〉 ρ dvolM(2.3)

= −
∫
M

φ1∇i(ρ∇iφ2) dvolM .

In view of (2.2), we write δVφ
ρ = −∇i(ρ∇iφ). Then

(2.4) 〈Vφ1
, Vφ2

〉(ρ dvolM ) =

∫
M

φ1 δVφ2
ρ dvolM =

∫
M

φ2 δVφ1
ρ dvolM .

To write the equation for parallel transport, let c : [0, 1] → P∞(M) be a smooth
curve. We write c(t) = μt = ρ(t) dvolM and define φ(t) ∈ C∞(M), up to a
constant, by dc

dt = Vφ(t). This is the same as saying

(2.5)
∂ρ

∂t
+∇j (ρ∇jφ) = 0.

Let Vη(t) be a vector field along c, with η(t) ∈ C∞(M). The equation for Vη to be
parallel along c [6, Proposition 3] is

(2.6) ∇i

(
ρ

(
∇i ∂η

∂t
+ ∇jφ∇i∇jη

))
= 0.

Lemma 2.1 ([6, Lemma 5]). If η, η are solutions of (2.6), then
∫
M
〈∇η,∇η〉 dμt

is constant in t.
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Lemma 2.2. Given η1 ∈ C∞(M), there is at most one solution of (2.6) with
η(1) = η1, up to time-dependent additive constants.

Proof. By linearity, it suffices to consider the case when η1 = 0. From Lemma 2.1,
∇η(t) = 0 and so η(t) is spatially constant. �

For consistency with later notation, we will write C∞([0, 1];C∞(M)) for
C∞([0, 1]×M).

Lemma 2.3 (cf. [1, (5.8)]). Given f ∈ C∞([0, 1];C∞(M)), if η satisfies (2.6),
then

(2.7)
d

dt

∫
M

〈∇f,∇η〉 dμt =

∫
M

〈∇∂f

∂t
,∇η〉 dμt +

∫
M

Hessf (∇η,∇φ) dμt.

Proof. We have

d

dt

∫
M

〈∇f,∇η〉 dμt =
d

dt

∫
M

〈∇f,∇η〉 ρ dvolM(2.8)

=

∫
M

〈∇∂f

∂t
,∇η〉 ρ dvolM +

∫
M

〈∇f,∇∂η

∂t
〉 ρ dvolM

+

∫
M

〈∇f,∇η〉 ∂ρ
∂t

dvolM .

Then

d

dt

∫
M

〈∇f,∇η〉 dμt −
∫
M

〈∇∂f

∂t
,∇η〉 dμt(2.9)

=

∫
M

(∇if)

(
∇i ∂η

∂t

)
ρ dvolM −

∫
M

(∇if) (∇iη)∇j (ρ∇jφ) dvolM

= −
∫
M

f ∇i

(
ρ∇i ∂η

∂t

)
dvolM −

∫
M

(∇if) (∇iη)∇j (ρ∇jφ) dvolM

=

∫
M

f∇i

(
ρ(∇jφ) (∇i∇jη)

)
dvolM +

∫
M

∇j((∇if) (∇iη)) (∇jφ) ρ dvolM

= −
∫
M

(∇if) (∇jφ) (∇i∇jη) ρ dvolM

+

∫
M

∇j((∇if) (∇iη)) (∇jφ) ρ dvolM

=

∫
M

(∇j∇if) (∇iη) (∇jφ) ρ dvolM

=

∫
M

Hessf (∇η,∇φ) dμt.

This proves the lemma. �

We now weaken the regularity assumptions. Let P ac(M) denote the absolutely
continuous probability measures on M with full support. Suppose that c : [0, 1] →
P ac(M) is a Lipschitz curve whose derivative c′(t) ∈ Tc(t)P (M) exists for almost

all t. We can write c′(t) = Vφ(t) with ∇φ(t) ∈ L2(TM, dc(t)). By the Lipschitz
assumption, the essential supremum over t ∈ [0, 1] of ‖∇φ(t)‖L2(TM,dc(t)) is finite.
As before, we write c(t) = μt.
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Definition 2.4. Let c : [0, 1] → P ac(M) be a Lipschitz curve whose deriva-
tive c′(t) ∈ Tc(t)P (M) exists for almost all t. Given ∇η0 ∈ L2(TM, dμ0), ∇η1 ∈
L2(TM, dμ1) and ∇η ∈ L2([0, 1];L2(TM, dμt)), we say that (∇η,∇η0,∇η1) is a
weak solution of the parallel transport equation if∫

M

〈∇f(1),∇η1〉 dμ1 −
∫
M

〈∇f(0),∇η0〉 dμ0(2.10)

=

∫ 1

0

∫
M

(〈
∇∂f

∂t
,∇η

〉
+ Hessf (∇η,∇φ)

)
dμt dt

for all f ∈ C∞([0, 1];C∞(M)).

Remark 2.5. In what follows, there would be analogous results if we replaced
C∞([0, 1];C∞(M)) everywhere by C0([0, 1];C2(M)) ∩ C1([0, 1];C1(M)). We will
stick with C∞([0, 1];C∞(M)) for concreteness.

From Lemma 2.3, if c is a smooth curve in P∞(M) and η ∈ C∞([0, 1];C∞(M))
is a solution of (2.6), then (∇η,∇η(0),∇η(1)) is a weak solution of the parallel
transport equation. We now prove the converse.

Lemma 2.6. Suppose that c is a smooth curve in P∞(M). Given η0, η1 ∈ C∞(M)
and η ∈ C∞([0, 1];C∞(M)), if (∇η,∇η0,∇η1) is a weak solution of the parallel
transport equation, then η satisfies (2.6), η(0) = η0 and η(1) = η1 (modulo con-
stants).

Proof. In this case, equation (2.10) is equivalent to∫
M

〈∇f(1),∇η1〉 dμ1 −
∫
M

〈∇f(0),∇η0〉 dμ0(2.11)

=

∫
M

〈∇f(1),∇η(1)〉 dμ1 −
∫
M

〈∇f(0),∇η(0)〉 dμ0

+

∫ 1

0

∫
M

f∇i

(
∇i ∂η

∂t
+∇jφ∇i∇jη

)
dμt dt.

Taking f ∈ C∞([0, 1];C∞(M)) with f(0) = f(1) = 0, it follows that (2.6) must
hold. Then taking all f ∈ C∞([0, 1];C∞(M)), it follows that ∇η0 = ∇η(0) and
∇η1 = ∇η(1). Hence η(0) = η0 and η(1) = η1 (modulo constants). �

Lemma 2.7. Suppose that c is a smooth curve in P∞(M). Given ∇η0 ∈
L2(TM, dμ0), ∇η1 ∈ L2(TM, dμ1), ∇η ∈ L2([0, 1];L2(TM, dμt)) and f ∈
C∞([0, 1];C∞(M)), suppose that

(1) (∇η,∇η0,∇η1) is a weak solution to the parallel transport equation,
(2) f satisfies (2.6),
(3) ∇f(1) = ∇η1,
(4)

(2.12)

∫
M

|∇η0|2 dμ0 ≤
∫
M

|∇η1|2 dμ1

and
(5)

(2.13)

∫ 1

0

∫
M

|∇η|2 dμt dt ≤
∫
M

|∇η1|2 dμ1.
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Then ∇f(0) = ∇η0, and ∇f(t) = ∇η(t) for almost all t.

Proof. From (2.6) (applied to f) and (2.10), we have

(2.14)

∫
M

〈∇f(0),∇η0〉 dμ0 =

∫
M

〈∇f(1),∇η1〉 dμ1 =

∫
M

〈∇η1,∇η1〉 dμ1.

From Lemma 2.1,

(2.15)

∫
M

〈∇f(0),∇f(0)〉 dμ0 =

∫
M

〈∇f(1),∇f(1)〉 dμ1 =

∫
M

〈∇η1,∇η1〉 dμ1.

Then

(2.16)

∫
M

|∇(η0 − f(0))|2 dμ0 =

∫
M

|∇η0|2 dμ0 −
∫
M

|∇η1|2 dμ1 ≤ 0.

Thus ∇f(0) = ∇η0 in L2(TM, dμ0).
Next, replacing f by tf in (2.10) gives

(2.17)

∫ 1

0

∫
M

〈∇f,∇η〉 dμt dt =

∫
M

〈∇f(1),∇η1〉 dμ1 =

∫
M

〈∇η1,∇η1〉 dμ1.

Then ∫ 1

0

∫
M

|∇f −∇η|2 dμt dt(2.18)

=

∫ 1

0

∫
M

|∇f |2 dμt dt − 2

∫ 1

0

∫
M

〈∇f,∇η〉 dμt dt +

∫ 1

0

∫
M

|∇η|2 dμt dt

=

∫
M

|∇f(1)|2 dμ1 − 2

∫
M

|∇η1|2 dμ1 +

∫ 1

0

∫
M

|∇η|2 dμt dt

=

∫ 1

0

∫
M

|∇η|2 dμt dt −
∫
M

|∇η1|2 dμ1 ≤ 0.

Thus ∇f(t) = ∇η(t) in L2(TM, dμt), for almost all t. �

3. Parallel transport along Wasserstein geodesics

3.1. Parallel transport in a finite-dimensional Alexandrov space. We recall
the construction of parallel transport in a finite-dimensional Alexandrov space X.

Let c : [0, 1] → X be a geodesic segment that lies in the interior of a minimizing
geodesic. Then Tc(t)X is an isometric product of R with the normal cone Nc(t)X.
We want to construct a parallel transport map from Nc(1)X to Nc(0)X.

Given Q ∈ Z
+ and 0 ≤ i ≤ Q− 1, define ci : [0, 1] → X by ci(u) = c

(
i+u
Q

)
. We

define an approximate parallel transport Pi : Nci(1)X → Nci(0)X as follows. Given
v ∈ Nci(1)X, let γ : [0, ε] → X be a minimizing geodesic segment with γ(0) = ci(1)
and γ′(0) = v. For each s ∈ (0, ε], let μs : [0, 1] → X be a minimizing geodesic
with μs(0) = ci(0) and μs(1) = γ(s). Let ws ∈ Nci(0)X be the normal projection

of 1
sμ

′
s(0) ∈ Tci(0)X. After passing to a sequence si → 0, we can assume that

limi→∞ wsi = w ∈ Nci(0)X. Then Pi(v) = w. If X has nonnegative Alexandrov
curvature, then |w| ≥ |v|.

In [11], the approximate parallel transport from an appropriate dense subset
LQ ⊂ Nc(1)X to Nc(0)X was defined to be P0 ◦ P1 ◦ . . . ◦ PQ−1. It was shown that
by taking Q → ∞ and applying a diagonal argument, in the limit one obtains an
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isometry from a dense subset of Nc(1)X to Nc(0)X. This extends by continuity to
an isometry from Nc(1)X to Nc(0)X.

If X is a smooth Riemannian manifold, then Pi is independent of the choices
and can be described as follows. Given v ∈ Nci(1)X, let jv(u) be the Jacobi field
along c with jv(0) = 0 and jv(1) = v. (It is unique since c is in the interior of a
minimizing geodesic.) Then Pi(v) = j′v(0).

3.2. Construction of parallel transport along a Wasserstein geodesic of
delta measures. Let M be a compact connected Riemannian manifold without
boundary. Let γ : [0, 1] → M be a geodesic segment that lies in the interior of
a minimizing geodesic. Let Π : Tγ(1)M → Tγ(0)M be (reverse) parallel transport
along γ. Put c(t) = δγ(t) ∈ P (M). Then {c(t)}t∈[0,1] is a Wasserstein geodesic that
lies in the interior of a minimizing geodesic. We apply Petrunin’s construction to
define parallel transport directly from the tangent cone Tc(1)P (M) to the tangent
cone Tc(0)P (M) (instead of the normal cones). From [7, Theorem 1.1], we know
that Tc(t)P (M) ∼= P2(Tγ(t)M).

Proposition 3.1. The parallel transport map from Tc(1)P (M) ∼= P2(Tγ(1)M) to
Tc(0)P (M) ∼= P2(Tγ(0)M) is the map μ → Π∗μ.

Proof. Given Q ∈ Z
+ and 0 ≤ i ≤ Q− 1, define γi : [0, 1] → M by γi(u) = γ

(
i+u
Q

)
and ci : [0, 1] → P (M) by ci(u) = δγi(u). We define an approximate parallel
transport Pi : Tci(1)P (M) → Tci(0)P (M) as follows.

Given s ∈ R
+ and a real vector space V , let Rs : V → V be multiplication

by s. Let ν be a compactly-supported element of P (Tγi(1)M). For small ε > 0,
there is a Wasserstein geodesic σ : [0, ε] → P (M), with σ(0) = ci(1) and σ′(0)
corresponding to ν ∈ Tci(1)PM , given by σ(s) = (expγi(1) ◦Rs)∗ν. Given s ∈ (0, ε],

let μs : [0, 1] → P (M) be a minimizing geodesic with μs(0) = ci(0) = δγi(0)

and μs(1) = σ(s). There is a compactly-supported measure τs ∈ P2(Tγi(0)M) =
Tci(0)P (M) so that for v ∈ [0, 1], we have μs(v) = (expγi(0) ◦Rv)∗τs. If Q is large
and ε is small, then all of the constructions take place well inside a totally convex

ball, so τs is unique and can be written as τs =
(
exp−1

γi(0)
◦ expγi(1) ◦Rs

)
∗
ν. Then

lims→0
1
s (τs − τ0) exists and equals (d expγi(0))

−1
∗ ν. Thus Pi = (d expγi(0))

−1
∗ .

Now

P0 ◦ P1 ◦ . . . ◦ PQ−1(3.2)

=
(
(d expγ0(0))

−1 ◦ (d expγ1(0))
−1 ◦ . . . ◦ (d expγQ−1(0))

−1
)
∗
.

Taking Q → ∞, this approaches Π∗. �

3.3. Construction of parallel transport along a Wasserstein geodesic of
absolutely continuous measures. Let M be a compact connected boundaryless
Riemannian manifold with nonnegative sectional curvature. Then (P (M),W2) has
nonnegative Alexandrov curvature.

Let c : [0, 1] → P ac(M) be a geodesic segment that lies in the interior of a
minimizing geodesic. Write c′(t) = Vφ(t). Since φ(t) is defined up to a constant, it

will be convenient to normalize it by
∫
M

φ(t) dμt = 0. We assume that

(3.3) sup
t∈[0,1]

‖φ(t)‖C2(M) < ∞.
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In particular, this is satisfied if c lies in P∞(M).
Let Nc(t)P (M) denote the normal cone to c at c(t). We want to construct a

parallel transport map from Nc(1)P (M) to Nc(0)P (M).

Given Q ∈ Z
+ and 0 ≤ i ≤ Q− 1, define ci : [0, 1] → P (M) by ci(u) = c

(
i+u
Q

)
.

Correspondingly, write μi,u = μ i+u
Q

. We define an approximate parallel transport

Pi : Nci(1)P (M) → Nci(0)P (M), using Jacobi fields, as follows.

Let us write c′i(u) = Vφi(u), i.e., φi(u) = 1
Qφ

(
i+u
Q

)
. The curve ci is given

by ci(u) = (Fi,u)∗ci(0), where Fi,u(x) = expx(u∇xφi(0)). That is, for any f ∈
C∞(M),

(3.4)

∫
M

f dci(u) =

∫
M

f(Fi,u(x)) dμi,0(x).

If σi is a variation of φi(0), i.e., δφi(0) = σi, then taking the variation of (3.4)
gives

∫
M

f dδci(u) =

∫
M

〈∇f, d expu∇xφi(0)(u∇xσi)〉Fi,u(x) dμi,0(x)(3.5)

= u

∫
M

〈∇f,Wσi
(u)〉 dμi,u.

Here

(3.6) (Wσi
(u))y = d expu∇xφi(0)(∇xσi),

with y = Fi,u(x). The corresponding tangent vector at ci(u) is represented by

Lσi
(u) = Πci(u)Wσi

(u), where Πci(u) is orthogonal projection on Im∇ ⊂
L2(TM, dμi,u). We can think of Jσi

(u) = uLσi
(u) as a Jacobi field along ci. If

v = Jσi
(1) = Lσi

(1) = Πci(1)Wσi
(1), then its approximate parallel transport along

ci is represented by w = J ′
σi
(0) = Lσi

(0) = ∇σi ∈ Im∇ ⊂ L2(TM, dμi,0).
Next, using (3.6), for f ∈ C∞(M) we have

d

du

∫
M

〈Vf , Lσi
〉 dμi,u =

d

du

∫
M

〈Vf ,Wσi
〉 dμi,u

(3.7)

=
d

du

∫
M

〈∇f, d expu∇xφi(0)(∇xσi)〉Fi,u(x) dμi,0(x)

=

∫
M

HessFi,u(x)(f)
(
d expu∇xφi(0)(∇xφi(0)), d expu∇xφi(0)(∇xσi)

)
dμi,0(x)

+

∫
M

〈∇f,D∂u
d expu∇xφi(0)(∇xσi)〉Fi,u(x) dμi,0(x)

=

∫
M

Hess(f) (∇φi(u),Wσi
(u)) dμi,u +

∫
M

〈∇f,D∂u
Wσi

(u)〉 dμi,u.

Here ∂u is the vector at Fi,u(x) given by

(3.8) ∂u =
d

du
Fi,u(x) = d expu∇xφi(0)(∇xφi(0)).
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If instead f ∈ C∞([0, 1];C∞(M)), then

d

du

∫
M

〈Vf , Lσi
〉 dμi,u =

∫
M

〈
∇∂f

∂u
, Lσi

〉
dμi,u(3.9)

+

∫
M

Hess(f) (∇φi(u),Wσi
(u)) dμi,u

+

∫
M

〈∇f,D∂u
Wσi

(u)〉 dμi,u.

We will need to estimate
∫
M

|Wσi
(u)− Lσi

(u)|2 dμi,u.

Lemma 3.1. For large Q, there is an estimate∫
M

|Wσi
(u)− Lσi

(u)|2 dμi,u(3.10)

≤ const. ‖Hess(φi(·))‖2L∞([0,1]×M)‖Lσi
(0)‖2L2(TM,dμi,0)

.

Here, and hereafter, const. denotes a constant that can depend on the fixed Rie-
mannian manifold (M, g).

Proof. Since Πci(u) is projection onto Im(∇) ⊂ L2(TM, dμi,u), and ∇(σi ◦ F−1
i,u ) ∈

Im(∇), we have∫
M

|Wσi
(u)− Lσi

(u)|2 dμi,u ≤
∫
M

|Wσi
(u)−∇(σi ◦ F−1

i,u )|2g dμi,u(3.11)

=

∫
M

|(dFi,u)
−1
∗ Wσi

(u)−∇σi|2F∗
i,ug

dμi,0.

(Compare with [1, Proposition 4.3].) Defining Ti,t,x : TxM → TxM by

(3.12) Ti,t,x(z) = (dFi,u)
−1
∗

(
d expu∇xφi(0)(z)

)
,

we obtain ∫
M

|Wσi
(u)− Lσi

(u)|2 dμi,u(3.13)

≤
(
sup
x∈M

‖dF ∗
i,udFi,u(x)‖ · ‖Ti,u,x − I‖2

)
‖Lσi

(0)‖2L2(TM,dμi,0)
.

Since supt∈[0,1] ‖∇φ(t)‖C0(M) < ∞, if Q is large, then ‖∇φi(0)‖C0(M) is much

smaller than the injectivity radius of M . In particular, the curve {Fi,u(x)}u∈[0,1]

lies well within a normal ball around x. Now Ti,t,x can be estimated in terms of
Hess(φi). In general, if a function h on a complete Riemannian manifold satisfies
Hess(h) = 0, then the manifold isometrically splits off an R-factor and the optimal
transport path generated by ∇h is translation along the R-factor. In such a case,
the analog of Ti,t,x is the identity map. If Hess(h) �= 0, then the divergence of a
short optimal transport path from being a translation can be estimated in terms of
Hess(h). Putting in the estimates gives (3.10). �

Using Lemma 3.1, we have∣∣∣∣
∫
M

Hess(f) (∇φi(u),Wσi
(u)) dμi,u −

∫
M

Hess(f) (∇φi(u), Lσi
(u)) dμi,u

∣∣∣∣(3.14)

≤ const. ‖Hess(f)‖C0(M)‖Hess(φi(·))‖L∞([0,1]×M)

· ‖∇φi(u)‖L2(TM,dμi,0)‖Lσi
(0)‖L2(TM,dμi,0).
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Next, given x ∈ M , consider the geodesic

(3.15) γi,x(u) = Fi,u(x).

Put

(3.16) jσi,x(u) = u(Wσi
(u))γi,x(u) ∈ Tγi,x(u)M.

Then jσi,x is a Jacobi field along γi,x, with jσi,x(0) = 0 and j′σi,x(0) = ∇xσi. Jacobi
field estimates give

(3.17) ‖D∂u
Wσi

(u)‖L2(TM,dμi,u) ≤ const. ‖∇σi‖L2(TM,dμi,u)‖∇φi(·)‖2L∞([0,1]×M),

again for Q large.

Lemma 3.2. Define Ai :
(
Im(∇) ⊂ L2(TM, dμi,0)

)
→

(
Im(∇) ⊂ L2(TM, dμi,1)

)
by

(3.18) Ai(∇σi) = Lσi
(1).

Then for large Q, the map Ai is invertible for all i ∈ {0, . . . , Q− 1}.

Proof. Define Bi :
(
Im(∇) ⊂ L2(TM, dμi,1)

)
→

(
Im(∇) ⊂ L2(TM, dμi,0)

)
by

(3.19) Bi(∇f) = ∇(f ◦ Fi,1).

Then whenever ∇f ∈ L2(TM, dμi,1), we have

(3.20) (AiBi)(∇f) = Ai(∇(f ◦ Fi,1)) = Lf◦Fi,1
(1),

so whenever ∇f ′ ∈ L2(TM, dμi,1), for large Q we have

〈∇f ′, (AiBi − I)(∇f)〉L2(TM,dμi,1)(3.21)

= 〈∇f ′,Wf◦Fi,1
(1)−∇f〉L2(TM,dμi,1)

≤ const. ‖Hess(φi(·))‖L∞([0,1]×M)‖∇f ′‖L2(TM,dμi,1)‖∇f‖L2(TM,dμi,1).

Hence ‖AiBi − I‖ = o(Q), so for large Q the map AiBi is invertible and a right
inverse for Ai is given by Bi(AiBi)

−1. This implies that Ai is surjective.
Now suppose that ∇σ ∈ Ker(Ai) is nonzero, with σ ∈ H1(M,dμi,0). After

normalizing, we may assume that ∇σ has unit length. Then

0 =〈∇(σ ◦ Fi,1), Ai(∇σ)〉L2(TM,dμi,1) = 〈∇(σ ◦ Fi,1), Lσ(1)〉L2(TM,dμi,1)(3.22)

=〈∇(σ ◦ Fi,1),Wσ(1)〉L2(TM,dμi,1) = 〈∇σ, (dFi,1)
−1Wσ(1)〉L2(TM,dμi,0)

=1− 〈∇σ,∇σ − (dFi,1)
−1Wσ(1)〉L2(TM,dμi,0)

≥1− const. ‖Hess(φi(·))‖L∞([0,1]×M),

for large Q. If Q is sufficiently large, then this is a contradiction, so Ai is injective.
�

Fix V1 ∈ Nc(1)P (M). If V1 �= 0, then after normalizing, we may assume that

it has unit length. For Q ∈ Z
+ large and t ∈ [0, 1], define VQ(t) ∈ Nc(t)P (M) as

follows. First, using Lemma 3.2, find σQ−1 so that V1 = LσQ−1
(1). For t ∈

[
Q−1
Q , 1

]
,

put

(3.23) VQ(t) = LσQ−1
(Qt− (Q− 1)).
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Doing backward recursion, starting with i = Q− 2, using Lemma 3.2 we find σi so

that Lσi
(1) = Lσi+1

(0) = ∇σi+1. For t ∈
[

i
Q , i+1

Q

]
, put

(3.24) VQ(t) = Lσi
(Qt− i).

Decrease i by one and repeat. The last step is when i = 0.
From the argument in [11, Lemma 1.8],

(3.25) lim
Q→∞

sup
t∈[0,1]

|‖VQ(t)‖ − 1| = 0.

We note that the proof of [11, Lemma 1.8] only uses results about geodesics in
Alexandrov spaces, it so applies to our infinite-dimensional setting. It also uses the
assumption that c lies in the interior of a minimizing geodesic. After passing to a
subsequence, we can assume that

(3.26) lim
Q→∞

(VQ,VQ(0),VQ(1)) = (V∞,V∞,0,V∞,1)

in the weak topology on L2([0, 1];L2(TM, dμt)) ⊕ L2(TM, dμ0) ⊕ L2(TM, dμ1).
Note that V∞,1 = V1.

From (3.9), (3.14) and (3.17), for a fixed f ∈ C∞([0, 1];C∞(M)), on each interval[
i
Q , i+1

Q

]
we have

d

dt

∫
M

〈Vf ,VQ〉 dμt =

∫
M

〈
∇∂f

∂t
,VQ(t)

〉
dμt(3.27)

+

∫
M

Hess(f)(∇φ(t),VQ(t)) dμt + o(Q).

It follows that (V∞,V∞,0,V∞,1) is a weak solution of the parallel transport equation.
As the limiting vector fields are gradient vector fields, we can write (V∞,V∞,0,V∞,1)
= (∇η∞,∇η∞,0,∇η∞,1) for some

(η∞, η∞,0, η∞,1) ∈ L2([0, 1];H1(M,dμt))⊕H1(M,dμ0)⊕H1(M,dμ1)).

Suppose that c is a smooth geodesic in P∞(M), that V1 (and hence η∞,1) is
smooth and that there is a smooth solution η to the parallel transport equation
(2.6) with ∇η(1) = ∇η∞,1. By Lemma 2.1, ‖∇η(t)‖ is independent of t. By
Lemma 2.7, (∇η∞,∇η∞,0,∇η∞,1) = (∇η,∇η(0),∇η(1)). We claim that

(3.28) lim
Q→∞

(∇ηQ,∇ηQ(0),∇ηQ(1)) = (∇η,∇η(0),∇η∞,1)

in the norm topology on L2([0, 1];L2(TM, dμt)) ⊕ L2(TM, dμ0) ⊕ L2(TM, dμ1).
This is because of the general fact that if {xi}∞i=1 is a sequence in a Hilbert space
H with limi→∞ |xi| = 1, and there is some unit vector x∞ ∈ H so that every weakly
convergent subsequence of {xi}∞i=1 has weak limit x∞, then limi→∞ xi = x∞ in the
norm topology.

In particular,

(3.29) lim
Q→∞

∇ηQ(0) = ∇η(0)

in the norm topology on L2(TM, dμ0).
This proves Theorem 1.1.
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Remark 3.3. The construction of parallel transport in [1, Section 5] and [4, Section
4] is also by taking the limit of an iterative procedure. The underlying logic in [1,4]
is different from what we use, which results in a different algorithm. The iterative
construction in [1, 4] amounts to going forward along the curve c applying certain
maps Pi, instead of going backward along c using the inverses of the Ai’s as we do.
In the case of Rn, the map Pi is the same as Ai, but this is not the case in general.
The map Pi is nonexpanding, which helps the construction in [1, 4]. In contrast,
A−1

i is not nonexpanding. In order to control its products, we use the result (3.25)
from [11].
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