CORRIGENDUM

Corrigendum: Backreaction in the future behavior of an expanding vacuum spacetime (2018 Class. Quantum Grav. 35 035010)

To cite this article: John Lott 2018 Class. Quantum Grav. 35 089501

View the article online for updates and enhancements.
Corrigendum: Backreaction in the future behavior of an expanding vacuum spacetime (2018 Class. Quantum Grav. 35 035010)

John Lott

Department of Mathematics, University of California, Berkeley, Berkeley, CA 94720-3840, United States of America

E-mail: lott@berkeley.edu

Received 14 February 2018
Accepted for publication 1 March 2018
Published 16 March 2018

In [2, 3.8] we constructed limiting metrics g_∞ for the rescalings of a class of T^2-symmetric vacuum spacetimes. It was shown that g_∞ fails to satisfy the vacuum Einstein equations. It was implicitly stated that g_∞ has a nonvanishing scalar curvature. Cécile Huneau and Jonathan Luk pointed out that the latter statement is incorrect. As mentioned in [2], the equations [1, 2.3–2.8] are satisfied for g_∞ except for [1, 2.6], which gives rise to a nonzero $\hat{G}_{\theta\theta}$-term. However, it also gives rise to a nonzero $\hat{G}_{\bar{\gamma}\bar{\gamma}}$-term. The result is that the scalar curvature vanishes. Consequently, the statement 'We see that the framework of [8] does not apply to our rescaling examples' from [2, p 2] is unjustified.

ORCID iDs

John Lott https://orcid.org/0000-0002-5107-8719

References

[1] LeFloch P and Smulevici J 2016 Future asymptotics and geodesic completeness of polarized T^2-symmetric spacetimes Anal. PDE 9 363–95