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We show, for the two-dimensional case, that the anomalous gauge theory of chiral fermions yields degrees of freedom whose 
number depends on the regularization procedure. For a particular regularizatiom the gauge fields have dim[Cg]-rank[f~] 
surviving degrees of freedom, while for others this number changes to 2 dim[re]. Our procedure and results are compared with 
Faddeev's recent suggestions on how to quantize anomalous gauge theories. We conclude with some remarks on the 
four-dimensional case. 

In gauge theories of  chiral fermions, generators of  gauge transformations acquire anomalous terms in their com- 
mutators which prevent physical states from being defined as those which are gauge invariant. Faddeev [1] has sug- 
gested that these systems may nevertheless be quantized consistently if their constraints are recognized as being of  
the second class, and treated appropriately. 

Subsequently it has been shown that in two dimensions, both  the abelian [2,3] and the non-abelian [4] gauge 
theories of  chiral fermions, although anomalous, lead to consistent quantum theories, if regularized appropriately, 
Consistency and unitari ty were demonstrated for c~ > 1, where a/2 represents the a priori undetermined coefficient 
o f  the AuAU counterterm in the effective action. For  a < 1, these theories were shown to be non-unitary. 

More recently, Faddeev [5] has suggested that a proper way to quantize chiral gauge theories may be to intro- 
duce an extra gauge-group valued field, with a gauged Wess-Zumino  [WZ] term in the action, designed to cancel 
the anomaly in the original system, Such WZ terms also appear [6] when one attempts to decouple a chiral fermion 
from Salam-Weinberg type models. Faddeev also mentions that in his theory of  the chiral system the vector field 
acquires, loosely speaking, an extra"half-degree of  polarization",  as compared to the corresponding gauge invari- 
ant non-chiral system. 

Faddeev's  proposal [5] is couched in the more important  four-dimensional context.  But it is useful to compare 
within the simpler two-dimensional context ,  the physical content of  his proposal with that o f  the original system 
studied in refs. [ 2 - 4 ]  where no extra fields are added, nor the anomaly cancelled away by  hand, In particular, it 
is interesting to see whether, and in what sense the "half  degree of  polarization" appears in the original two-dimen- 
sional model. These are the aims of  our paper. We will employ bosonization techniques [7] to obtain our results. 

It will be seen that  Faddeev's  enlarged system, which is gauge invariant, reduces upon gauge fixing, to the origi- 
nal chiral system. For  the latter, it has already been shown [ 2 -  4] that with the a > 1 regularization, the space 
components  A g, of  the vector-field multiplet  (and their canonical momenta  E a) survive as dynamical variables, in 
addition to the matter  fields. Thus, as compared to the corresponding anomaly-free vector gauge theory in two 
dimensions, where no components  o fA  u are dynamical, the ,v > 1 regularized chiral theory permits one full polar- 
ization component  for the entire vector field multiplet.  This corresponds to 2 dim [~]  degrees of  freedom in phase 

i Present address: IHES, Bures-sur-Yvette, France. 
2 On leave from the Indian Institute of Science, Bangalore 560012, India. 

,1 We thank R. Jackiw for sending us a copy of this as yet unpublished work. 

0370-2693/85/$ 03.30 © Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 

321 



Volume 165B, number 4,5,6 PHYSICS LETTERS 26 December 1985 

space arising from the gauge fields. ( ~ is the gauge group and we are referring to the number of phase-space de- 
grees of freedom at each space point x) 

However, it will be shown below that with the a = 1 regularization, the chiral theory, while still consistent, per- 
mits on lyN(~)  = dim [ ~ ] -  rank [~ ] degrees of freedom for the gauge field. N ( ~ )  is an even number for any com- 
pact group ~, so that one still has an integral number of canonical pairs at eachx. B u t N ( ~ )  is in general not an 
even multiple of  dim [~].  Thus, in configuration space the number of dynamical fields surviving from the gauge 
field multiplet is~ N(~) ,  which roughly equals~ dim [~] when dim [~] >> rank [~].  All this is in addition to mat- 
ter field degrees of freedom whose number remains the same as in the non-interacting theory. 

Let us begin by recalling the a = 1 case for the chiral U(I)  problem, which has already been analyzed [3,8]. Its 
bosonized action is 

S[c~,Au] = f dx dt[½ (auc~ + Au) (au~b + A u) - euvOud~Av - (1/4e2) FuvFUU]. (1) 

The associated hamiltonian, in terms of canonical pairs (~b, 70, (A 0 , rr 0) and (A 1, El e2) is 

H = f d x  [~ lr 2 + ~ (0 lq~) 2 + ( 1/2e 2) E 2 - ( l/e 2) a lEA 0 + (rr + a 1¢ + A 1) (A 1 - A o) + o %1, (2) 

with 

zr 0 (x) = 0 (3) 

as a constraint. As permitted, a term orr0, where v(x) is a Lagrange multiplier field, has been added. The preserva- 
tion of the constraint (3) under time evolution leads to three further constraints. 

~07rO =(Zro,H}p.B.==-G(x)=(1/e2)O1E+lr+OlgP+A1 =0,  00G = E =  0, (4,5) 

and 

a O E = - e 2 O r + b l 4 a + 2 A 1 - A o ) = O ,  implying A0 - A 1 =0.  (6) 

The requirement {A 0 - A 1, H}p.B. = 0 can be fulfilled by choosing v = E + a 1A o- (In ref. [3], the presence of con- 
straint (6) was erroneously overlooked.) Eqs. ( 3 ) - (6 )  form a set of second-class constraints in Dirac's terminology 
[9]. Before quantizing the theory, Dirac brackets must be employed. Then A 0, rr0, A 1 and E can be eliminated 
using eqs. (3) - (6) .  Only the matter degrees of freedom ~b and ¢r remain, with {¢(x), rrCV))Dira c = 5(x - y )  and a 
reduced hamiltonian 

H = f d x  I [zr2 + (01~)2]. (7) 

The number of non-matter degrees of freedom, namely zero, agrees with dim [~ ] - rank [~] since dim [~] 
= rank [~] = 1 for this U(1) theory. It is worth noting that, unlike the anomaly-free Schwinger model, in this 
a = 1 regularized chiral model there are no interaction effects due to A u. Only the free matter field is left. This 
feature will persist even i fA u were further coupled vectorially to other matter fields. 

Next, let us turn to the non-abelian chiral gauge theory in two dimensions. Consider n massless Dirac fermions 
whose right-current is coupled to a U(n) Lie-algebra valued gauge field A u. The bosonized action for this system, 
regularized at a = 1 is [4] 

S w, a A  = ~ Tr [(1/8r0 a~,uauu -1 - JuA u + (1/8n)AuA u - (1/4e2)Fu~FU~] + Pwz,  (8) 

where U(x, t) is a U(n) group valued field and Pwz is the Wess-Zumino term [7] 

Vwz(U)___ l~ f d3y e o7' Tr(U- l a iu  u - I  o ju  u - l a k U ) ,  (9) 

and 

j r  = (i/41r) (gUU + eva,) U- Iovu .  (10) 
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The field equations, in light-cone components (x+ = (x 0 + x 1)/V~, etc.) are 

D_J+ = (1/27r) 0_A+,  D _ F _ +  = (e2/4rOA_, D+F_+ = e2j+ - (e2/47r)A+. (11, 12, 13) 

These equations imply 

0 A + - a + A _  =0,  (14) 

where the left-hand side gives the anomaly with the a = 1 regularization. 
We will obtain the number of  degrees of freedom of  this system in two ways. First let us perturb the system 

around a class of  solutions o f ( 1 1 ) - ( 1 3 ) ,  linearize these equations and count the number of perturbed fields for 
which Cauchy data can be independently specified. One class of  solutions of  the field equations is 

A (0) = 0, F(_ 0) = O_A(+ 0) = 0, j(O) = (1/47r)A(0). (15) 

Here A (+0) is an arbitrary Lie-algebra valued matrix function of  x+. Let us choose it to be diagonal. Let 

A_  = a_,  A+ =A (0) + a+, J+ = (1/art)A(+ 0) +]+. (16) 

On linearizing eqs. (1 1 ) - (13 )  around the solution (15), the perturbations a+ and]+ obey, to first order, 

a j+ = (1/2zr)a+a +i[a_,j++(1/4~r)At+°)], a+[a_,A(+ °)] =i[A(+ °), [a_,A(+°)]] +e2(j+-a+/4zr), (17, 18) 

and 

[0_a_ ,A(+ 0)] = (ie2/41r) a_ ,  (19) 

Since A (+ 0) has been chosen diagonal, eq. (19) implies 

Diag(a_) = 0. (20) 

This eliminates rank [~] degrees of  freedom from a . The remaining dim [~] - rank [~] components o f a  can 
be specified arbitrarily as initial data and their time evolution obtained using eq. (19). The field a+ is fully con- 
strained by (18), while (17) places no restriction on the initial data of]+. Thus, the number of  matter degrees of  
freedom remains unchanged, while the perturbed gauge field (a+, a_ )  has altogether dim [~] - rank [~] degrees 
of freedom. 

Alternately, let us perform a canonical constraint analysis of the system specified by the action (8). The 
hamiltonian associated with this action is [4] 

H =fdx Tr(zr(pRp R + PLPL) -- [OR -- (1/4~r)A 1] (A1 - A0) + ( l / e2 ) (  1 E2 - D1E 'A0)  + °zr0}- (21) 

Here all fields (including the Lagrange multiplier field u) are Lie-algebra valued hermitian matrices. (.40, rr0) and 
(A 1, El e2) are canonical pairs while PR,L are the right (left) charge densities of the free Fermi field, obeying the 
familiar Kac-Moody  current algebra [4]. In component notation, 

a x , a b {0R, L( ) ,pb ,  L(Y)}PB _fabc c 6(x-y)+(6ab/27r)6 (x--y), • . = PR, L - "[PR(X), PL(Y)}P.B. = O. 

The constraint 

.o(X) = o 

requires for its preservation further constraints• We have 

aoTr 0 = (1/e 2) D I E +  (1/47r) A 1 - PR -- G = 0. 

Then 

30G = (1/4rr)E + i[A0, G + (1/4n)A 1] = 0, 

which implies, given (23) that 

(22) 

(23) 
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B = E  + i[A0,A1] = 0, (24) 

and 

~0 B = e20R + (e2/4zr) (.4 0 -- 2A1) + i[A0, 2E + D1A0] + i[o,A 1] =- C + i[o,A 1] = 0. (25) 

Eq. (25) cannot be inverted for the Lagrange multiplier field o. Upon choosing a basis in whichA 1 is diagonal, 
(25) implies a further constraint 

Diag [C] = 0. (26) 

For generic A 1, eq. (26) gives rank [q] constraints. The non-diagonal components of (25) can be satisfied by 
choosing o suitably. This still leaves the diagonal components of o unspecified, but these will be fixed by requiring 
that the constraint (26) be preserved in time. Altogether, eqs. (22)-(24) ,  and (26) yield 3 dim [q] + rank [q] con- 
straints which can be imposed on the 4 dim[q]  gauge field variables It0, A0, E andA 1. This leaves us w i thN(q )  
= dim[q]  - rank[q] gauge field degrees of freedom (in addition to the usual matter degrees of freedom contained 
in PR,L) in agreement with the earlier linearized analysis. 

Constraints (22) - (24)  and (26) are of the second class. Before quantizing the theory, one must employ Dirac 
brackets to convert the constraints into strong equations. They can then be used to eliminate dependent variables. 
We will not complete this exercise here. Suffice it to note that when constraints (22) and (23) are used, the 
hamiltonian (21) can be written as 

H = f  dx Tr (zr [OR -- (1/2~r)A 1 ] 2 + IrOLPL + (1/2e 2) E2}. (27) 

The hamiltonian is thus positive on the constrained subspace. When Dirac brackets are converted to commutators, 
one has formally a consistent unitary quantum theory for the a = 1 regularized non-abelian chiral model (8), with 
dim[q]  - rank[q] degrees of  freedom for the gauge field. 

Now let us follow Faddeev's suggestion and enlarge these systems by adding an extra field h with a gauged WZ 
action. Fo~ the U(1) case, the action in (1) is enlarged to 

S [ep, Au, h] = S [c~,Au] + f d x  dt(eU~uhAv).  (28) 

This action is, by design, gauge invariant under c~ -+ ¢p - X, A u ~ A u + Ou X and h ~ h - X. Its canonical analysis 
yields two first-class constraints, 7r 0 = 0 and G'--- (1/e 2) ~ 1E + zr~ + ~ l~b + Tt h + ~ lh = 0, along with two second- 
class constraintsE = 0 and zr h - A 1 = 0. In quantizing this theory, one has to fix a gauge, through a subsidiary con- 
dition. Consider the gauge h = 0. Preservation of this condition forces another constraint A 0 - A 1 = 0. Altogether 
these constraints reduce the system (28) back to the original system described by eqs. (2) - (7) .  

In the path integral formalism, when the gauge fixing factor 6(h(x, t)) is inserted into the path integral of 
exp [iS(C, A u, h)] over the fields ~b, A u and h, it reduces to 

if= f oo DA u exp [iS(q, Au) ]. (29) 

This is just the naive path integral of the original system (1) over all its fields. Since S [ep,Au] is non-singular (recall 
that it is not gauge-invariant), P is well defined. To see i fP correctly reflects the constrained quantum theory of 
the system (1), compare it with 

P=fOeexp(ifdxdt½ a~,¢~t'¢~). (30) 
In P, only the independent field ~b appears, with a free action obtained from the free hamiltonian (7)~ The fields 
constrained to vanish by vir tueof  eqs. (2 ) - (6 )  do not appear at aU in P, whereas they do appear in P. However, 
for on-shell S-matrix purposes P is equivalent to P. This is easy to check. Since S [~b, Au] is quadratic, the associat- 
ed propagator in terms of (¢, A+, A _) is given by the matrix 
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f l - k2/e 2 ik+(k2/e 2 - 2) (ik_) (k2/e 2) ] 

,j i _ ik+(k2/e 2 _ 2) k+k+(k2/e 2 - 4 )  k2(k+k+/e 2 - 1 
k2 

( - i k _ )  k2/e 2 k2(k+k+/e 2 - 1) (k2/e 2) k k_ 

(31) 

The only pole in (31) is at k 2 = 0, where the residue matrix has only one non-zero eigenvalue, corresponding to 
the ¢ - ¢  propagator. Propagators involving fields which are constrained to vanish in the canonical analysis are non- 
zero in (31), but they are all local (i.e. polynomials in k+, k_)  and will not affect the S-matrix. For instance the 
C-A_  propagator is just ( -k_/e2) .  In short, on-shell, the naive path integral (29) reflects the second-class con- 
straints and is equivalent to (30). 

Note that this Faddeev enlargement procedure can also be done for the a > 1 regularization. The original boson- 
ized action for the abelian case is [2] 

Sa> 1 [q~,Ag] = f dx dt[½ au ¢au ¢ + (gUy _ eUV) OuqjAu +½ aAuAU _ (1/ 4e2) FuvFUV] . (32) 

Upon introducing the field h, the enlarged gauge invariant action is 

Sa> 1 [¢ ,Au,h  ] = S a >  1 [¢,Au] + f d x  dt[eUVOuhAv + ½ ( a -  1)(auhOUh + 2AuOUh)]. (33) 

Although (3uh) 2 occurs in (33), no new degrees of freedom are introduced as compared to the system (32). Gauge 
must be fixed for the system (33), and the gauge choice h = 0 reduces it to the original system (32). 

For the nonabelian chiral theory, the Faddeev enlargement of the a = 1 action (8) yields the new action 

S [U, Au, hi = StU, Au] - rwz(h  ) - ~--~fdx dt Tr[eUVh-l~vhA~]. (34) 

Here h is a U(n) group valued matrix field. The gauged WZ terms involving h that have been added in (34) are de- 
signed to make S [U, Au, h] gauge invariant under U ~ Ug, h ~ hg, A u ~ g -  1 (Au + i O~) g. Norice that S [U, Au, h] 
is just the gauge transform ofS  [U, A u ] under U ~ Uh-  1 and Au ~ h (A n + ion) h -  1. I f  the field h were integrated 
over, without gauge fixing, that would formally amount to averaging correlation functions of the original theory 
over the gauge group. However, gauge must be fixed. Upon using the ghost-free gauge h = 1, one again restores the 
original system in eq. (8). Our earlier result that the original system contains dim [~] - rank [q] degrees of free- 
dom for the gauge field, clearly holds for the enlarged system (34) as well. 

We conclude with some comments about the more important four-dimensional case. We have seen that in two 
dimensions, the a = 1 regularization yields dim [g]  - rank [q] degrees of freedom for the gauge field. For the ~ > 1 
regularization, this number changes [4] to 2 dim[q] ,  while for a < 1 the theory is non-unitary. We expect that 
this dependence of the consistency and the number of degrees of freedom on the regularization would also be a 
property of  the four-dimensional chiral gauge theory. 

In four dimensions, bosonization techniques are not avaiable and one must work with the action in fermionic 
form. Then Faddeev's method of introducing an extra field h and adding gauged WZ terms to this classical fermion- 
ic action provides a natural way of treating the constraints of the chiral gauge theory in the path integral formalism. 
For instance, consider the abelian chiral theory with a regularization such that the anomaly is proportional to 
F u ~ / ~ .  The corresponding gauged WZ term to be added to the action is h FuvF~U, where h is a scalar field which 
gauge transforms as h -+ h - X. This leads to a gauge invariant quantum theory. The h = 0 ~auge reproduces the 

u~ original chiral theory. Alternately, integration over the field h forces the constraint 6(F, uF ) in the path integral 
(compare this with eq. (2.19) of ref. [10]). We believe that in order to test the unitarity of this chiral theory one 
must use a perturbation expansion which respects this constraint at each order. (This is also suggested by ref. [5] 
when applied to the abelian case.) One way to obtain such an expansion may be to parametrize the surface Fufl~uu 
= 0 and rewrite the action using these coordinates, as is done with a models [11]. Another approach may be to use 
the perturbation expansion for a composite-field effective action [12], which for our problem would break gauge 
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invariance at the lowest order. In any case, the question of  whether anomalous gauge theories are consistent in four 

dimensions needs to be further examined. 

J.L. thanks John Ellis and the CERN Theory Division for their hospitality. 
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