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What I won’t be talking about

Longitudinal index theorem (Connes-Skandalis)

Suppose that there is a differential operator D on M that is
Dirac-type, except that it only differentiates in the leaf directions.

We can think D as a “family” of leaf-wise operators,
parametrized by the “leaf space” of the foliation.

One can define its “families index” in the “K-theory of the leaf
space of the foliation”.

More precisely, Index(D) ∈ K∗(C∗r (M;F)), where C∗r (M;F) is
the reduced C∗-algebra of the foliation.

The longitudinal index theorem gives a topological equivalent of
Index(D).
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Transverse index problem

Suppose instead that D is a Dirac-type operator, except that it
only differentiates in the transverse direction to the foliation,
and it’s invariant under sliding along leaves.

Then D is like an operator on the leaf space.

To make sense of D, we must assume that (M,F) has a
transverse Riemannian metric.

Fact : (El-Kacimi, Glazebrook-Kamber) D is Fredholm.

Hence Index(D) ∈ Z is well-defined.

What is it?
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Transverse index problem

Index(D) ∈ Z. We want a local formula for it.

Prototypical example : the Atiyah-Singer index theorem.

Suppose that M is foliated by points. Then D is just a
Dirac-type operator on M, and

Index(D) =

∫
M

Â(TM) ch(E).

In general, we would like a formula for Index(D) in terms of the
local geometry of the foliated manifold.
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Another known case

Suppose that the leaves of (M,F) are all compact.

Then the leaf space of (M,F) is an orbifold. The operator D
becomes an orbifold Dirac-type operator.

Orbifold index theorem (Kawasaki 1981) :

Index(D) =
∑

i

∫
Σi

1
mi

Â(T Σi)Ni ,

where
1. {Σi} are the strata of the orbifold,
2. mi is the multiplicity of Σi and
3. The characteristic class Ni is computed from the normal

data of Σi and the auxiliary vector bundle E .
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Why is this problem interesting?

1. It has been open for twenty years.

2. It leads to questions about analysis on Riemannian
groupoids.

3. Usual local index theory methods (McKean-Singer
technique) don’t work.
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Main result

Theorem
Let M be a compact connected manifold equipped with a
Riemannian foliation F .

Suppose that the Molino Lie algebra is
abelian and the isotropy groups are connected. Let E be a
holonomy-invariant Z2-graded normal Clifford module on M.
Let D be the basic Dirac-type operator acting on
holonomy-invariant sections of E . Then

Index (D) =

∫
Wmax

Â (TWmax) NE .

Here
I Wmax is the deepest stratum in the space of leaf closures.
I NE is a “renormalized ” characteristic class, which is

computed from the normal data of Wmax, along with E .



Main result

Theorem
Let M be a compact connected manifold equipped with a
Riemannian foliation F . Suppose that the Molino Lie algebra is
abelian and the isotropy groups are connected.

Let E be a
holonomy-invariant Z2-graded normal Clifford module on M.
Let D be the basic Dirac-type operator acting on
holonomy-invariant sections of E . Then

Index (D) =

∫
Wmax
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Â (TWmax) NE .

Here
I Wmax is the deepest stratum in the space of leaf closures.

I NE is a “renormalized ” characteristic class, which is
computed from the normal data of Wmax, along with E .



Main result

Theorem
Let M be a compact connected manifold equipped with a
Riemannian foliation F . Suppose that the Molino Lie algebra is
abelian and the isotropy groups are connected. Let E be a
holonomy-invariant Z2-graded normal Clifford module on M.
Let D be the basic Dirac-type operator acting on
holonomy-invariant sections of E . Then

Index (D) =

∫
Wmax
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Corollaries

Under the hypotheses of the preceding theorem,

1. The basic Euler characteristic of (M,F) equals the Euler
characteristic of Wmax.

2. If F is transversely oriented then the basic signature of
(M,F) equals the signature of Wmax.

3. If F has a transverse spin structure, D is the basic Dirac
operator and the leaves are noncompact then Index (D) = 0.
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What is a foliation?

A k -dimensional foliation of a manifold M is a covering of M by
foliation charts

φi : Ui → Rk × Rn−k

whose transition maps are of the form

φij(x , y) = (gij(x , y),hij(y)).
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What is a Riemannian foliation?

If (M,F) is a foliation, its normal bundle is

NF = TM/TF .

A Riemannian foliation is a foliation (M,F) along with an inner
product on NF that locally pulls back, under the submersion
U → Rn−k , from a Riemannian metric on Rn−k .
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Complete transversal

A complete transversal T is a (possibly disconnected)
submanifold, with dim(T ) = codim(F), that is transverse to F
and hits every leaf of (M,F). It always exists.

T acquires a Riemannian metric, pulled back from the local
diffeomorphisms T ∩ U → Rn−k .
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Holonomy

Start at a point p ∈ T . Slide along a path in the leaf through p,
until you hit a point q ∈ T . This gives a germ of a
diffeomorphism sending p ∈ T to q ∈ T , the holonomy element.

“Basic” means holonomy-invariant on T . For example, a
Riemannian foliation has a basic Riemannian metric.
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Basic operators

If (M,F) is a Riemannian foliation, it makes sense to talk about
a basic Z2-graded Clifford module E on T and a basic
Dirac-type operator D, acting on the basic sections of E .

Index(D) = dim Ker (D+)− dim Ker (D−) .

What is it?



Basic operators

If (M,F) is a Riemannian foliation, it makes sense to talk about
a basic Z2-graded Clifford module E on T and a basic
Dirac-type operator D, acting on the basic sections of E .

Index(D) = dim Ker (D+)− dim Ker (D−) .

What is it?



Basic operators

If (M,F) is a Riemannian foliation, it makes sense to talk about
a basic Z2-graded Clifford module E on T and a basic
Dirac-type operator D, acting on the basic sections of E .

Index(D) = dim Ker (D+)− dim Ker (D−) .

What is it?



One approach

Suppose (for simplicity) that T has a basic spin structure.
Putting q = codim(F), there is a principal Spin(q)-bundle

FSpin(q)M → M.

There is a lifted foliation F̂ of FSpin(q)M, with dim(F̂) = dim(F).
The closures of its leaves form the fibers of a fiber bundle
FSpin(q)M → Ŵ , which is Spin(q)-equivariant.

FSpin(q)M → Ŵ
↓ ↓
M → W

One can lift D to an operator on FSpin(q)M, which then
descends to a Spin(q)-transversally elliptic operator D̂ on Ŵ .
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One approach

Index theorem for an operator which is transversally elliptic with
respect to a compact Lie group action (Atiyah, Berline-Vergne,
Vergne, Paradan, . . . )

Does not seem to be explicit enough (so far) to compute
Index(D).

Approach of Brüning-Kamber-Richardson : do equivariant
modifications of Ŵ to simplify the isotropy group structure.
Keep track of how the index changes under the modifications.
Get a semilocal formula for Index(D).
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Suspension foliations

Suppose that we are given
1. A discrete group Γ,

2. A compact Lie group G,
3. An injective homomorphism Γ→ G with dense image,
4. A closed manifold Y with fundamental group Γ, and
5. A closed Riemannian manifold Z on which G acts

isometrically.
Put M = (Ỹ × Z )/Γ, a fiber bundle over Y .
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M = (Ỹ × Z )/Γ

There is a horizontal Riemannian foliation F on M.

A fiber Z of the fiber bundle is a complete transversal.

A transverse Dirac-type operator on (M,F) amounts to a
Γ-invariant Dirac-type operator D on Z ,

or, equivalently, a G-invariant Dirac-type operator D on Z .



Suspension foliations
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∫

T k L(g, z) dµT k (g) generally diverges!

Get cancellations from various components of Z T k
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Divergences
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McKean-Singer-type localization, to compute Index (Dinv),
doesn’t work.

In this case, we can subtract off the divergent terms of∫
T k L(g, z) dµT k (g) by hand. We know that they will cancel out

in the end.

But what to do for more general Riemannian foliations, which
may not reduce to compact Lie group actions?
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A way out

A Riemannian foliation may not come from a Lie group action,
but there is always a local action by a Lie algebra g.

Idea : prove a Kirillov-type delocalized index formula, in terms
of X ∈ g.

If g is abelian, we can replace the nonexistent “integral over G”
by an averaging over X ∈ g.
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Groupoid

Let T be a complete transversal for the Riemannian foliation
(M,F).

It is the unit space of an étale groupoid G.

The elements of G are the holonomy elements of (M,F).
Source and range maps

s, r : G → T .

Gp = s−1(p), Gp = r−1(p), Gp
p = s−1(p) ∩ r−1(p)

Furthermore, G is a Riemannian groupoid, meaning that
I T has a Riemannian metric, and
I If g ∈ G then dg : Ts(g)T → Tr(g)T is an isometric

isomorphism.

The transverse index problem becomes a question about the
invariant index of an operator on a Riemannian groupoid.
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Groupoid closure

One can take the closure G of G in the 1-jet topology on T .

It is a Lie groupoid but is generally not étale.

However, it also has a topology in which it becomes an étale
groupoid Gδ.

Example : suspension foliation

G = Z o Γ

G = Z o G

Gδ = Z o Gδ
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Molino theory

The Lie algebroid of G is a locally constant sheaf of Lie
algebras.

Its stalk g could be any finite-dimensional Lie algebra.

Local representation of g by Killing vector fields on T .

Parallel to Cheeger-Fukaya-Gromov theory of Nil-structures in
bounded curvature collapse.

Local structure of a Riemannian groupoid (Haefliger, Molino).
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Integrating

G is a proper Lie groupoid, so we can integrate over it.

Let {dµp}p∈T be a Haar system for G, with µp a measure on Gp.

Let φ ∈ C∞c (T ) be a cutoff function so that∫
Gp
φ2(s(g)) dµp(g) = 1.
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Invariant subspace

Let E be a G-equivariant vector bundle on T .

Define an injection α : L2(T ; E)G → L2(T ; E) by

α(ξ) = φξ,

and a surjection β : L2(T ; E)→ L2(T ; E)G by

(β(η))p =

∫
Gp

(
ηs(g) · g−1

)
φ(s(g)) dµp(g).

Then
I β ◦ α = Id
I β = α∗

Hence P = α ◦ β is an orthogonal projection on L2(T ; E), with
image isomorphic to L2(T ; E)G . Get inner product on L2(T ; E)G .



Invariant subspace

Let E be a G-equivariant vector bundle on T .

Define an injection α : L2(T ; E)G → L2(T ; E) by

α(ξ) = φξ,

and a surjection β : L2(T ; E)→ L2(T ; E)G by

(β(η))p =

∫
Gp

(
ηs(g) · g−1

)
φ(s(g)) dµp(g).

Then
I β ◦ α = Id
I β = α∗

Hence P = α ◦ β is an orthogonal projection on L2(T ; E), with
image isomorphic to L2(T ; E)G . Get inner product on L2(T ; E)G .



Invariant subspace

Let E be a G-equivariant vector bundle on T .

Define an injection α : L2(T ; E)G → L2(T ; E) by

α(ξ) = φξ,

and a surjection β : L2(T ; E)→ L2(T ; E)G by

(β(η))p =

∫
Gp

(
ηs(g) · g−1

)
φ(s(g)) dµp(g).

Then
I β ◦ α = Id
I β = α∗

Hence P = α ◦ β is an orthogonal projection on L2(T ; E), with
image isomorphic to L2(T ; E)G . Get inner product on L2(T ; E)G .



Invariant subspace

Let E be a G-equivariant vector bundle on T .

Define an injection α : L2(T ; E)G → L2(T ; E) by

α(ξ) = φξ,

and a surjection β : L2(T ; E)→ L2(T ; E)G by

(β(η))p =

∫
Gp

(
ηs(g) · g−1

)
φ(s(g)) dµp(g).

Then
I β ◦ α = Id

I β = α∗

Hence P = α ◦ β is an orthogonal projection on L2(T ; E), with
image isomorphic to L2(T ; E)G . Get inner product on L2(T ; E)G .



Invariant subspace

Let E be a G-equivariant vector bundle on T .

Define an injection α : L2(T ; E)G → L2(T ; E) by

α(ξ) = φξ,

and a surjection β : L2(T ; E)→ L2(T ; E)G by

(β(η))p =

∫
Gp

(
ηs(g) · g−1

)
φ(s(g)) dµp(g).

Then
I β ◦ α = Id
I β = α∗

Hence P = α ◦ β is an orthogonal projection on L2(T ; E), with
image isomorphic to L2(T ; E)G . Get inner product on L2(T ; E)G .



Invariant subspace

Let E be a G-equivariant vector bundle on T .

Define an injection α : L2(T ; E)G → L2(T ; E) by

α(ξ) = φξ,

and a surjection β : L2(T ; E)→ L2(T ; E)G by

(β(η))p =

∫
Gp

(
ηs(g) · g−1

)
φ(s(g)) dµp(g).

Then
I β ◦ α = Id
I β = α∗

Hence P = α ◦ β is an orthogonal projection on L2(T ; E), with
image isomorphic to L2(T ; E)G . Get inner product on L2(T ; E)G .



Spectral triple

Let D0 be a G-invariant Dirac-type operator on L2(T ; E). (Give it
APS boundary conditions).

Proposition(
C∞c (G),L2(T ; E),D0

)
is a spectral triple of dimension q.

Put Dinv = β ◦ D0 ◦ α, an operator on L2(T ; E)G . It is unitarily
equivalent to P ◦ D0 ◦ P on Im(P). One finds

Dinv = D0 −
1
2

c(τ),

where τ is a certain closed G-invariant 1-form on T .

Corollary
Dinv is Fredholm. In fact, e−tD2

inv is trace-class for all t > 0.
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equivalent to P ◦ D0 ◦ P on Im(P). One finds

Dinv = D0 −
1
2

c(τ),

where τ is a certain closed G-invariant 1-form on T .

Corollary
Dinv is Fredholm. In fact, e−tD2

inv is trace-class for all t > 0.
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Setup

Let W be the orbit space of G. It is the same as the space of
leaf closures.

A neighborhood of w ∈W is homeomorphic to Vw/Kw , where
Vw is a vector space and Kw is a compact Lie group, whose Lie
algebra lies in g.

Assumptions :
1. The Molino Lie algebra g is an abelian Lie algebra Rk ,
2. The Molino sheaf has trivial holonomy on M, and
3. For all w ∈W , Kw is connected.

Note : If M is simply-connected then assumptions (1) and (2)
are automatic.

Put Wmax = {w ∈W : Kw ' T k}.
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Index theorem

Theorem
Under the assumptions of the previous slide, let E be a
Z2-graded basic Clifford module on T . Let Dinv be the basic
Dirac-type operator on L2(T ; E)G . Then

Index(Dinv) =

∫
Wmax

Â (TWmax) NE .

Here NE is a characteristic class on Wmax, which is computed
from the normal data of Wmax, along with E .
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Step 1

Take open coverings {Uα} and {U ′α} of W , so
I Uα ⊂ U ′α,

I U ′α = B(Vα)/Kα, with B(Vα) a ball in Vα ' Rq and
Kα = T kα , and

I B(Vα) extends to a closed Riemannian manifold Yα with a
T kα-action.
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Parametrix

Choose
I A subordinate partition of unity {ηα} for {Uα}, and

I Functions ρα with support in U ′α so ρα
∣∣∣
supp(ηα)

= 1.

(Will also denote by ηα and ρα their lifts to T and Yα.)

Let Dα be the Dirac-type operator on Yα. Let Dinv,α be its
restriction to T kα-invariant sections.

Put

Qinv,α =
I − e−tD2

inv,α

D2
inv,α

Dinv,α

=

∫ t

0
e−sD2

inv,αDinv,α ds.
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Parametrix

Proposition∑
α ραQinv,αηα is a parametrix for Dinv.

Also, for all t > 0,

Index(Dinv) =
∑
α

Trs

(
e−tD2

inv,αηα

)
+

1
2

∑
α

Trs
(
Qinv,α[Dinv,α, ηα]

)
=
∑
α

Trs

(
e−tD2

inv,αηα

)
+

1
2

∑
α,β

Trs
(
ρα(Qinv,α −Qinv,β)ηβ[Dinv,α, ηα]

)
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Step 2

Fix a Haar measure dµg on g ' Rk . If F ∈ C∞(Rk ) is a finite
sum of periodic functions, put

AVX F = lim
R→∞

∫
B(0,R) F (X ) dµg(X )∫

B(0,R) 1 dµg(X )
.

Given X ∈ Rk , let X denote the corresponding vector field on
Yα.

Proposition

Index(Dinv) = AVX

(∑
α

Trs

(
e−(tD2

α+LX )ηα

)

+
1
2

∑
α

∫ t

0
Trs

(
e−(sD2

α+LX )Dα[Dα, ηα] ds
))

.
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Step 3

For t > 0 and ε ∈ C, put

Dα,t ,ε = Dα + ε
c(X )

4t
.

Put
Ft ,ε(X ) =

∑
α

Trs

(
e−(tD2

α,t,ε+LX )ηα

)
+

1
2

∑
α

∫ t

0
Trs

(
e−(sD2

α,t,ε+LX )Dα,t ,ε[Dα,t ,ε, ηα] ds
)
.

From before,
Index (Dinv) = AVX Ft ,0.
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Deformations

Dα,t ,ε = Dα + ε
c(X )

4t
.

Proposition
Ft ,0(X ) is independent of t.

Proposition
Ft ,ε(X ) is independent of ε.

Proposition
Ft ,2(X ) has a holomorphic extension to X ∈ Ck .
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Step 4

Proposition
If X ∈ Rk then

lim
t→0

Ft ,1(iX ) =
∑
α

∫
Yα

Â(iX ,Yα) ch(iX , Eα/S) ηα.

Corollary

Index (Dinv) = AVX Ft ,0 = AVX Ft .1

= AVX

∑
α

∫
Yα

Â(X ,Yα) ch(X , Eα/S) ηα.
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Step 5

Let C ⊂ T be the elements p ∈ T with isotropy group Gp
p = T k .

It passes to Wmax ⊂W .

For simplicity, assume that each component of C is spin, with
normal spinor bundle SN , and that E = ST ⊗W. Descend SN

andW
∣∣∣
C

to Wmax.

Proposition
For any Q ∈ Ck ,

AVX

∑
α

∫
Yα

Â(X ,Yα) ch(X , Eα/S) ηα =

AVX

∫
Wmax

Â(TWmax)
chW(e−X+Q)

chSN (e−X+Q)
.
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Â(X ,Yα) ch(X , Eα/S) ηα =

AVX

∫
Wmax
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Â(TWmax)
chW(e−X+Q)

chSN (e−X+Q)
.



Step 6

For generic Q ∈ Ck , define NE,Q ∈ Ω∗(Wmax) by

NE,Q = AVX
chW(e−X+Q)

chSN (e−X+Q)
.

As long as Im(Q) remains outside certain hyperplanes in Rk ,
what’s being averaged is smooth in X .

NE,Q can be computed using contour integrals.

Corollary

Index (Dinv) =

∫
Wmax

Â(TWmax)NE,Q
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