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Today : the space of probability measures.
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Questions

The motivation comes from questions about finite-dimensional
spaces.

How can we understand Ricci curvature?

Does it make sense to talk about Ricci curvature for nonsmooth
spaces?

Perelman introduced an important monotonic quantity in Ricci
flow, the reduced volume. Where does this come from?

Claim : These questions can be answered in terms of optimal
transport, or the geometry of the space of probability measures.
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Partly joint work with Cedric Villani (ENS-Lyon).

Related work was done by Karl-Theodor Sturm (University of
Bonn).
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LV = Lott-Villani, S = Sturm



Geometry of the space of probability measures

Optimal transport



Given a before and an after dirtpile, what is the most efficient
way to move the dirt from one place to the other?

Let’s say that the cost to move a gram of dirt from x to y is
d(x, y)2.



Gaspard Monge

| RERBLIOLE FRARGRSE -

Mémoire sur la théorie des déblais et des remblais (1781)

Memoir on the theory of excavations and fillings (1781)




Gaspard Monge

866° MEmoires DE LUAcADEMIE ROYALE

MEMOIRE
SUR L4
THEORIE DES DEBLAIS
ET DES REMBLAIS
-
Pr M. M ON G E.

Lonsqu’ou doit teanfporter des terres d'un lieu dans un
autre, on a coutume de donner le nom de Deéblai au
volume des terres que lon doit tranfporter, & le nom de
Remblai 3 Tefpace qu'elles doivent occuper aprés le tranfport.
Le prix du tranfport d'une molécule éant, toutes choles
dailleurs égales, progortionnel  fon poids & 3 'efpace¥ju'on
lui fait parcourir , & par conféquent le prix du tranfport total
devant éue proportionnel i la fomme des produits des molé-
cules multipliées chacune par Iefpace parcouru , il seenfuit
que le débhi & le remblai tant donnés de figure & de
pofition, il meft pas indifférent que telle molécule du déblai
foit tranfportée dans tel ou tel autre endroit du rembla
mais quil y a une certaine diftribution 4 faire des molécules
du premier dans le fecond, d'aprés laquelle la fomme de ces
produits fera la moindre poffible, & le prix du tranfport total
{era un minimun.
Ceeft fa folution de cette queftion que je me propofe de
donner ici. Je diviferai ce Mémoire en deux parties, dans la
- premiére jo fuppoferai que les déblais & fes remblais font des
aires contenues dans un méme plan ¢ dans Je fecond,, je fup-
polerai que ce font des volumes.

PREMIERE PARTIE.
Du tranfport des aires planes fur des aives comprifes dans
un mémé plan.
L
QuesLe que foit Ta route que doive fuivre une molécule




Wasserstein space

Let (X, d) be a compact metric space.

Notation
P(X) is the set of Borel probability measures on X.

That is, p € P(X) iff u is a nonnegative Borel measure on X
with p(X) = 1.

Definition
Given po, u1 € P(X), the Wasserstein distance Wa(ug, 111) is
the square root of the minimal cost to transport pg to 1.



Wasserstein space

ERCETY

Wi (0, 112 — inf{ [ dy? dnt, y)},
Xx X
where

m € P(X X X),(Po)«m = po, (P1)s7 = 1.



Wasserstein space

Fact :
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The metric topology is the weak-x topology, i.e. lim;_ ., pj = w if
and only if for all f € C(X), limj_o, [y f dui = [y f dp.
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Wasserstein space

Fact :
(P(X), W>) is a metric space, called the Wasserstein space.

The metric topology is the weak-x topology, i.e. lim;_ ., pj = w if
and only if for all f € C(X), limj_o, [y f dui = [y f dp.

So to one compact metric space (X, d), we've assigned
another one (P(X), W).

Note : There is an isometric embedding X — P(X) by x — dx.
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Displacement interpolations

To move dirt in the real world, we would transport it along
minimizing geodesics.

Take a snapshot at time t. We get a family of meaures
{#t}eqo,1)> called a displacement interpolation. We would like to
say that this is a “geodesic” in P(X).



Geometry of the space of probability measures

Formal Geometry of Wasserstein Space



Smooth measures

If (M, g) is a compact connected Riemannian manifold, let
P>(M) C P(M) be the smooth probability measures with
positive density.

P>(M) = {p dvoly : p e C>*(M), p>0, [,p dvoly = 1}.



Otto’s formal Riemannian metric on P>(M)

Given u = p dvoly € P(M), consider an infinitesimally nearby
measure g + 6, 1.e.

Sp = (5p) dvoly € T,,P>(M).

Solve 6p = — >, V/(pV;8) for ¢ € C>(M), unique up to an
additive constant.



Otto’s formal Riemannian metric on P>(M)

Given u = p dvoly € P(M), consider an infinitesimally nearby
measure g + 6, 1.e.

Sp = (5p) dvoly € T,,P>(M).

Solve 6p = — >, V/(pV;8) for ¢ € C>(M), unique up to an
additive constant.

Definition :
(11, Op1) = /M|V¢\2p dvoly.

This is the H~! Sobolev metric, in terms of p.
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Write c(t) = p(t) dvoly.



Corresponding energy of a curve

Say ¢ : [0,1] — P*>(M) is a smooth curve.

Write c(t) = p(t) dvoly.

Fact : We can solve

ap

T —ZV’(pV,-qb)

for ¢ = ¢(t) € C*(M).
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From {p(t)}tejo,1], we got {p(t)}teqo,1]-



Benamou-Brenier variational problem

From {p(t)}tejo,1], we got {p(t)}teqo,1]-
Definition
1 /1 5
E(c) = + / / V6|2 p dvoly .
2 Jo Jm

This is the energy of the curve c.



Geodesic distance equals Wasserstein distance

Theorem : (Otto-Westdickenberg 2005)
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Geodesic distance equals Wasserstein distance

Theorem : (Otto-Westdickenberg 2005)

W0, )2 = inf{E(c) : 0(0) = po, (1) = ).

N —

That is, the geodesic distance coming from Otto’s metric is the
Wasserstein distance W, at least on P>°(M).

Note : the infimum may not be achieved. A minimizing c is a
smooth displacement interpolation.



Euler-Lagrange equations

The Euler-Lagrange equation for the functional E is

Hamilton-Jacobi equation
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Euler-Lagrange equations

The Euler-Lagrange equation for the functional E is

Hamilton-Jacobi equation

o9 1 2

We also had
Conservation equation
) .
5t = V(i)
i

These are the equations for optimal transport and can be

solved explicitly. (First worked out for Riemannian manifolds by
Robert McCann 2001.)



Geometry of the space of probability measures

Metric geometry of Wasserstein space



Passing to metric geometry

Can we extend these statements from formal results about
P>°(M) to rigorous results about P(M)?



Passing to metric geometry

Can we extend these statements from formal results about
P>°(M) to rigorous results about P(M)?

Or, more generally, about P(X) for a nonsmooth space X?

Use ideas from metric geometry.
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continuous map.

number of line segments = 10
approx length = 32.28



Review of length spaces

Say (X, d) is a compact metric space and v : [0,1] — X is a
continuous map.

number of line segments = 10
approx length = 32.28

The length of v is

L(v) = sup sup > d(y(t-1), ¥(1))-
J 0=tH<t<L...<ty=1 j=1



Length spaces

Definition
(X, d) is a length space if the distance between two points
Xo, X1 € X equals the infimum of the lengths of curves joining

them, i.e.

d(xo, X1) = inf{L(7) : 7(0) = X0,7(1) = x1}.



Length spaces

Definition
(X, d) is a length space if the distance between two points
Xo, X1 € X equals the infimum of the lengths of curves joining

them, i.e.

d(xo, X1) = inf{L(7) : 7(0) = X0,7(1) = x1}.

A length-minimizing curve is called a geodesic.



Length spaces

Examples of length spaces :
1. The underlying metric space of any Riemannian manifold.
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Length spaces

Examples of length spaces :
1. The underlying metric space of any Riemannian manifold.

eV N A4
e

2o\ L
7 o T

- |
A}

Nonexamples :
1. A finite metric space with more than one point.
2. A circle with the chordal metric.

@



Wasserstein space as a length space

Proposition : (LV,S)
If X is a length space then so is the Wasserstein space P(X).

Hence we can talk about its (minimizing) geodesics {1t} +c(o,115
called Wasserstein geodesics.



Wasserstein space as a length space

Proposition : (LV,S)
If X is a length space then so is the Wasserstein space P(X).

Hence we can talk about its (minimizing) geodesics {1t} +c(o,115
called Wasserstein geodesics.

Proposition : (LV)

The Wasserstein geodesics are exactly the displacement
interpolations { it} o, 1]-
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Theorem : (LV,S)

If a Riemannian manifold M has nonnegative sectional
curvature then the length space P(M) has nonnegative
curvature in the Alexandrov sense.



Curvature of Wasserstein space

Formal calculation : (Otto 2001)

P(R") has nonnegative sectional curvature.

Theorem : (LV,S)

If a Riemannian manifold M has nonnegative sectional
curvature then the length space P(M) has nonnegative
curvature in the Alexandrov sense.

Open question :

To what extent is P(M) an infinite-dimensional Riemannian
manifold?



Geometry of the space of probability measures

Ricci meets Wasserstein



Review of Ricci curvature

Back to smooth manifolds.
Ricci curvature is an averaging of sectional curvature.

Fix a unit-length vector v € T,,M.

Definition

Ricy(v,v) = (n— 1) - (the average sectional curvature

of the 2-planes P containing v).



Review of Ricci curvature

Back to smooth manifolds.
Ricci curvature is an averaging of sectional curvature.

Fix a unit-length vector v € T,,M.

Definition

Ricy(v,v) = (n— 1) - (the average sectional curvature

of the 2-planes P containing v).

Example : S? x S? has nonnegative sectional curvatures but
has positive Ricci curvatures.
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Regularity Issue :

To define Ricy, we need a Riemannian metric which is
C?-regular.

Can we make sense of Ricci curvature for nonsmooth spaces?
Can we make sense at least of “nonnegative Ricci curvature”?



Ricci curvature

Regularity Issue :

To define Ricy, we need a Riemannian metric which is
C?-regular.

Can we make sense of Ricci curvature for nonsmooth spaces?
Can we make sense at least of “nonnegative Ricci curvature”?

The analogous question for sectional curvature was solved by
Alexandrov in the 1950’s.



The relation of Ricci curvature to optimal transport

Say M is a compact Riemannian manifold.

Definition: The (negative) entropy functional
& : P(M) - RU is given by

Sy plogp dvoly if = p dvoly,
E(p) = .
00 if 1 is not a.c. w.r.t. dvoly,.



Otto-Villani calculation

How does the entropy function behave along geodesics in
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Otto-Villani calculation

How does the entropy function behave along geodesics in
P(M)?

Suppose that ¢(t) = p(t) dvoly, is a smooth Wasserstein
geodesic.

We defined ¢(t) € C>*(M) by

Op

= = —ZV"(W@)-



Otto-Villani calculation

How does the entropy function behave along geodesics in
P(M)?

Suppose that ¢(t) = p(t) dvoly, is a smooth Wasserstein
geodesic.

We defined ¢(t) € C>*(M) by
dp i
e —ijv (hV9)-

A local calculation : (Otto-Villani 2000)
Along the geodesic c,

2
gtze(c(t))z /M [y Hess(¢)|2+RicM(v¢,v¢)} p dvoly.
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Corollary :

If Ricy > 0 then % >0, i.e. £ is convex along any
Wasserstein geodesic c.

Rigorous proof on P(M) :
McCann-Erausquin-Cordero-Schmuckenschlager (2001)

Converse : von Renesse-Sturm (2005)



Convexity of entropy along Wasserstein geodesics

Corollary :

If Ricy > 0 then % >0, i.e. £ is convex along any

Wasserstein geodesic c.

Rigorous proof on P(M) :
McCann-Erausquin-Cordero-Schmuckenschlager (2001)

Converse : von Renesse-Sturm (2005)

A new way of thinking about Ricci curvature :
Nonnegative Ricci curvature is equivalent to convexity of £ (on
P(M)).

We will use this property to define the notion of “nonnegative
Ricci curvature” for a nonsmooth space.



Geometry of the space of probability measures

Some more metric geometry



Gromov-Hausdorff topology

A topology on the set of all compact metric spaces (modulo
isometry).

(X1, dy) and (X2, db) are close in the Gromov-Hausdorff
topology if somebody with bad vision has trouble telling them
apart.




Example : a cylinder with a small cross-section is
Gromov-Hausdorff close to a line segment.



Gromov’s precompactness theorem

Theorem : (Gromov 1981)
Given N e Zt and D > 0,

{(M,g) : dim(M) = N,diam(M) < D, Ricy, > 0}

is precompact in the Gromov-Hausdorff topology on
{compact metric spaces}/isometry.



Artist’s rendition of Gromov-Hausdorff space

Each point represents a compact metric space.
Each interior point is a Riemannian manifold (M, g) with
dim(M) = N, diam(M) < D and Ricy > 0.



Artist’s rendition of Gromov-Hausdorff space

Each point represents a compact metric space.
Each interior point is a Riemannian manifold (M, g) with
dim(M) = N, diam(M) < D and Ricy > 0.

The boundary points are compact metric spaces (X, d) with
dimy X < N and diam(X) < D. They are generally not
manifolds.

(Example : X = M/G.)

In some moral sense, the boundary points are metric spaces
with “nonnegative Ricci curvature”.



What can we say about the Gromov-Hausdorff limits of
Riemannian manifolds with nonnegative Ricci curvature?



What can we say about the Gromov-Hausdorff limits of
Riemannian manifolds with nonnegative Ricci curvature?

To answer this, it turns out to be useful to consider instead
metric-measure spaces.
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equipped with a given probability measure v € P(X).
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Metric-measure spaces

Definition
A metric-measure space is a compact metric space (X, d)
equipped with a given probability measure v € P(X).

Canonical Example

If M is a compact Riemannian manifold then (M, adu, %) is
a metric-measure space.

More generally, a smooth measured length space is a compact
Riemannian manifold (M, g) equipped with a smooth probability
measure dv = e~V dvoly,.



Measured Gromov-Hausdorff limits

An easy consequence of Gromov precompactness :

{(M, g, \m> . dim(M) = N, diam(M) < D, Ricy > o}

is precompact in the measured Gromov-Hausdorff topology on
{compact metric-measure spaces}/isometry.



Measured Gromov-Hausdorff limits

An easy consequence of Gromov precompactness :

{(M, g, \m> . dim(M) = N, diam(M) < D, Ricy > o}

is precompact in the measured Gromov-Hausdorff topology on
{compact metric-measure spaces}/isometry.

What can we say about the limit points? (Work of
Cheeger-Colding 1996-2000)

What are the smooth limit points?



Measured Gromov-Hausdorff (MGH) topology

/ A / \
\‘\\,;:r-r// h :
Definition

lim;_ (X, d,vi) = (X,d,v) if there are Borel maps
fi : X; — X and a sequence ¢; — 0 such that
1. (Almost isometry) For all x;, x/ € Xi,

|ax (1i(x), fi(x7)) = dx, (i, X])| < €.

2. (Almost surjective) For all x € X and all /, there is some
X; € X; such that
dx(fi(x;), x) < e;.

3. lim;_(f)«vi = v inthe weak-x topology.



Passage to P(X)

To one compact metric space we have assigned another.
(X, d) — (P(X), We)
Proposition : (LV)

If X; — X in the Gromov-Hausdorff topology then
P(X;) — P(X) in the Gromov-Hausdorff topology.
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Passage to P(X)

To one compact metric space we have assigned another.
(X, d) — (P(X), We)

Proposition : (LV)

If X; — X in the Gromov-Hausdorff topology then

P(X;) — P(X) in the Gromov-Hausdorff topology.

We will use the properties of the Wasserstein space (P(X), W>)
to say something about the geometry of (X, d).

In particular, we will define what it means for (X, v) to have
“nonnegative Ricci curvature” in terms of P(X).



Geometry of the space of probability measures

Generalized entropy functionals



X a compact Hausdorff space.
P(X) = Borel probability measures on X, with weak-« topology.

Fix a background measure v € P(X).



Effective dimension

N € [1,00] a new parameter (possibly infinite).

It turns out that there’s not a single notion of “nonnegative Ricci
curvature”, but rather a 1-parameter family. That is, for each N,
there’s a notion of a space having “nonnegative N-Ricci
curvature”.

Here N is an effective dimension of the space, and must be
inputted.




Definition of the “negative entropy” function

gN:P(X)ﬁRUOO



Definition of the “negative entropy” function
EN: P(X) — RUo0

Let
po=pv + ps
be the Lebesgue decomposition of x with respect to v.



Definition of the “negative entropy” function
En:P(X)—>RUx

Let
po=pv + ps
be the Lebesgue decomposition of x with respect to v.

For N € [1, ), the “negative entropy” of u with respect to v is

En(u) = N — N/Xp1/1\/ dv.



Definition of the “negative entropy” function
En:P(X)—>RUx

Let
po=pv + ps
be the Lebesgue decomposition of x with respect to v.

For N € [1, ), the “negative entropy” of u with respect to v is

En(u) = N — N/Xp1/1\/ dv.

For N = oo,

Jxplogpdy if pisa.c. wrt. v,
£ -
() {oo otherwise.



Geometry of the space of probability measures

Abstract Ricci curvature



Convexity on Wasserstein space

(X, d) is a compact length space.

v is a fixed probability measure on X.



Convexity on Wasserstein space

(X, d) is a compact length space.
v is a fixed probability measure on X.

We want to ask whether the negative entropy function &y is a
convex function on P(X).

That is, given pg, 1 € P(X), whether &y restricts to a convex
function along a Wasserstein geodesic {:t}c[o,1] from 1o to 4.



Nonnegative N-Ricci curvature

Definition
Given N € [1, c0], we say that a compact measured length
space (X, d,v) has nonnegative N-Ricci curvature if :



Nonnegative N-Ricci curvature

Definition
Given N € [1, c0], we say that a compact measured length
space (X, d,v) has nonnegative N-Ricci curvature if :

For all ug, 1 € P(X) with supp(uo) C supp(v) and
supp(p1) C supp(v), there is some Wasserstein geodesic

{mt}tef0,1 from pg to 4 so that for all ¢ € [0, 1],

En(ue) < tEn(u1) + (1 —1t) En(po)-



Nonnegative N-Ricci curvature




Nonnegative N-Ricci curvature

Note : We only require convexity along some geodesic from g
to w1, not all geodesics.



Nonnegative N-Ricci curvature

Note : We only require convexity along some geodesic from g
to w1, not all geodesics.

There’s also a notion of “N-Ricci curvature bounded below by
K”.



Main result

Theorem : (LV,S)

Let {(X;, d;,v;)}72, be a sequence of compact measured length
spaces with

lim (X;, di,v;) = (X,d,v)
1—00

in the measured Gromov-Hausdorff topology.

Forany N € [1, 0], if each (Xj, d;, v;) has nonnegative N-Ricci
curvature then (X, d, ) has nonnegative N-Ricci curvature.



What does all this have to do with Ricci curvature?

Let (M, g) be a compact connected n-dimensional Riemannian
manifold.

We could take the Riemannian measure, but let’'s be more
general and consider any smooth measured length space.



What does all this have to do with Ricci curvature?

Let (M, g) be a compact connected n-dimensional Riemannian
manifold.

We could take the Riemannian measure, but let’'s be more
general and consider any smooth measured length space.

Say ¥ € C*(M) has

/ e ¥ dvoly = 1.
M

Putv = eV dvoly.



The N-Ricci tensor

For N € [1, oc], define the N-Ricci tensor Ricy of (M", g, v) by

Ric + Hess(V) if N = oo,
Ric + Hess(V) — yl-d¥®d¥ ifn < N < oo,
Ric + Hess(V) — oo (dV ®@ dV¥) if N=n,
—00 if N < n,

where by convention co -0 = 0.

Ricy is @ symmetric covariant 2-tensor field on M that depends
on gand V.



The N-Ricci tensor

For N € [1, oc], define the N-Ricci tensor Ricy of (M", g, v) by

Ric + Hess(V) if N = oo,

Ric + Hess(V) — yl-d¥®d¥ ifn < N < oo,
Ric + Hess(V) — oo (dV ®@ dV¥) if N=n,

—00 if N < n,

where by convention co -0 = 0.

Ricy is @ symmetric covariant 2-tensor field on M that depends
on gand V.

(If N = nthen Ricy is —oo except where dW = 0. There,
Ricy = Ric.)

Ric., = Bakry-Emery tensor = right-hand side of Perelman’s
modified Ricci flow equation.



Abstract Ricci recovers classical Ricci

Recall that v = e~V dvoly.

Theorem : (LV, S)
For N € [1, ], the measured length space (M, g,v) has
nonnegative N-Ricci curvature if and only if Ricy > 0.



Abstract Ricci recovers classical Ricci

Recall that v = e~V dvoly.

Theorem : (LV, S)
For N € [1, ], the measured length space (M, g,v) has
nonnegative N-Ricci curvature if and only if Ricy > 0.

. . __ dvol
Classical case : V constant, so v = VoI(M)

Then (M", g, v) has abstract nonnegative N-Ricci curvature if
and only if it has classical nonnegative Ricci curvature, as soon
as N > n.



Geometry of the space of probability measures

Applications



Smooth limit spaces

Had Gromov precompactness theorem. What are the limit
spaces (X, d,v)? Suppose that the limit space is a smooth
measured length space, i.e.

(X7 d7 V) = (87 9B, eiw dVOIB)

for some n-dimensional smooth Riemannian manifold (B, gg)
and some ¥ € C*(B).



Smooth limit spaces

Had Gromov precompactness theorem. What are the limit
spaces (X, d,v)? Suppose that the limit space is a smooth
measured length space, i.e.

(X,d,v) = (B, gs,e ¥ dvolg)
for some n-dimensional smooth Riemannian manifold (B, gg)

and some ¥ € C*(B).

Theorem : (LV)

If (B, g, e~V dvolg) is a measured Gromov-Hausdorff limit of
Riemannian manifolds with nonnegative Ricci curvature and
dimension at most N then Ricy(B) > 0.



Smooth limit spaces

Had Gromov precompactness theorem. What are the limit
spaces (X, d,v)? Suppose that the limit space is a smooth
measured length space, i.e.

(X,d,v) = (B, gs,e ¥ dvolg)
for some n-dimensional smooth Riemannian manifold (B, gg)
and some ¥ € C*(B).

Theorem : (LV)

If (B, g, e~V dvolg) is a measured Gromov-Hausdorff limit of
Riemannian manifolds with nonnegative Ricci curvature and
dimension at most N then Ricy(B) > 0.

Note : the dimension can drop on taking limits.



Bishop-Gromov-type inequality

Theorem : (LV, S)

If (X, d,v) has nonnegative N-Ricci curvature and x € supp(v)
then r—N v(B,(x)) is nonincreasing in r.



Lichnerowicz inequality

If (M, g) is a compact Riemannian manifold, let A1 be the
smallest positive eigenvalue of the Laplacian —V?2.

Theorem : (Lichnerowicz 1964)

If dim(M) = nand M has Ricci curvatures bounded below by
K > 0 then
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f is a Lipschitz function on X with [, f dv = 0 then

N—-11
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Sharp global Poincaré inequality

Theorem : (LV)

If (X, d,v) has N-Ricci curvature bounded below by K > 0 and
f is a Lipschitz function on X with [, f dv = 0 then

N—-11
2.4, « V-1 1 2
/Xf dv < N K /X|Vf\ dv.

_r f(y) = f(X)]
IVFf|(x) = Ilr;lfgpw.

(There are also log Sobolev inequalities and Sobolev
inequalities.)

Here



Ricci O’Neill Theorem

Theorem (O’Neill 1966) Sectional curvature is nondecreasing
under a Riemannian submersion.



Ricci O’Neill Theorem

Theorem (O’Neill 1966) Sectional curvature is nondecreasing
under a Riemannian submersion.

Theorem (JL 2003) Ricy is nondecreasing under a
Riemannian submersion.



Ricci O’Neill Theorem

Theorem (O’Neill 1966) Sectional curvature is nondecreasing
under a Riemannian submersion.

Theorem (JL 2003) Ricy is nondecreasing under a
Riemannian submersion.

LV : A synthetic proof of the Ricci O’Neill theorem using
displacement convexity.
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curvature admit isoperimetric inequalities?



Some open questions

Do measured length spaces with nonnegative N-Ricci
curvature admit isoperimetric inequalities?

To what extent does the Cheeger-Gromoll splitting principle
hold for measured length spaces with nonnegative N-Ricci
curvature?



Geometry of the space of probability measures

Perelman’s reduced volume



M a compact, connected n-dimensional manifold.

Say (M, g(1)) is a Ricci flow solution, i.e. % = — 2 Ric.



M a compact, connected n-dimensional manifold.
Say (M, g(1)) is a Ricci flow solution, i.e. % = — 2 Ric.
Fix ty and put 7 = fy — t. Then % = 2 Ric.

An important tool : monotonic quantities.



Reduced volume

Fix p e M. Say v : [0,7] — M is a smooth curve with ~(0) = p.
(The graph of v goes “backward in time”.)



Reduced volume

Fix p e M. Say v : [0,7] — M is a smooth curve with ~(0) = p.
(The graph of v goes “backward in time”.)

Definition

£rength £(7) = J§ V7 (1) + RGP 7)) dr



Reduced volume
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Reduced volume

Fix p e M. Say v : [0,7] — M is a smooth curve with ~(0) = p.
(The graph of v goes “backward in time”.)

Definition

L-length L(7) = [ /7 <|’Y’g(r) + R(v(7), 7')) dr.

Definition
reduced distance Given q € M, put
L(q.7) = inf{L(~) : 7(0) = p,~(7) = q}.

—

Put (q,7) = %@

S5

Definition _
reduced volume V(7) = 772 [, e~ (@7 dvol(q).



Monotonicity of the reduced volume

Theorem : (Perelman 2002)

Vis nonincreasing in 7, i.e. nondecreasing in t.



Monotonicity of the reduced volume

Theorem : (Perelman 2002)

Vis nonincreasing in 7, i.e. nondecreasing in t.
An “entropy” functional for Ricci flow.
The only assumption : g(t) satisfies the Ricci flow equation.

Main application : Perelman’s “no local collapsing” theorem.
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Perelman’s heuristic derivation

PutM =M x SN x R*.
Here N is a free parameter and  is the coordinate on R*.
Put

27
Fact : As N — oo, Ric(M) = O (N~1).

g =9(7) +2Nrggen + (N + Fi’) dr.

Bishop-Gromov : r~ 9™ vol(B,(p)) is nonincreasing in r if
Ric > 0.

Apply formally to M and take N — co. Get monotonicity of V.
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Heuristic relation to optimal transport

We know how to characterize nonnegative Ricci curvature
using optimal transport. Apply to M and translate down to M.

This should give an optimal transport problem on M with which
we can derive the monotonicity of V.

We'll describe a (re)proof of the monotonicity of Vv, using
optimal transport methods.



Geometry of the space of probability measures

Formulas from Riemannian optimal transport



Say ¢ : [0,1] — P*>(M) is a smooth curve.
Write c(t) = p(t) dvoly.
Solve 9y _
ot = 2 VeVig)
i
for ¢ = ¢(t) € C*(M).
From {p(t) }tcp0,1), We got {¢(t)}tejo,17- Put

1
E(c) = ;/O /Mv¢|2pdvo|M dt.



The Euler-Lagrange equation for the functional E is

o9 1 2



The Euler-Lagrange equation for the functional E is

a1 5

Then

2
gtz/ plog pdvoly :/ [I Hess ¢ + Ricy(V, vqb)} pdvoly .
M M



Geometry of the space of probability measures

Optimal transport for Ricci flow



Can we do something similar for the Ricci flow?

Principle : Satisfying Ric = 0 in the Riemannian case is like
satisfying the Ricci flow equation in the spacetime case.

Optimal transport in a Ricci flow background was first
considered by Peter Topping, with application to another
monotonic quantity (WW-functional).



Can we do something similar for the Ricci flow?

Principle : Satisfying Ric = 0 in the Riemannian case is like
satisfying the Ricci flow equation in the spacetime case.

Optimal transport in a Ricci flow background was first
considered by Peter Topping, with application to another
monotonic quantity (WW-functional).

Note : The Ricci flow equation

dg .
v i 2 Ric
implies
dvoly R dvol

dt



Eo functional

Assume hereafter that (M, g(t)) satisfies the Ricci flow
equation.

Given ¢ : [fy, 1] — P>°(M), write c(t) = p(t) dvoly. Solve
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Eo functional

Assume hereafter that (M, g(t)) satisfies the Ricci flow
equation.

Given ¢ : [fy, 1] — P>°(M), write c(t) = p(t) dvoly. Solve
op _ ir
5 = —ZV(W@) + Rp

for o = ¢(t) € C*(M).

Definition

Eo(c) = 3 [ Ju (V82 + R) p dvoly dt

Euler-Lagrange equation for Ej :

o A S
5 = §|V¢y+§H.



Convexity statement

Proposition
If ¢ satisfies the Euler-Lagrange equation then

2
52/ (pInp — ¢p) dvoly, = / | Ric — Hess ¢/ p dvoly,.
tc Jm Iy



Convexity statement

Proposition
If ¢ satisfies the Euler-Lagrange equation then

d2

dt2/ (pInp — ¢p) dvoly, = / | Ric — Hess ¢/ p dvoly,.
M M

Corollary
If ¢ satisfies the Euler-Lagrange equation then
S (pInp — ¢ p) dvoly is convex in t.



Corresponding optimal transport problem

Say we want to transport a measure pg (at time t)) to a
measure p4 (at time t;).

Take the cost to transport a unit of mass from p to g to be

min{Lo(v) : v(t) = p,v(t1) = q},
where

b
Lo(v) = % /t <H|§(t) + R(’)’(t),t)) dt.

There is a corresponding notion of optimal transport,
displacement interpolation, etc.
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E functional

Fix ty and put 7 = fy — t. The Ricci flow equation is

d ,
4 = 2 Ric.

Given ¢ : [r9, 4] — P>°(M), write ¢(7) = p(7) dvoly. Solve

0 .
6*/; = - V'(pVié) - Rp
i

forp = ¢(1) € C*(M).



E functional

Fix ty and put 7 = fy — t. The Ricci flow equation is

dg .
4 = 2 Ric.

Given ¢ : [r9, 1] — P>(M), write ¢(7) = p(7) dvoly,. Solve
8p = ZV(pV¢) — Rp
forp = ¢(1) € C*(M).

Definition
E (c) = f IuvT (|V¢]2+ R) p dvoly dr



E functional

Fix ty and put 7 = fy — t. The Ricci flow equation is

dg ,
4 = 2 Ric.

Given ¢ : [r9, 4] — P>°(M), write ¢(7) = p(7) dvoly. Solve
0
p = ZV(pV¢) — Rp
forp = ¢(1) € C*(M).
Definition
E_(c) = f Juv7 (IV9[2+ R) p dvoly dr
Euler-Lagrange equation for E_ :

9 1.2 1. 1
o = Vet 3R - o0



Convexity statement

Proposition
If ¢ satisfies the Euler-Lagrange equation then

s d\?
<T2d7') (/M(p Inp + ¢p) dvoIM+gInr> =

73/‘Ric+Hess¢>—‘ p dvoly.
M



Convexity statement

Proposition
If ¢ satisfies the Euler-Lagrange equation then

2 d)\?
<Tsz) (/M(p Inp + ¢p) dvoIM+gInr> =

3 , g2
T /‘R|c+Hess¢>—‘ p dvoly .
M 27'

Corollary

If ¢ satisfies the Euler-Lagrange equation then
Ju(pInp + ¢ p) dvoly + 5 InT is convex in the variable

_1
S=71 2.



Geometry of the space of probability measures

Monotonicity of the reduced volume



The transport problem

Take 79 — 0, 19 = dp and p4 an absolutely continuous measure.

The displacement interpolation is along £-geodesics emanating
from p.

In this case, ¢ = |.



From convexity to monotonicity

Proposition

In this case, [,,(p Inp + ¢ p) dvoly + 3 InT is nondecreasing
inT.



From convexity to monotonicity

Proposition
In this case, [,,(p Inp + ¢ p) dvoly + 3 In7 is nondecreasing
inT.

Proof. 1

We know that it is convexins=7"2. AS s — oo, i.e. as 7 — 0,
it approaches a constant. (Almost Euclidean situation.) So it is
nonincreasing in s, i.e. nondecreasing in 7. O



Trivial fact : The minimizer of

/ (pInp + ¢p) dvoly +Q InT,
M 2

as pdvoly, ranges over absolutely continuous probability

measures, is
—In (r‘g/ e ¢ dvoIM) .
M

The minimizing measure is given by

e ¢

p= Jye ¢ dvoly
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Monotonicity of reduced volume

Proposition

V(r) = 7'_3/ e~ dvoly
M

is nonincreasing in .
Proof : Say 7" < 7”. Recall that ¢ = /. Take
w(t") = p(7"") dvoly with
e—¢(")
" __
p(T ) - fM e— ¢(T”) dVOIM

Transport it to d, (at time zero). At the intermediate time 7’ we
see a measure u(7') = p(7') dvoly.



Then
—In <(T')—2 / e ) dvoIM>
M

< [ o) np() + (") ()] cvoly + 5 In+



Then
—In <(T')—2 / e ) dvoIM>
M

< [ 1otr) mple) + 6(7) p(r)] ol + 5 In™

< [ 1ot mple") + 6() p(r")] ol + 5 I’



Then
—In <(T')—2 / e ) dvoIM>
M

< [ 1otr) mple) + 6(7) p(r)] ol + 5 In™

< [ 1ot mple") + 6() p(r")] ol + 5 I’



Then
—In <(T')—2 / e ) dvoIM>
M

< [ 1otr) mple) + 6(7) p(r)] ol + 5 In™

< [ 1ot mple") + 6() p(r")] ol + 5 I’

End of proof
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nonincreasing in t.
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J.L., McCann-Topping Suppose that (M, g(t)) is a Ricci flow
solution. Suppose that 1o(t) and w1 (t) are two solutions of the
backward heat flow on measures
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o =~ Van K
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Optimal transport and heat flow

Otto, Otto-Westdickenberg Suppose that a compact
Riemannian manifold has Ric > 0. If uo(t) and w4 (t) are two
solutions of the heat flow on measures then Wa(uo(t), p1(t)) is
nonincreasing in t.

J.L., McCann-Topping Suppose that (M, g(t)) is a Ricci flow
solution. Suppose that 1o(t) and w1 (t) are two solutions of the
backward heat flow on measures

dp 2
o =~ Van K

Then Wa(uo(t), 11(t)) is nondecreasing in t.

Topping Extension to a statement about the £-transport
distance between pg and p4 at distinct but related times.
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