Positive scalar curvature on noncompact

manifolds

John Lott
UC-Berkeley
http://math.berkeley.edu/ lott



Scalar curvature

Background



Scalar curvature

Given a Riemannian n-manifold (M, g), at a point m € M, the
scalar curvature R(m) is n(n — 1) times the average sectional
curvature at m.

Basic question: Given a smooth compact manifold M, does it
admit a Riemannian metric with positive scalar curvature (psc)?

The answer is known when M is simply connected
(Gromov-Lawson 1980, Stolz 1992).

Open conjecture: If M is aspherical, i.e. has vanishing higher
homotopy groups, then M does not admit a psc metric.

Known to be true if n < 5 (Schoen-Yau 1979, Gromov-Lawson
1983, Chodosh-Li 2024, Gromov).



Classifying spaces

If M is a connected manifold with fundamental group I then
there is an aspherical classifying space Bl along with a
classifying map v : M — BI that is an isomorphism on 7.

Here BI' is a CW-complex that only depends on I'. Both BI' and
v are uniquely defined up to homotopy.

How to get BI'? Start with M. Ask if mo(M) is nonzero. If not,
attach 3-disks to kill it. Then ask if 73 of the result is nonzero. If
not, attach 4-disks to kill it. Continue to get BI'. There’s an
inclusion map v : M — BI.



Generalized conjecture

We have the map v : M — BI.

Generalized open conjecture: If M is compact and oriented, let
[M| € Ha(M; Q) be its fundamental class. If v,[M] is nonzero in
H,(Br; Q) then M does not admit a psc metric.

It M is already aspherical then we can take Bl = M and v = Id,
SO We recover the previous conjecture.

The generalized conjecture is known to be true if M is spin and
71 (M) satisfies the Strong Novikov Conjecture. (Conceivably,
all discrete groups do.)



Noncompact manifolds

What about complete metrics on noncompact manifolds? We
can ask about obstructions for uniformly positive scalar
curvature, i.e. R > ry > 0, or just positive scalar curvature, i.e
R > 0. The answers are not the same, e.g. if M = R?.

Test question: Suppose that Y is a connected oriented
compact manifold-with-boundary, with connected boundary 0.
Putl = (Y, ) and I = 1(3Y, yo). There is a classifying
map v : (Y,0Y) — (B, Bl'). Is nonvanishing of v,[Y,0Y] in
H,(BT, BI''; Q) an obstruction to the existence of a complete
psc metric on the interior of Y, provided that

1. " — T is injective, or

2. The Riemannian metric has finite volume?
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Had assumptions
1. " — I is injective, or

2. The complete Riemannian metric on the interior has finite
volume.

A condition like 1 or 2 is necessary.

Example: Suppose that Y is D?,s0 0Y = S'. Then v,[Y,0Y] is
nonzero. Nevertheless, there is a psc metric on the interior of
Y,ie. R?.

i

In this case, the map 71(S') — 71(D?) is not injective, and also
the psc metric has infinite volume.



Tools

The main tools that | use:

1. Almost flat vector bundles (Connes-Gromov-Moscovici 1990)
2. Almost flat relative vector bundles (Kubota 2022)

3. Callias-type Dirac operators (Callias 1978, ...,
Cecchini-Zeidler 2024, .. .)

Using these tools, one can give localized obstructions to
positive scalar curvature.

Another set of tools comes from p-bubbles. It would be
interesting if one could derive analogous results using them.



Almost flat vector bundles

If X is a compact manifold then elements of K°(X) can be
represented as formal differences E™ — E~ of vector bundles
on X.

Give X a Riemannian metric.

Definition: A class 8 € K°(X) is almost flat if for each € > 0, we
can find

1. A Z»-graded Hermitian vector bundle E* representing 3, and

2. A Hermitian connection V= on E* whose curvature satisfies
I F= | < e.

Note: As ¢ decreases, the rank of E will generally go to infinity.



Index theorem

Theorem: (Connes-Gromov-Moscovici 1990) If M is a compact
even dimensional spin manifold with a psc metric then for any
almost flat 3 € K°(M), we have

/ A(TM) A ch(8) = 0.
M

Proof: If D is the Dirac operator on spinors coupled to E then
Lichnerowicz says that

* R 1 1%
D*=V'V+ 4 -7 "R,
JINY%

So for sufficiently small ¢, the kernel of D vanishes. But
Atiyah-Singer says that the index of D is [;, A(TM) A ch(B).



The odd case

Elements of K~1(X) can be represented by pairs (V, o) where
V' is a vector bundle on X and ¢ is an automorphism of V.

Definition: A class 5 € K~1(X) is almost flat if for each € > 0,
we can find

1. A Hermitian vector bundle V equipped with an isometric
automorphism ¢ that together represent 3, and

2. A Hermitian connection V¥ on V so that || FY ||< € and
I VYo ||< e.



Relevance of almost flat bundles

If M has psc and 3 € K*(M) is a.f. then [,, A(TM) A ch(53) = 0.

Where do almost flat K-theory classes come from? They
pullback from classifying spaces.

Definition: If ' is a discrete group, let K%.(BI') be the elements
n € K*(BI') so that for any compact manifold X and any
v : X — BI', the pullback v*n is almost flat on X.

Conceivably, KZ.(Br') is all of K*(BI'), at least rationally. This is
known for many I', such as word hyperbolic groups.

If so, we conclude that if M has a psc metric then for any
v : M — BrI, the pushforward v, (xA(TM)) vanishes in
H.(Bl; Q).

In particular, v,(x1) = v.[M] vanishes in H,(BI'; Q).



Scalar curvature

Results



The geometric setup

Given rp, D > 0, put ry = z5rED% and D' = D + 25,

M is a Riemannian spin manifold-with-boundary.
K is a compact submanifold of M containing oM.
R > 0on K.

R > rpon Np(K) — K.

R > —r{ on Np/(K) — Np(K).

Np/(K) lies in a compact submanifold C.

vV vyvyvVvYyysey



First result

Terminology: The boundary of a Riemannian
manifold-with-boundary is mean convex if it has nonnegative
mean curvature. For example, 9B" is mean convex.
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Theorem 1: Suppose that M is mean convex. If 5 € K*(C) is
almost flat then

/(WZ\(TE)M) A ch (5‘81\/’) — 0.



Exhaustion of finite volume manifolds

Proposition: Let M be a complete finite volume oriented
Riemannian manifold, of dimension at most seven, with
compact boundary. Then there is an exhaustion of M by
compact submanifolds-with-boundary Z so that 0Z (away from
OM) is mean convex as seen from M — Z.

Corollary: There is no complete finite volume psc metric on
[0,00) x T"~1, provided that n < 7.
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Relative K-theory

If X is a compact manifold and Y C X is a submanifold then a
generator of the relative K-group K°(X, Y) is a formal
difference ET™ — E~ of vector bundles on X, along with an

isomorphism o - E+‘ o E—‘Y.

Y
Give X a Riemannian metric. | L
Definition: (Kubota) A class 5 € K°(X, Y) is almost flat if for
each ¢ > 0, we can find

1. A Zo-graded Hermitian vector bundle E* on X and an
Isometric isomorphism o : E+‘ — E—‘Y so that (E, o)
represents 5, and

Y

2. A Hermitian connection V* on E* so that || F* ||< ¢ and
| Vo ||< e



Second result
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Theorem 2: If 5 € K*(C,C — int(K)) is almost flat then

/Z\(TM) A ch(B) = 0.
C

Remark: If M is compact and K = C = M then this becomes
the Connes-Gromov-Moscovici result.



Application to test question

Where do almost flat elements of K°(X, Y) come from? From
pullbacks under maps of pairs v : (X, Y) — (BI', BI'"), where
h:T" — T is an injective homomorphism.

If his not injective then we cannot expect that elements of
KO(Br, BI') pullback to almost flat elements of K°(X, Y).
Example: '=Z and I = {e}.

§

Corollary: Suppose that Y" is a connected compact spin
manifold-with-boundary, with connected boundary. Put

[ =m(Y,y)and " = 71(3Y, ¥p). If the interior of Y has a
complete psc metric, and K%.(Br', BI'') equals K*(Br', BI')
rationally, then v,[Y, 0Y] vanishes in H,(BI', BI'; Q).

Note: If ' — I is not injective, replace I’ by its image.



Almost flat stably

Suppose that X is a compact manifold and Y C X is a
submanifold. Give X a Riemannian metric.

Definition: (Kubota) A class 5 € K°(X, Y) is almost flat stably if
for each ¢ > 0, we can find

1. A Zo-graded Hermitian vector bundle E on X, a Hermitian
vector bundle V on Y, and an isometric isomorphism

o: ET y eV - E- y @ V so that (E, V, o) represents /3, and

2. Hermitian connections VE® on E and VY on V so that
| FE™ < e || FY ||[< eand || Vo ||< e.



Third result

Theorem 3: If 9K iIs mean convex as seen from M — K, and
B e K*(C,C — int(K)) is almost flat stably, then

/Z\(TM) A ch(B) = 0.
C



Application to test question

Corollary: Suppose that Y is a connected compact spin
manifold-with-boundary, with connected boundary, of
dimension n < 7. PutT = m(Y, yp) and " = w1 (9Y, yo).

If the interior of Y has a complete finite volume psc metric, and
Kar st(BI, BI') equals K*(Br, BI') rationally, then v.[Y,0Y]
vanishes in H,(BI', BI"; Q).
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Simplicial volume

The simplicial volume || M || of a closed oriented manifold M
roughly measures how many simplices it takes to triangulate
the manifold.

Definition:

I M= inf{zi:ai : {Zai@} = [M]}

Here
» a; € R,
» ¢ : A" — Mis a singular n-simplex,
» [M] € Hy(M; R) is the fundamental class, and
» The sum is finite.



Simplicial volume conjecture

A manifold has almost nonnegative scalar curvature if for each

e > 0 it admits an appropriately normalized Riemannian metric
with R > —e.

What are possible topological obstructions for a compact
manifold to have almost nonnegative scalar curvature?

Conjecture: (Gromov 1986) For each n € Z*, there is some
¢, > 0 so that if M is a compact connected oriented
n-dimensional Riemannian manifold with R > —o? then

| M ||< ¢n o vol(M).

Remark: This is open even if o = 0.



Almost nonnegative scalar curvature

Conjecture: (Gromov 1986) For each n € Z*, there is some
¢, > 0 so that if M is a compact connected oriented
n-dimensional Riemannian manifold with R > —o? then

| M ||< ¢n o vol(M).

Two ways to think of this conjecture:

1. If we normalize o = 1, it says that simplicial volume is an
obstruction to volume-collapsing with a lower scalar curvature
bound.

2. If we normalize vol = 1, it says that simplicial volume is an
obstruction to having almost nonnegative scalar curvature,
relative to the volume.

We will think about it the second way.



Known results

Conjecture: (Gromov 1986) For each n € Z*, there is some
¢, > 0 so that if M is a compact connected oriented
n-dimensional Riemannian manifold with vol =1 and R > —o
then || M ||< cpo".
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It's true if scalar curvature is replaced by Ricci curvature
(Gromov 1982). In fact, there’s a gap theorem: there is some
en > 0 so that if vol = 1 and Ric > —ep then | M ||= 0.

Also, the conjecture is true if scalar curvature is replaced by
“macroscopic scalar curvature”, along with a gap result
(Braun-Sauer 2021).



Diameter bound

Can we verify the conjecture in the “easy” case when we
Impose some additional curvature bound?

Theorem 4: Given n € Z* and D, A < oo, there is some

e = ¢(n, D, \) > 0 with the following property. Let M" be a
compact connected spin manifold so that =1(M) satisfies the
Strong Novikov Conjecture. Suppose that g is a Riemannian
metric on M so that (M, g) has

» Diameter bounded above by D,
» Curvature operator bounded below by —A, and
» Scalar curvature bounded below by —e.

Then || M ||= 0.

Remark: One cannot remove the lower bound on the curvature
operator (Lohkamp 1999).



Volume bound

Going to back to the original conjecture, let's add a double
sided bound on the sectional curvatures.

Question: Given n € Z* and A < oo, is there some

e = ¢(n,\) > 0 with the following property? Let M" be a
compact connected manifold. Suppose that g is a Riemannian
metric on M so that (M, g) has

» Volume equal to one,
» Sectional curvatures bounded in magnitude by A, and
» Scalar curvature bounded below by —e.

Then || M ||= 0.

Suppose not. Let {(M;, gi)} 72, be a sequence that gives a
counterexample.



Contradiction argument

Each (M;, g;) is a compact connected Riemannian n-manifold
with

» Volume equal to one,

» Sectional curvatures bounded in magnitude by A, and

> Scalar curvature bounded below by — 7, but

> || M; || 0.

From the previous result, we can assume that diam(M;, g;) goes
to infinity.

After passing to a subsequence, we get a multipointed limit
limi_oo(M;, gi) = (Z£so, 90 ), Where (£, g~ ) IS a complete
noncompact finite volume Riemannian n-manifold with positive
scalar curvature.

e Sn—



Thick-thin decomposition

Based on Theorem 3, it is reasonable to assume that Z,, has
an exhaustion by compact submanifolds {Zj}7, so that the
image of [Z;, Z — int(Zj_4)] vanishes in

Hn(B1(Z)), B (Z) — int(Z—1)): Q).

This implies that the relative simplicial volume
| Zi, Zi —int(Z;_1) || vanishes.

Lifting Z; to M; for large /, we get a decomposition
Mi _ thick g M_thin
I T



Gluing problem

PSP B0 0 = b P

p )

We have a decomposition M; = Mk y M#n where
> OMMICK < int(M") and OM!M C int(MIMEK),
thick pgthick ~ pthin || _
> || Mihick ppthick (y pgthin || = 0, and
> M"in s locally volume collapsed.

Since M is locally volume collapsed relative to a sectional
curvature bound, it has an “amenable open cover” of multiplicity
at most n. In particular, || M/ pmihick o piin || = 0 (Gromov,
lvanov, Loh-Sauer).

We would now like to say that || M; ||= 0, which would give a
contradiction. Is this true? A gluing problem for simplicial
volume!
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Proofs



Statement of Theorem 1
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Theorem 1: Suppose that OM is mean convex. If 8 € K*(C) is
almost flat then

/(WZ\(TE)M) A ch (5‘%) —0.

Sketch of proof: Suppose that dim(M) is even. Given € > 0, let
(V, o) represent 5 € K~1(C), where

» V is a Hermitian vector bundle on C,

» o is an isometric automorphism of V,

» V'V is a Hermitian connection on V, and
> | FV||<eand || VYo ||< e.



Callias operator

Put5:D+,2)—%<D’.

Suppose for simplicity that dx is smooth away from K, and
N = N3(K) is a smooth manifold-with-boundary.

Let S be the spinor bundle on N, with Zs-grading operator es.
Let E be the restriction of V & V to V.

Let D be the Dirac operator on C*(N; S® V).

For an appropriate function f, define DF on C®(N; S ® E) by

DY egfo™]
E __ S
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Warping function
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Take f = o o dk, where o is a slight smoothing of

‘0 ift<O,
(2t if0<t<D,
ifD<t<D.

2
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Local boundary condition

Define a self-adjoint operator 1 on C* (ON, (S ® E)|, /) by

( [ n
0 les on oM,
- V—Tegy" 0
o /1 n_—1 '
0 ST on AN — AM.
\V—1eso 0

Boundary condition: Tl (w‘ew) — w‘ew'

Claim: With this boundary condition, DF is invertible on .

ldea: Show that with this choice of f, for any nonzero ) we
have [,-(D5v, DE1) dvol > 0.



Index computation

Claim: The index of DE, going from C®(N; (S ® E)*) to
Co(N;(S®E))is

/(WZ\(T@M) A ch (5|6M).

ldea: Without changing the index, we can
» Deform f to zero.
» Make the Riemannian metric a product near ON.
» Make the connection Vv a product near .

The boundary conditions are such that DF is the same as the
corresponding operator on the Zs,-invariant spinors on the
double DN



Index computation |l

Then the index of DE is the same as the Z,-invariant index on
DA'. To compute it, make the connection VE~ on E- = V
equal to VE" = VV very close to 9M, and equal to

oo VE" o 5~1 away from a §-neighborhood of M. Then the
iIndex is

| ATN) nrs (e5F) = [ ATN) s ()
N OMx [0,5]
3] i (eﬁ(VE)z)

:/ A(TOM) A ch(V, o
oM

= [ A(ToM) /\/

oM [0
) owm

— [ A(TOM) A ch |
" ( )Ac (B‘a/w)



Statement of Theorem 2
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Theorem 2: If g € K*(C,C — int(K)) is almost flat then

/2\(TM) A ch(8) = 0.
C

Sketch of proof: Suppose that dim(M) is even. Given € > 0, let
(E, o) represent 8 € K°(C,C — int(K)), where

» ETis a Zy-graded Hermitian vector bundle on C,
> o E+|
C—int(K))
Isomorphism,
» V= is a Hermitian connection on E*, and
> || Ff||<eand || Vo ||< e

— E—) IS an isometric
C—int(K))



Callias operator

Define the warping function f as in the proof of Theorem 1.
Define D on C>*(N; S® E) by

E+ —1
D D esfg_ |
esfo D
Impose local boundary conditions on 9N and proceed as in the
proof of Theorem 1.



Statement of Theorem 3

Theorem 3: If 0K is mean convex as seen from M — K, and
B € K*(C,C — int(K)) is almost flat stably, then

/2\(TM) A ch(B) = 0.
C

Sketch of proof: Combine the setups of Theorems 1 and 2.



M
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Suppose that dim(M) is even. Given ¢ > 0, let (E, V, o)
represent 8 € K°(C, C — int(K)), where

» ETis a Zy-graded Hermitian vector bundle on C,
» Vis a Hermitian vector bundle on C — int(K),

» o ET aV - E- & V is an isometric
C—int(K) C—int(K)
Isomorphism,
» VET is a Hermitian connection on E=,
» V'V is a Hermitian connection on V, and

| FES |<e, | FV |<eand || Vo |< e

v



Domain of the operator

"3{‘»: J =\ / i:)\l
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Put W=V & V, a Z>-graded Hermitian vector bundle on
C — int(K), with Hermitian connection VW = vV ¢ VvV,

The Callias operator D will act on the subspace of
CPWN;S®RE)® C®°(WN —int(K); S® W)

that satisfies certain local boundary conditions.



Callias operator

—
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On K, the operator D is the usual Dirac-type operator on
C(K;S® E).

On N —int(K), put Z = E|N - ® W. Then D acts on
—Int

C®(N — int(K); S® Z) by

D DZ" egfo!
-~ N\esfo D4 )

Proceed as in the proofs of Theorems 1 and 2.



Statement of Theorem 4

Theorem 4: Given n € Z* and D, A < oo, there is some

e = ¢(n, D, \) > 0 with the following property. Let M" be a
compact connected spin manifold so that =1 (M) satisfies the
Strong Novikov Conjecture. Suppose that g is a Riemannian
metric on M so that (M, g) has

» Diameter bounded above by D,
» Curvature operator bounded below by —A, and
» Scalar curvature bounded below by —e.

Then || M ||= 0.

Suppose not. Let {(M;, gi)} 72, be a sequence that gives a
counterexample.



Contradiction argument

Each (M;, g;) is a compact connected Riemannian n-manifold
with

» Diameter at most D,

» Curvature operator bounded below by —A, and

> Scalar curvature bounded below by —1, but

> || M; || 0.

From Gromov’s gap theorem, there is a uniform lower bound
vol(M;, gi) > v > 0 (coming from the lower Ricci curvature
bound).

We can run the Riccl flow for a uniform amount of time to obtain
a new metric g/ with R(M;, g/) > — 1 and a uniform bound
|Rm(M;, g7)| < A (Bamler-Cabezas-Rivas-Wilking 2019).



From distortion estimates under Ricci flow, there is a uniform
upper bound diam(M;, g;) < D'.

From Gromov’s gap theorem, there is again a uniform lower
bound vol(M;, g7) > v > 0.

After passing to a subsequence, there is a smooth limit

Necessarily, R(My, g~) > 0.

Since (M, 9~ ) is also the result of running Ricci flow, either
Ric(Mx,9x) =0 or R(Ms, g-) > 0.



End of proof

If Ric(Mx, 9o) = 0 then m1(My,) is virtually abelian and so
| Moo ||= 0.

If R(M, 9-) > 0 then SNC implies that v,[M,,] vanishes in
Hn(Bm1(M); Q). This implies that || M. ||= 0.

In either case, | M, ||= 0. Since M, is diffeomorphic to M;, for
large I, this is a contradiction.



