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1. Introduction

A sequence {gi}∞i=1 of Riemannian metrics on a compact manifold M makes it col-
lapse to a lower-dimensional metric space Y if the metric spaces {(M, gi)}∞i=1 converge
to Y in the Gromov–Hausdorff topology. If one imposes some curvature condition on
the Riemannian metrics then the collapsing can force extra structure on M . The best
understood case is when the Riemannian metrics have a uniform double-sided curvature
bound. In that case, Cheeger and Gromov showed that collapsing occurs if and only if M
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admits an F-structure of positive rank [8,9]. In later work, Cheeger, Fukaya and Gromov
gave a complete description of the collapsing geometry in terms of Nil-structures [6].

With the success of the Cheeger–Gromov work, attention turned to collapsing under
other curvature bounds. The case of a uniform lower bound on sectional curvature was
considered by Fukaya–Yamaguchi, Kapovitch–Petrunin–Tuschmann and others; see [17]
and references therein. The case of a uniform lower bound on Ricci curvature was
considered by Gromov, Cheeger–Colding, Kapovitch–Wilking and others; see [18] and
references therein. By intricate arguments, it was shown in these cases that the collapsing
manifold has a weak fibration structure.

The curvature operator is the symmetric operator on 2-forms coming from the Rie-
mann curvature tensor. The results in this paper indicate that if one assumes a uniform
lower bound on the curvature operator then the collapsing picture is structurally sim-
ilar to the bounded curvature case considered by Cheeger and Gromov. The difference
between collapse with curvature operator bounded below, and collapse with sectional
curvature bounded below, is closely tied to the difference between actions of abelian Lie
groups and actions of nonabelian Lie groups; see Section 2 for examples.

One advantage of the curvature operator is that one knows the manifolds that admit
a Riemannian metric with nonnegative curvature operator, from work of Böhm and
Wilking [2]. This is contrast to the situation with nonnegative sectional curvature.

The Cheeger–Gromov notion of an F-structure is based on local torus actions. If M
has an F-structure then for each m ∈ M , there is a neighborhood of m with a finite
cover that admits a torus action. The actions by these tori, whose dimensions can vary,
have to be consistent on overlaps. In this paper we define a fibered F-structure, or an
fF-structure. This structure mixes local torus actions and local fiberings. The motivation
for fF-structures comes from collapsing examples, such as those in Section 2.

Definition 1. An atlas for an fF-structure on a smooth connected manifold M is given
by a locally finite open cover M =

⋃
i Ui and for each i,

(1) a finite normal cover πi : Ûi → Ui, say with covering group Γi,
(2) an effective action ρi : Ti → Diff(Ûi) of a torus group Ti, which is Γi-equivariant

with respect to a homomorphism Γi → Aut(Ti), and
(3) a Ti � Γi-equivariant proper submersion si : Ûi → B̂i so that
(4) the Ti-action is never vertical; given X in the Lie algebra ti and p̂ ∈ Ûi, if the

corresponding vector field VX has VX(p̂ ) ∈ Ker(dsi) then VX(p̂ ) = 0.

There is a consistency requirement on overlaps, which is detailed in Section 3.
One can extend notions from F-structures to fF-structures. An fF-structure has pos-

itive rank if for each i, dim(B̂i) < dim(Ûi) or the Ti-action has no global fixed points.
If for each i, the orbits of the Ti-action on Ûi all have the same dimension (possibly
depending on i), then the fF-structure is polarized. If dim(Ti) is independent of i, and
dim(s−1

i (pt)) is independent of i, then the fF-structure is pure. More generally, there
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is a notion of a substructure, whose actions are by subgroups (not necessarily closed)
of the toral groups, so it makes sense to talk about an fF-structure with a polarized
substructure.

There is a notion of an invariant vertical metric for the fF-structure. Invariant vertical
metrics always exist. There is also a notion of an invariant metric. Given an invariant
vertical metric, one can extend it to an invariant metric.

The Cheeger–Gromov results about bounded curvature collapse are phrased in terms
of the injectivity radius. Although the injectivity radius is not suitable for other types
of collapse, one can instead use local volumes; with bounded curvature, the two notions
of collapse are equivalent [5,10]. Given r > 0, m ∈ M and a Riemannian metric g

on M , let Vr,m(g) denote the volume of the ball of radius r around m. The next three
theorems extend the main results of [8] to the setting of collapse with a lower bound on
the curvature operator.

Theorem 1. Suppose that M is a compact manifold with a pure polarized fF-structure
of positive rank. Suppose that there is an invariant vertical metric with nonnegative
vertical curvature operator. Then there is a family {gε}ε>0 of invariant metrics on M so
that:

(1) The curvature operators of {(M, gε)}ε>0 are uniformly bounded below.
(2) The diameters of {(M, gε)}ε>0 are uniformly bounded above.
(3) The Gromov–Hausdorff limit limε→0(M, gε) is the orbit space of the fF-structure,

a lower-dimensional length space.

Theorem 2. Suppose that M is a compact manifold with a fF-structure, having a polarized
substructure of positive rank. Suppose that there is an invariant metric on M for which
the substructure has a positive vertical curvature operator. Then there is a family {gε}ε>0
of invariant metrics on M so that:

(1) The curvature operators of {(M, gε)}ε>0 are uniformly bounded below.
(2) limε→0 vol(M, gε) = 0.

Theorem 3. Suppose that M is a compact manifold with an fF-structure of positive rank.
Suppose that there is an invariant vertical metric with nonnegative vertical curvature
operator. Then there is a family {gε}ε>0 of invariant metrics on M so that:

(1) The curvature operators of {(M, gε)}ε>0 are uniformly bounded below.
(2) For any r > 0, we have limε→0 supm∈M Vr,m(gε) = 0.

Corollary 1. Under the assumptions of Theorem 3, the simplicial volume of M vanishes.

Proof. This follows from Theorem 3 and the isolation theorem of [15, p. 14]. �
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In the proofs of Theorems 1–3, in each case there is a potentially dangerous term in
the curvature operator that must be handled. The way to handle this term differs in the
three cases. For Theorem 1, we use the Ricci flow to reduce the structure group of the
fiber bundle. For Theorem 2, we use the positivity of the vertical curvature operator.
For Theorem 3, we expand in transverse directions.

The converses of the F-structure versions of Theorems 1 and 2 fail [11, Example 6.4],
[8, Remark 4.1]. The converse of the F-structure version of Theorem 3 is the main result
of [9]. In Section 8 we give a local model for the geometry of a manifold that satisfies
the conclusion of Theorem 3, under a smoothing assumption. We show that the local
model has a canonical fF-structure with nonnegative vertical curvature operator. It seems
plausible that if M satisfies the conclusion of Theorem 3 then after removing a finite
number of disjoint topological balls, the remainder has an fF-structure of positive rank,
with fibers that admit metrics having nonnegative curvature operator; see Remark 3 for
further discussion.

My interest in these questions came from a talk by Wilderich Tuschmann about his
work with Herrmann and Sebastian on manifolds with almost nonnegative curvature
operator, which was written up in [16]. I thank Wilderich and Peter Teichner for discus-
sions.

2. Nonnegative curvature operator

In this section we give information about manifolds with nonnegative curvature op-
erator. We also give some examples of collapsing.

If M is a Riemannian manifold then the curvature operator at p ∈ M is the self-adjoint
map Riem on Λ2(T ∗

pM) given in local coordinates by

Riem(ω) =
∑
i,j,k,l

Rij
klωkl dx

i ∧ dxj . (2.1)

We can also consider Riem as an operator on Λ2(T ∗
pM) ⊗ C. Clearly Riem � 0 implies

that M has nonnegative sectional curvature but the converse fails in dimension greater
than three.

Any symmetric space M = G/H with nonnegative sectional curvature has non-
negative curvature operator, as follows from the equation R(X,Y )Z = [Z, [X,Y ]] for
X,Y, Z ∈ TeHM . A Kähler manifold of real dimension greater than two cannot have
positive curvature operator, since Riem vanishes on Λ2,0(T ∗

pM) ⊕ Λ0,2(T ∗
pM). It will

have nonnegative curvature operator if and only if Riem is nonnegative on Λ1,1(T ∗
pM).

Böhm and Wilking proved that a compact connected Riemannian manifold with pos-
itive curvature operator is diffeomorphic to a spherical space form [2]. When combined
with [13, Theorem 5], we can say that if M is a compact connected Riemannian manifold
with nonnegative curvature operator then each factor in the de Rham decomposition of
the universal cover M̃ is isometric to one of
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(1) a Euclidean space,
(2) a sphere with nonnegative curvature operator,
(3) a compact irreducible symmetric space,
(4) a compact Kähler manifold that is biholomorphic to a complex projective space,

with Riem nonnegative on real (1, 1)-forms.

Let M be a complete connected Riemannian manifold with nonnegative curvature
operator. Since M also has nonnegative sectional curvature, it is diffeomorphic to a
vector bundle over its soul S, in the sense of Cheeger and Gromoll [7]. The nonnegativity
of the curvature operator implies that there is a local isometric product structure over
the soul [22]. That is, M is an isometric quotient (S̃ × Y )/Γ , where

(1) S is a compact Riemannian manifold having nonnegative curvature operator, with
fundamental group Γ and S̃ as its universal cover,

(2) (Y, y) is a pointed complete Riemannian manifold with nonnegative curvature oper-
ator that is diffeomorphic to R

k, with k ∈ [0, n], and
(3) Γ acts by isometries on Y , fixing y.

That Γ fixes a point y ∈ Y comes from the fact that the soul S is a submanifold of M , and
so must be representable as (S̃ × {y})/Γ . We remark that the local isometric product
structure also exists under the weaker assumption that M has nonnegative complex
sectional curvature [3, Theorem 2].

Example 1. Although S2n+1 has positive curvature operator, CPn = S2n+1/S1 does not.
This shows that a lower bound on the curvature operator is not preserved under taking
quotients.

Example 2. Although SU(3), with a bi-invariant Riemannian metric, has nonnegative
curvature operator, its quotient SU(3)/S1 by a circle subgroup cannot. Rescaling, we
see that a manifold with a nonnegative curvature operator can have a quotient with
arbitrarily negative curvature operator.

Example 3. Suppose that T l acts isometrically on a compact Riemannian manifold M

with curvature operator bounded below by KId. Let Zk ⊂ S1 be the finite subgroup
of order k. For ε > 0, let εT l denote the result of taking a flat T l and multiplying the
Riemannian metric by ε2. Put Yk,ε = M ×

Z
l
k
εT l. The curvature operator on Yk,ε is

bounded below by KId. As k → ∞ and ε → 0, the Gromov–Hausdorff limit of Yk,ε is
M/T l. Thus M/T l is a limit of Riemannian manifolds with curvature operators that are
uniformly bounded from below.

Example 4. Suppose that a compact Lie group G acts isometrically on a compact Rieman-
nian manifold M with nonnegative sectional curvature. Give G a bi-invariant Riemannian
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metric. For ε > 0, put Mε = M ×G εG, equipped with the quotient Riemannian met-
ric coming from M × εG. As ε → 0, the Gromov–Hausdorff limit of Mε is M/G. For
each ε, the manifold Mε has nonnegative sectional curvature. Thus M/G is a limit of
Riemannian manifolds with nonnegative sectional curvature. In contrast, Proposition 2
in Section 8 shows that if G is nonabelian then it is generally not true that the family
{Mε}ε∈(0,1] has curvature operators that are uniformly bounded from below.

Example 5. Let M be a compact Riemannian manifold. Let G be a compact Lie group
and let P be a principal G-bundle over M , with connection. Give G a bi-invariant
Riemannian metric and give P the associated connection metric g. For ε > 0, let (P, gε)
be the result of multiplying the fiber Riemannian metric by ε2. The following facts can
be read off from (4.7) below.

(1) If M has nonnegative sectional curvature then P has almost nonnegative sectional
curvature: for every σ > 0, the manifold (P, gε) has sectional curvatures bounded
below by −σ if ε is sufficiently small [14, Section 2].

(2) If M has nonnegative curvature operator and G is abelian then P has almost non-
negative curvature operator: for every σ > 0, the manifold (P, gε) has curvature
operator bounded below by −σId if ε is sufficiently small.

(3) If M has nonnegative curvature operator and G is nonabelian then the manifolds
{(P, gε)}ε∈(0,1] have curvature operators that are uniformly bounded below. However,
it is generally not true that for every σ > 0, the manifold (P, gε) has curvature
operator bounded below by −σId if ε is sufficiently small.

Remark 1. As seen, if s : M → B is a Riemannian submersion and M has nonnegative
curvature operator then B need not have nonnegative curvature operator. Hence there
cannot be a synthetic notion of nonnegative curvature operator which is preserved un-
der Gromov–Hausdorff limits, at least in the collapsing case. This is in contrast to the
situation with nonnegative sectional curvature. It may be useful to think of collapsing
with curvature operator bounded below as a type of collapsing with sectional curvature
bounded below, with some additional structure.

3. fF-structures

In this section we define fF-structures and give some examples. The definition is
based, of course, on the Cheeger–Gromov definition of F-structures. We show that an
invariant vertical metric always exists, and that an invariant vertical metric can always
be extended to an invariant metric.

We first give a definition of infinitesimal fF-structures in terms of sheaves. Some
readers may want to skip to Definition 4 of an atlas.

Let M be a smooth connected manifold. Let V denote the sheaf on M of smooth
vector fields, a sheaf of Lie algebras. For m ∈ M , let Vm denote the stalk at m, i.e.
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the germs of vector fields at m, and let lm : Vm → TmM be the localization map, i.e.
evaluation at m.

Definition 2. An infinitesimal fF-structure on M consists of

(1) a sheaf K of finite-dimensional abelian Lie algebras on M ,
(2) an injective sheaf homomorphism η : K → V, and
(3) a subsheaf D of V so that for any open set U ⊂ M , D(U) consists of the sections of

an integrable distribution DU ⊂ TU ,

satisfying the conditions that

(1) if V1 ∈ K(U) and V2 ∈ D(U) then [η(V1), V2] ∈ D(U), and
(2) for every m ∈ M , lm(ηm(Km)) ∩ lm(Dm) vanishes in TmM .

The first condition in Definition 2 is an equivariance statement about D. The second
condition in Definition 2 says that a tangent vector at m coming from the infinitesimal
Lie algebra action can never point in the direction of the distribution.

Given an infinitesimal fF-structure, a subinfinitesimal fF-structure is given by a sub-
sheaf (K′,D′) with similar properties.

The infinitesimal fF-structure has positive rank if for all m ∈ M , the pair
(lm(ηm(Km)), lm(Dm)) ⊂ TmM ⊕ TmM never vanishes. An infinitesimal fF-structure
is pure if the dimensions of Km and lm(Dm) are constant in m.

Definition 3. An fF-structure on M is an infinitesimal fF-structure with the property
that for each m ∈ M there are a neighborhood Um of m and a finite normal cover
πm : Ûm → Um, say with covering group Γm, so that

(1) there is an effective action ρ : Tm → Diff(Ûm) of a torus group Tm, equivariant with
respect to a homomorphism Γm → Aut(Tm), and

(2) there is a proper submersion sm : Ûm → B̂m, which is Tm � Γm-equivariant, such
that

(3) if m̂ ∈ π−1
m (m) then the action near m̂ of the Lie algebra tm coincides with the lift

of ηm(Km), and
(4) if m̂ ∈ π−1

m (m) then the germs (at m̂) of sections of the vertical tangent bundle
Ker(dsm) coincide with the lift of Dm.

In conditions (3) and (4) above, we use the fact that πm is a local diffeomorphism in
order to lift vectors.

We say that the fF-structure has positive rank if the underlying infinitesimal fF-struc-
ture has positive rank. We say that the fF-structure is pure if the underlying infinitesimal
fF-structure is pure.
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Definition 4. An atlas for an fF-structure on M is given by a locally finite open cover
M =

⋃
i Ui and for each i,

(1) a finite normal cover πi : Ûi → Ui, say with covering group Γi,
(2) an effective action ρi : Ti → Diff(Ûi) of a torus group Ti, which is Γi-equivariant

with respect to a homomorphism Γi → Aut(Ti), and
(3) a Ti � Γi-equivariant proper submersion si : Ûi → B̂i so that
(4) the Ti-action is never vertical; given X in the Lie algebra ti and p̂ ∈ Ûi, if the

corresponding vector field VX has VX(p̂ ) ∈ Ker(dsi) then VX(p̂ ) = 0.

This structure must have the following intersection property. Suppose that Ui∩Uj 
= ∅.
Put Uij = Ui ∩ Uj . Then there are

(1) a finite normal Γij-cover πij : Ûij → Uij ,
(2) an effective action ρij : Tij → Diff(Ûij) of a torus group Tij , which is Γij-equivariant

with respect to a homomorphism Γij → Aut(Tij),
(3) a Tij � Γij-equivariant proper submersion sij : Ûij → B̂ij so that the Tij-action is

never vertical,
(4) a subgroup Tij,i�Γij,i ⊂ Tij�Γij with a locally isomorphic surjective homomorphism

Tij,i � Γij,i → Ti � Γi,
(5) a subgroup Tij,j�Γij,j ⊂ Tij�Γij with a locally isomorphic surjective homomorphism

Tij,j � Γij,j → Tj � Γj , and
(6) equivariant smooth maps αij,i : Ûij → Ûi, αij,j : Ûij → Ûj , βij,i : B̂ij → B̂i,

βij,j : B̂ij → B̂j

so that

(1) πi ◦ αij,i = πij ,
(2) πj ◦ αij,j = πij ,
(3) si ◦ αij,i = βij,i ◦ sij , and
(4) sj ◦ αij,i = βij,j ◦ sij .

In condition (6) above the equivariance of αij,i, for example, is with respect to the
Tij,i � Γij,i-action on Ûij and the Ti � Γi-action on Ûi, as linked by the homomorphism
in (4).

Any fF-structure admits a compatible atlas in the sense of Definition 4; cf. [8, p. 317].
We can and will assume that for each m ∈ M , we have Tm = Ti for some i. The
fF-structure has positive rank if and only if for all i, the Ti-action has no global fixed
points or the preimages s−1

i (pt) have positive dimension. The fF-structure is pure if and
only if dim(Ti) is independent of i and dim(s−1

i (pt)) is independent of i.
Given m ∈ M , define the vertical fiber Fi(m) ⊂ M to be the image under πi of the ver-

tical fibers in Ûi that contain elements of π−1
i (m). That is, Fi(m) = πi(s−1

i (si(π−1
i (m)))).
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Given an fF-structure on M , suppose that the underlying infinitesimal fF-structure
has a subinfinitesimal fF-structure (K′,D′). We say that (K′,D′) is polarized if the fF-
structure admits an atlas so that for each i, if we partition Ui by the equivalence relation
generated by flows of vector fields in η(K′(Ui)), then the ensuing orbits have constant
dimension in Ui, as immersed submanifolds.

We do not assume that the lift of η(K′(Ui)) to Ûi generates a closed subgroup of
the Ti-action on Ûi. We also do not assume that the flows of D′(Ui) generate closed
orbits, or that dim(K′(Ui)) or dim(D′

Ui
) are independent of i. If in addition (K′,D′) is

pure, i.e. if dim(K′(Ui)) and dim(D′
Ui

) are both independent of i, then (K′,D′) is pure
polarized. Our terminology differs slightly from that for F-structures in [8], where one
would say that the existence of such a substructure means that the original F-structure
has a polarization, or a pure polarization.

Example 6. Let M have an F-structure. Then for any connected closed manifold Z, the
product manifold M × Z has an fF-structure. It will have positive rank if and only if Z
has positive dimension or the F-structure on M has positive rank.

Example 7. Let Z1 and Z2 be connected closed manifolds. Let M1 and M2 be connected
manifolds. Let B be a manifold. Suppose that there are codimension-zero embeddings
(Z1 ×B) ⊂ M1 and (Z2 ×B) ⊂ M2. Then M = (Z2 ×M1) ∪Z1×Z2×B (Z1 ×M2) has an
fF-structure. There is an evident atlas whose groups Ti are trivial and whose submersions
are (Z2 ×M1) → M1, (Z1 ×M2) → M2 and (Z1 × Z2 ×B) → B.

Example 8. Let G be a connected compact Lie group. Let K be a closed subgroup of G.
Let P be the total space of a principal G× T k-bundle. Then P/K has a pure polarized
fF-structure coming from the submersion s : P/K → P/G, along with the remaining
T k-action.

Lemma 1. Given an fF-structure, there is a compatible atlas with the following proper-
ties.

(1) Each Ui has compact closure.
(2) If m ∈ Ui1 ∩ · · · ∩ Uik then for some ordering, we have

(
Ti1 , Fi1(m)

)
⊂

(
Ti2 , Fi2(m)

)
⊂ · · · ⊂

(
Tik , Fik(m)

)
. (3.1)

(3) Given m ∈ Ui, there is at most one j 
= i so that m ∈ Uj and (Ti, Fi(m)) =
(Tj , Fj(m)).

Proof. The proof is the same as in [8, Lemma 1.2]. �
The relation of (3.1) gives a partial ordering on {Uα}, in the sense that Uα � Uβ if for

each m ∈ Uα ∩ Uβ , we have (Tα, Fα(m)) ⊂ (Tβ , Fβ(m)). Let U1 be a maximal element



300 J. Lott / Advances in Mathematics 256 (2014) 291–317
of the partial ordering. Let U2 be a maximal element among those that are left after
removing U1. Proceeding in this way, we obtain a subcover {Ui} of M with the property
that if i > j and Ui ∩ Uj 
= ∅ then the restriction of (Ti, Fi), to Ui ∩ Uj , is contained in
the restriction of (Tj , Fj) to Ui ∩ Uj . We will call such an atlas a regular atlas.

The flows generated by the vector fields in the D(U)’s generate a partition P of M
into submanifolds, possibly of varying dimensions. If m ∈ Ui then the vertical fiber Fi(m)
is contained in the submanifold Pm ∈ P that contains m. In fact, Pm =

⋃
i: m∈Ui

Fi(m).
Given a collection gV of Riemannian metrics on the submanifolds P in P, for any

atlas we obtain vertical Riemannian metrics on the submersions si : Ûi → B̂i.

Definition 5. We say that gV is an invariant vertical metric on M if for each i, the
vertical Riemannian metric on Ûi is smooth and Ti-invariant. We say that gV has positive
(nonnegative) curvature operator if for each i, the vertical Riemannian metric on Ûi has
positive (nonnegative) curvature operator.

This notion is independent of the choice of atlas.

Lemma 2. An invariant vertical metric exists.

Proof. The proof is similar to that of [8, Lemma 1.3]. For simplicity, we assume that M
is compact. The proof can be easily modified to the noncompact case.

Let {Ui} be a regular atlas. After refining the atlas if necessary, we can assume that
for each i, the closure Ui has a normal Γi-cover Ûi which fibers over a smooth compact
manifold-with-boundary B̂i.

Choose a vertical Riemannian metric on Û1 which extends smoothly to Û1. Average
it with respect to the T1-action. Project to get an invariant vertical metric on U1.

Consider U2. The invariant vertical metric on U1 ∩ U2 (possibly empty) lifts to a
vertical Riemannian metric on π−1

2 (U1∩U2). Extend this to a vertical Riemannian metric
on Û2 which extends smoothly to Û2. Average it with respect to the T2-action. This new
averaging will not change the vertical Riemannian metric on π−1

2 (U1∩U2). Project to get
an invariant vertical metric on U1 ∪U2 which agrees with the previous invariant vertical
metric on U1 ∩ U2. Then repeat the process. �
Definition 6. Given an infinitesimal fF-structure, a smooth function f on M is invariant
if for all open U ⊂ M and all V ∈ η(K(U)) + D(U), we have V f |U = 0.

A Riemannian metric g on M is an invariant metric if for all open U ⊂ M :

(1) If V ∈ η(K(U)) then LV g = 0 and V is pointwise orthogonal to each element of
D(U).

(2) Given m ∈ U and e1, e2 ∈ TmM , if e1, e2 ∈ D⊥
U then for any V ∈ D(U), we have

(LV g)(e1, e2) = 0.
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Condition (1) in Definition 6 means that g is invariant under the local torus action,
and the generators are orthogonal to the distribution. Condition (2) in Definition 6 gives
a local Riemannian submersion structure, with fibers in the distribution direction.

Given an fF-structure on M , we say that g is invariant if it is invariant for the un-
derlying infinitesimal fF-structure. If {Ui} is an atlas then an invariant Riemannian
metric g on M restricts to a Riemannian metric on Ui, which lifts to a Riemannian
metric on Ûi. This defines a Ti � Γi-invariant Riemannian submersion structure on
si : Ûi → B̂i.

Lemma 3.

(1) Any invariant vertical metric is the restriction of an invariant metric on M to the
submanifolds in the partition P.

(2) There are an atlas {Ui} and smooth invariant compactly-supported functions
Fi : Ui → [0, 1] so that M =

⋃
i F

−1
i (1).

Proof. For simplicity, we assume that M is compact. Let gV be an invariant vertical
metric. Let M =

⋃
i Ui be a regular atlas. We assume that Ui has the properties in the

proof of Lemma 2. The lift of gV |U1 gives a vertical Riemannian metric ĝV1 on Û1. As the
generating vector fields of the T1-action are never vertical, one can use the slice theorem
(along with an induction over the strata of the T1-action) to construct a Γi-invariant
horizontal distribution H1 for s1 : Û1 → B̂1 that extends smoothly to Û1 and contains
the generating vector fields of the T1-action. Choose a Riemannian metric ĝH1 on B̂1 that
extends smoothly to B̂1. There is an induced Riemannian metric ĝ1 = ĝV1 ⊕ s∗1ĝ

H
1 on Û1,

for which H1 is orthogonal to Ker(ds1). Average ĝ1 with respect to T1 � Γ1. The result
pulls back from an invariant metric g1 on U1.

Consider U2. The lift of gV |U2 gives a vertical Riemannian metric ĝV2 on Û2. The lift of
g1|U1∩U2 gives a Riemannian metric ĝ ′

1 on π−1
2 (U1∩U2) which restricts to ĝV2 on the fibers

of s2 in π−1
2 (U1∩U2). Let H′

1 be the orthogonal complement to Ker(ds2) on π−1
2 (U1∩U2),

with respect to ĝ ′
1 . As the generating vector fields of the T2-action are never vertical, one

can construct a horizontal distribution H2 for s2 that extends smoothly to Û2, contains
the generating vector fields of the T2-action and agrees with H′

1 on π−1
2 (U1 ∩ U2).

Put B̂′
1 = s2(π−1

2 (U1 ∩ U2)) ⊂ B̂2. There is a unique Riemannian metric ĝH′
1 on B̂1

so that ĝ ′
1 = ĝV2 ⊕ s∗2ĝ

H′
1 on π−1

2 (U1 ∩ U2). Choose a Riemannian metric ĝH2 on B̂2 that
agrees with ĝH′

1 on B̂1 and that extends smoothly to B̂2. There is an induced Riemannian
metric ĝ2 = ĝV2 ⊕ s∗2ĝ

H
2 on Û2 for which H2 is orthogonal to Ker(ds2). Average ĝ2 with

respect to T2 �Γ2. The result pulls back from an invariant metric g2 on U2 which agrees
with g1 on U1 ∩U2. Repeat the process. This produces an invariant metric g on M that
restricts to gV .

Fix a bump function φ : [0,∞) → [0,∞) so that φ|[0,1/2] = 1 and φ|[1,∞) = 0. Given i,
let {Pi,j} be a finite collection of submanifolds in P that lie in Ui. For εi,j > 0 small
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enough, the function Ai,j(m) = φ(d(m,Pi,j)/εi,j) is smooth on M , and clearly invariant.
Put

Fi(m) = 1 − φ

(∑
j

Ai,j(m)
)
. (3.2)

With an appropriate choice of the Pi,j ’s and εi,j ’s, the ensuing Fi’s will satisfy the
conclusion of the lemma. �
4. Riemannian submersions

In this section we collect some curvature formulas for Riemannian submersions, after
warping both the fibers and the base.

Let s : M → B be a Riemannian submersion. Let gV denote the inner product on
TV M = Ker(ds) and let gB denote the inner product on TB, so gM = gV ⊕ s∗gB .
Let {eα} be a local orthonormal frame for the horizontal space THM that pulls back
from B. Let {ei} be a local orthonormal frame for TV M . Put {eI} = {eα} ∪ {ei} and
let {τ I} denote the dual coframe. Using the Einstein summation convention, we write
ωI

JK = τ I(∇eKeJ) and ωI
J = ωI

JKτK so ωI
JK + ωJ

IK = 0 and dτ I + ωI
J ∧ τJ = 0.

With ΩI
J = dΩI

J +ΩI
K ∧ΩK

J , we write ΩI
J = 1

2R
I
JKLτ

K ∧ τL. Let RV denote the
curvature tensor of a fiber s−1(b) in its induced Riemannian metric and let RB denote
the curvature tensor of B.

The fundamental tensors of the Riemannian submersion are the curvature tensor A

and the second fundamental form T [1, Chapter 9C]. These satisfy the symmetries

ωαβi = Aαβi = −Aβαi = −Aβiα = Aiβα = Aαiβ = −Aiαβ (4.1)

and

ωαij = Tαij = Tαji = −Tjαi = −Tiαj . (4.2)

Given f, h ∈ C∞(B), put ẽi = e−fei and ẽα = eheα. Then {ẽI} is an orthonormal
basis for the metric g̃ = e2fgV + e−2hs∗gB . Let R̃I

JKL denote the components of the
curvature tensor of g̃, written in terms of the basis {ẽI}. One finds

Ãi
αβ = ef+2hAi

αβ

T̃ i
αj = eh

(
T i

αj + δijeαf
)

ω̃i
jk = e−fωi

jk

ω̃i
jα = e−hωi

jα

ω̃α
βγ = e−h

(
ωα

βγ + δαγeβh− δβγeαh
)

(4.3)

and
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R̃i
jkl = e−2fRi

V jkl + e2h[T i
αkT

α
jl − T i

αlT
α
jk

+ eαf
(
δikT

α
jl − δjlT

i
αk − δilT

α
jk + δjkT

i
αl

)
− |∇f |2

(
δikδjl − δilδjk

)]
R̃i

αjk = e−f+h
(
∇jT

i
αk −∇kT

i
αj

)
+ ef+3h[T i

βjA
β
αk − T i

βkA
β
αj + eβf

(
δijA

β
αk − δikA

β
αj

)]
R̃i

αjβ = e2h[−∇βT
i
αj + ∇jA

i
αβ − T i

αkT
k
βj

−
(
∇α∇βf + eαf eβf + eαf eβh + eαh eβf − 〈∇f,∇h〉δαβ

)
δij

− T i
αjeβ(f + h) − T i

βjeα(f + h)
]
− e2f+4hAi

γβA
γ
αj

R̃α
βij = e2h(∇iA

α
βj −∇jA

α
βi + Tα

kiT
k
βj − Tα

kjT
k
βi

)
+ e2f+4h(Aα

γiA
γ
βj −Aα

γjA
γ
βi

)
R̃α

βγi = ef+3h[∇γA
α
βi −Aα

βkT
k
γi −Ak

βγT
α
ki + Aα

kγT
k
βi + 2Aα

βieγ(f + h)

+ Aα
γieβ(f + h) −Aβ

γieα(f + h) −Aα
φiδβγeφh + Aβ

φiδαγeφh
]

R̃α
βγδ = e2h[Rα

Bβγδ − δαδ(∇β∇γh + eβh eγh)

+ δαγ(∇β∇δh + eβh eδh) + δβδ(∇α∇γh + eαh eγh)

− δβγ(∇α∇δh + eαh eδh) − |∇h|2
(
δαγδβδ − δαδδβγ

)]
+ e2f+4h(2Aα

βiA
i
γδ −Aα

iδA
i
βγ + Aα

iγA
i
βδ

)
. (4.4)

Here the covariant derivatives are with respect to the projected connection on
TV M ⊕ s∗TB. That is,

∇jT
i
αk = ejT

i
αk + ωi

ljT
l
αk − ωl

kjT
i
αl,

∇βT
i
αj = eβT

i
αj + ωi

kβT
k
αj − ωγ

αβT
i
γj − ωk

jβT
i
αk,

∇jA
i
αβ = ejA

i
αβ + ωi

kjA
k
αβ ,

∇γA
α
βi = eγA

α
βi + ωα

δγA
δ
βi − ωδ

βγA
α
δi − ωj

iγA
α
βj . (4.5)

In particular, if h = 0 then the equations simplify to

R̃i
jkl = e−2fRi

V jkl + T i
αkT

α
jl − T i

αlT
α
jk

+ eαf
(
δikT

α
jl − δjlT

i
αk − δilT

α
jk + δjkT

i
αl

)
− |∇f |2

(
δikδjl − δilδjk

)
R̃i

αjk = e−f
(
∇jT

i
αk −∇kT

i
αj

)
+ ef

[
T i

βjA
β
αk − T i

βkA
β
αj + eβf

(
δijA

β
αk − δikA

β
αj

)]
R̃i

αjβ = −∇βT
i
αj + ∇jA

i
αβ − T i

αkT
k
βj − (∇α∇βf + eαfeβf)

− T i
αjeβf − T i

βjeαf − e2fAi
γβA

γ
αj

R̃α
βij = ∇iA

α
βj −∇jA

α
βi + Tα

kiT
k
βj − Tα

kjT
k
βi + e2f(Aα

γiA
γ
βj −Aα

γjA
γ
βi

)
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R̃α
βγi = ef

(
∇γA

α
βi −Aα

βkT
k
γi −Ak

βγT
α
ki + Aα

kγT
k
βi

+ 2Aα
βieγf + Aα

γieβf −Aβ
γieαf

)
R̃α

βγδ = Rα
Bβγδ + e2f(2Aα

βiA
i
γδ −Aα

iδA
i
βγ + Aα

iγA
i
βδ

)
. (4.6)

If in addition the fibers of s are totally geodesic and f is constant then the equations
further simplify to

R̃i
jkl = e−2fRi

V jkl

R̃i
αjk = 0

R̃i
αjβ = ∇jA

i
αβ − e2fAi

γβA
γ
αj

R̃α
βij = ∇iA

α
βj −∇jA

α
βi + e2f(Aα

γiA
γ
βj −Aα

γjA
γ
βi

)
R̃α

βγi = ef∇γA
α
βi

R̃α
βγδ = Rα

Bβγδ + e2f(2Aα
βiA

i
γδ −Aα

iδA
i
βγ + Aα

iγA
i
βδ

)
. (4.7)

5. Bounded diameter collapse

In this section we prove Theorem 1. As in [8, Section 2] we shrink the Riemannian
metric in certain directions. We construct a (local) double fibration and look at the cur-
vature formulas that arise when simultaneously shrinking the various fibers. We identify
the terms that could cause the curvature operator to become unbounded below. In order
to get rid of these terms, we show that the structure group of the main fiber bundle can
be reduced to actions on the fiber that are affine in the flat directions of the fiber and
isometric in the other directions. The construction of this reduction uses the Ricci flow.

As the fF-structure is pure, after passing to a holonomy cover there are

(1) a normal cover π : M̂ → M , say with covering group Γ (not necessarily finite),
(2) a T k-action on M̂ ,
(3) a homomorphism ρ : Γ → Aut(T k), and
(4) a proper submersion s : M̂ → B̂ which is T k

� Γ -equivariant.

Let Z denote the fiber of s. From the positive rank assumption, if dim(Z) = 0 then
k > 0. The orbit space is B̂/(T k

� Γ ).
By assumption, there is an invariant vertical metric gV with nonnegative curvature

operator. Let g be an invariant metric on M that extends gV . Then its lift ĝ to M̂

makes s into a T k
� Γ -equivariant Riemannian submersion.

Suppose first that T k acts freely on M̂ . Write ĝ as an orthogonal sum

ĝ = ĝ1 + ĝ2 + ĝ3, (5.1)

where
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(1) ĝ1 is the restriction of ĝ to Ker(ds),
(2) ĝ2 is the restriction of ĝ to the generators of the T k-action, and
(3) ĝ3 is the restriction of ĝ to the orthogonal complement of the direct sum of Ker(ds)

with the generators of the T k-action.

Given ε > 0, put

ĝε = ε2ĝ1 + ε2ĝ2 + ĝ3. (5.2)

Then ĝε is the pullback to M̂ of an invariant Riemannian metric gε on M .
There is a commutative diagram

M̂
s3 s

M̂/T k

s2

B̂

s1

B̂/T k

(5.3)

of Riemannian submersions. Let

(1) {xα} be local coordinates on B̂/T k,
(2) {xα, xi} be local coordinates on B̂, and
(3) {xα, xI} be local coordinates on M̂/T k,

so {xα, xi, xI} are local coordinates on M̂ . Let

(1) {τα} be an orthonormal local collection of 1-forms on M̂ that pull back from B̂/T k,
(2) {τα, τ i} be an orthonormal local collection of 1-forms on M̂ that pull back from B̂,

and
(3) {τα, τ I} be an orthonormal local collection of 1-forms on M̂ that pull back from

M̂/T k.

(Here the index I has a different use than in Section 4.) Then {τα, τ i, τ I} is a local
orthonormal basis of 1-forms on M̂ . We indicate the dependence of the 1-forms on the
coordinates by

(1) τα = τα(xβ),
(2) τ i = τ i(xβ , xj), and
(3) τ I = τ I(xβ , xJ).

Let R̃ε denote the curvature tensor of ĝε. We express components of R̃ε in terms of an
orthonormal frame for ĝε. Put f = log ε. The components of R̃ε that only have indices
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of type α and i, and at least one index of type i, can be read off from (4.6). Similarly,
the components of R̃ε that only have indices of type α and I, and at least one index of
type I, can be read off from (4.6). The other nonzero components of R̃ε are

R̃α
βγδ = Rα

Bβγδ + ε2
(
Aα

iδA
i
βγ − 2Aα

βiA
i
γδ −Aα

iγA
i
βδ

)
+ ε2

(
Aα

IδA
I
βγ − 2Aα

βiA
I
γδ −Aα

IγA
I
βδ

)
,

R̃i
Iαβ = ε2

(
Ai

γαA
γ
Iβ −Ai

γβA
γ
Iα

)
,

R̃i
αβI = ε2Ai

γβA
γ
αI ,

R̃i
IjJ = ε2Ai

αjA
α
IJ ,

R̃i
IαJ = εAi

βαT
β
IJ ,

R̃i
αjI = εT i

βjA
β
αI . (5.4)

As ε goes to zero, we see from (4.6) that the only possibly divergent terms in the
curvature operator come from the tensor S̃ which has the symmetries of the curvature
tensor, and whose nonzero entries are given by

S̃i
jkl = ε−2Ri

V jkl,

S̃i
αjk = ε−1(∇jT

i
αk −∇kT

i
αj

)
,

S̃I
αJK = ε−1(∇JT

I
αK −∇KT I

αJ

)
. (5.5)

From (4.5),

∇jT
i
αk = ejT

i
αk + ωi

ljT
i
αk − ωi

kjT
i
αl,

∇JT
I
αK = eJT

I
αK + ωI

LJT
L
αK − ωL

KJT
I
αL, (5.6)

and similarly for ∇kT
i
αj and ∇KT I

αJ . From the T k-invariance, by taking {xi} to be
linear coordinates on the tori we can assume that ejT i

αk = 0 and ωi
lj = ωl

kj = 0. Thus
S̃i

αjk = 0.
From Section 2, a fiber Z has a finite normal cover Z ′, say with covering group Δ,

which admits a Δ-invariant isometric product metric Z ′ = T a ×
∏N

m=1 Fm, where T a

has a flat metric and each Fm is a compact irreducible symmetric space. Thinking of Z
as a smooth manifold, let C be the space of Δ-invariant structures on Z ′ consisting of
a product decomposition Z ′ = T a ×

∏N
m=1 Fm, a complete affine structure on T a with

trivial holonomy, and an irreducible symmetric space metric on each Fm with volume one.

Lemma 4. Diff(Z) acts transitively on C.

Proof. Let Z1 and Z2 be manifolds diffeomorphic to Z, with structures C1 and C2,
respectively. We can find a Δ-equivariant diffeomorphism φ′ : Z ′

1 → Z ′
2 that preserves
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the product structure. From the rigidity of the affine structure on T a and the rigidity of
the volume-one symmetric space structure on Fm, we can assume that φ′ is the product
of an affine map and an isometry. �

Given a structure c ∈ C, let G be the subgroup of Diff(Z) preserving c. That is,
an element φ ∈ G has a Δ-equivariant lift φ′ ∈ Diff(Z ′) that acts affinely on T a and
isometrically on

∏N
m=1 Fm. From Lemma 4, C = Diff(Z)/G. We give C the quotient

topology.

Lemma 5. The fiber bundle s : M̂ → B̂ can be reduced to a T k
� Γ -equivariant bundle

with structure group G.

Proof. Let g0 be a Riemannian metric on Z with nonnegative curvature operator. From
Section 2, a finite normal cover of Z can be written as an isometric product Z ′ =
T a ×

∏N
m=1 Fm. Each factor Fm is diffeomorphic to an irreducible symmetric space, but

if Fm is a sphere or a complex projective space case then the metric need not be the
symmetric space metric. We can run the Ricci flow on each Fm-factor, normalized so that
the volume approaches one. From [2,25,26], the metric on Fm converges to a symmetric
space metric with volume one. From the proofs in these references, the limiting metric
is a continuous function of the initial metric. Running this flow fiberwise on the bundle
s : M̂ → B̂, in the limit each fiber obtains a structure from C.

The bundle s : M̂ → B̂ is classified by a continuous map f : B̂ → B Diff(Z),
defined up to homotopy. With respect to the fibration E Diff(Z) → B Diff(Z), put
Ŵ = f∗(E Diff(Z)), so that there is a commutative diagram

Ŵ E Diff(Z)

B̂
f

B Diff(Z)

(5.7)

The fibration Ŵ → B̂ has fiber Diff(Z). From the Ricci flow, we obtained a continuous
T k

�Γ -invariant section of the fibration (Ŵ ×Diff(Z) C) → B̂. Such a section is equivalent
to a T k

� Γ -equivariant reduction of the structure group to G [21, Lemma 1.7]. �
Thus we can assume that each fiber Z of s : M̂ → B̂ has a finite normal cover of

the form Z ′ = T a ×
∏N

m=1 Fm, with Fm being a compact irreducible symmetric space
of volume one, and that the bundle s : M̂ → B̂ has a horizontal distribution whose
holonomy lies in G. We can find a vertical Riemannian metric gV that is compatible
with this structure. Using the same metric as before on B̂, along with gV , we get a
T k

� Γ -invariant metric ĝ on M̂ . It follows that T I
αK can only have nonzero entries

when I and K correspond to the T a-directions in the fiber. Using affine coordinates in
the affine directions, it follows that ωI

LJ vanishes in such directions and eJT
I
αK = 0.
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Thus S̃I
αJK = 0. Hence the curvature operator of gε remains bounded below as ε

goes to zero. The remaining claims of the theorem are straightforward to verify; cf. [8,
pp. 325–326].

Suppose now that the T k-action is not free. As the fF-structure is polarized, there is
an integrable distribution Î on M̂ so that if U ⊂ M is an open set then the lift of η(K(U))
consists of the Γ -invariant sections of Î|π−1(U). Decompose ĝ as in (5.1), replacing the
generators of the T k-action by Î. The curvature computations are essentially local on M̂ .
Lemma 5 is unchanged and the rest of the argument goes through.

Remark 2. Instead of considering the double Riemannian submersion (5.3), we could
consider the single Riemannian submersion s1 ◦ s : M̂ → B̂/T k with fiber T k × Z.
Computing the A and T tensors for the Riemannian submersion s1 ◦ s would lead to the
same conclusion.

6. Bounded volume collapse

In this section we prove Theorem 2, partly along the lines of [8, Section 3].
Let {Ui} be a regular atlas and let {Fi} be a collection of invariant functions, as in

Lemma 3. We can assume that the restriction of the infinitesimal fF-structure to each Ui

has a pure polarized subinfinitesimal fF-structure. Suppose first that we do not have to
pass to substructures.

Let gVinv be the invariant vertical metric with positive curvature operator. Let ginv be
the invariant metric on M that extends gVinv. Given ε > 0, put g0 = (log2 ε−1)ginv.

For i � 1, given gi−1, we define gi inductively. As in (5.1), on Ûi write ĝi−1 = π∗
i gi−1

as

ĝi−1 = ĝi−1,1 + ĝi−1,2 + ĝi−1,3. (6.1)

Put

ĝi = ε2π
∗
i Fi ĝi−1,1 + ε2π

∗
i Fi ĝi−1,2 + ĝi−1,3. (6.2)

Define gi on Ui to be such that ĝi = π∗
i gi. Define gi on the complement of Ui to be gi−1.

Let gε be the result of performing these operators on all of the Ui’s. To check that
the curvature operator of gε is uniformly bounded below as ε goes to zero, pick m ∈ M .
Let (Tm, F (m)) be a maximal element with respect to the partial ordering of (3.1). Let
πm : Ûm → Um, Tm, Γm and sm : Ûm → B̂m be as in Definition 3.

We only have to check how the curvature operator at m changes when going from gi−1
to gi, for each i such that m ∈ Ui. Because Fi is invariant for the entire fF-structure,
π∗
mFi pulls back from a function F ′

i on B̂m. Thus we can apply (4.6), taking f = F ′
i log(ε).

Because of the original multiplication of ginv by log2 ε−1, when passing from ginv to g0,
the terms in (4.6) that involve |∇f | and Hess(f) will be uniformly bounded in ε. We can
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follow the argument in Section 5, up to the paragraph containing (5.6). However, we can
no longer assume that S̃I

αJK vanishes.
Suppose that the vertical curvature operator of ĝi−1 is uniformly bounded below by

some constant c2i−1. Let D be a 2-form on M̂ . Then

〈D, S̃D〉 = DIJ S̃IJKLD
KL + 4DIαS̃IαJKDJK

� ε−2Fi(m)c2i−1DJKDJK + 4ε−Fi(m)DIα(∇JTIαK −∇KTIαJ)DJK

=
∥∥ε−Fi(m)ci−1DJK + 2c−1

i−1D
Iα(∇JTIαK −∇KTIαJ)

∥∥2

− 4c−2
i−1

∥∥DIα(∇JTIαK −∇KTIαJ)
∥∥2

� −4c−2
i−1

∥∥DIα(∇JTIαK −∇KTIαJ)
∥∥2

, (6.3)

independent of ε.
In the first step, going from ginv to g0, if ε < e−1 then the curvature operator cannot

become more negative. Thus it suffices to look at the change in the curvature operator
starting from g0. Because the atlas is regular, when going from g0 to gi−1, the metric on
a fiber s−1

m (pt) gets multiplied by ε2F1(m)+···+2Fi−1(m). Then c−2
i−1 will be multiplied by

the same factor.
It follows from (6.3) that the curvature operator of gε stays bounded below as ε goes

to zero. The remaining claim of the theorem is straightforward to verify.
If instead we just have a subinfinitesimal fF-structure (K′

i,D′
i) on each Ui, which is

pure polarized, then we again write ĝi−1 as in (6.1), where now

(1) ĝi−1,1 is the restriction of ĝi−1 to the (lifted) D′
Ui

directions,
(2) ĝi−1,2 is the restriction of ĝi−1 to the (lifted) η(K′

i)-directions, and
(3) ĝi−1,3 is the restriction of ĝi−1 to the remaining orthogonal complement.

We then define ĝi as in (6.2). Since we assume that the curvature operator is positive as
a symmetric form on Λ2((D′

Ui
)∗), the preceding argument goes through.

7. General collapse

In this section we prove Theorem 3, using results from [8, Section 4].
To establish notation, we first recall the construction of [8, Section 4], which applies

to an F-structure of positive rank.
Let ε > 0 be a parameter. Let {Vi} be a regular atlas for the F-structure. Let ginv

be an invariant Riemannian metric. Put g0 = (log2 ε−1)ginv. Let {Fi} be a collection of
invariant functions as in Lemma 3. Put F̂i = π∗

i Fi.
For i � 1, we define gi inductively from gi−1. Put ĝi−1,0 = π∗

i gi−1 on V̂i.
Let Σ̂i,j be the union of the dimension-j orbits of the Ti-action on V̂i. As in [8,

Section 4(c)], there is a Ti � Γi-invariant covering {V̂i,j} of V̂i, where V̂i,j is a normal
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neighborhood of a truncation Σ̂′
i,j of Σ̂i,j . Let si,j : V̂i,j → Σ̂′

i,j be the projection map.
A certain Riemannian metric on V̂i,j is constructed in [8, Section 4(c)], for which si,j is
a Ti � Γi-equivariant Riemannian submersion.

Given p̂ ∈ Σ̂′
i,j , let Ii,j(p̂ ) denote the isotropy group at p̂ for the Ti-action, with Lie

algebra ii,j(p̂ ). Let ki,j(p̂ ) be the orthogonal complement to ii,j(p̂ ), with respect to an
inner product on the Lie algebra of Ti defined in [8, Section 4(c)]. Let Ki,j(p̂ ) be the
connected (not necessarily closed) subgroup of Ti with Lie algebra ki,j(p̂ ). Note that
Ki,j(p̂ ) · p̂ = Ti · p̂. There is an isometric action of Ki,j(p̂ ) on s−1

i,j (Ti · p̂ ), that extends
the action of Ki,j(p̂ ) on Ti · p̂. As j varies the various structures are compatible, as
described in [8, Section 4(c)].

Define Vi,j ⊂ Vi by Vi,j = πi(V̂i.j). As in Lemma 3, we construct invariant functions
Fi,j : Vi → [0, 1] so that supp(Fi,j) ⊂ Vi,j and Vi =

⋃
j F

−1
i,j (1). Put F̂i,j = π∗

i Fi,j . We
will define ĝi−1,j inductively in j. Write

ĝi−1,j−1 = ĝ
(1)
i−1,j−1 + ĝ

(2)
i−1,j−1 + ĝ

(3)
i−1,j−1, (7.1)

where

(1) ĝ
(1)
i−1,j−1 is the restriction of ĝi−1,j−1 to the tangent space of each Ki,j(p̂ )-orbit in
s−1
i,j (Ti · p̂ ), as p̂ varies over Σ̂i,j ,

(2) ĝ
(2)
i−1,j−1 is the restriction of ĝi−1,j−1 to the orthogonal complement of the tangent

space of each Ki,j(p̂ )-orbit, in s−1
i,j (Ti · p̂ ), as p̂ varies over Σ̂i,j , and

(3) ĝ
(3)
i−1,j−1 is the restriction of ĝi−1,j−1 to the orthogonal complement of the tangent

bundle of s−1
i,j (Ti · p̂ ), as p̂ varies over Σ̂i,j .

On V̂i,j , put

ĝi−1,j = ε2F̂iF̂i,j−1 ĝ
(1)
i−1,j−1 + ĝ

(2)
i−1,j−1 + ε−4F̂iF̂i,j ĝ

(3)
i−1,j−1. (7.2)

On the complement of V̂i,j in V̂i, let ĝi−1,j be ĝi−1,j−1.
Let ĝi be the result of doing this for all j. On Vi, let gi be such that ĝi = π∗

i gi. On
the complement of Vi, let gi be gi−1. Let gε be the result of doing this for all i.

We claim that as ε goes to zero, the curvature operator of gε is uniformly bounded
below. To see this, we can compute the curvature tensor of ĝi−1,j in (7.2) using Eqs. (4.4)
for the locally-defined Riemannian submersion αi,j : V̂i,j → V̂i,j/Ki,j . The functions F̂i

and F̂i,j pull back from functions F̂ ′
i and F̂ ′

i,j on V̂i,j/Ki,j . In applying (4.4), we take
f = (log ε)F̂ ′

i F̂
′
i,j and h = 2(log ε)F̂ ′

i F̂
′
i,j . Because of the expansion of ĝ(3)

i−1,j−1, the terms
on the right-hand side of (4.4) with an index in such a direction will remain bounded
below. Thus, it is only relevant to check the curvature operator on the submanifolds
s−1
i,j (Ti · p̂ ). That the curvature operator stays bounded below on these submanifolds

follows from the proof in Section 6, in the special case when the fibering sm is the
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identity map. As in that section, we use the fact that the functions Fi and Fi,j are
invariant for the entire F-structure. Note that g0 had a factor of log2 ε−1.

It is straightforward to see that as ε goes to zero, (M, gε) is locally volume collapsing in
the sense of the theorem. Note that the Ti-orbits in V̂i,j are contained in the submanifolds
s−1
i,j (Ti · p̂ ). These submanifolds are not expanded in the construction of gε, while the
Ki,j-directions in them are contracted.

Now suppose that M has an fF-structure of positive rank. Let {Ui} be a regular
atlas. Let ginv be an invariant Riemannian metric. Put g0 = (log2 ε−1)ginv. Let {Fi} be
a collection of invariant functions as in Lemma 3. Put F̂i = π∗

i Fi.
Let si : Ûi → V̂i be the fibering. (We previously denoted the base by B̂i.) We construct

the covering {V̂i,j} of V̂i as before. There is a Ti � Γi-action on V̂i, where Ti can now
be the trivial group if si has fibers of positive dimension. Again, there is an integrable
distribution Ki,j on Ûi,j . Put Ûi,j = s−1

i (V̂i,j).
As in the preceding discussion, we define ĝi−1,j−1 inductively in j. Write

ĝi−1,j−1 = ĝ
(0)
i−1,j−1 + ĝ

(1)
i−1,j−1 + ĝ

(2)
i−1,j−1 + ĝ

(3)
i−1,j−1, (7.3)

where ĝ
(0)
i−1,j−1 is the restriction of ĝi−1,j−1 to Ker(dsi) and ĝ

(1)
i−1,j−1, ĝ

(2)
i−1,j−1, ĝ

(3)
i−1,j−1

are defined as before on Ker(dsi)⊥. Then on Ûi,j , we put

ĝi−1,j = ε2F̂iF̂i,j−1 ĝ
(0)
i−1,j−1 + ε2F̂iF̂i,j−1 ĝ

(1)
i−1,j−1 + ĝ

(2)
i−1,j−1 + ε−4F̂iF̂i,j ĝ

(3)
i−1,j−1. (7.4)

On the complement of Ûi,j in Ûi, let ĝi−1,j be ĝi−1,j−1. Let ĝi be the result of doing this
for all j. On Ui, let gi be such that ĝi = π∗

i gi. On the complement of Ui, let gi be gi−1.
Let gε be the result of doing this for all i.

We claim that as ε goes to zero, the curvature operator of gε is uniformly bounded
below. Because of the expansion in ĝ

(3)
i−1,j−1, it is only relevant to check the curvature

operator on the total spaces of the fibrations si over the submanifolds s−1
i,j (Ti · p̂ ). That

the curvature operator stays bounded below on these total spaces follows as in Sec-
tion 6.

It is straightforward to see that as ε goes to zero, (M, gε) is locally volume collapsing
in the sense of the theorem.

8. Local structure of collapsed manifolds with curvature operator bounded below

In this section we give a local model, at the volume scale, for the geometry of a
Riemannian manifold which is locally volume collapsed relative to a lower bound on the
curvature operator. We describe a canonical fF-structure on the local model.

As an immediate application, we show that in a certain type of collapse, the curvature
operator cannot stay bounded below.



312 J. Lott / Advances in Mathematics 256 (2014) 291–317
8.1. Local model

Let M be a complete Riemannian manifold. We first adapt some definitions
from [19,23].

Definition 7. Given p ∈ M , the curvature scale Rp at p is defined as follows. If the con-
nected component of M containing p has nonnegative curvature operator then Rp = ∞.
Otherwise, Rp is the (unique) number r > 0 such that the smallest eigenvalue of the
curvature operator on B(p, r) is − 1

r2 .

Definition 8. Let cn denote the volume of the Euclidean unit ball in R
n. Fix w ∈ (0, cn).

Given p ∈ M , the w-volume scale at p is

rp = rp(w) = inf
{
r > 0: vol

(
B(p, r)

)
= wrn

}
. (8.1)

If there is no such r then we say that the w-volume scale at p is infinite.

Lemma 6. Let (M,p) be a complete pointed Riemannian manifold of dimension n.

(1) Given δ, w > 0 there is some δ′ = δ′(n, δ, w) > 0 with the following property. Suppose
that vol(B(p,Rp)) � δ′Rn

p . Then rp � δRp.
(2) Given r, δ, w > 0 there is some δ′ = δ′(n, r, δ, w) > 0 with the following property.

Suppose that the curvature operator of M is bounded below by −Id. Suppose that
vol(B(p, r)) � δ′. Then rp � δRp.

Proof. (1) Without loss of generality, we can assume that δ < 1. Put δ′ = 1
2wδ

n. Since
vol(B(p,Rp)) � δ′Rn

p < 1
2wR

n
p , the definition of rp implies that rp < Rp. Then

wrnp = vol
(
B(p, rp)

)
� vol

(
B(p,Rp)

)
� δ′Rn

p = 1
2wδ

nRn
p , (8.2)

from which the claim follows.
(2) From the definition of Rp, we have Rp � 1. Put δ′ = 1

2wmin(rn, δn). Since,
vol(B(p, r)) � δ′ � 1

2wr
n, the definition of rp implies rp < r. Then

wrnp = vol
(
B(p, rp)

)
� vol

(
B(p, r)

)
� δ′ � 1

2wδ
n, (8.3)

from which the claim follows. �
We define pointed CK-nearness between two complete pointed Riemannian mani-

folds (M1, p1) and (M2, p2) as usual in terms of the existence of a basepoint-preserving
CK+1-smooth map F : M1 → M2 so that F ∗g2 is CK-close to g1 on large balls
around p1.
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The next proposition gives a local model for the geometry of a manifold which is
locally volume collapsed with respect to a lower bound on the curvature operator, under
an additional smoothing assumption at the volume scale.

Proposition 1. Given n ∈ Z
+, an integer K � 10, a function A : (0,∞)×(0,∞) → (0,∞)

and ε > 0, there are some w, δ > 0 with the following property. Let (M,p) be a pointed
complete Riemannian manifold of dimension n. Let rp denote the w-volume scale at p.
Suppose that

(1) rp � δRp, and
(2) for all k ∈ [0,K] and C < δ−1, we have |∇kRiem| � A(C,w)r−(k+2)

p on B(p, Crp).

Then ( 1
rp
M,p) is ε-close in the pointed CK-topology to a pointed complete Riemannian

manifold (M, p′) for which M is an isometric quotient (S̃ × Y )/Γ , where

(1) S is a compact Riemannian manifold having nonnegative curvature operator, with
fundamental group Γ and S̃ as its universal cover,

(2) (Y, y) is a pointed complete Riemannian manifold with nonnegative curvature oper-
ator that is diffeomorphic to R

k, with k ∈ [0, n],
(3) Γ acts by isometries on Y , fixing y, and
(4) the Tits cone of Y is ε-close in the pointed Gromov–Hausdorff topology to a complete

pointed Alexandrov space of dimension less than n.

Proof. Fix w > 0 for the moment. Leaving off conclusion (4) for the moment, suppose
that the proposition is not true. Then there is a positive sequence {δi}∞i=1 converging to
zero and a sequence of pointed Riemannian manifolds {(Mi, pi)}∞i=1 so that (Mi, pi) sat-
isfies the hypotheses of the proposition, with δ = δi, but does not satisfy the conclusion of
the proposition. Using assumption (2) of the proposition, after passing to a subsequence
we can assume that limi→∞( 1

rpi
Mi, pi) = (M, p′) exists in the pointed CK-topology.

From the definition of Rpi
, assumption (1) of the proposition implies that M has non-

negative curvature operator. Let S be the soul of M. Then conclusions (1)–(3) of the
proposition follow from the result of [22], as mentioned in Section 2.

Finally, if dim(Y ) < n then the Tits cone of Y is already of dimension less than n.
Suppose that dim(Y ) = n, so M = Y . Now vol(B(p′, 1)) = w. The Bishop–Gromov
inequality implies that for all R � 1, we have vol(B(p′, R)) � wRn. Taking w sufficiently
small, we can ensure that the Tits cone of M has pointed Gromov–Hausdorff distance
less than ε from some complete pointed Alexandrov space of dimension less than n. �
Corollary 2. Given n ∈ Z

+, an integer K � 10, a function A : (0,∞)× (0,∞) → (0,∞)
and r, ε > 0, there are some w, δ′ > 0 with the following property. Let M be a complete
Riemannian manifold of dimension n with curvature operator bounded below by −Id. Let
rp denote the w-volume scale at p. Suppose that for some p ∈ M ,
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(1) vol(B(p, r)) � δ′, and
(2) for all k ∈ [0,K] and C < δ−1, we have |∇kRiem| � A(C,w)r−(k+2)

p on B(p, Crp).

Then the conclusion of Proposition 1 holds at p.

Proof. This follows from Lemma 6(2) and Proposition 1. �
8.2. Canonical fF-structure

We describe a canonical fF-structure on M = (S̃ × Y )/Γ ; cf. [9, Section 2]. From
Section 2, there is a finite cover S′ of S which is isometric to the product of a torus T l

with a simply-connected compact manifold N ′, the latter of which being the isometric
product of irreducible factors each of which is

(1) a Riemannian manifold that is diffeomorphic to a sphere,
(2) a Kähler manifold that is biholomorphic to a complex projective space, or
(3) a symmetric space with nonnegative sectional curvature.

Let M′ be the pullback of M to S′, so that the diagram

M′ M

S′ S

(8.4)

commutes. The N ′ factor splits off isometrically from the bundle M′ → S′, so M′ is a
product M′ = N ′ × Z ′. The remaining bundle Z ′ → T l has a local isometric product
structure, with fiber Y . There is a corresponding holonomy representation ρ : Z

l →
Isom(Y, y).

As the differential Dy : Isom(Y, y) → O(TyY ) is injective, we can equally well consider
the homomorphism Dy ◦ ρ : Zl → O(TyY ). Put C = Im(Dy ◦ ρ). Then C is a compact
abelian Lie group, and so fits into a split exact sequence 1 → T i → C → F → 1 for some
finite abelian group F . In particular, there is a surjective homomorphism

η : Zl Dy◦ρ−−−−→ C → F. (8.5)

Put T̂ l = R
l/Ker(η). Let Z ′′ be the pullback of Z ′ to T̂ l, so that the diagram

Z ′′ Z ′

T̂ l T l

(8.6)

commutes. Put M′′ = N ′ × Z ′′. It is a finite cover of M.
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We claim that there is an effective isometric action on Z ′′ by a torus whose dimension
is at least l. Since the universal cover Z̃ ′′ splits isometrically as Rl×Y , there is an evident
R

l × T i-action on Z̃ ′′. There is an inclusion Ker(η) → R
l × T i, which is the product of

the inclusion Ker(η) → R
l and the restriction of Dy ◦ ρ to Ker(η). The action of Rl × T i

on Z ′′ = (Rl × Y )/Ker(η) factors through an effective action of the compact connected
abelian Lie group (Rl × T i)/Ker(η).

This gives a pure fF-structure on M, since the product bundle M′′ → Z ′′ is (Rl ×
T i)/Ker(η)-equivariant. The fF-structure has positive rank unless S is a point, in which
case M is diffeomorphic to R

n.

Remark 3. Regarding a possible converse to Theorem 3, Corollary 2 gives a model for
the local geometry of M , under a smoothing assumption, and this subsection gives an
fF-structure on the local model. This fF-structure has positive rank unless the local
model is diffeomorphic to R

n. We note that the latter possibility does not occur in the
analogous discussion for double sided curvature bounds [9, Section 2]. In that case, the
local model is flat; if it were diffeomorphic to Rn then conclusion (4) of Proposition 1
would be violated. In contrast, in our case a model space diffeomorphic to R

n, which is
collapsed at infinity, could well occur.

After possibly removing some disjoint topological balls, centered around points whose
local models are diffeomorphic to R

n, it is plausible that the local fF-structures on the
complement can be glued together to form a global fF-structure of positive rank, for
which the fibers of the submersions are manifolds that admit Riemannian metrics of
nonnegative curvature operator.

One approach to proving this involves showing that if (M, g) is locally collapsed, with
respect to a lower bound on the curvature operator, then the local geometry around a
point p ∈ M is appropriately close, at the volume scale, to one in which the smoothing
assumption (2) of Corollary 2 is satisfied. This is true in the bounded curvature case [12,
Proof of Theorem 2.3]. Related smoothing results appear in [3, Section 4] and [24, The-
orem 2.2].

If the conclusion of Proposition 1 is satisfied at each point of M then a second issue
is to glue together the local fF-structures to a global fF-structure. Related gluing results
are in [9, Section 5] (for the group actions) and [19] (for the fiberings).

Remark 4. In the bounded curvature case, there are analogs of the F-structure versions
of Theorems 1–3 when the F-structure is replaced by a Nil-structure. This was stated
in [8, Remark 2.1] and proved in [4]. We expect that Theorems 1–3 can be extended to
the setting of fNil-structures. In the other direction, the main theorem of [6] describes the
local geometry of a locally collapsed manifold with a prescribed double-sided curvature
bound, in all of the collapsed directions, in terms of a Nil-structure. To have a similar
result with curvature operator bounded below, the first step would be to characterize the
manifolds with almost nonnegative curvature operator (ANCO), which is an interesting
question in its own right.
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It is clear that almost flat manifolds are ANCO, compact manifolds with nonnegative
curvature operator are ANCO, and products of ANCO manifolds are ANCO. Using (4.7),
one sees that if M is ANCO then a principal T k-bundle over M is ANCO. As noted in [16],
this already shows that there are simply-connected ANCO manifolds that do not admit
a Riemannian metric of nonnegative curvature operator, coming from circle bundles over
products of complex projective spaces. See [16] for further discussion.

8.3. A special type of collapse

Let M be a compact Riemannian manifold. Let G be a compact connected Lie group
of positive dimension that acts effectively and isometrically on M . Given m ∈ M , let Gm

denote the isotropy subgroup at m. By the slice theorem, there are a finite-dimensional
vector space Vm and a homomorphism ρm : Gm → GL(Vm) so that there is a G-invariant
neighborhood of the orbit G ·m which is G-diffeomorphic to G×Gm

Vm.

Proposition 2. Give G a bi-invariant Riemannian metric. Suppose that as ε → 0, the
curvature operator of Mε = M ×G εG stays uniformly bounded below. Then for each
m ∈ M , the orbit G/Gm is a locally symmetric space. Let g = gm+mm be the orthogonal
decomposition, with [gm,mm] ⊂ mm. Then in addition, for all X,Y ∈ mm, we have
ρm([X,Y ]gm

) = 0.

Proof. As ε goes to zero, the spaces Mε converge in the Gromov–Hausdorff topology to
the lower-dimensional space M/G. The rescaled pointed spaces ( 1

εMε,m) converge in the
pointed Gromov–Hausdorff topology to G ×Gm

Vm. Hence the w-volume scale at m is
proportionate to ε. It follows from Proposition 1 that G/Gm is a locally symmetric space
and G×Gm

Vm is a vector bundle over G/Gm with a local isometric product structure.
From [20, Theorem 11.1], the curvature of the principal bundle G → G/Gm is given by
Ω(X,Y ) = −1

2 [X,Y ]gm
for X,Y ∈ mm. As G ×Gm

Vm is the associated vector bundle,
if its connection is flat then ρm([X,Y ]gm

) = 0. �
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