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Structure of the talk

I Chern-Simons forms
I Differential K -theory
I Hilbert bundles
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I (Differential) twisted K -theory
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Chern character form

Suppose that M is a smooth manifold, E is a finite dimensional
Hermitian vector bundle over M and ∇ is a Hermitian
connection on E . The Chern character form of ∇ is

ch(∇) = Tr
(

e−∇
2
)
∈ Ωeven(M).

It is a closed form whose de Rham cohomology class is
independent of ∇.



Chern-Simons form

Suppose that ∇0 and ∇1 are two Hermitian connections on E .
Putting ∇s = s∇1 + (1− s)∇0, the Chern-Simons form is

CS(∇0,∇1) =

∫ 1

0
Tr

(
d∇s

ds
e−∇

2
s

)
ds ∈ Ωodd(M)/ Im(d).

Then
dCS(∇0,∇1) = ch(∇0)− ch(∇1).



Quillen’s Chern character I

Another approach to the Chern-Simons form: On E ⊕ E , put

As = s
(

0 1
1 0

)
+

(
∇0 0
0 ∇1

)
= sV +∇.

(Adding a mass term.) Then

A2
s = s2V 2 + s(∇V + V∇) +∇2.

We think of V as being an odd variable, so

∇V + V∇ =

(∑
α

dxα∇α

)
V + V

∑
α

dxα∇α

=
∑
α

dxα(∇αV − V∇α)

=
∑
α

dxα[∇α,V ].



Quillen’s Chern character II

Then

A2
s = s2V 2 + s(∇V + V∇) +∇2

= s2
(

1 0
0 1

)
+ s

(
0 ∇0 −∇1

∇1 −∇0 0

)
+

(
∇2

0 0
0 ∇2

1

)
.

Define

ch(As) = Tr

((
1 0
0 −1

)
e−A2

s

)

= Tr

(1 0
0 −1

)
e
−

 s2 +∇2
0 s(∇0 −∇1)

s(∇1 −∇0) s2 +∇2
1

 .



Quillen’s Chern character III

ch(As) = Tr

(1 0
0 −1

)
e
−

 s2 +∇2
0 s(∇0 −∇1)

s(∇1 −∇0) s2 +∇2
1

 .

Then ch(As) is closed and its de Rham cohomology class is
independent of s.

When s = 0, we get ch(As) = ch(∇0)− ch(∇1).

Also, lims→∞ ch(As) = 0, because of the −s2 in the exponent.



Quillen’s Chern character IV

We can construct the Chern-Simons form as

CS(∇0,∇1) =

∫ ∞
0

Tr

((
1 0
0 −1

)
dAs

ds
e−A2

s

)
ds.

Instead of interpolating between ∇0 and ∇1, we are now

interpolating between ∇ =

(
∇0 0
0 ∇1

)
and∞.

More conceptually,

E ⊕ E is a Z2-graded vector bundle,

V =

(
0 1
1 0

)
is an operator on E ⊕ E , of odd degree, and

As = sV +∇ is a superconnection in the sense of Quillen.
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K -theory

M is a smooth manifold.

K 0(M) is the free abelian group generated by isomorphism
classes of finite dimensional complex vector bundles on M,
quotiented by the relations [E2] = [E1] + [E3] if there is a short
exact sequence

0 −→ E1 −→ E2 −→ E3 −→ 0.



Generators of differential K -theory

Differential K -theory combines vector bundles and differential
forms. There are various models for the differential K -group
Ǩ 0(M). Here is a “standard” model.

A generator for Ǩ 0(M) is a quadruple E = (E ,hE ,∇E , ω), where

I E is a finite dimensional complex vector bundle on M.
I hE is a Hermitian metric on E .
I ∇E is a Hermitian connection on E .
I ω ∈ Ωodd(M)/ Im(d).

(There’s a model due to Simons and Sullivan where ω gets
absorbed into the connection.)



Relations for Ǩ 0(M)

Given three such quadruples, we impose the relation

E2 = E1 + E3

if there is a short exact sequence of Hermitian vector bundles

0 −→ E1 −→ E2 −→ E3 −→ 0,

and

ω2 = ω1 + ω3 − CS
(
∇E1 ,∇E2 ,∇E3

)
∈ Ωodd(M)/ Im(d).

Here the Chern-Simons form CS satisfies

dCS
(
∇E1 ,∇E2 ,∇E3

)
= ch

(
∇E2

)
− ch

(
∇E1

)
− ch

(
∇E3

)
.



Exact sequences

Quotienting by the relations defines Ǩ 0(M). There are a
forgetful map

f : Ǩ 0(M)→ K 0(M),

and a Chern character map

Ch : Ǩ 0(M)→ Ωeven
K (M)

coming from

Ch(E ,hE ,∇E , ω) = ch(∇E ) + dω.

0 −→ K−1(M;R/Z) −→ Ǩ 0(M)
Ch−→ Ωeven

K (M) −→ 0

0 −→ Ωodd(M)

Ωodd
K (M)

−→ Ǩ 0(M)
f−→ K 0(M) −→ 0



Atiyah-Singer families index theorem

Suppose that π : M → B is a fiber bundle.

Topological assumptions: The fibers are compact and even
dimensional. The fiberwise tangent bundle is spinc .

Geometric assumptions: Riemannian metrics on the fibers,
Hermitian connection on the associated spinc line bundle.

There are index maps

indan, indtop : K 0(M)→ K 0(B).



Atiyah-Singer families index theorem

indan = indtop .



Index theorem in differential K -theory

Suppose in addition that there is a horizontal distribution on the
fiber bundle.

(Freed-L.) There are index maps

indan, indtop : Ǩ 0(M)→ Ǩ 0(B).

Their construction uses local index theory methods.

(Simons and Sullivan gave an alternative construction of indtop

in terms of “K̂ -characters”.)



Index theorem in differential K -theory

Theorem
(Freed-L.)

indan = indtop

as maps from Ǩ 0(M) to Ǩ 0(B).
Applying f , one recovers the Atiyah-Singer families index
theorem. Applying Ch, one recovers Bismut’s local version of
the families index theorem.



Consequences

The index theorem in differential K -theory packages many of
the results of local index theory into a semitopological setting.
Some consequences:

I R/Z-index theorem
I Computation of R/Z-valued eta invariants.
I Computation of the determinant line bundle, along with its

Quillen metric and compatible connection (up to
isomorphism).
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Slogans

Differential K -theory is a “K -theory of finite dimensional vector
bundles with connections”.

It is closely linked to local index theory.

Today: Differential K -theory as a “K -theory of infinite
dimensional vector bundles with (super)connections”.

Some motivation:
1. It unifies various earlier models for differential K -theory.
2. The analytic index becomes almost tautological.
3. The even and odd cases can be treated similarly.
4. Extension to twisting by H3.



Motivation

From the viewpoint of analytic index theory, it is natural to use
infinite dimensional vector bundles.

Unbounded Kasparov KK-theory: K 0(M) ∼= KK 0(C,C(M)), the
latter being given in terms of unbounded Fredholm operators
on Z2-graded Hilbert C(M)-modules. Can we give a model for
differential K -theory along these lines?

If E is a finite dimensional Z2-graded vector bundle then

ch(∇) = Trs e−∇
2

= Tr
(
εe−∇

2
)
,

where ε is the Z2-grading operator.

Problem: This doesn’t make sense if E is infinite dimensional.

Solution: Replace the connection ∇ by a superconnection.



Superconnections

E is a finite dimensional Z2-graded vector bundle on M.

(Quillen) A superconnection on E is a sum

A = A[0] + A[1] + A[2] + . . . ,

where
I A[0] ∈ Ω0(M; Endodd(E))

I A[1] is a connection on E
I A[i] ∈ Ωi(M; End(E)) for i ≥ 2, with odd total parity.

ch(A) = Trs e− A2 ∈ Ωeven(M).

In the previous description of Ǩ 0(M), you can replace
connections by superconnections.



Supertraces

A = A[0] + A[1] + A[2] + . . . ,

where A[0] is a section of Endodd(E).

ch(A) = Trs e− A2 ∈ Ωeven(M).

If we expand ch(A) in the form degree,

ch(A) = Trs e− A2
[0] + . . . = Index(A[0]) + . . . ,

where Index(A[0]) ∈ C∞(M) is the fiberwise index.

On an infinite dimensional vector bundle, if Trs e− A2
[0] has a

chance of making sense then Trs e− A2
has a chance of making

sense.



Hilbert bundles

Suppose that H → M is a Z2-graded Hilbert bundle. We want
to be able to talk about superconnections on H.

What is the right structure group for the bundle? Say that H is a
fiber of the bundle. The structure group should be a subgroup
of Ueven(H).

All of Ueven(H) is too big. (Any infinite-dimensional Hilbert
bundle with structure group given by the unitary operators, in
the norm or strong topology, is topologically trivial.)



A special case

Suppose that X → M is a fiber bundle with compact fiber Z . Its
structure group is contained in Diff(Z ).

The functions on the fibers form a vector bundle on the base.
More formally, Diff(Z ) acts on the Hilbert space H of
square-integrable half-densities L2(Z ). That is, there’s an
(injective) homomorphism ρ : Diff(Z )→ U(H), and an
associated Hilbert bundle H → M with fiber H.

We should be able to include this case, i.e. deal with structure
groups ρ(Diff(Z )) ⊂ U(H).



Goal

For a Z2-graded Hilbert space H, the goal is to find the right
notion of a structure group G ⊂ Ueven(H), so that

1. It is general enough to include the preceding example
coming from a fiber bundle.

2. It is restrictive enough that we can make sense of the Chern
character of a superconnection of a Hilbert bundle with
structure group G.

We will construct G using a pseudodifferential calculus based
on a “Dirac operator” D.



“Analysis on manifolds” without manifolds

Say H is a Z2-graded Hilbert space,

D =

(
0 ∂∗+
∂+ 0

)
is a self-adjoint operator.

Assume that Tr e− θD2
<∞ for all θ > 0.

For s ∈ Z≥0, put Hs = Dom(|D|s), a “Sobolev space”.

For s ∈ Z<0, put Hs = (H−s)∗.

Put H∞ =
⋂

s≥0 Hs.



Abstract pseudodifferential operators

Definition
opk consists of the closed operators F on H so that
F (H∞) ⊂ H∞ and for all s ∈ Z, F extends to a bounded
operator from Hs to Hs−k .

The space of “Dirac-type operators”:

P =

{(
0 P∗+

P+ 0

)
∈ op1 :

1√
P2 + 1

∈ op−1
}
.

Clearly D ∈ P.

Lemma
P is closed under order-zero perturbations.



The structure group

As a group,
G = Ueven(H) ∩ op0.

What is the smooth structure? Since we only care about Hilbert
bundles over finite dimensional manifolds, it’s enough to know
what a smooth map Rk → G is. (Diffeology)

A map Rk → G is declared to be “smooth” if it preserves the
smooth maps Rk → Hs and Rk → opl .

Here Hs and opl have Fréchet topologies.



Superconnection

Suppose that H → M is a Z2-graded Hilbert bundle with
structure group G. It now makes sense to say that a
superconnection on H is a sum

A = A[0] + A[1] + A[2] + . . . ,

where
I A[0] ∈ Ω0(M;P)

I A[1] = d + Aα locally, with Aα ∈ Ω1(Uα; opk1)

I A[i] ∈ Ωi(M; opki ) for i ≥ 2, with odd total parity.
Then

ch(A) = Trs e− A2 ∈ Ωeven(M)

makes sense, using a Duhamel expansion of e− A2
.



Chern-Simons forms

Suppose that A and A′ are two superconnections on the Hilbert
bundle. Then ch(A) and ch(A′) are closed forms on M.

When can we say that their difference is exact?

It turns out to be enough for their 0-th terms to differ by a
pseudodifferential operator of order zero.

If A[0] − A′[0] ∈ Ω0(M; op0), put

η(A,A′) =

∫ 1

0
Trs

(
dB
dt

e− B2(t)
)

dt ,

where B(t) = (1− t)A + tA′.

Then
dη(A,A′) = ch(A)− ch(A′).

So η(A,A′) is the Chern-Simons form in this setting.



Interpolating to infinity

Suppose that A[0] is fiberwise invertible. Put

η(A,∞) =

∫ ∞
1

Trs

(
dAt

dt
e− A2

t

)
dt ,

where
At = tA[0] + A[1] + t−1A[2] + . . .

Then
dη(A,∞) = ch(A).

Here η(A,∞) is the analog of the Bismut-Cheeger eta form.
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Generators for Ǩ 0(M)

Generators are triples (H,A, ω), where
I H → M is a Z2-graded Hilbert bundle with structure group

G.
I A is a superconnection on H.
I ω ∈ Ωodd(M)/ Im(d).



Relations for Ǩ 0(M)

1.
[H,A, ω] + [H′,A′, ω′] = [H⊕H′,A⊕ A′, ω + ω′]

2. If A[0] is fiberwise invertible then

[H,A, ω] = [0,0, ω + η(A,∞)].

3. If A[0] − A′[0] ∈ Ω0(M; op0) then

[H,A, ω] = [H′,A′, ω′ + η(A,A′)].

Theorem (Gorokhovsky-L.) The natural map Ǩ 0
stan(M)→ Ǩ 0(M)

is an isomorphism, where Ǩ 0
stan(M) is the “standard” differential

K -group defined using finite dimensional vector bundles and
connections.



Comparison map

The inverse map q : Ǩ 0(M)→ Ǩ 0
stan(M) in a special case:

Suppose that Ker(A[0]) forms a Z2-graded finite dimensional
vector bundle on M.

Let Q be fiberwise orthogonal projection on Ker(A[0]).

Then

q(H,A, ω) =[
Ker(A[0]),QA[1]Q, ω + η(A,B) + η((I −Q)A(I −Q),∞)

]
,

where B = (I −Q)A(I −Q) + QA[1]Q.



Unification

The Hilbert bundle version Ǩ 0(M) of differential K -theory
unifies some other models. First, the natural map
Ǩ 0

stan(M)→ Ǩ 0(M) is an isomorphism.

Bunke and Schick have a “geometric families” model of
differential K -theory.

There is a natural map Ǩ 0
geom.fam.(M)→ Ǩ 0(M) that is an

isomorphism.

On the other hand, there are no obvious comparison maps with
the Hopkins-Singer model for differential K -theory.



Pushforward

Suppose that π : M → B is a fiber bundle.

Topological assumptions: The fibers are compact and even
dimensional. The fiberwise tangent bundle is spinc .

Geometric assumptions: Riemannian metrics on the fibers,
Hermitian connection on the associated spinc line bundle,
horizontal distribution

There was an analytic index map (Freed-L.)

indan : Ǩ 0
stan(M)→ Ǩ 0

stan(B).



An easier description

Say [E ,A, ω] is a finite dimensional cycle for Ǩ 0(M). Let H be
the bundle on B of fiberwise spinor fields with values in E , i.e.

C∞(B;H∞) = C∞(M; E ⊗ SV M)

= C∞(M; E)⊗C∞(M) C∞(M; SV M).

Define the pushforward superconnection, acting on
C∞(B;H∞), by

π∗A = m(A⊗ Id) + Id ⊗ B,

where m is the Clifford action of T ∗M on π∗Λ∗TB ⊗ SV M, and B
is the Bismut superconnection for the bundle π : M → B. Put

ω′ =

∫
M/B

Td
(
∇T V M

)
∧ω+ lim

u→0
η((π∗A)u, π∗A) ∈ Ωodd(B)/ Im(d).



Pushforward theorem

Theorem (Gorokhovsky-L.)

If (E ,A, ω) is a finite dimensional generator of Ǩ 0(M) then

indan([E ,A, ω]) = [H, π∗A, ω′]

in Ǩ 0(B) ∼= Ǩ 0
stan(B).

This gives an almost tautological pushforward of finite
dimensional cycles in differential K -theory.

Can one also push forward infinite dimensional cycles?
Formally yes, but there are some technical questions.
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Twisted K -theory

There’s a notion of twisted K -theory, where one twists by an
element of H3(M;Z).

Using finite dimensional vector bundles, one can only handle
torsion elements of H3(M;Z). To deal with all of H3(M;Z), one
needs to use infinite dimensional vector bundles.

Can one extend the previous model from differential K -theory
to differential twisted K -theory?



U(1)-bundles

H2(M;Z) classifies principal U(1)-bundles on M. We can twist
a vector bundle on M by the associated complex line bundle.

Data for a U(1)-bundle:
I An open cover {Uα} of M.
I A smooth map φαβ : Uα ∩ Uβ → U(1) on each nonempty

intersection, so that
I φαβφβγ = φαγ on each nonempty Uα ∩ Uβ ∩ Uγ .



Gerbes

H3(M;Z) classifies U(1)-gerbes on M. We’ll twist by coupling to
a gerbe.

Data for a gerbe:
I An open cover {Uα} of M.
I A complex line bundle Lαβ on Uα ∩ Uβ.
I Isomorphisms µαβγ : Lαβ ⊗Lβγ → Lαγ on Uα ∩Uβ ∩Uγ so

that
I µαγδ ◦ (µαβγ ⊗ Id) = µαβδ ◦ (Id⊗µβγδ) on Lαβ ⊗ Lβγ ⊗ Lγδ.



U(1)-connection on a gerbe

We have line bundles Lαβ on overlaps. A U(1)-connection on
the gerbe consists of
I A Hermitian metric on Lαβ.
I Connective structure: A Hermitian connection ∇αβ on each
Lαβ so

µ∗αβγ∇αγ = (∇αβ ⊗ I) + (I ⊗∇βγ).

I Curving: κα ∈ Ω2(Uα) so

∇2
αβ = κα − κβ.

Then H = dκα is a globally defined closed 3-form on M, the de
Rham representative of the gerbe’s class in H3(M;Z).



Chern character in twisted K -theory

A twisted Hilbert bundle H is given by Hilbert bundles Hα over
the Uα’s, with isomorphisms φαβ : Hα ⊗ Lαβ → Hβ on Uα ∩ Uβ.

A superconnection on H is given by superconnections Aα on
the Hα’s so φ∗αβAβ = (Aα ⊗ I) + (I ⊗∇αβ) on Uα ∩ Uβ.

Put
ch(A) = Trs e−(A

2
α+κα) ∈ Ωeven(M).

Then
(d + H∧) ch(A) = 0.



Model for differential twisted K -theory

The generators for differential twisted K -theory are now triples
(H,A, ω) as before. Quotienting by the relations, one gets the
differential twisted K -theory group.

Theorem (Gorokhovsky-L.): Up to isomorphism, the differential
twisted K -group only depends on the gerbe through its
isomorphism class. It is independent of the choices of
connective structure and curving.

This gives an explicit model for differential twisted K -theory. It
remains to show that it agrees with other models
(Bunke-Nikolaus).
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