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Scalar curvature

Given a Riemannian n-manifold (M, g), at a point m 2 M, the
scalar curvature R(m) is n(n � 1) times the average sectional
curvature at m.

Basic question: Given a smooth compact manifold M, does it
admit a Riemannian metric with positive scalar curvature (psc)?

The answer is known when M is simply connected
(Gromov-Lawson 1980, Stolz 1992).

Open conjecture: If M is aspherical, i.e. has vanishing higher
homotopy groups, then M does not admit a psc metric.

Known to be true if n  5 (Schoen-Yau 1979, Gromov-Lawson
1983, Chodosh-Li 2024, Gromov).



Classifying spaces

If M is a connected manifold with fundamental group � then
there is an aspherical classifying space B� along with a
classifying map ⌫ : M ! B� that is an isomorphism on ⇡1.

Here B� is a CW-complex that only depends on �. Both B� and
⌫ are uniquely defined up to homotopy.

How to get B�? Start with M. Ask if ⇡2(M) is nonzero. If not,
attach 3-disks to kill it. Then ask if ⇡3 of the result is nonzero. If
not, attach 4-disks to kill it. Continue to get B�. There’s an
inclusion map ⌫ : M ! B�.



Generalized conjecture

We have the map ⌫ : M ! B�.

Generalized open conjecture: If M is compact and oriented, let
[M] 2 Hn(M;Q) be its fundamental class. If ⌫⇤[M] is nonzero in
Hn(B�;Q) then M does not admit a psc metric.

If M is already aspherical then we can take B� = M and ⌫ = Id,
so we recover the previous conjecture.

The generalized conjecture is known to be true if M is spin and
⇡1(M) satisfies the Strong Novikov Conjecture. (Conceivably,
all discrete groups do.)



Noncompact manifolds

What about complete metrics on noncompact manifolds? We
can ask about obstructions for uniformly positive scalar
curvature, i.e. R � r0 > 0, or just positive scalar curvature, i.e
R > 0. The answers are not the same, e.g. if M = R2.

Test question: Suppose that Y is a connected oriented
compact manifold-with-boundary, with connected boundary @Y .
Put � = ⇡1(Y , y0) and �

0
= ⇡1(@Y , y0). There is a classifying

map ⌫ : (Y , @Y ) ! (B�,B�
0
). Is nonvanishing of ⌫⇤[Y , @Y ] in

Hn(B�,B�
0
;Q) an obstruction to the existence of a complete

psc metric on the interior of Y , provided that

1. �0 ! � is injective, or

2. The Riemannian metric has finite volume?



Example

Had assumptions

1. �0 ! � is injective, or

2. The complete Riemannian metric on the interior has finite
volume.

A condition like 1 or 2 is necessary.

Example: Suppose that Y is D2, so @Y = S1. Then ⌫⇤[Y , @Y ] is
nonzero. Nevertheless, there is a psc metric on the interior of
Y , i.e. R2.

In this case, the map ⇡1(S1
) ! ⇡1(D2

) is not injective, and also
the psc metric has infinite volume.



Tools

The main tools that I use:

1. Almost flat vector bundles (Connes-Gromov-Moscovici 1990)

2. Almost flat relative vector bundles (Kubota 2022)

3. Callias-type Dirac operators (Callias 1978, . . . ,
Cecchini-Zeidler 2024, . . . )

Using these tools, one can give localized obstructions to
positive scalar curvature.

Another set of tools comes from µ-bubbles. It would be
interesting if one could derive analogous results using them.



Almost flat vector bundles

If X is a compact manifold then elements of K0
(X ) can be

represented as formal differences E+ � E� of vector bundles
on X .

Give X a Riemannian metric.

Definition: A class � 2 K
0
(X ) is almost flat if for each ✏ > 0, we

can find

1. A Z2-graded Hermitian vector bundle E± representing �, and

2. A Hermitian connection r± on E± whose curvature satisfies
k F± k< ✏.

Note: As ✏ decreases, the rank of E will generally go to infinity.



Index theorem

Theorem: (Connes-Gromov-Moscovici 1990) If M is a compact
even dimensional spin manifold with a psc metric then for any
almost flat � 2 K

0
(M), we have
Z

M

bA(TM) ^ ch(�) = 0.

Proof: If D is the Dirac operator on spinors coupled to E then
Lichnerowicz says that

D2
= r⇤r+

R
4
� 1

4

X

µ,⌫

[�µ, �⌫ ]F E
µ⌫ .

So for sufficiently small ✏, the kernel of D vanishes. But
Atiyah-Singer says that the index of D is

R
M
bA(TM) ^ ch(�).



The odd case

Elements of K�1
(X ) can be represented by pairs (V ,�) where

V is a vector bundle on X and � is an automorphism of V .

Definition: A class � 2 K
�1

(X ) is almost flat if for each ✏ > 0,
we can find

1. A Hermitian vector bundle V equipped with an isometric
automorphism � that together represent �, and

2. A Hermitian connection rV on V so that k F V k< ✏ and
k rV� k< ✏.



Relevance of almost flat bundles

If M has psc and � 2 K
⇤
(M) is a.f. then

R
M
bA(TM) ^ ch(�) = 0.

Where do almost flat K-theory classes come from? They
pullback from classifying spaces.

Definition: If � is a discrete group, let K⇤
af (B�) be the elements

⌘ 2 K
⇤
(B�) so that for any compact manifold X and any

⌫ : X ! B�, the pullback ⌫⇤⌘ is almost flat on X .

Conceivably, K⇤
af (B�) is all of K⇤

(B�), at least rationally. This is
known for many �, such as word hyperbolic groups.

If so, we conclude that if M has a psc metric then for any
⌫ : M ! B�, the pushforward ⌫⇤(?bA(TM)) vanishes in
H⇤(B�;Q).

In particular, ⌫⇤(?1) = ⌫⇤[M] vanishes in Hn(B�;Q).
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The geometric setup

Given r0,D > 0, put r 00 =
1

256 r2
0 D2 and D0

= D +
32
r0D .

I M is a Riemannian spin manifold-with-boundary.
I K is a compact submanifold of M containing @M.
I R > 0 on K .
I R � r0 on ND(K )� K .
I R � �r 00 on ND0(K )� ND(K ).
I ND0(K ) lies in a compact submanifold C.



First result

Terminology: The boundary of a Riemannian
manifold-with-boundary is mean convex if it has nonnegative
mean curvature. For example, @Bn is mean convex.

Theorem 1: Suppose that @M is mean convex. If � 2 K
⇤
(C) is

almost flat then
Z

@M

bA(T@M) ^ ch

⇣
�
���
@M

⌘
= 0.



Exhaustion of finite volume manifolds

Proposition: Let M be a complete finite volume oriented
Riemannian manifold, of dimension at most seven, with
compact boundary. Then there is an exhaustion of M by
compact submanifolds-with-boundary Z so that @Z (away from
@M) is mean convex as seen from M � Z .

Corollary: There is no complete finite volume psc metric on
[0,1)⇥ T n�1, provided that n  7.



Relative K-theory

If X is a compact manifold and Y ⇢ X is a submanifold then a
generator of the relative K -group K

0
(X ,Y ) is a formal

difference E+ � E� of vector bundles on X , along with an
isomorphism � : E+

���
Y
! E�

���
Y

.

Give X a Riemannian metric.

Definition: (Kubota) A class � 2 K
0
(X ,Y ) is almost flat if for

each ✏ > 0, we can find

1. A Z2-graded Hermitian vector bundle E± on X and an
isometric isomorphism � : E+

���
Y
! E�

���
Y

so that (E ,�)

represents �, and

2. A Hermitian connection r± on E± so that k F± k< ✏ and
k r� k< ✏.



Second result

Theorem 2: If � 2 K
⇤
(C, C � int(K )) is almost flat then
Z

C
bA(TM) ^ ch(�) = 0.

Remark: If M is compact and K = C = M then this becomes
the Connes-Gromov-Moscovici result.



Application to test question

Where do almost flat elements of K0
(X ,Y ) come from? From

pullbacks under maps of pairs ⌫ : (X ,Y ) ! (B�,B�
0
), where

h : �
0 ! � is an injective homomorphism.

If h is not injective then we cannot expect that elements of
K

0
(B�,B�

0
) pullback to almost flat elements of K0

(X ,Y ).
Example: �0 = Z and � = {e}.

Corollary: Suppose that Y n is a connected compact spin
manifold-with-boundary, with connected boundary. Put
� = ⇡1(Y , y0) and �

0
= ⇡1(@Y , y0). If the interior of Y has a

complete psc metric, and K
⇤
af (B�,B�

0
) equals K

⇤
(B�,B�

0
)

rationally, then ⌫⇤[Y , @Y ] vanishes in Hn(B�,B�
0
;Q).

Note: If �0 ! � is not injective, replace �
0 by its image.



Almost flat stably

Suppose that X is a compact manifold and Y ⇢ X is a
submanifold. Give X a Riemannian metric.

Definition: (Kubota) A class � 2 K
0
(X ,Y ) is almost flat stably if

for each ✏ > 0, we can find

1. A Z2-graded Hermitian vector bundle E on X , a Hermitian
vector bundle V on Y , and an isometric isomorphism
� : E+

���
Y
� V ! E�

���
Y
� V so that (E ,V ,�) represents �, and

2. Hermitian connections rE± on E and rV on V so that
k F E± k< ✏, k F V k< ✏ and k r� k< ✏.



Third result

Theorem 3: If @K is mean convex as seen from M � K , and
� 2 K

⇤
(C, C � int(K )) is almost flat stably, then

Z

C
bA(TM) ^ ch(�) = 0.



Application to test question

Corollary: Suppose that Y is a connected compact spin
manifold-with-boundary, with connected boundary, of
dimension n  7. Put � = ⇡1(Y , y0) and �

0
= ⇡1(@Y , y0).

If the interior of Y has a complete finite volume psc metric, and
K
⇤
af ,st(B�,B�

0
) equals K

⇤
(B�,B�

0
) rationally, then ⌫⇤[Y , @Y ]

vanishes in Hn(B�,B�
0
;Q).
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Simplicial volume

The simplicial volume k M k of a closed oriented manifold M
roughly measures how many simplices it takes to triangulate
the manifold.

Definition:

k M k= inf

(
X

i

|ai | :
"
X

i

aici

#
= [M]

)

Here
I ai 2 R,
I ci : 4n ! M is a singular n-simplex,
I [M] 2 Hn(M;R) is the fundamental class, and
I The sum is finite.



Simplicial volume conjecture

A manifold has almost nonnegative scalar curvature if for each
✏ > 0 it admits an appropriately normalized Riemannian metric
with R � �✏.

What are possible topological obstructions for a compact
manifold to have almost nonnegative scalar curvature?

Conjecture: (Gromov 1986) For each n 2 Z+, there is some
cn > 0 so that if M is a compact connected oriented
n-dimensional Riemannian manifold with R � ��2 then
k M k cn �n

vol(M).

Remark: This is open even if � = 0.



Almost nonnegative scalar curvature

Conjecture: (Gromov 1986) For each n 2 Z+, there is some
cn > 0 so that if M is a compact connected oriented
n-dimensional Riemannian manifold with R � ��2 then
k M k cn �n

vol(M).

Two ways to think of this conjecture:

1. If we normalize � = 1, it says that simplicial volume is an
obstruction to volume-collapsing with a lower scalar curvature
bound.

2. If we normalize vol = 1, it says that simplicial volume is an
obstruction to having almost nonnegative scalar curvature,
relative to the volume.

We will think about it the second way.



Known results

Conjecture: (Gromov 1986) For each n 2 Z+, there is some
cn > 0 so that if M is a compact connected oriented
n-dimensional Riemannian manifold with vol = 1 and R � ��2

then k M k cn �n.

It’s true if scalar curvature is replaced by Ricci curvature
(Gromov 1982). In fact, there’s a gap theorem: there is some
✏n > 0 so that if vol = 1 and Ric � �✏n then k M k= 0.

Also, the conjecture is true if scalar curvature is replaced by
“macroscopic scalar curvature”, along with a gap result
(Braun-Sauer 2021).



Diameter bound

Can we verify the conjecture in the “easy” case when we
impose some additional curvature bound?

Theorem 4: Given n 2 Z+ and D,⇤ < 1, there is some
✏ = ✏(n,D,⇤) > 0 with the following property. Let Mn be a
compact connected spin manifold so that ⇡1(M) satisfies the
Strong Novikov Conjecture. Suppose that g is a Riemannian
metric on M so that (M, g) has
I Diameter bounded above by D,
I Curvature operator bounded below by �⇤, and
I Scalar curvature bounded below by �✏.

Then k M k= 0.

Remark: One cannot remove the lower bound on the curvature
operator (Lohkamp 1999).



Volume bound

Going to back to the original conjecture, let’s add a double
sided bound on the sectional curvatures.

Question: Given n 2 Z+ and ⇤ < 1, is there some
✏ = ✏(n,⇤) > 0 with the following property? Let Mn be a
compact connected manifold. Suppose that g is a Riemannian
metric on M so that (M, g) has
I Volume equal to one,
I Sectional curvatures bounded in magnitude by ⇤, and
I Scalar curvature bounded below by �✏.

Then k M k= 0.

Suppose not. Let {(Mi , gi)}1i=1 be a sequence that gives a
counterexample.



Contradiction argument

Each (Mi , gi) is a compact connected Riemannian n-manifold
with
I Volume equal to one,
I Sectional curvatures bounded in magnitude by ⇤, and
I Scalar curvature bounded below by �1

i , but
I k Mi k6= 0.

From the previous result, we can assume that diam(Mi , gi) goes
to infinity.

After passing to a subsequence, we get a multipointed limit
limi!1(Mi , gi) = (Z1, g1), where (Z1, g1) is a complete
noncompact finite volume Riemannian n-manifold with positive
scalar curvature.



Thick-thin decomposition

Based on Theorem 3, it is reasonable to assume that Z1 has
an exhaustion by compact submanifolds {Zj}1j=1 so that the
image of [Zj ,Zj � int(Zj�1)] vanishes in
Hn(B⇡1(Zj),B⇡1(Zj � int(Zj�1));Q).

This implies that the relative simplicial volume
k Zj ,Zj � int(Zj�1) k vanishes.

Lifting Zj to Mi for large i , we get a decomposition
Mi = Mthick

i [ Mthin
i .



Gluing problem

We have a decomposition Mi = Mthick
i [ Mthin

i where
I @Mthick

i ⇢ int(Mthin
i ) and @Mthin

i ⇢ int(Mthick
i ),

I k Mthick
i ,Mthick

i \ Mthin
i k= 0, and

I Mthin
i is locally volume collapsed.

Since Mthin
i is locally volume collapsed relative to a sectional

curvature bound, it has an “amenable open cover” of multiplicity
at most n. In particular, k Mthin

i ,Mthick
i \ Mthin

i k= 0 (Gromov,
Ivanov, Löh-Sauer).

We would now like to say that k Mi k= 0, which would give a
contradiction. Is this true? A gluing problem for simplicial
volume!
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Statement of Theorem 1

Theorem 1: Suppose that @M is mean convex. If � 2 K
⇤
(C) is

almost flat then
Z

@M

bA(T@M) ^ ch

⇣
�
���
@M

⌘
= 0.

Sketch of proof: Suppose that dim(M) is even. Given ✏ > 0, let
(V ,�) represent � 2 K

�1
(C), where

I V is a Hermitian vector bundle on C,
I � is an isometric automorphism of V ,
I rV is a Hermitian connection on V , and
I k F V k< ✏ and k rV� k< ✏.



Callias operator

Put bD = D +
16
r0D < D0.

Suppose for simplicity that dK is smooth away from K , and
N = NbD(K ) is a smooth manifold-with-boundary.

Let S be the spinor bundle on N , with Z2-grading operator ✏S.

Let E be the restriction of V � V to N .

Let DV be the Dirac operator on C1
(N ;S ⌦ V ).

For an appropriate function f , define DE on C1
(N ;S ⌦ E) by

DE
=

✓
DV ✏Sf��1

✏Sf� DV

◆
.



Warping function

Take f = � � dK , where � is a slight smoothing of
8
><

>:

0 if t  0,
r0
8 t if 0  t  D,

2
bD�t

if D  t  bD.



Local boundary condition

Define a self-adjoint operator ⇧ on C1 �@N , (S ⌦ E)
��
@N
�

by

⇧ =

8
>>>><

>>>>:

 
0

p
�1✏S�n

p
�1✏S�n 0

!
on @M,

 
0

p
�1✏S�n��1

p
�1✏S�n� 0

!
on @N � @M.

.

Boundary condition: ⇧
⇣
 
���
@N

⌘
=  

���
@N

.

Claim: With this boundary condition, DE is invertible on N .

Idea: Show that with this choice of f , for any nonzero  we
have

R
N hDE ,DE i dvol > 0.



Index computation

Claim: The index of DE , going from C1
(N ; (S ⌦ E)

+
) to

C1
(N ; (S ⌦ E)

�
) is
Z

@M

bA(T@M) ^ ch

⇣
�
���
@M

⌘
.

Idea: Without changing the index, we can
I Deform f to zero.
I Make the Riemannian metric a product near @N .
I Make the connection rV a product near @N .

The boundary conditions are such that DE is the same as the
corresponding operator on the Z2-invariant spinors on the
double DN .



Index computation II

Then the index of DE is the same as the Z2-invariant index on
DN . To compute it, make the connection rE� on E� ⇠= V
equal to rE+

= rV very close to @M, and equal to
� � rE+ � ��1 away from a �-neighborhood of @M. Then the
index is
Z

N
bA(TN ) ^ trs

⇣
e

i
2⇡ (rE )2

⌘
=

Z

@M⇥[0,�]

bA(TN ) ^ trs

⇣
e

i
2⇡ (rE )2

⌘

=

Z

@M

bA(T@M) ^
Z

[0,�]
trs

⇣
e

i
2⇡ (rE )2

⌘

=

Z

@M

bA(T@M) ^ ch(V ,�)
��
@M

=

Z

@M

bA(T@M) ^ ch
�
�
��
@M

�
.



Statement of Theorem 2

Theorem 2: If � 2 K
⇤
(C, C � int(K )) is almost flat then
Z

C
bA(TM) ^ ch(�) = 0.

Sketch of proof: Suppose that dim(M) is even. Given ✏ > 0, let
(E ,�) represent � 2 K

0
(C, C � int(K )), where

I E± is a Z2-graded Hermitian vector bundle on C,
I � : E+

���
C�int(K ))

! E�
���
C�int(K ))

is an isometric

isomorphism,
I r± is a Hermitian connection on E±, and
I k F± k< ✏ and k r� k< ✏.



Callias operator

Define the warping function f as in the proof of Theorem 1.

Define D on C1
(N ;S ⌦ E) by

D =

 
DE+

✏Sf��1

✏Sf� DE�

!
.

Impose local boundary conditions on @N and proceed as in the
proof of Theorem 1.



Statement of Theorem 3

Theorem 3: If @K is mean convex as seen from M � K , and
� 2 K

⇤
(C, C � int(K )) is almost flat stably, then

Z

C
bA(TM) ^ ch(�) = 0.

Sketch of proof: Combine the setups of Theorems 1 and 2.



Setup

Suppose that dim(M) is even. Given ✏ > 0, let (E ,V ,�)
represent � 2 K

0
(C, C � int(K )), where

I E± is a Z2-graded Hermitian vector bundle on C,
I V is a Hermitian vector bundle on C � int(K ),

I � : E+
���
C�int(K )

� V ! E�
���
C�int(K )

� V is an isometric

isomorphism,
I rE± is a Hermitian connection on E±,
I rV is a Hermitian connection on V , and
I k F E± k< ✏, k F V k< ✏ and k r� k< ✏.



Domain of the operator

Put W = V � V , a Z2-graded Hermitian vector bundle on
C � int(K ), with Hermitian connection rW

= rV �rV .

The Callias operator D will act on the subspace of

C1
(N ;S ⌦ E)� C1

(N � int(K );S ⌦ W )

that satisfies certain local boundary conditions.



Callias operator

On K , the operator D is the usual Dirac-type operator on
C1

(K ;S ⌦ E).

On N � int(K ), put Z = E
���
N�int(K )

� W . Then D acts on

C1
(N � int(K );S ⌦ Z ) by

D =

 
DZ+

✏Sf��1

✏Sf� DZ�

!
.

Proceed as in the proofs of Theorems 1 and 2.



Statement of Theorem 4

Theorem 4: Given n 2 Z+ and D,⇤ < 1, there is some
✏ = ✏(n,D,⇤) > 0 with the following property. Let Mn be a
compact connected spin manifold so that ⇡1(M) satisfies the
Strong Novikov Conjecture. Suppose that g is a Riemannian
metric on M so that (M, g) has
I Diameter bounded above by D,
I Curvature operator bounded below by �⇤, and
I Scalar curvature bounded below by �✏.

Then k M k= 0.

Suppose not. Let {(Mi , gi)}1i=1 be a sequence that gives a
counterexample.



Contradiction argument

Each (Mi , gi) is a compact connected Riemannian n-manifold
with
I Diameter at most D,
I Curvature operator bounded below by �⇤, and
I Scalar curvature bounded below by �1

i , but
I k Mi k6= 0.

From Gromov’s gap theorem, there is a uniform lower bound
vol(Mi , gi) � v0 > 0 (coming from the lower Ricci curvature
bound).

We can run the Ricci flow for a uniform amount of time to obtain
a new metric g0

i with R(Mi , g0
i ) � �1

i and a uniform bound
|Rm(Mi , g0

i )|  ⇤
0 (Bamler-Cabezas-Rivas-Wilking 2019).



Limit space

From distortion estimates under Ricci flow, there is a uniform
upper bound diam(Mi , g0

i )  D0.

From Gromov’s gap theorem, there is again a uniform lower
bound vol(Mi , g0

i ) � v 0
0 > 0.

After passing to a subsequence, there is a smooth limit
limi!1(Mi , g0

i ) = (M1, g1).

Necessarily, R(M1, g1) � 0.

Since (M1, g1) is also the result of running Ricci flow, either
Ric(M1, g1) = 0 or R(M1, g1) > 0.



End of proof

If Ric(M1, g1) = 0 then ⇡1(M1) is virtually abelian and so
k M1 k= 0.

If R(M1, g1) > 0 then SNC implies that ⌫⇤[M1] vanishes in
Hn(B⇡1(M);Q). This implies that k M1 k= 0.

In either case, k M1 k= 0. Since M1 is diffeomorphic to Mi , for
large i , this is a contradiction.


