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Questions

The motivation comes from questions about finite-dimensional
spaces.

How can we understand Ricci curvature?

Does it make sense to talk about Ricci curvature for nonsmooth
spaces?

Perelman introduced an important monotonic quantity in Ricci
flow, the reduced volume. Where does this come from?

Claim : These questions can be answered in terms of optimal
transport, or the geometry of the space of probability measures.
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Dirtmoving

Given a before and an after dirtpile, what is the most efficient
way to move the dirt from one place to the other?

Let’s say that the cost to move a gram of dirt from x to y is
d(x , y)2.



Gaspard Monge

Mémoire sur la théorie des déblais et des remblais (1781)

Memoir on the theory of excavations and fillings (1781)



Gaspard Monge



Wasserstein space

Let (X ,d) be a compact metric space.

Notation
P(X ) is the set of Borel probability measures on X.

That is, µ ∈ P(X ) iff µ is a nonnegative Borel measure on X
with µ(X ) = 1.

Definition
Given µ0, µ1 ∈ P(X ), the Wasserstein distance W2(µ0, µ1) is
the square root of the minimal cost to transport µ0 to µ1.



Wasserstein space

W2(µ0, µ1)2 = inf
{∫

X×X
d(x , y)2 dπ(x , y)

}
,

where

π ∈ P(X × X ), (p0)∗π = µ0, (p1)∗π = µ1.



Wasserstein space

Fact :
(P(X ),W2) is a metric space, called the Wasserstein space.

The metric topology is the weak-∗ topology, i.e. limi→∞ µi = µ if
and only if for all f ∈ C(X ), limi→∞

∫
X f dµi =

∫
X f dµ.

So to one compact metric space (X ,d), we’ve assigned
another one (P(X ),W2).

Note : There is an isometric embedding X → P(X ) by x → δx .
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Displacement interpolations

To move dirt in the real world, we would transport it along
minimizing geodesics.

Take a snapshot at time t . We get a family of meaures
{µt}t∈[0,1], called a displacement interpolation. We would like to
say that this is a “geodesic” in P(X ).
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Smooth measures

If (M,g) is a compact connected Riemannian manifold, let
P∞(M) ⊂ P(M) be the smooth probability measures with
positive density.

P∞(M) = {ρ dvolM : ρ ∈ C∞(M), ρ > 0,
∫

M ρ dvolM = 1}.



Otto’s formal Riemannian metric on P∞(M)

Given µ = ρ dvolM ∈ P∞(M), consider an infinitesimally nearby
measure µ+ δµ, i.e.

δµ = (δρ) dvolM ∈ TµP∞(M).

Solve δρ = −
∑

i ∇i(ρ∇iφ) for φ ∈ C∞(M), unique up to an
additive constant.

Definition :
〈δµ, δµ〉 =

∫
M
|∇φ|2 ρ dvolM .

This is the H−1 Sobolev metric, in terms of ρ.
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Corresponding energy of a curve

Say c : [0,1]→ P∞(M) is a smooth curve.

Write c(t) = ρ(t) dvolM .

Fact : We can solve

∂ρ

∂t
= −

∑
i

∇i(ρ∇iφ)

for φ ≡ φ(t) ∈ C∞(M).
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Benamou-Brenier variational problem

From {ρ(t)}t∈[0,1], we got {φ(t)}t∈[0,1].

Definition

E(c) =
1
2

∫ 1

0

∫
M
|∇φ|2 ρ dvolM dt .

This is the energy of the curve c.
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Geodesic distance equals Wasserstein distance

Theorem : (Otto-Westdickenberg 2005)

1
2

W2(µ0, µ1)2 = inf{E(c) : c(0) = µ0, c(1) = µ1}.

That is, the geodesic distance coming from Otto’s metric is the
Wasserstein distance W2, at least on P∞(M).

Note : the infimum may not be achieved. A minimizing c is a
smooth displacement interpolation.
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Euler-Lagrange equations

The Euler-Lagrange equation for the functional E is

Hamilton-Jacobi equation

∂φ

∂t
= − 1

2
|∇φ|2.

We also had

Conservation equation

∂ρ

∂t
= −

∑
i

∇i(ρ∇iφ).

These are the equations for optimal transport and can be
solved explicitly. (First worked out for Riemannian manifolds by
Robert McCann 2001.)
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Passing to metric geometry

Can we extend these statements from formal results about
P∞(M) to rigorous results about P(M)?

Or, more generally, about P(X ) for a nonsmooth space X?

Use ideas from metric geometry.
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Review of length spaces

Say (X ,d) is a compact metric space and γ : [0,1]→ X is a
continuous map.

The length of γ is

L(γ) = sup
J

sup
0=t0≤t1≤...≤tJ =1

J∑
j=1

d(γ(tj−1), γ(tj)).
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Length spaces

Definition
(X ,d) is a length space if the distance between two points
x0, x1 ∈ X equals the infimum of the lengths of curves joining
them, i.e.

d(x0, x1) = inf{L(γ) : γ(0) = x0, γ(1) = x1}.

A length-minimizing curve is called a geodesic.
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Length spaces

Examples of length spaces :
1. The underlying metric space of any Riemannian manifold.
2.

Nonexamples :
1. A finite metric space with more than one point.
2. A circle with the chordal metric.
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Wasserstein space as a length space

Proposition : (LV,S)

If X is a length space then so is the Wasserstein space P(X ).

Hence we can talk about its (minimizing) geodesics {µt}t∈[0,1],
called Wasserstein geodesics.

Proposition : (LV)

The Wasserstein geodesics are exactly the displacement
interpolations {µt}t∈[0,1].
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Curvature of Wasserstein space

Formal calculation : (Otto 2001)

P(Rn) has nonnegative sectional curvature.

Theorem : (LV,S)

If a Riemannian manifold M has nonnegative sectional
curvature then the length space P(M) has nonnegative
curvature in the Alexandrov sense.

Open question :

To what extent is P(M) an infinite-dimensional Riemannian
manifold?
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Review of Ricci curvature

Back to smooth manifolds.

Ricci curvature is an averaging of sectional curvature.

Fix a unit-length vector v ∈ TmM.

Definition

RicM(v,v) = (n − 1) · (the average sectional curvature

of the 2-planes P containing v).

Example : S2 × S2 has nonnegative sectional curvatures but
has positive Ricci curvatures.
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Ricci curvature

Regularity Issue :

To define RicM , we need a Riemannian metric which is
C2-regular.

Can we make sense of Ricci curvature for nonsmooth spaces?
Can we make sense at least of “nonnegative Ricci curvature”?

The analogous question for sectional curvature was solved by
Alexandrov in the 1950’s.
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The relation of Ricci curvature to optimal transport

Say M is a compact Riemannian manifold.

Definition: The (negative) entropy functional
E : P(M)→ R ∪∞ is given by

E(µ) =

{∫
M ρ log ρ dvolM if µ = ρ dvolM ,
∞ if µ is not a.c. w.r.t. dvolM .



Otto-Villani calculation

How does the entropy function behave along geodesics in
P(M)?

Suppose that c(t) = ρ(t) dvolM is a smooth Wasserstein
geodesic.

We defined φ(t) ∈ C∞(M) by

∂ρ

∂t
= −

∑
i

∇i(ρ∇iφ).

A local calculation : (Otto-Villani 2000)
Along the geodesic c,

d2

dt2E(c(t)) =

∫
M

[
|Hess(φ)|2 + RicM(∇φ,∇φ)

]
ρ dvolM .



Otto-Villani calculation

How does the entropy function behave along geodesics in
P(M)?

Suppose that c(t) = ρ(t) dvolM is a smooth Wasserstein
geodesic.

We defined φ(t) ∈ C∞(M) by

∂ρ

∂t
= −

∑
i

∇i(ρ∇iφ).

A local calculation : (Otto-Villani 2000)
Along the geodesic c,

d2

dt2E(c(t)) =

∫
M

[
|Hess(φ)|2 + RicM(∇φ,∇φ)

]
ρ dvolM .



Otto-Villani calculation

How does the entropy function behave along geodesics in
P(M)?

Suppose that c(t) = ρ(t) dvolM is a smooth Wasserstein
geodesic.

We defined φ(t) ∈ C∞(M) by

∂ρ

∂t
= −

∑
i

∇i(ρ∇iφ).

A local calculation : (Otto-Villani 2000)
Along the geodesic c,

d2

dt2E(c(t)) =

∫
M

[
|Hess(φ)|2 + RicM(∇φ,∇φ)

]
ρ dvolM .



Convexity of entropy along Wasserstein geodesics

Corollary :
If RicM ≥ 0 then d2E

dt2 ≥ 0, i.e. E is convex along any
Wasserstein geodesic c.

Rigorous proof on P(M) :
McCann-Erausquin-Cordero-Schmuckenschläger (2001)

Converse : von Renesse-Sturm (2005)

A new way of thinking about Ricci curvature :

Nonnegative Ricci curvature is equivalent to convexity of E (on
P(M)).

We will use this property to define the notion of “nonnegative
Ricci curvature” for a nonsmooth space.
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Gromov-Hausdorff topology

A topology on the set of all compact metric spaces (modulo
isometry).

(X1,d1) and (X2,d2) are close in the Gromov-Hausdorff
topology if somebody with bad vision has trouble telling them
apart.



Example : a cylinder with a small cross-section is
Gromov-Hausdorff close to a line segment.



Gromov’s precompactness theorem

Theorem : (Gromov 1981)

Given N ∈ Z+ and D > 0,

{(M,g) : dim(M) = N,diam(M) ≤ D,RicM ≥ 0}

is precompact in the Gromov-Hausdorff topology on
{compact metric spaces}/isometry.



Artist’s rendition of Gromov-Hausdorff space

Each point represents a compact metric space.
Each interior point is a Riemannian manifold (M,g) with
dim(M) = N, diam(M) ≤ D and RicM ≥ 0.

The boundary points are compact metric spaces (X ,d) with
dimH X ≤ N and diam(X ) ≤ D. They are generally not
manifolds.
(Example : X = M/G.)

In some moral sense, the boundary points are metric spaces
with “nonnegative Ricci curvature”.
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Question :

What can we say about the Gromov-Hausdorff limits of
Riemannian manifolds with nonnegative Ricci curvature?

To answer this, it turns out to be useful to consider instead
metric-measure spaces.
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Metric-measure spaces

Definition
A metric-measure space is a compact metric space (X ,d)
equipped with a given probability measure ν ∈ P(X ).

Canonical Example

If M is a compact Riemannian manifold then
(

M,dM ,
dvolM
vol(M)

)
is

a metric-measure space.

More generally, a smooth measured length space is a compact
Riemannian manifold (M,g) equipped with a smooth probability
measure dν = e−Ψ dvolM .
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Measured Gromov-Hausdorff limits

An easy consequence of Gromov precompactness :{(
M,g,

dvolM
vol(M)

)
: dim(M) = N,diam(M) ≤ D,RicM ≥ 0

}
is precompact in the measured Gromov-Hausdorff topology on
{compact metric-measure spaces}/isometry.

What can we say about the limit points? (Work of
Cheeger-Colding 1996-2000)

What are the smooth limit points?
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Measured Gromov-Hausdorff (MGH) topology

Definition
limi→∞(Xi ,di , νi) = (X ,d , ν) if there are Borel maps
fi : Xi → X and a sequence εi → 0 such that
1. (Almost isometry) For all xi , x ′i ∈ Xi ,

|dX (fi(xi), fi(x ′i ))− dXi (xi , x ′i )| ≤ εi .

2. (Almost surjective) For all x ∈ X and all i , there is some
xi ∈ Xi such that

dX (fi(xi), x) ≤ εi .

3. limi→∞(fi)∗νi = ν in the weak-∗ topology.



Passage to P(X )

To one compact metric space we have assigned another.

(X ,d) −→ (P(X ),W2)

Proposition : (LV)

If Xi → X in the Gromov-Hausdorff topology then
P(Xi)→ P(X ) in the Gromov-Hausdorff topology.

We will use the properties of the Wasserstein space (P(X ),W2)
to say something about the geometry of (X ,d).

In particular, we will define what it means for (X , ν) to have
“nonnegative Ricci curvature” in terms of P(X ).
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Notation

X a compact Hausdorff space.

P(X ) = Borel probability measures on X , with weak-∗ topology.

Fix a background measure ν ∈ P(X ).



Effective dimension

N ∈ [1,∞] a new parameter (possibly infinite).

It turns out that there’s not a single notion of “nonnegative Ricci
curvature”, but rather a 1-parameter family. That is, for each N,
there’s a notion of a space having “nonnegative N-Ricci
curvature”.

Here N is an effective dimension of the space, and must be
inputted.



Entropy

Definition of the “negative entropy” function

EN : P(X )→ R ∪∞

Let
µ = ρ ν + µs

be the Lebesgue decomposition of µ with respect to ν.

For N ∈ [1,∞), the “negative entropy” of µ with respect to ν is

EN(µ) = N − N
∫

X
ρ1− 1

N dν.

For N =∞,

E∞(µ) =

{∫
X ρ log ρ dν if µ is a.c. w.r.t. ν,
∞ otherwise.
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Convexity on Wasserstein space

(X ,d) is a compact length space.

ν is a fixed probability measure on X .

We want to ask whether the negative entropy function EN is a
convex function on P(X ).

That is, given µ0, µ1 ∈ P(X ), whether EN restricts to a convex
function along a Wasserstein geodesic {µt}t∈[0,1] from µ0 to µ1.
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Nonnegative N-Ricci curvature

Definition
Given N ∈ [1,∞], we say that a compact measured length
space (X ,d , ν) has nonnegative N-Ricci curvature if :

For all µ0, µ1 ∈ P(X ) with supp(µ0) ⊂ supp(ν) and
supp(µ1) ⊂ supp(ν), there is some Wasserstein geodesic
{µt}t∈[0,1] from µ0 to µ1 so that for all t ∈ [0,1],

EN(µt ) ≤ t EN(µ1) + (1− t) EN(µ0).
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Nonnegative N-Ricci curvature

Note : We only require convexity along some geodesic from µ0
to µ1, not all geodesics.

There’s also a notion of “N-Ricci curvature bounded below by
K”.
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Main result

Theorem : (LV,S)

Let {(Xi ,di , νi)}∞i=1 be a sequence of compact measured length
spaces with

lim
i→∞

(Xi ,di , νi) = (X ,d , ν)

in the measured Gromov-Hausdorff topology.

For any N ∈ [1,∞], if each (Xi ,di , νi) has nonnegative N-Ricci
curvature then (X ,d , ν) has nonnegative N-Ricci curvature.



What does all this have to do with Ricci curvature?

Let (M,g) be a compact connected n-dimensional Riemannian
manifold.

We could take the Riemannian measure, but let’s be more
general and consider any smooth measured length space.

Say Ψ ∈ C∞(M) has ∫
M

e−Ψ dvolM = 1.

Put ν = e−Ψ dvolM .
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The N-Ricci tensor

For N ∈ [1,∞], define the N-Ricci tensor RicN of (Mn,g, ν) by
Ric + Hess(Ψ) if N =∞,
Ric + Hess(Ψ) − 1

N−n dΨ⊗ dΨ if n < N < ∞,
Ric + Hess(Ψ) − ∞ (dΨ⊗ dΨ) if N = n,
−∞ if N < n,

where by convention∞ · 0 = 0.

RicN is a symmetric covariant 2-tensor field on M that depends
on g and Ψ.

(If N = n then RicN is −∞ except where dΨ = 0. There,
RicN = Ric.)

Ric∞ = Bakry-Emery tensor = right-hand side of Perelman’s
modified Ricci flow equation.
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Abstract Ricci recovers classical Ricci

Recall that ν = e−Ψ dvolM .

Theorem : (LV, S)
For N ∈ [1,∞], the measured length space (M,g, ν) has
nonnegative N-Ricci curvature if and only if RicN ≥ 0.

Classical case : Ψ constant, so ν = dvol
vol(M) .

Then (Mn,g, ν) has abstract nonnegative N-Ricci curvature if
and only if it has classical nonnegative Ricci curvature, as soon
as N ≥ n.
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Smooth limit spaces

Had Gromov precompactness theorem. What are the limit
spaces (X ,d , ν)? Suppose that the limit space is a smooth
measured length space, i.e.

(X ,d , ν) = (B,gB,e−Ψ dvolB)

for some n-dimensional smooth Riemannian manifold (B,gB)
and some Ψ ∈ C∞(B).

Theorem : (LV)

If (B,gB,e−Ψ dvolB) is a measured Gromov-Hausdorff limit of
Riemannian manifolds with nonnegative Ricci curvature and
dimension at most N then RicN(B) ≥ 0.

Note : the dimension can drop on taking limits.
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Bishop-Gromov-type inequality

Theorem : (LV, S)

If (X ,d , ν) has nonnegative N-Ricci curvature and x ∈ supp(ν)
then r−N ν(Br (x)) is nonincreasing in r .



Lichnerowicz inequality

If (M,g) is a compact Riemannian manifold, let λ1 be the
smallest positive eigenvalue of the Laplacian −∇2.

Theorem : (Lichnerowicz 1964)

If dim(M) = n and M has Ricci curvatures bounded below by
K > 0 then

λ1 ≥
n

n − 1
K .



Sharp global Poincaré inequality

Theorem : (LV)

If (X ,d , ν) has N-Ricci curvature bounded below by K > 0 and
f is a Lipschitz function on X with

∫
X f dν = 0 then∫

X
f 2 dν ≤ N − 1

N
1
K

∫
X
|∇f |2 dν.

Here
|∇f |(x) = lim sup

y→x

|f (y)− f (x)|
d(y , x)

.

(There are also log Sobolev inequalities and Sobolev
inequalities.)
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Ricci O’Neill Theorem

Theorem (O’Neill 1966) Sectional curvature is nondecreasing
under a Riemannian submersion.

Theorem (JL 2003) RicN is nondecreasing under a
Riemannian submersion.

LV : A synthetic proof of the Ricci O’Neill theorem using
displacement convexity.
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Some open questions

Do measured length spaces with nonnegative N-Ricci
curvature admit isoperimetric inequalities?

To what extent does the Cheeger-Gromoll splitting principle
hold for measured length spaces with nonnegative N-Ricci
curvature?
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Ricci flow

M a compact, connected n-dimensional manifold.

Say (M,g(t)) is a Ricci flow solution, i.e. dg
dt = − 2 Ric.

Fix t0 and put τ = t0 − t . Then dg
dτ = 2 Ric.

An important tool : monotonic quantities.
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Reduced volume

Fix p ∈ M. Say γ : [0, τ ]→ M is a smooth curve with γ(0) = p.
(The graph of γ goes “backward in time”.)

Definition
L-length L(γ) =

∫ τ
0
√
τ
(
|γ̇|2g(τ) + R(γ(τ), τ)

)
dτ .

Definition
reduced distance Given q ∈ M, put
L(q, τ) = inf{L(γ) : γ(0) = p, γ(τ) = q}.

Put l(q, τ) = L(q,τ)

2
√
τ

.

Definition
reduced volume Ṽ (τ) = τ−

n
2
∫

M e− l(q,τ) dvol(q).
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Monotonicity of the reduced volume

Theorem : (Perelman 2002)

Ṽ is nonincreasing in τ , i.e. nondecreasing in t .

An “entropy” functional for Ricci flow.

The only assumption : g(t) satisfies the Ricci flow equation.

Main application : Perelman’s “no local collapsing” theorem.
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Perelman’s heuristic derivation

Put M = M × SN × R+.

Here N is a free parameter and τ is the coordinate on R+.

Put

g = g(τ) + 2NτgSN +

(
N
2τ

+ R
)

dτ2.

Fact : As N →∞, Ric(M) = O
(
N−1).

Bishop-Gromov : r− dim vol(Br (p)) is nonincreasing in r if
Ric ≥ 0.

Apply formally to M and take N →∞. Get monotonicity of Ṽ .
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Heuristic relation to optimal transport

We know how to characterize nonnegative Ricci curvature
using optimal transport. Apply to M and translate down to M.

This should give an optimal transport problem on M with which
we can derive the monotonicity of Ṽ .

We’ll describe a (re)proof of the monotonicity of Ṽ , using
optimal transport methods.



Heuristic relation to optimal transport

We know how to characterize nonnegative Ricci curvature
using optimal transport. Apply to M and translate down to M.

This should give an optimal transport problem on M with which
we can derive the monotonicity of Ṽ .
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Say c : [0,1]→ P∞(M) is a smooth curve.

Write c(t) = ρ(t) dvolM .

Solve
∂ρ

∂t
= −

∑
i

∇i(ρ∇iφ)

for φ ≡ φ(t) ∈ C∞(M).

From {ρ(t)}t∈[0,1], we got {φ(t)}t∈[0,1]. Put

E(c) =
1
2

∫ 1

0

∫
M
|∇φ|2 ρ dvolM dt .



The Euler-Lagrange equation for the functional E is

∂φ

∂t
= − 1

2
|∇φ|2.

Then

d2

dt2

∫
M
ρ log ρdvolM =

∫
M

[
|Hessφ|2 + RicM(∇φ,∇φ)

]
ρdvolM .
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Question

Can we do something similar for the Ricci flow?

Principle : Satisfying Ric = 0 in the Riemannian case is like
satisfying the Ricci flow equation in the spacetime case.

Optimal transport in a Ricci flow background was first
considered by Peter Topping, with application to another
monotonic quantity (W-functional).

Note : The Ricci flow equation

dg
dt

= − 2 Ric

implies
dvolM

dt
= − R dvolM .
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E0 functional

Assume hereafter that (M,g(t)) satisfies the Ricci flow
equation.

Given c : [t0, t1]→ P∞(M), write c(t) = ρ(t) dvolM . Solve

∂ρ

∂t
= −

∑
i

∇i(ρ∇iφ) + R ρ

for φ ≡ φ(t) ∈ C∞(M).

Definition
E0(c) = 1

2

∫ t1
t0

∫
M

(
|∇φ|2 + R

)
ρ dvolM dt

Euler-Lagrange equation for E0 :

∂φ

∂t
= − 1

2
|∇φ|2 +

1
2

R.
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Convexity statement

Proposition
If c satisfies the Euler-Lagrange equation then

d2

dt2

∫
M

(ρ ln ρ − φ ρ) dvolM =

∫
M
|Ric−Hessφ|2 ρ dvolM .

Corollary
If c satisfies the Euler-Lagrange equation then∫

M (ρ ln ρ − φ ρ) dvolM is convex in t.
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Corresponding optimal transport problem

Say we want to transport a measure µ0 (at time t0) to a
measure µ1 (at time t1).

Take the cost to transport a unit of mass from p to q to be

min{L0(γ) : γ(t0) = p, γ(t1) = q},

where

L0(γ) =
1
2

∫ t1

t0

(
|γ̇|2g(t) + R(γ(t), t)

)
dt .

There is a corresponding notion of optimal transport,
displacement interpolation, etc.



E− functional

Fix t0 and put τ = t0 − t . The Ricci flow equation is

dg
dτ

= 2 Ric .

Given c : [τ0, τ1]→ P∞(M), write c(τ) = ρ(τ) dvolM . Solve

∂ρ

∂τ
= −

∑
i

∇i(ρ∇iφ) − R ρ

for φ = φ(τ) ∈ C∞(M).

Definition
E−(c) =

∫ τ1
τ0

∫
M
√
τ
(
|∇φ|2 + R

)
ρ dvolM dτ

Euler-Lagrange equation for E− :

∂φ

∂τ
= − 1

2
|∇φ|2 +

1
2

R − 1
2τ

φ.
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Convexity statement

Proposition
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τ
3
2

d
dτ

)2(∫
M

(ρ ln ρ + φ ρ) dvolM +
n
2

ln τ
)
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τ3
∫
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∣∣∣Ric + Hessφ− g
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Corollary
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2 ln τ is convex in the variable

s = τ−
1
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The transport problem

Take τ0 → 0, µ0 = δp and µ1 an absolutely continuous measure.

The displacement interpolation is along L-geodesics emanating
from p.

In this case, φ = l .



From convexity to monotonicity

Proposition
In this case,

∫
M (ρ ln ρ + φ ρ) dvolM + n

2 ln τ is nondecreasing
in τ .

Proof.
We know that it is convex in s = τ−

1
2 . As s →∞, i.e. as τ → 0,

it approaches a constant. (Almost Euclidean situation.) So it is
nonincreasing in s, i.e. nondecreasing in τ .
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Free energy

Trivial fact : The minimizer of∫
M

(ρ ln ρ + φ ρ) dvolM +
n
2

ln τ,

as ρdvolM ranges over absolutely continuous probability
measures, is

− ln
(
τ−

n
2

∫
M

e− φ dvolM

)
.

The minimizing measure is given by

ρ =
e−φ∫

M e− φ dvolM
.



Monotonicity of reduced volume

Proposition

Ṽ (τ) = τ−
n
2

∫
M

e− l dvolM

is nonincreasing in τ .

Proof : Say τ ′ < τ ′′. Recall that φ = l . Take
µ(τ ′′) = ρ(τ ′′) dvolM with

ρ(τ ′′) =
e−φ(τ ′′)∫

M e− φ(τ ′′) dvolM
.

Transport it to δp (at time zero). At the intermediate time τ ′ we
see a measure µ(τ ′) = ρ(τ ′) dvolM .
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Ṽ (τ) = τ−
n
2

∫
M

e− l dvolM

is nonincreasing in τ .
Proof : Say τ ′ < τ ′′. Recall that φ = l . Take
µ(τ ′′) = ρ(τ ′′) dvolM with

ρ(τ ′′) =
e−φ(τ ′′)∫

M e− φ(τ ′′) dvolM
.

Transport it to δp (at time zero). At the intermediate time τ ′ we
see a measure µ(τ ′) = ρ(τ ′) dvolM .



Proof

Then

− ln
(

(τ ′)−
n
2

∫
M

e− φ(τ ′) dvolM

)
≤
∫

M

[
ρ(τ ′) ln ρ(τ ′) + φ(τ ′) ρ(τ ′)

]
dvolM +

n
2

ln τ ′

≤
∫

M

[
ρ(τ ′′) ln ρ(τ ′′) + φ(τ ′′) ρ(τ ′′)

]
dvolM +

n
2

ln τ ′′

= − ln
(

(τ ′′)−
n
2

∫
M

e− φ(τ ′′) dvolM

)
.

End of proof



Proof

Then

− ln
(

(τ ′)−
n
2

∫
M

e− φ(τ ′) dvolM

)
≤
∫

M

[
ρ(τ ′) ln ρ(τ ′) + φ(τ ′) ρ(τ ′)

]
dvolM +

n
2

ln τ ′

≤
∫

M

[
ρ(τ ′′) ln ρ(τ ′′) + φ(τ ′′) ρ(τ ′′)

]
dvolM +

n
2

ln τ ′′

= − ln
(

(τ ′′)−
n
2

∫
M

e− φ(τ ′′) dvolM

)
.

End of proof



Proof

Then

− ln
(

(τ ′)−
n
2

∫
M

e− φ(τ ′) dvolM

)
≤
∫

M

[
ρ(τ ′) ln ρ(τ ′) + φ(τ ′) ρ(τ ′)

]
dvolM +

n
2

ln τ ′

≤
∫

M

[
ρ(τ ′′) ln ρ(τ ′′) + φ(τ ′′) ρ(τ ′′)

]
dvolM +

n
2

ln τ ′′

= − ln
(

(τ ′′)−
n
2

∫
M

e− φ(τ ′′) dvolM

)
.

End of proof



Proof

Then

− ln
(

(τ ′)−
n
2

∫
M

e− φ(τ ′) dvolM

)
≤
∫

M

[
ρ(τ ′) ln ρ(τ ′) + φ(τ ′) ρ(τ ′)

]
dvolM +

n
2

ln τ ′

≤
∫

M

[
ρ(τ ′′) ln ρ(τ ′′) + φ(τ ′′) ρ(τ ′′)

]
dvolM +

n
2

ln τ ′′

= − ln
(

(τ ′′)−
n
2

∫
M

e− φ(τ ′′) dvolM

)
.

End of proof



Optimal transport and heat flow

Otto, Otto-Westdickenberg Suppose that a compact
Riemannian manifold has Ric ≥ 0. If µ0(t) and µ1(t) are two
solutions of the heat flow on measures then W2(µ0(t), µ1(t)) is
nonincreasing in t .

J.L., McCann-Topping Suppose that (M,g(t)) is a Ricci flow
solution. Suppose that µ0(t) and µ1(t) are two solutions of the
backward heat flow on measures

dµ
dt

= −∇2
g(t) µ.

Then W2(µ0(t), µ1(t)) is nondecreasing in t .

Topping Extension to a statement about the L-transport
distance between µ0 and µ1 at distinct but related times.
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