Positive scalar curvature on noncompact manifolds

John Lott UC-Berkeley http://math.berkeley.edu/~lott

▲□▶▲□▶▲□▶▲□▶ ▲□▶ □ のへで

Background

Results

Simplicial volume

Proofs

◆□▶ ◆□▶ ◆三▶ ◆三 ◆ ○ ◆ ○ ◆

Given a Riemannian *n*-manifold (M, g), at a point $m \in M$, the scalar curvature R(m) is n(n-1) times the average sectional curvature at *m*.

Basic question: Given a smooth compact manifold *M*, does it admit a Riemannian metric with positive scalar curvature (psc)?

The answer is known when *M* is simply connected (Gromov-Lawson 1980, Stolz 1992).

Open conjecture: If *M* is aspherical, i.e. has vanishing higher homotopy groups, then *M* does not admit a psc metric.

Known to be true if $n \le 5$ (Schoen-Yau 1979, Gromov-Lawson 1983, Chodosh-Li 2024, Gromov).

If *M* is a connected manifold with fundamental group Γ then there is an aspherical classifying space *B* Γ along with a classifying map $\nu : M \to B\Gamma$ that is an isomorphism on π_1 .

Here $B\Gamma$ is a CW-complex that only depends on Γ . Both $B\Gamma$ and ν are uniquely defined up to homotopy.

How to get $B\Gamma$? Start with M. Ask if $\pi_2(M)$ is nonzero. If not, attach 3-disks to kill it. Then ask if π_3 of the result is nonzero. If not, attach 4-disks to kill it. Continue to get $B\Gamma$. There's an inclusion map $\nu : M \to B\Gamma$.

Generalized conjecture

We have the map $\nu : M \rightarrow B\Gamma$.

Generalized open conjecture: If *M* is compact and oriented, let $[M] \in H_n(M; \mathbb{Q})$ be its fundamental class. If $\nu_*[M]$ is nonzero in $H_n(B\Gamma; \mathbb{Q})$ then *M* does not admit a psc metric.

If *M* is already aspherical then we can take $B\Gamma = M$ and $\nu = Id$, so we recover the previous conjecture.

The generalized conjecture is known to be true if *M* is spin and $\pi_1(M)$ satisfies the Strong Novikov Conjecture. (Conceivably, all discrete groups do.)

What about complete metrics on noncompact manifolds? We can ask about obstructions for uniformly positive scalar curvature, i.e. $R \ge r_0 > 0$, or just positive scalar curvature, i.e R > 0. The answers are not the same, e.g. if $M = \mathbb{R}^2$.

Test question: Suppose that *Y* is a connected oriented compact manifold-with-boundary, with connected boundary ∂Y . Put $\Gamma = \pi_1(Y, y_0)$ and $\Gamma' = \pi_1(\partial Y, y_0)$. There is a classifying map $\nu : (Y, \partial Y) \rightarrow (B\Gamma, B\Gamma')$. Is nonvanishing of $\nu_*[Y, \partial Y]$ in $H_n(B\Gamma, B\Gamma'; \mathbb{Q})$ an obstruction to the existence of a complete psc metric on the interior of *Y*, provided that

- 1. $\Gamma' \to \Gamma$ is injective, or
- 2. The Riemannian metric has finite volume?

Had assumptions

1. $\Gamma' \to \Gamma$ is injective, or

2. The complete Riemannian metric on the interior has finite volume.

A condition like 1 or 2 is necessary.

Example: Suppose that *Y* is D^2 , so $\partial Y = S^1$. Then $\nu_*[Y, \partial Y]$ is nonzero. Nevertheless, there is a psc metric on the interior of *Y*, i.e. \mathbb{R}^2 .

In this case, the map $\pi_1(S^1) \rightarrow \pi_1(D^2)$ is not injective, and also the psc metric has infinite volume.

The main tools that I use:

- 1. Almost flat vector bundles (Connes-Gromov-Moscovici 1990)
- 2. Almost flat relative vector bundles (Kubota 2022)
- 3. Callias-type Dirac operators (Callias 1978, ..., Cecchini-Zeidler 2024, ...)

Using these tools, one can give *localized* obstructions to positive scalar curvature.

Another set of tools comes from μ -bubbles. It would be interesting if one could derive analogous results using them.

If X is a compact manifold then elements of $K^0(X)$ can be represented as formal differences $E^+ - E^-$ of vector bundles on X.

Give X a Riemannian metric.

Definition: A class $\beta \in K^0(X)$ is almost flat if for each $\epsilon > 0$, we can find

1. A \mathbb{Z}_2 -graded Hermitian vector bundle E^{\pm} representing β , and

2. A Hermitian connection ∇^{\pm} on E^{\pm} whose curvature satisfies $|| F^{\pm} || < \epsilon$.

Note: As ϵ decreases, the rank of *E* will generally go to infinity.

Theorem: (Connes-Gromov-Moscovici 1990) If *M* is a compact even dimensional spin manifold with a psc metric then for any almost flat $\beta \in K^0(M)$, we have

$$\int_M \widehat{A}(TM) \wedge \operatorname{ch}(eta) = 0.$$

Proof: If *D* is the Dirac operator on spinors coupled to *E* then Lichnerowicz says that

$$D^2 =
abla^*
abla + rac{R}{4} - rac{1}{4} \sum_{\mu,
u} [\gamma^\mu,\gamma^
u] F^{\mathcal{E}}_{\mu
u}.$$

So for sufficiently small ϵ , the kernel of D vanishes. But Atiyah-Singer says that the index of D is $\int_M \widehat{A}(TM) \wedge ch(\beta)$.

Elements of $K^{-1}(X)$ can be represented by pairs (V, σ) where V is a vector bundle on X and σ is an automorphism of V.

Definition: A class $\beta \in K^{-1}(X)$ is almost flat if for each $\epsilon > 0$, we can find

1. A Hermitian vector bundle V equipped with an isometric automorphism σ that together represent β , and

2. A Hermitian connection ∇^{V} on V so that $|| F^{V} || < \epsilon$ and $|| \nabla^{V} \sigma || < \epsilon$.

4 ロ ト 4 団 ト 4 三 ト 4 三 ト 9 4 で

If *M* has psc and $\beta \in K^*(M)$ is a.f. then $\int_M \widehat{A}(TM) \wedge ch(\beta) = 0$.

Where do almost flat K-theory classes come from? They pullback from classifying spaces.

Definition: If Γ is a discrete group, let $K_{af}^*(B\Gamma)$ be the elements $\eta \in K^*(B\Gamma)$ so that for any compact manifold X and any $\nu : X \to B\Gamma$, the pullback $\nu^*\eta$ is almost flat on X.

Conceivably, $K_{af}^*(B\Gamma)$ is all of $K^*(B\Gamma)$, at least rationally. This is known for many Γ , such as word hyperbolic groups.

If so, we conclude that if *M* has a psc metric then for any $\nu : M \to B\Gamma$, the pushforward $\nu_*(*\widehat{A}(TM))$ vanishes in $H_*(B\Gamma; \mathbb{Q})$.

In particular, $\nu_*(\star 1) = \nu_*[M]$ vanishes in $H_n(B\Gamma; \mathbb{Q})$.

Background

Results

Simplicial volume

Proofs

◆□▶ ◆□▶ ◆三▶ ◆三 ◆ ○ ◆ ○ ◆

The geometric setup

Given r_0 , D > 0, put $r'_0 = \frac{1}{256}r_0^2 D^2$ and $D' = D + \frac{32}{r_0 D}$.

- M is a Riemannian spin manifold-with-boundary.
- \triangleright K is a compact submanifold of M containing ∂M .
- ► *R* > 0 on *K*.
- ► $R \ge r_0$ on $N_D(K) K$.
- ► $R \ge -r'_0$ on $N_{D'}(K) N_D(K)$.
- ► $N_{D'}(K)$ lies in a compact submanifold C.

First result

Terminology: The boundary of a Riemannian manifold-with-boundary is mean convex if it has nonnegative mean curvature. For example, ∂B^n is mean convex.

Theorem 1: Suppose that ∂M is mean convex. If $\beta \in K^*(\mathcal{C})$ is almost flat then

$$\int_{\partial M} \widehat{A}(T\partial M) \wedge \operatorname{ch}\left(\beta\Big|_{\partial M}\right) = 0.$$

Exhaustion of finite volume manifolds

Proposition: Let *M* be a complete finite volume oriented Riemannian manifold, of dimension at most seven, with compact boundary. Then there is an exhaustion of *M* by compact submanifolds-with-boundary *Z* so that ∂Z (away from ∂M) is mean convex as seen from M - Z.

Corollary: There is no complete finite volume psc metric on $[0,\infty) \times T^{n-1}$, provided that $n \leq 7$.

▲□▶▲□▶▲■▶▲■▶ ■ のQ@

If *X* is a compact manifold and $Y \subset X$ is a submanifold then a generator of the relative *K*-group $K^0(X, Y)$ is a formal difference $E^+ - E^-$ of vector bundles on *X*, along with an isomorphism $\sigma : E^+ |_Y \to E^- |_Y$.

Definition: (Kubota) A class $\beta \in K^0(X, Y)$ is almost flat if for each $\epsilon > 0$, we can find

1. A \mathbb{Z}_2 -graded Hermitian vector bundle E^{\pm} on X and an isometric isomorphism $\sigma : E^+ |_Y \to E^- |_Y$ so that (E, σ) represents β , and

2. A Hermitian connection ∇^{\pm} on E^{\pm} so that $|| F^{\pm} || < \epsilon$ and $|| \nabla \sigma || < \epsilon$.

Second result

Theorem 2: If $\beta \in K^*(\mathcal{C}, \mathcal{C} - int(K))$ is almost flat then

$$\int_{\mathcal{C}}\widehat{A}(TM)\wedge \mathrm{ch}(\beta)=0.$$

Remark: If *M* is compact and K = C = M then this becomes the Connes-Gromov-Moscovici result.

Where do almost flat elements of $K^0(X, Y)$ come from? From pullbacks under maps of pairs $\nu : (X, Y) \rightarrow (B\Gamma, B\Gamma')$, where $h : \Gamma' \rightarrow \Gamma$ is an *injective* homomorphism.

If *h* is not injective then we cannot expect that elements of $K^0(B\Gamma, B\Gamma')$ pullback to almost flat elements of $K^0(X, Y)$. Example: $\Gamma' = \mathbb{Z}$ and $\Gamma = \{e\}$.

Corollary: Suppose that Y^n is a connected compact spin manifold-with-boundary, with connected boundary. Put $\Gamma = \pi_1(Y, y_0)$ and $\Gamma' = \pi_1(\partial Y, y_0)$. If the interior of Y has a complete psc metric, and $K_{af}^*(B\Gamma, B\Gamma')$ equals $K^*(B\Gamma, B\Gamma')$ rationally, then $\nu_*[Y, \partial Y]$ vanishes in $H_n(B\Gamma, B\Gamma'; \mathbb{Q})$.

Note: If $\Gamma' \to \Gamma$ is not injective, replace Γ' by its image.

Suppose that X is a compact manifold and $Y \subset X$ is a submanifold. Give X a Riemannian metric.

Definition: (Kubota) A class $\beta \in K^0(X, Y)$ is almost flat stably if for each $\epsilon > 0$, we can find

1. A \mathbb{Z}_2 -graded Hermitian vector bundle E on X, a Hermitian vector bundle V on Y, and an isometric isomorphism $\sigma: E^+ \Big|_Y \oplus V \to E^- \Big|_Y \oplus V$ so that (E, V, σ) represents β , and

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

2. Hermitian connections $\nabla^{E^{\pm}}$ on *E* and ∇^{V} on *V* so that $|| F^{E^{\pm}} || < \epsilon, || F^{V} || < \epsilon$ and $|| \nabla \sigma || < \epsilon$.

Theorem 3: If ∂K is mean convex as seen from M - K, and $\beta \in K^*(\mathcal{C}, \mathcal{C} - int(K))$ is almost flat stably, then

$$\int_{\mathcal{C}}\widehat{A}(TM)\wedge \mathsf{ch}(\beta)=0$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへで

Application to test question

Corollary: Suppose that Y is a connected compact spin manifold-with-boundary, with connected boundary, of dimension $n \leq 7$. Put $\Gamma = \pi_1(Y, y_0)$ and $\Gamma' = \pi_1(\partial Y, y_0)$.

If the interior of Y has a complete finite volume psc metric, and $K_{af,st}^*(B\Gamma, B\Gamma')$ equals $K^*(B\Gamma, B\Gamma')$ rationally, then $\nu_*[Y, \partial Y]$ vanishes in $H_n(B\Gamma, B\Gamma'; \mathbb{Q})$.

Background

Results

Simplicial volume

Proofs

◆□▶ ◆□▶ ◆三▶ ◆三 ◆ ○ ◆ ○ ◆

The simplicial volume || M || of a closed oriented manifold M roughly measures how many simplices it takes to triangulate the manifold.

Definition:

$$\parallel M \parallel = \inf \left\{ \sum_i |a_i| : \left[\sum_i a_i c_i \right] = [M] \right\}$$

Here

►
$$a_i \in \mathbb{R}$$
,

- ► c_i : $\triangle^n \to M$ is a singular *n*-simplex,
- ▶ $[M] \in H_n(M; \mathbb{R})$ is the fundamental class, and
- The sum is finite.

A manifold has almost nonnegative scalar curvature if for each $\epsilon > 0$ it admits an appropriately normalized Riemannian metric with $R \ge -\epsilon$.

What are possible topological obstructions for a compact manifold to have almost nonnegative scalar curvature?

Conjecture: (Gromov 1986) For each $n \in \mathbb{Z}^+$, there is some $c_n > 0$ so that if M is a compact connected oriented n-dimensional Riemannian manifold with $R \ge -\sigma^2$ then $||M|| \le c_n \sigma^n \operatorname{vol}(M)$.

Remark: This is open even if $\sigma = 0$.

Conjecture: (Gromov 1986) For each $n \in \mathbb{Z}^+$, there is some $c_n > 0$ so that if M is a compact connected oriented n-dimensional Riemannian manifold with $R \ge -\sigma^2$ then $\|M\| \le c_n \sigma^n \operatorname{vol}(M)$.

Two ways to think of this conjecture:

1. If we normalize $\sigma = 1$, it says that simplicial volume is an obstruction to volume-collapsing with a lower scalar curvature bound.

2. If we normalize vol = 1, it says that simplicial volume is an obstruction to having almost nonnegative scalar curvature, relative to the volume.

We will think about it the second way.

Conjecture: (Gromov 1986) For each $n \in \mathbb{Z}^+$, there is some $c_n > 0$ so that if M is a compact connected oriented n-dimensional Riemannian manifold with vol = 1 and $R \ge -\sigma^2$ then $||M|| \le c_n \sigma^n$.

It's true if scalar curvature is replaced by Ricci curvature (Gromov 1982). In fact, there's a gap theorem: there is some $\epsilon_n > 0$ so that if vol = 1 and Ric $\ge -\epsilon_n$ then || M || = 0.

Also, the conjecture is true if scalar curvature is replaced by "macroscopic scalar curvature", along with a gap result (Braun-Sauer 2021).

Can we verify the conjecture in the "easy" case when we impose some additional curvature bound?

Theorem 4: Given $n \in \mathbb{Z}^+$ and $D, \Lambda < \infty$, there is some $\epsilon = \epsilon(n, D, \Lambda) > 0$ with the following property. Let M^n be a compact connected spin manifold so that $\pi_1(M)$ satisfies the Strong Novikov Conjecture. Suppose that g is a Riemannian metric on M so that (M, g) has

- Diameter bounded above by D,
- Curvature operator bounded below by $-\Lambda$, and
- Scalar curvature bounded below by $-\epsilon$.

Then $\parallel M \parallel = 0$.

Remark: One cannot remove the lower bound on the curvature operator (Lohkamp 1999).

Going to back to the original conjecture, let's add a double sided bound on the sectional curvatures.

Question: Given $n \in \mathbb{Z}^+$ and $\Lambda < \infty$, is there some $\epsilon = \epsilon(n, \Lambda) > 0$ with the following property? Let M^n be a compact connected manifold. Suppose that g is a Riemannian metric on M so that (M, g) has

- Volume equal to one,
- Sectional curvatures bounded in magnitude by Λ , and
- Scalar curvature bounded below by $-\epsilon$.

Then $\parallel M \parallel = 0$.

Suppose not. Let $\{(M_i, g_i)\}_{i=1}^{\infty}$ be a sequence that gives a counterexample.

Each (M_i, g_i) is a compact connected Riemannian *n*-manifold with

- Volume equal to one,
- Sectional curvatures bounded in magnitude by Λ , and
- Scalar curvature bounded below by $-\frac{1}{i}$, but
- $\blacktriangleright \parallel M_i \parallel \neq 0.$

From the previous result, we can assume that $diam(M_i, g_i)$ goes to infinity.

After passing to a subsequence, we get a multipointed limit $\lim_{i\to\infty} (M_i, g_i) = (Z_{\infty}, g_{\infty})$, where (Z_{∞}, g_{∞}) is a complete noncompact finite volume Riemannian *n*-manifold with *positive* scalar curvature.

Thick-thin decomposition

Based on Theorem 3, it is reasonable to assume that Z_{∞} has an exhaustion by compact submanifolds $\{Z_j\}_{j=1}^{\infty}$ so that the image of $[Z_j, Z_j - int(Z_{j-1})]$ vanishes in $H_n(B\pi_1(Z_j), B\pi_1(Z_j - int(Z_{j-1})); \mathbb{Q}).$

▲□▶▲□▶▲■▶▲■▶ ■ のQ@

This implies that the relative simplicial volume $|| Z_j, Z_j - int(Z_{j-1}) ||$ vanishes.

Lifting Z_j to M_i for large *i*, we get a decomposition $M_i = M_i^{thick} \cup M_i^{thin}$.

We have a decomposition $M_i = M_i^{thick} \cup M_i^{thin}$ where

► $\partial M_i^{thick} \subset int(M_i^{thin})$ and $\partial M_i^{thin} \subset int(M_i^{thick})$,

$$\blacktriangleright \parallel M_i^{thick}, M_i^{thick} \cap M_i^{thin} \parallel = 0, \text{ and }$$

 \blacktriangleright M_i^{thin} is locally volume collapsed.

Since M_i^{thin} is locally volume collapsed relative to a sectional curvature bound, it has an "amenable open cover" of multiplicity at most *n*. In particular, $|| M_i^{thin}, M_i^{thick} \cap M_i^{thin} || = 0$ (Gromov, Ivanov, Löh-Sauer).

We would now like to say that $|| M_i || = 0$, which would give a contradiction. Is this true? A gluing problem for simplicial volume!

Background

Results

Simplicial volume

Proofs

◆□▶ ◆□▶ ◆三▶ ◆三 ◆ ○ ◆ ○ ◆

Theorem 1: Suppose that ∂M is mean convex. If $\beta \in K^*(\mathcal{C})$ is almost flat then

$$\int_{\partial M} \widehat{A}(T\partial M) \wedge \mathsf{ch}\left(\beta\Big|_{\partial M}\right) = 0.$$

Sketch of proof: Suppose that dim(*M*) is even. Given $\epsilon > 0$, let (V, σ) represent $\beta \in K^{-1}(\mathcal{C})$, where

- \triangleright V is a Hermitian vector bundle on C,
- > σ is an isometric automorphism of V,
- $\triangleright \nabla^{V}$ is a Hermitian connection on V, and
- $\blacktriangleright \parallel F^{V} \parallel < \epsilon \text{ and } \parallel \nabla^{V} \sigma \parallel < \epsilon.$

Put
$$\widehat{D} = D + \frac{16}{r_0 D} < D'$$
.

Suppose for simplicity that d_K is smooth away from K, and $\mathcal{N} = \overline{N_{\widehat{D}}(K)}$ is a smooth manifold-with-boundary.

Let *S* be the spinor bundle on \mathcal{N} , with \mathbb{Z}_2 -grading operator ϵ_S .

- Let *E* be the restriction of $V \oplus V$ to \mathcal{N} .
- Let \mathcal{D}^V be the Dirac operator on $C^{\infty}(\mathcal{N}; S \otimes V)$.

For an appropriate function f, define \mathcal{D}^E on $C^{\infty}(\mathcal{N}; S \otimes E)$ by

$$\mathcal{D}^{E} = \begin{pmatrix} \mathcal{D}^{V} & \epsilon_{S} f \sigma^{-1} \\ \epsilon_{S} f \sigma & \mathcal{D}^{V} \end{pmatrix}.$$

Warping function

Take $f = \sigma \circ d_K$, where σ is a slight smoothing of

$$\begin{cases} 0 & \text{if } t \leq 0, \\ \frac{r_0}{8}t & \text{if } 0 \leq t \leq D, \\ \frac{2}{\widehat{D}-t} & \text{if } D \leq t \leq \widehat{D}. \end{cases}$$

< ロ > < 団 > < 三 > < 三 > < 三 < つ < ○

Define a self-adjoint operator Π on $C^{\infty}(\partial \mathcal{N}, (S \otimes E)|_{\partial \mathcal{N}})$ by

$$\Pi = \begin{cases} \begin{pmatrix} 0 & \sqrt{-1}\epsilon_{S}\gamma^{n} \\ \sqrt{-1}\epsilon_{S}\gamma^{n} & 0 \end{pmatrix} & \text{on } \partial M, \\ \begin{pmatrix} 0 & \sqrt{-1}\epsilon_{S}\gamma^{n}\sigma^{-1} \\ \sqrt{-1}\epsilon_{S}\gamma^{n}\sigma & 0 \end{pmatrix} & \text{on } \partial \mathcal{N} - \partial M. \end{cases}$$

Boundary condition: $\Pi\left(\psi\Big|_{\partial\mathcal{N}}\right) = \psi\Big|_{\partial\mathcal{N}}$.

Claim: With this boundary condition, \mathcal{D}^E is invertible on \mathcal{N} .

Idea: Show that with this choice of f, for any nonzero ψ we have $\int_{\mathcal{N}} \langle \mathcal{D}^{E} \psi, \mathcal{D}^{E} \psi \rangle$ dvol > 0.

Claim: The index of \mathcal{D}^E , going from $C^{\infty}(\mathcal{N}; (S \otimes E)^+)$ to $C^{\infty}(\mathcal{N}; (S \otimes E)^-)$ is

$$\int_{\partial M} \widehat{A}(T\partial M) \wedge \mathsf{ch}\left(eta\Big|_{\partial M}
ight).$$

Idea: Without changing the index, we can

- Deform *f* to zero.
- Make the Riemannian metric a product near $\partial \mathcal{N}$.

• Make the connection ∇^{V} a product near $\partial \mathcal{N}$.

The boundary conditions are such that \mathcal{D}^E is the same as the corresponding operator on the \mathbb{Z}_2 -invariant spinors on the double $D\mathcal{N}$.

Then the index of \mathcal{D}^{E} is the same as the \mathbb{Z}_{2} -invariant index on $D\mathcal{N}$. To compute it, make the connection $\nabla^{E^{-}}$ on $E^{-} \cong V$ equal to $\nabla^{E^{+}} = \nabla^{V}$ very close to ∂M , and equal to $\sigma \circ \nabla^{E^{+}} \circ \sigma^{-1}$ away from a δ -neighborhood of ∂M . Then the index is

$$\begin{split} \int_{\mathcal{N}} \widehat{A}(T\mathcal{N}) \wedge \operatorname{tr}_{\boldsymbol{s}} \left(\boldsymbol{e}^{\frac{i}{2\pi} (\nabla^{E})^{2}} \right) &= \int_{\partial M \times [0,\delta]} \widehat{A}(T\mathcal{N}) \wedge \operatorname{tr}_{\boldsymbol{s}} \left(\boldsymbol{e}^{\frac{i}{2\pi} (\nabla^{E})^{2}} \right) \\ &= \int_{\partial M} \widehat{A}(T\partial M) \wedge \int_{[0,\delta]} \operatorname{tr}_{\boldsymbol{s}} \left(\boldsymbol{e}^{\frac{i}{2\pi} (\nabla^{E})^{2}} \right) \\ &= \int_{\partial M} \widehat{A}(T\partial M) \wedge \operatorname{ch}(V,\sigma) \big|_{\partial M} \\ &= \int_{\partial M} \widehat{A}(T\partial M) \wedge \operatorname{ch} \left(\beta \big|_{\partial M} \right). \end{split}$$

< ロ > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < < つ < O</p>

Statement of Theorem 2

Theorem 2: If $\beta \in K^*(\mathcal{C}, \mathcal{C} - int(K))$ is almost flat then

$$\int_{\mathcal{C}} \widehat{A}(\mathit{TM}) \wedge \mathsf{ch}(eta) = \mathsf{0}.$$

Sketch of proof: Suppose that dim(M) is even. Given $\epsilon > 0$, let (E, σ) represent $\beta \in K^0(\mathcal{C}, \mathcal{C} - int(K))$, where

- \triangleright E^{\pm} is a \mathbb{Z}_2 -graded Hermitian vector bundle on \mathcal{C} ,
- $\sigma: E^+ \Big|_{\mathcal{C}-int(K))} \to E^- \Big|_{\mathcal{C}-int(K))}$ is an isometric isomorphism,
- ► ∇^{\pm} is a Hermitian connection on E^{\pm} , and

$$\blacktriangleright \parallel F^{\pm} \parallel < \epsilon \text{ and } \parallel \nabla \sigma \parallel < \epsilon.$$

Define the warping function *f* as in the proof of Theorem 1. Define \mathcal{D} on $C^{\infty}(\mathcal{N}; S \otimes E)$ by

$$\mathcal{D} = \begin{pmatrix} \mathcal{D}^{E^+} & \epsilon_{\mathcal{S}} f \sigma^{-1} \\ \epsilon_{\mathcal{S}} f \sigma & \mathcal{D}^{E^-} \end{pmatrix}$$

Impose local boundary conditions on $\partial \mathcal{N}$ and proceed as in the proof of Theorem 1.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで

Statement of Theorem 3

Theorem 3: If ∂K is mean convex as seen from M - K, and $\beta \in K^*(\mathcal{C}, \mathcal{C} - int(K))$ is almost flat stably, then

$$\int_{\mathcal{C}} \widehat{A}(\mathit{TM}) \wedge \mathsf{ch}(eta) = \mathbf{0}.$$

< □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ > のへで

Sketch of proof: Combine the setups of Theorems 1 and 2.

Suppose that dim(*M*) is even. Given $\epsilon > 0$, let (E, V, σ) represent $\beta \in K^0(\mathcal{C}, \mathcal{C} - int(K))$, where

- \triangleright E^{\pm} is a \mathbb{Z}_2 -graded Hermitian vector bundle on \mathcal{C} ,
- ▶ V is a Hermitian vector bundle on C int(K),

•
$$\sigma: E^+ \Big|_{\mathcal{C}-int(K)} \oplus V \to E^- \Big|_{\mathcal{C}-int(K)} \oplus V$$
 is an isometric isomorphism,

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

►
$$\nabla^{E^{\pm}}$$
 is a Hermitian connection on E^{\pm} ,

- $\triangleright \nabla^{V}$ is a Hermitian connection on V, and
- $\models \parallel F^{E^{\pm}} \parallel < \epsilon, \parallel F^{V} \parallel < \epsilon \text{ and } \parallel \nabla \sigma \parallel < \epsilon.$

Domain of the operator

Put $W = V \oplus V$, a \mathbb{Z}_2 -graded Hermitian vector bundle on $\mathcal{C} - int(K)$, with Hermitian connection $\nabla^W = \nabla^V \oplus \nabla^V$.

The Callias operator \mathcal{D} will act on the subspace of

$$\mathcal{C}^{\infty}(\mathcal{N}; \mathcal{S} \otimes \mathcal{E}) \oplus \mathcal{C}^{\infty}(\mathcal{N} - \mathrm{int}(\mathcal{K}); \mathcal{S} \otimes \mathcal{W})$$

that satisfies certain local boundary conditions.

On *K*, the operator \mathcal{D} is the usual Dirac-type operator on $C^{\infty}(K; S \otimes E)$.

On $\mathcal{N} - \operatorname{int}(K)$, put $Z = E\Big|_{\mathcal{N} - \operatorname{int}(K)} \oplus W$. Then \mathcal{D} acts on $C^{\infty}(\mathcal{N} - \operatorname{int}(K); S \otimes Z)$ by

$$\mathcal{D} = \begin{pmatrix} \mathcal{D}^{Z^+} & \epsilon_{\mathcal{S}} f \sigma^{-1} \\ \epsilon_{\mathcal{S}} f \sigma & \mathcal{D}^{Z^-} \end{pmatrix}$$

Proceed as in the proofs of Theorems 1 and 2.

Theorem 4: Given $n \in \mathbb{Z}^+$ and $D, \Lambda < \infty$, there is some $\epsilon = \epsilon(n, D, \Lambda) > 0$ with the following property. Let M^n be a compact connected spin manifold so that $\pi_1(M)$ satisfies the Strong Novikov Conjecture. Suppose that g is a Riemannian metric on M so that (M, g) has

- Diameter bounded above by D,
- E Curvature operator bounded below by $-\Lambda$, and
- Scalar curvature bounded below by $-\epsilon$.

Then $\parallel M \parallel = 0$.

Suppose not. Let $\{(M_i, g_i)\}_{i=1}^{\infty}$ be a sequence that gives a counterexample.

Each (M_i, g_i) is a compact connected Riemannian *n*-manifold with

- ► Diameter at most *D*,
- E Curvature operator bounded below by $-\Lambda$, and
- Scalar curvature bounded below by $-\frac{1}{i}$, but
- $\blacktriangleright \parallel M_i \parallel \neq 0.$

From Gromov's gap theorem, there is a uniform lower bound $vol(M_i, g_i) \ge v_0 > 0$ (coming from the lower Ricci curvature bound).

We can run the Ricci flow for a uniform amount of time to obtain a new metric g'_i with $R(M_i, g'_i) \ge -\frac{1}{i}$ and a uniform bound $|\operatorname{Rm}(M_i, g'_i)| \le \Lambda'$ (Bamler-Cabezas-Rivas-Wilking 2019). From distortion estimates under Ricci flow, there is a uniform upper bound diam $(M_i, g'_i) \leq D'$.

From Gromov's gap theorem, there is again a uniform lower bound $vol(M_i, g'_i) \ge v'_0 > 0$.

After passing to a subsequence, there is a smooth limit $\lim_{i\to\infty}(M_i,g_i')=(M_\infty,g_\infty).$

Necessarily, $R(M_{\infty}, g_{\infty}) \geq 0$.

Since (M_{∞}, g_{∞}) is also the result of running Ricci flow, either $\operatorname{Ric}(M_{\infty}, g_{\infty}) = 0$ or $R(M_{\infty}, g_{\infty}) > 0$.

If $\operatorname{Ric}(M_{\infty}, g_{\infty}) = 0$ then $\pi_1(M_{\infty})$ is virtually abelian and so $|| M_{\infty} || = 0$.

If $R(M_{\infty}, g_{\infty}) > 0$ then SNC implies that $\nu_*[M_{\infty}]$ vanishes in $H_n(B\pi_1(M); \mathbb{Q})$. This implies that $|| M_{\infty} || = 0$.

In either case, $|| M_{\infty} || = 0$. Since M_{∞} is diffeomorphic to M_i , for large *i*, this is a contradiction.