DIFFERENTIAL FORMS, SPINORS AND BOUNDED CURVATURE COLLAPSE

John Lott

University of Michigan

November, 2000

From preprints

“Collapsing and the Differential Form Laplacian”

“On the Spectrum of a Finite-Volume Negatively-Curved Manifold”

“Collapsing and Dirac-Type Operators”

http://www.math.lsa.umich.edu/~lott
WHAT I WILL (NOT) TALK ABOUT

Fukaya (1987) : Studied the function Laplacian, under a bounded curvature collapse.

Cheeger-Colding (preprint) : Studied the function Laplacian, under a collapse with Ricci curvature bounded below.

Today : The differential form Laplacian and geometric Dirac-type operators, under a bounded curvature collapse.
MOTIVATION: CHEEGER’S INEQUALITY

Let M be a connected compact Riemannian manifold.

Spectrum of \triangle^M:

$$0 = \lambda_1(M) < \lambda_2(M) \leq \lambda_3(M) \leq \ldots$$

Theorem 1. (Cheeger 1969)

$$\lambda_2(M) \geq \frac{h^2}{4}.$$

Definition 1.

$$h = \inf_A \frac{\text{Area}(A)}{\min(\text{vol}(M_1), \text{vol}(M_2))},$$

where A ranges over separating hypersurfaces.

Question (Cheeger): Is there a similar inequality for the p-form Laplacian? (Problem # 79 on Yau’s list.)
THE p-FORM LAPLACIAN

The p-form Laplacian is

$$\Delta^M_p = dd^* + d^* d : \Omega^p(M) \to \Omega^p(M).$$

Spectrum of Δ^M_p:

$$0 \leq \lambda_{p,1}(M) \leq \lambda_{p,2}(M) \leq \lambda_{p,3}(M) \leq ...$$

By Hodge theory,

$$\text{Ker}(\Delta^M_p) \cong H^p(M; \mathbb{R}),$$

so

$$0 = \lambda_{p,1}(M) = ... = \lambda_{p,b_p(M)}(M) < \lambda_{p,b_p(M)+1}(M) \leq$$
Notation:

\[R^M = \text{Riemann sectional curvatures.} \]
\[\text{diam}(M) = \sup_{p,q \in M} d_M(p,q). \]

Fix a number \(K \geq 0 \). Consider

\[\{ \text{connected Riem. manifolds } M^n : \| R^M \|_\infty \leq K \text{ and diam}(M) \leq 1 \}. \]

There is a number \(v_0(n, K) > 0 \) such that one has the following dichotomy:

I. Noncollapsing case: \(\text{vol}(M) \geq v_0 \).

Finite number of topological types, \(C^{1,\alpha} \)-metric rigidity. In particular, uniform bounds on eigenvalues of \(\triangle_p \).

or

II. Collapsing case: \(\text{vol}(M) < v_0 \).

Special structure. Need to analyze \(\triangle_p \) in this case.
BERGER EXAMPLE OF COLLAPSING

Hopf fibration \(\pi : S^3 \to S^2 \)

Shrink the circles to radius \(\epsilon \). Look at the 1-form Laplacian \(\Delta_1 \). Since \(H^1(S^3; \mathbb{R}) = 0 \), the first eigenvalue \(\lambda_{1,1} \) of \(\Delta_1 \) is positive.

Fact (Colbois-Courtois 1990)

\[
\lim_{\epsilon \to 0} \lambda_{1,1} = 0.
\]

New phenomenon: (uncontrollably) small eigenvalues.

When does this happen?
FUKAYA’S WORK ON THE FUNCTION LAPLACIAN

Suppose that \(\{M_i\}_{i=1}^\infty \) are connected \(n \)-dimensional Riemannian manifolds with \(\| R^{M_i} \|_\infty \leq K \) and \(\text{diam}(M_i) \leq 1 \).

Suppose that \(M_i \overset{\text{GH}}{\rightarrow} X \).

Consider the function Laplacian on \(M_i \), with eigenvalues \(\{\lambda_j(M_i)\}_{j=1}^\infty \).

Question: Suppose that \(X \) is a smooth Riemannian manifold. Is it true that \(\lim_{i \to \infty} \lambda_j(M_i) = \lambda_j(X) \)?

Answer: In general, no. Need to add a probability measure \(\mu \) to \(X \).

Laplacian on weighted \(L^2 \)-space:

\[
< f, \triangle^X \mu f > \quad \frac{< f, f >}{\int_X f^2 \, d\mu} = \frac{\int_X |\nabla f|^2 \, d\mu}{\int_X f^2 \, d\mu}.
\]

Theorem 2. (Fukaya 1987) If

\[
\lim_{i \to \infty} \left(M_i, \frac{dvol_{M_i}}{vol(M_i)} \right) = (X, \mu)
\]

in the measured Gromov-Hausdorff topology then

\[
\lim_{i \to \infty} \lambda_j(M_i) = \lambda_j(X, \mu).
\]
GOAL

Want a “p-form Laplacian” on the limit space X so that after taking a subsequence,

$$\lambda_{p,j}(M_i) \longrightarrow \lambda_{p,j}(X).$$

Question: What kind of structure do we need on X?
SUPERCONNECTIONS (Quillen 1985, Bismut-L. 1995)

Input:

B a smooth manifold,

$E = \bigoplus_{j=0}^{m} E^j$ a \mathbb{Z}-graded real vector bundle on B.

The (degree-1) superconnections A' that we need will be formal sums of the form

$$A' = A'[0] + A'[1] + A'[2]$$

where

- $A'[0] \in C^\infty(B; \text{Hom}(E^*, E^{*-1}))$,
- $A'[1]$ is a grading-preserving connection ∇^E on E and
- $A'[2] \in \Omega^2(B; \text{Hom}(E^*, E^{*-1}))$.

Then $A' : C^\infty(B; E) \to \Omega(B; E)$ extends by Leibniz’ rule to an operator $A' : \Omega(B; E) \to \Omega(B; E)$.

Flatness condition: $(A')^2 = 0$,

i.e.

- $(A'[0])^2 = (A'[2])^2 = 0$,
- $\nabla^E A'[0] = \nabla^E A'[2] = 0$ and

Note: $A'[0]$ gives a differential complex on each fiber of E.
THE NEEDED STRUCTURE ON THE LIMIT SPACE X

A triple (E, A', h^E), where

1. E is a \mathbb{Z}-graded real vector bundle on X,
2. A' is a flat degree-1 superconnection on E and
3. h^E is a Euclidean inner product on E.

We have

$$A' : \Omega(X; E) \rightarrow \Omega(X; E).$$

Using g^{TX} and h^E, we get

$$(A')^* : \Omega(X; E) \rightarrow \Omega(X; E).$$

Put

$$\Delta^E = A'(A')^* + (A')^* A',$$

the superconnection Laplacian.

Example: If E is the trivial \mathbb{R}-bundle on X, A' is the trivial connection and h^E is the standard inner product on E then Δ^E is the Hodge Laplacian.
ANALYTIC COMPACTNESS

Theorem 3. If $M_i \rightarrow^GH X$ with bounded sectional curvature then after taking a subsequence, there is a certain triple (E,A',h^E) on X such that

$$\lim_{i \to \infty} \sigma(\triangle_{p}^{M_i}) = \sigma(\triangle_{p}^{E}).$$

Remark 1: This is a pointwise convergence statement, i.e. for each j, the j-th eigenvalue converges.

Remark 2: Here the limit space X is assumed to be a Riemannian manifold. There is an extension to singular limit spaces (see later).

Remark 3: The relation to Fukaya’s work on functions: For functions, only $\Omega^0(X;E^0)$ is relevant. Here E^0 is a trivial \mathbb{R}-bundle on X with a trivial connection. But its metric h^{E^0} may be nontrivial and corresponds to Fukaya’s measure μ.
IDEA OF PROOF

1. The individual eigenvalues $\lambda_{p,j}$ are continuous with respect to the metric on M, in the C^0-topology (Cheeger-Dodziuk).

2. By Cheeger-Fukaya-Gromov, if M is Gromov-Hausdorff close to X then we can slightly perturb the metric to get a Riemannian affine fiber bundle. That is,

affine fiber bundle : M is the total space of a fiber bundle $M \to X$ with infranil fiber Z, whose holonomy can be reduced from $\text{Diff}(Z)$ to $\text{Aff}(Z)$.

Riemannian affine fiber bundle : In addition, one has
a. A horizontal distribution T^HM on M with holonomy in $\text{Aff}(Z)$, and
b. Fiber metrics g^{TZ} which are fiberwise affine-parallel.

So it’s enough to just consider Riemannian affine fiber bundles.

3. If M is a Riemannian affine fiber bundle then $\sigma(\triangle_p^M)$ equals $\sigma(\triangle_p^E)$ up to a high level, which is on the order of $d_{GH}(M,X)^{-2}$. Here E is the vector bundle on X whose fiber over $x \in X$ is

$$E_x = \{\text{affine-parallel forms on } Z_x\}.$$

4. Show that the ensuing triples $\{(E_i, A'_i, h^{E_i})\}_{i=1}^\infty$ have a convergent subsequence (modulo gauge transformation).
APPLICATION TO SMALL EIGENVALUES

Fix M and $K \geq 0$. Consider
$$
\{ g : \| R^M(g) \|_\infty \leq K \text{ and } \text{diam}(M, g) \leq 1 \}.
$$

Question: Among these metrics, are there more than $b_p(M)$ small eigenvalues of Δ_p^M?

Suppose so, i.e. that for some $j > b_p(M)$, there are metrics $\{g_i\}_{i=1}^\infty$ so that
$$
\lambda_{p,j}(M, g_i) \to 0.
$$

Step 1. Using Gromov precompactness, take a convergent subsequence
$$
(M, g_i) \to X.
$$

Since there are small positive eigenvalues, we must be in the collapsing situation.

Step 2. Using the analytic compactness theorem, take a further subsequence to get a triple (E, A', h^E) on X. Then
$$
\lambda_{p,j}(\Delta^E) = 0.
$$

In the limit, we’ve turned the small eigenvalues into **extra zero eigenvalues**.

Recall that Δ^E has the Hodge form $A'(A')^* + (A')^* A'$. Then from Hodge theory,
$$
\dim(H^p(A')) \geq j.
$$

Analysis → **Topology**

Fact: There is a spectral sequence to compute $H^p(A')$. Analyze the spectral sequence.
RESULTS ABOUT SMALL EIGENVALUES

Theorem 4. Given M, there are no more than $b_1(M) + \dim(M)$ small eigenvalues of the 1-form Laplacian.

More precisely, if there are j small eigenvalues and $j > b_1(M)$ then in terms of the limit space X,

$$j \leq b_1(X) + \dim(M) - \dim(X).$$

(Sharp in the case of the Berger sphere.)

More generally, where do small eigenvalues come from?

Theorem 5. Let M be the total space of an affine fiber bundle $M \to X$, which collapses to X. Suppose that there are small positive eigenvalues of \triangle_p in the collapse. Then there are exactly three possibilities:

1. The infranil fiber Z has small eigenvalues of its q-form Laplacian for some $0 \leq q \leq p$. That is, $b_q(Z) < \dim\{\text{affine-parallel } q\text{-forms on } Z\}$.

 OR

2. The “direct image” cohomology bundle H^q on X has a holonomy representation $\pi_1(X) \to \text{Aut}(H^q(Z; \mathbb{R}))$ which fails to be semisimple, for some $0 \leq q \leq p$.

 OR

3. The Leray spectral sequence to compute $H^p(M; \mathbb{R})$ does not degenerate at the E_2 term.

Each of these cases occurs in examples.
UPPER EIGENVALUE BOUNDS

Theorem 6. Fix M. If there is not a uniform upper bound on $\lambda_{p,j}$ (among metrics with $\| R^M \|_\infty \leq K$ and $\text{diam}(M) = 1$) then M collapses to a limit space X with $1 \leq \text{dim}(X) \leq p - 1$.

In addition, the generic fiber Z of the fiber bundle $M \to X$ is an infranilmanifold which does not admit nonzero affine-parallel k-forms for $p - \text{dim}(X) \leq k \leq p$.

Example: Given M, if there is *not* a uniform upper bound on the j-th eigenvalue of the 2-form Laplacian then M collapses with bounded curvature to a 1-dimensional limit space. We know what such M look like.
SINGULAR LIMIT SPACES

Technical problem: in general, a limit space of a bounded-curvature collapse is not a manifold.

Theorem 7. (Fukaya 1986): A limit space X is of the form \check{X}/G, where \check{X} is a Riemannian manifold and $G \subset \text{Isom}(\check{X})$.

What should the “forms on X” be? Answer: the basic forms on \check{X}. $\Omega_{\text{basic}}^*(\check{X}) = \{ \omega \in \Omega^*(\check{X}) : \omega \text{ is } G\text{-invariant and for all } x \in g, i_x \omega = 0 \}$.

Fact: One can do analysis on the singular space X by working G-equivariantly on \check{X}, i.e. construct superconnection Laplacians, etc. The preceding results extend to this setting.
Theorem 8. Let M^n be a complete connected Riemannian manifold with $\text{vol}(M) < \infty$ and $-b^2 \leq R^M \leq -a^2$, with $0 < a \leq b$. Then the space of square-integrable harmonic p-forms on M is finite-dimensional.

Previously known to be true if $p \neq \frac{n-1}{2}$ and $\frac{b}{a}$ is close enough to one (Donnelly-Xavier).

The result is also true if M just has bounded curvature and asymptotically-cylindrical ends, as long as the cross-sections of the ends are not too big.

Theorem 9. There is a number $\delta(n) > 0$ such that if
1. M^n is a complete connected Riemannian manifold,
2. $\|R^M\|_{\infty} \leq b^2$ and
3. The ends of M are $\delta(n) b^{-1}$-Gromov-Hausdorff close to rays
then the space of square-integrable harmonic p-forms on M is finite-dimensional.

Theorem 10. If M is a finite-volume negatively-curved manifold as above then one can write down an explicit ordinary differential operator whose essential spectrum coincides with that of the p-form Laplacian on M.
GEOMETRIC DIRAC-TYPE OPERATORS

Spinor modules V:

Say G is $SO(n)$ or $Spin(n)$, and V is a Hermitian G-module. Suppose that there is a G-equivariant map $\gamma : \mathbb{R}^n \to \text{End}(V)$ such that

$$\gamma(v)^2 = |v|^2 \text{Id}.$$

Geometric Dirac-type operators:

Let M^n be a closed Riemannian manifold which is oriented or spin. Let V be a spinor module and let D^M be the corresponding Dirac-type operator. (Special cases: signature operator, pure Dirac operator.)

Theorem 11. Suppose that $M_i \overset{GH}{\longrightarrow} X$ with bounded curvature, with X smooth. Then after taking a subsequence, there are a Clifford-module E on X and a certain first-order elliptic operator D^E on $C^\infty(X; E)$ such that

$$\lim_{i \to \infty} \sigma(D^{M_i}) = \sigma(D^E).$$
Suppose now that $M_i \xrightarrow{GH} X$ with bounded curvature, but with X singular. To describe the limit of $\sigma(D^M_i)$, we need a Dirac-type operator on the singular space X. How to do this?

Let P_i be the principal G-bundle on M_i. Following Fukaya, we can assume that $P_i \xrightarrow{GH} \tilde{X}$, with \tilde{X} a G-manifold. We want to define a Dirac-type operator on $X = \tilde{X}/G$.

Fundamental Problem : There is no notion of a “G-basic spinor”.

Resolution : Observe that a spinor field on M_i is a G-invariant element of $C^\infty(P_i) \otimes V$. Take $P_i \longrightarrow \tilde{X}$.

Definition 2. A “spinor field on X” is a G-invariant element of $C^\infty(\tilde{X}) \otimes V$.

Fact : There’s a certain first-order transversally elliptic operator \tilde{D} on $C^\infty(\tilde{X}) \otimes V$.

Definition 3. The Dirac-type operator D on X is the restriction of \tilde{D} to the G-invariant subspace of $C^\infty(\tilde{X}) \otimes V$.
APPLICATIONS TO SPECTRAL ANALYSIS OF DIRAC-TYPE OPERATORS

With this notion of the Dirac operator on X, one can prove a general convergence theorem for $\sigma(D^{M_i})$.

An application to upper eigenvalue bounds:

Theorem 12. Fix M and the spinor module V. If there is not a uniform upper bound on the j-th eigenvalue of $|D^M|$ (among metrics with $\|R^M\|_\infty \leq K$ and $\text{diam}(M) = 1$) then M collapses to a limit space X. Furthermore, the generic fiber Z of the map $M \to X$ is an infranilmanifold which does not admit any affine-parallel spinor fields.

Finally, one can characterize the essential spectrum of a geometric Dirac-type operator on a finite-volume negatively curved manifold. That is, one can show that it equals the essential spectrum of a certain first-order ordinary differential operator associated to the ends.