

Homework 2, Math 277, due Monday, March 2.

The *strong minimum principle* is an addendum to the weak minimum principle. The setup is that a smooth function $u(x, t)$ satisfies

$$(0.1) \quad \frac{\partial u}{\partial t} \geq \Delta_{g(t)} u,$$

for x in a connected manifold M and $t \in (0, T)$. (Here $(M, g(t))$ need not be complete.) The strong minimum principle says that if there is some point (x_0, t_0) where u attains its minimum in $M \times (0, T)$, i.e. $u(x_0, t_0) = \inf_{(x,t) \in M \times (0,T)} u(x, t)$, then $u(x, t)$ is constant in x and t .

Recall that the weak minimum principle said that if M is compact then $\min_{x \in M} u(x, t)$ is nondecreasing in t . The strong minimum principle says what happens if $\min_{x \in M} u(x, t)$ is not increasing.

- 1.a. Using an evolution equation that we've already seen, apply the strong minimum principle to show that a steady Ricci soliton on a compact manifold is Ricci-flat.
- b. Where your argument does your argument fail for the cigar soliton?
- 2.a. Show that in three dimensions, the Ricci tensor at p along with the metric at p determines the entire curvature tensor at p . (Hint : choose an appropriate orthonormal basis at a point p .)
- b. Conclude that in three dimensions, an Einstein metric has constant sectional curvature.
- c. Show that this conclusion fails in four dimensions.
- 3. Given a Riemannian manifold with a smooth positive measure $dm = e^{-f} d\text{vol}$, Perelman defines the modified scalar curvature by

$$R^m = R + 2\Delta f - |\nabla f|^2.$$

Show that if M is compact then the \mathcal{F} -function is the total scalar curvature associated to R^m , i.e. $\mathcal{F} = \int_M R^m dm$.