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Abstract. We define and study the signatufegenus and higher signatures of the quotient space

of ans1-action on a closed oriented manifold. We give applications to questions of positive scalar
curvature and to an Equivariant Novikov Conjecture.

1. Introduction

The signaturer (M) is a classical invariant of a closed oriented maniftddIf

M is smooth, the Hirzebruch signature theorem express®f in terms of the
L-class ofM [20]. Itis of interest to extend Hirzebruch’s formula to various types
of singular spaces. For example, Thom definedihgass of aP L-manifold

in a way so that the Hirzebruch formula still holds [42]. A large generalization
of Thom's result was given by Cheeger and Goresky-MacPherson [14,18], who
defined the signatures and homolatpclasses of so-called Witt spaces.

In this paper we define and study the signatures of certain singular spaces
which arise in transformation group theory, namely quotients of closed ori-
ented smooth manifold® by S*-actions. This class of spaces includes oriented
manifolds-with-boundary, but also contains spaces with much more drastic sin-
gularities. If the group action is semifree, meaning that each isotropy subgroup
is {e} or S, then any point in the quotient spa§& M which is in the singular
stratum has a neighborhood which is homeomorphiDtox congCP"), for
somek andN. If N is even then the quotient space is not a Witt space.

Our motivation to study such spaces comes from the Equivariant Novikov
Conjecture. The usual Novikov Conjecture hypothesizes that the higher signa-
tures of a closed oriented manifold are oriented-homotopy invariants. When one
studies compact group actions, one wants to know what the possible equivariant
homotopy invariants are. In particular, in view of the importance of the Novikov
conjecture in surgery theory, one wants to know if there are equivariant higher
signatures and an Equivariant Novikov Conjecture. There are two candidate
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Equivariant Novikov Conjectures, one based on classifying spaces for compact
group actions [38] and one based on classifying spaces for proper group ac-
tions [5, Section 8]. We describe these in detail in Subsection 3.1. In the special
case of freeSt-actions on simply-connected manifolds, the first conjecture is
false (as was pointed out in [38]) and the second conjecture is true but vacuous.
Since the usual signature of the quotient space of aStesction is an oriented
S1-homotopy invariant, there is clearly something missing in these conjectures.
Hence itis a serious conceptual problem to even give a good notion of equivariant
higher signatures.

We start out by considering the case when there are no fundamental group
complications. In Section 2 we define the equivariant signadytreVl) € 7Z
of an S*-action. In the special case wheh\ M is a manifold (possibly with
boundary) g (M) equals the usual signature H\ M.

Note that the fixed-point-seizS" embeds inS™\ M. Let fsl\M denote inte-

gration over(S1\M) — M.

Theorem 1. o1 (M) is an orientedS*-homotopy invariant. Suppose that the
Sl-action is semifree. I# is equipped with as*-invariant Riemannian metric,
give (S1\M) — M5" the quotient metric. Then

oo (M) = / L (T(S\M)) + 7 (Msl), (1.2)
SW\M

wheren (M51> is the Atiyah-Patodi-Singer eta-invariant of the tangential sig-
nature operator on5" [3].

We also give the extension of (1.1) to genefalactions. IfS1\ M is a Witt space,
we show thats: (M) equals the intersection-homology signatureSb{M.

In Subsection 2.4 we define tmegenusASl(M) € Z of the quotient space
of an even semifred-action on a spin manifold/. This has applications to
guestions of positive scalar curvature. Let us recall the resulecdid-Bergery
that if S* acts freely on a compact manifald thenM has anS*-invariant metric
of positive scalar curvature if and only $&\ M has a metric of positive scalar
curvature [6, Theorem C]. As q\consequencé}ihcts freely and evenly on a
spin manifoldM then the usuali-genus ofS*\ M is an obstruction to having
an S'-invariant metric onM of positive scalar curvature. We extend this to a
statement about semifre®-actions.

Theorem 2. Suppose thas* acts semifreely and evenly on a spin manlfMd
If M admits anS*-invariant metric of positive scalar curvature ands" has no
connected components of codimenston M thenAsl(M) =0.

The codimension assumption in Theorem 2 is probably not necessary; see
the remark after the proof of Theorem 2.
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In thegase of an odd semifréé-action on a spin manifold, we define the
Zf—genusASl(M) € Z corresponding to a spirstructure on the quotient space.
We show thathl(M) and A (M) are metric-independent provided that there
is no spectral flow for the Dirac operator on°".

In Section 3 we construct equivariant higher signaturesfeactions, using
[29-31]. LetI™’ be a finitely-generated discrete group andletry (M, mg) —

I'" be a surjective homomorphism.ALzE'E m1(M, mo) be the homotopy class of
the S*-orbit of a basepointzg and letl” be the quotient of ’ by the central cyclic
subgroup generated (o). The equivariant higher signatures will involve the
group cohomology of .

In order to construct the equivariant higher signatures we make a certain
(S*-homotopy invariant) assumption abauts”. Namely, if F is a connected
component ofS", let I'y be the image ofry(F) in I'. Let D be the canonical
flat C’ I'r-bundle onF. We assume thatHF; D) vanishes in the middle degree
if F is even-dimensional, or in the middle two degreek it odd-dimensional.
We also assume thdt is virtually nilpotent or Gromov-hyperbolic.

There is a spac&® on whichI” acts properly and cocompactly, witf\ M =
ST\M. We needd two pieces of additional data : $lrinvariant Riemannian
metricg on M and a compactly-supported functiahon M satisfyingzy€ FY-

H = 1. Given[z] € H* (I'; R), represent it by a cocycte e Z* (T'; R). There
is a corresponding cyclic cocyclg, € ZC*(@RT). Usingg, H and Z,, we
define a closed orbifold form, € 2% ((S"\M) — M*"). In Subsection 3.3,

we usew, to give a differential form proof of a result of Browder and Hsiang
[12, Theorem 1.1], in the case §t-actions. Now suppose that ti§é-action is
semifree. Then using the higher eta-invarigrdf [30], the equivariant higher
signature is defined to be

(o1(M), [t]) = / LT (S'\M)) A o, + c(k)(HMS), Z;) e R, (1.2)
SW\m

Herec(k) is a certain nonzero constant.
Theorem 3. (o5 (M), [t]) is independent of and H.

Thus(os1 (M), [t]) is a (smooth) topological invariant of tisé-action. IfS* acts
freely onM then we recover the Novikov higher signaturesb{M in full gen-
erality. (Note that the assumptions just invoMél). We also give the extensions
of (1.2) and Theorem 3 to geneisii-actions. We conjecture thédg (M), [t])
is an orientedS*-homotopy invariant ofZ. In Appendix A we outline a proof
of this whenS™\ M is a manifold-with-boundary whose fundamental group is
virtually nilpotent or Gromov-hyperbolic.

| thank Mark Goresky, Matthias Kreck, Eric Leichtham, Paolo Piazza,
Stephan Stolz and Shmuel Weinberger for helpful discussions.
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2. Signatures ofS*-quotients
2.1. S'-homotopy invariance

Let G be a compact Lie group and Iét— Man be the category whose objects
are closed oriented smooth manifolds on whighcts on the left by orientation-
preserving diffeomorphisms, and whose morphisms are sm@atiaps. If H

is a closed subgroup @f, let M denote the points a¥/ which are fixed byH .

The most basi6-homotopy invariant information of @-manifold M is the
collection of finite setgmo(M*)}. To organize this information coherently, let
Org be the orbit category aoff, with objects given byG-homogeneous spaces
G/H, H closed, and morphisms given liy-maps. Let Fin be the category
whose objects are isomorphism classes of finite sets and whose morphisms are set
maps. Then there is a functér: G — Man — FunqOr’, Fin) whereF (M) ¢
FunqOrY, Fin) sendsG/H € Ory to {mo(M*)}. Givenu € FunqOry, Fin),
the set ofG-manifolds M such thatF'(M) = u is closed undeG-homotopy
equivalence. For example, the notion of an action being free or semifi@e is
homotopy invariant.

We now restrict to the casé = S*. Suppose that/ has dimension/4+ 1.
Let X be the vector field o which generates thg!-action. Letiy : 2*(M) —
Q*~1(M) be interior multiplication byX and letCy : 2*(M) — 2*(M) be Lie
differentiation byX. Lete : MS" — M be the inclusion of the fixed-point-set.

Definition 1. Define the basic forms oi and (M, MSl) by

Q*’ha‘viC(M) — {w c Q*(M) : iXQ) = ,Cx(,() = O}» (21)
Q2+ basic <M, MSl) = {w € R*"(M) : e*w = O},

Let§2-basic (M — Msl) be the complex of compactly-supported basic forms on

M — MS". LetH*basic(pf), Hrbasic (M, MSl) and H-basic (M - MSl) be the
corresponding cohomology groups.

Proposition 1. H*P#ic(p) = H*(SY\M; R) and
Hebeste (M, M3 = HEPeie (v — i3 = H (S, MY R) . (22)

Proof. The fact that F**i(pM) = H*(S™\M; R) was proven in [25]. Let us
briefly recall the proof. By a Mayer-Vietoris argument, we can reduce to the case
when H is a subgroup of?, V is a representation space Hf, DV is the unit
ballin V andM = S* xy DV. By a product formula, we can also reduce to
the case whelr has no trivial subrepresentations. LS8t be the unit sphere in



Signatures and higher signaturesséfquotients 621

V.ThenS'\M = H\DV is a cone over the orbifol#\ SV . A Poincag lemma
gives
H**4¢ (M) = H*(pt; R) = H*(S"\M; R), (2.3)

which proves the claim.
We now do a similar argument fort4*sic <M, Msl). We can reduce to the
caseM = S xy DV as above. The Poinaatémma gives

basic (M, MSl) = H*bsie (SY %, DV, pt) =0 (2.4)

— H*(H\DV, pt. R) = H* (Sl\M, M5 ]R) .

Finally, there is an obvious cochain inclusian®->si (M—M51> —
Qwbasic <M, MSI). Using the Poincarlemma, one can construct a homotopy

inverse2*-basic (M, MSl) — Qxbasic (M - MSl). The proposition follows.
O

Example: Let X* be a compact manifold-with-boundary. Lét be the man-
ifold obtained by spinning. That is,M = 9(D? x X) = (D? x 3X) Ugi,sx
(8* x X),withthe induced*-action. Then k> (M, M51> =~ H*(X,dX;R)
= H (int(X): R).

Proposition 2. H*basic (M, Msl) is an S*-homotopy invariant.

Proof. Let f : M — N be anS'-homotopy equivalence, wit§-homotopy
inverseg : N — M. Thenf (Msl) c N5'. Hence the pullbacl* : @*basic

(N, N51> —  *basic (M, Msl) is well-defined. LetF : [0,1] x M —
M be anS-homotopy from the identity t@ o f. Then there is a pullback
F* . Qbasic (M, M51> — £2*([0, 1))@ 82 *basic (M, M51>. One can construct
the cochain-homotopy equivalence betwe@i?esi (M, M51> and §2*basic
(N, Nsl) by the standard argument. 0

Remark:It is not surprising that H? (M, M5") is unchanged by as’-

isovariant homotopy equivalence, as this would correspond to a stratum-
preserving homotopy equivalence betwaéns' and N /S*. However, it is per-
haps less obvious that it is unchanged bySarequivariant homotopy equiva-
lence.
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In the rest of the paper, we will deal with' & (M — Msl) instead of the
equivalent H.basic (M, Msl). Give M an Sl-invariant Riemannian metric. Let
X* e 2YM) be the dual 1-form toX, using the Riemannian metric. Define
e ot (M - MSl) by n = X*/|X|2.

Proposition 3. dn is a basic2-form onM — MS*

Proof. By constructionLxn = 0 and hence&xdn = 0. Also by construction,
ixn =1.Hence.dn = Lxn—dixn =0. O

Proposition 4. If o € Q%-1basic <M — Msl) thenf,, n Ado = 0.

Proof. We have

/nAda:/dn/\o. (2.5)

M M

As dn ando are basicdn A o is basic and so th@lk 4+ 1)-form dn A o vanishes
in 81 (M — M), D

Definition 2. TheS*-fundamental class o¥f is the map
T : Hkbasic (M - M51> — R given byr(w) = [, n A .

By Proposition 4, thes*-fundamental class is well-defined.

Proposition 5. The S*-fundamental class a¥ is independent of the choice of
Riemannian metric.

Proof. Letn; andn; be the 1-forms coming from two Riemannian metrics. Then

11— n2 is basic. Hencd, (11 — n2) A w = 0 for anyw € £2%basic (M — MSl).
O

Definition 3. The intersection form ogp-basic (M — MSl) is

(w1, w2) = f nAwLA . (2.6)
M

Clearly (., -) is symmetric. By Proposition 4, it extends to a bilinear form on
H?k,basic <M _ MS1>_

Definition 4. o1 (M) is the signature of, -). Thatis, if the symmetric fori@, -)
is diagonalized then 1 (M) is (the number of positive eigenvalues) minus (the
number of negative eigenvalues).
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RemarkThe symmetric forng., -) on Hz-basic (M — Msl) may be degenerate.
For example, ifM comes from spinning an oriented compact manifold-with-
boundaryX then the intersection fori, -) on H*-basic (M - Msl) is the same

as that on B (X, 9X), which may be degenerate. In this casg(M) = o (X).

Proposition 6. If f : M — N is an orientation-preservin§'-homotopy equiv-
alence therw g (M) = og(N).

Proof. It suffices to show that th&'-fundamental class o pushes forward
to the S'-fundamental class oW. Let ny be the 1-form constructed from a

. . . : 1
Riemannian metric oW. Forw e 2% basic (N — N*$ ) we have

anAw:/ 'y A ffo. (2.7)
N M
However, f*ny — nu is a basic 1-form o/ and so
/ (f*nv —nm) A ffo =0. (2.8)
M
The proposition follows. O

2.2. Fixed-point-free actions

Let S? act effectively onM without fixed points. Thers'\ M is an oriented
orbifold. If M has ars*-invariant Riemannian metric the§t\ M is a Riemannian
orbifold. To write the formula forog1 (M), we first describe a certain set of
suborbifolds© of S\ M. We construct these suborbifolds by describing their
intersections with orbifold coordinate chartsd\ M; the suborbifolds can then
be defined by patching together these intersections. Givers*\ M, let I" be

a finite group and ley ¢ R”" be a domain with & -action such thatl", U)

is an orbifold coordinate chart f&§*\ M aroundx. In particular,I"\U can be
identified with a neighborhood of. Put

ﬁ:{(g,u)e]“xU:gu:g}. (2.9)

Define ar-action onU by y - (g, u) = (ygy L gu). Letx : U — I'\U
be the quotient map. L&t") denote the set of conjugacy classesofThere
are projection mapg, : I'\U — (I') and p, : F\U — I'\U. Then the
intersections of th@'s with I'\U are{pzpl‘l (&gN}ie)

Define the multiplicitym, € Z*+ of x by -1 M This is indepen-
dent of the choice of orbifold coordinate chart
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The Atiyah-Singer equivariart-classL(g) € £2¢'"(U$, o(TU$)) [4] is the
pullback of a differential formZ({g)) on the image otU¢ in I'\U. Given a
suborbifold®, defineL(0) € 2" (O, o(T O)) by

LO) ooy = >, L({g)). (2.10)

(8):p2p1 -(gH=0ONT\U)

If O is one of the suborbifolds then, is constant on the regular part ©f
and so we can define the multiplicityn € Z* of O. From [24], it follows that

1
1(M) = —_ L(O). 2.11
os1(M) ;maé<) (2.11)

By definition,o5: (M) e Z. Infact, it equals the signature §t\ M as a ratio-
nal homology manifold. In the orbifold world it may be more natural to consider
the Q-valued orbifold signaturgfsl\M L(T (SY\M)). However, this is definitely
a different object and is a single termin (2.11).

Remark:In the case of fixed-point-free actionsg: (M) comes from the index
of a signature operator which is transversally elliptic in the sense of [2]. This
transversally elliptic signature operator only exists in the fixed-point-free case.

2.3. Semifree actions

Suppose thas? acts effectively and semifreely avi. Let (S1\M) — MS" have
the quotient Riemannian metric. We write(7T (S*\M)) for the L-form and

Jsur L (T(SY\M)) for its integral over(s"\M) — MS",

Theorem 4.
og1(M) = / L (T(Sl\M)) +7n (Msl) . (2.12)
Sh\m

Proof. Let F be a connected component of the fixed-point#&&t. It is an
oriented odd-dimensional manifold, say of dimensién42N — 1. Let N F be
the normal bundle of in M. It has anS*-action by orthogonal automorphisms,
whichis free onV F — F. Furthermore, the disk bund2N F is S*-diffeomorphic
to a neighborhood of in M. Let SN F be the sphere bundle & F. Then
ST\ SNF is the total space of a Riemannian fiber bunflever F whose fibers
Z are copies ofCPY. The quotient spac§'\ DN F is homeomorphic to the
mapping cylinder of the projectiom : 7 — F.

Let us first pretend that for eadh a neighborhood of in M is St-isometric
to DN F. For simplicity, we suppose that there is only one connected component
Fof MS*: the general caseis similar. For 0, letN, (F) be ther-neighborhood
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of Fin S"\ M. Thenforsmalk,o5:(M) = o ((S'\M) — N,(F)). By the Atiyah-
Patodi-Singer theorem,

o ((S"\M) — N.(F)) = / L(T(S"\M)) (2.13)
(S81\M)—N,(F)

+/ LN, (F)) + 1 (dN,(F)),
IN,(F)

Wheref(aNr(F)) is a local expression o8N, (F) which involves the second
fundamental form and the curvature tensor [17, Section 3.10] and wajjivé")
the orientation induced from that of,.(F). We will compute the limit of the
right-hand-side of (2.13) as— 0.

We use the notation of [10, Section lli(c)] to describe the geometry of the
fiber bundleF. In particular, the second fundamental form of the fibers and
the curvature of the fiber bundle are parts of the connection 1-form component
o, = o, r/ + o ﬁrﬂ Let R7# be the curvature of the Bismut connection on

o

TZ. DeflneQ € 2%([0, 1] x F) @ EnA(T Z & R), a skew-symmetric matrix of
2-forms, by

§; = (RTZ) — 2t AT, (2.14)
Q =dit AT —ta), AT

Definition 5. The transgressefi-class,L(F) € £2°/4(F), is given by

L(F) = /zfolL (2). (2.15)

We first compute the curvature 6f\DN F in terms of the geometric in-
variants of the fiber bundl&. Let {z/}/"4*, (z*}%"") be a local orthonormal
basis of 1-forms o as in [10, Section IlI(c)]. Then a local orthonormal basis
of 1-forms onS*\ DN F is given by

T =dr, (2.16)
T =rt,
™ = t%.

Letw!, be the connection matrix of. The structure equations® d7’ + @ AT/
give the connection matri@ of SY\DN F to be

o = o', (2.17)
J J

~i i

w, =T,

~ _ i

w, =rw,,

~a 2 o _i o

wg I wg T +a)ﬂyr s

> =0.
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In the limit whenr — 0, the curvature matrix o$*\ DN F becomes

O — (RTZyi _ i j

;=R "), -t AT/, (2.18)
Q=—w, AT,

Q\(’x =dr Ao,

Q5 =Ry,

£ =0.

(By way of illustration, let us check th/@\;’—term explicitly. We have
Q2! =dd. + o) A D] (2.19)
=dt' + a)} AT
= -0l AT~ AT+ 0l AT
= —w, ATY)

It is now clear that

/ L(T (S"\M)) = lim / L (T(S"\M)) (2.20)
Sh\M r=0J(s1\M)-N, (F)
exists.
Restricted td N, (F), asr — 0 the curvature matrix has nonzero entries
S TZ~i i i
2, =R, -t AT/, (2.21)
Q= AT,
2f = (R™h)5.
The second fundamental forma&¥, (F) enters in the connection matrix element
. 1
o =1 =-7". (2.22)

r

That is, with respect to the orthogonal decompositio@d N, (F)) = TZ &
7*T F, the shape operator 6V, (F) is %IdTZ @ 0.

To computeZ(aN,(F)) for smallr, we construct a 1-parameter family of
connections which interpolate between the Riemannian connectn BN F
(pulled back ta N, (F)) and the Riemannian connection of a product metric, at

least as — 0. Fort € [0, 1], put
@(1) = o}, (2.23)
w.(t) = tt',

ﬁg(t) = wp,t7.
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Thenw(0) is the product connection 1-form and by (2.1)1) is the limit of
the pullback connection 1-form adw, (F) asr — 0. The curvature of (2.23)
on[0, 1] x F has nonzero components

Qi) = R™) — >t A, (2.24)
Qi) =dt AT —tw], AT,
25(1) = (R™M4.

Then

Iim/ L(3N,(F)) =f L(2(1)) =/Z(F)AL(TF). (2.25)
IN,(F) [0,1]xF

r—0 F

Now the fiber bundleS"\SN F is associated to a principal bundke over
F with compact structure group. Henég€ F) can be computed by equivariant
methods [7, Section 7.6]. Such a calculation will necessarily give it as a polyno-
mial in the curvature form of, and in particular as an even form énHowever,
by parity reasond, (F) is an odd form onf'. Thus

Iim/ L(ON,(F)) = 0. (2.26)
r—0 AN, (F)
From [16],
lim 53N, (F)) = / i A L(TF) + n(F; Ind(D2)) + r, (2.27)
r— F

wherezy is a signature correction term [16, p. 268]. Again, we can compute
by equivariant methods to obtain an even formmnwhile by parity reasong
is an odd form. Thus

/ 7AL(TF) = 0. (2.28)
F

Next, the index bundle Ind;) on F is the difference of the vector bundles
Hﬁ(Z) and H" (Z) of self-dual and anti-self-dual cohomology groups.As=
CPV, HY(z; R) vanishes unlesy is even, in which case HZ; R) = R and
HY(Z; R) = 0. ThenH' (2) is atrivial real line bundle o with a flat Euclidean
metric. Thusy(F; Ind(Dz)) = n(F).

Finally, the Leray-Hirsch theorem implies that the Leray-Serre spectral se-
guence for Fi(F; R) degenerates at thi&-term [11, p. 170, 270]. Henag = 0.

This proves the proposition if a neighborhoodmin M is St-isometric to
DNF.If aneighborhood of in M is notS-isometric toDN F, nevertheless as
one approachek the Riemannian metric oM is better and better approximated
by that of DN F. The above calculations will still be valid in this limit. O
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Example: If M is obtained by spinning a compact oriented manifold-with-
boundaryXx thenMS" = —3X, when one takes orientations into account. The
boundaryd X in X = S\ M is totally geodesic. In this case, Theorem 4 reduces
to the Atiyah-Patodi-Singer formula fer(X).

Proposition 7. Let W be a semifreest-cobordism betweeM, and M,. Then
o5 (MY) — 01 (M%) = & (Wsl) . (2.29)

Proof. We takedW = M; U (—M>). Let N, <W51) be ther-neighborhood
of WS* in S1\W. Then forr small, ((Sl\W) — N, (Wsl) ,ON, (Wsl)) is
a cobordism of manifold pairs froré(Sl\Ml) - N, (Mfl) ,ON, (Mfl» to
((s8\Mz) = N, (M5"), aN, (M5) ). Hencean, (WS') U ((s'\M1) = N,
(Mfl))u— ((Sl\Mz) — N, <M§1>> is an oriented boundary, wherey, (Wsl)

has the boundary orientation coming frav (ng)_ Giving it the other orien-
tation, we obtain

o5 (MY) — o (M%) = o (aN, (Wsl)) : (2.30)

Now 9N, (Wsl) is the total space of a fiber bundle with fibZr a complex

projective space, and bages”. By the same calculation as at the end of the
proof of Theorem 4, the boundary fibration ova¥s" = M5" U (—M3') has
vanishing signature correctian Then by [16, Theorem 0.4b, p. 315],

o (aN, (wSl)) —0(Z) -0 (wsl) =0 <W51> . (2.31)
The proposition follows. O

By way of comparison, th6*-semifree cobordism-invariant information of
M essentially consists of the cobordism classes of the componamélolisted
by dimension, along with their normal data [43].

If the codimension ofS" in M is divisible by four thenS*\ M is a Witt
space in the sense of [40]. Hence it haslanlass in H(S*\M; Q). Also, as

dim (M5") = 1 mod4, the eta-invariant 35" vanishes. We use the differential-
form description of the homology of Witt spaces given in [9, Section 4].

Proposition 8. In this case, the homolog-class ofS'\ M is represented by
L(T (SY\M)).
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Proof. We can deform the metric ¢f'\ M to make it strictly conical in a neigh-
borhood ofd5". By [9, Theorem 5.7], the homologl-class is represented by

the pair of forms(L(T(Sl\M)), L(TMSl) A ﬁ), where? is the eta-form of the
CPV-bundle overss". By the method of proof of Theorem #,= 0. O

Corollary 1. Inthis casegg(M) = | L(T (S*\M)) equals the intersection

sW\m
homology signature of*\ M.

One can give a more direct proof of the corollary. For smat- 0, let
N, (MSI) be ther-tubular neighborhood d#5" in S1\ M. As in [40, Proposition

3.1], there is a Witt cobordism which pinches, (M51> to a point. LettingX

be the coning ofS™\M) — N, (Msl) and X, be the coning ofv, (M5), it
follows that
o (S'\M) = o (X1) + 0(X2), (2.32)

whereo denote the intersection homology signature. NG ;) = o1 (M). Let
X3 be the mapping cylinder of the projection (M5) — M5, A further Witt
cobordism shows that(X,) = o (X3). Itis well-known that the signature of the
total space of an oriented fiber bundle vanishes if the fiber and base have odd
dimension. One can extend this fact to the fibratifon— MSl, whose fiber is
a Witt space, as in [13, p. 545-546]. (Strictly speaking, [13] deals with the more
interesting case of even-dimensional fiber and base.) The corollary follows.
We expect that for a general semifree effectieaction,os1 (M) will be the
signature of the intersection pairing on the image of the (lower middle perver-
sity) middle-dimensional intersection homology in the (upper middle perversity)
middle-dimensional intersection homology.

2.4. A-genus

We wish to construct an analog of tﬁegenus forS™\ M. If there were a Dirac
operator onS*\ M then thisZ—genus should be its index. Although we will not
actually construct a Dirac operator SR\ M, itis nevertheless worth considering
the topological conditions to have such an operator. Suppos&ftisspin, with
afreeSt-action. It does not follow tha§'\ M is spin. For example, i#f = §%+1

has the Hopf action thest'\ M = CP?, which is not spin. The problem in this
case is that th&-action on the oriented orthonormal frame bundle of M does
not lift to an S*-action on the principal spin bundle. Recall that$traction is
said to be even if it lifts to the principal spin bundle and odd if it does not [26, p.
295]. We will consider the two cases separately.
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Lemma 1. Let M be a spin manifold with a fixed spin structure and a semifree
St-action. IfF is aconnected componentltdfgl, letcodim(F) beits codimension

in M.

1. If the S1-action is even thenodim(F) = 2 or codim(F) = 0 mod4

2. If the St-action is odd therwodim(F) = 2 mod4

Proof. Let N F be the normal bundle t& and letSN F be its sphere bundle,
with fiber $2Y*1, Then codintF) = 2N + 2. As S* acts trivially onF, if the
S1-action onM is even (odd) then the Hopf action AV +1 is even (odd). (Note
thatS2V+1 has a unique spin structurenf > 0.) If the Hopf action ors?¥*1 is
even then eitheN = 0 and the spin structure o§t is the one which does not
extend toD?, or N is odd. ThusF satisfies conclusion 1. of the lemma. If the
Hopf action ons?¥+1 is odd thenV is even, saF satisfies conclusion 2. of the
lemma. O

2.4.1. Even semifreg'-actions Suppose that the spin manifald has an even
effectiveSt-action. LetS M be the spinor bundle df. If dim(M) = 4k + 1 then
dimc SM = 2% If the S-action is free ther§'\ M acquires a spin structure,

with spinor bundleS(S*\M) = SN\ SM. If the St-action is semifree, IeM(Szl)
denote the submanifold 85" which has codimension 2 il As M(Szl) appears

as a boundary component in a compactificationsdf M) — MS it acquires a

spin structure. LeD, .1 denote the Dirac operator (M(Szl)
(@3]

Definition 6.
Ag(M) = f A(T (Sh\M)) + 1 [n (DMsl) + dim (Ker(DMsl))i| .
Sl\M 2 2 (2
(2.33)

Proposition 9. The numberﬁsl(M) is an integer. If{g(¢)}ccf0.1) IS @ smooth

1-parameter family ofS*-invariant metrics onM and dim (Ker D, s ) is
(2

constant ine thenﬂsl(M) is constant ire.

Proof. For smallr > 0, letN, (Msl) be ther-neighborhood of/5" in ST\ M.

The manifold-with-boundargs*\ M) — N, <M51> is spin and one can talk about

the index Ing € Z of its Dirac operator. By the method of proof of Theorem 4,
one finds that iR /Z,

fs - A (T (Sh\M))+ 1@0% [ (an. M) + dim (Ker (aNr(Msl)))](zssj.)
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(The spectral invariants in the above equation are with respect to Dirac operators.)
Let F' be a connected componentltztfs1 whose codimension iV is divisible

by four. Thend N, (F) is a fiber bundle whose fiber GP" for some oddv. As

CPY is a spin manifold with positive scalar curvature, it follows from [8] that

lim 7 <8N,(Msl)) - / T AATF) (2.35)
r—0 F

and
lim dim <Ker (8N,(Msl))) —0. (2.36)

As in the proof of Theorem 4; = 0.

If Fisaconnected componentzlla&fs1 whose codimension i is two then
oON,(F) is a Riemannian manifold which is topologically the sameFaand
which approacheg metrically as» — 0. Thus inR/Z,

1 . 1 .
1@0 5 [7 (ON,(F)) +dim (Ker (dN,(F)))] = > [7 (DF) + dim (Ker (Dp))] .
R (2.37)
It follows that A1 (M) is an integer.
Let {g(€)}cc0.1) be a family of metrics as in the statement of the proposi-
tion. Let I41(M) denote the first term in the right-hand-side of (2.33). We first
computels(M)| _, — Is1(M)|__,. As in the proof of Theorem 4, we com-

pactify (S"\M) — MS" by Ur (ST\SN F), whereF ranges over the connected

components oS, Let@(¢) be the connection o§1\SN F, as in (2.17). We
can computeg (M)|__, — Is1(M)|__, as the integral ovew, (S'\SNF) of a
transgressed characteristic class. Namely,

1
Io(M)| _, — Ia(M)| _y = — Zf /1 A (2(e) +de A 3.0) . (2.38)
+ JO JSWSNF

(The minus sign on the right-hand-side of (2.38) comes from the different ori-
entations ofS*\ SN F.) Let@y be thei andr-components of (2.17). Then from
the structure of (2.17),

1
Ig(M)| _, — Ian(M)| _,=— Z/O /F A (RTT(€) +de A dw™) A
F

/ A(2v(e) +de Ad:Dy) . (2.39)
V4

Let us write

A (RT(€) + de A d.w™) = a1 + de A ap, (2.40)
A (2v(e) +de A d.Dy) = by + de A by,
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whereas, a,, b1 andb, depend ore. Then

Io(M)| _, — I (M) _, (2.41)

=—ZF:/01dEA(/Fal/\/zngr/FaZ/\/Zm).

Now b1 andb, can be computed by equivariant means, and the result will be
a polynomial in the curvature of the principal bundle underlyfgSN F. In
particular, they will be even forms. However, by parity consideratibpss an

odd form. Thus, = 0 and

1
Lo (M)| _, — In(M)| _, = —Z/ deAfazA/bl. (2.42)
F 0 F Z

From (2.40),
b1=A(2v(e). (2.43)

The Atiyah-Singer families index theorem gives an equality {if'HF; R):
ch(ind(Dy)) = / by, (2.44)
zZ

whereD; is the family of vertical Dirac operators on the fiber bunsfteSN F —
F.Ifdim(Z) > 0 thenZ is a spin manifold with positive scalar curvature and
so IndDz) = 0. If dim(Z) = 0 thenZ is a point andfZ by =1.Thus

1
Lo (M)| _, — Ia(M)| _, = — /0 de A / _aa. (2.45)
MS

2

On the other hand, from [3], as there is no spectral flow,

1 .
> [n (DM(%) +dim (Ker (DM(%)” s (2.46)
! D +dim( Ker| D
2 1 M(321) M(SZI) e=0
1
=/ de/\/ L G2
0 M,
The proposition follows. 0

Theorem 5. If M admits anS*-invariant metric of positive scalar curvature and
M$, = thenAg(M) = 0.
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Proof. We may assume thaf has dimension/+ 1. Suppose that it has &-
invariant Riemannian metric of positive scalar curvature.d*dbe the quotient

Riemannian metric oiS\M) — M5, Let! € C® ((Sl\M) — M51> be the

function which assigns to a pointe (SY\M) — M5" the length of thes*-orbit
overx. Putg = lﬁg*. Theng has positive scalar curvature [6, p. 22].

Let us first suppose that for each connected compoﬁerhm/lsl, aneighbor-
hood of F in M is S-isometric toDN F. Then as in (2.16), a local orthonormal
basis of 1-forms o™\ DN F for g is given by

1
7" = r%-1idr, (2.47)
. Ak .
= P
T =r&17',
1
T = r@m1i7%,

Changing variable ta = r%, we obtain the local orthonormal basis

Ak —1
4k

1
’

—-u

du, (2.48)

1\‘

u

QL

7%,

&l

u

Let us consider a more general class of bases given by

1
=~ _du, (2.49)
fu)
T =ut',
A

for some positive functiory. Let ¢ € C*°(0, co) be a nondecreasing function
such thap (x) = x if x € (0, 3) and¢(x) = 1if x > 1. Given a smalk > 0,
define

4k u—c¢€
fu) = A — 1¢ ( <172 ) (2.50)

foru > €. Then one can check that the metric for which (2.49) is an orthonormal
basis is complete with positive scalar curvature. In effect, a change of variable
tos = —In(u — ¢) shows that the metric is asymptotically cylindrical, with
cross-sectiors*\ SN F having C P¥-fibers of diameter proportionate toand
baseF of diameter proportionate % . AsN > 0, the positive scalar curvature

of the CP" fibers ensures that the metric will have positive scalar curvature
for smalle. Truncate the cylinder at a large distance and smooth the metric to a
product near the boundary, while keeping positive scalar curvaturd/ Lagtnote
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the corresponding manifold-with-boundary. Applying the Atiyah-Patodi-Singer
theorem and the Lichnerowicz vanishing theorenvtowe obtain

~ 1
oz/ A(TN6)+§77(D3N€). (2.51)
Ne
Now
Iimf X(TNJ:/ A(T(SN\M). (2.52)
e—0 N, sh\Mm

As in the proof of Proposition 9, sindH(Szl) =0,
ilinor] (DE)NG) =0. (253)

The proposition follows in this case.

In general, a neighborhood df in M may not beS*-isometric toDNF.
Nevertheless, we can use the distance function ffdmwrite g as(“’jl—;l)2 du®+
h(u) where foru > 0, h(u) is a metric onS*\ SN F. For smallu, g will be well-
approximated by the metric of the form (2.48). Then we can defdfar small
u to obtain a metric of positive scalar curvature and precisely of the form (2.48)
for smallu, to which we can apply the previous argument. 0

Remark :Suppose thats" has codimension two in. Then the orthonormal
frame (2.48) becomes

4k
o=, (2.54)
4k — 1
T — g,

We no longer have the benefit of the positive scalar curvature coming from
CPY. Metrically with respect t&, S'\M has a “puffy” cone oveM(Szl). If one

could prove an index theorem for Dirac operators on such spaces, along with a
vanishing theorem in the case of positive scalar curvature, one could remove the
codimension restriction in Theorem 5.

2.4.2. Even or odd semifre-actions Suppose that the spin manifald has
an S-action which is even or odd. If thg!-action is free ther$*\ M may not
have a spin structure, but it always has a canonical sggmcture. Namely, if
the S*-action is even, pus(S'\M) = C xg SM, whereC has the standard
S*-action. If theS*-action is odd, letS* be the double cover . It acts onM
through the quotient mag! — S*. Consider the standard action &f on C.
The infinitesimal action ofi(1) on C x SM integrates to ar$l-action, so we
can putS(SH\M) = C x g SM. In either case§(S*\ M) is the spinor bundle of
a spirf structure ons*\ M.
Now suppose that th&!-action is effective and semifree.
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Lemma 2. M5 is spirf.

Proof. Let F be a connected component &, with normal bundleV F. We
know thatF is oriented. As the total spadéF is diffeomorphic to a neighborhood
of Fin M, TNF inherits a spin structure. Lgt : NF — F be projection to
the base. TheliNF = p*NF @& p*T F. As N F has a complex structure, it has
a canonical spinstructure. Therp*T F acquires a spinstructure, and so does
TF. O

Let £5"\M be the complex line bundle ofs*\M) — M5 associated to
1
the spifi structure. It has an induced connecti®d’ . Let ¢, (ssl\M) €

02 <(Sl\M) — MSl) be the corresponding characteristic form. U2} be
the spiri Dirac operator oS,

Definition 7.

e €SI
2

A (M) = / A(T (SM\M)) Ae (2.55)

Navi

2 [0(D) + i (Ker (D))

Proposition 10. The numbeﬁsl(M) is an integer. I g (¢) }ecfo.1) IS @ SmootH-
parameter family of*-invariant metrics oni/ anddim (Ker (D, 1)) is constant
in € thenAg (M) is constant ire.

Proof. For notational convenience, put

%)

ATX)=ATX)ne 2. (2.56)

For smallr > 0, let N, (Msl) be ther-neighborhood ofiS" in S1\M. The

manifold-with-boundary(S*\M) — N, <M51> is spirf and one can talk about

the index Ingd € Z of its Dirac operator. By the method of proof of Theorem 4,
one finds that iR /Z,

/ A(T (sh\M)) (2.57)
SWh\m

+1iLn0% [n <8N,(M51)> + dim <Ker(8N,(MSl)))] —o.

(The spectral invariants in the above equation are with respect t6 Bpiac

operators.) LetF be a connected component BfS". ThendN, (F) is a fiber
bundle overF. In terms of the complex structure on a fil#&rwe can write

D;=03+0 : 2% (Z) > 2% 7). (2.58)
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As the fiberZ is a complex projective space, K&,) = 2°%°(Z) = C consists
of the constant functions on the fibers and H&§) = 0. Hence IndD;) is a
trivial complex line bundle orF. It follows from [16] that inR/Z,

IimO% [ (AN, (F)) + dim (Ker (AN, (F)))] (2.59)

1 -~ ,
=3 [/ 7TAATF) +n(Dr) +dim (Ker(DF))] .
F
As in the proof of Theorem 4; = 0. Thusﬁsl(M) is an integer.
The rest of the proof of Proposition 10 is similar to that of Proposition 9. We
omit the detalils. O

2.5. GeneralS*-actions

Let S act effectively onM. There are suborbifold® of (S1\M) — MS" defined
as in Subsection 2.2.

Proposition 11.
1
o (M) = Z _/ L(O)+n (Msl) . (2.60)
%) mo Jo

Proof. The proof is a combination of those of (2.11) and Theorem 4FLbé a
connected component 815", Let N F be the normal bundle df in M. It has an
St-action by orthogonal automorphisms, which is fixed-point-fre&van— F.
Let SN F be the sphere bundle of F. ThenS*\ SN F is an orbifold. For > 0,

let N.(F) be ther-neighborhood ofF in S'\M. Then for small-, dN,(F) is

an orbifold. We define the-invariant ofd N, (F) using the tangential signature
operator on orbifold-differential forms @V, (F), i.e.S*-basic differential forms
on the preimage diN, (F) in M. Then the method of proof of Theorem 4 goes
through with minor changes. O

3. Equivariant higher indices
3.1. Equivariant Novikov conjectures

Let M" be a closed oriented connected manifold. [8tbe a countable dis-
crete group and lep : (M) — I be a surjective homomorphism. There
is an induced continuous map: M — BI", defined up to homotopy. Let
L € H,_4.(M; Q) be the homologyL-class ofM, i.e. the Poinca'dual of
the cohomologyL-class. The Novikov Conjecture hypothesizes thdl.) <
H,_4(BI"’; Q) is an oriented homotopy invariant . Another way to state
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thisis to letD € KO, (M) be the KO-homology class of the signature operator.
The Novikov Conjecture says that(D) ®z 1 € KO, (BI'") ®z Q should be

an oriented homotopy invariant @f. It is usually assumed thdl’ = m;(M),
although this is not necessary.

Now suppose that a compact Lie grogpacts onM in an orientation-
preserving way. One would like to extend the Novikov Conjecture toGhe
equivariant setting. One approach is to extend the classifying space construction.
The ideais thaBm; (M) has exactly the information abatg(M) andr,(M). In
the equivariant case one wants a space withaction, constructed from the data
{mo(M™)} and{m1(M ™)} asH runs over the closed subgroupsafSuch a space
Bm (M) is constructed in [34]. It has the property that each connected component
of Br (M) is aspherical, and there isGmapv : M — Bm (M), unique up
to G-homotopy, which induces an isomorphism frag(M ') to mo(Bm (M)™)
and an isomorphism on; of each connected component &f. Choosing a
G-invariant Riemannian metric oM, there is aG-invariant signature opera-
tor D € KO%(M). Then one Equivariant Novikov Conjecture would be that
(D) ®z 1 € KO%(Br(M)) ®z Q is an orienteds-homotopy invariant o/

[38].

As was pointed out in [38, p. 31], this conjecture is false in the case of
free St-actions. In that casBr (M) = S, KO%(Br(M)) = KO,_1 (CP%)
and KO,?(BJT(M)) ®7 Q = H,_1_4. (CP>; Q). The principalS*-bundleM is
classified by a mag : (S'\M) — CP>, andv,(D) ®z 1 = f.(L(S'\M)) €
H,_1_4« (CP>®; Q). If X is a homotopyEP", let M be the total space of the
S-bundle associated to the standard generator’afXHZ) = H? (CPV; Z).
Thenv, (D) ®z 1 can be identified with the rational homolodyclass ofX. If
N > 2 then it follows from surgery theory that there is an infinite number of
nonhomeomorphic homotopyP"’s {X;}2°, with distinct rational homology
L-classes. Thé*-actions on the corresponding homotopy-sphéiég >, will
be mutually homotopy equivalent, showing the falsity of the conjecture. The rest
of [38] is devoted to looking at the conjecture under some finiteness assumptions
onBr(M).

Another Equivariant Novikov Conjecture uses the classifying spagefor
properG’-actions, wher&;’ is a Lie group with a countable number of connected
components [5]. Lef™” andp be as above. There is an induced connected normal
I'’-coveringM’ of M. Letw : M’ — M be the projection map. Define a group
G’ by

G ={(¢.g) eDiff (M) xG:mop =g 7} (3.1)
There is aG’-invariant signature operatd@ < KOf' (M'"). The conjecture states
thatv,(D) € KO,?’(EG’) is an orienteds-homotopy invariant of\f [5], [38,
Proposition 2.10].

This conjecture is very reasonable. However, it seems to be more useful when
G is finite. Suppose, for example, thé@t= S* andI"" = {e}. ThenG’ = S%,
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ES'is a point and ifz is divisible by four then K(f)l(pt.) is a countable sum

of Z’s, while it vanishes rationally otherwise. Afis divisible by four then the
only information inv,, (D) € Ko;fl(pt.) is the ordinary signature df. If S acts
freely onM thenM =9 (D2 X g1 M) and so its signature vanishes. Thus in the
case of freeSt-actions, the second Equivariant Novikov Conjecture is true but
vacuous.

In order to construct higher signatures$f\ M, we will use the higher eta-
invariant of [30]. We now recall the construction of [30], with some modifications.
We will let groups act on the left, as in [31], instead of on the right, as in [30].
The differential form conventions will be as in [31].

3.2. Higher eta-invariant

Let I" be a finitely generated discrete group anddgf™ be the reduced group
C*-algebra.

Assumption 1 There is a Fechet locallyn-convex *-algebrad3 such that

1.Crc®Bccrr.

2. %B is stable under the holomorphic functional calculugih/™.

3. For eacht € HY(I"; C), there is a representative cocyctee Z4(I"; C)
such that the ensuing cyclic cocyde € ZC9(CI") extends to a continuous
cyclic cocycle onB.

It is know that such “smooth subalgebrag”exist if I" is virtually nilpotent
or Gromov-hyperbolic [15, Section 111.5], [21].

Let F be a closed oriented Riemannian manifold of dimensiohet p :
m1(F) — I' be a surjective homomorphism. There is an induced connected
normalI"-coveringF’ of F, on whichg € I' acts on the left by., € Diff (F’).

Letz : F/ — F be the projection map.

PutD = B8 x F', a®B-vector bundle orF, and putD = (CiT) xp F', a

C;I'-vector bundle orF. Both D andD are local systems.

Assumption 2 If nis even themi? (F; D) = 0. If nis odd therH"z (F; D) = 0.

The cohomology involved in Assumption 2 is ordinary unreduced cohomol-
ogy; that is, we quotient by @), not its closure. Equivalent formulations are:

1. If nis even then the spectrum of thé-Laplacian onF’ is strictly positive in
degrees. If n is odd then the spectrum of tle-Laplacian onF” is strictly
positive in degree&:t.

2. If nis even then the Laplacian @Bz (F; D) is invertible. Ifn is odd then the
Laplacians orrz"%l(F; D) are invertible.

3. If nis even then the Laplacian 6bz (F; D) is invertible. Ifn is odd then the
Laplacians orrz%l(F; D) are invertible.
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4. If n is even then H(F; D) = 0. If n is odd then Hz" (F; D) = 0.

We use the notions of Hermitian complex and regular Hermitian complex
from [22] and [33]. Using [31, Section 4.1 and Proposition 10], one can generalize
the results of [22] fronC* I"-complexes taB-complexes.

Proposition 12. There is a cochain compléX™ of finitely-generated projective
$B-modules such that

1. W*is aregular Hermitian complex.

2. Wi =0if nis even andv"z = 0if n is odd.

3. The comple®*(F; D) of smoothD-valued differential forms o# is homo-
topy equivalent tav*.

Proof. We will implicitly use results from [31, Proposition 10 and Section

6.1] concerning spectral analysis involvifg). First, let K be a triangulation

of F. Then2*(F; D) is homotopy equivalent to the simplicial cochain com-

plex C*(K; D). The latter is a Hermitian complex of finitely-generated free

B-modules. By [22, Proposition 2.4], itis homotopy equivalent to a regular Her-
mitian complexV* of finitely-generated projectiv@-modules. Suppose that

is even. We have (V) = 0. Put

Vi ifi <%—1,
Ker(d:vet—Vv2) ifi=%-1,

wi=10 ifi =3, (3.2)
Im(d:VE— VEL)" ifi=141,
Vi if i >4 +1.

Then W* is a regular Hermitian complex. There are homotopy equivalences
V* — W*andW* — V* given by

—> V2?2 syl s vyr s yetl 5 yet2

Id. | rl 0} pl Id. | (3.3)
> W2 s Wil 0 — w2t — wat2 |
and
.o— W22 Wil 0 — Watl — Witz

Id. | il 0} il Id. | (3.4)

.— V32 syl L ys vyt it
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wherep denotes orthogonal projection ahid inclusion. The cochain homotopy

operators are

0 n_qd*A™Y n ATIg* g 0
1 1%

L V%fz «— V2 <« 2 «— V7+l <« V%+2 <« ... (35)
and
w2 X w2 o X wint O w2z (3.6)
If n is odd, we have I%l(V) = 0. Put

Vi if i < ”—;3

Ker(d vE V%l) ifi = ?
wi=1lo ifi =2, (3.7)

1
Im(d V”%l—>vﬂzs> if i = 243,
Vi if i > "—;3

Then W* is a regular Hermitian complex. There are
V* — W*andW* — V* given by

homotopy equivalences

s VT VT sV s VR
Pl 0l 0} P (3.8)
W2 — 0 — 0 — W .
and
WS s 0 — 0 — W .
il 0} 0l il (3.9)
VR LV v v
The cochain homotopy operators are
e * A—1 e * A—1 n -1 7% n
UL v e e ST VE L (3.10)
and
2w Lol ol wE L (3.11)
The proposition follows. O



Signatures and higher signaturesséfquotients 641

We briefly review some notation from [30] and [31]. L&t (*8) be the uni-
versal graded differential algebra @ and let2” (8) be the quotient by (the
Fréchet closure of) the graded commutator. Hé¢3) denote the cohomology
of the complex2” (B). If E is a complex vector bundle of, put = D Q E.
There is a bigraded comple2** (F, B) which, roughly speaking, consists of
differential forms onF along with noncommutative differential forms éh

Leth € C°(F') be a real-valued function satisfying, - L;2 = 1. One
obtains a connection

VP . Cc®(F; D) »> 2 (F,B: D) ® 2% (F, B: D) (3.12)

onD. The (1, 0)-part of the connection comes from the flat structuré>oés
a vector bundle or¥'. The (0, 1)-part of the connection is constructed using
Locally on F, using the flat structure dR, one can write

dim(F)
VP = > dxo,+ Y dgV,. (3.13)
n=1

gel’

Suppose that digF) is even. TakeE = A* (T*F), a vector bundle o
with a Z,-grading coming from Hodge duality. The signature operdtaerd* :
C*®(F; E) — C*(F; E) couples tdD to give a Dirac-type operator

Q:C®(F;&E) = C®(F; &) (3.14)

which commutes with the left-action ¢f. We can “quantize” thdx*-variables
in (3.13) to obtain a superconnection

D:C®(F;&) > C®(F; &) ® 2% (F,B: ) (3.15)

given by
D = Q+ V&0l (3.16)

Givens > 0, we rescale the Clifford variables in (3.16) to obtain
D, =sQ + V&0l (3.17)
It extends by Leibniz’ rule to an odd map
D, : 2% (F,B; &) — Q% (F,B;E). (3.18)

(This is like a superconnection on a fiber bundle whose base is the noncommu-
tative space specified 88.) Using the supertrace TRn integral operators on
F, one can define

TR, (e—Df) e 27 (B). (3.19)
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A form of the local Atiyah-Singer index theorem says

s—0

lim TR, (™) = / L(TF) Ach(VP), (3.20)
F

where ch(VP) e 2+ (F; 5"(%)) is the Chern character.
Consider
TR, (Qe’DSZ) e 27 (B). (3.21)

We would like to define the noncommutative eta-form by

fo “IR (Qe—Dé") ds. (3.22)

As shownin [30, Proposition 26], there is no problem with the smaitegration.
In [30, Section 4.7] we argued that the largestegration is also well-defined,
because of Hodge duality. However, Eric Leichtnam and Paolo Piazza pointed
outto me that there are technical problems with the argumentin [30, Section 4.7].
Consequently, we do not know whether or not the integral in (3.22) is convergent
for larges. We now present a way to get around this problem.

Taken of either parity. Fo—1 <i <n + 1, put

2!
0 if nis even and = 3, (3.23)

' witl jf —1<i<?
W' =
wi-1 if’—21<i§n+l.

and
C'=Q/(F;D)e W'. (3.24)

Let f : 2*(F; D) — W* be a homotopy equivalence of Hermitian complexes.
Letg : W* — 2*(F; D) be the adjoint off with respect to the nondegenerate
Hermitian formHy : Wi @ W~ — 8. Givene € R, define a differentiadl¢

onC* by
d eg . g
<0 —d) |fl<§,

d¢=1d if nis even and = %, (3.25)

d 07 4,
ef —d 2

There is a nondegenerate fohon C* given by

H(w, w), (o, w)) = / oA + (=1 Hy (w, w) (3.26)
F
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for (w, w) € C', (o', w) € C"',if i <%, and
H(w, o) = / WA (3.27)
F

if w, w € 22(F; D). Thenone can check that isaregular Hermitian complex.
If € £ 0 thenC* has vanishing cohomology, as the complex is the mapping
cone ofg in degrees less thah and the adjoint in degrees greater thanit
follows that if e # O then the Laplacia@® (d€)* + (d€)"d° of C* has a
bounded inverse.
Let VY : W* - 21(B) ®s W* be a self-dual connection dii*. There is
a direct sum connection
vE =vPolgvyW (3.28)
onC*.
Suppose that is even. Pup® = d° + (d€)". We define a superconnection
D (¢) onC* by
D,(e) = sQ¢ + V€. (3.29)
Let e(s) be a smooth function of € R* which is identically zero fos €
(0, 1] and identically one fos > 2. Put

D
n(s) = TR, (—d “(G(S))el’?(f@”). (3.30)
ds
Proposition 13. For s € (0, 1],
ii(s) = TR, (Qe™"), (3.31)
asin (3.22).

Proof. As €(s) = 0, the factors2*(F; D) and w* [1 C* completely decouple
and it is enough to show that the analogjof) for W*,

TR, (Qwe’(DfW >2) , (3.32)

vanishes. This follows from Hodge duality as in [30, p. 227]. Namely, define
T € EndW*) to be multiplication by sigrﬁi — %) on W', Itis odd with respect
to the Hodge duality ofv*. Then

TR, <Qwe_(DSW )2) — TR, (T‘lTQWe_(DfW >2) (3.33)
— TR, (TQVVe—“JsW >2T—1)
= TR, (171" 1)

— TR, (Qwe_(DSW ) =0
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Definition 8. Definei € 2°“ (B)/Im(d) by

n= /wﬁ(s)ds. (3.34)
0

By [30, Proposition 26], the integrand of (3.34) is integrable for smallsing
the techniques of [31, Section 6.1] and [32, Section 4], one can show that it is
also integrable for large- This uses the invertibility of the Laplacian 6f for

s > 2,i.e.e = 1. Note thaty is defined modulo Ir@t/). It is not hard to show
that? is independent of the choice ofs).

Proposition 14. 7 is independent of the choice Bf.

Proof. Let W’ be another regular Hermitian complex which is homotopy equiva-
lent to2*(F; D), with W"z = 0. Leth : W' — W be a homotopy equivalence.
For—1<i<n+41,put

[QKRDMMW@Wml@WWlW—¢5i<g
D' =

23(F; D) if nisevenand =%, (3.35)
QUFDoW oW tew !t ifl<i<n+l
Given (El EZ) € M»(R), define a differentia/® on D* by
3 €
d 0 €18 exgoh
0 d €3 E4h . n
00 -d 0 i <3
00 0 —d
P =1d ifnisevenand =35,  (3.36)
d 0 0O O
0 d 0 0 .. .
€;|_g>‘< €3 —d 0 ! 2°
eh*og* eh* 0 —d

€18 e80oh\ (g O €1 € 10
<63 64h >_ (0 1) (63 64) (O h)’ (337)
the complexD* has vanishing cohomology (El iz) is invertible. Given
3 €4

_ (a1 a2
A= (a3 a4) € GL(2, R), put

€1 €\
(63 64>_e(s)A, (3.38)

wheree (s) is as before. Define the noncommutative eta-formvhs in (3.34).
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There is a smooth path in G2, R) from (é 2) to (_01 é . It follows
from [30, (50)] that the corresponding eta-formsiof differ by something in
10

Im(d). Consider the eta-form coming from = . In this caseD* splits

01
into the sum of two complexes, one involviggj* and W*, the other involving
w* and W"*, By the Hodge duality argument of Proposition 13, the eta-form
0

o 1) e recover
the eta-form of the comple&€™ constructed from2* and W*. Similarly, when
A= _01 é , we recover the eta-form constructed fragf and W"*. The
proposition follows. O

of the second subcomplex vanishes. Hence whes

If n is odd then one can define the higher eta-form using an extra Clifford
variable as in [30, Definitions 2,11].

3.3. “Moral” fundamental group ofs*\ M

Let M be a closed oriented smooth manifold with an effeciiyeaction. Letl™’
be a finitely generated discrete group anddetsz;(M) — I'’ be a surjective
homomorphism. There is an induced connected notdifiadoveringM’ of M,
on whichy’ € I'" acts on the left by.,, € Diff (M'). Letz : M" — M be the
projection map.

Define a Lie grougs’ as in (3.1), withG = S*. As the generator of th&!-
action onM can be lifted to a vector field oW, there is a short exact sequence

1—TI" — G — St — 1 (3.39)
The homotopy exact sequence of this fibration gives
1—m(G)—Z—TI —m(G)— 1L (3.40)

Putl” = o (G”). We will think of I as the “moral” fundamental group §#\ M,
although it may not be the same ag S\ M); I also appears in the work of
Browder-Hsiang [12]. Fixing a basepoin € M, leto be the homotopy class
of the orbit ofmg in w1 (M, mg). From (3. 40),1“ r’ /,0( }), where(o) is the
central subgroup af1(M, mg) generated by. If M5 + ¢ then it is natural to
takemo € M5, showing thato) = {e}.

Let G, be the connected component of the identity@®f It is a copy of
e|therSl or R. PutM = G| o\M'. ThenF acts properly and cocompactly on
M, with T\M = SY\M. Let p : M — S™\M be the quotient map. Putting
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MSt = pt (Msl), we can describa/s* as the cover oM 5" induced from the
composite map

m (Msl) (M) 2> T — T (3.41)

The complemenﬂ — MS* has a natural orbifold structure.
We construct certain differential forms on the strataSéfM. Let h e

Cs° (1\//15\1> satisfy
> Lih=1; (3.42)
yel

it is easy to construct such functions. Létbe a small neighborhood o5 in
S\ M which is diffeomorphic to the mapping cylinder of a fiber bundle, whose
fibers are weighted complex projective spaces and whose bBEE iket N be

the preimage oN in M, with projectiong : N — MS*. Consideg*h on N. It
can be extended to a compactly-supported functiaon M which is smooth, in

the orbifold sense, oM — MS* and which satisfies

Y LiH =1 (3.43)
yel
Consider the group cochains
CH(T) = | :T**— R :7is skew and for allo, . . ., %) € I'“1(3.44)
andz € I', T (Foz, 71z, - s h2) = T Fo P, - T } -
Suppose that is a cocycle, i.e.

k+1 ' .
DDt (Fon o Vo Pir) =0 (3.45)
j=0

Definition 9. Define an orbifold fornw € £2* (1\71 — Msl) by

d= > T@L.... e LydHA.. ALsdH. (3.46)

V1, Vk
Definent € £2¢ (Msl) by

ﬁ:AZA TV s Vo @) Ly dh Ao A LY dh. (3.47)

V1, Vk
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Proposition 15. There are closed forms € £2* ((Sl\M) - M51> andu €
0k <M51) such thats = p*w andji = p*u.

Proof. The proof is as in [29, Lemma 4]. We omit the details. 0

Let N be a small neighborhood o1 in S\ M as above, with projectiof :
N > MS. By construction;u|N = g*u. By [41,87], the pair(w, 1) represents
a class in H(S1\M; R). We obtain a mag : H* (F; R) — H* (S1\M; R)
given by ([z]) = [(w, w)].
Proposition 16. (Browder-Hsiang [12, Theorem 1.1]) There is a commutative
diagram
H* (7 R) -2 H* (SY\M: R)
al Bl (3.48)
H*(I'";R) > H* (M;R)

where the bottom row of (3.48) comes from the map-> BI" induced byp,
the left column of (3.48) comes from the homomorphism> " and the right
column of (3.48) is pullback.

Proof. Given[z] € H* (I"; R), represent it by a cocycle e z* (I"; R). Let
a(t) € Z* (I'’; R) be its pullback ta™". Letr : M’ — M be the quotient map.
Then(B o ¢)[t] is characterized by thE’-invariant closed form

ro= Y T@u....%ee)Lydr*H A Ldr*H (3.49)

f/\l ..... ﬁéf

onM'.LetK e C3° (M’) satisfy

> LK =r"H. (3.50)

gep (o)

Let I C I"' be a set of representatives for the cogdt®))\I"’. Then

V1yens el

_ / / * *

= > @@ ... Vie)Ly dK A L} dK.
y/l""’y/kEF/

By [29, Proposition 14], the last term in (3.51) is the lift of a clogefbrm on
M which representg (a([t])). O
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Remark: Theorem 1.1 of [12] is phrased in terms of rational cohomology and is
valid for any compact connected Lie group, not jistWe expect that our proof
could be extended to these cases.

If I satisfies Assumption 1, I& be the canonicaB-vector bundle oS,
As in (3.12), the functiom: gives a partially-flat connection oP. Let [z] €
H*(I"; C) be represented by a cocyales Z*(I"; C) as in Assumption 1. Then

the Chern form clfv?) e 2+ <Msl; 5*(%)) satisfies

1= c(k){ch(VP), Z;) (3.52)

for some nonzero(k) € R [31, Proposition 3].

3.4. Fixed-point-free actions Il

Suppose that th&'-action has no fixed-points. There |$?$il“ -Hilbert module

of orbifold differential forms on¥ and a (tangential) signature operator, which
has anindexg (M) € K, ( ) Suppose thaf satisfies Assumption 1. Then
forany[t] € H* (F, R), we can consider the pairings:(M), Z.) € R.

Proposition 17. Constructe ([t]) € H*(S'\M; R) as in the previous subsec-
tion. Given a suborbifold of S\ M as in Subsection 2.2, Iet([r])\o denote
the pullback ofp[r] to O. Then

1
(M), Z,) = — LO)U . 3.53
(o51(M), Z-) ;mofo O) U ()|, (3.53)

Proof. The method of proof is the same as in [29], which dealt with the case
whenTI" acts freely on a smooti. The only difference is that the local analysis
must now be done on orbifolds, as in [24]. We omit the details. O

Remark: It seems likely that Proposition 17 follows from a general localization
result and is true whenevét satisfies the Strong Novikov Conjecture; compare
[39, Theorem 2.6].

3.5. Semifree actions Il

Suppose thas? acts effectively and semifreely ovi. If F is a connected com-
ponent of 5", put
Ir =Im (11(F) — m(M) — I'' — T). (3.54)

Suppose thafr satisfies Assumption 1, with smooth subalgeBraof C*I'r,
and thatr' satisfies Assumption 2 with respectply. Constructj € 2°(Bp)/
Im(d) for the manifoldF as in Subsection 3.2.
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Definition 10. Given[z] € H* (I'; R), represent it by a cocycte € Z* (I'; R).
Constructw, € £2* ((Sl\M) — MSl) as in Proposition 15. Given a connected
component of MSl, lettp € Z¥(I'r; R) be the restriction of. Suppose that
the cyclic cocycleZ,, extends to a cyclic cocycle @ . Put

(051(M), [7]) =/

L(T (SM\M)) A + c(k) > (7i, Z.;) € R.  (3.55)
sSW\m I3

We assume thdt = dim(M) — 1 mod4so that the integral in (3.55) can be
nonzero.

Theorem 6. (o51(M), [7]) is independent of the choices st-invariant Rie-
mannian metric o/ and functionH € C° (M) on M.

Proof. The method of proof is that of Proposition 10. Defijng € £2* <M51>

as in Proposition 15. Lefg: (M) denote the first term in the right-hand-side of
(3.55). We first show the metric independence. {g&t)}.c(0.1; be a smooth 1-

parameter family of*-invariant metrics o . For simplicity, assume thay "
has one connected componéntAs in (2.40), let us write

L(R""(e) +de ndew"") = a1 +de A ay, (3.56)
L (2y(€) +de A 3:Dy) = by + de A by.
Then as in (2.42),
1
Jsi(M)| _; — Js1(M)|,_, = —/ de A / as A iy A / ba. (3.57)
0 F Z

The Atiyah-Singer families index theorem gives an equality {Hf'HF'; R):

ch(ind(d + d*)) = / by, (3.58)
V4

whered + d* denotes the family of vertical signature operators on the fiber bun-
dle S\SNF — F.

Case I.dim(M) — dim(F) = 2 mod4.

As Z = CP?N for someN, Ind(d + d*) is a trivial complex line bundle on
F.Then

1
Jsi(M)|,_, — Jsa(M)| _, = —/ de A / az A . (3.59)
0 F
On the other hand, from [30, Proposition 27],

1
CRVF. Ze)| _y — eV Zoy)|_, = fo de /F oA (3.60)
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The proposition follows in this case.
Case Il.dim(M) — dim(F) = 0 mod4.

As Z = CP?N*! for someN, Ind(d + d*) = 0. Then
Jsi(M)|, _, — Jsa(M)|__, = 0. (3.61)

Equation (3.60) is again valid. As, is concentrated in degree congruent to
—1mod4 and = dim(F) — 1 mod4, we havng as A i, = 0. The proposition
follows in this case.

Now fix the metric and suppose thigh (¢)}.c(0.1; iS @ sSmooth 1-parameter
family of functionsH constructed as in (3.43). Construct the corresponding form
e € 2% ([0, 1] x F). Write

U = a1+ de A ay, (3.62)

whereas, a, € 2*(F) depend orx. Then

1
Jsa(M)| _, — Jss(M)]|,_, = —/O de /\/ L(R™) na. (3.63)
F

From [30, Proposition 27],

1
c(k)(T, Zep)|,_y — () (T, ZIF>|€—°=fo de/\/ L(R"™)nap. (3.64)
F

The proposition follows. O

3.6. Generals-actions Il

Let ST act effectively onM. For each connected compondnif M5", define
I'r asin (3.54). Suppose that satisfies Assumption 1, with smooth subalgebra
By C C: Ty, and thatF satisfies Assumption 2 with respect@j .

Definition 11. Given[t] € H* (I'; R), represent it by a cocycte € Z* (I'; R).
Constructw, € £2* ((Sl\M) — Msl) as in Proposition 15. Given a connected

component of M5 letty € Z*(I'r; R) be the restriction of. Suppose that
the cyclic cocycleZ,, extends to a cyclic cocycle @ f. Put

1 ~
(os2(M), [1]) =Z—/ LO) Aox|p+ ) (1. Zy) €R. (3.65)
o MoJo F

As in Theorem 6{cs1(M), [t]) is independent of the choices $f-invariant
metric andH .
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Conjecture 1.(ca1 (M), [t]) is anSt-homotopy invariant of1.

One may want to assume thBtsatisfies Assumption 1. In this case, if the
St-action has no fixed-points then the conjecture follows from Proposition 17,
along with the homotopy invariance of the index (M) € K, (C;T). If the

Sl-action is semifree and the codimensiondf in M is at most two then an
outline of a proof of the conjecture is given in Appendix A.

4. Remarks

1. One may wonder whether Assumption 2 is really necessary. To see that some

assumption is necessary to define equivariant higher signatures, consider the

special case when the quotient space is a manifold-with-boundary. So consider

compact oriented manifolds-with-boundary equipped with a map to a classifying

spaceBn. As Shmuel Weinberger pointed out to me, if one had a reasonable

higher signature for such manifolds then one would expect to have Novikov

additivity for the higher signatures of closed oriented manifolds. That i, i

a closed oriented manifold with a mapRar andN is a hypersurface it which

cuts it into two pieced/; and M- then the higher signatures df would be the

sum of those oM, and M,, for the same reasons that the Atiyah-Patodi-Singer

theorem implies the Novikov additivity of the usual signature. In particular, the

higher signatures of closed oriented manifolds would give invariants of the cut-

and-paste grou K, (Bx) [23]. However, it is known for some groups that

the only cut-and-paste invariantsBfr are the Euler characteristic and the usual

signature. For example, it easy to show that this is the case wher¥, and it

then follows from [35, Lemma 8] that it is also the case whea: Z*. Thus in

general one needs some assumption in order to define the higher signatures.
As a side remark, in some cases it is possible to define higher signatures

of manifolds-with-boundary without any extra assumptions. For example, let

M be a compact oriented manifold-with-boundary such thatim(M). Let

v : M — B be acontinuous map. Suppose that we are given a homomorphism

o :m — SO(p,q) forsomep,q > 0. Let BSO(p, q)s be the classifying

space foiS O (p, g) with the discrete topology. There is a canonical flat real vec-

tor bundleV on BSO(p, q);s of rank p + ¢. The pullback(Bp o v)*V is a flat

real vector bundle oM with a flat symmetric form. Hence one can consider the

twisted signature (M, (Bpov)*V) € Z. This is an oriented-homotopy invariant

of M by construction. On the other hand Mf is closed then it is also a higher

signature ofVf involving the pullback of a Borel class froS O (oo, 00)s [33].

It follows from the usual Novikov additivity argument that this higher signature

is a cut-and-paste invariant. For exampleMfis closed, 4dim(M) and Bx

is a closed oriented hyperbolic manifold of dimension @i then one finds

that the degree of the mapgives a nontrivial invariant o8 K j; gz B7. If
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dim(M) = 2mod4 then one can do a similar construction in whSeéh(p, g)
is replaced bySp(2n). In general, it seems to be an interesting question as to
which higher signatures of closed manifolds are cut-and-paste invariants.

2. Although we have defined the signature ofarquotient, we have not defined

a signature operator of which the signature is the inde) 3t has codimension

in M divisible by four then there is a signature operatosénM by the work of
Cheeger [14]. If theSt-action is semifree and/S" has codimension two i

then S\ M is a manifold-with-boundary and one has the Atiyah-Patodi-Singer
signature operator a$t\ M. For a general semifre&-action, the quotient space
will contain families of cones over complex projective spaces. We note that there
is a topological obstruction to having a self-adjoint signature operator on a sin-
gular space with a single cone ov&P”", N even [28]. However, in our case
such cones occur in odd-dimensional families and this fact may allow one to
construct the signature operator.

3. Suppose that a compact Lie gradjacts effectively on an oriented closed man-
ifold M. Let M*"¢ be the set of points il whose isotropy subgroup has positive
dimension. Then we can defi@*?5i (M, M*"¢) and H->**'“ (M, M*™"¢) as

in Definition 1. There is again an intersection form o’#'“ (M, M*"¢) which
comes from integrating on the orbifold;\ M) — (G\M*"$), and its signature

o (M) is a G-homotopy invariant of\f. One can ask for an explicit formula

for o5 (M), as was done in this paper whén= S*. If the G-action is semifree

then the analog of Theorem 4 holds and the proof is virtually the same as that
of Theorem 4. However, if the action is not semifree then the situation is more
involved. Suppose, for simplicity, that all isotropy groups are connected. In prin-
ciple, one can follow the proof of Theorem 4 by applying the Atiyah-Patodi-
Singer formula to a sequence of compact manifolds-with-boundary that exhaust
(G\M) — (G\M*"8), However, the limiting formula must be more complicated
than in Theorem 4. For example take = SU(2). If m € M*"¢ — MSU®P

then a neighborhood afi € SU(2)\M is like an S-quotient of the type
studied in Section 2. In analogy to Theorem 4, we expect that there will be
a contribution too (M) of the formn ((G\M*"¢) — (G\MSY?)). However,
(G\M*"¢) — (G\MSY?) is a space with conical singularities like those in Sec-
tion 2 and it is notimmediately clear how to define its eta-invariant; this is related
to the preceding remark.

Appendix A. Homotopy invariance of higher signatures
of manifolds-with-boundary

Suppose that we have a compact oriented manifold-with-bountizayfinitely
generated discrete group and a surjective homomorphism(A) — I". For
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simplicity, suppose thatA just has one connected component. Put
Ir =Im (71(3A) — m1(A) —> T). (A1)

Putn = dim(dA). Suppose thaf” satisfies Assumption 1, with smooth subal-
gebra®B of C;I". Put

Brp={T €B:T(I’(I'r)) CI*(I'p)}. (A.2)

ThenCry C Bfr C CiTF, with B closed under the holomorphic functional
calculus inCTI'r. Leti : 5*(‘3p)/lm(d) — ﬁ‘(%)/lm(d) be the obvious
map. Suppose thatA satisfies Assumption 2 with respect@j/». Construct
M e 5*(%F)/Im(d) for 9A as in Subsection 3.2. L&? be the canonical flat
9B-vector bundle orA. We have the higher signature

o(A) = f L(T A) Ach(VP) +i() e H'(B). (A3)
A

We want to realize (A) as the Chern character of an index. We first describe
the “unperturbed” setting. Without loss of generality, suppose Ahit metri-
cally a product neabA. PutB = A Uy, ([0, 00) x dA). We extendD over
B as a product over the cylindrical end. Consider#enodule2* (B; D) of
smooth compactly-supportégd-valued forms onB. This is one component of
the unperturbed situation.

We would like to interpret (A) as the index of the signature operator on the
C*F -completion of2* (B; D). However, there is the problem that this signature
operator need not be Fredholm in tﬁﬁ]‘ sense, because the signature operator
on 2* (0 A; D) may not be invertible. This is why we proceed as follows.

The other component of the unperturbed situation is an algebraic analog of a
half-infinite cylinder which is coned off. More precisely, Bt be a cochain com-
plex of finitely generated projectivd-modules which is homotopy equivalent
to 2*(9A; D) as in Subsection 3.2. L& * be as in (3.23). Lep € C*([0, 00))
be a nondecreasing function such that

ifrfl,

Deflnea‘B mnerproducton th&3-cochain comple)Q (0, oo))®W* such that
if w' e C§((0,00)) @ Wi andw/ € C&((0,00)) ® W/ then

wowy = [ 9@yl ), w gdr, - (A5)
0
(w', dr Aw’) =0,

(dr Anw',dr Aw’) = /Oo @ (r)mODTI=d (1), wi (r)) pdr
0
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This is the second component of the unperturbed situation. Formally, one would
expect from Hodge duality that the index of a signature operator on
£2*((0, oo))®W* should vanish. Hence the index of a signature operator on
2% (B; D) ® (Q*((O, oo))®VT/*) is formally the same as that 61* (B; D).

We now perturks2* (B; D) & (£2*((0, 00))®W*) to obtain a Fredholm op-
erator. Letd denote the total differential o2* (B; D) & (£2*((0, oo))®W*),
where we switch the sign on thé*-differential as in (3.25). Let € C>([0, o))
be a nondecreasing function such that

0 ifr <1,
E(’)_{l ifr > 2.

Givena > 1, define an operatab on £2* (B; D) @ (£2*((0, oo))®W*) by
saying that on the degreesubspace,

(0 6(”/“)g> if i <

(A.6)

NS

0 0

0 0 if i
er/yf 0) "7

Note thatD? # 0 because is a nonconstant function of If n + 1 is even, put
T =D+ D*. If n+1lisodd, pull = +(xD — Dx). Then we expect that it will
be possible to show the following :

1. The operatof” extends to a Fredholm operator in tﬁéf—sense. Its index
Ind(T) is independent af.

2. In analogy to [27], cind(T)) = o (A).

3. Inanalogy to [19], IndI") is a smooth homotopy invariant of the péir, 9 A).
(Thatis, the homotopy equivalence is not required to be a diffeomorphism gn

D=d+ (A.7)

NS

To relate this tas1-actions, letM have a semifredL-action such thav/s" is
nonempty and has codimension two. TISéRM is a manifold-with-boundary,
with 94 = MS*. By [37, Proposition 1.2k, (M) = m1(A). If p : ma(M) — T
is a surjective homomorphism as in Section 3.3 thes I

Extending point 3. above, we mean that (#igl should be ars*-homotopy
invariant ofM. Given anS*-homotopy equivalende: M — N, putA = S\M
andB = S\ N. We obtain a homotopy equivalente A — B on the quotient
spaces. It may not be a proper map, in that= M may be properly contained
in the preimage 06 B = NS'. Nevertheless, we can extehdo a smooth map
h' 1 AUa ([0,00) x dA) — B Uyp ([0, 00) x d B) which is a product map on
[0, 00) x D A. It should be possible to ugé, as in [19], to compare the signature
operators ofA andB. The analog of the almost-flat connection of [19] is the fact
that althoughD? # 0, by takinga large we can make the norm 6F as small
as we want. Regarding point 3. above, it may be more convenient to work with
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a conical end than a cylindrical end. This would correspond to multiplying the
metric on[0, co) x dA by a conformal factor which is asymptoticakty?” for
larger, and similarly changing the inner product (m*((o, oo))®W*). Herec

is some positive constant.

Remark: In the topological setting, with similar assumptions one has a sym-
metricAsignature(A) e L* (ZF). To describe this, assume for simplicity that
I'r = I'. Following [44], assume thatA is antisimple, meaning that the chain
complexC, (8A ZF) is homotopy equivalent to a chain complBxof finitely
generated prOJectl\/EF modules, withP; = 0 if n is even andonﬂ =0ifnis

odd. LetP_ denote the truncation af, at[ ]- Thenthe mag, (9A; ZF) — P
defines an algebraic Poinegpair in the sense of [36, p. 134]. The (closed) alge-
braic Poincag’complexC, (A; ZF) Ue, (0a:zF) P< has a symmetric S|gnature

s(A) € L* (zI") which will be a homotopy invariant of the pain, 9A). If I’

satisfies Assumption 1 then we can construct €h)) € H,(8); compare with
(A.3).
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