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Part 1

Background



Part I of this book sets the stage for our exploration of quantum algorithms for scientific compu-
tation by asking two questions: why should we expect quantum computers to offer a computational
advantage, and what are the basic mathematical and physical principles that govern them?

Chapter [I] tackles the first question. We begin by tracing the conceptual origins of quantum
computing and formalizes the notion of quantum speedup. We then introduce a quantum advantage
hierarchy, which classifies applications based on the strength of evidence for quantum speedup.

Chapter[2|addresses the second question by providing a concise overview of elements of quantum
computation. We introduce the postulates of quantum mechanics, the circuit model, and the density
operator formalism. We also cover concepts such as the no-cloning theorem and the principles of
deferred and implicit measurement. The chapter concludes by introducing the operator formalisms
for spin, fermionic, and bosonic systems, which are essential for describing the physical problems
encountered in scientific applications, and presents several example Hamiltonians that will serve as
recurring illustrations throughout the book.



CHAPTER 1

Quantum advantage in scientific computation

In this chapter, we trace the conceptual origins of quantum computing and explain how the
physical nature of information suggests that quantum mechanics may offer computational power
beyond classical Turing machines. We then formalize the notion of quantum speedup. Any claim
of quantum advantage requires accounting for all relevant computational costs, including data
input and output. To structure this assessment, we introduce a quantum advantage hierarchy that
categorizes problems based on the existing evidence for significant speedups. The chapter concludes
with a brief discussion of quantum error correction, and why exponentially large state spaces do
not force exponential error accumulation: in fault-tolerant computation, it suffices to implement
each gate to an accuracy that scales inversely with the gate count.

1.1. Origin and Justification for Quantum Computing

Our aim in this textbook is to provide a concrete understanding of not only how quantum algo-
rithms work, but more importantly why they work and what impact scalable quantum computers
are expected to yield in both the scientific and industrial worlds. Underlying this inquiry, however,
is a deeper philosophical question about what it means to compute and why probing this question
inevitably led to the idea of quantum computing.

Modern computer science traces its roots back to the early 20th century, with luminaries such
as Alan Turing, John von Neumann, and Claude Shannon struggling to mathematically describe
how information is stored and processed. Turing’s great realization was that all such computers
could be mathematically modeled by an abstract device called a “Turing Machine”. The Turing
machine was inspired strongly by the human “computers” (clerks) of the day: it possesses a tape
for storing information and a read head that moves along the tape, updating the data on the tape
in accordance with a stored program [Tur36].

John von Neumann is often credited with providing the first modern computer architecture
that resembles modern computers, featuring dedicated memory, arithmetic and logic units, and
input/output capabilities [VN93|. This architecture provided a far more realistic model of the
postwar computers that were emerging, but conceptually these devices were no more powerful than
the original Turing machine. Specifically, a machine is said to be “Turing Complete” if any function
that a Turing machine can compute can be computed on the device. The von Neumann machine
(given sufficient memory) can be shown to be Turing Complete, and in fact, a Turing machine can
also simulate a machine implementing the von Neumann architecture. In this sense, the device
is more than just Turing Complete: it is actually Turing Equivalent. Indeed, all known classical
computational systems are Turing equivalent in this sense. This observation means that, effectively,
every computational system in the universe could be understood as a Turing machine.

The formal study of algorithms revealed that not all tasks are fundamentally as easy for a Turing
Machine. Some tasks, such as deciding whether a program halts, are strictly uncomputable [Tur36].

9



10 1. QUANTUM ADVANTAGE IN SCIENTIFIC COMPUTATION

On the other hand, problems such as multiplying two n-bit numbers can be performed using a
number of steps that scales polynomially in n. Still other problems, such as factoring an n-bit
integer into a product of primes, can have their solution wverified in polynomial time, but to date,
no efficient algorithm has been found on a Turing machine that can find these factors in time that
is polynomial in n (despite centuries of study). This suggested that a more fine-grained notion of
computability needed to be considered than simply “computable” or “uncomputable”. Instead, it
was seen to be useful to categorize computational tasks that can be computed on a Turing Machine
using a polynomial number of operations as “efficiently computable” and all others as inefficient.

This categorization led to a bold hypothesis, which we will later criticize, known as the Ex-
tended Church-Turing Thesis. This statement says that any reasonable model of computing
can be simulated using a polynomial number of computational steps by a probabilistic Turing ma-
chine. The example of von Neumann’s model of computing being simulatable in polynomial time
by a Turing machine has indeed been reinforced by other models of computing based on physical
phenomena, including billiard balls and the Game of Life. However, a challenge would emerge from
an unlikely source: fundamental physics.

At the same time as computer science was being developed, a revolution was happening in
physics. It had long been observed by physicists such as Planck and Einstein that classical physics
could not be used to explain why heated objects (blackbodies) glowed red or how solar panels
worked. Indeed, realistic models of these effects based on Newtonian principles failed to predict
experimental observations. In the case of the stove elements, this failure was so radical that it
predicted that infinite energy would be emitted by a stove burner (the “ultraviolet catastrophe”). A
new type of model, formalized by von Neumann and others, was proposed to describe these systems
that we now know as quantum mechanics (so named for its prediction that light should be emitted
or absorbed in discrete quanta of energy). This language ultimately became the foundation of all
fundamental physical law (gravitation being a notable exception).

Subsequent questions from Einstein, Podolsky, Rosen, and developments by Bell showed that
quantum mechanics could not reasonably be described by classical local realism. Specifically, a
phenomenon known as entanglement, which describes the correlations between measurement out-
comes of coupled quantum systems, could not be described by classical mechanics without incor-
porating a non-local mechanism for updating measurement results. This work began to seriously
question whether quantum systems could be plausibly described as mechanical systems. This,
in turn, would much later be seen to question the Extended Church-Turing Thesis, as a Turing
Machine is at its core a classical mechanical object that relies on local interactions.

A surprising feature of quantum mechanics is that its connection to computing seems to have
taken several decades to be appreciated, despite us owing John von Neumann a great debt for
formalizing both theories. With the benefit of hindsight, it is clear that with the appreciation of
the fact that information is physical, quantum computing could have been developed as early as
the 1940s.

The physical nature of information was elucidated most clearly by Shannon and Landauer.
Shannon showed that the information content of a signal takes the same form as entropy, or disorder,
in thermodynamics. Inspired by this connection, Shannon proposed that the two concepts were the
same, establishing a link between his mathematical theory of information and thermal physics.
Indeed, according to a widely circulated anecdote attributed to Shannon in an article by Tribus,
von Neumann may have been agonizingly close to realizing the connection between physics and
information processing [TMT7I]:
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“What’s in a name? In the case of Shannon’s measure the maming was not
accidental. In 1961 one of us (Tribus) asked Shannon what he had thought about
when he had finally confirmed his famous measure. Shannon replied: ‘My greatest
concern was what to call it. I thought of calling it ‘information’, but the word
was overly used, so I decided to call it ‘uncertainty’. When I discussed it with
John von Neumann, he had a better idea. Von Neumann told me, ‘You should
call it entropy, for two reasons. In the first place your uncertainty function has
been used in statistical mechanics under that name. In the second place, and
more importantly, no one knows what entropy really is, so in a debate you will
always have the advantage.”

Indeed, Shannon’s work provided strong evidence that the two concepts are in fact the same
and that thermodynamics had been telling us a secret lesson about information all along.

Landauer took this insight one step further by showing that thermodynamics places limitations
on computers. Specifically, he showed that any computer that performs a calculation at finite
temperature must pay an energy price for every bit of information erased to avoid violating the laws
of thermodynamics [Lan61]. Similar work studying Maxwell’s Demon, a hypothetical agent that
can raise and lower a gate that allows fast gas molecules through while blocking slow molecules,
revealed that if the thermodynamic cost of measuring and computing were ignored, the laws of
thermodynamics could be violated by such an agent [Ben87]. These works showed a strong link
between information and physics and laid the foundation for the link to quantum computing that
would soon follow.

It took the insight that information is physical to begin to motivate incorporating the formalism
of quantum mechanics into the language of computer science. Quantum computing was born of
this synthesis and was articulated independently by Manin [Man80| and Feynman [Fey82]. The
justification that they had was the fact that the description of the state space of even small quantum
systems scales exponentially with the number of quantum bits. This means that a naive simulation
of the laws of quantum mechanics would require exponentially more time on a classical computer
than the physical system itself requires to evolve. This work opened the possibility that a computer
that exploited the full capabilities of quantum mechanics may be, for certain problems, exponentially
more powerful than the Turing machine. This in turn caused the scientific community to begin to
doubt that the Extended Church-Turing Thesis holds, and now the belief that any realistic model
of computing is polynomially equivalent to a quantum computer has become widespread after the
discovery of the fast factoring algorithm of Shor [Sho99], the quantum simulation algorithms of Lloyd
and others [LI096], as well as the quantum advantage proposals of Aaronson and Arkhipov [AA11].

At a high level though, quantum computing suggests something potentially even stronger. If
the Extended Church-Turing Thesis is replaced by a quantum version, then all of nature could
be described or simulated in polynomial time by a massive quantum computer. In this sense, the
strong link between information and physics reaches a crescendo with quantum computing, which
suggests that all of physical law could be thought of as an algorithm that is run on a quantum
computer, and the set of tasks that a quantum computer cannot perform efficiently are precisely
those that nature also cannot solve at scale. For this reason, the search for exponential algorithmic
advantage plays a central role in quantum computing, not only because it provides us with new
opportunities for our computers, but also because it reveals the limitations that physical systems
impose on information processing, and in turn, the limitations that information processing places
on physical systems. Indeed, the main purpose of this text is to shed light on the origin and utility
of quantum speedups for scientific applications.
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1.2. Quantum speedup

The primary aim of exploring quantum computation is to attain a quantum speedup or
quantum advantage, thereby enhancing problem-solving capabilities in scientific computation.
At first glance, it seems that n qubits can be used to represent a superposition over 2" classical basis
states, and significant quantum speedups should be expected everywhere. However, the situation
is much more ambiguous: does the quantum algorithm require an exponential amount of classical
information to be passed into the quantum computer? Does the quantum algorithm generate an
exponential amount of information that needs to be extracted out of the quantum computer? If the
size of the classical state space is 2™, is it mandatory for the classical algorithm to go through all
states in order to find an approximate solution to a desired precision? If the size of the classical state
space is only n but the computational cost of an existing algorithm is 2", is it possible for a future
classical algorithm to reduce this cost to poly(n)? Readers may be curious about how to evaluate
and answer these questions before dedicating substantial time to learning quantum computation.
Indeed, these discussions can occur at a relatively broad level, largely circumventing the need for
intricate quantum jargon.

One way to formulate the quantum speedup (as a function of the system size n) is

log(min Cost(classical))
log Cost(quantum)

(1.1) Quantum speedup =

The presence of the logarithm can be intuitively understood as follows. For a task with a “system
size” n, assume that the classical and quantum costs are (asymptotically) proportional to n®e and
n®, respectively. Then as n — oo, the quantum speedup defined according to Eq. is ae/ay.
For instance, a quadratic quantum speedup means o/, = 2, a cubic quantum speedup means
ac/ag = 3, and so on. If o — 00 as n — oo but ¢, remains bounded, the quantum speedup is
superpolynomial. There is also a concept called “exponential quantum advantage” (EQA), which
suggests that the classical cost increases at least exponentially in n but the quantum cost increases
only polynomially.

Rigorous proof of EQA can be extraordinarily difficult for practical problems. For example,
given two prime numbers p, g, the product m = p-q can be easily carried out on a classical computer.
However, if we are only given the integer m, finding the prime factors p, ¢ can be very challenging.
This is called the prime factorization problem and has wide applications in cryptography. The
difficulty of the prime factorization problem can be measured in terms of the number of bits in
m. An integer m can always be expressed in binary format. For instance, 12 = 23 + 22 can be
represented as 1100 in binary format, where the number of bits n is 4. The most efficient classical
algorithm, judged by asymptotic scaling in n, is the General Number Field Sieve method [Bri9§].
The computational scaling is proportional to exp[cn% (log n)%], which increases superpolynomially
with n. Shor’s celebrated algorithm [Sho94] [Sho99] addresses the same problem on a quantum
computer, with its cost being proportional to n?lognloglogn, i.e., only polynomial in n. On
one hand, this provides a very clean (and so far the cleanest) quantum solution with a significant
quantum speedup that is superpolynomial in n. On the other hand, even for this problem, the
speedup is not yet exponential in the strict sense above. For practical purposes, we will be (more
than) content with a superpolynomial quantum speedup.

In principle, the classical cost should be minimized with respect to all classical algorithms,
including algorithms that exist today, and those that will ever be developed in the future. A useful
lower bound of the cost of classical algorithms may be obtained for some simple problems. However,
this undertaking is exceedingly challenging for the majority of scientific computing problems. For
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instance, we do not know whether the problem of prime factorization can or cannot be performed in
polynomial time. Therefore, for practical purposes, we will further be satisfied with an estimate of
min Cost(classical) by weighing both theoretical and empirical evidence, based on ezisting classical
algorithms.

Although quantum mechanics is frequently described as a probabilistic theory, a key component
is actually the quantum wavefunction (or quantum amplitude). This can be roughly equated to
the square root of a probability density, along with phase information. This difference between
probability density and quantum amplitude often forms the basis of the quadratic speedup, i.e.,
ac/ay = 2. The most prominent example of this is Grover’s algorithm for unstructured search
(see Chapter . Although a quadratic speedup is valuable, it is unlikely that this speedup alone
will be the most groundbreaking application of early fault-tolerant quantum computers. Hence, we
use the loose term significant quantum speedup to refer to speedups greater than quadratic (such
as cubic or quartic), or better, to superpolynomial speedups.

The quantum cost can be roughly calculated as the total gate complexity multiplied by the
number of repetitions due to the measurement process. It is also conceptually useful to divide it
into the following three components:

(1) Input cost, or the cost for preparing the input quantum state. Without loss of generality,
the quantum algorithm starts from a clean quantum state such as |0™), and the input
state to the quantum algorithm, denoted by |1;), can be prepared using a unitary matrix
Ur as |¢r) = Ur|0™). Then the input cost is the gate complexity for implementing
U;. Sometimes a quantum algorithm requires multiple accesses to the input oracle Uj
in a coherent fashion. In this case, the input cost is given by the gate complexity for
implementing Uy multiplied by the number of coherent initial state preparations.

(2) Output cost, or the cost of quantum measurement. Without loss of generality, after an
appropriate basis change the measurement can be taken to be performed on one or multiple
qubits in the computational basis at the end of an algorithm. Then the output cost is the
number of repetitions M needed to run the quantum algorithm.

(3) Running cost, or the cost of coherently running the quantum algorithm once. This is given
by the gate complexity for implementing the algorithm (excluding the cost for implement-
ing Uy).

One reason for separating the total gate complexity into the input cost and the running cost
is that it allows us to distinguish the case when the overall cost is dominated by preparing the
input, rather than by coherently executing the rest of the algorithm. In many settings, the input
information is classical, and the nature of its complexity can be very different from that in the
quantum algorithm. There is also an important scenario in which the input state |¢;) is not
generated by a known circuit Uy, but is produced by a quantum experiment. In this case, the
relevant input cost is often the number of times the experiment must be repeated to prepare |1;) (a
sample complexity), rather than the gate complexity of a circuit. For instance, quantum learning
theory studies how efficiently one can infer properties of an unknown quantum state from state
preparations and measurements. Throughout this book, we focus on computational tasks in which
quantum and classical algorithms have access to the same amount of classical input information
and are required to output classical information, and we will not discuss quantum learning theory
in detail (except basic concepts such as parameter estimation in Chapter .

Ultimately, all quantum algorithms must output information that can be processed through
classical means via quantum measurements. If the quantum state itself is the end product, the
procedure to recover the quantum state on a classical computer is called quantum state tomography.
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The cost of the state tomography procedure usually grows exponentially relative to the size of the
quantum system. Therefore, it is unlikely that significant quantum speedup can be achieved for
problems involving a tomography procedure on a large number of qubits. Instead, we should focus
on problems whose end result can be obtained by measuring a small number of observables related
to the quantum state to a desired accuracy, for which the measurement overhead can sometimes be
reduced substantially.

In summary, a quantum computer should not be viewed as an all-purpose computational device
destined to replace classical computers. Rather, it should be seen as an accelerator, capable of
providing significant speedups for specific computational tasks. As emphasized in [Aar14], one must
“read the fine print” when evaluating claims of quantum advantage. Several criteria must be met:
the problem under consideration should be computationally intensive on classical hardware; the
task must be solvable efficiently on a quantum device; and the overhead associated with data input
and output (i.e., loading and extracting data) should not dominate the overall cost. Furthermore,
several proposed quantum speedups for linear algebra and machine learning on classical data rely on
strong data-access assumptions, and in some cases comparable scaling can be achieved by quantum-
inspired classical algorithms under similar assumptions. Meeting all of these conditions is far from
trivial. It represents a significant theoretical, experimental, and algorithmic challenge for the entire
scientific community.

1.3. Quantum advantage hierarchy

|
Highly
structured

Il
Unitary dynamics,
sampling and learning

Existing evidence of
significant
quantum advantage

1
Quantum properties
and effective quantum dynamics

[\
Strong classical baselines
and 1/0 limited

Potential range of
scientific applications

FIGURE 1.1. Quantum advantage hierarchy. The vertical level is determined by
the most compelling application in each category, as demonstrated by the available
evidence of quantum advantage.
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Based on the aforementioned definition of quantum speedups, Fig. organizes various quan-
tum applications related to this book using a pyramid structure of 4 levels: Level I (Highly struc-
tured problems), Level IT (Unitary dynamics, sampling, and learning problems), Level III (Quan-
tum properties and effective dynamics problems), and Level IV (Strong classical baselines and 1/0
limited problems). Significant quantum speedups may exist across all levels. The vertical axis
represents the existing amount of evidence supporting significant quantum speedups, while the hor-
izontal axis represents the potential range of scientific applications. Besides gate complexity, for
learning and sensing tasks the dominant cost can be the sample complexity (the number of experi-
mental repetitions), which we treat as part of the running and output costs in this hierarchy. Now
we give some examples at each level of the hierarchy, and the results are summarized in Table [T}

Level Input Output Running | Classical Examples
Cost Cost Cost Cost

Shor’s algorithm for prime fac-

I Provably torization and discrete loga-

Highly . rithm, decoded quantum inter-

structured CXpenstve ferometry for structured opti-
mization

11 Empirically Hamiltonian simulation, random

Unitary dynamics expensive circuit sampling, learning with

sampling and learning quantum memory

11
Quantum properties ? ?

and effective dynamics .
system dynamics

Ground state energy estima-
Empirically | tion, thermal state preparation,
expensive Green’s function, open quantum

v Efficient

Strong classical except )
& ? ? ? ( P tial equations, unstructured
baselines and very large oL . .
. optimization, classical machine
I/0O limited systems)

learning

Classical  partial differential
equations, stochastic differen-

TABLE 1.1. Examples of problems in the quantum advantage hierarchy and exist-
ing amount of evidence justifying significant quantum speedups.

While prime factorization (and cryptography problems in general) are not typically classified
as scientific computing problems, they occupy a unique position (Level I) at the peak of this hier-
archy, and serves as a reference point for the ideal demonstration of quantum advantage in highly
structured settings. These problems possess specific mathematical structures that allow quantum
algorithms to bypass the exhaustive search often required by classical approaches. By describing
the classical cost as “provably expensive,” we mean that the problem is hard under reasonable
complexity-theoretic conjectures or relative to the best-known classical algorithms. For example,
Shor’s algorithm exploits the periodicity of the modular exponentiation function, a property related
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to the hidden subgroup problem. Another reason for placing Shor’s algorithm at the top of the hier-
archy is that these problems are “verifiable,” meaning a candidate solution can be efficiently checked
by classical means (e.g., by multiplying the returned factors). The recently developed decoded quan-
tum interferometry (DQI) algorithm [JSW™25] also solves highly structured optimization problems
with superpolynomial speedups and has the potential to be classified in Level 1. Unfortunately,
such structures are rare in general scientific computing settings, as most problems in physics and
engineering lack these clean, exploitable properties. To date, only a small number of applications
have presented a comparable level of evidence supporting significant quantum speedups, and the
list of credible candidates continues to evolve.

The most prominent example in Level II is the time evolution of a quantum state under a
Hamiltonian, known as the Hamiltonian simulation problem. Many tasks in quantum physics and
chemistry can be cast in this form. This category also includes sampling from unitary evolutions not
explicitly defined by a Hamiltonian, such as random circuit sampling used in quantum supremacy
experiments. For a physical Hamiltonian acting on n qubits, the description size is typically poly-
nomial in n. We assume simple initial states, such as product states, which can be prepared with
polynomial cost. The cost to simulate the dynamics for time ¢ with precision € then scales as
poly(n,t,1/¢). Under these assumptions, no known classical algorithm is expected to reliably sim-
ulate generic many-body dynamics for long times. However, compared to Level I, the theoretical
justification for speedup is often less rigorous, and verifying quantum advantage can be more diffi-
cult. For instance, verifying the output distribution of random circuit sampling typically demands
exponential classical resources. Consequently, evidence for advantage relies heavily on the empiri-
cal hardness of classical simulation. Certain quantum learning tasks can demonstrate exponential
advantage in sample complexity [HBCT22|. These advantages primarily stem from the quantum
nature of the input data and the availability of quantum memory [CCHL22|. This differs from
the computational tasks addressed in this book, which focus on problems with classical inputs and
outputs. Furthermore, the exponential advantage assumes that we have zero knowledge about the
quantum system being learned, which is often not the case in physical applications.

Level III of the hierarchy includes a large class of problems in quantum physics, quantum
chemistry, and materials science. By “quantum properties,” we refer to static characteristics of the
system, such as ground state energy, excited state energy, stationary states, and spectral properties.
By “effective dynamics,” we refer to processes that are not natively unitary, such as open system
dynamics involving dissipation or imaginary time evolution used for cooling. Compared to Level IT
problems, the mapping from these non-unitary objects to the unitary logic of quantum hardware
is indirect. This mapping often introduces overheads, such as the need for linear combinations
of unitaries, post-selection, or many ancillary qubits. The amount of information that needs to
be extracted from the quantum computer can be comparable to that in the quantum dynamics
simulation and is at most polynomial in n. In the case of the ground-state energy estimation, the
situation is even clearer since we only need to estimate a single number as the output. Compared
to unitary dynamics, there exist a much larger number of powerful classical algorithms for these
tasks. These are approximate methods and often cannot be used to converge to the true solution to
arbitrary precision. However, for many practical problems, they have been shown to be sufficiently
accurate. Input cost is also a major factor placing these problems at Level III. For example,
ground state estimation often requires a good initial guess (an ansatz) to succeed; generating
this ansatz can be computationally expensive or physically difficult, sometimes leading to QMA-
hard bottlenecks. Finally, we may design quantum algorithms to solve problems that are entirely
classical. For instance, we can consider quantum solvers for classical partial differential equations
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(PDEs), stochastic differential equations, unstructured optimization problems, and sampling tasks.
These cover a large variety of problems in scientific computing. However, many such classical
problems fall into Level IV because they have strong classical baselines and/or are I/O limited.
For example, many PDEs on a grid of size N can be solved classically in time polynomial in N
(often approximately linear in N using fast algorithms). Even if a quantum algorithm offers a
speedup in the processing stage, it faces the “I/O limit”: merely loading an arbitrary input vector
of size N into the quantum state takes time linear in IV, which negates any potential exponential
speedup. One exception arises when the classical data possesses significant structure that allows
for efficient loading; a potential advantage in this regime was recently demonstrated for a quantum
solver of a large number of classical oscillators [BBK™23|. Regarding unstructured search problems,
while Grover’s algorithm provides a quadratic speedup, this is often insufficient to overcome the
significant constant-factor overheads of fault-tolerant quantum error correction compared to highly
optimized classical heuristics. Thus, while the range of applications is vast, securing an end-to-
end advantage is difficult. That being said, many cryptography problems can be formulated as
classical optimization problems, and the next breakthrough in quantum algorithms may emerge
from classical problems again.

The ongoing evaluation and pursuit of quantum advantage is a rapidly developing field. When
discussing applications, we will only scratch the surface of the potential indications of quantum
advantage by examining aspects such as quantum input cost, output cost, running cost, and the
cost of classical algorithms, wherever possible. This approach is intended to encourage readers to
seek out these elements in their own research. However, it is important to understand that the
findings presented, while based on existing literature, are far from exhaustive or conclusive. The
rapid pace of advancements means that future developments could significantly alter the current
understanding and conclusions.

1.4. Quantum error correction and fault tolerant computation

All previous discussions assume that quantum operations can be perfectly performed. To this
end, quantum error correction is necessary. The threshold theorem [ABO97] is a central result
in the field of quantum error correction. The theorem essentially states that if the error rate of
quantum operations (including gates and measurements) is below a certain threshold value (around
0.001, though the precise value depends on the detailed assumptions), then it is possible to perform
quantum computation for an arbitrary length of time with arbitrarily high accuracy (see [NCOO,
Section 10.6]).

THEOREM 1.1 (Threshold theorem). There exists an error threshold p; > 0. If the physical
error rate p per gate operation satisfies p < py, there exists a quantum error correction scheme such
that the logical error rate q can be made as small as desired. In other words, ¢ = O((p/p:)*) for
any positive integer £.

We will not study the details of quantum error correction in this book. In classical computing,
modern algorithm design generally does not take error correction into account. Similarly, in the long
term, quantum error correction is expected to be largely a separate issue from the design of quantum
algorithms. We always assume quantum error correction protocols have been implemented, physical
noise has been eliminated, and the resulting quantum computer is fault-tolerant. For the purpose
of this book, all errors come from either approzimation errors at the mathematical level, or Monte
Carlo errors in the readout process due to the probabilistic nature of the measurement process.
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Quantum error correction is a dynamic and rapidly progressing field, and will significantly
impact the development and potential of quantum algorithms, and the landscape of quantum com-
puting. On a very coarse scale, we can categorize quantum algorithms based on the type of quantum
computer architecture they are designed for.

(1) Noisy intermediate-scale quantum (NISQ) computers: These devices represent the current
state of quantum computing technology. Characterized by a relatively small number (tens
to a few hundreds) of physical qubits, these systems are prone to errors and lack full
error correction capabilities. Quantum algorithms designed for NISQ devices, such as the
Variational Quantum Eigensolver (VQE), need to be error resilient and must be capable
of delivering meaningful results despite the presence of noise. Most of this book will not
discuss NISQ algorithms.

(2) Fully fault-tolerant quantum computers: These are the ideal, long-term goal of quan-
tum computing research. In these systems, quantum error correction protocols are fully
implemented, allowing quantum algorithms to run for long durations without being over-
whelmed by errors. This architecture will enable the execution of complex algorithms
that require a large number of qubits and gate operations. Many of the algorithms dis-
cussed in this book are designed for this type of architecture. At the current stage, the
goal of many fully fault-tolerant quantum algorithms is to minimize the total cost (in an
asymptotic sense with respect to certain parameters, such as precision, system size etc.)
for solving a given task.

(3) Early fault-tolerant quantum computers: This category represents a transitional phase
between NISQ devices and fully fault-tolerant quantum computers. These systems would
implement some form of quantum error correction, but they may have constraints such
as a very limited number of logical ancilla qubits. This means that they can only run
quantum algorithms within a certain complexity limit. Despite these constraints, early
fault-tolerant quantum computers provide an opportunity to test and refine fault-tolerant
designs and protocols, and to run quantum algorithms that are beyond the reach of NISQ
devices but do not require the full capabilities of fault-tolerant quantum computers. Some
of the algorithms in this book take such constraints into account and can be suitable on
early fault-tolerant quantum computers.

1.5. Error accumulation mechanisms in classical and quantum computation

Quantum computation aims at processing objects whose natural dimension is exponential, such
as vectors in C2" and matrices of size 2" x 2. No computation can be carried out exactly, so will
the error also accumulate exponentially with the system size? If that were the case, then quantum
algorithms would become useless precisely in the regime where they are designed to operate. In
this section we give a bird’s-eye view of the relevant error accumulation mechanisms.

At first glance, deterministic numerical computation can look discouraging in this respect.
Even a basic task such as forming an inner product involves many elementary operations, and
Example [T.2] shows a worst-case bound for the accumulated rounding effects that is proportional to
N =2,

However, scientific computation has long dealt with exponentially large state spaces without
requiring errors to grow linearly in the dimension. Randomized algorithms on n bits evolve a prob-
ability distribution on a space of size N = 2", yet the accuracy of the computation is governed by
how many transition steps are composed, not by N itself: if each step is implemented to accuracy
€, then the overall error is at most Ke, where K is the number of steps (see Proposition .



1.5. ERROR ACCUMULATION MECHANISMS IN CLASSICAL AND QUANTUM COMPUTATION 19

Quantum computation behaves in the same way at the level of circuit synthesis: a quantum algo-
rithm is a product of elementary unitaries, and the accumulated implementation error is controlled
by the number of gates. In particular, if the gate count is K and each gate can be implemented to
precision €/K, then the final error is O(e). In the fault-tolerant setting assumed above, achieving
such per-gate accuracy is a realistic requirement, and the overhead of approximating elementary
unitaries to a desired precision is discussed later (see Chapter |4). The distance notions used to
make these comparisons precise are developed in Chapter |3] and the Monte Carlo errors arising at
readout are discussed further in Chapter [§

1.5.1. Deterministic classical computation. Modern scientific computation on classical
computers is based on floating point arithmetic operations, which express a number in scientific
notation. For instance, the number —.271828 x 10° involves a sign (—), fraction (271828), base
(10), and exponent (5). In binary floating point, one stores a sign bit together with a fixed-length
exponent and fraction. For instance, the IEEE single precision uses 1 bit for the sign, 8 bits for the
exponent, and 23 bits for the fraction (32 bits long). The IEEE double precision uses 1 bit for the
sign, 11 bits for the exponent, and 52 bits for the fraction (64 bits long). For instance, a double
precision ranges from 271022 to 21023 or about 1073%® to 103°®. Numbers outside this range yield
underflow or overflow error and need to be handled separately. This is much more efficient than
the fixed point number representation (see Section , which would require more than 2046 bits
(i.e., more than 2046 logical qubits for a single number) to cover the same range of numbers.

The basic assumption is that any real number a should be represented by fl(a) using a given
number of bits. Similarly, any binary operation a ® b should be represented by fl(a ® b), where ®
is one of the four elementary binary operations +, —, *, /. The difference a ® b — fl(a ® b) is called
the roundoff error. When the number is rounded correctly, i.e., fl(a ® b) is a nearest floating point
number to a ® b, we have

(1.2) fila®b) =(a©b)(1+9),
where |§| is upper bounded by €pacn (called the machine precision).

Example 1.2. Given u,v € RY, consider the error accumulation of computing an inner product
vazl u;v;. The error from each operation in the floating-point arithmetic needs to be counted
separately. The floating-point representation of a product u;v; is given by w;v;(1 + €;), where
l€i] < €mach, and €mach is the machine epsilon.

However, when summing these products, there is an additional error introduced at each addition
step. Let us denote by (5; the relative rounding error incurred when adding the j-th term (so

|6§’ < €mach)- Then the partial sums satisfy
(1.3) A(sj—1 + ujv(1+€5)) = (s5-1 + uyv;(1+¢5)) (14 65),
where s;_1 denotes the computed partial sum from the previous step. After summing over all N
terms, we may write
N
(1.4) 1+6:=1+e) [] 0+5).
j=i+1

Therefore if overflow or underflow does not occur, then

N N
(1.5) fi (Z Uﬂh‘) = Zuivi(l +3:), 18] € (1 + emacn) — 1 < elVemaen 1,
i=1 i=1
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<&

When Nepaen < 1, we have [6;] < 2Ne€pach- So the error grows linearly in N. This is due to
the step of adding N numbers following a linear order. For computing the inner product, the error
accumulation in the summation step can be significantly reduced using a technique called the pair
summation (or cascade summation) to O((log N)éemach). However, such a more accurate summation
method is more difficult to implement in broader scenarios such as matrix-matrix multiplication.
For most of the tasks, the poly(IN) factor in the error accumulation is unavoidable. For instance, for
solving a triangular linear system, the error accumulation is O(Nemach) [GVL13, Chapter 3.1]. For
Gaussian elimination (or LU factorization), standard backward-error bounds involve the growth
factor p and scale polynomially in N, typically of order O(N pemacn) [GVL13, Chapter 3.4].

That being said, not all deterministic computations involving vectors in CV necessarily exhibit
a poly(NN) accumulation of numerical error. Error accumulation is governed not by the ambient
dimension N itself, but by the number of elementary operations performed. For instance, tensor
network methods provide settings in which certain computations on structured vectors in CV can
be carried out using only poly(n) operations, where N = 2. We will not discuss tensor network
methods in this book, and classical probabilistic computation provides a more direct analogy to
quantum computation for tackling high dimensional problems, as discussed next.

1.5.2. Probabilistic classical computation. A probabilistic computation on n bits evolves
a probability distribution on a space of size N = 2", and hence it can be described by a vector in RV
acted on by stochastic matrices. The ambient dimension is exponential in n, but the computation
is specified by a sequence of local update rules. As a result, neither the cost nor the accumulated
implementation error needs to scale exponentially in N. This viewpoint also extends to the com-
parison between quantum and classical algorithms: a probability distribution can be viewed as a
special quantum state, and a transition matrix can be associated with a special quantum channel
(see Section [3.2)).

If we can implement each transition matrix to precision €, the global error of the overall tran-
sition matrix grows at most linearly with respect to the number of transition matrices and is at
most 1, Ke (see Proposition . Equivalently, if the gate complexity is K and we can implement
each transition matrix to precision €/ K, then the final error is upper bounded by €, independent of
N. Compared to deterministic classical algorithms, randomized algorithms introduce another error
mechanism: even when the transition rule is specified, one often estimates quantities of interest by
sampling, and the output is therefore subject to Monte Carlo fluctuations. For example, estimating
an expectation value by N, independent samples typically incurs an error of order O(Ns Y 2)7 in-
dependent of the size of the underlying sample space. The statistical side of this issue is discussed
further in Chapter [§

1.5.3. Quantum computation. Quantum algorithms are designed to handle objects of size
N = 2™ without explicitly storing N numbers. As in probabilistic computation, error accumula-
tion depends on how many steps are composed and on the metric used to compare channels (see
Chapter [3]), and they do not introduce an explicit dependence on N.

Every quantum circuit can be represented by a unitary U, decomposed into a series of simpler
unitaries as U = Uk - - - U;. Each U; can only be implemented approximately by some ﬁi to precision
€. The implementation cost of each simple unitary is independent of the Hilbert space dimension
N (see Chapter [4). This implies that for any vector |1} of size N, the error between U, |¢)) and
U; |1} is less than e with no explicit dependence on N.
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If we can implement each local unitary to precision €, the global error grows at most linearly
with respect to the number of gates and is at most Ke (see Proposition . In other words, if
the gate complexity is K and we can implement each gate to precision ¢/K, then the final error
is upper bounded by € and is independent of N. The same statement holds for quantum channels

(see Section [3.6)).






CHAPTER 2

Elements of quantum computation

This chapter lays the groundwork for our journey into quantum algorithms for scientific compu-
tation. We will review the mathematical and physical principles that underpin quantum computing.
While we assume a basic familiarity with quantum mechanics, our focus will be on establishing the
specific concepts and notational conventions used throughout this book. This chapter is not in-
tended as a comprehensive introduction to quantum computing, but rather as a targeted primer on
the tools we will need to build and analyze sophisticated quantum algorithms. For a more compre-
hensive introduction to quantum computation, we refer the reader to standard textbooks such as
[INCO00, Wat18].

We start with the postulates of quantum mechanics, introducing the Dirac notation and the
core principles governing quantum states and their evolution. We then move to the language of
quantum circuits, which greatly simplifies the tensor manipulations inherent in multi-qubit systems.
To handle scenarios involving noise and subsystems, we introduce the density operator formalism.
We will also discuss the no-cloning theorem, which forbids the copying of arbitrary quantum states,
and the principles of deferred and implicit measurement, which offer flexibility in circuit design.
The latter part of the chapter introduces the representation of structured matrices, including sparse
matrices and operators from fermionic and bosonic systems. We conclude with a selected list of
Hamiltonians from physics, chemistry, and optimization that will serve as motivating examples in
our exploration of quantum simulation and other applications.

2.1. Basic notation

The sets of real and complex numbers are denoted by R and C, respectively. For a complex
number ¢ € C, the notation ¢ or ¢* denotes its complex conjugate.

A complex vector v of size N is an N-tuple of complex numbers, written as v € CV, with its j-th
component denoted by v;. By default, we use O-based indexing, that is, j € [N]:={0,...,N —1}.
When 1-based indexing is used, we will explicitly write j = 1,..., V.

The vector 2-norm of v is denoted by |[v]| = /> iz |u;|>. Unless otherwise specified, a

vector v € CV is considered unnormalized. A nonzero, normalized vector (viewed as a pure quantum
state) is written as |v) = v/ ||[v||. To emphasize that a vector is unnormalized, we sometimes use
the notation |v}.

A matrix A of size M x N is denoted by A € CM*N "and its (i, j)-th entry is A;; or a;;. For
A € CM*N the complex conjugate of A, denoted by A or A*, is obtained by replacing each entry
of A with its complex conjugate. The inverse of A (if A is invertible) is denoted by A~!. The
transpose of A is denoted by AT. The Hermitian conjugate (or adjoint) of A, denoted by AT, is
the complex conjugate of the transpose of A, which can be expressed as AT = (AT)*. A matrix A
is Hermitian if it is equal to its Hermitian conjugate, i.e., A = AT. A matrix A is normal if it
commutes with its Hermitian conjugate, i.e., AAT = ATA. A matrix U is unitary if its Hermitian

23
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conjugate is its inverse, i.e., UT = U~!. The set of all N x N unitary matrices forms the unitary
group, denoted by U(N). The set of all N x N unitary matrices with determinant 1 forms the
special unitary group, denoted by SU(V).

If all eigenvalues of a Hermitian matrix A € CN¥*¥ are nonnegative, A is called a positive
semidefinite matrix, or positive operator, denoted by A = 0. The notation A > B means
A—B = 0,and A < B means B = A. Similarly, if all eigenvalues of A are positive, then A is called
a positive definite matrix, denoted by A > 0. The notation A > B means A — B > 0.

The operator norm (also called induced vector 2-norm)E| of a matrix A is

(2.1) HAM:::SHPIHAUH-

lvll=

In quantum information theory, it is useful to consider the Schatten p-norm of A:

1

(2.2) Al = (Te(aT) )", p>1.
The particularly useful one is the Schatten 1-norm (also called the trace norm)

(2.3) A, == Tr VATA.

For instance, any quantum state (density operator) p is normalized with respect to the trace norm,
i.e., [|p|l; = 1. Furthermore, the Schatten co-norm ||A||  can be shown to coincide with the operator
norm || A||. Many readers may not be familiar with the Schatten norms. We will discuss these norms
in detail in Chapter [3]

We adopt the following asymptotic notations: Let Ry be the set of positive real numbers.
Consider two functions f : R -+ Cand g : R — Ry. For any a € RU{%o0}, if limsup,_,, Eé—g‘
then we write f(z) = O(g(x)) as ¢ — a, or simply f = O(g)ﬂ when x — a is clear from the context.
We write f = Q(g) if g = O(f); f =06(g) if f = O(g) and g = O(f). Note that O(g) can also be
interpreted as a set, so it is also valid to write f € O(g). Similarly we may write f € Q(g), f € ©(g)
etc.

< 00,

The notation (5, ﬁ, O are used to _suppress subdominant polylogarithmic factors. Specifically,
f=0(g) if f = O(gpolylog(g)); f=Q(g) if f = Q(gpolylog(g)); f = O(g) if f = O(g polylog(g)).
Note that these tilde notations usually do not suppress dominant polylogarithmic factors. For
instance, if f = O(loggloglogg), then we write f = 6(logg) instead of f = (5(1) However,
for simplicity of presentation, we may sometimes use the notation O more casually to suppress
dominant polylogarithmic factors. When we do so, we will make an explicit mention of this usage.

Throughout the book, the natural logarithm is denoted by In, and is sometimes written as log
without an explicit base when the context is clear. The logarithm to base 2 is denoted by log,.
When N denotes the dimension of CV, and the notations N and n appear together, it is usually
assumed that N = 2™ for some positive integer n, referred to as the number of quantum bits (or
qubits). Additional notations will be introduced in the book as needed.

"n matrix analysis, the operator norm is sometimes denoted by |All5 to indicate that this is the induced vector
2-norm. More generally, the induced vector p-norm is [|Al|,, = sup), —; [|Az|, where ||z|, = > |zi|p)1/p. For
example, the induced vector 1-norm is ||All; = SUP|| 4|, =1 |Az||; = max; >, |a;;|. This book does not adopt such
a notation.

2Sometimes O(g) is treated as a set of functions, and by this interpretation we can equivalently write f € O(g).
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2.2. Postulates of quantum mechanics

This section encapsulates some of the most important postulates of quantum mechanics. All
postulates concern finite dimensional, closed quantum systems (i.e., systems isolated from environ-
ments). For more details, we refer readers to [NCOQ, Section 2.2].

2.2.1. State space postulate.

Definition 2.1 (Hilbert space). A (complex) Hilbert space denoted by H is a complex vector space
equipped with an inner product (-|-y : H x H — C that satisfies the following properties for all
z,y,z € H and all o, € C:

(1) (Conjugate Symmetry) (z|ly) = (y|z).

(2) (Linearity in the second argument) (z|ax + By) = alz|x) + B{z|y).

(3) (Positive-definiteness) (x|x) > 0 with equality if and only if x = 0.

Furthermore, H s complete with respect to the norm induced by the inner product, where the norm
of a vector x € H is given by ||z|| = v/ (z|z).

The state space postulate assumes that the set of all quantum states of a quantum system,
called the state space, is a Hilbert space. If the state space H is finite dimensional, it is isomorphic
(i.e., there is a one-to-one mapping) to some C", written as H = CV. Throughout the book, unless
otherwise specified, we only consider finite dimensional Hilbert spaces. A state vector (also called
ket vector, wavefunction, or pure quantum state) 1)) € H can be identified with a column vector
in CN

Yo

(01
(2.4) ) = :
YN-1
Let {e;} be the standard basis of CV. The i-th entry of ¥ can be written as an inner product
¥; = (e;|v). We also use the Dirac notation, which uses [¢) to denote a quantum state. We further
postulate that two state vectors |1) and ¢ |¢) for some 0 # ¢ € C always refer to the same physical
state. Hence without loss of generality we always assume |v) is normalized to be a unit vector, i.e.,
(1) = 1. Restricting to normalized state vectors, the complex number ¢ = €? for some 0 € [0, 27)
is called the global phase factor.

Throughout the book, unless otherwise specified, an unnormalized state vector is often denoted
by ¢ without the ket notation |-), and [¢) := 9/ ||¢|| denotes the normalized counterpart.

The bra vector (1| can be interpreted as a linear functional on #H, which maps any |p) € H to
a complex number (¥|p). When H = CV, we have (1|p) = 2ielN] Pip;. It can be identified with
a row vector, which is the Hermitian conjugate of the column vector ¢:

(2.5) oT= (G0 1 - Pnoa).

The set of all bra vectors, or linear functionals on H, is denoted by H*El

Given a state space H, let L(H) denote the set of all linear operators on H. When H = CV,
L(CY) can be identified with the set of N x N matrices, denoted by CV*¥. The ketbra notation
[tX¢| is an element in L(H), which maps any vector |§) € H to another state vector in H as

3The star x acting on a vector space does not mean the complex conjugation of H. This notation is only used
occasionally in the book. A Hilbert space satisfies H 22 H* by the Riesz representation theorem.
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[) {p|€). The matrix representation of |¢))p] is the product of the column vector ¢ and the row
vector of, i.e., Yl € CNXN,

Example 2.2 (Single qubit system and Bloch sphere). A (single) qubit corresponds to a state
space C2. We also define

(26) m=(5). m=(3)-

Since the state space of the spin—% system is also isomorphic to C2, this is also called the single spin
system, where |0),|1) are referred to as the spin-up and spin-down state, respectively. A general
state vector in C? takes the form

(2.7) [6) = alo)+b1) = (b) abeC,

and the normalization condition implies |a|® 4 [b]* = 1. So we may rewrite |t as
- 0 ; 0

(2.8) [) = e (cos 3 |0) + €' sin 3 |1>) , B,0,7€R.

If we ignore the irrelevant global phase e?? (which also absorbs a minus sign in the coefficient of
|0)), then it holds

6 , 6
(2.9) |w>:(;os§|0>—i—e“°sin§|1>7 0<0<m0<p<2m.

So we may identify each single qubit quantum state with a unique point on the unit three-
dimensional sphere (called the Bloch sphere) as

(2.10) a = (sin @ cos @, sin @ sin p, cos §) " .
o

2.2.2. Quantum operator postulate. The quantum operator postulate states that the evo-
lution of a quantum state from [¢) — |[¢') € H is always achieved via a unitary operator U,
ie.,

(2.11) W) =Ul), UU=LI

Here UT is the Hermitian conjugate of U, and I is the identity map that can be identified with a
N-dimensional identity matrix. The set of all NV x N unitary matrices is the unitary group, denoted
by U(N). The set of all N x N unitary matrices with determinant 1 forms the special unitary group,
denoted by SU(N).

This unitary evolution is derived from the system’s Hamiltonian H € L(H), which is a
Hermitian matrix that encapsulates the total energy of the system and thus governs its dynamics.
For a time-independent Hamiltonian H, the state |1)(t)) satisfies the Schrédinger equation

(2.12) i0; [(t)) = H |1(t)) -
The corresponding time evolution operator is
(2.13) Ulty, ty) = e” =t yy > ¢

In particular, U(te,t1) = U(ta — t1,0).
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More generally, starting from an initial quantum state [¢)(0)), the quantum state can evolve in
time, which gives a single parameter family of quantum states denoted by {|t(t))}. These quantum
states are related to each other via a quantum evolution operator U:

(2.14) [¢(t2)) = Ultz, t2) [9(t1))

where U (t2,t1) is unitary for any given tq,to. Here ty > t; refers to quantum evolution forward in
time, to < t; refers to quantum evolution backward in time, and U(¢1,t1) = I for any ¢;.
In quantum computation, a unitary matrix is often referred to as a quantum gate.

Example 2.3. For a single qubit, the Pauli matrices are

0 1 0 —i 1 0
(2.15) O'IX<1 0>, O'yY<Z. 0), JZZ<0 _1).

Together with the two-dimensional identity matrix, they form a basis of all linear operators on
C2. o

Some other commonly used single qubit operators include, to name a few:

¢ Hadamard gate

(2.16) H = % (} _11)

e Phase gate

(2.17) S = (é ?)
o T gate:
(2.18) T= <é ei9/4> =Vs.

When there are notational conflicts, we will use the roman font such as H, X for these single-qubit
gates (for example, to distinguish the Hadamard gate H from a Hamiltonian H). An operator
acting on an n-qubit quantum state space is called an n-qubit operator.

Example 2.4. For P € {X,Y, Z}, the unitary evolution generated by the Hamiltonian H = P is
a rotation about the corresponding Bloch-sphere axis. Concretely,

Ry (21) me—itX — ( cos(t) —z'sin(t)>7

—isin(t)  cos(t)

(
(2.19) R, (2t) :=e Y = < COS((t)) —sin(t) )

sin(t)  cos(t)

—q eiit 0
R.(2t) :=e "% = < 0 eit> .

For instance, starting from an initial state |¢)(0)) = |0), under R, (2t) at time ¢t = 7/2 the state
evolves into |[¢(7/2)) = —i|1), i.e., the |1) state up to a global phase. ©

THEOREM 2.5 (Spectral theorem of normal matrices). Given a matriz A € CN*N | the matriz
A is normal (i.e., AYA = AAY), if and only if

(2.20) A=VDVT,
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Here, D € CN*N s q diagonal matriz containing the eigenvalues of A, and V € U(N) is a unitary
matriz whose columns are the eigenvectors of A.

A more general decomposition, which plays a key role throughout the book, is the singular
value decomposition (SVD).

THEOREM 2.6 (Singular value decomposition). Given any matriz A € CM*N | there exist uni-
tary matrices U € U(M) and V € U(N), and a diagonal matriz ¥ € CM*N with non-negative real
numbers on the diagonal, such that

(2.21) A=UxVT.

The diagonal entries of ¥ are called the singular values of A, the columns of U are called the left
singular vectors of A, and the columns of V' are called the right singular vectors of A.

Operator exponentials, also called matrix exponentials, gives us a way to express gates as
operator exponentials and because the algebra of exponentials makes this representation far easier
to work with than explicitly writing the unitary in a matrix representation.

Definition 2.7 (Matrix function). For A € CN*N  and a complex valued function f : C + C, the
matrixz function f(A) is defined as follows:
(1) If f is an analytic function such that f(x) =372, ax’ then f(A) =372, a;A7.
(2) If f is a complex valued function and A is a normal matriz such that A = VDV where V
is unitary and D := diag(Xo, ..., An—1) where f(\;) € C. Then f(A):=V f(D)V where
f(D) = diag(f(Xo) -, f(An-1))-

The definition of a matrix exponential can be seen as a direct consequence of either of the above
definitions, and both definitions find extensive use in quantum computing. Specifically, using the
former definition we have that for any matrix A

o

AJ

A il

(2.22) eti=>" T

=0

Matrix function can also be defined for non-normal matrices using contour integrals (see [Hig08|
Chapter 1]).

Lemma 2.8. Let A € CN*N and let U € U(N) be a unitary matriz, then UeAUT = VAU

The following result can be viewed as the simplest realization of the Baker—Campbell—
Hausdorff formula (BCH).

Lemma 2.9. For any A, B € CN*N | we have
(1) if [A,B] =0, then edeB = A+B,
(2) if [A,[A, B]] = [B,[A, B]] = 0, then e?eB = eATB+3AB]
(3) if [A, B] #0, then e?eP = eATB+314Bl L O(max(||A]l, || B||)?).

In general, we can express any unitary operator as an exponential of a Hermitian operator.
This result is a direct consequence of the definition of the operator exponential.

Lemma 2.10. For any unitary matriz U € U(N), there exists a Hermitian matric H € CN*N

such that U = e *H,
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PROOF. A unitary matrix U is a normal matrix. According to Theorem [2.5] the unitary matrix
U can be diagonalized as
(2.23) U=VDVT,

where V € CV*V is a unitary matrix and D is a diagonal matrix. The diagonal entries satisfy
|Dy;| = 1. Without loss of generality we can write D;; = e~*% where 6; € [0,27). Then define a
diagonal matrix ©;; = 6;, and H = VOV, we obtain U = e~*/. Note that the matrix H is not
unique since each #; can be chosen modulo 27. O

In many scenarios such as the analysis of quantum simulation using Trotter-Suzuki formulas,
we need to find Taylor series expansions of conjugated operators.

Lemma 2.11. Let A, B be normal matrices in CN*N and let t € R. We then have that
A, Bt [A[A B]lt? (A A [A B
A, Bt | [AA B (A A4 B]E

1! 2! 3!

ProoOF. We note that the above result is a power series in ¢, which must coincide with the
Taylor series expansion of the function f(t) = eA*Be~“? because the function is analytic. Thus
the expression is true if the k-th derivative of f(t) at ¢ = 0 is given by the k-fold commutator. We
prove by induction that

(2.24) eM'Be At = B 4+

(2.25) 6f(eAtBe_At) = At [A,[A, -+ ,[A,B] - ]]]e_At,
where the commutator is applied k times. The base case k¥ = 0 holds trivially. Assume the
hypothesis holds for some k& > 0. Then

Ot (e Bem ) = 8, (eM[A [A [+, [A, B] -+ ]lle™™)
(2'26) = eAt (A[A7 [ T [A7 B] T ]] - [A7 [ T [A7 B} o ]]A) e_At

= eAt[A’ [A’ [ B [A>B] T meiAtv

where the final expression contains k+1 commutators. This confirms the inductive step. Evaluating
at t = 0 yields the coefficients of the Taylor series, completing the proof. (Il

2.2.3. Quantum measurement postulate. In quantum mechanics, a quantum observ-
able is always represented by a Hermitian matrix acting on the state space. The reason for using
Hermitian matrices is that they have real eigenvalues, which correspond to the outcome of quan-
tum measurements.

A quantum observable O € L(H) has the spectral decomposition

(2.27) O=> AnPn.

Here A, € R are the eigenvalues of O, and P,,, € L(H) is the projection operator onto the eigenspace
associated with \,,. The quantum measurement postulate states that when conducting a measure-
ment on a quantum state |1) with respect to a quantum observable O, the eigenvalues A, represent
all the possible results of the measurement. Furthermore, the probability of obtaining a particular
outcome A, is

(2.28) Pm = (Y| Pl9) -

Following the measurement, the quantum state collapses to the corresponding eigenspace
P

(2.29) [v) — P 19}

VP
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The set of projection operators satisfies the resolution of identity:
(2.30) }:}%121.
m

This implies the normalization condition

(2.31) D pm =D WIPnlY) = @) =1, VY[¢) € H.

m

Together with p,,, > 0, we find that {p,,} is indeed a probability distribution.
The expectation value of the measurement outcome can be expressed as

(2.32) m®=ZMM=ZMM%M=@<me>

Example 2.12. Let O = X be the Pauli X operator. From the spectral decomposition of X:

w>=wmw.

(2.33) X ) =2z [4),
where |£) := %(\0) +11)), Ay = =+1, we obtain the eigendecomposition
(2.34) O=X=[+){+ -2l
Consider a quantum state |) = |0) = %(H—) +|—)), then
(23) (1P k) = (6IP- 1) = 5.
Therefore the expectation value of the measurement is (¥| X |¢) = 0. o

Exercise 2.1. Prove Eq. (2.34).
2.2.4. Tensor product postulate.

Definition 2.13 (Tensor product). The tensor product of two finite dimensional Hilbert spaces
H1 and Hsy is a complex vector space, denoted by Hi ® Ha, spanned by vectors of the form v ® w
with v € H1 and w € Ho. The bilinear map @ : H1 x Ha — H1 ® Ha satisfies for all v,v' € H,
w,w’ € Ha, and scalars o, € C:

(1) (av+pVY@w=alvew)+ W @w) and v® (acw + Pw’) = a(v @ w) + v @ W').

(2) () @w = alvew) and v @ (fw) = v R w).

The tensor product is associative in the sense that the two vector spaces (H1 @ Hsa) ® Hsz and
Hi ® (Ha ® Hs) are isomorphic. Let Hi,...,Hy be finite-dimensional Hilbert spaces with inner
products (-|-); for ¢ = 1,2,... k. The tensor product of these k spaces can be recursively defined
as H1 @ Ho ® -+ @ Hy := H1 ® (Ha ® -+ ® Hy), which is spanned by all elements of the form
V1 ® Vg ® --- ® v called product states, where v; € H; for i = 1,2,..., k. The inner product
of two vectors v = 11 QU ® --- ® v and w = w; ® wy ® -+ ® wy, in the tensor product space
H1 Q@ Ho ® -+ ® Hy, is defined as

(vlw) = (vi|wi)1 - (v2|wa)2 - - - (Ve |wi) k-

This inner product is extended linearly to the entire tensor product space as

<Z a;V; ijwj> = Zaﬁbj@ﬂwj), ai,bj e C.
i J 4,
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The tensor product postulate states that the state space with k components Hq = CNt, ..., Hy, =
C™e is the tensor product of these spaces H = Hy ® Ho ® - -+ @ Hy. Let {|ji)};,en,] be the basis
of CNi, then a general state vector in #H takes the form

(2.36) ) = > Vjyep 1) @ - @ k) -

J1€[N1],..., k€[ Ng]

Here 1j,...;, € Cis an entry of a k-way tensor. Given another state vector

(2.37) lp) = > Pjregie 171) @ - @ |k) 5
J1€[N1),...,5k €[Ny]

the inner product takes the form

(2.38) (Ylp) = > Vs g Pireein-

J1E[N1],.... ik €[Nk]

The state space of n-qubits is H = (C?)®" = C?". We also use a shorthand notation: the
tensor product ® may be omitted when the context is clear.

(2.39) 01) =10,1) = [0)[1) = |0) @ [1), [0®7) = |o™) = |0)®".

The tensor product operation provides us with a powerful way to describe two independent
copies of different vector spaces as a single larger vector space. Further, the tensor product when
viewed through this lens does not care about the nature of the form of the Hilbert spaces that
are being combined. In fact a particularly important case that we need to consider is the tensor
product between two operators.

Definition 2.14 (Tensor products of linear operators). Given two finite dimensional Hilbert spaces
H1 and Ha, the tensor product of L(H1) and L(Hz), denoted by L(H1) ® L(Hz), is a complex vector
space spanned by linear operators of the form A® B with A € L(H1) and B € L(Hs). The bilinear
map ® : L(H1) X L(H2) — L(H1) ® L(Hz) satisfies for all A,B € L(H1) and C,D € L(Ha),
v € Hy, w € Hy and scalars o, B € C:

(1) (@aA+8B)@C=aAC+BBRC and A® (aC+ BD)=aARC+ AR D.
(2) (tkA)® B=aA® B=A® (aB).

The space L(H1)® L(H2) is isomorphic to L(H1 ® Hz). The tensor product is also associative in
the sense that L(H1) ® (L(Hz2) ® L(H3)) is isomorphic to (L(H1) ® L(H2)) ® L(H3). A consequence
of this definition is further that the application of multiple tensor products of linear operators on
matching tensor products of vectors distributes across the tensor product via

(2.40) (A @A ® - @A) (01 @U2 ® - @ ug) = (A1v1) @ (Aov2) @ -+ - ® (Agvy).

Example 2.15 (Two qubit system). The state space is H = (C?)®? =2 C*. The standard basis is
(row-major order, i.e., last index is the fastest changing one)

0

(2.41) 100) = , o1y = . |10) = 1) =

o O O
O O =

O~ OO
= o O O
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There are many important quantum operators on the two-qubit quantum system. One of them
is the CNOT gate, with matrix representation

1000
0100
(2.42) CNOT= |, o o 1
0010

In other words, when acting on the standard basis, we have

|00y = ]00)
01) =|01

(2.43) CNOT 1) 01)
[10) =]11)
[11) =]10)

This can be compactly written as
(2.44) CNOT |a) |b) = |a) la @ b).
Here a ® b = (a +b) mod 2 is the “exclusive or” (XOR) operation. o

Definition 2.16 (Controlled unitaries). A controlled unitary operation is a quantum gate that
applies a specified unitary operation U to a set of target qubits only when the control qubits are in
a particular state, typically the |1) state for each control qubit. The single qubit controlled unitary
operation can be represented as:

CU=10)(0| @I+ |1)(1|aU.
An n-qubit controlled unitary can be written as:
C'U=(1-|1"{1") I+ [1"{1"eU.

The CNOT gate is the same as CX. Controlled unitaries are ubiquitous in quantum algorithms.
In particular, it enables conditional logic within quantum circuits.

Example 2.17 (Multi-qubit Pauli operators). For a n-qubit quantum system, the Pauli operator
acting on the i-th qubit is denoted by P; (P = X,Y, Z), i.e.,

X;:=1%0"D g X @ 18n=9),
(2.45) Y =1°0"D @y @1,
Z;:=1%0"D @ 7 @ [0,

For example, in a 2-qubit system, following the row-major convention, the matrix representation of
X1, X, are

0010 0100
000 1 1000
(2.46) Xi=xel=|] o4 o] Xe=1ex=|,, o |
0100 0010
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Definition 2.18 (Pauli group). The n-qubit Pauli group, denoted as Py, is a group that consists
of all possible tensor products of n-qubit Pauli matrices along with multiplicative factors of +1 and
+i. Fach element of the n-qubit Pauli group can be represented as

FPRP® - ®P,),

where k € {0,1,2,3}, each P; is one of the Pauli matrices X, Y, Z, or the identity matriz I, and
® denotes the tensor product.

The n-qubit Pauli group contains 4”+! elements due to the 4™ possible tensor products of Pauli
matrices and identity matrices, each multiplied by one of the four possible phase factors £1, +i. It
plays a key role in quantum simulation and quantum error correction. Note that the product of
any two elements is another element of the group (up to a phase factor), and every element is its
own inverse (up to a phase factor).

Definition 2.19 (Clifford group). The n-qubit Clifford group, denoted as Cy,, is a group of unitary
operators that normalizes the n-qubit Pauli group P,. This means that for every Clifford operator
C € C, and every Pauli operator P € P, there exists a Pauli operator P' € P, such that

crct =p.

The Clifford group includes all elements of the Pauli group, the Hadamard gate H, the phase
gate S, and the CNOT gate. It can be generated by {H, S, CNOT}.

Example 2.20. The single-qubit Pauli group P; is defined as the group generated by the Pauli
matrices X, Y, Z together with the phase factor i:

Py ={i*P|kec{0,1,2,3}, P {I,X,Y,Z}}.
We show that P; can be generated by the set {H,S}. First, we obtain the Pauli Z operator by

squaring the phase gate:
2
o (1 0\ _ (1 0} _
5 _<0 i/ \0 -1 =7

Next, we utilize the property that the Hadamard gate transforms Z into X under conjugation.
Since H is Hermitian and unitary, we have:

X=HZH=HS’H.

The Pauli Y operator can be generated by conjugating X by S. We compute the conjugate
transpose ST = diag(1, —i) and verify the relation:

wxs=(0 8 ()6 )
(o)l 1))

Since S is unitary and S* = I, we have ST = §~! = 83, Thus, Y = SX 5.
Finally, since XY Z = iI, we conclude that {H, S} generates the entire Pauli group P;.

Since ,
2 (1 0 (1 0 _
T° = (O 6i7r/4) - (0 6i7r/2> - S7

it immediately follows that {H, T} also generates P;. o
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The Clifford group plays an important role in many areas. In quantum error correction, Clifford
operations can transform certain errors into forms that are more easily correctable. This makes
it desirable to choose Clifford gates to be part of a universal gate set (the most common one is
Clifford + T'). Additionally, the Gottesman—Knill theorem states that any quantum circuit using
only Clifford gates on computational basis states and measurements in the computational basis can
be efficiently simulated classically.

Example 2.21. We can concisely describe block matrices stored within a larger matrix. The
matrix representation of T € L(CNM @ CNM)  when writing in the block form,

Too -+  Ton-1
(2.47) T = : : , T € CMXM,
Tn-10 -+ Tn-1,N—1
can be rewritten as
(2.48) T= Y le)es| @ Ty
i,j€[N]

<

The notation for partial inner products and partial applications of operators is used throughout
this book, particularly in the context of block-encoding.

Definition 2.22 (Partial inner product). Consider two finite dimensional Hilbert spaces Ha = CN
with an orthonormal basis {|e;)}ie(n), and Hp = CM with an orthonormal basis {|fi)}icar). The
partial inner product (-|-) is a map Ha X (Ha ® Hp) — Hp defined as follows. For any v € Ha,
weHARHEB

(2.49) (lw) = ((wles) ei, filw)) 1£;) € Ha.
j
With some abuse of notation, the partial inner product (-|-) also denotes a map: (HaQ@Hp)XHa —
% according to

(2.50) (wlo) =Y ({eslv) (wlei, f)) (f;] € H-
ij

This definition of a partial inner product has been used in the literature in several works such
as [LC17b]. A problem with the notation though is that it requires that the reader pay close
attention to the dimensions of the objects in question in order to infer the dimension of the output
with a partial inner product. This runs counter to the advantages of Dirac notation which can
be confusing when used in the context of conventional Dirac notation where the inner product is
always a scalar. While its brevity is an advantage, great care must be taken when using the above
notation to avoid making mistakes about the shape of the output.

Example 2.23. Let |v) = %|O> + %\1) be a one-qubit state, |w) = |0) ® (]00) + |11)) + |1) ®

(|01) 4 |10)) be a three-qubit state, then the partial inner product
1 1
V2 V2

is a two-qubit state. o

(2.51) (v|w) = (]00) 4+ |11)) + —=(|01) + [10))
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Example 2.24. Let w =3}, yjl€i) ® [w;) be reshaped into a matrix
(2.52) W = (’LUU s ’wN71) € (CNXM.

Then the partial inner product (e;|w) for i € [N] picks out the i-th column w;. Similarly, the partial
i

inner product (wle;) picks out the ith row of W1, which is w). o

The partial inner product between pure states provides a natural way to focus our attention
on one of the subspaces involved. Sometimes however, we will wish to apply a transformation on
the system in question. This generalizes the concept of the partial inner product, and will be vital
in our later discussion on block-encoding in Chapter [0

Definition 2.25 (Partial application of operators). Consider two finite dimensional Hilbert spaces
Ha = CN with an orthonormal basis {|e;)}icqn), and Hp = CM with an orthonormal basis
{Ifi) Yieran)- A partial application is a map (H} @ L(Hp)) x (Ha®Hp) — Hp so that for [v) € Ha,
C e L(Hp), |u) e Ha @ Hp,

(2.53) (] @ C) [u) =D ((vlej) (ej, fulw) (C|fr)) € Hp.
ik
Similarly we define
(2.54) (ul (Jo) @ C) = ({ejlv) (ules, fi)) ((fr| C) € HE.
ik
Example 2.26. The partial inner product can also be viewed as a partial application of the identity
gate, i.e., for |v) € Ha, I € L(Hp), |u) € Ha @ Hp
(2.55) (wlu) = (@) |[u),  (ulv) = {ul(jv) @ I).

For T'= 3% lejXek| ® Tjk, the quantity ((e;|® I)T" can be represented as a rectangular matrix
that consists of the i-th block row of 71"

({eil @ DT = ({ea] @ I)Z lejXexrl @ Tin

(2.56) i
= Z (e @Tie = (Tio -+ Tin-1),
%

Similarly, T'(|e;) ® I) picks out the j-th block column of the matrix T
T(le;) @T) = bk lei) ® Tig

ik

(2.57) Th,;
= Z ‘61> ® Tij = R

‘ Tn-1,
and ((e;| ® I)T(|e;) ® I) returns the (i, j)-th block T;; as can be seen via
(2.58) ((eil @ DT (ej) @ 1) = ((es| @ 1) Y _ |ex) @ Tay = Ty

k

With some abuse of notation, we may omit the ®I notation, so ({e;| ® I)T(|e;) ® I) may be
written simply as (e;| T |e;). o
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2.3. Density operator

So far all quantum states encountered have been described by a single state vector |1). How to
describe a classical mixture of state vectors, such as the state after a measurement process? How
can the state of a subsystem within a larger quantum system be defined? The answer to these
questions requires the formulation of the density operator (also called density matrix).

Definition 2.27 (Density operator). A linear operator p € L(CV) is called a density operator, if
p =0, and Trp = 1. The set of all density operators is denoted by D(CN).

The density operator corresponding to a state vector |¢) is a rank-1 matrix

(2.59) p =[Nl

Recall that quantum mechanics postulates that |¢) and |¢)') = €*? |4)) represent the same physical
state. This statement is more natural from the perspective of the density operator, since

(2.60) pl= ' = e ) e (vl = p.

In physics, such an irrelevant phase factor is referred to as a gauge degree of freedom. The density
operator p encapsulates the same physical information as is present in |¢)), but with the added
benefit of being invariant to the gauge choice.

With some abuse of terminology, throughout this book, both the density operator p and the
state vector |¢) are called quantum states. A rank-1 density operator is called a pure state.

Exercise 2.2. Prove that all eigenvalues of a density operator p belong to [0, 1]. Furthermore,
p? =< p, and the equality holds if and only if p is a pure state.

If p is not a pure state, then it is called a mixed state. We can diagonalize the density matrix
as

(2.61) p= Zpi i) (i =: Zpipu

where all state vectors [i);) are orthogonal to each other, and each p; is a pure state. On the other
hand, if we have the ability to prepare each pure state p;, then to create the mixed state p, all we
need to do is prepare a state p; randomly, with the probability of preparing each state given by
pi- In essence, a mixed state can be seen as a classical ensemble of pure quantum states. In
particular, an n-qubit state p = 2% is called the maximally mixed state.

Let {p;} be a set of density operators. With any discrete probability distribution {p;}, define
p' = > ;pjpj- Then p' = 0 and Tr[p'] = >, p; Tr[p;] = > ;p; = 1. Therefore p’ is a density
operator. In other words, a classical ensemble of (pure or mixed) density operators is also a density
operator.

Example 2.28 (Expectation value of a quantum observable). Let us consider the expectation value
of an observable O with respect to a mixed state p. Since the expectation value with respect to a
pure state is

(2.62) (0),, = (¥i|Olh;) = Tr[Opi],

if we obtain the expectation value for a mixed state that obtains a pure state p; with probability
pi, the expectation value is concisely written as

(2.63) (0), = 3" p Tr{0p:] = (O,
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The measurement process can be described without referring to a quantum observable. A
quantum measurement can be described by a set of measurement operators {M,, }, where m labels
the different possible outcomes of the measurement. The operators M,, act on the state space H of
the system and satisfy the completeness relation: ) M,JLLMm = I. After a measurement described
by M,, is made on a quantum system in a state p, the probability of getting result m is given by

(2.64) P = Tr[M,,pM] ].

If outcome m occurs, then the state of the quantum system collapses to a new state
(2.65) o = m

The density operator of the resulting ensemble is

(2.66) P= Pmbl =Y MyppMif,.

If each M, is a projection operator denoted by P,,, then {P,,} is called a projective mea-
surement. When a quantum observable is measured, the action that is performed on the quantum
system is a projective measurement. That is, the state of the system is projected onto an eigenstate
of the observable, corresponding to the obtained result of the measurement.

Example 2.29 (Projective measurement). Let the initial state p = |¢) (¢| be a pure state subject
to a projective measurement {P,, }.,. After measurement, the system collapses into a state |1),,) =
Py b)) //Pm with probability p,, = (¢|Py,|¢). If we attempt to represent it by a pure state, one
natural choice seems to be [¢)') = 3" \/Pm |¢m). However, using the normalization condition of
the projective measurement in Eq.

(2.67) > P W) =3 o P |8) /B = D P [¥0) = [0

In other words, state before and after the measurement is exactly the same! This clearly does not
make sense.
Instead, the resulting state should be be represented by a mixed state

(2.68) P =" [Ym) | = P |90) (0| P = PonpPrn.

&

The partial trace is an operation on a joint quantum state (often representing a composite
system), which effectively “traces out” one or more subsystems to leave a reduced density operator
for the remaining subsystem(s). The operation is widely used in quantum mechanics, especially in
the study of open quantum systems, quantum information, and quantum computation.

Definition 2.30 (Partial trace). Consider two finite dimensional Hilbert spaces Ha = CN with an
orthonormal basis {|e;) }ie(n), and Hp = CM, and T € L(Ha ® Hp). The partial trace over Ha,
denoted by Tra(T) is an element in L(Hp) defined as:

(2.69) Tea(T) = > (el ® DT(Jei) ® ).
1E[N]

The partial trace Trg(T) is defined similarly.
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Example 2.31. The matrix representation of 7' € L(CY @ CM) takes the form of a block matrix

Too -+  TonN-1
(2.70) T= : : , Ty € CMxM,
Tn-10 -+ Tn-1,N-1
Then
(2.71) Tra(T) = Y Ti
1€[N]
is the sum of all diagonal blocks. o

Given a density operator p € D(Ha ® Hp), the partial trace
(2.72) pa=Trplp] € D(Ha), pp="Tralp] € D(Hp)
are called reduced density operators. In particular, if p = p; ® ps, then

(2.73) Trglp] = p1, Tralp] = po.

Note that even if p is a pure state, in general, the reduced density operators p 4, pp are mixed states.

If a quantum observable is defined only on the subsystem A, i.e., O = Oy ® Ig and O4 =
> Am P, then when measuring a quantum state p with respect to O, the probability of obtaining
Am, and the expectation value only depend on the reduced density matrix pa:

(2.74)  pm = Te[(Pn @ I)p] = Tx[Py Trplpl] = Tr[Prnpal,  Ep[O] = Tr[(Oa @ I)p] = Tr[Oapal.

Exercise 2.3. The Bell state (also called the EPR pair) is defined to be

1

1 110
= 5000y +111) = = |
1

(2.75) %)

Use the partial trace over the second qubit to prove that the Bell state cannot be written as any
product state |a) ® |b).

Example 2.32 (Purification of mixed state). Any mixed state can always be dilated to a pure state
using ancilla qubits. In particular, any n-qubit mixed state p can be expressed as > ; i1 XA
where |);) are the eigenvectors of p, and p; is the corresponding eigenvalue. Given this we can
construct a 2n-qubit pure state

(2.76) p) = Z\/ITjI/\j>A Ai)g -

Then Trp(|p)pl) = p. o

A more general concept than projective measurement is called generalized measurement,
also called positive operator-valued measure (POVM).

Definition 2.33. A positive operator-valued measure (POVM) is a set of positive semidefinite
operators {En,} that sum to the identity:

(2.77) > En=1I En>0.
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If a quantum system is in state p, the probability of obtaining outcome m is given by
(2.78) Pm = Tr[Eppl.

Unlike projective measurements, the elements E,, of a POVM are not necessarily orthogonal,
nor are they required to be projection operators (i.e., E2, need not equal E,,). However, POVMs
provide the most general description of quantum measurements. On the other hand, the Naimark’s
dilation theorem (see e.g. [Watl8, Chapter 2.3]) tells us that any generalized measurement can be
implemented by coupling the system of interest to an ancilla system and performing a standard
projective measurement on the composite system.

THEOREM 2.34 (Naimark’s dilation theorem). FEvery POVM can be realized as a projective
measurement on a larger Hilbert space. Specifically, given a POVM {E,,} on Ha, there exists
an auziliary Hilbert space Hp, a pure state |0) 5 € Hp, and a projective measurement { Py} on
Ha @ Hp such that for any state p on Ha:

(2.79) Tr[Emp] = Tr[Prn(p @ [0X0] 3)]-

PROOF. Since each E,, is positive semidefinite, we can define M,, = \/E,, such that M M,, =
E... Let Hp be a Hilbert space with an orthonormal basis {|m)} corresponding to the indices of
the POVM elements. We define a linear operator V : H4 — H o ® Hp by its action on an arbitrary
state |¢) € Ha:

(2.80) V) = My |th) ® |m)p.

This operator is an isometry because

(2.81) (V[Vp) = > (| M, My, 1) (mln) =Y (1] M, My, 1)) = (3] (Z Em> W) = (Py).

m,n m

We can extend this isometry to a unitary operator U acting on Ha ® Hp such that U(|¥) ®
|0) 5) = V' |¢). Now, define the projective measurement on the composite system by the projectors
I, = I ® |m)m|p. Let P,, = UL, U. Since U is unitary and {I,,} are orthogonal projectors
summing to identity, {P,,} is a valid projective measurement. Finally, we verify the probability
condition:

Tr [P (p ® |0X0|5)] = Tr[UTL,U (p @ |0)0]5)]
(2.82) = Tr[l1,,U(p @ |0)0]5)U]
= Te[(La ® [m)(m|p)V V).

Using the definition of V', we have VpV1 = Dokl MkleT ® |kXl|p. Substituting this back,

Te [P (p ® |0)0]5)] = Tr | (Ia ® [m)m|5) > MypM, @ |kXI|5
(2.83) k.l

= Tx[MynpM},] = Te[M], My, p] = Tr[Epnp).
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2.4. Quantum circuit

Nearly all quantum algorithms operate on multi-qubit quantum systems. When quantum op-
erators operate on two or more qubits, writing down quantum states in terms of its components as
in Eq. quickly becomes cumbersome. The language of quantum circuit offers a graphical
and compact manner for writing down the procedure of applying a sequence of quantum operators
to a quantum state. For more details see [NCOQ, Section 4.2, 4.3].

In the quantum circuit language, time flows from the left to right, i.e., the input quantum state
appears on the left, and the quantum operator appears on the right, and each “wire” represents a

qubit i.e.,
) U )
Here are a few examples:
0) o ~1) o) +)

which is a graphical way of writing
(2.84) X|0)=11), z[1)=—[1), HI0)=|+).

The relation between these states can be expressed in terms of the following diagram

0)—"—1)

(2.85) H[ [H

+)—Z—=1-)
Also verify that

0 B
0) ——— 10)
which is a graphical way of writing

(2.86) (X ®I)|00) = |10).

Note that the input state can be general, and in particular does not need to be a product state. For

example, if the input is a Bell state , we just apply the quantum operator to |00) and |11),

respectively and multiply the results by 1/ v/2 and add together. To distinguish with other symbols,

these single qubit gates may be either written as X, Y, Z, H or (using the roman font) X,Y,Z, H.
The quantum circuit for the CNOT gate is

@) —4— o)

b)) —— la® D)

Here the “dot” means that the quantum gate connected to the dot only becomes active if the state of
the qubit 0 (called the control qubit) is @ = 1. This justifies the name of the CNOT gate (controlled
NOT).

Similarly,
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|a) |a)
1) U o)
is the controlled U gate for some unitary U. Here U* = I if a = 0. The CNOT gate can be obtained

by setting U = X. Sometimes we want to control a unitary only if the control qubit is zero rather
than 1. In this case, we represent the control using a hollow circle as shown below.

) —o— |a) |a) |a)

l1—a B
16) Umen (U] U= |b)

Another commonly used two-qubit gate is the SWAP gate, which swaps the state in the 0-th
and the 1-st qubits.

|a) —>%—1b)

[b) —%— la)

Exercise 2.4. Write down the matrix representation of the SWAP gate.
Quantum operators applied to multiple qubits can be written in a similar manner:

qubit 0: |0) — [—
bit 1: |0) —  |—
qubit 1+ 10) —
qubit 2: |0) — 7 —
qubit 3: |0) —  +—

For a multi-qubit quantum circuit, unless stated otherwise, the first qubit will be referred to as the
qubit 0, and the second qubit as the qubit 1, etc.
When the context is clear, we may also use a more compact notation for the multi-qubit

quantum operators:
0 = 10 < 10

One useful multiple qubit gate is the Toffoli gate (or controlled-controlled-NOT, CCNOT gate).
|la) —e— |a)
|b) ——[b)

|e) —B— |(ab) ®c)

We may also want to apply a n-qubit unitary U only when certain conditions are met

1) —— 1)

) )
10) 10)

|z) Ulx)
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where the empty circle means that the gate being controlled only becomes active when the value of
the control qubit is 0. This can be used to write down the quantum “if” statements, i.e., when the
qubits 0,1 are at the |1) state and the qubit 2 is at the |0) state, then apply U to |x).

A set of qubits is often called a quantum register (or register for short). For example, in
the picture above, the main quantum state of interest (an n qubit quantum state |x})) is called the
system register. The first 3 qubits can be called the control register. When multiple registers are
present, we can distinguish them by writing |z) 4 |y) 5, so that we can refer to the quantum state
associated with the qubits in registers A and B, respectively.

In quantum computation, a classical bit-string is denoted as z € {0,1}", and the corresponding
|x) is called a classical state. The set of all classical states form the computational basis of an
n-qubit system. It is worth noting that {|z) (z||x € {0,1}"} forms a set of projective measurement
operators, which can be identified with the simultaneous measurement with respect to Pauli-Z
operators 71, ..., Z,. Consequently, when a measurement is performed with respect to the Pauli-Z
operator, it is called a measurement in the computational basis.

The circuit symbol for the quantum measurement with respect to a single Pauli-Z is

Example 2.35 (Measure Pauli-Z operators). For a quantum state |¢), the measurement of a
multi-qubit Pauli-Z operator of the form (Z1)* - - (Z,)%", where ay, ..., a, € {0,1} can be directly
implemented at the circuit level. For example, for a 3-qubit system, the following circuit

(2.87)

measures the outcome of Z; and Zs, yielding 4 possible outcomes {00,01,10,11} with respective
probabilities {p(00), p(01),p(10),p(11)}. Now consider an observable O = Z; Z3 whose eigenvalues
are 1 and —1. The probability of obtaining each eigenvalue is

(2.88) p(0 =1) =p(00) +p(11), p(O = —1) = p(01) + p(10).

<&

Example 2.36 (Hadamard test circuit). The Hadamard test is a useful tool for computing the
expectation value of an unitary operator with respect to a state, i.e., (¢|U]®). It can be used to
solve the phase estimation problem. The Hadamard test uses two circuits to estimate the real and
imaginary part of the expectation value separately.

The (real) Hadamard test is the quantum circuit in Fig. for estimating Re (¢|U|v).

FIGURE 2.1. Hadamard test for Re (¢|U|¢).
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To verify this, we find that the circuit transforms |0) |¢) as
Hol 1
0) |v) 225~ _(jo) + |1
10) [¥) \/§(| )+ 1) 1)
c-U 1
——=(|0 +|1HU
\/i(l )y + 1)U 4))
Hel 1 1
00 110y (uy + U ) + 2 1 () - U ).
The probability of measuring the qubit 0 to be in state |0) is
1
(2.89) p(0) = 5 (1 +Re (¥|U[4)).
This is well defined since —1 < Re (¢|U|y) < 1.

To obtain the imaginary part, we can use the circuit in Fig. called the (imaginary) Hadamard
test, where

(2.90) 5= ((1) ?)

is called the phase gate.

FIGURE 2.2. Hadamard test for Im (¢0|U])).

Similar calculation shows the circuit transforms |0) |¢)) to the state

(291) 210) () — iU 1)) + 5 1) () + U [4).

Therefore the probability of measuring the qubit 0 to be in state |0) is

(292) p(0) = 51+ I (410]9))

Combining the results from the two circuits, we obtain the estimate to (¢|U|¢).
o

Example 2.37 (Overlap estimate using the SWAP test). A special case of the Hadamard test is
called the SWAP test, which can be used to estimate the overlap of two quantum states |(p|i)|.
The quantum circuit for the swap test is
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FIGURE 2.3. Circuit for the SWAP test.

Note that this is exactly the Hadamard test with U being the swap gate. Direct calculation
shows that the probability of measuring the first qubit and obtaining outcome 0 is

(299) p(0) = 51+ Re (o, vl ) = £ (1+|(ph) ).

2.5. Copy operation and no-cloning theorem

Most computer programs on classical computers have an assignment of the form y = =z, or
y = copy(z), which stores the value in the variable z in a new location in memory as a variable
y. In scientific computation, this is the foundation of iterative methods, which solve a problem by
making progress gradually. For example, classical iterative algorithms for solving linear systems
require storing intermediate variables. It is therefore striking that such a basic step is explicitly
ruled out by quantum mechanics.

The no-cloning theorem is an early result in quantum computation: it forbids a universal
quantum copy operation (see also [NCOQ, Section 12.1]).

THEOREM 2.38 (No cloning). Given a fized state |s) (e.g. |s) = |0™)), there is no unitary
operator U that acts as a copy operation, in the sense that for every state |x),

(2.94) Ulr)®|s) = |z) @ |z) .
PROOF. Assume such a U exists. Take two states |z1),|z2) such that 0 < [{(x1]|z2)| < 1. Then
(2.95) U(lz1) @1s)) = lz1) @ [a1),  U(lz2) ® [s)) = |22) ® |22)-
Taking the inner product of the two equations and using unitarity,
(2.96) (z1|22) = (21, 8|22, 8) = (w1, 8|UTU |22, 8) = (21, T1| 0, 72) = (w1 |22)% .
Hence (x1|z2) € {0,1}, contradicting 0 < |[{(z1]|z2)| < 1. O

There are two important special cases in which copying is possible without contradicting Theo-
rem m The first is that |x) is not arbitrary: it is a specific state for which we know a preparation
procedure, i.e., |z) = U, |s) for a known unitary U, and some fixed state |s). Then we can prepare
a second copy of |z) via

(2.97) (IU,)|z)®|s) =|z) ® |x) .

The second is copying classical information in the computational basis, using the CNOT gate.
ie.,

(2.98) CNOT |z,0) = |z,z), z€{0,1}.
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The same principle applies to copying classical information from multiple qubits. Fig. gives an
example of copying the classical information stored in 3 bits.

|z1) |z1)
|z2) |z2)
|3?3> |3?3>
|0) — |21)
|0) D |z2)
0) D— |z3)

FI1GURE 2.4. Copying classical information using multi-qubit CNOT gates.

In general, multi-qubit CNOT operations can be used to perform classical copying in the com-
putational basis. Note that in the circuit model, this can be implemented with a depth-1 circuit,
since these CNOT gates act on disjoint sets of qubits.

The copying of classical information is compatible with Theorem [2:38] in the following sense.
The proof of Theorem uses two non-orthogonal states |z1),|z2) to obtain a contradiction.
However, all states in the computational basis are orthogonal to each other. Therefore, there exist
unitaries that copy a specified orthonormal set of states, but a universal quantum copy operation
is impossible.

Example 2.39. Let us verify that the CNOT gate does not violate the no-cloning theorem, i.e., it
cannot be used to copy a general superposition |z) = a|0) + b|1). Direct calculation shows

(2.99) CNOT |z) ® |0) = a|00) 4+ b |11) # |z) @ |x)

unless ab = 0. In particular, if |z) = |4), then CNOT creates a Bell state. o

Similar to the quantum no-cloning theorem, there does not exist a unitary U that performs a
“deleting” operation which resets an unknown state |x) to |0™):

(2.100) U0™) ®|z) =|0") ® [0™)
for all |x). Indeed, if |z1),|z2) are orthogonal, then unitarity implies
(2.101) 0= (0", 21|0", x2) = <On,$1‘UTU|On,$2> = (0",0"]0™,0™) =1,

a contradiction.

A more general version of the no-deleting theorem is as follows: given two copies of an arbitrary
quantum state, it is impossible to delete one of the copies. Specifically, there is no unitary U
performing the following operation using fixed known states |s) , |s'),

(2.102) Ulx) |z)[s) = |2)[0™) |s)
for an arbitrary unknown state |z).

Exercise 2.5. Prove the version of the no-deleting theorem in Eq. (2.102]).
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2.6. Deferred and implicit measurements

There are two important principles related to quantum measurements: the principle of deferred
measurement, and the principle of implicit measurement. At first glance, both principles may seem
counterintuitive.

Example 2.40 (Deferring quantum measurements). Consider the circuit

Here the double line denotes a classical control operation. The outcome is that qubit 0 has prob-
ability 1/2 of outputting 0, and qubit 1 is in the state |0). Qubit O also has probability 1/2 of
outputting 1, and qubit 1 is in the state |1).

However, we may replace the classical control operation after the measurement by a quantum
controlled X (i.e. CNOT), and measure qubit 0 afterwards:

0

0) S

It can be verified that the result is the same. In this sense, CNOT copies the measurement outcome
of qubit 0 to qubit 1 in the computational basis. o

Example 2.41 (Deferring measurement requires extra qubits). The procedure of deferring quantum
measurements using CNOTs is general, and important. Consider the following circuit:

0) = A 1=~

The probability of obtaining 0 or 1 is 1/2. However, if we simply “defer” the measurement to the
end by removing the intermediate measurement, we obtain

0

The result of the measurement is deterministically 0! The correct way of deferring the intermediate
quantum measurement is to introduce another qubit

0) —{1}—

|0) S

WV

Measuring the qubit 0, we obtain 0 or 1 w.p. 1/2, respectively. Hence when deferring quantum
measurements, it is necessary to store the intermediate information in extra (ancilla) qubits, even
if such information is not used afterwards. o

Exercise 2.6. Consider a quantum circuit with three qubits, initially all in state |0). The
circuit is as follows:
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Design a quantum circuit that defers the measurements of the first two qubits to the end, using
two additional ancilla qubits to store the intermediate measurement information. After the deferred
measurements, describe the final states of all qubits. Ensure the overall effect on the ancilla qubits
is the same as if the measurements were performed immediately.

The principle of deferred measurement states that in a quantum circuit, measurement
operations can be postponed from an intermediate stage to the end of the circuit. This remains true
even when a measurement at an intermediate step determines the conditional control of subsequent
gates: such classical controls can be replaced by quantum controls. One use of this principle is to
simplify quantum circuits and their analysis, by expressing the computation as a unitary circuit
(possibly using ancilla qubits) followed by measurements at the end.

The principle of implicit measurements states that, for predicting the statistics of the
qubits that are measured at the end of a circuit, it is irrelevant whether other qubits are explicitly
measured at the end or simply left unmeasured.

Example 2.42. Consider the circuit:

0
0) @ [~]

Before the measurement, the final state is % (]00) 4 |01)) + 3 (|10) — |11)). So measuring qubit 1
yields 0 and 1 with equal probability.
If we measure qubit 0 first, verify that qubit 1 will be in the mixed state

1 1
(2.103) p = 310)0] + 31X,
so if we measure qubit 1 afterwards, we again obtain 0 and 1 with equal probability. o

Why does the principle of implicit measurement hold? Assume the quantum system consists of
two subsystems A and B. Recall from Eq. that a measurement on subsystem A only depends
on the reduced density matrix p4. Thus it suffices to show that p4 does not depend on whether B
is measured. Let {P;} be the projectors onto the computational basis of B, and let the joint state
be p. If we measure subsystem B and discard the outcome, the joint state becomes

(2.104) p=> (IaP)p(IoP).

3

Then
(2.105)

pa = Trplp] = ZTYB[(I ® P)p(I ® By)] = ZTYB[P(I ® P;)] =Trp = Trplp] = pa.

p(I® ZPZ)
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Therefore, if the qubits in A are to be measured at the end of the circuit, the measurement statistics
do not depend on whether the qubits in B are measured or not.

2.7. Sparse matrix, Majorana, fermionic, and bosonic operators

Sparse matrices are among the most important examples of very large matrices that can be
efficiently encoded on quantum computers. They are also closely related to many physical Hamil-
tonians in practical applications.

Definition 2.43 (s-sparse matrix). A matriv A € CM*N s called s-sparse if each row and column
of the matrixz contains at most s non-zero entries.

Example 2.44. A diagonal matrix is 1-sparse. Any diagonal matrix A € C2"*2" can be written
as a linear combination of Pauli Z-operators

(2.106) A= > Ju i Oha T,
i1ynin€{0,1}

where 0, is equal to Zj; if s =1 and I if s = 0. Any permutation matrix II is 1-sparse. A row and
column permutation of a 1-sparse matrix is 1-sparse. Any l-sparse matrix A can be written as 11D
or DII', where D is a diagonal matrix and IT, I’ are permutation matrices. A tridiagonal matrix is
3-sparse. The following matrix

10 -+ 0
10 --- 0 N

(2.107) A=, : :(Z@)elTERNXN
: : i=1
10 - 0

has only one nonzero entry per row, but it is not 1-sparse since the first column has N nonzero
entries. o

Definition 2.45. The mazimal absolute value of the entries of A € CM*N | also called the max
norm, is defined as:

(2.108) [IA]

mae 7= max [ Ay
Lemma 2.46. Let A € CN*YN be s-sparse. Then
(2.109) [A] < s [|A]

max *

PRrROOF. For any row ¢ of A, the set of nonzero column indices is denoted by C;. By Cauchy-
Schwarz,

2
(2.110) (Az)i* = |3 Ay < D 1AG1E Y loil” < sl Al D 2l

J€C; J€EC; J€EC; J€EC;
Then
2 2 2
(2.111) [AZ]|* < s | Al pax > >l

i jeC;
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The condition that A is s-sparse implies that for each j, there are at most s indices i such that
A;; # 0, i.e., j belongs to at most s sets among {C;};. Therefore each j can appear at most s times
in the double sum. This means

2 2 2 2 2
(2.112) JAz]? < 52 A2 3 2 = 8 A 0 2l

J

Taking the supremum over z # 0 yields || 4| < s||4]| O

max "’

The equality in Lemma can be reached by considering a matrix B whose upper left s x s
block is ||A]|,.. ee', where e is an all 1 vector of length s. Direct computation shows that | B|| =
S ||AHma,x

A useful lemma is that the product of any 1-sparse matrices is 1-sparse.

Lemma 2.47. Let A and B be N x N 1-sparse matrices. Then C = AB 1is also 1-sparse.

PROOF. Since A, B are 1-sparse, there exists permutation matrices IT, II' and diagonal matrices
D, D’ so that A =1ID, B = D'II'. Therefore

(2.113) C =1(DD"HII
is a permutation of a diagonal matrix, and is therefore 1-sparse. O

Example 2.48. All Pauli gates in P,, are 1-sparse. This can be proved by induction. First, all
Pauli matrices I, X, Y, Z are 1-sparse matrices. Assume all Pauli gates in P, _; are 1-sparse, then
an element in P, can always be constructed (up to a reordering of qubits) as

(2.114) PP, PeP,_1,P €P.

This replaces a nonzero entry in P by a 2 X 2 matrix that is 1-sparse, so the overall matrix is still
1-sparse. o

Example 2.49 (Majorana operator). For a fermionic system defined on n modes, the state space
F =@ C? C?" is called the Fock space. The Majorana fermion operators (or Majorana
operators for short) denoted by {v;}2%,, are Hermitian operators in L(C?") satisfying the anticom-
mutation relations:

(2115) {’}/,“’y]} =5 + YiVi = 26@‘, ’L,j = 1, ey 2n.

The canonical realization of Majorana operators is through Pauli operators. When n = 1, we simply
have

For the n mode system, the Majorana operators can be defined using the Jordan—Wigner trans-
formation,

Jj—1 j—1
(2117) Y2i—-1 = <H Zk> X]‘, Y25 = (H Zk> Y;‘, ] = ]., s, n.
k=1 k=1

So Majorana operators are also 1-sparse matrices. Furthermore, any product of Majorana operators
Vi Yips U150 0k € {1,...,2n} is 1-sparse. o
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Example 2.50 (Fermionic operator). For a fermionic system defined on n modes with the Fock
space F = @7, C? = C?", the fermionic creation and annihilation operators, denoted by al and

a; respectively, are operators in L((CQH) that satisfy the canonical anticommutation relations
(CAR):
(2.118) {ai,a;f»} = aia; + a;f»ai = 0ij, {ai,a;} = {a},a}} =0, 4,j=1,...,n.
The creation operator a;r adds a fermion to the mode ¢, while the annihilation operator a; removes
a fermion from the mode 3.

For a single mode system,

1 0 1 1 0 0
Xt =< V) — N N . L

(2.119) a=X 2(X +14Y) <0 0) , a' =X 2(X 1Y) <1 0) .
In this convention a' [0) = |1),af|1) =0, a|1) = |0),a|0) = 0. Here |s) denotes the state with s
fermions (s = 0,1). The number operator 7 = a'a = 1(1 — Z) satisfies 7 |s) = s|s).

For an n-mode system, the fermionic operators are related to the Majorana operators according

to the relation:

1 . 1 . .
(2.120) a; = 5(721'71 + i2i), aj- = 5(721‘71 — i), i=1,...,n,
where 9,1 and ~; are the Majorana operators associated with the i-th fermionic mode. Therefore
any operator defined using a linear combination of fermionic creation and annihilation operators
can be expressed as a linear combination of Majorana operators, and vice versa.

From the Jordan—Wigner transformation,

j—1 j—1
(2.121) aj = (H Zk> XF, dl= (H Zk> X7,
k=1 k=1

with
1 ) _ 1 .
(2.122) X = 3 (X +iYy), X7 = (X, —iY)).
Since X* are 1-sparse matrices, a}aj,a;rvaj,aja;f are also l-sparse. Furthermore, any product of

T T

fermionic operators a; ---a; aj, ---ay is 1-sparse. o

Example 2.51 (Bosonic operator). For an n-mode bosonic systems, the bosonic creation and
annihilation operators, denoted by bz and b; respectively, are operators that satisfy the canonical
commutation relations (CCR):

(2.123) [bi,bl] = bibl — blb; = 655, [bi,b;] = [b],b]] =0, i, j=1,....n.

J 7]

The creation operator b;r adds a boson to the mode ¢, while the annihilation operator b; removes a
boson from the mode i.
When n = 1, these operators satisfy

(2.124) bl0) =0, bls)=+/s|s—1),s=1,2,...,
and
(2.125) bils) =vVs+1|s+1),5s=0,1,2,....

Here |s) denotes a state with s bosons. We also have

(2.126) bib|s) =s|s).
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In the matrix form, we can write

V1

0

V1
(2.127) b= 0
0

o O O O

0 0 0
0 - 0 0
0 V3

These operators are infinite dimensional operators, i.e., operators defined in an infinite dimensional
space. They are also 1-sparse. Furthermore, |||, HbTH = 00, so unlike any finite dimensional
matrices, these operators are unbounded. The physical reason is that a single bosonic mode can
accommodate an infinite number of bosons, and the energy of a system with an infinite number of
bosons in a single mode is infinity.

Due to the commutation relation, multi-mode bosonic operators can be defined using tensor
products:

(2.128) bi = 120D @ pg =0 pl = 186D g pf @ [®0=D ;=1 . n,

where the identity operator I |s) = |s) also acts on an infinite dimensional space.

The precise characterization of the Hilbert space for unbounded operators is beyond the scope
of this book. However, if we truncate the state space of each bosonic mode to a finite dimensional
space with d levels, i.e., C%, the state space of a bosonic system defined on n modes with d levels
per mode is F = ®7_;C? =2 C?" and is finite dimensional.

In a single-mode truncated bosonic system, b, b’ are finite dimensional matrices:

0 vi 0 0 - 0 0 0 0 0 0
0 0 V2 0 - 0 Vi o0 0 0 0
0 0 0 V3 - 0 0 V2 0 0 0
(2120) b= | .=l 0 3 0 0

d—1 S : :

0 0 0 0 -+ V/d—1 0
These are 1-sparse matrices of size d x d. Then the multi-mode operators defined in Eq. (2.128))
are l-sparse matrices. Using Lemma [2.47] the product of any multi-mode bosonic operators
b; ~-~b;b- -++bj,, where b, bl are truncated bosonic creation and annihilation operators defined

J1
in Eq. (2.129) are 1-sparse matrices. o

Exercise 2.7. Prove that the truncated bosonic creation and annihilation operators defined
in Eq. (2.129)) satisfy the modified commutation relation

(d il 1! RNCI

o O
o O
o O

(2.130) [b,07]=1—

2.8. Selected Examples of Hamiltonians in Physics, Chemistry, and Optimization

With the introduction of spin, Majorana, fermionic, and bosonic operators, we can provide
several examples of Hamiltonians encountered in applications. Although we will not use all of these
examples to illustrate the performance of quantum algorithms, the algorithms in this book can be
applied to any of them.
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2.8.1. Condensed matter physics.

Example 2.52 (Transverse field Ising model). The Hamiltonian for the one dimensional transverse
field Ising model (TFIM) with nearest neighbor interaction of length n is

n—1 n
(2.131) H=-% ZZi1-gy X
i=1 1=1

where g is the coupling constant. o

Example 2.53 (1D Heisenberg model). The Hamiltonian for the 1D Heisenberg model with nearest
neighbor interaction is given by

n—1

(2.132) H=-J) 8;-Sin
i=1
where J is the interaction strength and S; represents the spin operator at site i, defined as
p (X
(2.133) S; = 3 Y;
Zi

We can decompose this Hamiltonian into three terms, each associated with the z, y, and z compo-
nents of the spins:

n—1 n—1 n—1
J J J
(2.134) H, = -1 E XiXip1, Hy= 1 E YiYip:, H.= 1 g ZiZita.
im1 i—1 i=1

When J > 0 the problem is called ferromagnetic, and when J < 0 it is called anti-ferromagnetic. ¢

Example 2.54 (2D Heisenberg model). The Hamiltonian for the 2D Heisenberg model on a square
lattice is given by:

n—1ln—1

(2.135) H=—JY > (Si;-Sit1;+Si;-Sijs)

i=1 j=1
We decompose this Hamiltonian into three terms associated with the x, y, and z components of the
spins:
J n—1n—1
He=—7 DD (X Xiwr + X Xi ),
i=1 j=1
J n—1n—1
(2.136) Hy=- Z Z(Yi,jYiH,j +Y5,;Yi41),
i=1 j=1
n—1ln—1

J
H,=- NN (ZiZiva i+ ZiiZin).

i=1 j=1
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Example 2.55 (k-Local Hamiltonian). A k-local Hamiltonian is a quantum Hamiltonian where
each term acts nontrivially on at most k& qubits. One convenient way to write such a Hamiltonian
on n qubits is as a linear combination of Pauli strings of weight at most k. For example, one may
write

(2137) H = Z Z JS,oc Ho-a(i),iv

SCn],|S|<k «a€{0,1,2,3}5 €S

where 00,i = I, 01,i = Xi, 02,4 = }/% and 03, = Z'L~
For example, consider a 2-local Hamiltonian for an n-qubit system:

(2138) H = ZJ,']‘CTZ'O']',

i<j
where 05, 0; are Pauli operators acting on qubits 7 and j, respectively. Transverse Ising models and
Heisenberg models are 2-local Hamiltonians. o

Example 2.56 (Quadratic fermionic Hamiltonians). Consider the following n-mode fermionic

Hamiltonian
n

(2.139) H= Z/\kck = Z 7" (1= Zy),

where c;fC and ¢ are new fermionic creation and annihilation operators, and \j are real eigenvalues

representing the energy levels of the system. The Hamiltonian H is a linear combination of Pauli
Z operators and is thus a diagonal matrix.
Now, consider a general quadratic fermionic Hamiltonian of the form:

(2.140) H=Y" Ajala,,
=1

where A is a Hermitian matrix. Since A is Hermitian, we can diagonalize it using a unitary
transformation U such that:

(2.141) UTAU = A,

where A is a diagonal matrix containing the eigenvalues A\p. Then define

n

(2.142) cp = Z(U’r i, Za Up, k=1,...,n.

i=1

Direct calculation shows that the new set of creation and annihilation operators {CL, ¢k + satisty the
canonical anticommutation relation. Substituting these transformations into the Hamiltonian,

(2.143) H =Y Upa(U)yjala; = Z Akcler,
3,5,k
we have transformed H into a diagonal Hamiltonian. o

Example 2.57 (1D spinless Hubbard model). The Hamiltonian for the 1D spinless Hubbard model
with nearest-neighbor interaction is given by:

n—1 n—1
(2.144) H=—t Z(a!aiﬂ + aL_laZ-) +U Z niMit1,

i=1 i=1
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where t is the hopping parameter, representing the kinetic energy term, and U is the nearest-
neighbor interaction strength. The operators a;r and a; are the fermionic creation and annihilation
operators at site i, respectively, and n; = a;rai is the number operator at site :. When U = 0, the
Hamiltonian is a quadratic in the fermionic operators and can be turned into a diagonalized form.
When U # 0, the Hamiltonian is no longer quadratic and cannot be turned into a diagonalized

Hamiltonian using the same strategy. o

Example 2.58 (Uniform electron gas in a plane wave basis). In a plane wave basis, the Hamiltonian
for a box of uniform electron gas can be expressed in second quantization as follows:

(2.145) H= Zekckck—l—* D V@, 4otk qtrati s
ki.,k2,q

where CL and ¢y are fermionic creation and annihilation operators for an electron with wave vector

k € R3, e = |k|? /2 is the kinetic energy. The interaction potential V(q) = 47/q2 in a plane wave
basis is the Fourier transform of the Coulomb potential. o

Example 2.59 (Harmonic oscillator). The Hamiltonian for a quantum harmonic oscillator in the
first quantization (i.e., real space representation) is given by

2 2
(2.146) H="r ;m ,
where p = —i0, is the momentum operator and z is the position operator. Define

1 1
2.147 b= —(z+ip), b =—(x—ip),
(2.147) \/5( p) \/Q( p)
then b,b' satisfy the canonical commutation relation [b,b'] = 1. Furthermore, the Hamiltonian
takes the form
1

(2.148) H=0'b+ 3

If we truncate the bosonic mode to include d levels, the state space is F = C%, and H is a diagonal
matrix of size d x d. o

2.8.2. Quantum chemistry.

Example 2.60 (Quantum chemistry in first quantization). In first quantization, the Hamiltonian
for a many-electron system is given in terms of the coordinates and momenta of the electrons. The
non-relativistic electronic Hamiltonian for a molecule in atomic units can be expressed as:

N T2 N M 7 7.7
4 A A4LB
2.149 H=-— — — g
( ) Z 2 Zz\ri—RA|+Z|rl—rj| R4 —R5|’
i=1 i=1 A=1 i<j A<B

where N is the number of electrons, M is the number of nuclei, r; and R 4 are the positions of the
i-th electron and the A-th nucleus, respectively, Z,4 is the atomic number of the A-th nucleus. This
is an unbounded operator. o

Example 2.61 (Quantum chemistry in second quantization). In quantum chemistry, the electronic
structure of molecules can be described using the formalism of second quantization with n molecular
orbitals. The state space F = ®7_;C? is finite dimensional. The use of second quantization allows
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for a compact and efficient representation of the Hamiltonian and facilitates the expression of the
Hamiltonian on quantum computers via the Jordan—Wigner transformation. The Hamiltonian of a
many-electron system in second quantization is given by

(2.150) H = Z hpqa aq+ Z quma aras,

p,q=1 p,q,rs 1

where a;L and a4 are fermionic creation and annihilation operators, respectively. The creation
operator a;f) adds an electron to the molecular orbital p, and the annihilation operator a, removes
an electron from the molecular orbital q. For simplicity we only consider the spatial part of the
orbital and omit the spin part. The indices p,q,r, and s label the molecular orbitals, h,, are the
one-electron integrals, and V4,5 are the two-electron integrals.

The one-electron integrals hy,, are given by

(2.151) /w ( =+ Vexe(r )) thg(r) dr

where 9, (r) is the spatial part of the molecular orbital and Ve (r) = — 2%21 @_Ziﬁﬂ is the external
potential due to the nuclei. The two-electron integrals V4,5 are given by
1
(2152) Vs = [ [ 03000005 52) e (o) o0 i
ry —r
The nuclei-nuclei interaction is a constant and is dropped for simplicity. o

Example 2.62 (PPP Model). The Pariser-Parr-Pople (PPP) model is used in quantum chemistry
to describe the m-electron systems in conjugated organic molecules. The Hamiltonian for the PPP
model can be written as

n n
(2.153) H=>" hpqaj,aﬁ% > Vegnpng,
p,q=1 p,q=1
where h,, are hopping integral elements, V,, are Coulomb interaction elements, a;g and a, are the
fermionic creation and annihilation operators at site p, and n, = a;f,ap is the number operator.
The Hubbard model is a special case of the PPP model with short ranged hopping and Coulomb
interaction elements. Compared to the full chemistry Hamiltonian in second quantization, the
two-body interaction coeflicients Vj, have only O(n?) entries but can still represent long range
interactions. o

2.8.3. Quantum field theory.

Example 2.63 (Schwinger Model in 1D). The Schwinger model describes quantum electrodynamics
in 1+ 1 dimensions. The state space for the Schwinger model is the tensor product of two spaces:
a tensor product of n 4+ 1 fermionic spaces and a product of n gauge field spaces. The total Fock
space is given by

n+1 n
(2.154) F= <® <CQ> ®(ct|,
i=1 j=1

where d = 2L + 1 is the number of levels the gauge field can take. There are two operators that we
need to define that act on the gauge field space. The first is EJQ-, which is a diagonal operator that
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counts the energy stored in the gauge field with index j € {1,...,n}. The second is U;, which adds
one to the value stored in the gauge field register and is analogous to a bosonic creation operator.
The action of these operators is given formally below:

L L L
(2.155) E2= ")l U= D> le+1), (e, U= le—1),¢l,.
e=—L e=—L e=—L

Here we assume for U; and its adjoint that the gauge field satisfies periodic boundary conditions
at the cutoff located at e = £L.
The Hamiltonian for the Schwinger model is given by:

n n n
(2156) H=Y B2V 40" U@ alazn — Ul @ agaly, | + 0> (-1 15" @ alay,
j=1 j=1 j=1
where a; and a;( are the fermionic annihilation and creation operators at site 4, and I,,, denotes the

identity operator of dimension m. The parameters u, v are related to parameters such as the lattice
spacing. o

Example 2.64 (Quadratic Majorana operators). From the Jordan—-Wigner transformation in
Eq. (2.117)), and use the fact that XY =iZ, we find that

(2.157) H=—iY Myok—172r = D MZk, M €R
k=1 k=1

is a diagonal Hamiltonian.
Consider a quadratic Hamiltonian of the form:

. 2n

. i

(2.158) H=— Z quCqu = _5 Z quCPClI’
1<p<q<2n p,q=1
where A is a real antisymmetric matrix, and {¢, 12,7;1 is a set of Majorana operators. There exists
an orthogonal matrix O such that:
(2.159) 0T A0 = é 0 M)y
—Ar 0
k=1
where )\; are the singular values of A. Now define a set of transformed Majorana operators
(2.160) Y= GOp =Y (0)jpG, i=1,....2n,
P P

then we still have

(2.161) {770y =205
The transformed Hamiltonian takes a diagonal form

i <
(2.162) H= —3 Z v (A)jv5 = —zZMWzml’Y%-

1<4,5'<2n k=1

The quadratic fermionic Hamiltonian in Example [2:56] is a special case of this example. o
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Example 2.65 (SYK Model). The Sachdev-Ye-Kitaev (SYK) model is a quantum mechanical
model of n Majorana fermions with random all-to-all interactions. The Hamiltonian for the SYK
model is given by

(2.163) H = Z Jigki ViV Ve
1<i<j<k<l<2n

where «; are the Majorana fermion operators, and J;jx; are random coupling constants, typically
drawn from a Gaussian distribution. The SYK model is of particular interest due to its connections
to quantum chaos, holography, and black hole physics. o

2.8.4. Optimization.

Example 2.66 (k-SAT problem). Classical optimization problems, such as the k-SAT problem,
can be represented using a Hamiltonian. The k-SAT problem is a type of Boolean satisfiability
problem where each clause contains exactly k literals. The goal is to find an assignment to the
Boolean variables that satisfies all the clauses. The most famous examples are 2-SAT (classically
easy), and 3-SAT (NP-complete).

Consider a k-SAT problem with n Boolean variables x1, xo, . . ., 2, and m clauses Cy,Cs, ..., Cp,.
Each clause C; is a disjunction of exactly k literals.

We can construct a Hamiltonian H such that its ground state corresponds to the solution of
the k-SAT problem. The Hamiltonian for the k-SAT problem can be written as:

m
(2.164) H=> Hc,,

i=1
where H¢, is the Hamiltonian for the i-th clause. Each clause Hamiltonian H¢, is designed to be
zero if the clause is satisfied and positive otherwise. For clauses involving single literals, such as

Cy = (zp) or C; = (Z,), the Hamiltonians H¢, and Hg, are:

1 1

(2.165) He, = 5(1—|—Zp)7 He, = 5(1—Zq).

For a clause C; = (z, V Z,), the corresponding Hamiltonian H¢, can be written using the product
1

(2.166) Ho, = 7 (1+2,) (1~ 2,).

For a general clause C; = (I; VIa V- -- V), where [; represents either x,,, or Z,, the corresponding
Hamiltonian H¢, can be written using the Pauli-Z operator Z:

k
L+ 2jZp,
(2.167) He, = H —
Jj=1
where z; = +1if [; = xp, and z; = —1if [; = 7,,,. The Hamiltonian H is diagonal and positive

semidefinite. If the smallest eigenvalue (called the ground state energy) of H is 0, then the associated
eigenvector (called the ground state, which may not be unique) corresponds to the Boolean variable
assignment that satisfies all the clauses of the k-SAT problem. o

Example 2.67 (MAX-CUT problem). The MAX-CUT problem is a well-known combinatorial
optimization problem. Given a graph G = (V, F) with a set of vertices V and a set of edges E, the
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goal is to partition the vertices into two subsets such that the number of edges between the subsets
is maximized. Assume the graph has n vertices, and the Hamiltonian for the MAX-CUT problem
can be written as:

1
(2.168) H=- > 5 (1=2:2;).
(i,)€E
Each term —3(1 — Z;Z;) equals —1 if vertices i and j are in different subsets and 0 if they are in
the same subset. Therefore, minimizing H is equivalent to maximizing the number of edges that
are cut by the partition. o
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CHAPTER 3

Probability, quantum channel, and distances

We begin by reviewing basic concepts in classical probability theory, which provides intuition
for how errors propagate in randomized processes. We then introduce quantum channels as the
general framework for quantum dynamics. Unlike ideal quantum circuits which are unitary, real-
world quantum processes often involve noise and decoherence. Quantum channels allow us to
model these effects, as well as measurements and interactions with the environment. We explain
the requirements (specifically, the concept of complete positivity) for a map to be a valid quantum
channel and describe standard representations such as the Kraus and Stinespring forms.

With this framework in place, we introduce distance measures for quantum states. For pure
states, we use norms that account for the global phase. For mixed states, we introduce the trace
distance and fidelity. These two measures are complementary: trace distance relates to the distin-
guishability of states via measurement, while fidelity captures their overlap and behaves well under
quantum operations.

Finally, we discuss how to compare quantum channels. This requires norms that are stable
even when the channels act on part of an entangled system. This leads us to the diamond norm,
which is the standard metric for quantifying the error of quantum operations.

3.1. Basic notions in probability theory

Probability theory is a subject that carries nearly as many profound surprises as quantum
theory itself. In this section, we introduce some basic concepts in probability theory, focusing on
finite-dimensional spaces. In quantum computing, the probability distributions associated with an
n-qubit system reside in 2"-dimensional spaces.

Definition 3.1. Let X be a finite set called a state space, or sample space, where each element
of ¥ is called an event. A probability distribution is a function P : ¥ — [0,1], which can be
represented as a vector in a Euclidean space, and satisfies ) s P(s) = 1.

Let ¥4 and ¥Xp be sample spaces and let P4 and Pp be probability distributions on the two
sample spaces. These distributions are said to be independent if the joint distribution, P45 on the
set X4 X X obeys Pap = P4 ®Pg. The expectation value (or average value) of a function mapping
[ ¥ = Cis defined to be E(f) := > .. f(5)P(s) = (f, P).

Example 3.2. As an example, let us consider rolling a four-sided die. Here the random variable
is the outcome of the experiment; the sample space is {1,2,3,4} and the probability distribution
(for a fair die) is 1/4 for each of these outcomes. The random variable, z, in this case corresponds
to the result of the die.

61
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In the event that we wanted to find the probability that the sample is a prime number, we
could redefine the sample space and the underlying distribution but it is easier to use the indicator-
function property of the distribution to see that

11 1
In general, this approach is often the easiest way to compute a probability because it constructs an
indicator function which projects onto the fraction of the sample space that we want to measure.
Note this is also true in quantum theory wherein the probability of measuring a mixed state, p, to

be a pure state [¢)) is

(3.2) P(ly)) = Tr([)eblp) = (bl p ) -
Here the projector |1)v| plays the same role as the indicator function used above, and further
illustrates the close ties between probability theory and quantum theory. o

Similar to the amplitude of the wave function in quantum theory, there is not a single unifying
interpretation of probability. For this reason we recommend that the reader be well versed in both
interpretations as each can convey useful intuitions.

The following bound, known as the union bound, is very useful for estimating probabilities of
events. We provide it as well as its proof as an elementary example of probability theory.

THEOREM 3.3 (Union Bound). Let ¥ be a sample space and let A,B C ¥ and let P be a
probability distribution on X. We then have

(3.3) P(AUB)=E(14+ 15 —1415) <P(A) +P(B).

PROOF. Intuitively, by looking at a Venn diagram for events A and B it is clear that the
region AU B contains region A and region B but also may include region AN B. Thus the upper
bound given above overcounts the probability in the intersection and therefore it is an upper bound.
Formally, we use linearity of expectation:

(3.4) E(IA—I-lB—lAlB)ZE(]_A)—I—E(IB)—E(].AIB).
Next, E(141p) = >, cx P(s)(1a(s)1p(s)) > 0, and E(14) = P(A), E(1p) = P(B). Combining
these gives the claim. O

Example 3.4 (Failure Propagation Bound). Consider the following problem: you have a quantum
algorithm that succeeds with probability 1 — § and fails with probability §. Suppose we run the
algorithm independently N times; determine a value of § that guarantees the probability of at least
one failure is at most 1/3. This problem appears ubiquitously in quantum computing in problems
such as phase estimation or quantum error correction where the probability of failure needs to be
considered and extra computational resources are needed to suppress them.

The N events each have a probability of § assigned to them and so we expect that the total
probability of at least one error happening will be from the union bound Né. We can validate this
inductively. For the base case we see trivially that the claim holds for N = 1. For the induction
step, let us assume that the probability of at least one error occuring in the first N — 1 steps is at
most (N —1)d. From the union bound the probability of failing in the next sample is § and thus the
total failure probability is at most (N — 1)0 4+ 6 = NJ. Thus if we want to see a failure probability
of 1/3 it suffices to take

1

(3.5) 6 < o
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This example shows that worst case scenario that the failure probability for our algorithm
grows linearly. This actually might seem strange to the reader since the error probability com-
pounds exponentially in practice; however, linear growth of error is actually in this context worse
than exponential because for large enough N the union bound will be greater than 1 whereas the
exponential upper bound is always less than 1. In this context, surprisingly, linear growth is worse
than exponential but nonetheless the simplicity and generality of union bounds often provide good
enough bounds that are easy to manipulate. o

The natural operations on probability distributions are stochastic transformations, which can
be represented as transition matrices. We define these transformations below.

Definition 3.5. Let ¥ be a sample space of size N and let p € RN be the column vector represen-
tation of a probability distribution. A wvalid transformation on the state space of the register X to
itself has a matriz representation P : RN — RN, which maps p to Pp. The matriz P is called a
transition matrixz and satisfies

(2) Ziew Pis =1, Vi€[N].

Remark 3.6. In classical probability theory, the probability distribution is often written as a row
vector. Then the transition matrix is applied from the right as pP, and the transition matrix needs
to be right stochastic or row stochastic, i.e., ZjE[N] P;; =1for all i € [N]. Given a probability

distribution p € RY, a natural quantum state encoding the distribution p (also called a coherent
version of p) is

(3.6) IVp) = Z Vi li) -

This is a normalized state. It is thus more natural to view p as a column vector so that the usual rule
of applying an operator to a state vector applies. A matrix satisfying the properties in Definition
is also called left stochastic or column stochastic. Any j-th column of P, denoted by P. ;, is a
probability distribution. If P is both left and right stochastic, then it is called a doubly stochastic
matrix. o

Example 3.7. Let us consider how we would represent an AND gate in this language. The AND
gate has the property that for any =,y € {0,1}, AND(z,y) = zy. This operation is an example of
an irreversible operation, meaning that it cannot be inverted from the outputs to find the inputs.
In this case the natural vector space for probability distributions for two bits can be represented as
a probability vector in R? @ R%. As we are using square matrices to represent these transformations
we will take AND(e, ® e,) = eg ® ey, for computational basis vectors ep,e; and z,y € {0,1}.
Specifically then we have that the gate can be represented as a stochastic matrix Panp

S o o
o O o
O O = O

1
0
(3.7 Panp = 0
0

We see that the matrix representation is stochastic, but not doubly stochastic.
If we consider taking two distributions for our bits p, = [a,1 — a]" and p, = [b,1 — b]T for
a,b € [0,1] then we can see that the distribution that we get from applying the AND operation to
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the distribution on the bits is

1110 ab (a+0b) —ab

o001 a(l=b) | _ |1-(a+b)+ad
(3.8) Panp (pz ® py) = 00 0 0 b(1 —a) o 0
000 0/ \(1—a)(l-b) 0

This output distribution makes intuitive sense. The AND output is 1 only if both inputs are 1,
which occurs with probability (1 —a)(1—b), corresponding to the second entry above. Equivalently,
the probability that the AND output is 0 is the probability that at least one input is 0, namely
a + b — ab, corresponding to the first entry. o

3.2. Quantum Channels

The concept of a quantum channel generalizes both the unitary evolution of isolated quantum
systems, as governed by the Schrédinger equation, and the stochastic evolution of classical prob-
ability distributions. It provides a unified framework for describing the most general physically
permissible evolution of quantum states, encompassing coherent dynamics (e.g., unitary transfor-
mations) and incoherent processes such as measurement, decoherence, and interactions with an
environment.

We begin by defining the mathematical objects under consideration. A superoperator is a
linear map Q : L(CY) — L(CM). We denote the action of Q on an operator A € L(CY) by Q[A]
or Q(A).

Given two superoperators Q; : L(CN1) — L(CM1) and Qy : L(CM?) — L(CM2), their tensor
product Q; ® Qs is the unique linear map L(CNt @ CN2) — L(CM: @ CM2) satisfying

(3.9) (Q1® Q2)[A1 ® As] = Q1[A1] ® O2[As)

for all A; € L(CM) and Ay € L(CN2). This definition extends to all operators by linearity.

Just as a unitary transformation maps a state vector to another state vector while preserving
its norm, a quantum channel is a superoperator intended to map a density operator to another
density operator. A fundamental example is the identity channel Z : L(CY) — L(CY), defined
by Z[A] = A for any A € L(CY).

Example 3.8. The action of the tensor product of superoperators is particularly important when
analyzing local operations on composite systems. Let Zx : L(CK) — L(C¥) be the identity map
and Q : L(CY) — L(CM) be a linear map. Consider an operator A € L(CKX @ CV). We can
represent A in block form with respect to an orthonormal basis {|i)} of CX:

(3.10) A= 3" i)l ® Ay, Ay € L(CV).
i,J€[K]
The action of Zx ® Q is given by applying Q to each block:
(3.11) Tk ® QA = Y |i)i| ® QAj].
i,j€[K]
For instance, if K = 2, the matrix representation is

(3.12) (I» ® Q) Kﬁ?g i‘l’m = @ﬁl’fﬂ gﬁﬂ) € L(C? @ CM).
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To ensure that a superoperator maps density operators (which are positive semidefinite and
have unit trace) to density operators, it must satisfy certain constraints.

Definition 3.9. A linear map Q : L(CN) — L(CM) is called: positive if Q[A] is positive
semidefinite for every positive semidefinite A € L(CYN). Q is called trace preserving (TP) if
Tr(Q[A]) = Tr(A) for every A € L(CN).

While it might seem sufficient to define a quantum channel simply as a positive, trace-preserving
map, the structure of quantum mechanics demands a stronger condition. Quantum systems often
exist as subsystems of larger, composite systems. If Q describes the evolution of a system S, and S
is potentially entangled with an ancillary system A, the evolution of the joint system is described
by T4 ® Q. For this joint evolution to be physically valid, Z4 ® Q must also map density operators
to density operators, meaning it must be a positive map, regardless of the dimension of the ancilla
A. This requirement leads to the concept of complete positivity.

Definition 3.10. A linear map Q : L(CY) — L(CM) is completely positive (CP) if for all
integers K > 1, the map T ® Q : L(CK @ CN) — L(CK @ CM) is positive.

It is worth noting that the ordering of the tensor product in the definition is immaterial. One
could equivalently require that Q ® Zx be positive for all K. Physically, this reflects the fact that
the labeling of the ancillary system is arbitrary. Mathematically, the maps Z ® Q and Q ® Z are
related via the SWAP operator (the isomorphism that exchanges the tensor factors). Specifically,
they are unitarily equivalent:

(3.13) Q& T =Uswar o (Z® Q) o Usyap:

where the superoperator Uswap acts as Uswap[X] = SWAP - X - SWAP'. Since X > 0 if and only
if UXU' = 0 for any unitary U, it follows that Z ® Q is positive if and only if Q ® T is positive.

While positivity ensures that the channel acts correctly on the system itself, complete positivity
is strictly stronger, ensuring correct action even when the system is entangled with an ancilla.

Example 3.11 (Positive map that is not completely positive). Consider the transpose map T :
L(C?) — L(C?), defined by T[A] = AT with respect to the computational basis. If A is positive,
its eigenvalues are non-negative. Since A and AT share the same spectrum, A" is also positive.
Thus, 7T is a positive map.

However, 7 is not completely positive. To illustrate this, consider a two-qubit system in the
maximally entangled Bell state [1)) = %(\OO) + |11)). The corresponding density operator is:

1

(3.14) p = )| = 5(00) {00] +]00) (1] +[11) (00| + |11) 11]).

We apply the map Z® T (the partial transpose with respect to the second subsystem) to this state:
1

(3.15) (ZoT)p] = §(|OO> (00] + |01) (10] + |10) (01| + |11) (11)).

In the standard basis {]|00),|01),|10),|11)}, the matrix representation is

(3.16)

N | =

10 0 0
0 010
0 1 0 0
0 0 01

This matrix has eigenvalues { %, %, %, —%} Since one eigenvalue is negative, the resulting operator
is not positive. Thus, T is not completely positive. o
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We now arrive at the formal definition of a quantum channel.

Definition 3.12 (Quantum channel, or CPTP map). A quantum channel Q is a linear map
L(CN) — L(CM) that is completely positive (CP) and trace preserving (TP).

If Q is a quantum channel, it maps any density operator p € D(C") to a density operator
Q[p] € D(CM). The complete positivity condition ensures that if Q acts locally on a subsystem of
a larger entangled state p € D(CX @ CY), the resulting state (Zx ® Q)[p] remains a valid density
operator in D(CK @ CM). This property is fundamental to the consistency of quantum mechanics.

Example 3.13. A fundamental class of quantum channels is the unitary channel. This requires
the input and output dimensions to be equal, N = M. Given a unitary matrix U € U(N), the
corresponding channel I : L(CY) — L(CY) acts by conjugation:

(3.17) Ulp] = UpUT.

This map is trace-preserving, as Tr[UpU'] = Tr[pUTU] = Tr[p]. It is also completely positive, as
we will see shortly. The identity channel 7 is a unitary channel with U = I. o

A powerful way to characterize and construct quantum channels is through the Kraus repre-
sentation.

Proposition 3.14. Let {K;};c[r] be a set of matrices in CM*N satisfying the completeness relation
(3.18) > KK =1Iy.
JE[R]
Then the linear map Q : L(CN) — L(CM) defined by
(3.19) Qlp] = Y K;pK]
JjelR]

is a quantum channel (CPTP).

ProoOF. We first verify complete positivity. Let L be an arbitrary integer and consider any
positive operator X € L(CF @ CV). The action of the extended map is

(3.20) (TL®QX]= > (IL®K;)X(IL @ K;)T.
JEIR]

For any operator A, if X is positive, then AX At is also positive. Thus, each term in the summation
is a positive operator. Since the sum of positive operators is positive, Zr, ® Q is a positive map for
all L. Thus, Q is completely positive.

Next, we verify the trace-preserving property. For any p € L(CY), using the linearity and the
cyclic property of the trace, we have

(3.21) Q] = Y Tr[KpK]]=Tr |p | Y KIK;
JE[R] JE[R]

Substituting the completeness relation 3z K}Kj = Iy, we obtain Tr[pIy] = Tr[p]. Therefore,
@ is trace-preserving. O
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The representation in Eq. is called the Kraus form or the operator sum representa-
tion of the channel. The operators {K;} are known as Kraus operators. For example, the unitary
channel in Example is in Kraus form with a single Kraus operator Ko = U.

We can now explore the connection between classical stochastic evolution and quantum chan-
nels. This correspondence highlights that quantum mechanics is a generalization of classical prob-
ability theory.

For any probability distribution p € RY, we can embed it into a quantum state

(3.22) o= miliYil

i€[N]

This diagonal density matrix is called a classical state or probabilistic state.

Given a (column) stochastic matrix P € RM*N (ie, P; > 0 and Yiepn Py = 1 for all
j € [N]), which defines a classical Markov process mapping distribution p to p’ = Pp, we can
construct a corresponding classical channel Q : L(CY) — L(CM) defined by

(3.23) Al = > PyliXilplsXil.

i€[M],j€[N]

If p is a classical state, Q[p] is also a classical state corresponding to the evolved probability
distribution p'.

Exercise 3.1. Prove that the classical channel Q defined in Eq. is indeed a quantum
channel (CPTP).

The fact that classical channels are a subset of quantum channels suggests that any advantage
offered by quantum computation must stem from the utilization of the off-diagonal entries of the
density matrix (coherence) and the structure of non-classical channels.

We now present several examples of important quantum channels, typically modeling different
types of noise processes in qubits (N = M = 2).

Example 3.15 (Bit flip and phase flip channels). The bit flip channel Q¢ describes a process where
the qubit state is flipped (i.e., X gate applied) with probability 1 — p, and remains unchanged with
probability p:

(3.24) Quelpl =pp+ (1 —p)XpX, 0<p<L

This is in Kraus form with Ky = Pl and K1 = /1 —pX.
Similarly, the phase flip channel O flips the relative phase (i.e., Z gate applied) with proba-
bility 1 — p:

(3.25) Qutlp) =pp+(1-p)ZpZ, 0<p<l.
This channel is also known as the dephasing channel, as it suppresses coherences while leaving
populations unchanged. o

Example 3.16 (Depolarizing channel). The depolarizing channel Qq;, : L(CY) — L(CY) models a
process where the state remains intact with probability p, and is replaced by the maximally mixed
state I /N with probability 1 — p:

1—
(3.26) Quplpl =pp+ —~1, 0<ps<1l
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Example 3.17 (Amplitude damping channel). The amplitude damping channel Q.4 : L(C?) —
L(C?) models energy dissipation, such as spontaneous emission, where an excited state |1) decays
to the ground state |0) with probability . It is described by the Kraus operators

(3.27) K0:<1 \/10_70 K1:<8 \?) 0<~y<1.

<&

Perhaps surprisingly, the converse of Proposition [3.14]is also true: every quantum channel can
be written in the Kraus form. This fundamental result demonstrates that the abstract definition of a
CPTP map is equivalent to the constructive definition provided by the operator sum representation.

THEOREM 3.18 (Choi—Kraus Representation). A linear map Q : L(CYN) — L(CM) is a quantum
channel if and only if there exists a set of matrices {K;};e[r) in CM*N “with R < NM, satisfying

the completeness relation ZJ—G[R] K}Kj = Iy, such that Q takes the form
(3.28) Ap) = Y Kjpk].
JElR]

PROOF. The “if” part is established by Proposition[3.14 We now prove the “only if” part using
a technique known as the Choi-Jamiotkowski isomorphism.
Let Q be a quantum channel. Define an unnormalized maximally entangled state on CV ® C/:

(3:29) =D i) ®1i).
€[N

Let Zn denote the identity map on the first N-dimensional register (the ancilla). By the complete
positivity of Q, the map Zy ® Q is positive. Therefore, the Choi matrix defined as

(3.30) o= (In ® Q)Y )Xy|] € L(CN @ CM)

is a positive operator.

The Choi matrix completely characterizes the channel Q. To see this, we use a key property
of the maximally entangled state. For any vector |¢) = >, 4; |i) € CN, let |[¢) = >, 4; |i) be its
element-wise conjugate in the computational basis. We can verify the identity:

(3.31) (@1 In) 1) = Y0410 @ 1) = 3" wili) = o).

We can recover the action of the channel on [¢)1| by taking the partial inner product of o
with |¢) on the first register. By the definition of the tensor product map and the identity above,
we have:

(91 ® Lo (1) & ) = (@] @ 1) (@n © QNI @ Tar)
(332) = o[l & I (1) @ In)
= Q).

Since o is positive, we can perform its eigendecomposition. Let R = rank(c) < NM. We write

(3.33) o= |s;Xs;l,

J€[R]
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where |s;) € CN @ CM are (potentially unnormalized) eigenvectors scaled by the square root of the
eigenvalues.

For each j € [R], we define a linear operator K; : CY — CM via the relation (sometimes called
vectorization or flattening):

(3.34) Kj[v) == (] @ Ing) [s5) -

Substituting the decomposition of ¢ back into the recovery formula:

QX)) = (W] @ In) | D Is¥ssl | (1) @ Iar)
JE[R]

(3.35) =3 [Wlennls)] [l () @ )]
Jj€[R]
= 300G DG ) = Y KWK
J€lR] JE[R]

Since this holds for arbitrary |+), by linearity it holds for all operators p € L(CV).
Finally, we must verify the completeness relation. The trace-preserving property Tr[Q(p)] =
Tr[p] implies

(3.36) T | > KjpKl| =Tr || Y KIK; | p| =Te[Ivp].
JE[R] JE[R]
Since this equality holds for all p, we must have el K]TK ;=1In. O

The definition of complete positivity in Definition [3.10] requires verifying positivity for all di-
mensions K, which is operationally cumbersome. However, the proof of the Choi—Kraus theorem
reveals that a much simpler criterion suffices. Let Zy denote the identity channel on L(CN ). If
we assume only that the map Zy ® Q is positive, then the Choi matrix o (defined in the proof of
Theorem must be positive, as it is the image of the positive operator |y)}~| under this map.
As shown in the proof, the positivity of o guarantees the existence of a Kraus representation for
Q. Finally, by Proposition any map with a Kraus representation is completely positive (i.e.,
Tk ® Q is positive for all K). This establishes the equivalence between the original definition and
a condition involving only an ancilla of the input dimension:

Proposition 3.19 (Choi’s Theorem). A linear map Q : L(CN) — L(CM) is completely positive if
and only if its Choi matriz o is positive semidefinite. FEquivalently, Q is CP if and only if the map
In ® Q is positive.

The Kraus representation provides deep insight into the structure of quantum channels. An-
other fundamental structural result is the Stinespring dilation theorem, which connects general
quantum channels (which may involve decoherence or dissipation) to coherent evolution on a larger
Hilbert space.

THEOREM 3.20 (Stinespring dilation). Given any quantum channel Q : L(CN) — L(CM), there
exists an ancilla system A of dimension R < NM, and an isometry V : CN — CM @ CF (i.e.,
VIV = Iy) such that

(3.37) Q(p) = Tra [VpVT].
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Furthermore, this isometry can always be realized by a unitary evolution U on a sufficiently large
joint system initialized with the ancilla in a fized state |0):

(3.38) Qp) =Tra [U(p @ |0)X0))UT] .
PRrOOF. By the Choi-Kraus theorem (Theorem [3.18), Q has a Kraus representation Q(p) =
Zje[R] ijKJT, where R < NM.

We construct the isometry V : C¥ — CM @ CE. Let {|j)} be an orthonormal basis for the
ancilla space CE. Define V by

(339) Vig)= > (K; ) @1j).
JE[R]
We verify that V is an isometry. For any |¢) € CV:
WIVIVIR) = IV IDIF = D I 1))

JE[R]
(3.40)

= > @WIKK; ) = @] | Y KK | ).

JE[R] J

By the completeness relation, this equals (1[¢)). Thus VIV = I.
Now we verify the representation in Eq. (3.37). We compute VpVT. It is helpful to view V/
formally as V' =3, K; ® |j). Then

(3.41) Vvt = (Zm@ |i)> p ZK} @ (jl | = D (KipK}) @ |i)j]-

,J
Tracing over the ancilla (the second register) yields
(3.42) Tra[VpVi] =Y (KipK]) Tr Z K;pK| = Q(p).
0,J
To realize this via a unitary evolution, we define U such that its action on the subspace corre-

sponding to the initial state p ® |0)0| matches the isometry V. Let the joint space be large enough
(e.g., dimension D = max(N, M)R). We define U such that

(3.43) U(p)®10)) =V )y, V) eCr.

(We might need to embed CV and CM @ C” into the larger space C”). Since V is an isometry,
this definition is norm-preserving. We can always extend this definition to a full unitary U on the
joint space.

Finally, we verify the representation in Eq. (3.38). Let p = ), pr|tr)¢x| be the spectral
decomposition.

U(p®[0)0)UT = ZpkU [¥r) © 10)) (| @ (O)UT

(3.44)
= Zpk Vo)) (V [0 = Vvt
k

Therefore, Q(p) = Tra[VpVT] = Tra [U(p ® |0)0))UT]. O
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Theorem [3.20| states that any quantum channel, no matter how noisy or irreversible it appears,
can always be modeled as a unitary interaction between the system and an environment (ancilla),
followed by discarding the environment. This provides a powerful conceptual tool, showing that all
quantum evolution is fundamentally unitary if we consider a large enough closed system.

3.3. Distance between state vectors and unitaries

A distance (also called a metric) on a set X is a function d : X x X — R that assigns a real
number d(z,y) to each pair of points z,y € X. This function satisfies the following properties for
all x,y,z € X:

(1) (Non-negativity) d(z,y) > 0.
(2) (Identity of indiscernibles) d(z,y) = 0 if and only if z = y.
(3) (Symmetry) d(z,y) = d(y,z).
(4) (Triangle inequality) d(z,y) < d(z,2) + d(z,y).

For example, the vector 2-norm defines a metric on CV : (z,y) — ||z — y||, and the operator
norm defines a metric on U(N): (U, V) — ||[U = V||.

The difference for the product of K unitaries can be bounded using a simple technique some-
times referred to as a “hybrid argument”. This technique is used to bound the distance between
two states by considering a sequence of “hybrid” unitaries, each of which differs from the next in
the sequence by a small amount.

Proposition 3.21 (Linear error growth for products of unitaries). Given unitaries Uy, 5’1, ..., Uk, Tj’K S
U(N) satisfying

(3.45) “Ui—(?i <e Vi=1,... K,

we have

(3.46) HUK~~~U1—T7K-~-[71H < Ke.

PROOF. Use a telescoping series
U Uy —Ug - U
=(Ug - UsUy — U -~ UsUy) + (Ugc - - UsUsUy — Uk - - UsUsUy ) + -+
+ (UxUg—1---Ur — UxUg—1 -+ Uy)
=Ug - Us(Uy — Uy) + Ug -+ Us(Ua = U)Uy + -+ + (U — Ug)Ug—1 -+ Uy

(3.47)

Since all U;, Tj’l are unitary matrices, we readily have

K
(348) HUKUl_inﬁIHSZHUl_ﬁ’ SKE
i=1

O

For most of this book, the vector 2-norm and the operator norm distances are both convenient
and sufficient. However, they are only applicable to pure states. For measuring the distance between
mixed states, new tools will be needed. Even for pure states, unitaries may differ by a phase which
should be inconsequential for measuring physical observables. These require the introduction of
new metrics.
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Two state vectors [1)) ,|¢) € CV are physically indistinguishable if they only differ by a global
phase. Similarly, two unitary matrices U, V' € U(NN) induce the same evolution on density operators
if they only differ by a global phase. Consider the matrices

(3.49) I, := <(1) (1)> I := <_01 _01>.

We have in this case that ||[I; — I_|| = 2. However, for an arbitrary density matrix p, the induced
evolution of the density operator under these two operators is
(3.50) [Lpl = I-pI_|| = |[p = (=1)%p|| = 0.

This motivates the definition of the global phase invariant distance for vectors and unitary matrices.
The subscript p in D, stands for phase.

Definition 3.22. Let 1)), |¢) € CV be two state vectors, their global phase invariant distance
18

(3.51) Dy([9) ;1)) = gg§|||w> — )]

Definition 3.23. For two unitaries U,V € U(N), their global phase invariant distance is
3.52 Dy(U,V) = min ||U — V||
(3.52) p(U.V) = min |[U = V]|

An equivalence relation on a set X is a binary relation ~ that satisfies the following three
properties for all a,b,c € X:
(1) (Reflexivity) a ~ a.
(2) (Symmetry) If @ ~ b, then b ~ a.
(3) (Transitivity) If a ~ b and b ~ ¢, then a ~ c.
A relation that satisfies these properties is called an equivalence relation, and it partitions the
set X into disjoint equivalence classes.

Definition 3.24. Let X be a set and ~ be an equivalence relation on X. The quotient space (or
quotient set) X/ ~ is defined as the set of equivalence classes of X under the relation ~. An
equivalence class [x] of an element x € X is the set of all elements in X that are equivalent to x,
i.e.,

(3.53) [zl ={y e X |y ~x}.

The quotient space X/ ~ is the set of all such equivalence classes:

(3.54) X/ ~={[z] |z € X}.

Example 3.25. Define an equivalence relation on CV:

(3.55) r~y < x=M\yforsome A € C\ {0}, z,yeCV\{0}.

Then PCY := CV \ {0}/ ~ is called the complex projective space, which is isomorphic to the
set of all nonzero physical states. The real dimension of a manifold M is the number of real
coordinates needed to locally describe the manifold. For example, the real dimension of CV is 2N,
and the real dimension of PC¥ is 2N — 2.

We may identify each single qubit quantum state with a unique point on the Bloch sphere as

(3.56) a = (sinf cos @, sinfsin p,cosf) ", 6,9 € R.
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This agrees with the previous statement that the real dimension of PC? is 2. o

Exercise 3.2. Prove that the global phase invariant distance is a distance on the complex
projective space PCV.

Example 3.26. Define an equivalence relation on U(N):
(3.57) U~V < U=¢"%V forsome e R, U,V e U(N).

Then PU(N) := U(N)/ ~ is called the projective unitary group. The real dimension of U(NV)
is N2, and the real dimension of PU(N) is N2 — 1.

Recall that the special unitary group SU(NV) consists of all unitary matrices with determinant
1. So the real dimension of SU(N) is N2 — 1. However, the equivalence relation on SU(N) is

(3.58) U~V = U=e?"/NV for some k € [N], U,V e SU(N).

So each equivalence class only consists of N discrete elements and does not reduce the dimension.
Therefore the real dimension of the projective special unitary group denoted by PSU(N) is still
N? 1. o

Exercise 3.3. Prove that the global phase invariant distance is a distance on the projective
unitary group PU(N).

Exercise 3.4. Given unitaries Uy, [717 ..., Uk, Uk € U(N) satisfying

(3.59) DU, U) <e, Vi=1,... K,
prove that
(3.60) Dy(Ug - Uy, Ugc ---U) < Ke.

Let |¢) = €™ cosf |¢p) +sin@ | L), where (¢p| L) =0 and 0 < 6 < m/2. Then cosf = |(p|)] is
the overlap between the two vectors. We can perform a unitary operation that rotates e [1)) to
|0) and | L) to |1). Direct calculation shows

(3.61) Dp(|v), |¢}) = min [10) — e (e" cos §10) +sin6 |1))[| = v/2(1 — cos ) = /2(1 — [(¢[4))]).

Therefore the global phase invariant distance between two vectors can be directly computed from
the overlap.

Exercise 3.5. For U,V € U(N), prove that

Aj

(3.62) D,(U, V)= Zm(gn max
J

sin

where {1} are eigenvalues of V1U.
Exercise 3.6. For U,V € U(N), another distance that is invariant to the global phase is

1 . i

Prove that

T
. N Y A i i)
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3.4. Distance between classical states and classical channels

In this section, we provide a connection between concepts in classical probabilistic computa-
tion and density operators and quantum channels in quantum computation. For two probability
distributions p,q € RY, the total variation distance is

1
(3.65) D(p.q) =5 D Ipi —ail.
1€[N]

The name total variation distance comes from that it measures the largest difference between p and
g for some subset (also called event) S. The total variation distance is the default metric we will
use between probability distributions and will be denoted by D without subscripts.

Proposition 3.27. For any two classical probability distributions p,q € RV,

(3.66) D(p, q) = max(p(5) — q(5)) := max (Z pi—Y %’) :

i€es =
where the maximization is over all subsets S.

ProOF. For any subset S, let S be its complement. Then
(3.67) 0= "pi—> 6= (pi—a)+Y (pi—a)
i i €S i€S

Hence

(3.68) =Y a= % > pi—a) =Y (pi—a) | <D(p,q)

ies i€s = icS

Now let S = {i|p; > q;}. Then

€S €S

(3.69) % > i—a) =Y i—a)| = % Z lpi — ail = D(p,q),

and the equality is achieved. (|
We now prove that the application of a transition matrix does not increase the total variation

distance.

Proposition 3.28. Given a transition matriz P € RNXN

butions p,q € RV,

(3.70) D(Pp,Pq) < D(p,q).

, and any two classical probability distri-

If the equality holds for any p,q € RY, then P is a permutation matriz.

PRrROOF. Use the left stochasticity of the transition matrix, we have

1 1 1
(3.71) D(PP,PQ)=§Z > Pilp; —q)) §§ZZR-J- |pj—qy'\:§Z|pj—qy‘\=D(p,Q)~
i T i

%
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If the equality holds for any p,q € RY, we prove that each row of P has only one nonzero entry. If
this is not the case, assume that there exists a row index ¢ and two distinct column indices j; # jo
such that P;;, > 0 and F;;, > 0. Choose p = e;, and ¢ = e;,. Then for this row ¢,

(3.72) me =|Pijy = Pignl < Pijy +Pijy =D Pilp; —ajl,
J

which contradicts equality in the triangle inequality step above. Hence each row has exactly one
nonzero entry. By left stochasticity, each column must also have exactly one nonzero entry, which
must equal 1. This proves that P is a permutation matrix. O

The induced total variation distance between two transition matrices P,Q € RVY*V js
defined as

(3.73) D(P,Q) = max D(P.j,Q.;)-

Exercise 3.7. Prove that D(-,-) is a distance on the set of N x N transition matrices.
Finally, we prove that the difference for the composition of K classical channels grows linearly.

Proposition 3.29 (Linear error growth for product of transition matrices). Given the transition

matrices Py, Py,..., Pk, Py € RN*N " the induced total variation distance satisfies
K

(3.74) D(Pk -+ Py, Pg---P) <Y D(P;, P).
i=1

PROOF. Using the telescope series Proposition [3.21] it is sufficient to consider the case for
K =2. Then

D(PyPy, P,P,) <D(PyPy, P,Py) + D(P, Py, P,P;)
- D((PyP;). - (PoPy). D((PyP). - (PoPy).
max ((PaPr). g, (P2 1).,J)+jlg[f§vx] (P2Py). j, (P2 Py). 5)

< D((P1). 5, (P, + D((P3).q, (P3).
(.75 s DR (B + s (s DR (P20 ) (P

<max D((P1). ;, (P D((Py).1, (Pa).
max D((P1):,j0 ( Py)., 3) + max D((F2)., ( P)..)

=D(Py, P\) + D(Py, P,).
Here we have used Proposition and the left stochasticity of ]51. O

3.5. Distance between quantum states

Quantifying the similarity or difference between quantum states is fundamental to quantum
information theory. It allows us to analyze the performance of quantum algorithms, assess the
errors in quantum communication protocols, and understand the distinguishability of quantum
states through measurements. In this section, we introduce the two most widely used measures: the
trace distance and the fidelity. These generalize the corresponding concepts for classical probability
distributions, such as the total variation distance discussed in Section [3:4 For a comprehensive
treatment, we refer readers to [NC0O0, Chapter 9] and [Watl8, Chapter 3].
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3.5.1. Schatten norms and the trace norm. To define distances between density opera-
tors, which are matrices, we first need appropriate matrix norms. The Schatten norms provide a
family of norms generalizing the 7 norms for vectors to the space of operators.

Let A € CM*N_ The singular values of A, denoted o;(A), are the square roots of the non-
negative eigenvalues of ATA. The matrix norm!Schatten p-norm of A for p > 1 is defined as the P
norm of its singular values:

(3.76) Al : (Z oi(A ) .

This can also be expressed using the trace function. Let |A| := vV AT A denote the positive semidef-
inite square root of ATA. Then

(3.77) 1], = (Tx[|AP)»

The following choices of p are particularly important:

e The Schatten 1-norm, also known as the trace norm, is the sum of the singular values:

(3.78) [A]l, = Tx[|A]] = Zoz

If A is positive semidefinite, |A| = A, so [|Al|; = Tr[A].
e The Schatten 2-norm (also called the Hilbert-Schmidt norm or Frobenius norm) is the
Euclidean norm of the singular values:

(3.79) | All, = /Tr[ATA] = (Zaz )

e The Schatten co-norm is the maximum singular value:

(3.80) 4]l = lim [[A], = maxoi(A).

Nl

This is identical to the standard operator norm (the induced ¢ — ¢? norm), often denoted
|A|| (equivalently || Al ).

A basic but useful property relates the trace of a matrix to its trace norm.
Proposition 3.30. For any square matriz A € L(CV),
(3.81) Te[A]] < [[A]l; -

PrOOF. Consider the singular value decomposition A = ULV, where U,V are unitary and
Y = diag(o;) contains the singular values. Using the cyclic property of the trace:

(3.82) Tr[A] = TI[UZVT] = Te[RVTU].
Let W = VTU. Since W is unitary, its entries satisfy |W;;| < 1 for all i. Therefore, by the triangle

inequality,

(3.83) ITe[A]] =

ZUiWii

< ZO’Z' Wil < Zai = [|A]; .
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The Schatten norms share many properties with the /? norms for vectors, including the triangle
inequality and Holder’s inequality. We state these fundamental results without proof, referring the
reader to texts on matrix analysis such as [Bha97].

Proposition 3.31 (Properties of Schatten p-norms). Let A, B be operators.
(1) (Triangle inequality) For 1 < p < oo, ||[A+ Bl|, <[|A[, +[|B],.
(2) (Holder’s inequality, [Bha97, Corollary IV.2.6]) For 1 < p,q < oo satisfying % + % =1, if
the product AB s defined, then ||AB||, < ||A|, B,

We are primarily interested in the trace norm (p = 1) and the operator norm (p = c0). An
important specialization of Hélder’s inequality is the case p = 0o, q = 1:

(3.84) [AB]l, < [ Allo 1Bl -

This inequality is frequently used to bound the trace norm of a product. Another useful variation
involves the trace of a product, which can be viewed as a generalization of the Cauchy-Schwarz
inequality. We provide a self-contained proof of this specific case.

Lemma 3.32 (Holder’s inequality for trace). For any operators A,B € L(CY), the following
inequality holds:

(3.85) |Tr(A™B)| < ||All IBll, -

PROOF. Let B = UXVT be the SVD of B, with singular values s;. By definition, || B, =", s;.
Using the cyclic property of the trace:

(3.86) Tr(A'B) = Te(ATUSVT) = Te(VTATUY).

Let W = VTA'U. Since U and V are unitary, the operator norm is invariant under unitary
multiplication: |[W|| = HATHOO. Furthermore, ||ATH(><> = [|A]|, as they share the same singular
values. The trace is the sum of the diagonal elements of W weighted by the singular values:

(3.87) Te(WS) =) Wiisi.

We can now bound the magnitude of the trace usinlg the triangle inequality:
Z Wiisi| < Z |Wiilsi

< Z Wl s =114l D si = Al IBIl; -

|Tr(ATB)| =

(3.88)

K2

O

We now consider how the trace norm behaves under the partial trace operation, which often
arises when dealing with composite systems.

Exercise 3.8. Let |u),|v) be normalized state vectors in H4 ® Hp. Show that

(3.89) 1T u)olll, < 1.

(Hint: use Holder’s inequality for the Schatten 2-norm.)
More generally, the partial trace is a contraction with respect to the trace norm.
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Proposition 3.33 (Partial trace does not increase the trace norm). For any operator O € L(H 4 ®
HB):

(3.90) ITrp O, < [[O]; -

PRrROOF. Consider the singular value decomposition of the operator O:

(3.91) 0= oplur)vl,
k

where o, > 0 are the singular values, and {|ux)}, {|vr)} are sets of orthonormal vectors in H4 @ Hp.
The trace norm is ||O|; = >, o%.
Applying the partial trace and using the triangle inequality (Proposition [3.31)):

(3.92) |Trg O, =

Z o Trp |ug vk
k

<D ok e ug) vl -
1 k

By Exercise |Tr 5 |ug Yvk|||; < 1. Therefore,

(3.93) ITrs Ol <) or =0,
k

]

The trace norm and the operator norm are dual to each other with respect to the trace in-
ner product, a property that is frequently exploited in optimization problems and for deriving
operational interpretations of these norms.

Lemma 3.34 (Duality of Trace and Operator Norms). For any operator Y € L(CY), the following
identities hold:

(3.94) Y], = sup |Tx(Z'Y)],
1Z]l . <1

and

(3.95) Vo= sup |Te(YiX)].
Ix1,<1

Proor. We first prove Eq. . Let S; denote the right-hand side. Applying Holder’s
inequality (Lemma [3.32), we have | Tr(ZTY)| < ||Z|| [V, If we restrict the optimization to
1Z||. <1, then |Tr(Z7Y)| < ||Y]|,. Taking the supremum yields S; < ||Yl,.

To show S; > ||Y]|,, we construct an operator Z that achieves the bound. Let Y = USVT be
the SVD of Y. Define Z = UV'. Since Z is unitary, ||Z|| = 1. We compute the trace:

Te(Z'Y) = Te(UVHT(UZVT) = Te(VUTURVT)

(3.96) =Tr(VEVh) = Te(2) = ||V, .

Thus, S1 > ||Y]];.
Next, we prove Eq. . Let S denote the right-hand side. Applying Lemma we have
| Tr(YTX)| < IVl IX]l;- Restricting to ||X||; <1 and taking the supremum yields So < [|Y]| ..
To show Soc > ||Y]|,, we construct an optimal X. Let Y = >, s;u;)}v;| be the SVD of
Y, ordered such that s; = [|Y]| . Define the rank-1 operator X = |uj)(vi|. Since |u;),|vi) are
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normalized, || X||; = 1. We compute the trace:

Tr(YTX) =Tr ((Z 51|vz><uz|> |U1><U1|>

%

=Tr (Z Si‘Ui><’l}1| <u1|u1>> .
i
Due to the orthonormality of {|u;)}, only the i = 1 term survives:
(3.98) Tr(YTX) = Tr(s1|vi)vi]) = s1 = |V, -
Thus, Soo > [|Y| .- O

(3.97)

When the operator Y is Hermitian, the optimization domains in these duality relations can also
be restricted to Hermitian operators.

Lemma 3.35 (Duality for Hermitian Operators). Let H € L(CN) be a Hermitian operator.

(1) The trace norm is achieved by mazimizing over Hermitian operators in the unit operator-
norm ball (i.e., =1 2 Z <1):

(3.99) IH||, = sup{| Te(ZH)| : Z = Z", || Z]| , < 1}.
(2) The operator norm is achieved by mazimizing over density operators:
(3.100) |||, = sup{| Tx(Hp)| : p € D(CY)}.

PROOF. In both cases, the inequality < (for the left-hand side) follows immediately from
Lemma [3:34] as the restricted optimization domains are subsets of the original domains. We only
need to show that the bounds can be achieved within these restricted domains.

1. Proof of Eq. (3.99). Let H = Y, Ai|t;)(t);| be the spectral decomposition, where A; € R. The
trace norm is ||H||; = >, |\i|. Define the sign operator Z = 3" sgn(\;)|1;)¢;|. Z is Hermitian,
and its eigenvalues are in {—1,0,1}, so || Z]|, < 1.

(3.101) Te(ZH) = ngn()\i))\i = Z il = [ H|, -

2. Proof of Eq. (3.100)). The operator norm is ||H||, = max;|\;|. Let k£ be an index achieving
the maximum. Define the pure state p = |[¢; k|, which is a density operator.

(3.102) | Te(Hp)| = | (Y| H|tbr) | = [Ax] = [ H]| -
]

3.5.2. Trace distance. The trace norm provides a natural way to define a distance metric
on the space of quantum states, generalizing the classical total variation distance.

Definition 3.36 (Trace distance). The trace distance between two quantum states p,o € D(CV)
is defined as

1
(3.103) D(p,0) =5 llo = ol

The factor of 1/2 ensures that the distance lies in the range [0,1]. Since ||p[|; = 1 and ||o|; =1,
the triangle inequality (Proposition [3.31)) gives ||p —oll; < |lpll; + lloll; = 2.
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Example 3.37 (Trace distance for classical states). Consider classical probability distributions
p,s € RN embedded as classical states:

(3.104) p= Z pili)il, o= Z sii)il.
i€[N] i€[N]

The difference p — o is a diagonal matrix with entries p; — s;. The trace norm is the sum of the
absolute values of the eigenvalues:

1 1
(3.105) D(p.0) =5 lp—olly =5 > _Ipi = sil

This is exactly the total variation distance D(p, s) between the probability distributions p and s. ¢

The trace distance has an operational interpretation related to the distinguishability of quantum
states through measurement. This is the quantum generalization of Proposition [3.27]

Proposition 3.38 (Operational interpretation of trace distance). For any quantum states p,o €
D(CN), the trace distance satisfies

(3.106) D(p,o) = omax Tr[M(p — o))

The mazimum is achieved when M is the projector onto the subspace where p — o is positive.

PROOF. Let A = p — 0. A is Hermitian and Tr[A] = 0. We want to maximize Tr[MA] over
0=<M=<1I.

We utilize the duality results established earlier. Consider an operator M such that 0 < M < 1.
Define Z = 2M — I. Then Z is Hermitian, and —I < Z < I, which means || Z| < 1. We have
(3.107) Tr[ZA] = Tr[(2M — I)A] = 2 Tr[M A].

By the Hermitian duality relation (Lemma [3.35 Eq. (3.99)), ||All; = sup{| Txr(Z'A)| : Z' =
Z'"||1Z'||, < 1}. Since Z is admissible for this optimization, we have
(3.108) 2Tr[MA] = Tr[ZA] < ||A]|; -

Thus, TI‘[MA] < % ”AHl = D(p, G)'

To show equality, we construct an optimal M. Let A = A, — A_, where A, A_ are positive
semidefinite operators with orthogonal support. Since Tr[A] = 0, we have Tr[A;] = Tr[A_]. The
trace norm is

(3.109) |A]l; = Tr[A4] 4+ Tr[A_] = 2Tr[A4].
So D(p,o) = Tr[A4].
Let P be the projector onto the support of Ay with PA; = A;. We evaluate the trace:
(3.110) Tr[PA] = Tr[P(AL — A_)] = Tr[A4] = D(p, 0).
Therefore, the maximum is achieved. O

Proposition implies that D(p, o) is the maximum difference in the probability of obtaining
a specific measurement outcome when measuring p versus o.

A fundamental property of the trace distance is that it cannot increase under the action of a
quantum channel. This reflects the physical intuition that noise or information loss (modeled by
the channel) makes states harder to distinguish. This result parallels Proposition for classical
channels.
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THEOREM 3.39 (Quantum channels are contractive). Let Q : L(CY) — L(CM) be a quantum
channel. For any p,o € D(CV),
(3.111) D(Q[pl, Qlo]) < D(p, 0).

PROOF. Let p’ = Q[p] and ¢/ = Q[o]. By Proposition [3.38] there exists a projector P (specifi-
cally, onto the positive subspace of p’ — ¢’) such that

(3.112) D(p',0') =Tr[P(p’ — 0')] = Tx[PQ[p — o]].

Consider the decomposition p—o = A, —A_, where A, A_ > 0 are the positive and negative
parts, respectively. As shown in the proof of Proposition D(p,0) = Tr[A ] = Tr[A_].
Substituting the decomposition and using linearity:

(3.113) D(p',o’) = TH{PQ[A, — A_]| = TH[PQIA,]] - Tr[PQIA_]]

We analyze the two terms. Since Q is a positive map, and A_ > 0, the output Q[A_] is positive
semidefinite. Since P > 0, the trace of the product of two positive operators is non-negative:
Tr[PQ[A_]] > 0. Therefore,

(3.114) D(p',0') < Tr[PQ[A.]].

Next, since Q[A4] = 0 and P < I, we have I — P > 0. Thus Tr[(I — P)Q[A]] > 0, which implies
Tr[PO[AL]] < Tr[Q[A4]]. Therefore,

(3.115) D(p,o") < TH[QIA.]].
Finally, since Q is trace-preserving, Tr[Q[A]] = Tr[A,]. Combining the inequalities, we obtain
(3.116) D(Q[p], Qlo]) < Tr[A4] = D(p, 0).

O

3.5.3. Fidelity. While the trace distance is an operationally useful metric for the distance be-
tween quantum states, another widely used measure is the fidelity. Fidelity quantifies the “overlap”
between two quantum states, and generalizes the inner product between pure state vectors.

Definition 3.40 (Fidelity). The fidelity between two quantum states p,o € D(CV) is defined as

(3.117) F(p,o) :=Tr [W} .

This definition can be rewritten using the trace norm. A more symmetric expression involves
the operator A = p'/25'/2. Recall that the trace norm of A is ||Al|, = Tr[|A]] = Tr[V AT A]. Here
AYA = ¢'/2po'/2. The singular values of A are the square roots of the eigenvalues of ATA (and
also AAT = p'/25p'/2). Thus,

(3.118) F(p,0) = le/%l/?H .
1
This immediately establishes that fidelity is symmetric: F(p,0) = F(c, p), since [|A[|; = [|AT||,.

Remark 3.41. Nomenclature can be confusing. Sometimes the quantity defined above is called the
square root fidelity, and F(p, o)? is called the fidelity. The infidelity is then defined as 1 — F(p, o)2.
We will adhere to Definition [3.40l o
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Fidelity satisfies 0 < F(p,0) < 1. The upper bound follows from Holder’s inequality (Proposi-
tion [3.31} p = ¢ = 2):

o o) = o], < [ 7],
1 2 2

Since Hp1/2||§ = Tr[p'/2p'/?] = Tr[p] = 1, we have F(p,0) < 1. Furthermore, F(p,o) = 1 if and
only if p = 0.

Fidelity itself is not a distance metric (it does not satisfy the triangle inequality). However, it
can be converted into a metric known as the angle or Bures angle.

Definition 3.42 (Angle between quantum states). The angle between two quantum states p,o €
D(CN) is

(3.120) 0(p, o) := arccos(F(p,0)) € [0,7/2].

Example 3.43 (Pure states). If p = [)}¢| and o = |¢)g| are two pure states.

(3.121) p'2ap'? = [)ylleXellwXvl = | (Wle) Plo)Xl.
This is a rank-1 operator. Its only non-zero eigenvalue is | (1[) |?
is | (¥|e) |. Thus,

(3.122) F(p,0) = |{¢lo} .

The fidelity is the absolute value of the overlap between the state vectors.
More generally, if only one state is pure, say p = |¢) (1|, then

(3.123) F(p,0) =/ {¥lol).

It is the square root of the overlap between the pure state |¢)) and the mixed state o.

Let us relate the trace distance and fidelity for pure states p,o. Let the angle be 6 = 0(p, o),
so F(p,0) = cosf. We can choose a basis such that |¢)) = |0) and |¢) = cos8|0) + sinf|1) (by
adjusting global phase). In this 2D subspace, the difference p — o is represented by the matrix:

. The square root of this eigenvalue

10 cos?f  cosfsind sin? @ —cosfsind
(3.124) A= (0 0) B (cos@sinﬁ sin? @ ) B <— cosfsingd  —sin?6 ) ’
The eigenvalues of A are £sinf. The trace norm is [|A|; = |sinf| + | — sinf| = 2sinf (since
0<0<m/2).
1
(3.125) D(p,o) = §||p70H1 = sin6.

We can express this in terms of fidelity F' = cos8:
(3.126) D(p,0) =+/1—F(p,0)>.
o

Example 3.44 (Classical states). Let p,o be classical states corresponding to probability distri-
butions p, ¢ (see Example |3.37)). Since the operators are diagonal, the definition simplifies:

(3.127) F(p,0) = Z VG-
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This is the classical Bhattacharyya coefficient. The relationship between trace distance and fidelity
for classical states is characterized by the inequality:

Dip.0) =5 3 Ipi — 4l = 5 S (V55 — V&)

J

(3.128)
1
=52 i+a; = 2/Bi0) =1 b =1-F(p,0).
J J
The inequality step uses |a? — b2| > (a — b)? for a,b > 0. o

We have seen two extremes: for pure states D = /1 — F2, while for classical states D > 1— F.
These relationships are generalized by the Fuchs—van de Graaf inequalities (see [NCO0, Section 9.2]),
which provide tight bounds relating the two measures for arbitrary quantum states.

THEOREM 3.45 (Fuchs—van de Graaf inequalities). For any p,o € D(CV),

(3.129) 1—F(p,0) < D(p,0) <+/1—F(p,0)2

We state a few important properties of fidelity without proof. Their proofs typically rely on a
powerful result known as Uhlmann’s theorem, which relates the fidelity between two mixed states
to the maximum overlap between their purifications (see [NC00, Chapter 9], [Watl8, Chapter 3]).

Proposition 3.46 (Properties of Fidelity and Angle). Let p,o € D(CY).

(1) (Metric property) The angle §(p, o) is a distance metric on D(CY).
(2) (Contractivity) For any quantum channel Q, the angle is contractive:

(3.130) 0(Qlp], Qlo]) < (p, o).
Equivalently, fidelity increases (or stays the same) under quantum channels:
(3.131) F(Ql), Qo) = F(p,o).

The Fuchs—van de Graaf inequalities (Theorem [3.45)) can be rewritten in terms of the angle
0 =06(p,0):

0
(3.132) 25sin? 3 < D(p,0) < siné.

When the states are close (1), we can use the approximations sinf =~ 6 and 2sin?(0/2) ~ 62/2.
This gives
(3.133) %92 < D(p,o) < 6.
This quadratic difference in scaling suggests that while the different distance metrics are related,
they can behave very differently.
Example 3.47. Consider a target state p = |0)0]. Let 6 € [0,7/2] and define two pure states:
(3.134) |04) = cos@|0) +sinf|1), |6_)=cosf|0) —sind|1).
Let o0 and o_ be the corresponding density operators. We also consider the mixed state oy =
oy +0o).
(3.135) oy = cos? 0|0)0| + sin? 9|1)(1].

We compare the fidelities and trace distances to the target state p. The fidelities are identical:
(3.136) F(p,04+) = F(p,0-) = F(p,on0) = cos¥.
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However, the trace distances differ significantly. For the pure states (using Example [3.43):

(3.137) D(p,0+) =siné.
For the mixed state o (using Example |3.37)):
(3.138) D(p, o) = sin® 6.

If 6 is small, D(p,04+) ~ 6 while D(p,op) ~ 62. The mixed state is quadratically closer
to the target state in trace distance than its pure components, even though they all share the
same fidelity. The coherent superpositions in oy and o_ (the off-diagonal terms) cancel out in the
incoherent mixture o/, leading to a state that is statistically closer to p. o

Which measure, fidelity or trace distance, is more physically relevant? The answer depends
on the context. Fidelity can often be estimated experimentally (e.g., via the SWAP test), while
estimating the trace distance generally requires full quantum state tomography.

On the other hand, the trace distance directly bounds the difference in measurement statistics.
According to Proposition [3:38] the maximum difference in the probability of any measurement
outcome M is bounded by the trace distance:

(3.139) |Tr[Mp] — Tr[Mo]| < D(p, o).

If the trace distance is small, the states are statistically indistinguishable by any measurement.

3.6. Distance between quantum channels

Quantifying the distance between quantum channels is important for analyzing the precision
of quantum gates, the robustness of quantum algorithms, and the distinguishability of physical
processes. This section introduces the primary tools used for this purpose: the induced trace norm
and the diamond norm.

3.6.1. Induced trace norm. We begin by considering norms induced on the space of linear
maps (superoperators) by the Schatten norms on the input and output spaces.

Definition 3.48. For a linear map Q : L(CN) — L(CM), the induced trace morm (or the
induced 1 — 1 norm) is defined as

(3.140) 19l = sup Q[X]Il; -
XeL(EV),[|X[,<1

This norm quantifies the mazimum amplification of the trace norm under the action of Q.
Analogously, the induced operator norm (or the induced co — 0o norm) is defined using the
operator norm ||-|| -

(3.141) 190l oo i= sup 1Q1X]|l -
XeL(CV), | X[, <1

Induced norms are inherently submultiplicative, a property useful when analyzing compositions
of maps.

Proposition 3.49 (Submultiplicativity). Let R : L(CN) — L(CN") and Q : L(CN") — L(CM) be
linear maps. Then

(3.142) Qo Ry < Q1 IRl -
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PrOOF. For any X € L(CY), by the definition of the induced norm:

(3.143) (Lo R) (X, = IQIRIX]IIl, < 11Qlly - IRIXTI < 111l IRl 1X4 -

Taking the supremum over X with || X||; <1 yields the result. O
To analyze these norms, we introduce the concept of the adjoint map. The space of linear

operators L(C") forms a Hilbert space under the Hilbert-Schmidt inner product (A4, B) = Tr(A'B).

The adjoint map Qf : L(CM) — L(CY) is uniquely defined by the relation

(3.144) (Y, Q(X)) = (Q"(Y), X),

for all X € L(CY) and Y € L(CM).
The induced trace norm and the induced operator norm exhibit a duality relationship analogous
to the duality between the trace norm and operator norm for matrices (Lemma [3.34)).

Proposition 3.50 (Duality of Induced Norms). For any linear map Q : L(CN) — L(CM), the
following duality relation holds:

(3.145) 121, = [1Q7]

PROOF. We begin with the definition of the induced trace norm and apply the variational
characterization of the trace norm (Lemma Eq. (3.94))):

1Rl = sup QX

co—00

X1, <1

(3.146)
~ sup ( sup |Tr<YTQ[X]>|>.
(1X1, <1 \|IY]| <1

We exchange the order of the suprema and employ the definition of the adjoint map (Eq. (3.144)):

(3.147) 1Rl = sup (l sup ITr((QT(Y))TXN)-

Y1l <1 \IX]l; <1

The inner supremum is the characterization of the operator norm via duality (Lemma Eq. (3.95)),
applied to the operator W = Qf(Y). That is, Sup| x|, <1 | Tr(WTX)| = |[W] .

— o« Ty — T )
1 19, = s Q)] = 1]

O

To compute the induced trace norm, it is helpful to characterize the inputs that achieve the
maximum. We first establish that for general linear maps, the maximum is attained on rank-1
operators.

Lemma 3.51. For any linear map Q, the induced 1 — 1 norm is achieved by a rank-1 operator:

(3.149) 1111 = sup{[|QUlu)vDIly : flull, =1, [[oll; = 1}-

PRrROOF. Let C; = {X : || X|; < 1} be the unit ball in the trace norm. The function f(X) =
[|Q(X)]|; is convex. Since C; is a compact, convex set, the maximum of f(X) over C; must be
achieved at an extreme point of C;. The extreme points of C'; are precisely the rank-1 operators of
the form |u)(v| with normalized vectors |u) , |v).
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Explicitly, let X maximize the norm, with || X||; = 1. Its SVD X = >, s;|u;}(v;| is a convex
combination (since Y.s; = 1,s; > 0) of the rank-1 operators X; = |u;)v;|. By the triangle
inequality:

(3.150) 1RX), =

ZSiQ(Xi>

Thus, the maximum is achieved by one of the rank-1 operators X;. O

<D sl Q)] < max [ QX)) -
1 4

We now investigate how these norms behave for positive maps. We first state the following
result for positive maps without proof [Watl8 Eq. (3.329)].

Lemma 3.52. Let Q : L(CN) — L(CM) be a positive linear map. Then
(3.151) 19l -1 = HQT(IM)Hoo'

A celebrated result known as the Russo-Dye theorem [Watl8l Theorem 3.39] simplifies the
calculation of the induced norm for such maps.

THEOREM 3.53 (Russo-Dye). Let Q : L(CY) — L(CM) be a positive linear map. Then
(3.152) 1Qll1s1 = jex Tr (Q (Ju)ul)) -

lull,=1

PROOF. Since Qf(I),) is Hermitian (in fact positive semidefinite), its operator norm is the
largest eigenvalue:

(3.153) QT (Im)||, = sup (ul QT(Iar)[u) = sup Tr(Q(lu)ul)).
HUH2:1 ‘u”2:1
The result follows from Lemma O

As an immediate consequence, if Q is a quantum channel, it is positive and trace-preserving.
Thus,

(3.154) 19, -, = maxTr (Q (Ju){u])) = maxTr (ju)ul) = 1.

The fact that quantum channels have an induced trace norm of 1 leads to an important stability
property for compositions of channels.

Proposition 3.54. Let Qq,...,Qk and él, ceey QK be sequences of quantum channels. Then

1—1

(3.155) HQKO"'OgléKO"'OélulﬁlgiHQi@i
i=1

ProOOF. We use a telescoping sum argument. For K = 2:
(3.156) Q001 — Q2001 =(Qs—D2)0 Q1 +Qs0(Q1 — Q).
By the triangle inequality and submultiplicativity (Proposition [3.49)):

HQ2OQ1—@20@1 1~>1§HQ2_@/2H1~>1 19111
+[e],, o -2

(3.157)

11 11

Since Q1 and Qs are quantum channels, their induced trace norms are 1.

(3.158) |00~ 0200 <]@-G) +]|a-a

1—1

‘1*}1 151
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The general case follows by induction. (Il

3.6.2. The diamond norm. The induced trace norm quantifies how much a map Q acting
on a system S changes the state of S. However, this is insufficient in quantum mechanics due
to entanglement. If S is entangled with an auxiliary system A, the action of Q on S (described
by Q ® Z4) might alter the joint state of SA significantly more than predicted by [|Q||,_,;. To
capture the true behavior of the map in the presence of arbitrary entanglement, we must consider
its stabilized action. This leads to the diamond norm, also known as the completely bounded
trace norm.

Definition 3.55 (Diamond Norm). Let Q : L(CY) — L(CM) be a linear map. The diamond norm
of Q is defined as

(3.159) [Qll, == sup |Q ® Ty, = sup || ZTu ® Qll;_,;
E>1 E>1

where Ty, denotes the identity map on L(CF).

If Q is a quantum channel, then for every k the map Q ® Z; is also a quantum channel, and
hence has induced trace norm 1. Therefore,

(3.160) 12l = sup 1Q® Lyl = 1.

While the definition involves a supremum over all dimensions k, a remarkable result shows that
the supremum is achieved when the auxiliary dimension matches the input dimension of the map.

Proposition 3.56 (Stabilization of the Diamond Norm). For any linear map Q : L(CN) — L(CM),
the supremum in Eq. (3.159)) is achieved for k = N. That is,

(3.161) 121l =12 ® Inll;_, -

PROOF. We aim to show that for any £ > 1, |[Q @ Ty, ; < |12 ZN|l;_;-
Let £ > 1. By Lemma the induced norm is achieved by a rank-1 input. There exist
normalized vectors |a), |3) € CN ® C* such that

(3.162) 1Q ® Zilly 1 = (L @ Zi)(|)XBDI; -
Consider the Schmidt decompositions of |a) and |3). The Schmidt ranks r, s are at most N.

(3.163) @) =Y Viila) @ o). 18) = 3" Va1 @ ).

j=1
Here, {|a;)},{|b;)} € CN and {|z;)}, {|y;)} C C* are orthonormal sets. Let Y = (Q ® Zy)(Ja)3]).
(3.164) Y =Y Vg Qlaib;l) © |zi)y;].
2
We construct corresponding vectors in CV @ CV. Let {|e;)}Y; be a basis for CV. Define

normalized vectors |o/),|8') € CN ® CN by replacing |x;) with |e;) and |y;) with |e;). Let Y/ =
(Q®In)(la')XB'])-

(3.165) Y = pig; Qlai)b;]) @ lei)e;].

i,J
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We show that [|Y|, = [|Y’||;- Define partial isometries V,W : C¥ — Ck. Let V map
span{|e;) }i_, isometrically onto span{|z;)}i_,, and similarly for W and {|y;)}. We can relate
Y and Y:

(3.166) Y = Iy @ V)Y Iy @ WT).

Extend V' and W to unitaries 17, W on Ck (by choosing orthonormal complements). Since Y’ only
has support on the subspaces where V and W act isometrically, we have

(3.167) Y = Iy @ V)Y (Iny @ WH.
By unitary invariance of the trace norm, ||Y||; = [|Y”||;.

We have established ||Q ® Zy ||, _,; = |[Y”]|;. Since |||a/)B'|||; = 1, we have |[Y'||; < [|Q ® Zn||;_;-
This completes the proof. O

The diamond norm inherits the submultiplicativity property from the induced trace norm.

Proposition 3.57 (Submultiplicativity of the Diamond Norm). Let R : L(CY) — L(CN') and
Q: L(CN") = L(CM) be linear maps. Then

(3.168) 1QoR, < [IQl, IRl -

PROOF. We use the definition of the diamond norm and the property that (QoR) ® 7, =
(Q®Iy) o (R TLk).

(3.169) 190 R, =supll(Q® L) o (R & Till1 -1 -

By the submultiplicativity of the induced trace norm (Proposition [3.49):
Qo R, < Sl}ip (1R ® Lyl 51 IR ® Ll 1)

(3.170) < (Sl;p||Q®Ik||1_>1> (SI;PHR@Ikl—n)

= ||QH<> ||R||<> .
O

We can derive useful bounds on the diamond norm for specific types of maps. We start with
maps defined by a single Kraus operator.

Lemma 3.58. Let Qa(X) = AXA" and Qp(X) = BXB'. Then the diamond norm of their
difference is bounded by

(3.171) 14 — @all, < (14l + I1Blloo) 1A = Bll -

PROOF. Let ® = Q4 — Qp. By stabilization (Proposition [3.56)), we evaluate ||® ® Zn||;_,;-
Let Xgr be an input operator with || Xgg|, = 1.

(3.172) (®®In)(Xsr) = (A® [ Xsr(AT®I) — (B ) Xsr(B' @ I).
We use the identity AA" — BBT = A(AT — B) 4+ (A — B)B".
(@ ®In)(Xsr) = (A® Xsr((AT - BY) @ 1)

(3.173)
+(A-B)@ ) Xsr(B'®1).
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We bound the trace norm using the triangle inequality and Hélder’s inequality (||Y1XY3|, <
Y1l 1X111 (Y2l o) Since || Xsgll; =1 and [[Y @ I = [[Y][:

(3.174) (@ © In)(Xsr)lly < 1Al 14" = BT + 14 = Bl [|B'] .-

Using ||AT — BTHOO =||A-B| and ||BT||OO = ||B||,,, we obtain the bound. O

Example 3.59 (Distance between unitary channels). Consider unitary channels #(X) = UXUT
and V(X) = VXVT. Since |U| . =V, =1, Lemma@yields the bound:

(3.175) -y, <2|U-V|.-
©

While the bound in Eq. (3.175)) is widely used, it is not always tight. Furthermore, one might
expect that stabilization is necessary for unitary channels. However, the difference between unitary
channels exhibits a special structure that renders stabilization unnecessary.

Proposition 3.60. Let U,V be two unitary channels defined by unitaries U and V. Then the
diamond norm of their difference is equal to the induced trace norm:

(3.176) U=Vl =lth = VIl -

This norm can be computed explicitly using the numerical range of W = UtV :

(3.177) o=Vl =2y/1 - &2,

where dyin = inf{|z| : z € W(W)} is the minimum distance from the origin to the numerical range

WW) = {{z[ W z) : [z}, = 1}.

PROOF. Let ® =1/ — V. We first establish a lower bound for the induced trace norm ||®||,_,;.
According to Lemma the induced trace norm is defined by the supremum over rank-1 inputs.
Restricting the optimization to pure states p = |x)z| yields a lower bound:

(3.178) 12l 2 sup 1@ ()z)]; -

The output is
(3.179) O(Je)x|) = Ula)z|UT = Via)z|VT = [pu)vu| = [¢v)Xiv],

where |¢y) = U |z) and [¢py) = V |z). The trace norm of the difference between two pure states is
determined by their overlap (see Example [3.43)):

(3.180) Yo )Xol = [PvXevill, =21 = | (Yulbv) 2.

The overlap is (Yy|yv) = (2| UTV |2) = (x| W |x). To maximize the norm, we must minimize the
magnitude of the overlap. The set of values {(z| W |z) : ||z|, = 1} is the numerical range W(W).
Thus, the supremum over pure states is

3.181 2 [1— inf |z]2=24/1—-d2. .
(3.181) ¢ =21,

zEW(W

Next, we consider the diamond norm ||®||,. By the stabilization property (Proposition [3.56)),
[|®]|, = ||® ® Zn]|;_,;- Unlike the induced trace norm, the diamond norm is achieved on pure states
(see [Wat18, Theorem 3.51]). Let |¥) € C¥ @ CY be a normalized pure state. The action of the map
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on p = |UYP| yields the difference of two pure states |Uy) = (U ® I) [¥) and |[Py) = (V1) |P).
The norm is again given by 24/1 — | (¥| Uy ) |2. The overlap is

(3.182) (WolWy) = (@] (U & (V& D) 8) = (9] (Ve T)|¥),
We express this overlap in terms of the reduced density operator py = Tr[| ¥} ¥|]:
(3.183) (W (W I)|¥) =Tr[(W e I)|¥XY|] = Tr[Wpal.

As | W) varies over all pure states in the joint space, p4 varies over all density operators in D(C™).
The set of achievable overlaps is therefore the set of expectation values {Tr[Wp| : p € D(CN)}.
This set is the convex hull of the numerical range W(W). By the Toeplitz—Hausdorff theorem
(see [Bha97, Chapter 1]), the numerical range W(W) is a convex set. Therefore, the convex hull
of W(W) is W(W) itself. This implies that allowing entanglement does not extend the range of
possible overlaps:

(3.184) |\q}ﬁf:1| (WWenWw)|=_inf 1z = dun-

Consequently,

(3185) ||(I)||<> =2 \/ 1- dr2nin'

Combining this with Eq. (3.181)) and the inequality ||®||,_,; < ||®|l,, we conclude || ®|, = ||®||,_,;-
]

Example 3.61. Consider the 2 x 2 unitaries U = (_01 é) and V =1 = (é (1)) We calculate

the operator norm of their difference:
-1 1
(3.186) U-V= (_1 _1> .
The singular values are the square roots of the eigenvalues of (U — V)T(U — V) = diag(2,2). Thus,

|U - V|, = V2. The general bound in Eq. (3.175) gives ||/ — V||, < 2v/2 ~ 2.828.

However, as W = UT = ?

W(W) is the convex hull of the eigenvalues, i.e., the segment [—i,i] on the imaginary axis. The
minimum distance to the origin is dy;, = 0. Thus, the exact diamond norm is 2v/1 — 02 = 2. o

_01), the eigenvalues of W are ¢ and —i. Since W is normal,

Example 3.62 (Qubit Phase Shift Channel). We illustrate the computation using a single-qubit
example. Consider the identity channel Z (U = I) and the phase shift channel Py, defined by the
unitary V = Py = diag(1,e%). We wish to compute ||Z — Py|,.

We apply Propositionm We compute W = UTV = Pj. We need to determine the numerical
range W(Py). Since Py is a normal operator, its numerical range is the convex hull of its eigenvalues,
{1,¢?}. This is the line segment (chord) connecting 1 and ¢*? in the complex plane.

We seek the minimum distance dyin from the origin to this segment. Geometrically, this
distance is the altitude of the isosceles triangle formed by the origin and the two eigenvalues.

The length of the base of the triangle (the chord) is |1 — €| = \/(1 —cosf)? +sin’f =
V2 —2cosf = 2[sin(f/2)|. The area of the triangle is 3|sinf|. Let h be the altitude, which

corresponds to dpi,. The area is also % - base - h.

. |sinf]  2|sin(6/2)cos(0/2)|
(3.187) Amin = h = sm(8/2)] 2sin(0/2)] = | cos(6/2)].
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Substituting this minimum value into Eq. (3.177):

(3.188) |Z — Pall, = 21/1 — cos2(8/2) = 24/sin*(0/2) = 2|sin(6/2)].

By Proposition [3.60} the induced trace norm is identical: [|Z — Py|,_,; = 2|sin(6/2)].
For instance, if § = 7, the channel is the Pauli-Z channel Z. The diamond norm is 2|sin(7/2)| =
2. The minimum overlap is dyin, = 0. This is achieved by the input state |+) = %(K}) + 1)), since

(+|Z|+)=0. o

The following example illustrates that the standard induced trace norm can drastically under-
estimate the “size” of a map that is not completely positive.

Example 3.63 (Transpose Map). Let 7 : CNXN — CN*N be the transpose map, 7(X) = X T,
defined in a fixed basis. Since the transpose preserves the eigenvalues of Hermitian matrices and
maps density matrices to density matrices, it preserves the 1-norm for positive inputs. It can be
shown that || 7,_,, = 1.

However, consider the action of 7 ® Zn on the unnormalized maximally entangled state Q) =
vazl i) ® |i). The corresponding density matrix is w = >, . [i)(j| ® [i)(j|. Applying the partial
transpose yields

(3.189) (T ®In)(w) = Z |9)l @ [i)31,

which is the SWAP operator. The eigenvalues of the SWAP operator on CY ® CV are +1 (on the
symmetric subspace of dimension N(N+1)/2) and —1 (on the antisymmetric subspace of dimension
N(N —1)/2). The trace norm is the sum of singular values (absolute values of eigenvalues):

N(N +1 N(N -1
(3.190) (T @ Zn) (W), = ( 5 )+ ( 5 ) = N2
Since |lwl||; = 112)]|> = N, we find that for this specific state, the ratio of output norm to input
norm is N. Thus [|T|, > N. o

3.6.3. Induced trace distance and diamond distance. The induced trace distance
between two linear maps Q, R is

1
(3.191) DQR) =512 ~Rli-

Example 3.64 (Trace distance for classical channel). Given two transition matrices Q, R € RV*V
the corresponding classical channels are

(3.192) Qlpl = > QulddiloliXil, Rlpl= D Risli)iloliXil.

i,jE[N] 4,jE[N]
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Then

D(Q,R) =5 sup [|Q[p] —R[olll,

ol =1

sup Z Z(Qij — Rij)p;;

lloll, =177 j

1
<5 sup (mj’dXZQij—Rij> Tr [p]

lloll,=1

1
<— sup (mjaXZQij—Rij> HP||1

N |

N |

(3.193)

T2 jpl,=1
=D(Q, R),

which is the induced total variation distance between the transition matrices @@, R. Here we have
used Proposition in the last inequality. On the other hand, choosing p = [7/Xj’| with j' =
argmax; » ., |Qi; — Rij|, we have D(Q,R) > D(Q, R). This proves that the induced trace distance
is consistent with the induced total variation distance on classical channels:

(3.194) D(Q,R) = D(Q, R).
<

The metric induced by the diamond norm is known as the diamond distance. The factor of 1/2
normalizes the metric such that perfectly distinguishable channels have a distance of 1, analogous
to the trace distance for quantum states.

Definition 3.65 (Diamond Distance). Let Q,R : CNXN — CM*M e tyo linear maps. The
diamond distance between them is defined as

(3.195) Do(Q,R) = % 1Q—RI,-

Quantum channels satisfy the linear error growth property with respect to the diamond distance.
The proof is also very similar to Proposition [3.54

Proposition 3.66. Let {U;}, and {U;}K | be sequences of unitary channels generated by the
unitary operators {U; } X\ and {U;}E |, respectively. The diamond distance between the composite
channels is bounded by

K
(3.196) Do(Usc U, U - Uh) <3 HU ~ U
i=1

oo

PROOF. First, we observe that quantum channels satisfy a linear error growth property with
respect to the diamond distance. The proof of this property relies on a telescoping sum argument,
which is strictly analogous to the proof of Proposition [3.54] and is therefore omitted. This yields
the bound

1 K

. o U) < = . — 1Y
(3.197) Do(Us - Uy, Uk ul)_Qi;‘ul U

<
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It suffices to bound the diamond norm difference for a single step. Recalling Eq. (3.175)), we have
the general bound HZL —U;ll <2 HUZ — l'_NfZ
<&

inequality completes the proof. O

. Substituting this estimate into the linear error growth

Notes and further reading

The formalism of quantum channels rests on foundational results in operator theory. The
operator-sum representation (Theorem is due to Kraus [KBDWS3|, while the dilation the-
orem (Theorem was established by Stinespring [Sti55]. The isomorphism characterizing
completely positive maps via their action on entangled states is attributed to Choi [Cho75| and
Jamiotkowski [Jam72].

The induced trace distance provides a useful way to compare two channels via their action on
input states. It is worth noting that the contractivity properties of the trace distance used in this
context rely on positivity and trace preservation, and do not require complete positivity. By con-
trast, complete positivity is required to ensure that a channel remains positive when extended by
an identity map on an arbitrary ancillary register. This distinction becomes operationally visible in
the channel discrimination task: for some pairs of channels, optimal discrimination is only possible
when the input is entangled with an ancillary register. This motivates the use of stabilized distances
such as the diamond norm (the completely bounded trace norm), which explicitly accounts for an-
cillary extensions. For distance measures, Helstrom [Hel69] provided the operational interpretation
of the trace distance in terms of state discrimination. Fidelity was studied by Uhlmann [UhI76]
as transition probability. The tight relationship between these two measures (Theorem was
established by Fuchs and van de Graaf [FVDGO02]. The diamond norm was introduced to quantum
computing by Kitaev [Kit97] to quantify the accuracy of quantum gates in a manner robust to
entanglement, and is closely related to the completely bounded norm in operator algebra. We refer
readers to [Wat18, Chapter 3.3] for further discussion.

Most of the discussions in this book will be restricted to unitary channels, and these unitary
channels are often applied to pure states. Nevertheless, the concept of a quantum channel is helpful
for understanding the probabilistic nature of quantum algorithms. For a systematic treatment
of density operators and quantum channels, we refer readers to [Watl8, Chapter 2] and [NCOO,
Section 2.4, 8.2]. We refer readers to [Wat18, Chapter 3| for properties of the norms and distances
introduced here, and their applications in discrimination-type problems. For matrix analysis tools,
such as Schatten norms, we refer to [Bha97].






CHAPTER 4

Universality of quantum circuits






CHAPTER 5

Quantum processing of classical information

Quantum algorithms often require classical data to be loaded, processed, and manipulated
within a quantum circuit. This chapter explores how classical information can be encoded and
operated on in a quantum computing framework. We begin with the reversible simulation of classical
logic gates, a prerequisite for embedding classical computation into quantum circuits. We then
discuss uncomputation, which is very useful for cleaning up intermediate states without disturbing
the computation’s outcome. The chapter proceeds to cover fixed-point number representation and
quantum random access memory (QRAM). Finally, we present methods for implementing certain
classical arithmetic operations within quantum circuits.

5.1. Reversible simulation of classical gates

How can we compare the computational power of quantum computers to that of classical com-
puters? While it remains extremely difficult to prove that quantum computers are fundamentally
more powerful than classical ones, it is well established that quantum computers are at least as pow-
erful. More precisely, any classical circuit can be simulated asymptotically efficiently by a quantum
circuit.

The key idea is that all classical gates can be simulated in a reversible way. Some classical logic
gates, such as the NOT gate, are already reversible and can be directly implemented by the Pauli
X gate. However, many commonly used gates, including AND, OR, and NAND, are not reversible
and cannot be directly translated into unitary transformations.

Reversible computation, which predates quantum computing, was originally studied in the
context of thermodynamics and the fundamental limits of energy dissipation [Lan61]. In this model
of computation, each operation can be reversed, and information is preserved throughout the pro-
cess. To simulate arbitrary classical circuits in a reversible form, it is sufficient to construct reversible
versions of universal gates such as the NAND gate. Once a reversible version of a universal gate is
available, the entire classical computation can be lifted into a reversible framework, which can then
be embedded into a quantum circuit using unitary operations.

Example 5.1 (Toffoli is universal for classical computation). All boolean logic can be implemented
using only NAND gates. NAND and FANOUT (i.e., making a copy of a classical bit z) are together
universal for classical computation. The Toffoli gate is a controlled-controlled-NOT gate, and with
an ancilla initialized to |0) it computes x AND y into the target register. We can use the Toffoli gate
to simulate NAND and FANOUT. Therefore the Toffoli gate is universal for classical computation.

97
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[1) —@— [« NANDy)  [0) —D— |z)
F1GURE 5.1. Using the Toffoli gate to implement NAND and FANOUT

<&

Exercise 5.1. Give explicit expressions for using Toffoli gates to implement AND, NOT, XOR,
and OR.

A classical computation procedure can be expressed as the evaluation of a boolean map f :
{0,1}™ — {0,1}"™, which may be irreversible. However, it can be made into a reversible classical
gate

(5-1) (z,2) = (2@ f(z),2).

In particular, (0™, z) — (f(z),z) is a reversible map that can then be implemented using unitary
operations. Efficient implementation of x — f(z) on a classical computer means that the number
of elementary classical gates (e.g., AND, NOT, NAND gates) is at most poly(n), and the classical
implementation of the map uses at most poly(n) additional bits for storage. By converting each of
the elementary classical gate into a reversible gate, we can implement

(5.2) Uy [0 [0)°™ |2) = |g()) | £ (@) |) .
Using w = poly(n) ancilla qubits, the depth of the quantum circuit is poly(n).

THEOREM 5.2. Any irreversible classical computation using poly(n) classical gates can be sim-
ulated on a quantum computer using poly(n) simple quantum gates and poly(n) qubits.

Up to a polynomial slowdown, a quantum computer is at least as powerful as classical com-
puters. It should be noted that such a procedure is likely to be extremely inefficient. Thus the
construction used in Theorem is not expected to be practically useful beyond the simplest
scenario.

5.2. Uncomputation

Unlike classical bits, qubits can exist in superpositions of computational basis states, which
enables interference effects in computation. However, qubits are also prone to interference and can
easily lose their coherence, causing computational errors. When a quantum computer performs a
computation, it can create a large number of ancilla qubits (also called working qubits, or garbage
register) that are entangled with the qubits carrying the actual result of the computation. If these
ancilla qubits are not properly reset back to their initial state (usually \0>®a), they can interfere
with subsequent computations and cause errors. This resetting process is called uncomputation.
Other than avoiding interference, uncomputation is also important for the purpose of resource
management. Quantum systems available today have a limited number of qubits. By uncomputing,
we can reuse qubits more efficiently.

Uncomputation needs to be done in a very specific way to maintain the integrity of the quantum
computation. Simply resetting qubits (for example, by measuring the ancilla qubits and resetting
them to |0)) is not sufficient, as it can destroy the superposition and entanglement of the other
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qubits in the system. Furthermore, due to the no-deleting theorem, there is no generic unitary
operator that can set a black-box state to |0>®w.

Let us now consider how to perform uncomputation when implementing a classical mapping.
In quantum computing, an oracle means a black box operation that for a given input provides
an output, usually the result of evaluating a function on that input. With the help of a working
register, we assume that the oracle implementing Eq. is available.
In order to set the working register back to \0>®w while keeping the input and output state, we
must use the information stored in Uy explicitly. We introduce yet another m-qubit ancilla register

initialized at |0>®m. Then we can use an m-qubit CNOT controlled on the output register and
obtain
(5.3) 0)°™ g(@)) | f(@)) |2) = |f()) |9(2)) |f(2)) |z) -

—— N ——

ancilla working output input

It is important to remember that in the operation above, the multi-qubit CNOT gate only performs
the classical copying operation in the computational basis, and does not violate the no-cloning
theorem.

Recall that U;l = U}, SO

(5.4) (1= @ UN |f (@) lg(@) |£(2)) |2) = |f(@)) 0)%* [0)*™ |)
Finally we apply an m-qubit SWAP operator on the ancilla and output registers to obtain
(5.5) (@) 1005 [0)™ [z) = [0)™ [0)F* | f (2)) |) -

After this procedure, both the ancilla and the working register are set to the initial state. They
are no longer entangled to the input or output register, and can be reused for other purposes. The
circuit for this uncomputation step is shown in Fig.

|0y S 0y

0)*" — 0)*"

0)*™ — Uy Uj |f ()
) — |z)

F1GURE 5.2. Circuit for uncomputation. The CNOT and SWAP operators indicate
the multi-qubit copy and swap operations, respectively.

Remark 5.3 (Discarding working registers). After the uncomputation as shown in Fig. the
first two registers are unchanged before and after the application of the circuit (though they are
changed during the intermediate steps). Therefore Fig. effectively implements a unitary

(5.6) (1500 @ Vp) [0)7 [0) 10) ¥ J2) = 10) 97 0) | f (@) |<)



100 5. QUANTUM PROCESSING OF CLASSICAL INFORMATION

or equivalently

(5.7) Vr[0)®™ |z) = [ f(x)) |2) -

In the definition of V%, all working registers have been discarded. This allows us to simplify the
notation and focus on the essence of the quantum algorithms under study. Using the technique of
uncomputation, if the map z — f(z) can be efficiently implemented on a classical computer, then
we can implement this map efficiently on a quantum computer as well with a controllable amount
of quantum resources. ©

Example 5.4. Given f : {0,1}" — {0,1}", in general, the transformation |z) — |f(x)) is not
unitary. However, when f is a bijection, and we have access to both f, f~! as follows:

(5.8) Up:la)lz) = 2@ f@) o), Upr:le)z) = 2@ f7(2)) |2)

we can use them to construct the unitary transformation U} : |z) = | f(2)).

To implement U}, we will use an ancilla register initialized in the 10)®™ state to hold the result
of applying f or f~!. Apply U; to the state 10)%™ |z) to get |f(x)) |z). This setup now contains
the desired mapping in the first register, but it is entangled with the input in the second register.
Next apply SWAP to the two registers and the state becomes |z) |f(z)). Apply Us-1 to the state
) 1£(@) to get [2@ f1(f@)) 1f@) = lo@a)|f(z)) = [0)°" |f(z)). The ancilla register is
restored to [0)®™ and can be discarded. This gives our desired U - The circuit is as follows.

0" — i
Up| |SWAP| |Us
2y — — @)

&

Example 5.5. Another common usage of the uncomputation is to disentangle two registers. Con-
sider the following sequence of operations

D 0 005 1005 =2 3 ey ) fug) 10}
(5.9) ! . ! b .
=5 2 sl u) (810)° + 1= 1857 [ 15)-

Here U, only acts on the first and second register, U, only acts on the second and third register,
and |L;) is a state that is orthogonal to 0)®”. Our goal is to obtain a state proportional to

(5.10) Z%ﬂj [0;) [0)%¢ [0) =" .

This cannot be done by measuring the third register and check whether the outcome is 0°, since it
will lead to >, ¢;B; [vj) |uy) 10)®®, which entangles the first two registers. The correct procedure is
to perform uncomputation by applying U] to the first two registers, which gives a state

(5.11) ch 0;) 10)2% (87 10)=" + /1 = [8; 7| L;)).-

Then measuring the third register produces the desired state. o
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5.3. Fixed point number representation and quantum random access memory

When we want to perform arithmetic operations on a quantum computer, such as addition,
multiplication, or more complex functions, we need to encode the numbers we are working with
into qubit states. On classical computers, floating point number representations are an efficient way
to represent numbers with a wide numerical range. However, on quantum computers, it is often
convenient to encode numbers into amplitudes or phases (e.g., via phase kickback). Therefore it
is difficult in general to handle numbers that are too large or too small (e.g., 3.14 x 10%!2). The
standard practice is to use a binary fixed point representation of real numbers.

Any integer k € [N] where N = 2" can be expressed as an n-bit string as k = (k,_1 - - - ko) with
k; € {0,1}. This is called the binary representation of the integer k. It should be interpreted as

n—1
(5.12) k= k2.
=0

The number k divided by 2™ (0 < m < n) can be written as (note that the binary point is shifted
to be after k,):

n—1
k i—m
(5.13) o= = > k2 =t (b1 Kkt ko).
i=0
The most common case is m = n, where
k n—1 .
(5.14) a=oo= ZZ(:) k27" = (0.kp—1-- ko) = (kpn—1--- ko).

Sometimes we may also write a = 0.k - - - ky,, which is simply a relabeling of the digits. For a
given real number 0 < a < 1 written as

(5.15) a =0k Epkngr--),

the number (0.k; - - - ky,) is called the n-bit fixed point representation (or n-bit binary represen-
tation) of a. Therefore to represent a to additive precision €, we will need n = [log,(1/€)] bits of
precision. If the sign of a is also important, we may reserve one extra bit s € {0,1} to indicate its
sign and interpret (s.ky --- k) as (—1)%(0.ky - - - kp,). A complex number z can be represented using
two real numbers as z = a + ib, where a,b € R are given in the fixed point number representation.

Definition 5.6. For a length N = 2™ classical data vector x, assume that each component x; has a
d-bit representation. Then the quantum random access memory (QRAM) is a unitary Uqgram
acting on n + d qubits:

(5.16) Uqrawm [i) |y) = [i) [y © z;) .

The implementation of Ugram often uses working registers, and such a dependence is hidden in
Eq. after the uncomputation step. Sometimes QRAM is called the quantum random access
classical memory (QRACM). Ideally, the cost for implementing QRAM is poly(n), but this may
not be possible if x represents an unstructured classical data set, and the cost for implementing
QRAM may be as high as poly (V).
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5.4. Classical arithmetic operations

Using the fixed point number representation and reversible computation, we can approximately
implement classical arithmetic operations on quantum computers. The map = — f(z) can be
implemented as Uy |Z) |y) = |Z) |y ® f(z)) using e.g., a QRAM. Here 7 and f(z) are n-bit fixed point
representation of z, f(z) in the computational basis of the quantum register, respectively. However,
it may be much more efficient to implement certain classical arithmetic operations on-the-fly on
quantum computers without referring to a QRAM. For instance, x — 2z can be implemented as a
shift operation in the binary format that can be implemented via a sequence of SWAP gates. Other
arithmetic mappings, such as  +— 22, as well as binary operations (z,y) — z +y, (7,y) — zy are
harder to implement. Furthermore, these operations can be implemented on quantum computers
without going through the process of the reversible implementation of elementary classical gates.
Some other classical functions, such as x +— arccos(z) can be even more difficult to implement.
In general, implementation of classical arithmetic operations on quantum computers will incur a
significant overhead, both in terms of the number of ancilla qubits and the circuit depth.

Many arithmetic operations involve a procedure called the controlled rotation, which transforms
the information stored in a register from a fixed point representation to the amplitude of the
wavefunction.

Proposition 5.7 (Controlled rotation given rotation angles). Let 0 < 6 < 1 have ezact d-bit fized
point representation 0 = (.0q_1---6p). Then there is a (d + 1)-qubit unitary Uy such that

(5.17) Up : |0)]0) — (cos(76)|0) + sin(70)|1))|6).

PRrROOF. First (by e.g. Taylor expansion)

(5.18) exp (—ito,) = ( cos(r)  —sin(7) ) = R, (27).

sin(r)  cos(7)

Here R,(-) performs a single-qubit rotation around the y-axis. For any j € [2¢] with its binary
representation j = jq_1 - jo, we have

(5.19) 3/2% = (a—1 -+ Jo)-

So choose 7 = w(.jg—1 " jo), and define

(5.20) Up=Y_ exp(=im(ar -+ jo)oy) @ i)l
JE24]

Applying Uy to |0) |6) gives the desired results. This is a sequence of single-qubit rotations on the
signal qubit, each controlled by a single qubit. O
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0) —{ Ry(m) = Ry(7/2) —+— Ry(r/277") |—

|60)

FIGURE 5.3. Quantum circuit for the controlled rotation operation Uy.

Example 5.8 (Diagonal matrix multiplication using controlled rotation). Let 0 < a < 1 be given
by an d-bit fixed point representation using an d-qubit register, f : R — R be a function satisfying
|f(a)] <1forall0<a< 1. For simplicity assume f(a) > 0; the case of signed f(a) can be handled
by additionally computing the sign of f(a) and applying a controlled phase flip on the |1) branch.
We would like to construct a circuit that approximately implements

(5.21) la) — f(a)la).

More generally, the state [¢)) = > 1 |a) is mapped to Y 1 f(a)|a). This can be viewed as
multiplying a diagonal matrix D = diag{f(a)} to |¢).
To implement such a mapping, we first define

(5.22) 0(a) = %arccos f(a).

Note that even though a is exactly given by d-bits, 6(a) may not be. So we assume that it can be

rounded to an d’-bit number 6(a). For simplicity we assume d’ is large enough so that the error of

the fixed point representation is negligible in this step. To implement the mapping a — 6(a), we
can construct a classical arithmetics circuit

(5.23) Usngte [07) |a) = |6(a)) |a),

whose construction may require poly(max{d, d’}) gates and an additional working register of poly (max{d, d'})
qubits, which are not displayed here. Therefore, the entire controlled rotation operation needed is
given by the circuit in Fig.
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|0) cos(0(a)) |0 + sin(7B(a)) |1)
Uy
07y — [ — [07)
Uangle Uingle
|a) — — [a)

FI1GURE 5.4. Circuit for using controlled rotation to implement the multiplication
of a diagonal matrix (not including additional working register for classical arith-
metic operations).

Note that through the uncomputation U, f the d’ ancilla qubits also become a working

angle’
register. After uncomputation, the ancillas are returned to [0¢) (together with any additional
workspace used in Uangle), so they may be reused. We obtain a unitary Ucr satisfying

(5:20)  Ucn0}]a) = (cos(xd(a)) |0) +sin(xf(a)) [1)) la) = (£(a) 0} + v/T= F(@P[1)) |a).

Measure the single ancilla qubit. If the result is 0, the data register is projected onto a state
proportional to ) v, f(a)|a), i.e., the mapping in Eq. (5.21) up to renormalization. If the input
state is |¢) = >, ¥4 |a), the probability of obtaining 0 after measuring the ancilla qubit is

(5.25) P0) ~ Y [val* [ f(a)*.
<

Example 5.9 (Use of arithmetic operations in the HHL algorithm). The last step of the Harrow—
Hassidim—Lloyd (HHL) algorithm for solving a linear system of equations Az = b with a Hermitian
matrix A involves the following arithmetic operations. For simplicity assume A; (eigenvalues of A)
are given exactly in a d-bit fixed point number representation, and \; € [, 1] for some § > 0. Start
from a linear combination of states [¢)) = >, 8;10) [A;) |v;), we would like to construct a state

CpB;
(5.26) [0y = 30 52 1) ) ) + [0 1)

" J

J
Here C is a normalization constant chosen so that |C'/A;| < 1 for all A\; € [4,1], and |L) is
an irrelevant unnormalized state. Viewing this as a diagonal matrix multiplication problem, the
function of interest is

(5.27) fla)=—, ac][d1].

The implementation involves the classical arithmetic circuit for computing
1 1

(5.28) f(a) = — arcsin f(a) = — arcsin(C'/a)
T T

using d’ bits (d’ > d).
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Once [¢) is prepared, we can uncompute |);) to obtain a state

CB,;
(5.29) > S 107 fog) + [0y [ 1)
N
J
to disentangle the A; register from the v; register. If we measure the first ancilla register and obtain
1, we obtain the desired form of the solution in the HHL algorithm. o

Notes and further reading

Reversible computation predates quantum computing and has both physical and algorithmic
motivations. For background on reversible embeddings of classical circuits into unitary dynamics,
see [NCOQ, Section 3.2.5|. For fixed-point encodings and reversible arithmetic (addition, multipli-
cation, and function evaluation), a detailed treatment is given in [RP11, Chapter 6]. For stan-
dard universal classical gate constructions and decompositions into elementary quantum gates, see
IBBCT95|. There is also opportunity to optimize the cost of the uncomputation stage. An exam-
ple is Gidney’s construction [Gid18| of the quantum adder circuit. The QRAM model [GLMOS§]|
should be interpreted as an assumption about data access rather than an automatic feature of a
fault-tolerant architecture.
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CHAPTER 9

Block encoding

This chapter introduces block encoding as an input model for matrix problems on a quantum
computer. The basic difficulty is that many tasks in scientific computation are naturally phrased
in terms of non-unitary linear maps, whereas the native operations available to quantum hardware
are unitary. Block encoding addresses this mismatch by representing a target matrix A (up to a
subnormalization factor and a prescribed error tolerance) as a submatrix block of a larger unitary
U 4, so that applying Ux and post-selecting on ancilla qubits effectively applies A to a state.

The possibility of constructing an efficiently implementable U4 depends strongly on the struc-
ture of A and on the assumed access model. For a dense matrix without additional structure,
any reasonable input model is typically prohibitive, since the input description may itself require
exponential resources. We therefore focus on a few concrete settings in which block encodings can
be constructed efficiently under suitable oracle access assumptions.

The true power of block encoding does not come directly from the ability to represent arbitrary
matrices within blocks of a larger unitary. Rather, it stems from the ability to compose block encod-
ings to block encode more complicated matrices and functions of matrices. We then describe how
block encodings can be combined to obtain encodings of matrix additions and multiplications, while
tracking the corresponding subnormalization factors and errors. Linear combinations of unitaries
provide a flexible mechanism for such constructions. In this way, block encoding serves as an inter-
face between matrix-oriented problem statements and unitary circuit realizations used throughout
subsequent chapters.

9.1. Block encoding

The simplest example of block encoding is the following: assume we can find a (n + 1)-qubit
unitary matrix Us € U(2N) (where N = 2") such that

A
n=(1)

where * means that the corresponding matrix entries are irrelevant, then for any n-qubit quantum
state |b), we can consider the state

0.) 0. = 1001 = ()

9.2) Ual0,b) = (ff’) — YA D) + |1).

115
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Here the (unnormalized) state | L) can be written as |1) |1} for some (unnormalized) state |¢) that
is irrelevant to the computation of A |b). In particular, it satisfies the orthogonality relation.

(9-3) (10) (0] & I) | L) = 0.

In order to obtain A |b), we measure the ancilla qubit and postselect on the outcome 0. This can
be summarized into the following quantum circuit:

keep 0
10) |
Ua
|b) o Ab)

F1GURE 9.1. Circuit for block encoding of A using one ancilla qubit. By measuring
the ancilla qubit and postselecting on the outcome 0, the state in the system register
is a normalized state proportional to A |b).

Note that the output state is normalized after the measurement takes place. The success
probability of obtaining 0 from the measurement can be computed as

(9-4) p(0) = [ A[B)]* = (b|ATAp) .

So the missing information of the norm || A|b)|| can be recovered via the success probability p(0)
if needed. We find that the success probability is only determined by A, |b), and is independent of
other irrelevant components of Uy.

Example 9.1. Consider the 2 x 2 matrix

3 1 0.75 0.25
(©:5) A=glrX= (0.25 0.75) '
Consider the following circuit (¢ = %)
|0> ] Ry(¢) Ry(_¢) —
) D
Here
cos (2) —sin (¢ )
(96) Ry(e) — . (2) (3) — e—lGY/Q
sin (5) cos (5)

is the Y-rotation matrix. One may directly verify that U, is an exact block encoding of A using
one ancilla qubit. o
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Note that we may not need to restrict the matrix U4 to be an (n + 1)-qubit matrix. If we can
find any (n + m)-qubit unitary matrix U4 so that

A % - %
(9.7) Ua =

Here each * stands for an n-qubit matrix, and there are 2™ block rows / columns in U,. Using
the partial application of operators in Definition [2.25] the relation above can be written compactly
using the braket notation as

(9.8) A= (0™|U4]0™) .

Exercise 9.1. Given a unitary matrix U and any submatrix block A, prove that ||A] < 1.
In order to find such a block encoding U4, Exercise shows that a necessary condition for
the existence of Uy is that ||A]| < 1. However, if we can find sufficiently large oo and U4 so that

(9.9) Afa = (0™|UA)0™) .

By measuring the m ancilla qubits and postselecting on the outcome 0™, we still obtain the nor-

malized state %. The number « is hidden in the success probability:

(9.10) p(O™) = 5 IAIBI = 5 (BlATAD).

So if « is chosen to be too large, the probability of obtaining all 0’s from the measurement can be
vanishingly small.

Finally, it can be difficult to find U4 to block encode A exactly. This is not a problem, since it
is sufficient if we can find Uy to block encode A up to some error e. We are now ready to give the
definition of block encoding in Definition [9.2

Definition 9.2 (Block encoding). Given an n-qubit matriz A, if we can find a, e € Ry, and an
(m 4 n)-qubit unitary matriz Uy so that

(9-11) A = a{0™[Ual0™)]] <e,

then Uy is called an (o, m, €)-block-encoding of A. When the block encoding is exact with e =0, Uy
is called an (a, m)-block-encoding of A. The set of all (c, m, €)-block-encodings of A is denoted by
BEa,m (A, €). The parameter « is referred to as the block encoding factor, or the subnormalization
factor.

When discussing block encodings, we often ignore certain errors such as the error in the finite
precision number representation. We define a shorthand notation BE, ,,(A) = BE, ,n(A4,0). As-
sume we know each matrix element of the n-qubit matrix A;;, and we are given an (n + m)-qubit
unitary Uga. In order to verify that Us € BEq ,,(A4), we only need to verify that

(9.12) (0™, i|UAl0™, 5) = Aij,
and Uy applied to any vector |0™,b) can be obtained via the superposition principle.
Therefore we may first evaluate the state Uy |0™,5), perform an inner product with [0™,4),

and verify the resulting inner product is A;;. We will also use the following technique frequently.
Assume Uy = UgUg, and then

(9.13) O™, |UA|0™, 5) = (0™, i|UgUc|0™, 5) = (UL [0™, i) (Ue [0, 5)).
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So we can evaluate the states U]Tg [0™, i), Uc |0™, j) independently, and then verify the inner product
is A;;. Such a calculation amounts to running the circuit Fig. and if the ancilla qubits are
measured to be 0™, the system qubits return the normalized state ), A;; [i) /[1>°; Aij |9)]|-

keep 0™
|0m> Iil
Ua
17) o< Y2, Aij 1)

F1GURE 9.2. Circuit for general block encoding of A.

Example 9.3. For any n-qubit matrix A with ||A|| < 1 with singular value decomposition A =
WX V1 all singular values in the diagonal matrix ¥ are in [0,1]. Then we may construct an
(n + 1)-qubit unitary matrix (N = 2")

UA::(W 0)( > m)(vf o)

o.11) 0 Iy VI =32 -5 0 In
' B A Wy — 22
T\ VIy -2 -3
which is a (1, 1)-block-encoding of A. ©

Example [9.3|shows that in principle, any matrix A with ||A|| <1 can be accessed via a (1,1, 0)-
block-encoding. However, this construction does not state how to construct A using simple one and
two qubit gates.

Example 9.4 (Random circuit block encoded matrix). How can we construct a pseudo-random
non-unitary matrix on a quantum computer? A naive approach would be to generate a dense
pseudo-random matrix A classically and then encode it into a quantum circuit. However, this is
highly inefficient in practice, particularly for large matrices, due to the exponential overhead in
loading dense classical data into a quantum system.

Instead, we seek to work with matrices that are inherently easy to generate within a quantum
circuit model. This motivates the random circuit based block-encoded matrix (RACBEM)
model. Rather than first constructing a matrix A and then searching for a block-encoding unitary
U4, the RACBEM model reverses the thought process: we begin by constructing a unitary U4 that
is easy to implement on a quantum computer, typically using random quantum circuits, and then
extract A as a subblock of Ua. This provides a practical and scalable way to generate structured
pseudo-random non-unitary matrices compatible with quantum algorithm design. Similar to the
LINPACK benchmark, which is used to rank classical supercomputers in the TOP500 list by solving
Az = b for pseudorandom matrices A, such block-encoded pseudorandom matrices can serve as a
useful tool for benchmarking scientific computing applications on quantum computers. o

9.2. Linear combination of unitaries

The linear combination of unitaries (LCU) is an important quantum primitive, which al-
lows quantum algorithms to be implemented as a superposition of unitary matrices rather than
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attempting to find a single unitary that accomplishes a desired task. This often simplifies the
design and analysis of quantum algorithms. LCU can also be viewed as a special way for con-
structing block encoding. Combined with a technique called qubitization, which will be discussed
in detail in Chapter LCU can be used to implement a large class of matrix functions (eigenvalue
transformations) and generalized matrix functions (singular value transformations).

Let T = Zfigl «;U; be a linear combination of unitary matrices U;. For simplicity let K = 2°.
Then
(9.15) User == Y, |i)il @ Ui,
1€[K]

implements the selection of U; conditioned on the value of the a-qubit ancilla register (also called
the control register). Uggy, is called a select oracle.
If all linear combination coefficients «; > 0, we can let Vprgp be a unitary operation satisfying

—— 3 vaili,

(9.16) Verep [0%) = |
|Oé||1 i€[K]

which is called a prepare oracle. The 1-norm of the coefficients is given by
(9.17) lodly = >l

In matrix form,
) Voo ook e x

VPREP = W : x .o
VU A\VaRDT o+
where the first column is Vprgp [0%), and all other columns are orthogonal to it. Then
/aO PR /aKfl
1 * e *

Viogp = ———
PR

(9.18)

(9.19)

More generally, we can arbitrarily decompose a; = §;7;, so that

Bo . Yo 0 YK-1
1 - 1 * P *
(9.20) VPREP = 75— : , VPREP = 77—
181 5 : 71l
K—-1 % 0 % * *

are unitaries and can be efficiently implemented. When «; > 0, we can choose 8; = ; = /a; which
gives Vprpp = VgREP. Then T can be implemented using the unitary given in Lemma

Lemma 9.5 (Linear combination of unitaries). For
K—1

(9.21) T=> al; ai=Bv K=2% U U2,
=0

let USEL,VPREP,VPREP be given in Egs. 1' and li respectively. Define
(9.22) W = (Vorep ® I)UseL(Verep ® I,)
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as implemented in Fig. . Then W € BEH5||2|M2’G(T). The smallest subnormalization factor is
obtained by setting

(9.23) 1Bi| = 1yl = Vlaal, i€ [K],
and W € BE”a”pa(T).

PRrOOF. For any n-qubit state |1)),

020)  Usmn(Vemee © 1) 0°) 1) = Usmn e 32 Auli ) = T 2 Auli) Ul

Let the state |J~_> collect all the states marked by * orthogonal to |0%), and use 8;y; = «;,
(9.25)

- 1 ~ 1 ~
(Verep®1, )User (VereP®15) [0%) [¢) = 7 [0%) Z%Ui [)+|Lr= 7= [0) T |)+[ L)
1812 171l ; 18112 1171l
Use Cauchy-Schwarz
(9.26) ledly =Y~ leil = > 1Bl < 1Bl 17,5
we find that the optimal prepare oracle should satisfy |5;| = |vi| = v/|aul, Vi. O

The LCU Lemma states that the number of ancilla qubits needed only depends logarithmically
on K, the number of terms in the linear combination. Hence it is possible to implement the
linear combination of a very large number of terms efficiently. From a practical perspective, the
select and prepare oracles use multi-qubit controls, and may be difficult to implement themselves.
Furthermore, if the select and prepare oracles are implemented directly, the number of multi-qubit
controls again depends linearly on K and is not desirable. Therefore an efficient implementation
using LCU (in terms of the gate complexity) also requires additional structure in these oracles.

0) —Verer [ || Vomne

UskL

|¢)

FIGURE 9.3. Circuit for linear combination of unitaries. When all coefficients are
nonnegative, we may set Vprep = VP]’LREP'

An important application of LCU is that if A, B can be accessed via their block encodings,
then we can construct a block encoding of the matrix addition A + B.

Example 9.6 (Linear combination of two block encoded matrices). Let Ua,Up be two n-qubit
unitaries, and we would like to construct a block encoding of T'= U4 + Up.

There are two terms in total, so one ancilla qubit is needed. The prepare oracle needs to
implement

(9.27) Verer [0) = <= (10) + 1)),
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so this is the Hadamard gate. The circuit is given by Fig. which constructs W € BEy 1 (T).

o —{i—g—— [
) Ugp

FIGURE 9.4. Circuit for linear combination of two unitaries.

(o

Exercise 9.2. Let A, B be two n-qubit matrices encoded by Uy € BE; ,,,(A),Up € BE1 ,,,(B).
Construct a circuit to block encode C = A+ B. What about Us € BE, , m(A),Up € BEy, m(B)?

Exercise 9.3. Consider a system described by the linear combination T'= X +Y + 27, where
X,Y. Z are the Pauli matrices. Construct a select oracle U for this system, and describe how to
use the LCU technique to construct a block encoding of 7.

Example 9.7. Consider the following TFIM model with periodic boundary conditions (Z,, = Zy),
and n = 2",

(9.28) H=-> ZiZ- > X
i€[n] i€[n]

In order to use LCU, we need (n+ 1) ancilla qubits. In this case, the prepare oracle can be simply
constructed from the Hadamard gate

(9.29) Vergp = H2 D),
and the select oracle implements
(9.30) Use = »_ [i) (il @ (= ZiZiga) + Y _ li+n) (i+n| @ (—X;).
i€[n] i€[n]
The corresponding W € BEgn,n+1(ﬁ). o

Example 9.8 (Highly oscillatory integral). Consider evaluating the matrix integral fol A(s) ds,
where A(s) € C?"*2" A(0) = A(1) and Supsepo,1] [[A(s)]l < 1. Given that the entries of A(s) exhibit
significant oscillations as a function of s, in general there is no known efficient method (classical or
quantum) to compute this integral without using a sufficiently fine grid and numerical quadrature.
For simplicity, we adopt a uniform grid defined by {s; = ﬁ}g/[: o> where M is sufficiently large, to
implement the quadrature method.

9.31 1 A(s)d LSS A(k/M)+ E E| <
(931) [ Aas= 5 X awan+e (sl <e

For each s, assume that A(s) has a (1, a,0)-block encoding denoted by U,(s), and the s-dependence
can be implemented coherently using e.g., classical arithmetic operations. In a discretized setting,
let M = 2™, this means that the following select oracle defined on a register with m + a +n qubits:
M—1
(9.32) User = »_ [k)k| @ Ungesan),
k=0
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which we assume can be efficiently implemented with cost poly(mn). The prepare oracle is simply
the m-qubit Hadamard gate H®™. Then the circuit (H®" @I,,)User(H®™ ®1,4,,) is a (1,a +
m, €)-block encoding of the matrix-valued integral fol A(s)ds. It uses m ancilla qubits, and the
gate complexity is dominated by that of the select oracle and is poly(mn). This is an exponential
improvement in the parameter M for constructing such a block encoding, compared to a direct
classical quadrature implementation whose cost is at least linear in M. o

Example 9.9 (Fourier transformation and eigenvalue transformation). With a subroutine perform-
ing Hamiltonian simulation, we can combine it with LCU to implement matrix functions expressed
as a matrix Fourier series. Let H be an n-qubit Hermitian matrix. Consider f(z) € R given by its
Fourier expansion (up to a normalization factor

)
(9.33) fl@)= [ f(k)e* dk,
and we are interested in computing the matrix function via numerical quadrature
(9.34) f(H) = / Fk)e* ™ dk = Ak f(k)e™ .
kek

Here K is a uniform grid discretizing the interval [—L, L] using |K| = 2% grid points, and the grid
spacing is Ak = 2L/|K|. The prepare oracle is given by the coefficients ¢, = Akf(k), and the
corresponding subnormalization factor is

(9.35) lell = 3 ak|fo] ~ [ |7w)] a.
kel

The select oracle is

(9.36) User = Y _ [k)k| @ ™.

kel
This can be efficiently implemented using the controlled matrix powers as in 7?7, where the basic
unit is the short time Hamiltonian simulation e*2*H . This can be used to block encode a large class
of matrix functions. o

9.3. Block encodings of matrix additions and multiplications

We now record basic composition rules for block encodings that will be used throughout the
book.

The linear combination of unitaries (LCU) construction from Section immediately yields a
block encoding of a sum of block-encoded matrices. For simplicity, we state the result for M = 2™
summands.

Proposition 9.10 (Sum of M block-encoded matrices). Let M = 2™ and let Ag,...,Ap—1 be
matrices of the same dimension. Assume that for each j € [M] we are given a block encoding

(9.37) Ua; € BEq, o(4;,€¢;), ;> 0.

Set v == Zj]vigl o > 0. Let Uspr == 3 e 17)00] @ Ua, be the select oracle acting on an m-qubit
control register, the a-qubit ancilla register, and the system register. Let Vprgp be any unitary on
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the m-qubit control register satisfying

0 M-1
(9.38) Verep [07) Vagli)-
Vil
j

Define
(9.39) W= (Viggp @ I) Usgr, (Verer © I).
Then

M-1 M-1
(9.40) W €BEyatm | D Aj Y€

§=0 j=0

Proor. Write B; := (0?|U4,|0%), so that [|A; — a;B;|| < ¢; and || B[] < 1. By direct compu-
tation of the (]0™,0%)) block,

M—
(9.41) (0™, 0% W]0™, 0%) = Z Y p
=
Therefore
M—-1 M—1
(9.42) Z Aj =y (0™, 0% W[0™, 0%) | < Z 14; — a; B < > €5
7=0
which is the claimed block-encoding statement. O

Example 9.11 (Multiplication of block encoded matrices). If A, B are given by their block encod-
ings Uy € BE, (A),Up € BEg(B), then the product AB can also be block encoded (see Fig. ,
which uses a +b ancilla qubits. This is because AB/(af8) = (09+°|(Ua ® I) (I, ® Up)|0%*?). Hence
(UA®Ib)( ®UB) € BEa57a+b(AB)

) {7 ——

0%) —
Ug

WU

FIGURE 9.5. Quantum circuit for block encoding the product of matrices using
a + b ancilla qubits.

<&

We next record a simple (though not always ancilla-optimal) rule for block encoding a product.
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Proposition 9.12 (Product of M block-encoded matrices). Let Ag,..., Ap—1 be matrices with
compatible dimensions. Assume that for each j € [M] we are given

(9.43) Ua; € BEq,,q,; (45, €;).
Let U be the unitary obtained by applying Ua,,Ua,,...,Ua,,_, sequentially on disjoint ancilla
registers (of sizes ag,...,ar—1) and a common system register. Then
M—1 M—1
(9.44) UeBBu, s, (Avor Ao, HO aj+e;) — H o).
J

PROOF. For each j, define B; := (0% |Ua,|0%) so that [|A; — a;B;|| < ¢; and ||B;|| < 1. Since
the ancilla registers are disjoint, we have

(9.45) (Qrotrtan—r|goetter—1y — By ... By,
It remains to bound

M—1
(9.46) Aprq---Ag — ( I1 aj)BM_1 ... B,

§=0

We prove by induction on M the inequality

M-1 M-1 M-1 M-1
(9.47) IT 4 - I] @B)|| < [] (05 +e)— [] o
j=0 j=0 j=0 j=0

The case M = 1 is immediate. For the induction step, write P := H *Ajand P = H ( iBj).
Then

HAM—1P - (OLM—1BM—1)15H < W(Ar—1 —ap—1By—1)P|| + HOZM—lBJM—l(P - ﬁ)H
(9.48) ~
< e€p-1 HPH + apr—1 HP — PH .

Using || 4;]| < a;+e; (by 4] < [[4; — a; By +a; || Bj]|), we have || P|| < [T;25%(a;+€;). Applying
the induction hypothesis to HP — ISH yields

M—2 M—2 M—2
HAM 1P — (apr—1Bar—1) PH <em-1 H a; +€) +an— 1<H (o +€5) — H Ozj>
j=0 j=0 7=0
(9.49) M1 B
= [ (e +e) - H aj,
j=0 j=0
completing the induction. O

The procedure in Example [0.11] is not the most efficient way for block encoding the product
of matrices. In Example we have demonstrated that using deferred measurement, we only
need one extra ancilla qubit to record whether the ancilla register is in the all 0 state. Specifically,
assume a = b for simplicity; Fig. is a schematic circuit (the control denotes a check of the ancilla
register being in [0%)) that constructs a unitary in BE,g 4+1(AB).



9.6. QUERY MODELS FOR MATRIX ENTRIES 125

=
) — -

Ua Usp

FIGURE 9.6. Quantum circuit for block encoding the product of matrices using
a + 1 ancilla qubits (assuming a = b).

Following this strategy, when multiplying L matrices A; each given by Uya, € BE,, (4;), we
can introduce L — 1 ancilla qubits to obtain a unitary in BEre o 0 p1(Az- -+ A1). Even more
efficiently, using the compression gadget in Example the number of ancilla qubits can be
reduced to a + [logy(L + 1)].

Note that the matrix power A” is a special case of multiplying L matrices. However, the
method in Example for encoding A" can be highly inefficient. To see this, consider a matrix
A with spectral radius

(9.50) p(A) =max {|A| | A € Spec(A) },

where Spec(A) denotes the set of eigenvalues of A. Suppose that p(A) < 1. Then there exists a
constant C' such that sup;cy ||A®|| < C. However, it is still possible that ||A| > 1, which means
that the block encoding subnormalization factor of A must satisfy a > ||A|| > 1. As a result, the
subnormalization factor for encoding A" using the method in Example would scale as a®,
growing exponentially with L. This discrepancy in computing matrix powers is closely related to

the challenges of solving linear differential equations. This is a topic that will be discussed in 77.
9.4. Example: implementing generalized measurements
9.5. Example: Quantum error correction as block encoding

9.6. Query models for matrix entries

Throughout the discussion we assume A is an n-qubit, square matrix, and the max norm of A
(see Definition [2.45) satisfies || A, < 1.

To query the entries of a matrix, one of the most convenient form is to encode the information
of the matrix as the amplitude of a known vector, e.g.,

(9-51) 0410) ) 17) = (Aij 0) + /1= |4y |1>> ) 1) -

In other words, given i, j € [N], O4 performs a controlled rotation (controlling on 4, j) on the ancilla
qubit, which encodes the information in terms of amplitude of |0). We refer to Eq. (9.51)) as the
amplitude oracle or phase oracle.

Example 9.13 (Construction of amplitude oracle). Assume || Al
and that we have access to a bit oracle

(9-52) O 10) [i) 1) = |Ai3) 18} 15)

< 1and A4;; € R for all 4, j,

max
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Here gij is a d'-bit fixed point representation of A;;, and the value of Aij is either computed on-
the-fly with a quantum computer, or obtained through an external database using e.g., QRAM in
Definition Using the classical arithmetic operations (see Section , we can first convert this
oracle into an oracle

(9-53) Ol [0%) [8) 15) = 103) 14) 1) »

where 0 < gij < 1, and @j is a d-bit representation of #;; = arccos(4;;)/m, and with some abuse
of notation we redefine gij = COS(ﬂ'é;‘j). This step may require some additional work registers not
shown here. _

Now using the controlled rotation in Proposition and Fig. the information of 6;; can
now be transferred to the amplitude of the ancilla qubit. We should then perform uncomputation
and free the work register storing such intermediate information 511 The procedure is as follows

0 [0%)  fi)14) 10)10:) 14) 1)
~—~

work register

(9.54) LN <Zij 0) + WID) 1655 13) 1)
Lo, (ﬁ“— 0) + W |1>> 0 1) 13)

After the uncomputation, the d-bit working register can be discarded, and we obtain the desired
amplitude oracle of the input matrix A. o

11®014
—_—

Exercise 9.4. Construct a query oracle O 4 similar to that in Eq. (9.54]), when A;; € C with
HA”max < 1

9.7. Block encoding of s-sparse matrices

Example 9.14 (Block encoding of a diagonal matrix). As a special case, let us consider the block
encoding of a diagonal matrix, which is also a 1-sparse matrix. Since the row and column indices
are the same, we may simplify the oracle Eq. (9.51)) into

(9.5 041011 = (4410 + Y1 = [P 1)) 1

Let Ua = O4. Direct calculation shows that for any i, € [N],

(9.56) (O (il UA |0} [7) = Aiibis-

This proves that Us € BEq 1(4), i.e., Uy is a (1, 1)-block-encoding of the diagonal matrix A. ¢

Example 9.15 (General 1-sparse matrices). In a 1-sparse matrices, there is only one nonzero entry
in each row and each column of the matrix. This means that for each j € [N], there is a unique
c(j) € [N] such that A.;); # 0, and the mapping c is a permutation. Assume that there exists a
unitary O, satisfying that

(9.57) Oclj) = le(j)),  Ofle(3)) = 17) -

The implementation of O, may require the usage of some work registers that are omitted here.



9.7. BLOCK ENCODING OF s-SPARSE MATRICES 127

We assume the matrix entry A.(;) ; can be queried via

. 2 .
(9.58) 0.410) 1) = (Acm,j 10) /1= |Augp| |1>) ).

Now we construct Us = (I ® O.)O 4, and compute the matrix element

(9-59) (01 (il Ua0) |5) = (O] (2] (Ac(a%j 0) + /1 = [Acy | |1>) 1€(7)) = Ae(5),59%.c()-

This proves that Us € BEq1(4). o

For a general s-sparse matrix, we have [|A] < s||A||,,.. according to Lemma and the
explicit construction of a block encoding below requires us to choose the subnormalization factor to
be o = s||Al| k- Without loss of generality, we may assume each row and each column has exactly
s designated entries by padding with zeros. For simplicity, let s = 2°. Also we assume || A .. =1
and will set o = s.

Let us consider the construction of a block encoding for an s-sparse matrix by decomposing
A into a sum of 1-sparse matrices. View the sparsity pattern of A as a bipartite graph with left
vertices labeled by row indices and right vertices labeled by column indices, where an edge (7, ) is
present if A;; # 0. After padding with zero entries so that each row and each column has exactly
s incident edges, the resulting bipartite graph is s-regular. By Konig’s line-coloring theorem (see
e.g., [Die25] Proposition 5.3.1]), the edges of an s-regular bipartite graph can be decomposed into s
disjoint perfect matchings. Fix such a decomposition and index the matchings by ¢ € [s]. For each
¢ and each column j, let ¢(j,¢) denote the unique row index matched to j in the ¢-th matching,.
Then, for each fixed ¢, the mapping j — ¢(j,¢) is a permutation of [N].

For each ¢ € [s], define A®) by setting AE;@,@),J' = A.(j,0),; and all other entries of A® to zero.

Then each A®) is 1-sparse, and

(9.60) A=A,
ee(s]

According to Example 9.15] we may access each permutation j — ¢(j,¢) via a unitary oracle.
Packaging all ¢ together, we assume access to a unitary O, such that

(9.61) Oc €} 17) = 1€) 1c(4,£)) -

Similarly, we assume that the normalized matrix entries can be queried via
. 2 .
(9.62) 04 10)16) |5) = (Ac(j,e),j 10) + /1 = [Aciie) 4 |1>> 1€) 15 -
We then define D = H®® (the s-qubit Hadamard transform) satisfying

(9.63) D0%) = % > 0.
L€]s]

With these ingredients, the circuit in Fig. [9.7] can be interpreted as an LCU-type construction
over {A®)} ¢e[s]> yielding a block encoding with subnormalization factor a = s.
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0 =
o) —BH o H HE

FIGURE 9.7. Quantum circuit for block encoding a s-sparse matrix using linear
combination of unitaries. The measurement means that to obtain a state oc A |b),
the ancilla register should all return the value 0.

‘We now show that the circuit in Fig. deﬁnes aunitary Ug € BE; ;41(A) by direct calculation.
Proposition 9.16. The circuit in Fig. defines Ug € BE; 541(A).

PrROOF. We may write
(9.64) Ur=(I®D1NI®0.)0,(I®DRI).

In order to compute the inner product (0| (0°| (¢| U4 |0) |0°) |5}, we apply D,O4,0,. to |0)|0°)|7)
successively as

10)10°) \[ Y1016 )

Le[s)

(9.65) 9‘3\/ > ( 6,05 10) + V1= [Acgio ] |1>) 1£)17)

Le[s)
2 .
fz( o010+ V1~ [ A |1>) 0 1e(i,0)).
L€]s]

Instead of multiplying the leftmost factor I ® D ® I to the last line, we apply it to |0)|0°) |¢) first
to obtain (note that D is Hermitian)

(9.66) 10) [0%) [d) 2 — Z 0) €'Y Ji
€ls]
Finally, taking the inner product yields

1
(967) <O| <05| < | Ua |O |05 |J ZA (7,0), z c(j,0) — A’L]

Example 9.17. Let us use the circuit in Fig. [0.7] to construct a block encoding of

(9.68) A= {“1 0‘2} L 0<o; <1, i=1,2
Q2 Q1

This matrix satisfies || A .. = 1, and can be viewed as a 2-sparse matrix. We can simply use
CNOT as the O, circuit by examining the truth table
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L 3 ¢ c(j,0)
0 0 0 0
0 1 — 0 1
10 1 1
1 1 1 0

Meanwhile O 4 can be implemented using controlled R, (6;),8; = 2arccos(a),i = 1, 2.

|0> ] Ry(91> | Ry(92) —

=
~
oO—

For example, when a; = 1, as = 0.5, The resulting matrix is

0.500  0.250  0.500 —0.250 0.0 —0.433 0.0 0.433
0.250  0.500 —0.250 0.500 —0.433 0.0 0.433 0.0
0.500 —0.250 0.500  0.250 0.0 0.433 0.0 —0.433
—-0.250 0.500  0.250  0.500  0.433 0.0 —0.433 0.0

(9:69)  Ua= 0.0 0.433 0.0 —0433 0500 0.250 0.500 —0.250
0.433 0.0 —0.433 0.0 0.250 0.500 —0.250 0.500
0.0 —0.433 0.0 0.433 0.500 —0.250 0.500 0.250
—0.433 0.0 0.433 0.0 —0.250 0.500 0.250  0.500
This is a (2, 2)-block-encoding of A. ©

Example 9.18 (Banded matrix). A banded matrix of bandwidth s can be defined to have the
sparsity pattern

(9.70) c(§,0)=j+L—4y (mod N),
for some shift ¢y € Z. The O, circuit in Eq. (9.61) can be constructed using an adder circuit to
perform the addition operation. o

Let us consider a different input model to construct the block encoding of a general s-sparse
matrices. We assume access to the following two (2n)-qubit oracles

Or |0) |5) =1r(@, ) |4,
Oc|0)13) =1e(, 0) 17) -

Here 7(i,¢), c(4,¢) gives the ¢-th nonzero entry in the i-th row and j-th column, respectively. It
should be noted that although the index ¢ € [s], we should expand it into an n-qubit state (e.g. let
¢ take the last s qubits of the n-qubit register following the binary representation of integers).

We assume that the matrix entries are queried using the following oracle using controlled
rotations

(0.72) 0.4 10) |i) ) = (Aij 0) + /1 |4y |1>) i) 1)

where the rotation is controlled by both row and column indices. However, if A;; = 0 for some 7, 7,
the rotation can be arbitrary, as there will be no contribution due to the usage of O,., O..

Proposition 9.19. Fig. defines Ua € BEg 11(4A).

(9.71)
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O SWAP| |Of

FIGURE 9.8. Quantum circuit for block encoding of general sparse matrices. The
measurement means that to obtain a state oc A|b), the ancilla register should all
return the value 0.

ProOF. We apply the first four gate sets to the source state
10)10") 17)

D,0.,04 1 2 . .
— 7 >, (Acu,e),j 10) + /1 = |Aci).] |1>) le(4,0)) 17)
Le[s]

SWAP, 1 ) )
Z ( Je)J|O 1- ‘AC(]Z ’ |1>) |.7> |C<]a€)>
We then apply D and O, to the target state

(9.74) 0Y [0™) |4) Z 0Y |~ (3, ) |3) .

Z’e[s]

(9.73)

Then the inner product gives

(0] (0™ (i| U4 [0) [0™) |5) = ZACO,@,J@H,@& 0.5
ZE’

1 1
s z[: c(4,€),5%,¢(j,£) 5 i

If A;; # 0, then there exists a unique ¢ such that i = ¢(j,¢) and a unique ¢ such that j = r(i,¢');
if A;; =0, then the same computation gives (0] (0™] (i| U4 |0) |0™) |5) = 0. O

(9.75)

8. Hermitian block encoding

So far we have considered general s-sparse matrices. Note that if A is a Hermitian matrix, its
(a, m, €)-block-encoding U, does not need to be Hermitian. Even if ¢ = 0, we only have that the
upper-left n-qubit block of U, is Hermitian. For instance, even the block encoding of a Hermitian,
diagonal matrix in Example may not be Hermitian. On the other hand, there are cases when
Uy = UI‘ is a Hermitian matrix, and hence the definition:

Definition 9.20 (Hermitian block encoding). Let Uy be an («, m, €)-block-encoding of A. If Ua
is also Hermitian, then it is called an (o, m,€)-Hermitian-block-encoding of A. When € = 0, it is
called an (o, m)-Hermitian-block-encoding. The set of all (a, m, €)-Hermitian-block-encodings of A
is denoted by HBE, ., (A, €), and we define HBE, ,,,(A) = HBE, (4, 0).
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0 (=]

o {pHo. H H N — Of HD]
SWAP

|0) O4 H L1 (04)1 @

n—7JoH H H Ho

FIGURE 9.9. Quantum circuit for Hermitian block encoding of a general Hermitian matrix

The Hermitian block encoding provides the simplest scenario of the qubitization process in
Section [[0.2.11

Next we consider the Hermitian block encoding of an s-sparse Hermitian matrix. Since A is
Hermitian, we only need one oracle to query the location of the nonzero entries

(9.76) Oc|0)17) = lc(G, ) 13) -

Here ¢(j,£) gives the £-th nonzero entry in the j-th column. It can also be interpreted as the ¢-th
nonzero entry in the j-th row. Again the first register needs to be interpreted as an n-qubit register.
The operator D is the same as in 77.

Unlike all discussions before, we introduce two control qubits, and a quantum state in the
computational basis takes the form |a) |¢) |b) |j), where a,b € {0,1},4,j € [N]. In other words, we
may view |a) |i) as the first register, and |b)|j) as the second register. The (n + 1)-qubit SWAP
gate is defined as

(9.77) SWAP |a) |2} [b) [7) = [b) [5) |a) |3} -

To query matrix entries, we need access to the square root of A;; as (note that act on the second
single-qubit register)

(0.78) O 1) 1) 1) = 1) (wT 0) + /1 |4y |1>) ).

Throughout we assume [|A|, .. < 1, so that the right-hand side is normalized. The square root
operation is well defined if A;; > 0 for all entries. If A has negative (or complex) entries, we first

write A;; = |A;;] €%, 0;; € [0,27), and the square root is uniquely defined as y/A;; = /] A;;]e%/2.

Proposition 9.21. Fig. defines Uy € HBE; ,,12(4).
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PROOF. Apply the first four gate sets to the source state gives

|o> 107y [0) [5) 222

> 10yl € (\/Acu,e),j
(9.79) f i

SWAP, 1 . .
Z( Acije,510) + l—lAc<j,e),j||1>> 17)10) [c(4, €))

/6[5

0) +/1— A |1>) )

Apply the last three gate sets to the target state

0 >|0”> 10) [i) 252

9.80 .
(9:80) Z 10) |e(i,£')) ( Ac(inery,i [0) + /1= [Acgien il |1>) 1)
é/e[
Finally, take the inner product as
<0| (0™ (0] (i Ua 10) |07) |0) [5)

(9.81) 5 Z \/Acu 0.3 \/AC(Z 01),19%,¢(G,0)0c(,01)
’ 5
. 1 2 1
:g\/Aij VA= S (VAG)" = Ay
In this equality, we have used that A is Hermitian: A;; = A7;, and there exists a unique £ such that
i =c(j,0), as well as a unique ¢ such that j = ¢(i,£') when A;; is nonzero. O

Exercise 9.5. Let A € CV*N (N = 2") be a Hermitian matrix with entries on the complex
unit circle A;; = eis | 0;; € [0, 2m), which can be accessed via a 2n qubit unitary V' € CN**N? guch
that

V[0™) |5) = > e®i2liy|5), e [N].
\/7 i€[N]
Use V to implement a block encoding U of A with n ancilla qubits. What is the subnormalization
factor « for this block encoding?

Notes and further reading

The mathematical idea underlying block encodings is a form of unitary dilation: linear maps
that are not themselves unitary can often be realized as a sub-block of a larger unitary acting on an
extended space. In quantum information, this viewpoint is closely related to dilation theorems for
completely positive maps. In quantum algorithms, the block-encoding terminology (together with
explicit bookkeeping of the subnormalization factor and approximation error) was systematized as
part of the modern polynomial-transformation framework; see [GSLW19].

The linear combination of unitaries (LCU) primitive used here originates in the Hamiltonian
simulation algorithm [CWT12, IBCC™14|. In particular, the sparse-matrix block-encoding construc-
tions in this chapter are closely aligned with the query models developed for sparse Hamiltonian
simulation (see, e.g., [BACS07]) and with the block-encoding-based linear-systems framework (see,
e.g., [CKS17], which can be directly connected to the quantum circuit for Hermitian block encoding
in Fig. . The connection between block encodings and quantum walks is mediated by the fact
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that many walk operators are themselves natural block encodings; see Szegedy’s quantization of
Markov chains [Sze04] for an early and influential formulation, which will be discussed in detail
in Chapter The RACBEM input model for pseudorandom nonunitary matrices was introduced
in [DL21]. The quantum circuit in Fig. is essentially the construction in [GSLWIS8, Lemma
48|, which gives a (s,n + 3)-block-encoding. The construction in Fig. slightly simplifies the
procedure and saves two extra qubits (used to mark whether £ > s).






CHAPTER 10
Qubitization

Block encodings provide a unified interface for accessing matrices within quantum circuits,
but simply iterating the encoding unitary is often insufficient to transform the underlying matrix.
For example, if a block encoding U, is Hermitian, its powers merely alternate between U, and
the identity. Qubitization addresses this limitation by constructing a unitary iterate whose action
preserves two-dimensional subspaces associated with the eigenstructure of the encoded matrix.
Within these subspaces, the iterate acts as a rotation, so that its powers implement Chebyshev
polynomial transformations of the spectrum.

In this chapter, we progressively introduce the construction of qubitization, starting with Her-
mitian matrices encoded by Hermitian block encodings, then extending to general matrices. We
demonstrate that the qubitization iterate naturally implements the singular value transformation
using Chebyshev polynomials. We then show that the iterate can be interpreted using the cosine—
sine decomposition in linear algebra. Finally, we combine qubitization with linear combination of
unitaries to construct arbitrary polynomial transformations of definite parity.

10.1. Eigenvalue transformation and singular value transformation
Consider a Hermitian matrix A € CV*~. Then A has the eigenvalue decomposition
(10.1) A=VAVT,

Here A = diag({\;}) is a diagonal matrix, and A\g < --- < Ay_1. Let the scalar function f be well
defined on all \;’s. We first recall the definition of matrix function restricted to Hermitian matrices.

Definition 10.1 (Matrix function of Hermitian matrices, or eigenvalue transformation). Let A €
CN*N pe o Hermitian matriz with eigenvalue decomposition Eq. . Let f : R — C be a
scalar function such that f(X\;) is defined for all i € [N]. The matriz function, or eigenvalue
transformation of A is defined as

(10.2) F(A) = VMV,
where
(10.3) f(A) = diag (f (o), f (A1), f (An-1))-
For any square matrix A € CNV*¥ | the singular value decomposition (SVD) of A reads
(10.4) A=wxvi
or equivalently
(10.5) Al =oijw;), AV|w) =0y |v;), o, >0, ic[N].

The columns of W,V are called the left and right singular vectors of A, respectively. When A is
given by its block encoding Uy € BEq ,,(A), the singular values of A are in [0, 1].

135
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We may apply a function f(-) on its singular values and define generalized matrix functions
below. Unlike matrix functions of Hermitian matrices, we can define three types of generalized
matrix functions depending on how we choose the left and right singular vectors.

Definition 10.2 (Generalized matrix functions). Given A € CN*N with singular value decompo-
sition Eq. (10.4)), and let f : Ry — C be a scalar function such that f (o;) is defined for all i € [N].
The balanced generalized matrixz function is defined as

(10.6) fo(A) =W )V,
where
(10.7) f(B) =diag (f (00), f(01) .-+, f(on-1))-

The left generalized matrix function and right generalized matrix function are defined in
terms of the left and right singular vectors respectively as

(10.8) fUA) = WE)WT, 2 (A) = V)V
Proposition 10.3. The following relations hold:

(10.9) FOAT) = (fo(A)T, 17 (A) = F(AD),
and

(10.10) [P(A) = [P(VATA) = [(VATA),  [U(A) = [*(VAAT) = f(VAAT).

PROOF. Just note that ATA = VX2V, we have VATA = VEVT. So the eigenvalue and singular
value decomposition coincide for both vV ATA and vV AAT. O

For technical reasons that will become clear later, the definition of singular value transformation
in quantum algorithms depends on the parity of f.

Definition 10.4 (Singular value transformation for functions with definite parity). Given A €
CNXN with singular value decomposition Eq. (10.4), let f : R — C be a scalar function such that

f (£o;) is defined for alli € [N]. The singular value transformation of A is defined as
(10.11) £5V04) = fo(A), [ is odd,
fP(A), f is even.

We are often interested in a polynomial f. For a scalar x, the set of all real polynomials of
finite degree forms the real polynomial ring, denoted by R[z]. Similarly, the set of all complex
polynomials of finite degree forms the complex polynomial ring, denoted by C[z].

When A is a Hermitian matrix and A > 0, its eigenvalue decomposition and singular value
decomposition coincide, so are its eigenvalue and singular value transformations of A.

When A is an indefinite Hermitian matrix, its eigenvalue decomposition is A = VDV, and its
singular value decomposition can be written as A = WXV with W = Vsign(D), X = |D|.

(1) If f is an odd function, then
(10.12) FPV(A) = f(A) = WFEWVT =V f(sign(D)D)VT = VF(D)VT = f(A).
(2) If f is an even function, then

(10.13) SV(A) = fF(A) = VIE)WVT = VD)V = f(A).
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Therefore as long as f has definite parity, the eigenvalue and singular value transformation of a
Hermitian matrix A are the same.

For a general matrix A € CV*V | we can define a dilated Hermitian matrix using one ancilla
qubit:
~ 0 Af
(10.14) A_[A O]'

When A is given by its block encoding Us € BEj ,,(A), the dilated Hermitian matrix A can be
obtained with one ancilla qubit through Uz = |0) (1|® Ul +11) (0| ®@Ua, ie., Uz € BE1,(A). Note

that this requires the controlled version of Uy, U;.
From the SVD in Eq. (10.5]), we can construct

1
(10.15) |%°) = \*@(l()) vi) £ 1) [wi)).

Direct calculation shows
(10.16) AlzE) = to,17),

i.e., {|zF)} are all the eigenvectors of A.
For an arbitrary polynomial f € C[z], the matrix function f(A) takes the form

() =3 120) floa) (&1 + 120) f(=0) (]|

_ Vi) feven(03) (vi|  [vi) foaa(oi) (wil
(10.17) =2 <|wi> Foaa(03) (il [w3) Foven(0?) <wi|>
— < eDven(A) f:))dd(AT))
f:)}dd(A) e<]ven(A) .
Here
(1018) feven(x) = %(f(x) + f(—l‘)), fodd(l‘) = %(f(])) - f(—l‘))

Therefore applying the eigenvalue transformation of a dilated matrix A automatically implements
singular value transformation of A using polynomials of even and odd parities.
In particular, if f is an even function, then

(10.19) F(A)10) [¢) = |0) f*(A) [4b) .
In other words, by measuring the ancilla qubit we obtain 0 with certainty, and the state in the
system register is fo .. (A4) [¢). Similarly, if f is odd, then

even

(10.20) FA)10) [¢) = 1) f(A) [9)
i.e., by measuring the ancilla qubit we obtain the output 1 with certainty.

In summary, when the function of interest is of definite parity, the singular value transformation
and the eigenvalue transformation applied to a dilated Hermitian matrix are two sides of the same
coin.

On the other hand, not all eigenvalue transformations can be expressed as singular value trans-
formations. Consider the matrix power A* as an example. Assume that A is a general non-
Hermitian matrix that can be diagonalized as A = VDV ~! and has the singular value decompo-
sition A = WXVT. The matrix power is then given by A¥ = V. D¥V~!. However, this expression
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cannot be directly written using the singular value decomposition. To see this, consider the case
where k = 2. The squared matrix is A2 = (WXVH)(WEVT) = WEVIWSVT. Here, the unitary
matrix product VIW does not generally have a simple expression, preventing a straightforward
formulation of A* in terms of singular values.

Many other matrix functions, such as matrix exponential e”, matrix logarithm log A etc, cannot
be expressed using singular value transformations either for general matrices. One notable exception
is the matrix inverse: if A is invertible and A = WXV, then A~! = VE~'WT. Since f(z) = 27!
is odd, we find that fSV(AT) = f°(A") = A~!. Indeed, this will be the basis for using the quantum
singular value transformation for computing matrix inverses.

10.2. Qubitization of Hermitian matrices and Chebyshev eigenvalue transformation

Let A € CNV*N be a Hermitian matrix with eigenvalue decomposition Eq. (10.1) with ||A]| < 1.
The matrix Chebyshev polynomial Ty (A) is a matrix function defined by the Chebyshev polynomial
of the first kind:

(10.21) T (z) = cos(k arccos(z)), =€ [-1,1], keN.

Qubitization provides an explicit quantum circuit to implement eigenvalue transformation with
Chebyshev polynomials.

10.2.1. Qubitization of Hermitian matrices with Hermitian block encoding. We first
introduce some heuristic idea behind qubitization. For any —1 < A < 1, we can consider a 2 x 2
rotation matrix,

A —v1—=\2 cosf —siné
(10.22) O = (\/1 — A2 A > n (Sin@ cos 6 ) :
where we have performed the change of variable A = cos 8 with 0 < 6 < 7.
Now direct computation shows

o 0t = Stk i)

Using the definition of Chebyshev polynomials (of first and second kinds, respectively)
sin(kf)) _ sin(karccos \)

(10.24) Ti(\) = cos(kf) = cos(karccos \), Ug_1(\) = wnf - iw

we have

(10.25) OF(\) = ( Ty (V) —WUM(A)> .

V1—=XU,_1(N) Ti(N)
Note that if we can somehow replace A by A, we immediately obtain a (1, 1)-block-encoding for the
Chebyshev polynomial T} (A)! This is precisely what qubitization aims at achieving, though there
are some small twists.

In the simplest scenario, we assume that Uy € HBE; ,,,(A). Start from the spectral decompo-
sition

(10.26) A= Z)\i|vi><’0i|,

we have that for each eigenstate |v;),

(10.27) Ua [0 |v;) = [0™) A |vi) + | Lib= Ai [07) |vg) + | L.
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Here | L; > is an unnormalized state that is orthogonal to all states of the form [0™) 1)), i.e.,

(10.28) IT| L = 0.
where
(10.29) = 0m)X0™| @ I

is a projection operator.
Since the right hand side of Eq. (10.27) is a normalized state, we may also write

(10.30) | Lir= /1= A7 [Lq),

where |1;) is a normalized state.
Now if A\; = £1, then H; = span{|0™) |v;)} is already an invariant subspace of Uy, and |L;)
can be any state. Otherwise, use the fact that Us = Ujp we can apply U again to both sides of

Eq. (10.27) and obtain
(10.31) UA |Ll> = 1-— /\7,2 |Om> |’Ui> — /\z |Ll> .

Therefore H; = span{|0™) |v;),|L;)} is an invariant subspace of Us. Furthermore, the matrix
representation of Uy with respect to the basis B; = {|0™) |v;), | L)} is

(10.32) Uals, = (\/1/\_;% \/1—&&2) ’

i.e., Uy restricted to H; is a reflection operator. This also leads to the name “qubitization”, which
means that each eigenvector |v;) is “qubitized” into a two-dimensional space H;.

In order to construct a block encoding for Tj(A), we need to turn U, into a rotation. For this
note that #; is also an invariant subspace for the projection operator IT = |0™)0™|:

10
(10.33) g, = <0 0> .
Similarly define Z1; = 2I1 — 1, since

1 0
(10.34) [Zn)s, = <0 _1> ;

711 acts as a reflection operator restricted to each subspace H;. Then H; is an invariant subspace
for the following matrix called the iterate

(10.35) O =UaZn

and

Ai —/1 = X2

10.36 Olg, = : v

(10.36) o = ( 2 YY)
is the desired rotation matrix. Therefore

Ty (M) —V1=XUk-1(\)

10.37 O"p, = [(UaZn)¥)s, = A i ).
a1 =10zl = (= o0 Y s

Since {|0™) |v;)} spans the range of II, we have

(10.38) OF — (Tk(A) *)

* *
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i.e., OF = (UaZm)¥ is a (1, m)-block-encoding of the Chebyshev polynomial T} (A).

Example 10.5. Recall the 2 x 2 Hermitian matrix in Example

3.1 0.75 0.25
(10.39) A== (0.25 0.75) '

To illustrate the Hermitian-block-encoding setting of this subsection, we use the circuit from

Example 9.1 with ¢ = Z:

0) — By (¢) Ry(—¢) —

|¥)

This circuit implements the unitary

A —/ I — A2
Ua = ) 1 3
—I—-A ZI+1X

a
A\

(10.40) ) € HBE 1 (A).

In this example,

3 1 3
(10.41) T Y30 ox), r-aar-_lr 3x
4 4 4
Since m = 1, we have Z;; = Z ® I. The qubitization iterate is O = UaZy;. Let us verify for

k = 2. First,

o-vitn= (i ) 0) (A VR,

IT—A2 1I+3x J\0 I —VI—A? -1r-3x

This particular matrix satisfies a number of identities such as 24T — A2 = /I — A2. Direct
calculation shows

o2 2AP-I  2AVT— A
“\2AyT— Az A2 )

The top-left block of O? is

1.3 025 0.75
Ty(A) =24~ T = g+ 71X = (0.75 0.25) '

b

In order to implement Z7, note that if m = 1, then Zyy is just the Pauli Z gate. When m > 1,
the circuit in Fig. maps |1} [b) to [1) |b) if b = 0™, and to —|1) |b) if b # 0™. So this precisely
implements Z1; where the signal qubit |1) is used as a work register. We may also discard the signal
qubit, and resulting unitary is denoted by Z;.

Therefore the circuit in Fig. implements the operator O. Repeating the circuit k times
gives a (1, m)-block-encoding of Ty (A).
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1) —— 1) D @ pany

Ua ) ——

F1Gure 10.1. Circuit implementing one step of qubitization with a Hermitian
block encoding of a Hermitian matrix. Here U4 € HBEq ,,,(A).

10.2.2. Qubitization of Hermitian matrices with general block encoding. In Sec-
tion we assume that Uy = U:[1 to block encode a Hermitian matrix A. For instance, s-sparse
Hermitian matrices, such Hermitian block encodings can be constructed following the construction
in Fig. [0.9] However, this can come at the expense of requiring additional structures and oracles.
In general, the block encoding of a Hermitian matrix may not be Hermitian itself. In this section
we demonstrate that the strategy of qubitization can be modified to accommodate general block
encodings.

Again start from the eigendecomposition Eq. , we apply Uya to |[0™) |v;) and obtain

(10.42) U l0™) fo) = A [07) Jor) + /1= A2[L),

where | L}) is a normalized state satisfying II|L}) = 0.
Since Uy block-encodes a Hermitian matrix A, we have

(10.43) Ul = (A *) ,

* *

which implies that there exists another normalized state |L;) satisfying IT|1;) = 0 and
(10.44) UL10™) [oi) = X ]0™) Jog) + /1= A2 | La).

Now apply U4 to both sides of Eq. , we obtain

(10.45) 07 [vi) = A7 10™) [oi) + Aiy/ 1 = A2 [L]) + /1 = A2Ua | Ly),

which gives

(10.46) UalLi) = /1= 22|0™) Jog) — s | L5)
Define
(10.47) B; = {|0™) Jvi), | L)}, Bi={|0™) |vi), | L)},

and the associated two-dimensional subspaces H; = span B;, H} = span B, we find that Us maps
H; to H}. Correspondingly UL maps H} to H,;.
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Then Eqs. (10.42)) and (10.46) give the matrix representation

(10.48) Ualg = <\/1A—7X2 \/1_;}?).

Similar calculation shows that
. Ai V1= X2
10.49 Ulls = d ).
-4 o= (e V)
Meanwhile both H; and H} are the invariant subspaces of the projector II, with matrix representa-
tion

(10.50) s, = e = o ¢)-
Therefore
(10.51) [Zuls, = [Zuls; = <é _01> -

Hence H; is an invariant subspace of 0= ULZHU 47711, with matrix representation

(1052) O = (2 o)

Repeating k times, we have
2%k
~ ) VI gy
(0", =(U} ZnUaZn)* = ( : )
4 V1-2X2 Ai
_ ( Tar(Ni) —/1- A§U2k1()\i)>
V1= A Usk—1(N\) Tor(Ai)

Since any vector |0™) 1)) can be expanded in terms of the eigenvectors |0™) |v;), we have

(10.53)

(10.54) (U ZaUaZn)* = <T2k(A) *) .

* *

Therefore if we would like to construct an even order Chebyshev polynomial T5;(A), the circuit
(U;ZHUAZH)’“ straightforwardly gives a (1, m)-block-encoding.
In order to construct the block-encoding of an odd polynomial Tox11(A), we note that

(1055) [UAZH(UAZHUAZH B _ ( T2k+1(>\ ) _WU2]€()\2)> )

V1= A2Uz(A Tort1(N:)

Using the fact that B;, B} share the common basis |0™) |vi>, we still have the block-encoding

(10.56) UaZu (Ul ZnUaZn)* = (TQ’f:l(A) :) .
Therefore U Z (Ul ZnUaZn)¥ is a (1, m)-block-encoding of Thy1(A).

In summary, the block-encoding of T;(A) is given by applying UaZn and ULZH alternately.
If | = 2k, then there are exactly k such pairs. Otherwise if [ = 2k 4 1, then there is an extra
UaZn. The effect is to map each eigenvector |0™) |v;) back and forth between the two-dimensional
subspaces H; and H}. We summarize these results into the following theorem.
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Proposition 10.6 (Chebyshev eigenvalue transformation). Let A € CN*N be an n-qubit Hermitian
matriz given by its block encoding Ua € BEq ,,,(A). Let Zy = (2|0™)X0™| —I) @ I. Then

(10.57) (UL ZnUaZn)* € BEy i (Tor(A)),  UaZn(ULZuUaZn)* € BEy p(Tors1(A)), ke N.

10.3. Qubitization of general matrices and Chebyshev singular value transformation

In Section [10.2:2] we have observed that when A is a Hermitian matrix, the qubitization pro-
cedure introduces two different subspaces H; and H; associated with each eigenvector |v;). In
particular, Ug maps H; to H;, and UL maps H} to H;. Furthermore, both H; and H/ are the in-
variant subspaces of the projection operator II. Therefore H; is an invariant subspace of Ujl FADU4
for any function f.

For a general matrix A, the eigenvalues of A may not be on the real line. In fact, A may not be
diagonalizable. Here we illustrate that the correct generalization for a general matrix A is singular
value transformation defined as a generalized matrix function. The procedure below almost entirely

parallels that of Section [10.2.2
Starting from the SVD in Eq. (10.5)), we apply Ua to |0™) |v;) and obtain

(10.58) Ual0™) i) = 07 [0™) [wi) + /1 = 07 | L),

where |.L}) is a normalized state satisfying IT|L}) = 0.
Since U4 block encodes a matrix A, we have

;
(10.59) Ul = (A :) ,

*

which implies that there exists another normalized state |L;) satisfying IT|1;) = 0 and
(10.60) UL 10"} fwi) = 04]0™) [os) + /1 = 0F | L)

Applying U4 to both sides of Eq. , we obtain

(10.61) 107 [w;) = o2 [0™) |w;) + iy /1 — o2 | L5 + /1 —c2Ua| L),

which gives

(1062) UA |J_l> = 1-— 0'2»2 |Om> |wl> — 0; |J_;> .
Define
(10.63) Bi ={10™) [vi), [ L)}, Bi ={10™) [wi), |L3)},

and the associated two-dimensional subspaces H; = span B;, H; = span 3}, we find that Uy maps
H; to H,. Correspondingly Ujl maps H; to H,;.
Then Egs. (10.58)) and (|10.62|) give the matrix representation

B ; 1—o02
10.64 Ualpt = L I
(10.61) i = (12 V)
Similar calculation shows that
) /1= o2
(10.65) [Uj,]@f( o Vi ”Z).
i V1—o0; —0;
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Meanwhile both H; and H are the invariant subspaces of the projector II, with matrix representa-
tion

(10.66) (M), = (1] = ((1) 8)
Therefore
(10.67) [zn]&z[zn]ggz(é 01).

Hence H; is an invariant subspace of 0= ULZHU 42711, with matrix representation

(10.68) (Ol = (\/;_7 _\/2;7012)2

The quantum circuit for each O is

o) - HEH -

Ua Ul
|¥) —

FI1GURE 10.2. Circuit implementing one step of qubitization. This block encodes
T2(SV)(A). Here Uy € BE; ,,,(A). Note that the implementation of Zy requires a
working qubit.

Repeating k times, we have
N ‘ o\ 2k
(0" ~(UZnUa )" = (ﬁiﬁ . Ui)

_ ( Tor(0;) —WUQk—I(Ui))
ngk—l(Uz‘) T (i) .

(10.69)

In other words,

(10.70) OF — (Ei viTor (o)) :) _ <T2'>,€*(A) i) '

*

Therefore, the circuit (ULZHUAZH)’“ yields a (1, m)-block-encoding of 75, (A).
Similarly,

/1 — 52 .
(1071) [UAZH(UAZHUAZH B — < T2k+1(01) 1 a; UQk(Jl)) .

V1= 02Us(0;) Top41(0;)

In other words,

| Yo .
(10.72) UnZn(US ZnUn Zn)* = (Zi wiTou1(03); :) _ (T2k+1(‘4) *) |

* * *

Therefore, the circuit UAZH(UI\ZHUAZH)’“ yields a (1, m)-block-encoding of T3, , , (A).
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Proposition 10.7 (Chebyshev singular value transformation). Let A € CN*¥ be an n-qubit Her-
mitian matriz given by its block encoding Ua € BEq ,,(A). Let Zn = (2|0™X0™| — I,,,) ® I,,. Then

(10.73) (ULZuUaZn)* € BEy o (T5Y (A)), UaZu(UhZnUaZn)* € BEy (T8, 1(4)), ke N.

Example 10.8. Consider the 2 x 2 nilpotent matrix

(10.74) A= (8 é) .

Its singular value decomposition A = WXV is given by

10 0 1
(10.75) W =1, z_<0 0), V_X_<1 0).

Note that T5(A) = VI, (2)VT = X diag(1, —1)X = diag(—1,1).
A (1, 1)-block-encoding of A can be constructed as

0100
0010
(10.76) Ua=|{ 0 0 o
00 0 1

Here the basis order is |00),[01),]10),]11). The qubitization iterate O = UI‘ZHUAZH can be
computed directly. With Zp = Z ® I = diag(1,1,—1, —1), we have

-1 0 0 O
~ 01 0 0
(10.77) 0= 0 0 -1 0
0 0 0 1
The top-left block is diag(—1,1), which matches T% (A). ©

10.4. Cosine—sine decomposition and qubitization

The fact that an arbitrarily large block encoding matrix U4 can be partially block diagonalized
into N subblocks of size 2 x 2 may seem a rather peculiar algebraic structure. In this section
we use the cosine—sine (CS) decomposition to provide a unified perspective of qubitization.
Qubitization stems from the fact that all involved transformations act on direct sums of irreducible
two-dimensional subspaces. The CS decomposition makes this observation manifest and further
provides a representation for the unitary where these rotations can be expressed as a block matrix
wherein the sub-blocks play an analogous role to cosine and sine functions.

THEOREM 10.9 (Cosine-sine decomposition of a unitary matrix). Let ¢ > p and U € C(P+a)x(p+a)
be any unitary matriz. There exists a decomposition

c S 0 T
(10.78) U= (Vgl WO/) S —C 0 (Vl £T> )
\o o 1,,)]\0

Here, W1,V1 € CP*P, Wy, V, € C9%9 are unitary matrices and C = diag(cq, ..., ¢p), S = diag(s1,...,Sp)
are real, non-negative diagonal matrices so that C* + 5% = I,,.
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PROOF. Let

Uoo U1
( ) (Um Un)

where Uyg € CP*P and Uy; € C?*9. The proof proceeds by considering singular value decomposi-
tions of each of the block matrices in the unitary. Using the SVD, Uyg can be expressed for some
unitary V7 and W{f as

(10.80) Ugo = W1CV.

As Uyp is embedded in a unitary, we must have that its singular values C are in [0, 1].
Next, consider the QR decomposition

(10.81) UroVi = WoR

for a unitary matrix Wy € C?%? and an upper triangular matrix R € C?*P with non-negative
diagonal elements. Using a similar argument we can see that there exists a unitary matrix Vo € C9*4
and a lower triangular matrix L € CP*? with non-negative diagonal elements such that

(10.82) W{iUo = LV

This shows that we can write

(W0 C L VlJr 0
(10.83) U= < 0 W2> <R WJUMVQ> <0 Vi)

Now let us argue about the structure of R, L. From the fact that the rows and columns of any
unitary matrix must be orthonormal, and that R is upper triangular,

(10.84) R= (g) , C*48%=1,
By the same argument we have
(10.85) L=(5 0), C*°+8*=1,
In other words, R = L'. Continuing the same reasoning,

-C 0
(10.86) WiU, Vs = ( 0 U22> ,

for some unitary Uss. If we absorb this unitary Uss into either Wy or V5, we obtain the desired

factorization in Eq. ((10.78]). O

Given Uy € BE; ,(A) for an n-qubit matrix A = WXVT Theorem implies that there
exists W/, V'’ € CNM-1)xN(M—1) g5 that

> S 0
W 0 vt oo
(10.87) UA=<O W,> S -2 0 (0 V’T>'
0 0 Ip-2)N

Here, S = +/I — X2 is the supplementary diagonal matrix. For notation brevity, the large unitary
matrices are denoted as

(10.88) W= (Vg mg')’ V= <‘g &)
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The matrix in the middle exhibits a special structure. Let & be a permutation matrix of size
2N x 2N that permutes rows {0,1...,N—1,N,...,2N -1} to {0, N,1,N+1,...,N—1,2N —1}.
Then we may verify

(10.89) 32@( 7 m)@*:@ S).

In other words,

DI 0
1—o0;
10.90 -3 = 1
) (s o 2@ (it VL) (@l
0 0 Ip-2)N
is expressed as a direct sum of 2-by-2 blocks and an identity matrix. This is exactly the matrix
representation used by qubitization as in Eq. (10.64)).

THEOREM 10.10 (Qubitization from cosine-sine decomposition). For any n-qubit matriz A
encoded by Ua € BEq ,,,(A), there exists (m + n)-qubit unitary matrices W,V and an (n + 1)-qubit
permutation matriz P, such that

(10.91)

> S 0 e

0 0 I(M_Q)N i€[N]
and
(10.92)
> S 0
uh=v|s - 0o |Wi=V @EB( Vl_a)@*@wzw wi.
0 0 Tm-2)n i€[N] —Ti
Following the same decomposition, Zi1 can be decomposed as
(10.93) In=c2 P z| 2 BDar-2n-
ie[N

Thanks to the block dlagonal structure, Z11 commutes with V W. So the definition of 71 does
not explicitly refer to either W or V. This would not be true if Z were replaced by Pauli X or YV
matrices, and this is the key reason allowing us to choose a convenient phase matrix as in 7?7. Also
use the fact that 2212 = I for a permutation matrix, we have

(10.94)

= T (0'1) — 1—02U2k,1(0'1') =
Ul ZqUaZn) =V <_ 2 ( 2k \ g P I vt
( ATV A H) l?\q /170—1-2U2k_1(0'i) TQk(Ui) @ (M 2)N
Similarly
(10.95)

= Topy1(0q) —/1—=02Usi(0i) $ =t
UaZn(US ZnU Zn) F—wl o P Vi
4Zu(UyZnUaZn) ZGBG[N( T= 20 (0) T2k+1(01 @
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This result shows that we can decompose an arbitrary unitary into a direct sum of cosine or
sine matrices that, in effect, carry out two dimensional rotations.

Example 10.11. Consider a single-qubit Hermitian matrix A = diag(0.8,0.6) encoded using one
ancilla qubit (m = 1). The singular values are o9 = 0.8 and o7 = 0.6, which are distinct. The
corresponding complementary values are s = v/1 —0.82 = 0.6 and s; = v/1 — 0.62 = 0.8. We can
implement a block encoding U4 using a controlled rotation circuit on the ancilla, controlled by the
system qubit:

0)q — Ry<290) | Ry<2A9) —

a

%)
where 6y = arccos(0.8) and Af = arccos(0.6) — arccos(0.8). The unitary Uy takes the form

08 0 =06 0
0 06 0 038
06 0 0.8 0
0 08 O 0.6

Here, the top-left block is precisely A. The qubitization iterate O = U Zy, with Zy = Z ® I, flips
the sign of the columns where the ancilla is |1):

08 0 06 0
0 06 O 0.8
06 0 —-08 0
0 08 O —0.6

Applying the permutation & that reorders the basis to group by system index {|0), |0), |1),10),[0), 1) ,]1), 1)}
yields a block diagonal matrix:

0.8 0.6 0.6 0.8

T

FOF = <0.6 0.8) @ (0.8 0.6) '

Thus the 4 x 4 operator decouples into two independent 2 x 2 reflections, each acting on the subspace
associated with a singular vector. o

Ua=

OZUA(Z®I)=

10.5. Linear combination of unitaries and qubitization

Let f € R[z] be a polynomial of definite parity. For simplicity, assume f is an even polynomial
of degree 2(K — 1) and set K = 2% Let us combine LCU and qubitization to construct the block
encoding of:

(10.96) FVA) = ) anT5Y (A).

ke[K]
Here A is given by its block encoding U4 € BE; ,,,(A). Due to the connection between eigenvalue
and singular value transformation in Section when A is Hermitian this becomes an eigenvalue
transformation f(A).

Using qubitization (Proposition [10.7), we have constructed Usy € BEy (TS5 (A)). The select
oracle is given by

(10.97) UsgL = Z |[kXk| @ Usy.
ke[K]
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The problem with a direct implementation of the select oracle via multi-qubit controls is that the
complexity is very high. The circuit Usy, to block encode T (A) makes 2k queries to U4. Therefore
the total number of queries to construct the select oracle is O(K?). This is highly inefficient: the
circuit blocks O = ULZHU A7 in each Usy, are implemented independently and not reused.

An efficient implementation of the select oracle makes use of a binary representation k =
(ko ko). Then direct calculation shows that the circuit in Fig. correctly implements Uggy,.
The total number of queries to Uy is 2(1 + 2+ --- + 297 1) =20+ — 2 = 2K — 2. This is equal to
the query complexity for block encoding a single term Thg —o(A).

|ka71>

k1)
ko) *

) 02— —10"" =

FI1GURE 10.3. Circuit for select oracle for even matrix Chebyshev polynomials up
to order 2°T1 — 2. Here O = ULZHUAZH.

We also assume the availability of the prepare oracle

RE
> Belk), Verep[0%) = Vi |k)

ke[K] 2 ke[K]

IIBllz

with f;,7; described by Lemma Then using LCU, we obtain a (||a|; ,m + a)-block-encoding
of fSV(A). The gate complexity is

(1099) (2K — 2) X gate(UA) + gate(VpREp) + gate(‘N/pREp).

Note that the gate complexity depends on the cost for the implementation of the prepare oracle,

which may involve QRAM. The construction of the LCU for an odd polynomial is similar.

Exercise 10.1. Construct the circuit for efficient implementation of the select oracle

(10.100) U= Y |k)k|l® Usps.
ke[K]

THEOREM 10.12 (LCU based singular value transformation for polynomials of definite parity).
Let A € CN*N be encoded by its (1,m)-block-encoding Ua. For a polynomial f(x) € Clz] with
degree d of parity (d mod 2)

d
(10.101) fl@) = axTi()

k=0

we can implement a (||al|, ,m + a)-block encoding of the singular value transformation f5V(A). It
uses a = O(logy d) additional ancilla qubits, and queries U, U}:1 for O(d) times.
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If A is a Hermitian matrix, we may construct an eigenvalue transformation f(A) for a general
polynomial f. Note that

1

(10.102) foven(2) = £ (F(@) + F(-2)), oaale) = 3 (F(@) ~ (=),

we can implement a block encoding of feven(A) and foqq(A), respectively. Then we use one more
ancilla qubit to implement a block encoding of feven(A) + foad(4) = f(A); this multiplies the
subnormalization factor by 2.

10.6. Beyond the computational basis

So far we have assumed that a matrix A € CV*V is accessed through the upper left N x N
block of a unitary Uy € CMNXMN i the computational basis with M = 2™, i.e., via the projector
IIpm := [0™)0™] @ I on m ancillas. However, the concept of block-encoding is more general, and
one may consider other choices of subspaces to encode the matrix of interest.

Choose an orthonormal basis set in CM¥ expressed in terms of the columns of a unitary
E€U(MN) as

(10103) B = {‘(po> geeey |§0N—1> 5 |UN> P |UMN—1>}7

where the vectors |¢g) , ..., |pn—1) are the first N columns of Z and span the range of a projector
II. We also choose another orthonormal basis set in CM¥ expressed in terms of the columns of
another unitary =’ € U(MN) as

(10.104) B = {|vo),- s |vn_1), lwN) .oy Jwmn—1)},
where the vectors |1)o) ,...,|¢n_1) are the first N columns of Z’ and span the range of a projector
II'.

Now fix two rank-N projectors I, IT', where {[p;)};c(n) is an orthonormal basis for range(II),
and {[1;) }ic;n) is an orthonormal basis for range(Il'). Let %4 € U(MN) be a unitary with

(10.105) WU =Y i) Aij {51
i,j€[N]
This is the same block-encoding idea as in the computational basis, except that the relevant N-

dimensional subspaces are now more flexible.
We may map back to the block-encoding in the computational basis by setting

(10.106) Ua = EN w5 E.
Then U, is the matrix representation of %4 with respect to the bases B, B’, and
(10.107) [#A)f = Ua = (f I) :

To define qubitization, note that
(10.108) Ul Zitym UaZitym = B %) 2 Ziyy (B Ua B Zny -
Thus we can define the reflection operators in the new bases
(10.109) In=ZC2ny,.= =2N1 I, Zw =ZZn,.(E) =211 - I.

Thus the iterate in the new basis is j ZUaZ11, and all results from previous sections carry over
directly.



NOTES AND REFERENCES 151

Example 10.13. Let m=n=1,s0 M = N =2 and MN =4, and take %4 = I € U(4). Fix
(10.110) II=|0)0|® I,
sothat Zn =2I1— 1 =Z® I. Let 0 € (0,7/2) and define the real rotation

cosf —sinf
(10.111) R(0) := (sine Ny ) cU(2).
Set Z:= 1 and &’ := R() ® I, and define II' := Z'TI(Z’). Then Z = Z'Zn(Z")".
With respect to the bases {|00),]01)} for range(IT) and {Z'|00),Z’|01)} for range(Il’), the
encoded matrix is the overlap matrix

(10.112) Aij = (Wiles) . les) =105), [¥) == E"|03)
and a direct computation gives A = cos@ I5.
The qubitization step (the product of reflections) is

(10.113) UL 2oy UaZn = Zrv Zn = (R(O)ZRO) Z2) 9 T = R(20) © I
Hence the iterate has eigenvalues e*2% (each with multiplicity 2), and the corresponding eigenphases
4260 determine the singular value cos @ of A. o

Notes and references

Background on generalized matrix functions can be found in [HBI73, [ABET6|, which correspond
to the “balanced” generalized matrix function f°(A), i.e., singular value transformation for odd
functions.

The cosine-sine (CS) decomposition provides an algebraic explanation for the qubitization
structure by making the underlying direct-sum decomposition into 2 x 2 blocks explicit; see [Don23|
TT24]. The same two-dimensional reduction principle also appears as Jordan’s lemma: the product
of two reflections acts as a rotation on an invariant two-dimensional subspace [Jor75|, and this
perspective is closely related to product decompositions in quantum signal processing [Haal9].

The viewpoint of block-encoding and qubitization beyond the computational basis connects
directly to Grover’s search algorithm, amplitude amplification, and Szegedy’s quantum walk. The
Chebyshev expansion combined with LCU already yields arbitrary polynomial singular value trans-
formations (for functions of definite parity), but it uses an additional control register to implement
the required linear combination with a logarithmic overhead. A more direct and elegant alterna-
tive is quantum signal processing and quantum singular value transformation, which implement
polynomial transformations via a structured SU(2) recursion, with further connections to nonlinear
Fourier analysis on SU(2) [AMT24, IALM™26].






CHAPTER 11

Grover type algorithms

Grover’s algorithm was one of the earliest quantum algorithms to demonstrate a provable
speedup in the oracle model: while any classical strategy requires ©(/N) queries in the worst case,
Grover succeeds with O(\/N ) oracle queries. More importantly, its analysis isolates a mechanism
that recurs throughout quantum algorithms: a small success probability can be encoded as an
eigenphase of a two-dimensional rotation, and repeated two-reflection steps coherently drive that
phase so that the success probability becomes bounded below by a constant. This abstraction leads
to amplitude amplification, and further to oblivious amplitude amplification, where one reconstructs
a target unitary using only a block encoding and reflections on ancillas, without access to the input
state.

The common thread running through Grover-type algorithms in this chapter is that they ad-
mit an interpretation as Chebyshev polynomial transformations as seen in qubitization. In this
viewpoint, iterating a fixed two-reflection unitary implements a Chebyshev polynomial on an un-
derlying singular value, and “amplification” becomes the task of choosing a polynomial that maps
the relevant parameter to =1. We also prove a matching lower bound that shows the limits of any
such polynomial-based amplification strategy.

11.1. Unstructured search problem and Grover’s algorithm

Assume we have N = 2" boxes, and we are given the promise that only one of the boxes
contains an orange, and each of the remaining boxes contains an apple. The goal is to find the box
that contains the orange.

Mathematically, given a Boolean function f : {0,1}" — {0,1} and the promise that there
exists a unique marked state z such that f(z¢) = 1, we would like to find zy. This is called an
unstructured search problem. Classically, there is no simpler method than opening (N — 1)
boxes in the worst case to determine z.

The quantum algorithm below, called Grover’s algorithm, relies on access to a bit oracle

(11.1) Vilz,y) = |z,y® f(x)), x€{0,1}",y € {0,1},

and can find z¢ using O(v/N) queries. A classical computer again can only query V¢ in the
computational basis, and Grover’s algorithm achieves a quadratic speedup in terms of the query
complexity.

The origin of the quadratic speedup can be summarized as follows: while classical proba-
bilistic algorithms work with probability densities, quantum algorithms work with wavefunction
amplitudes, of which the square gives the probability densities. More specifically, we start from a
uniform superposition of all states as the initial state

1
(11.2) [to) = —= ) .
w2
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This state can be prepared using Hadamard gates as
(11.3) [40) = H¥™ [0") .

We would like to amplify the desired amplitude corresponding to |zo) from 1/v/N to /p = Q(1).

We demonstrate below that this requires O(v/N) queries to Vy.
The first step of Grover’s algorithm is to turn the oracle (11.1]) into a phase kickback. For this
we take |y) = |—), and for any x € {0,1}",

Lx x)) — |z z))) = (=1)7@ |z, —
ﬁ(\,f( ) = |z, 1@ f(a)) = (-1 |z, ).

Any quantum state |¢) can be decomposed as

(11.4) Vf |l‘,—> =

(11.5) ) = alzo) + Ble)
where |p) is a unit vector orthogonal to |zo), i.e., (¢|zg) = 0. We have
(11.6) Vilp) @[=) = (—alzo) + Blp) ©[-) .-

Here the minus sign is gained through the phase kickback. Discarding the |—) which is unchanged
by applying V}, we obtain an n-qubit unitary

(11.7) R, (ar|zo) + Blp)) = —arlzo) + Blo) -
Therefore R,, is a reflection operator across the hyperplane orthogonal to |zg) as
(11.8) Ryy =1 —2]x0) (mo] .

Let us write
(11.9) o) = sin(0/2) |xo) + cos(0/2) x5 ) ,

with 8 = 2arcsin ﬁ ~ %7 and |zg) = \/% > wa, [T) 15 a normalized state orthogonal to |zo).
Then

(11.10) Ra, [tho) = —sin(0/2) |zo) + cos(0/2) |z .

So span{|zo) ,|zg)} is an invariant subspace of R, .
The next step is to consider another reflector with respect to |1)g). For later convenience we
add a global phase factor —1 (which is irrelevant to the physical outcome):

(11.11) Ry, = —(I = 2[to) (ol).
Direct computation shows
Ry Ray |tho) =Ry, (|tho) — 2sin(6/2) [xo))
=(|tpo) — 4sin*(8/2) [o)) + 25in(6/2) |zo)
=sin(0/2)(3 — 4sin?(0/2)) |zo) + cos(0/2)(1 — 4sin*(0/2)) |y )
=sin(36/2) |zo) + cos(30/2) |7 ) .

(11.12)

So define G = Ry, R, as the product of the two reflection operators (called the Grover iterate),
then it amplifies the angle from 6/2 to 30/2. The geometric picture is in fact even clearer in Fig.
and the conclusion can be observed without explicit computation.
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FIGURE 11.1. Geometric interpretation of one Grover iteration.

Applying the Grover operator k times, we obtain

(11.13) G¥ [iho) = sin((2k + 1)8/2) |zo) + cos((2k +1)8/2) |zg) -
So for sin((2k +1)8/2) ~ 1, we need k ~ & — 1 ~ VNr

55 — 3 ~ . This proves that Grover’s algorithm can
solve the unstructured search problem with O(v N) queries to V.

Remark 11.1 (Boosting success probability). In practice, VN m/4 may not be an integer, and
we may not have sin((2k + 1)0/2) ~ 1. This means that Grover’s algorithm may fail. However,
when we measure the final state in the computational basis and obtain a state called |z), we can
easily check whether = z by applying another query of V} according to Vy|z,0) = |z, f(x)).
Therefore as long as the success probability is larger than a constant, e.g., 2/3, then the possibility
of successfully obtaining z( at least once after m independent trials is at least 1 — (1/3)™.

Interestingly, even if we do not know how to check xg, statistical amplification as in ?? implies
that applying the majority voting can also robustly produce .

o
To draw the quantum circuit of Grover’s algorithm, we need an implementation of R,,. Note
that

(11.14) Ry, = H®™(210™) (0" — I) H®".

This can be implemented via the following circuit using one ancilla qubit:

- X9

Here the controlled-NOT gate is an n-qubit controlled-X gate, and is only active if the system

qubits are in the 0" state. Discarding the signal qubit, we obtain an implementation of Ry,. Since
the signal qubit |—) only changes up to a sign, it can be reused for both Ry, and R, .
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Exercise 11.1. Construct a circuit to show that the reflector Ry, can also be implemented
without using any ancilla qubits.

Example 11.2 (Generalization of Grover’s algorithm to multiple marked states). Suppose that
there are M > 1 marked states among N = 2™ basis states, i.e., f(x) = 1 for M values of z € {0,1}"
and f(z) = 0 otherwise. As in the single-marked case, it is convenient to collect the marked subspace
into a single normalized state

1
(11.15) lw) = — |z),
\/Mw:f%—l

and similarly the (normalized) superposition of unmarked states

(11.16) lw™) |z) .

1
ST

z:f(x)=0

Then the uniform superposition can be written as

(11.17) [1o) = \/ghu) +1/ N ;VM lwh) = sin(6/2) |w) + cos(6/2) |wr),
/N

where sin(6/2) = /M/N.

Using phase kickback, the phase oracle implements the reflection

(11.18) Ry |z) = (=1)f@ |z).
)

Restricted to the invariant subspace span{|w) ,|w=)}, this operator acts as Ry, = I — 2|w)w|. As

before, we choose

(11.19) Ry, = —(I = 2o )(vbol) = 2[¢bo)(ho| — 1,
Let B = {|w),|w®)}. The same calculation as above shows that the Grover iterate G = Ry, Ry,
satisfies

(11.20) G* [ohy) = sin(<2k+l)9) |w) + COS(M) lwt) .

Thus, the success probability of measuring a marked state equals siHZ(W).

Choosing k =~
o — L a7 /N makes this probability bounded below by a constant. o
Example 11.3 (Grover’s algorithm as Chebyshev singular value transformation). Let us view
Grover’s algorithm from the perspective of qubitization beyond the computational basis as in Sec-
tion Let |xo) be the marked state, and [1g) be the uniform superposition of states. We
define an orthonormal basis set B = {|1o), |v1),...,|vn—1)}, where all states |v;) are orthogonal
to |1o). Similarly define an orthonormal basis set B’ = {|xo), |w1),...,|wn_1)}, where all states
|w;) are orthogonal to |z). Then the matrix of reflection operator Ry, with respect to B, B’ is (let

a=1/vN =sin(0/2))
/ a *
(11.21) il = (2 7)
Therefore %4 = Ry, serves as the block encoding of a 1 x 1 scalar A = a = 1/v/N. The projectors

IT = |9o)(tho| and TI' = |zg)xo| are implicitly defined via the provided reflection operator Zp =
Ry, Ziv = — Ry, , respectively. This also means %4 Zn = Rig =1.
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The qubitization invoking %4 for (2k + 1) times gives
(11.22)

' U 210 (%4 Zre Wa Zn) 'L = TU Ry (= R ))FTT = gy (a) o )(tho| = (—1)* sin <(2k+1)9

+222) laalval.

Here we have used the fact that Thyy1(a) = (—1)*sin((2k + 1) arcsin(a)) for a € [0,1]. Letting
sin((2k + 1)0/2) ~ 1, we recover the same query complexity as Grover’s algorithm. Note that
%XZH/?/AZH = Ry, (—Rg,) = —G, this procedure differs from the original Grover’s algorithm just
by a global phase factor (—1)*. o

11.2. Amplitude amplification and compression gadget

The idea behind Grover’s algorithm is not restricted to the problem of unstructured search. It
can be extended beyond this setting to a broader concept that is called amplitude amplification
(AA) [BHMTO02], which is used ubiquitously as a subroutine to achieve quadratic speedups. At a
high level, amplitude amplification can be viewed as a method that converts a success probability
into the eigenphases of a two-dimensional rotation.

Let |¢) be prepared by an oracle Uy,, i.e., Uy, |0™) = |1g). Assume that

(11.23) [%0) = /P [¥good) + /1 — P [Ypad) ,

where p = P(good)1. Here [1g004) and |tpaq) are orthonormal. We do not have direct access to
[g00d), but would like to obtain a state that has a large overlap with |¢go0d)-

In the problem of unstructured search, |¢go0a) = |z0), and p = 1/N. Although we do not have
access to the answer |z(), we assume access to the reflection oracle Rgo0q, which in this case is Ry, .
In general, we assume access to the reflection oracle defined by

(11.24) Rgood = I = 2[Yg00a ¥good-
From Uy, , we can construct the reflection with respect to the initial state
(11.25) Ry, = 2ol = I = Uy, (20"X0"| = DU,

via an n-qubit controlled phase flip. So following exactly the same procedure as the unstructured
search problem, we can construct the Grover iterate

(11.26) G = Ry, Ryood.
For a suitable integer k = O(1/,/p), applying G* to |1pg) yields a state with constant overlap with
|"/}good>~

Example 11.4 (Reflection with respect to signal qubits). One common scenario is that the imple-
mentation of Uy, requires m ancilla qubits (also called signal qubits), i.e.,

(11.27) Uy [07)[07) = VP |0™) [¢0) + /1 = p[L),

where | L) is some orthogonal state satisfying

(11.28) (M®I)|Ly=0, II=]0")X0"|.
Therefore
(11.29) [Ygooa) = [07) [¥0),  [Ybaa) = |L) -

This setting is special since the “good” state can be verified by measuring the ancilla qubits after
applying Uy, in Eq. (11.27), and post-select the outcome 0™. In particular, the expected number
of measurements needed to obtain |1ge0d) is 1/p.
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In order to employ the AA procedure, we first note that the reflection operator can be simplified
as

(11.30) Rgooa = (I = 2[0m)}0™)) @ I.
This is because [1g004) can be entirely identified by measuring the ancilla qubits. Meanwhile
(11.31) Ry, = Uy, (20™ T 0™ | — DU .

Let G = Ry, Rgo0a. For a suitable integer k = O(1/,/p), applying G* to Uy, [0m+™) yields a state
with constant overlap with |t)go0a). This achieves the desired quadratic speedup. o

Example 11.5. Consider an algorithm that incorporates multiple intermediate measurements,
where success is determined by measuring all ancilla qubits to yield 0. One example is the multipli-
cation of block encodings in Section Let the probability of success at the i-th stage (conditioned
on the previous stages being successful) be denoted as p;. Therefore, the cumulative probability of
achieving all Os across stages is p = p; X - -+ X pr,, and the number of repetitions needed for success
is O(1/p). By the principle of deferred measurement, one can transform this into a coherent process
by using L —1 additional ancilla qubits. This enables the construction of a reflection operator acting
on the L signal qubits. Applying amplitude amplification then reduces the number of repetitions

to O(1//p).

o HAH HA-

i

U1 U2 UL
) — —
0) P [~]
0) P [~]
[~
|0) — ——O0—— —o— — —|i|
Ui Us UL
) — —

FI1GURE 11.2. Using deferred measurement to coherently implement an algorithm
that incorporates multiple intermediate measurements. This allows us to use the
amplitude amplification procedure to reduce the number of repetitions.
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Example 11.6 (Compression gadget). Fig. uses L — 1 ancilla qubits to coherently implement
an algorithm that incorporates multiple intermediate measurements. It turns out that the number
of ancilla qubits can be significantly reduced to O(log L).

To do this we introduce a counter register to count how many intermediate measurements are
successful. This counter register contains m = [log,(L+1)] qubits, so it represents integers modulo
M := 2", We introduce a unitary operator ADD on this register defined as

(11.32) ADD|c) = |(c+ 1) mod M) .

This operator can be implemented as a classical arithmetic circuit, and performs addition modulo
M. Correspondingly ADD' performs subtraction. We first add L to the counter register, subtract
by 1 each time a measurement result is successful. In the end, if all steps are successful the
counter register will be in the state |0™). The circuit construction for the above coherent procedure

is described in Fig. Then we may apply amplitude amplification to enhance the success
probability using O(1/,/p) repetitions of the coherent circuit.

07) —ADD" | ADD'
|0) l —

Ul U2 UL
%) -

F1Gure 11.3. Circuit for compression gadget to coherently implement an algo-
rithm that incorporates multiple intermediate measurements. The counter regis-
ter, containing m = [log,(L + 1)] qubits, is used for keeping track of whether each
measurement is successful. The ADD circuit implements addition by 1 modulo the
smallest power of 2 that is larger than or equal to L + 1.

11.3. Oblivious amplitude amplification

Example 11.7 (Oblivious amplitude amplification). Assume that we have access to a block encod-
ing V € BE, 4(U), where U € U(N). Then V serves as a (1,a)-block encoding of A = U/. When
V is applied to a state vector |¢), the postselected vector is U |¢) /v. If we would like to apply
amplitude amplification to boost the success probability, it requires access to a reflection operator
with respect to the initial state ). However, since U is unitary, we can achieve this reconstruction
without relying on the initial state (thus the name “oblivious”). This means U can be reconstructed
only using multiple applications of V and V1.

The key observations are (1) the set of singular values of A is a single point {7~ '}, and (2) for
any unitary matrix, U(UTU) = U. In particular, the singular value transformation of A using any
odd polynomial f satisfies

(11.33) Fo(4) = f( U,

If we can choose an odd polynomial such that f(y~!) = £1, then f®(A) = +U. This process only
uses reflections with respect to the a ancilla qubits used to block encode A, and is oblivious with
respect to the initial state.
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Consider the case v = 2 first. Note that the third order Chebyshev polynomial T3(z) = 423 -3z
satisfies T3(3) = —1. So up to a phase we only need to implement 7% (A), which can be performed
using qubitization without invoking LCU, see Fig.

|0%) Zn Zn

FIGURE 11.4. Circuit for implementing the oblivious amplitude amplification with
V € BE3 4(U) for a unitary matrix U. This implements Ty (U/2) = —U.

What about a more general 47 Focusing on odd polynomials, and using the fact that Tor11(z) =
cos((2k + 1) arccos(z)), if 7 satisfies, for some k € N,

(11.34) 4! :sinm.

Then

(11.35)

o1 (v~ ") = cos ((2k + 1) arccos(y™ 1)) = cos ((2k +1) (72r — 2(2]:_‘_1))> = cos(km) = (—1).

Therefore oblivious amplitude amplification can be achieved using qubitization, which implements
Ts.,1(U/v) = (=1)*U. This uses k + 1 queries to V and k queries to V1. In particular, when
k=1, we have y~! =sin ¥ = 1. Fig. m plots the polynomials and choice of v~ for Thx1(x) for
k=1,2,3.
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Oblivious amplitude amplification

1.00 =~ Ea — T_3(x)
) . SN e T5)
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0.0 0.2 0.4 0.6 0.8 10

FIGURE 11.5. Chebyshev polynomials (lines) and associated choice of y~1 (filled
dots) used for oblivious amplitude amplification.

11.4. Oblivious amplitude amplification of quantum channels

We follow the Kraus and Stinespring formalisms introduced in Section [3.2]
Let Q: L(CY) — L(CY) be a quantum channel. Fix a Kraus representation

(11.36) QAp) = D, KmpK},
me[M]
where K,, € CN*¥ and ZmE[M] K} K,, = I. From Theorem the associated Stinespring
isometry V : CV — CM @ CV may be written as
(11.37) V=Y |m)®Kp,
me[M]

where the |m) register is the environment A = CM | so that Q(p) = Tra[VpVT].

Assume that M = 2% (otherwise pad the Kraus family with zero operators), and that we have
a coherent “select” oracle that applies a block encoding of the chosen Kraus operator. Concretely,
suppose we can implement

(11.38) UseL = Y _ Im)Xm| @ Uk,,, Uk, € BEas(Kn),

so that, on input [t) |0°) and upon postselecting the b ancillas back to |0°), Uk, implements K,/
on [¢). Then we can construct a block encoding of the Stinespring isometry V as

(11.39) W = Usgr (H®a ®Ib+n) .
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More precisely, for any n-qubit state |1}, if the a-qubit register is initialized to |0%) and we postselect
the b ancillas to |0°), then

a _ 1
(11.40) (& DOVI0%) & ) © 0) = —— V' |s).
07) — H®" 1 }_ Ly
) e

Uk, Post select

0%) [~]

FIGURE 11.6. Circuit for implementing (a scaled version of) the Stinespring isom-
etry of a quantum channel given the block encoding of its Kraus operators.

Recall the construction of the oblivious amplitude amplification in Section [11.3] If we can

choose av/M to satisfy the condition
-1 . Q

(11.41) (avV' M)~ =sin TV
for some k& € N, then we can apply the same Chebyshev-based construction (interleaving W, Wt
with the reflections Z; as in Section to amplify the success probability. Although V' is not
unitary, this construction applies because V' is an isometry, so all its nonzero singular values equal
1 and hence the nonzero singular values of V/(ay/M) are all equal to (av/M)~!. With the choice
above, the resulting transformation maps this singular value to +1, yielding a unitary & (up to an
overall phase) such that, on input [0?) [1) [0°T1), the b+ 1 ancillas are returned to [0°T!) and the
induced map on the remaining registers is V' [¢). In particular, the postselection on the b ancillas
is eliminated.

As a result, we obtain an efficient implementation of the quantum channel

(11.42) Qp) = Trar [U(|0" Y0 | @ p)u']

where the partial trace is over the a’ = a + b + 1 ancillas. This construction is called the oblivious
amplitude amplification of quantum channels.

11.5. Lower bound of query complexity
Notes and further reading

Grover’s algorithm [Gro96| achieves a quadratic speedup in query complexity for searching
unsorted databases in the black-box model. However, the implications for gate complexity are more
nuanced: whether a speedup in query complexity translates into an overall gate-level advantage
depends on the cost of implementing the oracle, as well as on the overhead of state preparation
and reflection operations. This dependence is model-specific and often function-dependent. A
universally recognized instance where Grover-type search yields a clear asymptotic advantage in
gate complexity over the best classical approach has not been established so far.
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The lower bound in Section is a hybrid argument showing that Q(\/N ) queries are neces-
sary, matching Grover’s O(\W ) upper bound up to constants. Alternative lower-bound techniques
include the polynomial method [BBCT01], which relates query complexity to the degree of a poly-
nomial representing (or approximating) the acceptance probability and connects, for symmetric
functions, to classical approximation theory such as [Pat92]. The adversary method provides an-
other approach and admits several equivalent formulations; see [SS04, [HLS07].






CHAPTER 12

Quantum signal processing

Linear combination of unitaries and qubitization allows us to express a wide range of ma-
trix computation tasks as matrix polynomial transformations on quantum computers. However,
constructions based on linear combinations of unitaries require explicit select-and-prepare oracles,
whose abstract form can hide nontrivial circuit costs. Quantum signal processing (QSP) and quan-
tum singular value transformation (QSVT) provide an alternative route: they realize polynomial
transformations through a structured product of SU(2) rotations specified by a sequence of phases.
This chapter introduces the structural results of QSP, along with two computational tasks that
arise in practice. First, given a QSP-admissible target polynomial, one must synthesize the corre-
sponding phase factors. Second, when the goal is to approximate a function on a subinterval of
[0, 1], one must design a polynomial that both approximates the target and satisfies the admissibil-
ity constraints required by QSP. We describe simple numerical procedures addressing these tasks,
including a fixed-point iteration algorithm for findg phase factors, and a convex-optimization ap-
proach for constructing near-optimal admissible polynomials. Finally, we related QSP to the SU(2)
nonlinear Fourier transform.

12.1. Quantum signal processing

Let x € [-1,1] be a scalar with a one-qubit Hermitian block encoding

(5 )

(12.1) v =z ©

Then

(12.2) O(z) = U(2)Z = <\/1”i7 -V 1; ”“"2)

is a rotation matrix.
Consider the following parameterized expression:

(12.3) Us(z) = 2Z20(2)e " ?0(x) - - - %4120 (z)e'?47 .
By setting ¢g = -+ = ¢4 = 0, we immediately obtain the block encoding of the Chebyshev
polynomial Ty(z). The representation power of this formulation is characterized by Theorem [12.1]

which is based on slight modification of [GSLW19, Theorem 4]. In the following discussion, even
functions have parity 0 and odd functions have parity 1.

THEOREM 12.1 (Quantum signal processing). There exists a set of phase factors ® :=
(¢o, -+, pa) € R such that

d
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if and only if P,Q € Clx] satisfy
(1) deg(P) < d,deg(Q) <d~—1,
(2) P has parity d mod 2 and Q has parity d — 1 mod 2, and
3) |P(@)]> + (1 —2?)|Qx)]> =1 for all x € [-1,1].

Here degQ = —1 means @ = 0.

Proor or THEOREM [I2.1]l This theorem is proved by direct computation.

=

Since both e*? and O(z) are unitary, the matrix Ug(x) is always a unitary matrix, which
(together with the structure in Eq. ) immediately implies the condition (3). Below we only
need to verify the conditions (1), (2).

When d = 0, Up(x) = e'%0Z which gives P(x) = €!*0 and Q = 0, satisfying all three conditions.
For induction, suppose Uy, ... ¢, ,)(2) takes the form in Eq. with degree d — 1, then for any
¢ € R, we have

(12.5)

i (= (0 )

-(
( (o 2)Q(x
(6

U(¢>07 ©Pa— 1#5)

0 e

) —V1-a*(P ()+$Q( ))) (6”’ 0 )

V= xz D +2Q) P - (1-%)Q()
e?(zP(z) — (1 — 22)Q(z)) —e V1 — 22(P(x) + mQ(w)))
VI - $2 (P(z) +2Q(x)) e “(xP(x) — (1-2°)Q(x)) )
Therefore Ug,,... 4, ,,¢)(x) satisfies conditions (1),(2).

~:

When d = 0, the only possibility is P(x) = ¢’?0 and Q = 0, which satisfies Eq. (12.4).

For d > 0, when d is even we may first consider the special case deg P = 0, i.e., P(x) = e'%
and @ = 0. In this case, note that

N . o
(12.6) O Yz)=0(x) = <_\/1”_7 1x x ) = e '520(2)e 57,
we may set ¢; = (—1)7%,j=1,...,d, and
(12.7)
ci®0Z H wsJ — i0Z H [O(x)e—i%Zo(m)e-‘r ] — %02 H [O(m)O(m)T] — ¢iP0Z
k=1 k=1

Thus the statement holds.

Now given P, @ satisfying conditions (1)—(3), with deg P = ¢ > 0, and £ = d (mod 2). Then
deg(|P(z)[*) = 2¢ > 0, and according to the condition (3) we must have deg(Q) = ¢ — 1. Let P,Q
be expanded as

14 -1
(12.8) P(z) =) apa®, Qz) = pat,
k=0 k=0

then the leading term of |P(z)|* 4 (1 — 22) |Q(z)|* is
(12.9) e * 2 — 2® [Bea [P 2% 7% = (ae|® = |Be-1|M)a™ = 0,
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which implies |ay| = |B¢—1], and ay/Be—1 is a complex phase.
For any ¢ € R, we have

( _ P(2) -Q(z)v1 —a? )e‘“sz(w)T
Q(z)vV1 — z? P(x)

N T [y

_ ( e xP(x) + (1 — 22)Q(x)e’®  —v1 — 22(—e P(z) + xQ(m)eid’))

(12.10)

V1 — 22(—eP(x) + 2Q(x)e~?) ez P(z) + (1 — 22)Q(x)e ™
:;<~ﬁ@) é@%ﬂx2>-
Qz

W1 — a2 P(z)
It may appear that deg P=/(+1. However, by properly choosing ¢ we may obtain deg P=(-1.
Let €?*® = ay/Be_1. Then the coefficient of the 2**! term in P is

(12.11) e oy —eBy_y = 0.
Similarly, the coefficient of the z¢ term in @ is
(12.12) —e Py + B = 0.

The coefficient of the z¢ term in }5, and the coefficient of the z°~! term in (:? are both 0 by the
parity condition. So we have

(1) deg(P) < £—1<d—1,deg(Q) <t-2<d—2,

(2) P has parity d — 1 mod 2 and Q has parity d — 2 mod 2, and

(3) |P(@)]? + (1 - a?)|Q(x)? = 1,Vz € [-1,1].
Here the condition (3) is automatically satisfied due to unitarity. The induction follows until £ = 0,
and apply the argument in Eq. to represent the remaining constant phase factor if needed. O

Note that the normalization condition (3) in Theorem imposes very strong constraints on
the coefficients of P,Q € C[x]. If we are only interested in QSP for real polynomials, the conditions
can be significantly relaxed. The following result is a variant of [GSLW19, Corollary 5].

THEOREM 12.2 (Quantum signal processing for real polynomials of definite parity). Given a
real polynomial F(x) € Rlz]| of degree d > 0 satisfying
(1) F has parity d mod 2,
(2) |F(z)| <1 forallxz € [-1,1],
then there exists polynomials P(x),Q(z) € Clz] with F = Im P and a set of phase factors ® :=
(¢o,- -+, pq) € R such that the QSP representation Eq. (12.4)) holds.

Compared to Theorem the conditions in Theorem [12.2] are much easier to satisfy: given
any polynomial F(z) € R[] satisfying condition (1) on parity, we can always scale F' to satisfy the
condition (2) on its magnitude. Also note that

(12.13) Re[Us (2)]1,1 = Tm[e"5 Ug (z)e'5 7]y 1.

Thus Re P(x) = Re[Us(x)]1,1 can be recovered from the imaginary part by adding 7 to both ¢ and
¢q. Consequently, the conclusion of Theorem [12.2) also holds if we replace F' = Im P by F = Re P.
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12.2. Conventions of phase factors and symmetric quantum signal processing

There are multiple equivalent ways of stating the QSP parameterization commonly seen in the
literature. Let us refer to the convention used in Theorem as the O-convention, i.e.,

d

We may also use the X-rotation

)

—iZ i T T iv1— a2 i arccos(z
(12.15) W(z) = e '520(x)eti? = ( Wi v N > —e (@)X

we can express the QSP parameterization as

d ; 2
(12.16) Ugw (z) = %0 2 H {W(x)eijz} - (iQ(x])D\(/gi)— 22 lQ(xJ)D\(/:cl)_ix) '

This is referred to as the W-convention. There is a simple relation connecting between the phase
factors using the O and W

E)/V_%v .7:03
(12.17) IERE S j=1,....,d—1,
¢‘djv+%7 j:da

If we are interested in a real polynomial F'(z) € R[z] of degree d, due to the parity constraint,
F can be expanded in the Chebyshev basis as

d— .
(12.18) F(z) = Yis0¢Tej(x),  Fis even,
Z?;S ¢;jToji1(x), F is odd.

Here d = [%1, and ¢ = (co,c1,...,¢7 1) € RY is the Chebyshev coefficient vector. Thus the

number of effective degrees of freedom in F' is only d. How to reconcile this with the d + 1 degrees
of freedom in the phase factors?

The QSP sequence in the W-convention offers a clue to this question. Since W is a complex
symmetric matrix, i.e., W = W, from Eq. we have

(12.19) Ugw (z) = 4 2 T [W(x)ewﬁv—jz} 7

i.e., the transpose of Ugw () can be obtained by reversing the order of the phase factors. In QSP
applications we often do not care about @, so if we choose ) to be a real polynomial, then the
matrix Ugw (z) is complex symmetric, i.e., Upw (z) = Ugw () . This means that the phase factors
may also be chosen symmetrically:

(12.20) o) =g ;0 Vi=0,1,--,d

With the symmetry condition, the number of effective degrees of freedom in phase factors is equal
to d = [4F1], and matches that in F.
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Example 12.3. Consider the all-zero phase factors in the W-convention ®" = (0,...,0) € R4*!.
Direct calculation shows the upper-left entry of Ugw () is the Chebyshev polynomial P(z) = T4(x).
The corresponding O-convention is ® = (—7/4,0,...,0,7/4). Now let ®" = (7/4,0,...,0,7/4) €
R+, The upper-left entry of Ugw (z) becomes P(z) = iT;(z). The corresponding O convention
is ® = (0,0,...,0,7/2). o

Example 12.4. A linear combination of Chebyshev polynomials F(z) = 0.27y(x) + 0.475(x)
can be encoded using phase factors ®" = (1.3622, —0.1132, -0.1132,1.3622), so that F(z) =
Im[U¢w (1‘)]171. <&

The results below guarantee that, under the assumption that ) is a real polynomial, the
symmetry restriction is without loss of generality and yields a unique phase vector in a canonical
domain.

THEOREM 12.5 (Existence and uniqueness of symmetric phase factors, W-convention). Con-
sider any P € Clz] and @ € Rz] satisfying the following conditions.

(1) deg(P)=d and deg(Q) =d — 1.

(2) P has pamty (d mod 2) and Q has parity (d — 1 mod 2).
(3) [P(x)]” + (1 —2?)|Q(x)|* = 1 for all x € [~1,1].

(4) If d is odd, then the leading coefficient of Q is positive.

Then there exists a unique set of symmetric phase factors

(1221) @W = (¢(I)/V’¢11/V7 o 7¢¢‘1/V) € Dda
where ®V is symmetric in the sense of Eq. (12.20) and

(12.22) Dy = [_gvg)% X [—m,m) x [—%,%)%, d is even,
. B 75 R d is odd,
such that
P(x) iQ(x)V1— a2
12.2 w(x) = iy Z wWZ — .
(12.23) Us =e'%0 H { } iQ(x)V1 — 22 P(z)

For real polynomials, the symmetric version of the theorem that is parallel to Theorem [12.2]is
as follows.

Corollary 12.6 (Symmetric quantum signal processing for real polynomials, W-convention). Given
a real polynomial F(x) € Rx] of degree d satisfying

(1) F has parity d mod 2,

(2) |F(z)| <1 for all x € [-1,1],
then there exists polynomials G(x),Q(x) € R[x] and a set of symmetric phase factors oW =
(o, oW, -+ dW) € R satisfying Eq. 12.20) such that the following QSP representation holds:

oW 2 zWZ z)+iF(z) iQ(x)V1— 22
(12.24) Ugw (z) = €% H{ > ](%((;)% g((:@)—i'F(x) )
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12.3. Fixed-point iteration algorithm for finding phase factors
According to Eq. (12.18]), a target polynomial for quantum signal processing F' € R[xz] of degree
d only has d = [d—;l] effective degrees of freedom characterized by the Chebyshev coefficient vector
c=(co,c1,...,¢5 ;) €RL
Given the discussion in Section we focus on finding symmetric phase factors ®" for a
target polynomial of definite parity. We can define the associated reduced phase factors as

R _ (4R 4R RO\ (%¢(V;V,1,¢§V,---,¢§V), d is even,
(12.25) O = (gf, oF, ... o0 )= 2L o .
B (()bdNa J+17.'.’¢d ), d is odd.

Under the symmetry condition Eq. (12.20)) (and the canonical domain in Theorem , g
uniquely determines ®". The reason why the reduced phase factors start from the middle is
that the phase factors tend to be large in the middle and decay to zero towards the ends (see
Fig. .

Let .# : R? — R? denote the mapping from reduced phase factors ®% € R? (equivalently,

from the associated symmetric phase factors ®") to the Chebyshev coefficient vector ¢ € R? of the
target polynomial F'(z) defined by F(z) = Im[Usw (2)]1,1. The problem of finding phase factors in

QSP is to solve the inverse problem: given ¢ € R? such that the associated real polynomial F(z)
satisfies the norm constraint in Corollary find ® such that .# (%) = c.

There are many algorithms for finding phase factors. Here we present perhaps the simplest
algorithm, called the fixed-point iteration algorithm (FPI). We start from a trivial reduced
phase factors

(12.26) RO = (0,0,...,0) € R™.
The findings of Example can be stated as that
(12.27) F(@R©) =0 eRY,

i.e., # maps ®%(0 to the all zero Chebyshev coefficients. Then given ¢ € R‘z starting from ®(0)
the FPI algorithm is given in Algorithm Conceptually, it only involves one line:

(12.28) PR — R0 _ % (7 (2™®) =), ten.

Ref. [DLNW24a| proves that the FPI method converges exponentially to one solution (called the
maximal solution) when ||c||; < 0.861.

Algorithm 12.1 Fixed-point iteration algorithm for finding reduced phase factors for a real poly-
nomial with definite parity

Input: Chebyshev-coefficient vector ¢ of a target polynomial, and stopping criteria.
Initialize %) = (0,...,0), £ = 0.
while stopping criterion is not satisfied do
Update @04+ « RO — 1 (7 (R1)) — ¢);
Set £+ £+ 1.
end while
Output: Reduced phase factors ®F.
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Example 12.7. Consider F(z) = %cos(le). We can first approximate the function by an even
polynomial p(z) using Chebyshev interpolation, and then use the fixed-point iteration (FPI) al-
gorithm in Algorithm to find symmetric phase factors @V such that Im[Ugw (z)]1,1 = p(z).
Fig. shows one such polynomial of degree 60. The QSP error (defined as the difference between
the QSP representation and p(z)) approaches machine precision. The phase factors are symmetric
with respect to the center of the interval and decay rapidly away from the center.

x1071°

1 6
—— Target
- --QSsp
0.5 1079
g
[ 0 & = qp-10
=4
-0.5
10-1
71 ®° °%
0 0.5 1 10 20 30 40 50

T x Index j
FIGURE 12.1. QSP representation of F(z) = %cos(le) using an even polynomial
p(x) of degree 60. Left: the target function and the QSP representation of p(x).
Middle: Error between p(z) and its QSP representation. Right: phase factors
plotted on a log scale.

12.4. Convex optimization-based method for constructing approximate polynomials

The fixed-point iteration method in Section [12.3| converts a QSP-admissible target polynomial
into a phase sequence. We now discuss a complementary task: how to construct, for a given
function g, an approximately optimal polynomial F' that both approximates g on a prescribed set
and satisfies the QSP admissibility constraint |F'(z)| < 1.

Many applications of QSP (and, more generally, QSVT) aim to approximate a real function
g(z) of definite parity on a set Z C [0,1]. Fix a polynomial degree d and define d := [,
According to Eq. , a real polynomial F' € R[z] of degree at most d with parity d mod 2 is

specified by its Chebyshev coefficient vector ¢ = (co,c1,...,c5 ) € R? via
d-1

(12.29) F(z)=") Aj(x)c,
§=0

where

(12:30) Ay(a) = {szw), dis even,

T2j+1($), d is odd.
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Conceptually, the coefficient vector ¢ can be obtained by solving the following min-max optimization
problem,

min  max |F(z) — g(z)|
ceRd el

%!
-

(12.31)
st. F(z)=)» Aj(x)e;, |F(z)|<1, Vzelo1].

J

I
<

Since F' has definite parity, the constraint |F(xz)| < 1 on [0, 1] is equivalent to the corresponding
constraint on [—1,1]. The objective function is convex in ¢ and the constraint is linear in ¢. So
this is a convex optimization problem. In fact, after introducing a slack variable denoted by z, the
optimization problem becomes

min z
ceR4
d—1
st. F(z) =) Aj(x)c;, VYrel0,1],
j=0
(12.32) F(z) < J1 Va € [0,1],
—F(r) <1, Vrelo1],
F(z) —g(x) <z, Vrel,
glz) — F(z) <z, Vzel.

This is a linear programming problem. After discretization, it can be efficiently solved on a classical
computer using standard convex optimization solvers.
In practice, we discretize Eq. (12.31]) as follows. Without loss of generality, 7 takes the form of
a union of intervals Ule[ag,bg] with 0 <a; <b <as <by<---<ar <bp <1. Let Kz be a set
of grid points in Z, and let K5 be a set of grid points in the complement Z := [0, 1]\Z (which may
be empty if Z = [0,1]). Since the bound constraint is enforced only on a finite grid, we generally
have
12.33 F > F .
(12.33) max, |F(2)| > me%fﬁ‘;cf| ()]
To avoid overshooting, we assume |g(z)| < 1—n for all z € Z and enforce |F(z)| < 1—non KUK+
The discretized min-max optimization problem becomes
min  max |F(z) — g(z)]
CERJ et
(12.34) -1
st. F(x)= ZAj(x)cj, |F(z)| <1-n, VreKiUKsz
§=0

For instance, using the CVXPY software package [GB14l [DB16], the optimization problem can
be solved with a few lines. Here the matrix A;; evaluates A;(z;) for z; € Kz U K5, and I is an
index set referring to the set of grid points in Kz.
¢ = cp.Variable(n_degree)

f = cp.Variable(n_grid)
objective = cp.Minimize(cp.norm(£f[I] - g[I], inf))
constraints = [f == A @ ¢, f >= -(l-eta), f <= (1-eta)]
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problem = cp.Problem(objective, constraints)
problem.solve()

12.5. Examples of quantum signal processing

In this section we consider two examples illustrating the workflow above. They will be used in

Section [13.3

12.5.1. Approximate sign function. We would like to approximate the sign function sgn(z)
on [—1,—46] U [4,1] by an odd polynomial, while keeping |p(z)] < 1 on [—1,1]. We may use the
following analytic construction (see [LCI7a, Corollary 6] and [GSLWIS8, Lemma 25|). The proof of
Lemma [I2:8] is constructive, and we provide a proof sketch.

Lemma 12.8 (Polynomial approximation to the sign function sgn(z)). For any 6 € (0,1] and
€ € (0,3), there exists an odd polynomial p € R[x] of degree d = O(5log(1/e€)) that satisfies

(12.35) sup |p(z) —sgn(z)| <€,  sup |p(z)| <1
wel5,1] we[-1,1]

PROOF SKETCH. We first use the error function erf(kz) with k = O(6~'4/log(1/e)) to approx-
imate sgn(z) on [—1,—d] U [0, 1] to precision e. We then estimate the accuracy of the Chebyshev

approximation to this error function and multiply by a scaling factor to satisfy the bound con-
straint. (]

From the convex optimization viewpoint, we may seek an odd polynomial F' that approximates
(12.36) glz)=1, zeI=][41].

Fig. [12:2] compares the approximation error for the task of sign function approximation with
d = 0.2. The L errors measured on [d, 1] are comparable between the polynomial approximation
derived using an analytic formula (through the constructive proof of Lemma [12.8) with degree 51,
and the polynomial approximation from the convex optimization method with degree 31. We find

that the convex optimization method can achieve a smaller error with a lower polynomial degree,
which is not surprising since the optimization method directly minimizes the approximation error.

Analytic. Degree = 51 1 __ Optimized. Degree = 31
‘ —e—Poly
[ T ol T'drgEt
§ ol Target | | 2 ol
P
‘jz 0.5 /
-1 L )

1 .
1 0.5 0 0.5 1 -1 0.5 0 0.5 1
T x
x1073 Error g X107 Error
= 2 . : _
= E1s
‘ =
T | i
= =
= 205
9 =
<0 , . A\ VA N . \J
0.2 0.4 0.6 0.8 1 02 03 04 05 06 07 08 09 1

T

F1GURE 12.2. Comparison between polynomial approximations to the sign func-
tion on [, 1] using the analytic formula and convex optimization. Here § = 0.2.
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12.5.2. Approximate truncated linear function. We consider an odd polynomial approx-
imation to

(12.37) g(x)=ar, xcI=][0,a""]

At first sight, this task seems trivial: the first-order polynomial F'(xz) = oz is odd and equals g(z)
exactly. However, ax violates the bound constraint on [a~!,1]. It turns out that the polynomial
must be more complicated in order to approximate a linear function as closely as possible on a
subinterval, while satisfying the bound constraint on a larger interval. The proof of Lemma
is constructive, and we give a proof sketch here. We refer readers to [GSLW18, Lemma 29] and
[ILC17al, Corollary 8] for details.

Lemma 12.9 (Polynomial approximation to the truncated linear function). For any o € (1,00),
§ €(0,1], and € € (0,1/(2a)], there exists an odd polynomial p € R[z] of degree d = O(% log(a/e)
such that

(12.38) sup  [(1+9)p(x) — az| <k, sup |p(z)] < 1.
z€[0,a1] z€[—1,1]

PRrROOF SKETCH. Using Lemma we can construct a real polynomial ¢(z) that approximates
sgn(z) away from a small neighborhood of the origin at scale a~16. Then the even polynomial

gz +a 1 (14+5/2)) + qla (14 §/2) — )

(12.39) r(z) = 5 ;

approximates a rectangular function supported on an interval of length O(a~1),

1, z€[—a 1 (14+6/2),a 1 (1+6/2)],
0, otherwise,

onZ = [0,a"JU[a"1(1+4),1]. The target precision is € := ¢/, and the polynomial degree is d =
O(%log(a/€)). The desired polynomial is obtained by setting p(z) = 157 (x). Therefore (1+4)p(z)
approximates ax on [0,a™!] to precision e. To satisfy the bound constraint SUPge[-1,1] [p(x)] <1,
one may include an additional scaling (at the level of 14 O(¢)) to avoid overshooting. O

Fig. compares the approximation error with @ = 5,5 = 0.05. The L*° error measured on
[0, «~!] are comparable between the polynomial approximation derived using an analytic formula
(through the constructive proof of Lemma with degree 1001, and the polynomial approxima-
tion from the convex optimization method with degree 51. We find that the convex optimization
method can achieve a smaller error with a much lower polynomial degree. Furthermore, we find
the polynomial approximation from the convex optimization method is much more oscillatory on
[@~1,1] than the one from the analytic formula, which is perfectly acceptable since the approxima-
tion error is only measured on [0, ™.
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FIGURE 12.3. Comparison between polynomial approximations to z/a on [0, a]
using the analytic formula and convex optimization. Here a = a~! = 0.2, § = 0.05

12.6. Quantum signal processing and nonlinear Fourier transform on SU(2)

The key idea of QSP is that, in order to represent polynomials that involve addition, one instead
represents them through a structured product of matrices. This turns out to be a special case of
the nonlinear Fourier transform (NLFT), which replaces the addition operation in the linear
Fourier transform with matrix multiplication.

In this section we introduce the NLFT on SU(2) in its simplest form. Given two integers m < n,
let ¥ = (Ym,---,7n) be a complex-valued sequence, whose entries are called the nonlinear Fourier
coefficients. The nonlinear Fourier transform of = is defined as a finite product of matrix-valued
functions,

(12.41) =T 1( ! Wk) :(a(.z) b(?)), zeC.

H Ak 1
fmm 14 ] NTRE

The upper left entry a(z) and upper right entry b(z) are in general not polynomials, but Laurent
polynomials, i.e., they can contain both positive and negative powers of z.

Taking the determinant of the matrix factors appearing in Eq. , we see that the deter-
minant of each factor, and hence also of f:/\(z), is 1 everywhere. Moreover, when z is restricted to
the unit circle denoted by T, the matrix factors are elements of SU(2), and thus so is ’.'/y\(z)

When >°;_. |vk| is small, the NLFT of 4 can be approximated by its linear approximation,

~ =~ 1 Zn* 7kz}€>
12.42 z) ~ n o k=m .
(12.42) R (R
Therefore, the standard Fourier series can be viewed as the leading order contribution to the upper-

right entry of “ *(z), where the coefficients ~; are sufficiently small that higher-order terms in the
product expansion can be neglected. When the coefficients 7, are not small, the difference between

the two quantities can become significant. The transformation from -~ to "« " is called the forward
NLFT, and the mapping from “ v ~ back to = is called the inverse NLFT.
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Proposition 12.10 (Connection between QSP and NLFT). For anyd € N and @V := (oY, ¢}V, -+, o))
in the W -convention with ¢} € (—m/2,7/2), define the sequence v = (yi)4_, with vx := tan ¢} .
Then for all 6 € [0, 7] we have

. , ido
(12.43) SH Ugw (cos) HST =" (") (60 e‘ed9> ,

where Ugpw is defined in Eq. (12.16)) with x = cosf, H is the Hadamard gate, and S is the phase
gate.
Furthermore, Im[P(cos )] = Re(b(e*?)e~), where P is the upper-left entry of Usw (as in

Eq. (12.16) ), and b is the upper-right entry of “~ ~ as in Eq. (12.41)).

Proor. Recall that HZH =X and HXH = Z. Set x = cos?.
Let us define W (x) := HW (z) H, and note that since cos§ = x, we may obtain

(12.44) HW(z)H=He"*H=¢"% = SHW(2)HST,
and, together with the definition of 7, implies
) ) ) 1
(12.45) SHe "t ZH S = Seid X gt =ity = - ( L W) . k=0,....d
2 \—% 1
1+ [kl

Next, the left-hand sides of Eq. (12.43) equate to S H Ugw (cos ) H ST, which we can also express
in the following ordered product form using Eqs. (12.44)) and (12.45)):

d
1 1 . 1 1
T Yo i0Z Yk
(12.46) SHUgw (cosf)HST = 7\/172 (_% 1 > e —— (—Wc 1 >
+ [0l k=1 1+ |yl

Finally, notice the following identity, for any ¢t € R:

0t 20t 0t
e 0 1 Y\ 1 Y€ e 0
(12'47) ( 0 e—i@t) (’Yk‘ 1 ) - (_%e—Qiet 1 O e—ié)t )

which allows us to simplify the right-hand side of Eq. (12.46)) to obtain

d . _
1 1 .62“60 esz 0
SHUgw (cos§) HST = H —F ( —2iko Tk 1 0 e—ido

—Yke
(12.48) F=0 (/14 N
ido
A~ i e 0
=9 (6219)( 0 e—id@)'

This is exactly Eq. (12.43). Furthermore, writing sinf = v/1 — 22 and using Eq. (12.16)), a direct

computation gives
(12.49) SHUgw (cos ) H ST = (: Lm[P(cos6)] — i m[Q(cos )] sin 9> |
While the right-hand side of Eq. (12.43)) is

(ﬁ b(eQiG?e—idQ) |

By comparing the real part of the upper right element and using Eq. (12.49), we conclude that
Im[P(cos 0)] = Re(b(e??)e~%). O
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Based on Proposition [12.10] we see that computing the phase factors can be reduced to an
inverse NLFT problem. In particular, if we are interested in solving QSP phase factors for F(z) =

Im[P(z)], one may seek an SU(2)-valued function " v '(z) on T whose upper-right entry b(z) satisfies
F(cosf) = Re(b(e2i9)e_id9), recover the nonlinear Fourier coefficients « via the inverse NLFT, and
then obtain the phase factors by ¢} = arctan(yy).

Notes and further reading

Quantum signal processing (QSP) grew out of single-qubit composite gate design, where struc-
tured products of SU(2) rotations are used to synthesize prescribed response functions; see [LYC16].
The formulation was subsequently developed into a general primitive for implementing polynomial
transformations, achieving optimal query complexity for Hamiltonian simulation [LCI7b|. The
extension from this scalar SU(2) representation to matrix singular value transformation, together
with the block-encoding viewpoint and its algorithmic consequences, was established in [GSLW19];
see also reviews in [MRTC21) [Lin25]. The symmetric choice of phase factors was first suggested
in [DMWL21], and Theorem and Corollary were subsequently developed in [WDL22].

From the algorithmic perspective, the proof of [GSLW19, Corollary 5] gives a constructive
synthesis for real polynomials by first completing a target Pre = F' € R[z] to complementary poly-
nomials Py, Q € R[] satisfying the constraints of Theorem and then recovering phase factors
via a recursive “layer stripping” procedure. As analyzed in [Haal9], layer stripping is numerically ill-
conditioned in general and may require O(dlog(d/€)) bits of working precision, where d is the degree
and e is the target approximation error. Recent work has substantially improved the stability and
practical performance of algorithms |[CDG™20, DMWT.21] [Yin22, WDT.22, DLNW24al [DLNW24b]|,
BS24, [AMT24, IALM ™26, MW?24|, [NY24], [NSYT.25]. The fixed-point iteration algorithm in Algo-
rithm together with many other numerical methods for finding phase factors, is implemented
in QSPPACKH We used QSPPACK throughout the book for QSP related examples.

The connection between QSP and the SU(2) nonlinear Fourier transform (NLFT), as formalized
in Proposition was established in [AMT24]. This framework also identifies a canonical choice
of parameters, which is characterized by a nonlinear generalization of the Plancherel theorem in
standard Fourier analysis. The connection also enables generalization QSP from polynomials to
more general function classes called Szegd" functions [AMT24] IALM™26].

1https ://qgsppack.gitbook.io/qgsppack/


https://qsppack.gitbook.io/qsppack/




CHAPTER 13

Quantum singular value transformation

Quantum signal processing (QSP) provides a systematic way to implement scalar polynomial
transformations by composing a sequence of single-qubit rotations with a fixed signal oracle. Quan-
tum singular value transformation (QSVT) “lifts” the QSP construction from scalars to matrices
via qubitization.

We begin by deriving QSV'T directly from the qubitization structure. We then discuss circuit-
level refinements such as efficient controlled implementations and applications of QSVT including
fixed-point amplitude amplification, uniform singular value amplification, and Gibbs state prepa-
ration via polynomial approximation and purification. We also use perturbation theory to explain
the robustness of singular value transformations to approximate input oracles.

13.1. Quantum singular value transformation

13.1.1. Derivation from qubitization. From the qubitization structure in Theorem [10.10]
assume first that d is even and consider

/2
(13.1) U = e [T [(Uh Zi)etos 20 (U Zig)ei 5% ]
j=1

With some abuse of notation, still let Ug(x) denote the SU(2) matrix in Eq. (12.4]) evaluated on
€ [-1,1]. Then

Us :‘7 P @ 614)02 H Z¢J t@T @I(]WfQ)N ‘7T
(13.2)
2‘7 P @ U@(Ui)QZT@I(NI,Q)N ‘7T.

1E[N]

Therefore Ug is a (1, m + 1)-block-encoding of P”(A), where P € C[z] is the polynomial appearing
as the (1,1) entry in Eq. (12.4). Since d is even, P is even.
When d is odd, consider

—1)/2
(13.3) Up = ¢i%07n ([ 4¢i%17n) H {ULGMQJ-ZHUAGMMHZH]

179



180 13. QUANTUM SINGULAR VALUE TRANSFORMATION

Then

Us Wl @ Z%ZH “15] QT@](M_2)N vt

(13.4)
=W {2 P Ualo) 2" P Ior—ayn p V.
1€[N]

Therefore Ug is a (1, m+ 1)-block-encoding of P°(A). Since d is odd, the corresponding polynomial
P is odd. The procedure above is called quantum singular value transformation (QSVT).

13.1.2. Circuit structure. To implement e’*?1, we note that the circuit denoted by CR(¢)
in Fig. returns €' [0) [0™) if b = 0™, and e~*?|0) |b) if b # 0™. The first qubit is returned
to |0), so ignoring this workspace qubit, the induced operation on the m-qubit register is exactly

e'*Zn Moreover, we do not need a separate implementation of Zy. Using Z = —ie'2% = je 127,
we have
(13.5) ZeZ = (—i)el#T3)Z — jeil¢e=3)Z

so by adding and subtracting 7/2 to the phase factors in an alternating pattern we can absorb
interleaved Z factors without introducing an additional global phase. This is useful for controlled
implementations of QSVT.

When d is even,

" (72507 ] = Oa
(13.6) ¢j=q¢;+%, je{l,...,d} and j is odd,
¢;—%, je{l,...,d} and j is even.
Then the overall global phase is canceled and
(13.7)
(idoZ H [ eidsZ } _ pitoZ H )i 2] = Ug(z) = < P(z) —Q(z)v1—a? ) .

When d is odd, we can choose

" d)O*ga ]:07
(13.8) ¢;j=4q¢;+%, je{l,...,d} and j is odd,

2’
¢;— %, je{l,...,d} and j is even.

This cancels all the global phase factors, but there is an additional Z factor
(13.9)

igo e teo e' = ’ e
¢ZH[ 037 } Zed’ZH 7] = ZUg(x) = < _62(1]‘;5/1)—7%‘2 Q(—)P(Jl3) >

Despite the additional Z factor, both are block encodings of P(x). More generally, we may modify
the phase factors without changing the upper left entry as follows.
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Lemma 13.1. Let Ug(x) = <PS<$) I) For any 0,¢,9 € R,

s (G Dl 2)-(7)

In particular,

*

(13.11) 21y ()e 7, ZUs (x), U (2) 7 = <P (z) *) .
Here the entries denoted by * may differ from each other up to a phase.

The phase factors d = (50, e ,(Ed) are called the modified phase factors associated with ®.
The modification rule can be summarized as follows.

¢o— 3, j=0anddisodd,

(13.12) 3, = bo, y =0 and d is even,
¢;j+35, je{l,...,d} and j is odd,
¢j—%, je{l,...,d} and j is even.

10 — — |0) —i¢Z

CR(¢)| = ml A ml
|b) — — b

|0) —] .. L
CR(¢a) CR(a-1) CR(¢)

0™y — || || || I L | -
Ua Ul Ua/U}

FiGure 13.1. Circuit of quantum singular value transformation to construct
Upsv(a) € BE1mi1(PSV(A)), using Us € BE;,,,(A), and Ua, U} are applied in
an alternating order . The last gate is U4 when the degree d is odd, and is UL if d
is even. One possible way to express the phase factors {gj} in the circuit in terms

of {¢;} in Theorem is given in Eq. (13.12]).

THEOREM 13.2 (Quantum singular value transformation with complex polynomials of definite
parity). Let A € CN*N be encoded by its (1,m)-block-encoding Us. For a compler polynomial
P(z) € Clz] with degree d and parity given by d mod 2, that satisfies the conditions in Theo-
rem we can find a sequence of phase factors ® € R4 according to Theorem and a
corresponding sequence modified phase factors ® according to Eq. With this sequence <f>,
the circuit in Fig. implements a (1, m + 1)-block-encoding of PSV(A), using Ua, UI‘, m-qubit
controlled NOT, and single qubit rotation gates for O(d) times.
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13.1.3. Quantum singular value transformation with real polynomials of definite
parity. Instead of PSV(A), in many applications we are only interested in a block-encoding of

(13.13) FSV(A) = %(PSV(A) +PV(4), F(z) = Re Pla).

This can be done by using Theorem to construct a block encoding of PSV(A),ﬁSV(A), respec-
tively, and use LCU with one ancilla qubit to construct the linear combination. However, due to the
special structure of QSP, we demonstrate an elegant way to solve this problem without introducing
any additional ancilla qubit.

Given ® = (¢, - 7<z5d) E Rt define —® := (—¢g,---,—¢q) € R¥TL. Taking entrywise
complex conjugation of Ug(x) in Eq. - gives

(13.14)  (Us(2))" =U_s ,eﬂ%zn Je—itiZ (Q(m)P\%)—ix? —Q(@W)

As a result, from qubitization, when d is even,

(1315) U,.:p = ‘7 K @ qu:-(di)gZT@I(M_g)N ‘7T.

i€[N]

is a (1, m + 1)-block-encoding of P (A) for an even polynomial P. From Eq. (13.6),
~ d ~
(13.16) e~ i00Z H {U(x)e_wjz} = ¢ i00Z H e 7] = U_g(2).
j=1

Thus U_g can be implemented by negating each modified phase factor $j.
When d is odd,

(13.17) Uo =W 2 @ U-al0) 2" P Inr—oyw ¢V

is a (1, m + 1)-block-encoding of P°(A) for an odd polynomial P. From Eq. (13.8),
d
(13.18) Al [U(x)e*i%z] Ze~i90Z H ~i%:2] = ZU_g(z).

Thus negating each modified phase factor (Zj implements the unitary

(13.19) W2 P z2U_a(0) P @ Ini—zyn p VF
i€[N]

which is a block-encoding of P°(A) (the additional Z only affects other blocks).
In summary, it suffices to negate all phase factors in ®. In order to implement CR(—¢), we do
not actually need to implement a new circuit. Instead we may simply initialize the signal qubit in
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1) —@—] o7 |-

o — 1

which returns e‘i$|1> |0™) if b = 0™, and eiq;\l) [b) if b # 0™. In other words, the circuit for

Upsv (A) and Upsv ) are exactly the same except that the state of the first qubit is changed from

|0) to |1).

0

07) ——— Upsv(a)

CR(¢a) CR(4-1) CR(¢o)

Ua UI‘ UA/UI‘

FiGURE 13.2. Circuit of quantum singular value transformation to construct
Upsv(a) € BE1 ;n41(FSV(A)), using Us € BEy ,,,(A), and Ua, UL are applied in an
alternating order . Here F'(z) = Re P(z). The last gate is U4 when the degree d is
odd, and is UL if d is even. One possible way to express the phase factors {65]} in
the circuit in terms of {¢;} in Theorem is given in Eq. (13.12). Conceptually,

this is a circuit using linear combination of block encodings for PSV(A) and P (A).

Now we claim the circuit in Fig. implements a block-encoding of FSV(A) via a linear
combination of unitaries. Direct calculation shows

10) [0™) 1)
HEL (10)+ 1) 0) )
Upsv(a 1 m 1 m\ /
(13.20) — 5 |0 (0™ PV + 1) + S5 1) (07) P (A)[9) + 1))

SV

sV oV SV(A)— P ~
Bl i) <|OM>P Wl |¢>>+|1> <|OM>P Wor A |¢>>+|L>

=10)10™) FSV(A) [9) + | L)
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Here | L), |L’) are two (m+n)-qubit state orthogonal to any state [0™) |z), while | L) is a (m+n-+1)-
qubit state orthogonal to any state of the form |0)|0™) |z). In other words, upon measuring the
(m + 1) ancilla qubits and obtaining |0™*1), the corresponding (unnormalized) state in the system
register is FSV(A)[¢) = (ReP)SV(A) ). As a byproduct, if we obtain |1,0™) in the ancilla
register, then we obtain i(Im P)SV(A) |+) in the system register.

Corollary 13.3 (Quantum singular value transformation with real polynomials of definite parity).
Let A € CN*N be encoded by its (1,m)-block-encoding Ua. For a real polynomial F(x) € R[z] with
degree d and parity given by d mod 2, that satisfies the conditions in Theorem we can find
a sequence of phase factors ® € R¥! according to Theorem and a corresponding sequence o
modified phase factors ® according to Eq. With this sequence ;I;, the circuit in Fig.
implements a (1,m + 1)-block-encoding of FSV(A), using UA,U;[‘, m-qubit controlled-NOT, and
single-qubit rotations a total of O(d) times.

Example 13.4 (Controlled implementation of the QSVT circuit). When implementing a controlled
QSVT circuit Ug, one possibility is to implement controlled version of every single gate. This means
that d controlled Uy, U:[‘ needs to be implemented.

Observe that (1) a controlled implementation of the controlled rotation CR(¢) can be imple-
mented by controlling on the single rotation gate; (2) UI‘U 4 = I. We find that when d is even,
the controlled QSVT circuit can be implemented by controlled single qubit rotations without any
controlled Uy, UI1 gate. When d is odd, there is one extra U, that cannot be cancelled, so a single
controlled Uy is needed (see Fig. [13.3).
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|a)

=

=
—e
—e
—e

CR(¢q) CR(¢a—1) CR(do)

Ua Ul Ul

S

=
—e
—e
—e

CR(¢a) CR(d4-1) CR(¢o)

Ua Ul Ua

FIGURE 13.3. (a) Controlled implementation of the controlled rotation. (b)Circuit
for controlled implementation of the QSVT circuit for even polynomial, which does
not use controlled Uy, UL. (c) Circuit for controlled implementation of the QSVT
circuit for odd polynomial, which uses the controlled U4 circuit once.

<&

13.1.4. W-convention and symmetric phase factors. Let ®" be the symmetric phase
factors in Eq. . We can combine the relations in Eq. and Egs. and to
obtain the modified phase factors for the QSVT circuit. When d is even, we may directly check
that the modified phase factors ® are still symmetric.

However, when d is odd, the choice in Eq. violates the symmetry condition. For instance,
without distinguishing ® and ®", when d = 3, Eq. gives

~ T T 7 T
(13.21) = (o — Sl + S0l — 2.0 + 7).
which is not symmetric. B

Now we adopt a different strategy to ensure that the phase factors ® in the QSVT circuit are

symmetric. Similar to the conjugation in Eq. (13.11)), replacing Ug(z) by ZUs(z) or Us(x)Z does
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not change the upper left entry. When absorbing Z into the phase factors, we add a uniform phase
factor /2 to ¢1,...,64_1. This generates an overall global phase factor (—i)(¢=1 = (—1)(@=1)/2,
Now if (d — 1)/2 is even, this global phase factor is 1. We can drop the Z at the end of Us, and do
not make any changes to ¢g, ¢4. If the accumulated phase factor is (—1), this can be canceled by
adding /2 to ¢g, ¢4 as well. So the resulting modified phase factors are symmetric.

It turns out that the same argument leads to a different modification rule for d being an even
number as well. We first add a uniform phase factor /2 to ¢1,...,d4—1. This generates an overall
global phase factor (—i)?1 = (—1)2~!(—i). Now if d/2 is even, this global phase factor is i. We
can add 0 to ¢p and 7/2 to ¢4. By Eq. (13.11]), this is the same as adding 7 /4, 7/4 to both ¢, pg.
If d/2 is odd, the global phase factor is —i. We can add 0 to ¢y and —7/2 to ¢4. By Eq. (13.11)),
this is the same as adding —7/4, —7/4 to both ¢, 4. So the resulting modified phase factors are
still symmetric.

In summary, when ®" are symmetric phase factors, the modified phase factors can still be
chosen symmetrically using the following conversion rule:

0, d=4k+1,

~ T d=4k+2
pj =0 +{ Y +2 j=0,d, keN,
R z d=4k + 3
(13.22) z. = :
T d=4(k+1),
~ T .
b; =" + =, j=1,...,d—1.

2
In summary, we have the following result of QSVT using symmetric phase factors.

Corollary 13.5 (Quantum singular value transformation with real polynomials of definite parity
using symmetric phase factors). Let A € CV*N be encoded by its (1, m)—block-encodmg Uas. Fora
real polynomial F(x) € R[z] with degree d that satisfies the conditions in Corollary we can find
a sequence of symmetric phase factors ®V € Rd‘H according to Corollar b and a corresponding
sequence of symmetmc modified phase factors d according to Eq. l) Wzth this sequence P,
the circuit in Fig. |13.9 implements a (1,m + 1)-block-encoding of FSV(A), using Uag, U;, m-qubit
controlled NOT, (md single qubit rotation gates for O(d) times.

13.1.5. Generalization using linear combination of unitaries. For singular value trans-
formations, we can always decide whether to extend the function of interest from [0, 1] to [—1,1] as
an even or odd function. In fact, in most scenarios, this is determined by whether we need to keep
both singular vectors or only the left /right singular vectors in the final expression. For eigenvalue
transformations, there are some additional degrees of freedom.

First, if the polynomial of interest F'(x) € R[x] does not have a definite parity, we can use the
expression

(1323) F( )— even( )+Fodd( )

where Feven(z) = 1(F(2) + F(—1)), Foaa(z) = 2(F(z) — F(—2)). If |F(z)| < 1 on [~1,1], then
| Feven ()], |[Foaa(z)] <1 on [—1,1], and Feyen(x) and Fyqq(z) can each be constructed using QSVT
in Corollary [I3:3] Introducing another ancilla qubit and using the LCU technique, we obtain
a (2,m + 2)-block-encoding of F(A) = Feyen(A4) + Foad(A). Note that unlike the case of the
block encoding of (Re P)(A), we lose a subnormalization factor of 2 here. Note that using the
construction in Fig. the implementation of the select oracle in LCU only requires a single

controlled implementation of U4 when implementing a controlled block encoding for Foqq(A).
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Following the same principle, suppose the polynomial of interest F'(z) € C[z] satisfies |F(z)] < 1
for all z € [—1,1] (otherwise rescale F' and account for the resulting subnormalization). We can
write

(13.24) F(z) =G(z)+ iH(x)

with G, H € R[z]. Then |G(z)| <1 and |H(z)| <1 for all z € [-1,1]. If G, H have definite parity,
then Corollary gives Ug(a) € BE1,141(G(A)),Un(a) € BE1my1(H(A)). Applying LCU, we
obtain UF(A) € BE27m+2 (F(A))

If G,H do not have definite parity, then by the argument above we can construct Ug4) €
BE2,m42(G(A)) and Ug(ay € BEg y12(H(A)). Applying another round of LCU then yields Up(4) €
BE4 m+3(F(A)).

13.2. Quantum singular value transformation with a basis change

So far we have assumed that A is given by the upper left N x N submatrix of Uy € U(MN)
in the computational basis. From the discussion in Section the procedure of qubitization, and
hence QSVT, can be generalized to the setting where A is implicitly encoded via a basis change.

Given two unitary matrices Z,=Z' € U(MN), we can use the columns of =, = to define two
basis sets B, B’ as in Eqgs. and . The first N vectors in the basis define two rank-N
projectors II, II’, which can be accessed by two reflection operators Zp, Zyy-, resp,e\gtil/ely.

Let II'Z11 encode the matrix A = WXV, and expanded singular vectors W,V are given in
the CS decomposition in Eq. . Then if the polynomial degree d is even, the circuit

d/2
Up =7 ] [(%jzn, Yeib2i1 I (9, Zyy)etd2 n

Jj=1

(13.25)
:EN L @ U(I)(O-Z):@T @I(J\/I—Q)N VTET

1€[N]
In other words, [%s]% is a (1, m)-block-encoding of U3V (A).

(d-1)/2
U —eloZm UnZn H [(%XZH’ )ei¢2j—1 Zyyr (%A Zn)ei¢2j Zn
=1
(13.26) !

1€[N]

In other words, [%]% is a (1,m)-block-encoding of UZV (A).
Let us introduce the controlled rotation operator CRy(¢) acting on an additional qubit and
the (n + m)-qubit register, defined by

(13.27) CRu(¢) := (CuNOT)(e"**? ® I, 4 )(Cr NOT).

When the additional qubit is initialized in |0), the induced action on the (n + m)-qubit register is
e**Zn - As discussed before, the circuit can be implemented by absorbing Zp into CRy, CRr by
properly modifying the phase factors. To implement the rotation CRy(¢) efficiently, we need access
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to
CaNOT :=X @ T+ 11 @ (Iyyn — IT)
Lnim + Z Inim — 7
=X®%H+Il®%n
L+X X -1
(1328) = 12 ®In+m+ 5 1®ZH

=) (F@ Lnsm + =) (= © (=Zn)
=H&L1m)([0) (0] ® Lnsm + 1) (1] @ (—Zu))(H@Ln4m)-

Therefore assuming access to Zy, the Cp NOT gate can be implemented using the circuit in

Fig.

0) - - o
7|

Cnu NOT b 7
) B ~Zn
|0) — - ]0) — o102 -
CRu(¢)| = Cp NOT Cn NOT
b) — — b)) — -

F1GURE 13.4. Circuit for implementing Cry NOT using a controlled reflection op-
erator —Z1, and for CRyy(¢) that implements e?#?1 on the (n + m)-qubit register
when the additional qubit is initialized in |0). The circuit can be further simplified
using matrix identities.

In summary, we obtain following result.

Corollary 13.6 (Quantum singular value transformation with a basis change). Given a unitary
Us € UMMN), and two projectors ILII' of the same size that can be accessed via reflection op-
erators Zr, Zmv, and rank(Il) = rankIl’ = N. Define the basis B,3' according to Egs. (10.103))
and (10.104), then (a8 provides a (1,m)-block-encoding of A. Given a polynomial F(x) € R[z]
of degree d satisfying the conditions in Theorem we can find a sequence of phase factors
& € R gcecording to Theorem and a corresponding sequence of modified phase factors ®
according to Eq. With this sequence 6, we can implement a unitary %e, so that when d
is even, [%s)B is a (1,m + 1)-block-encoding of F*(A), and when d is odd, [%s)5 is a (1,m + 1)-
block-encoding of F°(A).
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10) . ) (1]
CRi(¢a) CRiy (¢a—1) cciii(?%
0™) — I ||
% ) Un| U]
%) I

F1GURE 13.5. Circuit of quantum singular value transformation with real polyno-
mials of definite parity and a basis change.

13.3. Fixed-point amplitude amplification and uniform singular value amplification

Recall that Grover’s search algorithm and amplitude amplification can overshoot the target
state. This is not robust when the number of iterations is not chosen carefully. Moreover, for
amplitude amplification the optimal iteration count depends on the initial overlap, which is typically
unknown. Fixed-point amplitude amplification resolves these issues. Implemented via QSVT, it
only requires a known lower bound on the overlap and avoids overshooting. The construction is
closely related to oblivious amplitude amplification and singular value transformation.

Proposition 13.7 (Fixed-point amplitude amplification). Let %4 be an n-qubit unitary and
Il be an n-qubit orthogonal projector with rank(Il') > 1 such that

(13.29) W% |po) =alt)y, a>8>0.
Then there is a (n + 1)-qubit unitary circuit e such that
(13.30) Dy (|0} [¥) , %s |0) |0)) < €,

which uses %a, ?/;{, Crv NOT, Cjpp)ipo| NOT and single-qubit rotation gates O(log(1/€)6~") times.
Here D,(-,-) is the global phase invariant distance between two state vectors.

PrROOF. Let N = 2". Construct an orthonormal basis B = {|¢o),|v1),...,|vN—1)}, where
each |v;) is orthogonal to |pg). Similarly, let B’ = {|¢), |w1),...,|wn_1)} be an orthonormal basis,
where each |w;) is orthogonal to [¢). Since |1} belongs to the range of IT',

(13.31) (Y| %alpo) = (W' %alpo) = a,
ie.,

/ a x
(13.32) A (* *) .
Choose an odd real polynomial F(z) satisfying
(13.33) |F(x) — 1] < €2/2, Yz €d,1].

In addition, to apply QSVT we require |F(z)] < 1 for all x € [-1,1]. Using Lemma we
can achieve this by approximating the sign function, and the polynomial degree is deg(F) =
O(log(1/€)d~1). The corresponding QSVT circuit % uses one ancilla qubit and implements a
block encoding of F(a)|¢)X¢po|. The overlap between |0) |¢) and % |0) [po) is |F'(a)|. According to
Eq. , the global phase invariant distance is

(13.34) Dy (%3 10) |¢o) , 10) 1)) = /2(1 — [F(a)]) < e.
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O

Example 13.8. Let us apply the fixed-point amplitude amplification to the unstructured search
problem. Let |zg) be the marked state, and let |t)g) be the uniform superposition. Let II' be the
projector onto |z). Then Crr NOT and Cjyyy,| NOT are implemented by the reflection operators
R, and Ry, respectively. Furthermore,

(13.35) I Ry, o) = —a0).

So we can take %4 = Ry,. By choosing an odd, real polynomial F'(z) satisfying
(13.36) F(1/VN)—1| < /2,
using deg(F) = O(log(1/€)v/N), we can find the marked state to precision e. o

Next we discuss another application of QSVT. Recall that oblivious amplitude amplification is
only applicable to block encodings of unitary matrices; a key simplification there is that the singular
values are all equal to a single scalar, so one only needs to amplify that scalar. Now consider a
general matrix A € CV*¥ and a block encoding Uy € BEq m(A). Can we construct a new block
encoding of A whose subnormalization factor is close to the optimal value || A||? This task is called
uniform singular value amplification.

Proposition 13.9 (Uniform singular value amplification). From a block encoding Us €
BE4,m(A), for anyd € (0,1],¢e € (0,1/(2a)] and o > [|A||, we can construct a Us € BEj o|(146),m+1(4, €),

using O (ﬁ log (m)) applications of U, UI‘.

PROOF. Let A =3, 0;|u;)(v;| be a singular value decomposition, so o; € [0, ||A]|]. The block
encoding condition Uy € BE, ,(A) means that, upon projecting the ancilla register onto |0™),
the induced operator is A/a. In particular, QSVT applied to U, implements odd polynomial
transformations of the singular values of A/«.

Define o/ := «/ ||A|| > 1. Then the singular values of A/« lie in [0,a’~!]. Choose

€ 1
13.37 "i=min{ ——, — .
337 <= min{ i 5
By Lemma there exists an odd polynomial p € R[z] with
(13.38) sup (14 0)p(x) —a’z| <€, sup |p(x)| <1,
z€[0,a’ 1] z€[-1,1]

and degree deg(p) = (’)(% log (‘2‘—;)) = (’)(ﬁ log (W))
Applying QSVT with this polynomial produces a unitary Up € BEq ,41(p°(A4/a)). Moreover,

S (1A +op () = o) e

AN (1 +0)p®(A/e) — All =

(13.39)
<Al sup |1+ 0)p(x) -z < [|A]l€ <e
z€[0,a’ 1]
Therefore Up € BE| ) (145),m+1(A,€). The number of applications of U, and UZ is O(deg(p)),
which gives the stated query complexity. O
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13.4. Quantum Gibbs state preparation
Given a Hamiltonian H € CV*¥ (without loss of generality we assume H > 0), the quantum
Gibbs state at inverse temperature § = 1/T is defined as

—BH

Zg '

(13.40) o5 = °

Zg = Tr[eiﬁH].

where Zg is known as the partition function.
Quantum Gibbs states can be prepared using QSVT and a technique called purification.
Consider the purified Gibbs state

13.41 e L S
(13.41) log) = 76( ®e ) W;WM ;

which satisfies (0g|0s) = 1, since H »= 0 implies Z5 = Tr[e ?#] < Tr[I] = N. The Gibbs state og
is then obtained by tracing out the first (ancillary) register:

1 N-—1 e_BH
(13.42) Trallog)osl] = Ze_BH/2 Z )] | e 1% = Z; o8-
=0

Thus, it suffices to construct a block-encoding of e /2 and apply it to the maximally entangled
N=1 .\ |:
state ﬁ Zj:o 170 13)-

Since f(z) = e~P%/2 i neither even nor odd, one way to use QSVT is to approximate its
even and odd parts separately. This is problematic if one insists on a uniform approximation on
a symmetric interval, since f(—z) = eP*/? grows exponentially with 8. One may instead try to
approximate f by an even function, but the symmetrized function g(z) = e ?*l/2 has a cusp at
x = 0, and consequently the approximation error decays only polynomially with the degree.

We therefore assume a different access model, namely Vi € BE; ,,,(I — H/ap), where oy is
chosen so that 0 < H <X ayl. The spectrum of I — H/ap is contained in [0,1]. Using the identity
(13.43) e PH/2 _ =5 U—(I=H/am))
we can construct a block-encoding of e ~##/2 using Vj;. For polynomial approximations to e~7(1=%)
on [—1,1], we have the following result from [GSLWIS| Corollary 64].

Proposition 13.10. Let v > 0 and € € (0, %] Then there exists a real polynomial P with degree
o (\/max [’y, log (%)] log (%)) such that

(13.44) He_V(l_“') - P(az)H[ . <e

The polynomial in Proposition [I3.10] does not have definite parity. Therefore we implement its
even and odd parts using QSVT, and combine them to obtain a block-encoding of e~#H/2 using

O (V/Bau log(1/€)) queries to Vir. Since

(13.45) (I ® e=#H/2) \/IN,Z_UW H:\/%’

=0

<
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amplitude amplification yields a total query complexity

(13.46) o (\/ZVﬂaH log2(1/6)>

for preparing |og).

Remark 13.11. The O(v/B) scaling (here v = Bay/2) may seem surprising, given that SUP,e[0,1] e —(1-2)
~. This is because, after the transformation, the largest derivative occurs at the boundary x = 1
while the Chebyshev polynomial Ty () = cos(k arccos(x)) varies rapidly near x = 1. Specifically,

k sin(k0)

13.4 Ti(1) = lim —— % = k2.

(1347) k(1) =l =20

Thus, a polynomial of degree O(+/B) is sufficient to resolve the large derivative at the boundary.
It is worth noting that this O(yv/B) dependence relies on having access to Vi € BE; ,, (I —

H/ap). If we only have access to Vi € BE, ,,,(I — H/ap) for some constant 7 > 1, then rewriting

(13.48) e~BH/2 _ o~ (I /n—(I—H/am) /)

shows that one is naturally led to the function z — e~ =) (with v = Bagn/2). This function
exceeds 1 for z > 1~!, and therefore no polynomial bounded on [—1, 1] can approximate it uniformly
n [—1,1] to small additive error. In particular, Proposition [13.10| does not apply in this form. <

13.5. Quantum eigenvalue transformation with Hamiltonian evolution oracles

Given the Hamiltonian evolution oracle U = e *# with 0 < H =< =« for simplicity. Can
we construct a block encoding of a matrix function f(H) using QSP? One possibility is to first
construct a block encoding of H by implementing the matrix logarithm H = ilogU using QSVT,
followed by another layer of QSVT to implement f(H). Here we show that this process can be
made much simpler using a single layer of QSVT-like circuit with one ancilla qubit. This is called

the quantum eigenvalue transformation of unitary matrices with real polynomials (QETU).

0) —| civoX civ1 X |_<._ .

FI1GURE 13.6. Circuit of quantum eigenvalue transformation of unitary matrices.

THEOREM 13.12 (Quantum eigenvalue transformation of unitary matrices). Let U = e~ with
an n-qubit Hermitian matriz H. For any even real polynomial F(x) of degree 2d satisfying |F(z)] <
1,Vx € [-1,1], we can find a sequence of symmetric phase factors ® := (o, 1, ,P1,90) €
RQ‘”l, such that the circuit in Fig. |15.6 denoted by U satisfies ((0| ® I,,)U(|0) ® I,) = F (cos ).

°g)

Let the matrix function of interest be expressed as f(H) = (f (cos &), where g(z) =
2 arccos(z). Therefore we can find an even polynomial approximation F(z) so that
(13.49) sup |(fog)(x)— F(z)| <e

ZE[Omin,Tmax
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Here opin = cos %7 Omax = COS %, respectively (note that cos(x/2) is a monotonically decreas-

ing function on [0, 7]). This ensures that the operator norm error satisfies
(13.50) 1((0] @ Ln)U(10) @ I,) — fF(H)|| < €.

Compared to the QSVT circuit for block encoding f(H) with a real polynomial of definite
parity, we find that instead of the Z rotation e¥%, the circuit uses now the X rotation e*#X. For
the proof of Theorem [13.12] we refer readers to [DLT22].

Exercise 13.1. Given access to a unitary U = e~ where |H|| < 7/2. Use QSVT to design
a quantum algorithm to approximately implement a block encoding of H, using controlled U and
its inverses, as well as elementary quantum gates.

13.6. Perturbation theory of singular value transformations

So far we have assumed that U € BE, ., (A) is an exact block encoding of A. What if we can
only implement U BEmm(ﬁ) so that HE — A|| < €? Note that we cannot directly invoke the

linear error growth property in Proposition [3.21] since we do not have access to the exact block

encoding matrix U, and therefore cannot compute HU -U H As a result, it is desirable to develop

a perturbation theory that can be used to directly quantify the error Hfsv(g) — fSV(A)H. We
start by illustrating this is possible for the task of Hamiltonian simulation and oblivious amplitude
amplification.

Example 13.13 (Perturbation analysis for Hamiltonian simulation). Consider a block encoding
Uz € BE1n(H,€). Then the variation of constants gives

(13.51) etH — eZHH = z/ A=) (H — H)e'fs ds|| < HH — HH <e.
0
This gives
(13.52)
_ iH —iH iH —iH 11 .= ) 1 s ‘
HCOS(H)—COS(H)H _ et ¢ te < f‘elH—ezHH—ﬁ-fHeﬂH—e%HH <e
2 2 2 2
Similarly
(13.53) Hsin(ﬁ) — sin(H)H <e

These bounds are independent of the polynomial degree used in constructing the approximation
these functions. o

Example 13.14 (Refined perturbation analysis for oblivious amplitude amplification). Let A be
an approximate implementation of a unitary matrix U such that [|[A — U|| < e. According to the
oblivious amplitude amplification (see Example [11.7)), if we choose

(13.54) v, ' =sin keN,,

T
2(2k + 1)
then 75, ,,(U/v) = (—=1)*U. This means that if we have access to a block encoding V €
BE,, «(A) = BE,, a(U,¢), then T3, (A/7x) is an approximate implementation of (—=1)*U using
k + 1 queries to V and k queries to VI. We now bound the error ||(—1)kT2°k+1(A/7k) — UH
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Start from the singular value decomposition A = WXV, the perturbation theorem of singular
values (?7) states that ||X —I|| < e. Then Ty, (A/v%) = WTht1(5/7)VT is an approximate
implementation of (—1)*WVT. Note that the Chebyshev polynomial at 7, ' satisfies

- _ _ (2k +1)2
(13.55) T2k+1(’7k 1) = (_1)k, T2/k+1(’7k 1) =0, T2Hk+1(’7k 1) (‘Ukﬂﬁ'
K

Then by Taylor’s theorem and the continuity of T3, ,, for each k there exists some ¢, > 0 such
that for any |z — 1| <€ < e,

(13.56)
e (2k+1)2 €
|(=1)*Topgr(x/ ) — 1| =|Tons1(@/ ) — Tonsr (v )| < \ (D) 3 =—5
Vi 11— Vi
(2k +1)2¢2 ™ 2,
- = 2k +1) tan ———— .
o1 e(2k + )an2(2k+1) < 7€

In the last inequality, we have used the fact that a='tana < 2 for any a = m € [0,7/6] to
simplify the expression. This implies

(13.57) (1) T3, 1 (A/y) — WVT|| < 7€

Finally, if m2¢ < 1, use the triangle 1nequa11ty,

(13. 58)

[(=D*T5 1 (A7) = U|| < [[(=1) T3y 41 (A/ ) = WV ||+|[WVT = WEVT||+|WEVT - U|| = 3e.

This bound is independent of the degree of the polynomial degree used! Fig. confirms the
validity of this error bound. This bound agrees with the refined analysis of oblivious amplitude
amplification in [GSLW19, Theorem 15].

k=2 k=99
o030 o 00301 . Error
Bound 3¢ Bound 3¢
0.025 0.025
0.020 0.020
0.015 0.015
0.010 0.010
*
. ny® ., ":i

o oo s ‘}-

0.005 I~ 0.005 gaet .
qill w .,..'W
‘.d' * ...I.
0.000 { &= 0.000 | ==
0.000 0.002 0.004 0.006 0.008 0.010 0.000 0.002 0.004 0.006 0.008 0.010
£ £
FIGURE 13.7. Error of oblivious amplitude amplification

H DT 1 (A)ve) = U H versus the error bound for 100 random matrices
with ||A — U|| = e. Neither the computed error nor the error bound depends on k.
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Definition 13.15. Given a function w : [0,00) — [0,00) and an interval I C R, a function
f: I — C admits w as a modulus of continuity if

(13.59) @) - ) <wla—yl), Vayel.

Results in approximation theory [FNQ9| can be used to characterize the robustness of eigenvalue
transformation of Hermitian matrices.

THEOREM 13.16. Let f : [-1,1] — C be a function that admits a modulus of continuity w :
[0,2] = [0,00). Then for all Hermitian matrices A, A € CN*N such that || A||, EH <1, we have

2

~ ) ~
(13.60) Hf(A) - f(A)H <4 [m (IA/TH + 1) 11| w()A— A|).

Using the close connection between the singular value transformation and the eigenvalue trans-
formation of the dilated matrices discussed in Section[I0.1} we can use Theorem [I3.16] to derive the
following perturbation result for the singular value transformation. We refer readers to [GSLWIS|
Section 3.3] for its proof and further applications and refinements of the result.

Corollary 13.17. Let f : [-1,1] — C be a function of definite parity that admits a modulus of
continuity w : [0,2] — [0,00). Then for all matrices A, A € CN*N such that ||Al|, HEH <1, we

have
2

SV A\ #SV/ T 0 2 wlllA— A
(13.61) Hf (A)— f (A)H§4l1 <||A/~1+1>+1 (A — A).

Notes and further reading

Many applications of QSVT can be found in the seminal paper [GSLW19|. When the input is
Hermitian, the connection between singular value and eigenvalue transformation (cf. Section
implies that the same circuits implement eigenvalue transformations of A; this special case is some-
times called quantum eigenvalue transformation (QET). Recent usage often reserves “eigenvalue
processing/transformation” for settings beyond Hermitian inputs, such as eigenvalue transforma-
tions associated with nonunitary or more general matrix dynamics; see, e.g., [ALL23| [LS24]. A
generalization of the QETU algorithm is given by generalized quantum signal processing [MW24],
which can also be interpreted using the nonlinear Fourier transform [AMT24].

The O(+/B) dependence discussed in Section can also be achieved under alternative access
models for H, such as access to vV H [CS17, [ACNR22, [ALWZ22]. The Gibbs sampler based on
linear combination of Hamiltonian simulation [ALL23| [ACL26| (see also ?7?) applies to positive
semidefinite Hamiltonians and requires only the ability to simulate the dynamics; its complexity is

9] (, /Z%BOAH (log (%))1/7) for any v € (0,1). The factor , /Z% becomes large at low temperature.

This also means that efficient Gibbs preparation without additional structure is typically confined
to sufficiently high-temperature regimes.
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CHAPTER 17

Quantum walks

Classical random walks and Markov chain Monte Carlo methods are powerful tools for design-
ing randomized algorithms, with applications including sampling, optimization, and approximate
counting. A motivating example comes from the early internet: to rank the importance of a website,
one could start at a well-known site and walk randomly by following links with equal probability.
The probability that this random walk visits a particular site reflects its importance within the
network. This intuition underlies Google’s PageRank algorithm.

Quantum walks provide a natural quantum generalization of classical random walks and have
been employed to design quantum algorithms that outperform their classical counterparts in several
scenarios. We focus on reversible Markov chains because they admit a Hermitian representation via
the discriminant matrix. This allows tools from block encoding, qubitization, and phase estimation
to act directly on the quantized version of the walk dynamics.

We then discuss continuous-time quantum walks, where the graph adjacency matrix defines a
Hamiltonian and the quantum state evolves via Schrédinger dynamics. We introduce the glued trees
problem which demonstrates an exponential query separation. In this example, classical random
walks become trapped near the graph center with exponentially small probability of reaching the
exit, while continuous-time quantum walks exhibit coherent transport through the column space
and reach the exit in polynomial time.

17.1. Markov chains and classical random walks

We first review basic notions for Markov chains, using the column-stochastic convention to align
with a quantum formulation.

Definition 17.1 (Markov chain). Let ¥ be a state space. A Markov chain on X is a sequence

of random variables X1, Xo, ... taking values in 3, and the probability of moving to the next state
depends only on the current state. More precisely,
(17.1)

]P)(Xt+l =1 ‘ Xt :j7Xt71 :Z’tfla"le :7’1) :P(Xt+1 =1 ‘ Xt :])7 vt 2 17 i7j>i17"'7it71

When the state space 3 is finite, we say the Markov chain is finite. In this case, we may identify
Y with {0,1,...,N — 1} where N :=|X|, and denote

(17.2) P(Xip1 =i | X¢ = j) = Py, Vt>1, 1,5 €X.
Here P is a column-stochastic (left-stochastic) matriz: ), P;; =1 for all j and Pi; > 0.

The stationary distribution of the Markov chain is an eigenvector 7 of the transition matrix
P with eigenvalue 1:

(17.3) Pr =, m; >0, Zm =1

eX.
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The stationary distribution need not be unique. Even if P has a unique stationary distribu-
tion, the direct sum P’ := P & P has at least two linearly independent stationary distributions,
corresponding to probability mass supported on the first or the second copy. This corresponds to
a Markov chain on the disjoint union of two copies of the same state space.

A Markov chain is called irreducible if for any two states i,j € X there exists a t € N such
that [P];; > 0. Let T (i) := {¢t > 1: [P'];; > 0} be the set of return times to i. The period of i is
defined as the greatest common divisor of 7 (7). A Markov chain is called aperiodic if the period
of every state is one. For a finite, irreducible, and aperiodic Markov chain, there exists ¢t € N such
that [P'];; > 0 for all 4,j € ¥ [LP17, Proposition 1.7].

To proceed further, we first introduce the Perron theorem [HJ91, Theorem 8.2.8] for matrices
with positive entries. This is a special case of the Perron—Frobenius theorem for nonnegative
matrices.

THEOREM 17.2 (Perron). Let A € RN*N with all positive entries. Then it has a simple
eigenvalue equal to its spectral radius p(A). The corresponding eigenvector v can be chosen to have
positive entries, i.e., v; > 0 for all i, and is unique up to scaling. All other eigenvalues A\ of A
satisfy |\| < p(A).

Let us use Perron’s theorem to show the existence of a spectral gap.

Proposition 17.3. Let P be the transition matrix of a finite, irreducible and aperiodic Markov
chain. Then it has a unique stationary distribution © with eigenvalue 1. Moreover, there exists
v € (0,1) such that every eigenvalue A # 1 of P satisfies |A| <1 —1.

PROOF. From the assumptions, there exists ¢t € N such that P? is a positive matrix. Let 7 be
the eigenvector of P? corresponding to the unique maximal eigenvalue with positive entries. Since
P! is column-stochastic,

(17.4) > (Phym =Y m.

0,J J
Therefore the corresponding eigenvalue is 1. We may normalize 7 so that ), m; = 1. From
(17.5) PY(Pr) = P(P'n),

we find that P is also an eigenvector of P! with eigenvalue 1. By the uniqueness of the eigenvector,
we have P = 7, i.e., 7 is the unique stationary distribution of P. By the Perron theorem, all other
eigenvalues of P! have absolute value strictly less than 1, so there exists v’ > 0 such that they are
all bounded in absolute value by 1 —+’. Therefore if there is an eigenvector v of P with eigenvalue
A # 1, then v is an eigenvector of P* and |\’ < 1 —~/. The result then follows once we define
L—y=(1-y)V" O

Throughout most of this chapter, we will study a narrower family of Markov chains known
as reversible Markov chains, for which every allowed transition has a corresponding reverse
transition.

Definition 17.4 (Reversibility and detailed balance). A Markov chain is reversible if it has a
stationary distribution w that satisfies the detailed balance condition:
(176) Pjiﬂ-i = PijTFj, VZ,j S >

Reversibility can be difficult to test in general, since it requires finding a stationary distribution
and then checking the detailed balance identities for all pairs of states. Despite this, reversibility is
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common in Markov chain algorithms, and it will be important for our later discussion of classical
walks and Szegedy’s quantum walk construction.

Example 17.5. Let ¥ be the set of all n-bit strings {0,1}", and E(i) be a real-valued function
on X, which is called the energy of the state i. The stationary distribution of interest is the Gibbs
distribution
—BE(i)
€ — ~BE(i)
(17.7) mi=———, 2= Ze ,
€Y

with inverse temperature 3 > 0.

The Metropolis—Hastings Markov chain is constructed as follows. Given a current state
1 € 3, pick a uniformly random bit position £ € {1,...,n}, and let j be the configuration obtained
from 4 by flipping the ¢-th bit. This defines a proposal kernel ) by

1
(17.8) Qji = - if ¢ and j differ in exactly one bit, Qji := 0 otherwise,
so that Q)j; = Qs;. Accept the proposal with probability
(17.9) i := min{1, e PEW B
The resulting transition matrix P is given by
(1710) Pji = jSaji (] ;é ’L), Pii =1 ZPji.
J#i

Then P is column-stochastic by construction, and = is stationary because P satisfies detailed
balance: for i # j with Q;; > 0,

e L e~ BEG)-E®)
7T2‘Pji = TQJZ mln{l,e J ' }
(17.11) —AE()
= TQ” min{1, efﬁ(E(Z)fE(J))} = 7, Pij,
and summing over i yields ), Pj;m; = ;. o

We define the discriminant matrix associated with a Markov chain as
(17.12) D= \/PyP;li)il,
(2%
which is real symmetric and hence Hermitian. For a reversible Markov chain, the stationary state
can be encoded as an eigenvector of D. This is shown in the following proposition.

Proposition 17.6 (Discriminant matrix of a reversible Markov chain). For a finite, irreducible,
aperiodic and reversible Markov chain, the coherent version of the stationary state

(17.13) Im) =D v/l

is a normalized eigenvector of the discriminant matriz D satisfying

(17.14) D|r) = |x).
Furthermore, we have
(17.15) D = diag(v/7)P T diag(y/7) ! = diag(v/7) "' P diag(v/7).

Therefore the set of eigenvalues of P and the set of the eigenvalues of D are the same.
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PRroOOF. Direct computation shows

(17.16) (i| D|r) = Z\/PUPMJ ZPJM/Fz V.

In the second equality we use the detalled balance condltlon, and the third equality uses the column-
stochasticity of P. Therefore |7) is an eigenvector of D with eigenvalue 1.

Next we will proceed to prove (17.15)):
(17.17)

diag(vm)PT diag(v/7 Z*ﬁ Pyili)i| = Z ﬁ“”“\/ﬂjpm (Gl = Z\/P”Pﬂ\ il =
ZJ .7

Here we again use the detalled balance cond1t10n. Similarly
(17.18)

ding(y7) " Ping(yT) = 30 VLR = 3 2 VPPl = 2

O

Since the discriminant matrix is real and symmetric, D is diagonalizable with real eigenvalues
and orthogonal eigenvectors.
(17.19) D |’Uj> = )\j ‘Uj) 5 <Uj|Uk> = (Sjk.

Proposition immediately implies that the transition matrix P corresponding to a reversible
Markov chain is also diagonalizable as P|A; >= A;|A; >. Here the (unnormalized) eigenvectors |\; >
can be chosen as

(17.20) Ay r= diag(v/7) [v;)

We order the eigenvalues {);} in non-increasing order with A\g = 1 and |vg) = |7). Then |[Ag}= T,
viewed as a column vector.
The following is often referred to as the convergence theorem for Markov chains.

THEOREM 17.7. Let P be the transition matriz of a finite, irreducible and aperiodic Markov
chain with stationary distribution w. Then there exists a constant v € (0,1) and C > 0 such that
for any initial probability distribution p,

(17.21) |Plp—n||, <C(1-9)" teN

While we do not prove Theorem directly (see e.g. [LP17, Theorem 4.9]), we will show a
more refined result for reversible Markov chains.

Proposition 17.8. Let P be the transition matriz of a finite, irreducible, aperiodic and reversible
Markov chain on a state space ¥ of size N := |3|, and let vy be its spectral gap. Let  be the unique
stationary distribution. Then from any initial distribution p, for any 6 > 0, there exists a positive
integer t* such that

(17.22) |Plp—ml||, <6,  t>t"
where

(17.23) = lrlog (Wmmm) / log (1_17> -‘

d
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PROOF. Because P is diagonalizable with real eigenvalues {\; }] o » using Eq. (17.19)), we can
express the probability vector p in the eigenbasis of P as

N-—1 N—-1
(17.24) p=> ajl\ir= Y a;diag(V) Jvj).
Jj=0 j=0

Here we set A\g = 1 and |\g >= 7, and we define the spectral gap v by 1 — v := max;>1|A;|. We
then have

(17.25) a; = (v;| diag(v/m)~*p) .

In particular,
(17.26) ay = Zpi =1,

For any positive integer t,

N-1
(17.27) Plp=m+ Y a;N diag(v7)]v;).
j=1
Then using the Cauchy-Schwarz inequality,
(17.28) |diag(v/7) [v;)]|, < Zm o) =1,
and
N-1 N—-1
(17.29) [Plp—mll, <3 lagl N < (M=) Y oyl < (1 =7)'VN
j=1 j=1

Furthermore by the resolution of the identity and the fact that {|v;)} is an orthonormal basis,

s 1
(17.30) ZW<Z (ag(V) ol (] o)) < 3t < 2ifi _ _

)
min; 7m; min; 7m;

we obtain
N

mini Yr

731 P =l < 1 =)

For the ¢, distance (or total variation distance) to be at most ¢, it suffices to take

10g( v/ N/ min; 7ri)
(17.32) t> 0 :

()

]

Using the fact that Tog L

T & % when + is small, we find that the time t* is inversely proportional
1—~

to the spectral gap ~.
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Example 17.9. Consider the simple random walk on the d-dimensional hypertorus (Zz)¢, viewed
as a graph G = (V, E) with vertex set V = (Z1)? and edges between vertices at graph distance one.
Assume that L > 3 is odd, so that the walk is aperiodic, and note that |V| = L¢. The walker can
move in each of the 2d cardinal directions.

For z,y € V, let dist(x,y) denote the graph distance. In the column-stochastic convention,

L if dist =1
(17.33) Py =PXi=y| Xy =2)= {Qd’ 1 dis (x,y) J
0, otherwise.

By symmetry the stationary distribution is uniform, i.e.,
(17.34) Ty = — zeV.
It is stationary since Pm = 7. Moreover, for any z,y € V with dist(z,y) = 1,

Thus the detailed balance condition is satisfied and the walk is reversible.
Since P is symmetric, the discriminant matrix satisfies D = P. Let

(17.36) Ti= Y |i+1)il,

1€ZLL,

where addition is modulo L. Then
1A
17.37 D=P—=— I®(l’_1) (T + TT ® [®(d—u).
2d
v=1

As shown earlier during our discussion of the Fourier transform, such operators are diagonalized by
the discrete Fourier transform on Zj,. In particular,

(17.38)
1
DFT*' D (DFT))* = 3" |k ka)kr ... kal (cos(27rk:1/L) T cos(27rkd/L)).
K1y ka €21
The largest eigenvalue occurs when k1 = ko = -+ = kg = 0, and the second largest eigenvalue

occurs when exactly one of the k, equals 1 or L — 1. Thus

(17.39) Y 1-— coz(27r/L) _ 2sin ;W/L)-

The number of steps needed for the walk to approach the stationary distribution within ¢; distance
0 is therefore approximately

(17.40) %log <V|V|/mm”m) = %log <|V> = O (dL?log(|V| /5)) .

4] o
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17.2. Block encoding of the discriminant matrix

Now that we have discussed the fundamentals of Markov Chains, we can examine how we
would implement such a walk on a quantum computer. The simplest approach to do this is to
build a block encoding of the discriminant matrix. This block-encoding can then be used to sample
from the stationary distribution for the Markov chain. This allows us to represent the non-unitary
process as a block of a larger unitary matrix.

Our first goal in the encoding of the elements of the Markov chain is to build a circuit that
gives access to the entries of the transition matrix P. Assume that we have access to an oracle Op
that will construct a weighted superposition over all the neighbors of a vertex j in the graph as
follows:

(17.41) Op 0" [5) = > \/Prj 1K) 5) -
k

Since P is a left stochastic matrix, the right hand side is already a normalized vector. Hence the
map defined by Eq. (17.41)) is an isometry and can be extended to a unitary Op without introducing
an additional signal qubit. We also need the n-qubit SWAP operation:

(17.42) SWAP [i) |5) = 17) |i) ,

which swaps the value of the two registers in the computational basis, and can be directly imple-
mented using n SWAP operations between two qubits, and in turn 3n CNOT operations. The role
of the SWAP operation is to easily prepare D = Zij \/Pi; Pj;|i)(j] from , since we need to
ensure that the P;; elements get paired with their transposes. This pairing is guaranteed by the
use of a SWAP operation as seen in the following proposition.

Proposition 17.10. Let D be a discriminant matriz associated with a transition matriz P € RN*N
with N = 2™, then the following circuit provides a Hermitian block encoding of the matrix D via
(0" @ INUp(|0™) ® I) = D where

0" — m
Up = Op| |[SWAP| |O}

ProoF. Clearly Up is unitary and Hermitian. Now we compute as before
s O ., SWAP .
(17.43) 07) 15) =D/ Paj k) 1) ==Y \/Pij L) [F) -
k k

Meanwhile

(17.44) 07 [6) 225 S /P |K) |i) -
k/
So the inner product gives

(17.45) (O™ (i Up [0™) |5) = > /PaiPrjdjnebie = \/PjiPij = Dyj.

kK’

This proves the claim. O
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How can we use this to solve a computational problem? Since D is a Hermitian matrix, it can
be viewed as a Hamiltonian. This implies that we can use an algorithm such as quantum phase
estimation to project onto the principal eigenvector corresponding to the equilibrium distribution
.

Proposition 17.11. Let P € RVXN be the transition matriz that corresponds to a finite, irre-
ducible, aperiodic and reversible Markov chain, and let w be the stationary distribution and |7) be
the coherent version of the distribution. Assume that we are provided a quantum state 1)) € CN
such that | (Y|m) | > V1 — 2. Let v > 0 be the spectral gap of P. Then for anye >0 and 0 < 0 < 1,
there exists a quantum algorithm that can prepare a state |T) such that | (7|7) | > 1 — € with success
probability at least 1 — 352 /2 using

(17.46) 1) (10g(1/(€7i) 10%(1/5)>

queries to Op and O;fg,

PROOF. According to Proposition [I7.6] the spectral gap of P is equal to the gap between the
largest eigenvalue and the next largest eigenvalue of the discriminant matrix D.

As D is a Hermitian matrix with ||D|| < 1, we can implement a unitary W such that |W —
e~"PT/2|| < ¢ using

(17.47) Cor = O <1+ log(1/€o) >

loglog(1/€p)
queries to a block encoding of D. By Proposition [I7.10] implementing such a block encoding uses
O(1) calls to Op and O

Phase estimation with precision O(+) distinguishes the principal eigenphase (corresponding to
the eigenvalue 1 of D) from the rest of the spectrum using O(1/7) controlled applications of W.
Using statistical amplification, achieving failure probability at most §2/2 for this discrimination
step incurs an additional factor O(log(1/9)).

Since | (¢|7) |* > 1 — §2, the probability of not projecting onto |r) due to the initial overlap is
at most §2. Therefore, by the union bound, the overall probability of failure is at most 62 + §2/2 =
362/2.

As a last step, we need to discuss the quality of the eigenstate that we prepare. Here we note
that the eigenvalue 1 of D is simple for the equilibrium distribution. Using eigenvector perturbation
bounds for a simple eigenvalue, we find that

(17.48) 1| (x]#)] = O(eo/)-

Therefore it suffices to choose € = O(e7).
Combining the above bounds yields an overall query complexity of

(17.49) o <10g(1/(6”g) 10g(1/5)>
in calls to Op and OL. 0

This shows that we can prepare the stationary distribution using quantum phase estimation
(QPE), providing an alternative to the classical approach of iteratively applying the transition
matrix. However, as Proposition indicates, the overall cost of this quantum method remains
comparable to that of classical algorithm (with respect to the gap +). This motivates a deeper
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question: can we truly accelerate convergence using quantum analogues of Markov chains? We
will see that it is possible to quadratically amplify the spectral gap, thereby demonstrating that
quantum effects can fundamentally speed up the mixing of Markov processes.

17.3. Szegedy’s quantum walk and qubitization

For a Markov chain defined on a graph G = (V, E) with |V| = N = 2", Szegedy constructed
the following quantum walk operator [Sze04], which can be used to achieve quadratic speedup for
a range of problems, using a strategy similar to that in Grover type algorithms in Chapter For
any input vertex j, we construct a state Op |0™) |j), which is the coherent version of the probability
distribution over the neighboring vertices of j according to the transition matrix P. It then swaps
the role of the outgoing and incoming vertices: SWAP -Op |0™) |j). These operators are exactly the
same ones used above for block encoding the discriminant matrix D. However, as we will see below,
after re-arranging the terms, we can quadratically increase the effective gap of the Markov chain.
This means that we can achieve a fundamental advantage by using quantum as opposed to classical
walks to solve problems.

Using the Op oracle in Eq. and the multi-qubit SWAP gate, we can define two sets of
quantum states

[}y =0p |0 |5) = > /Py k) 13)
k

(17.50)
[47) = SWAP(Op [0") |7) = > /Pas 1) IF) -
k

This gives rise to two 2n-qubit projection operators and reflection operators
(17.51) M= Y [W5) @, Ry, =21 — I, 1=1,2.
JE[N]

Using the resolution of identity, the reflection operators can also be written as

(17.52) Rp, = Op(Zn ® 1,)Oh,  Zm := 2/0")0"| — I,.

Similarly

(17.53) R, = SWAP Op(Zn ® I,,)O1, SWAP .

Szegedy’s quantum walk operator is defined as the product of these two reflection operators
(17.54) Uz = Rn, R, ,

which is a rotation operator that resembles that in Grover’s algorithm.
We first note that

2
(17.55) OLULOp = (0; SWAP Op(Zn ® In)) — 0%,

where the circuit for Oz := O}LD SWAP Op(Zn®1,) is shown in Fig. and is often called the walk
operator. Let Up = O}; SWAP Op be the Hermitian block encoding of D in Proposition
Compare this with Fig. [[0.1] we find that the walk operator Oz is exactly the qubitization circuit
associated with the block encoding of D. Therefore, Szegedy’s quantum walk operator is the same
as a block encoding of T»(D), up to a matrix similarity transformation, where Ty (x) = 222 —1 is the
2nd order Chebyshev polynomial. Furthermore, the matrix power O% provides a block encoding
of the Chebyshev matrix polynomial Tox (D).
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naH H H F

Op| |SWAP| |Of,
) ———— —

FI1GURE 17.1. Circuit implementing one step of the Oz operator which corresponds
to the Szegedy walk. This circuit is precisely the same form of the circuit to that
used in qubitization-based simulation algorithms.

From the eigendecomposition D |v;) = A; |v;), for each |v;), the associated basis in the 2-
dimensional subspace is B; = {|0™) |v;),|L;)}. Then the qubitization procedure gives

N JIow
(17.56) 0], = ( i > |
VI-XNN
The eigenvalues of Oz in the 2 x 2 matrix block are
(1757) eii arccos()\i).

This relation is important for the following reasons. By Proposition [I7.6 if a Markov chain is
reversible and ergodic, the eigenvalues of D and P are the same. In particular, the largest eigenvalue
of D is unique and is equal to 1, and the second largest eigenvalue of D is 1 — =y, where v > 0 is
called the spectral gap. Since arccos(l) = 0, and arccos(l — ) & /27, we find that the spectral
gap of Oz on the unit circle is in fact O(/7) instead of O(y). This is called the spectral gap
amplification.

We illustrate how Szegedy’s walk construction can be used to prepare a Gibbs state when the
Hamiltonian is explicitly diagonalizable.

Example 17.12 (Preparing a Gibbs state for explicitly diagonalizable Hamiltonians). Assume that
the Hamiltonian H € C2"*2" can be written as

(17.58) H=UEUT,

where U is a unitary and £ = 23:61 E(7)|7)Xj] is a diagonal matrix of energies. Assume furthermore
that the map |j) — E(j) can be computed in poly(n) time on a quantum computer, and that U
can be implemented in poly(n) time. For inverse temperature § > 0, the Gibbs state is

1 eiﬁH 6’55 +

Thus preparing pg reduces to preparing the classical Gibbs distribution over the eigenbasis of £
and conjugating by U.

Let ¥ = {0,1}". Consider the Metropolis—Hastings chain in Example with symmetric
proposal kernel ) given by single-bit flips and acceptance probability

(17.60) i := min{1, e PEW-EEY
Define the transition matrix P by
(1761) Pji = jSOéji (] 7é Z), P” =1- ZPW

J#i
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Then P is column-stochastic and reversible with stationary distribution

—BE(®)
€ —BE(i
(17.62) i =, Z = Ze BE®)

=
In order to visualize this process, let us assume that we have a Hamiltonian that is already
diagonal in the computational basis:

(17.63) H=(—-2)+2(I—2)—4(I — Zs).
Note that (I — Z) contributes 0 on |0) and 2 on |1). Therefore the energy of |bob1b2) is
(17.64) E(bobiby) = 2bo + 4by — 8bs.

From the state |000), the three single-bit-flip proposals lead to [100) (energy change +2), |010)
(energy change +4), and |001) (energy change —8). Using the Metropolis acceptance rule, the
corresponding acceptance probabilities are e=2#, ¢=#, and 1, respectively. Since Qji = 1/3 for
these proposals, the transition probabilities out of |000) are as shown in the following figure.

(2—e20 —e48)/3

e 28/3

The figure shows the transition probabilities out of ¢ = 000. Substituting the above energy
changes into the Metropolis rule gives the displayed values. In the present example, single-bit flips
connect all vertices of {0,1}3, so the chain is irreducible. Moreover, P;; > 0 for every i (because
proposals can be rejected), so the chain is aperiodic. Therefore the stationary distribution is unique.

Let v > 0 denote the spectral gap of P, meaning that the second-largest eigenvalue of P is at
most 1—-y in absolute value. The associated Szegedy walk has eigenphases related to the eigenvalues
of P: if A € [-1,1] is an eigenvalue of P (equivalently, of the discriminant matrix), then the walk
has eigenphases 4 arccos()). In particular, the smallest nonzero eigenphase is

(17.65) arccos(1 — ) = ©(\/7),

when + is small. Consequently, given an initial state with non-negligible overlap with the coherent
stationary state, one can prepare a state close to

(17.66) )= /i)
i€x
We then append |0™) to this state, yielding

(17.67) > Vmiliy[on).

€Y
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By applying n CNOT gates with the first register as control and the second register as target, and
subsequently applying the unitary U to the first register, we prepare the state

(17.68) S VEUD) i) -
€T
This is a purification of pz. Indeed, tracing out the second register leads to

efﬁH

(17.69) > mUliNilUT = =t

€S

Each step in the Szegedy walk can be implemented using a constant number of evaluations of

E(-) (to compute the acceptance probabilities) together with elementary gates, and the total cost

is poly(n). Suppressing logarithmic factors in the target precision and success probability, the

number of walk steps required to resolve the eigenphase gap scales as (9(1 / \ﬁ) Compared to

Proposition where the number of applications of the transition matrix scales as O(1/7), this
yields a quadratic improvement in the dependence on the spectral gap.

It is worth contrasting this with the results in Section [[3.4] where a quadratic quantum speedup

is obtained under the assumption that a block encoding of H is available via QSVT. The key differ-

ence lies in the input model. In the block-encoding oracle model for H € C2"*2" the cost typically

includes a prefactor of /27 / Tr[e~#H], which is efficient only at sufficiently high temperatures. In

contrast, the Markov chain-based cost model depends on the spectral gap ~ rather than directly on
the Hilbert space dimension, although ~ itself may become small at low temperatures. o

The discussion so far has focused on reversible Markov chains. However, Szegedy’s quantum
walk framework can also be applied to irreversible chains. As demonstrated in the example below,
the quantum walk operator is constructed from the discriminant matrix of an irreversible chain.
While the spectrum of the discriminant matrix generally differs from that of the original transition
matrix, it still encodes useful information. In particular, by comparing the spectra of discriminant
matrices for graphs with and without a marked vertex, one can determine the existence of a marked
vertex.

Example 17.13 (Determining whether there is a marked vertex in a complete graph). Let G =
(V, E) be a complete graph of N = 2™ vertices. We would like to distinguish the following two
scenarios:

(1) All vertices are the same, and the random walk is given by the transition matrix
1
(17.70) P= Nee—r, e=(1,...,1)".

(2) There is one marked vertex. Without loss of generality we may assume this is the 0-th
vertex (of course we do not have access to this information). In this case, the transition
matrix is

- S0, =0,
(17.71) By =%
Pij, j>0.
In other words, in the case (2), the random walk will stop at the marked index. The transition
matrix can also be written in the block partitioned form as

(17.72) P= (é ﬁi) .

Nee
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Here € is an all 1 vector of length N — 1.
For the random walk defined by P, the stationary state is 7 = %e, and the spectral gap is 1.

For the random walk defined by ﬁ, the stationary state is ¥ = (1,0,...,0) ", and the spectral gap
is ¥ = N—1. Starting from the uniform state 7 (as a column vector) the probablhty distribution

after k steps of random walk is P¥r. This converges to the stationary state of P, and hence reach
the marked vertex after O(NN) steps of walks.
These properties are also inherited by the discriminant matrices, with D = P and

~ (1 0
(17.73) D(O }VEET)

To distinguish the two cases, we are given a Szegedy quantum walk operator called O, which
can be either Oz or OZ, which is associated with D, D respectively. The initial state is

(17.74) [o) = [07) (H®™ |0™)).
Our strategy is to measure the expectation

(17.75) my, = (0|0 [¢h) ,

which can be obtained via the Hadamard test.

Before determining the value of k, first notice that if O = Oy, then Oz |[¢bg) = |1)o). Hence
my, = 1 for all values of k. B B

On the other hand, if O = Oy, we use the fact that D only has two nonzero eigenvalues 1 and
(N —1)/N =1 — ~, with associated eigenvectors denoted by |7) and |v) = ﬁ(o, L1...,1)T,
respectively. Furthermore,

1 o [N—T1, .
(17.76) |¢0>=\/7N|0>|7T>+ T|O>|U>-

Due to qubitization, we have

(17.77) O i) = = 0" TL(1) 1)+ 1/ = 10°) Tul1 =) )+ |1).

where | L) is an unnormalized state satisfying (|0™) (0"|) ® I,, | L) = 0. Then using T} (1) =1 for all
k, we have

(17.78) my — % + <1 - ;) Tp(1— ).

Use the fact that Ty (1 —7) = cos(k arccos(1 — 7)), in order to have Ty(1 — ) ~ 0, the smallest k
satisfies

7r 7 _m/N
2arccos(1 —7) 227 22

\/g], we have my =~ 1/N. Running Hadamard’s test to constant accuracy

(17.79) ke~

allows us to distinguish the two scenarios.
Alternatively, we may evaluate the success probability of obtaining 0™ in the ancilla qubits, i.e.,

(17.80) p(0") = [|(10™) (0"] © 1,,)O* [sbo) |-
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When O = Oy, we have p(0™) = 1 with certainty. When O = Oz, according to Eq. (17.77)),

(17.81) p(0") = % + (1 - ;) T2(1 — ).

So running the problem with k = f’;g}, we can distinguish between the two cases.

It is natural to draw comparisons between Szegedy’s quantum walk and Grover’s search. The
two algorithms make queries to different oracles, and both yield quadratic speedup compared to
the classical algorithms. The quantum walk is slightly weaker, since it only tells whether there is
one marked vertex or not. On the other hand, Grover’s search also finds the location of the marked
vertex. Both algorithms consist of repeated usage of the product of two reflectors. The number of
iterations need to be carefully controlled. Indeed, choosing a polynomial degree four times as large
as Eq. would result in m & 1 for the case with a marked vertex.

Another possible solution of the problem of finding the marked vertex is to perform QPE on the
Szegedy walk operator O (which can be Oz or 62) The effectiveness of the method rests on the
spectral gap amplification discussed above. We refer to [Chi2ll Chapter 17] for more details. ¢

17.4. Glued tree problem and continuous time quantum walk

The continuous time quantum walk on the glued tree is one of the most important quantum
algorithms. This is because it provides an example of an algorithmic task wherein there is a provable
exponential separation in quantum and classical query complexity for solving the problem. Further,
this algorithm was discovered first within the paradigm of continuous time quantum walks rather
than using existing discrete paradigms. Note that this does not yet imply that BQP # BPP
because this exponential separation is relative to an oracle. Nonetheless, an exponential separation
in query complexity strongly suggests that something is profoundly different between the quantum
and classical computation.

17.4.1. Glued tree problem. The glued tree problem is a graph traversal problem that
consists of two binary trees of depth n (our convention is that the root has depth 0) rooted at two
vertices that we will label s and ¢ drawn from an exponentially large set of labels. These two trees
are then glued together by a random bipartite cycle graph that alternates between the leaf nodes
of the two balanced binary trees (see Fig. [17.2).

Definition 17.14 (Glued Tree Graph). A glued tree graph G(V, E) of depth 2n is constructed in
the following manner.

(1) Divide the vertex set such that V- = V5 |JV; such that Vs and V; are disjoint sets of vertices
of size 2"t —1, and construct G, = (Vi, E,) as a balanced binary tree of depth n rooted at
a vertex s, and similarly construct Gy = (Vi, Et) as a balanced binary tree graph of depth
n rooted at t.

(2) Construct a random bipartite cycle graph, C = ((Ls\J Lt), Fc) where Ly and Ly are the
sets of leaf nodes in the tree G5 and Gy. Specifically, for the bipartite cycle graph we have
that if x € L then the neighbors of x are only in L; and vice-versa and every verter in
the graph has degree precisely 2.

(3) Construct the graph G = G4|JC|J Gy where the graph union is formed by constructing
the union of the vertex and edge sets of the constituent graphs.

The goal of the problem is to find the label of ¢ using as few queries to an oracle that provides
the labels of all vertices adjacent to any requested labeled vertex. This is an example of the hitting
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O
O
O
O

(s)—0O

FIGURE 17.2. (Top) Glued-tree graph with parameter n = 3, with entrance node
s on the left and exit node t on the right. The thick lines in blue color indicate the
edges of the bipartite cycle graph. (Bottom): Column-space representation, where
each vertex represents all nodes in the corresponding column of the original graph.

problem. The aim of the bipartite cycle graph is to create a maze in which a classical algorithm
can easily get lost.

First, note that the exit label ¢ here cannot be found by brute force due to the exponentially
large size of the graph. Even Grover’s algorithm would take an exponentially long time to find the
exit vertex.

Algorithm 17.1 Classical Markov Chain for Glued Trees

Input: Oracle that yields the neighboring vertex of any vertex in the graph G = (V, E) where V
is the vertex set and E is the edge set and label of the starting node label(s).

. Initialize  + label(s).

while z # label(t) do
Query oracle to get the neighbor set of  N(z) := {y : (z,y) € E}.
Draw vertex ' € N(z) uniformly over the set N(x).
x .

end while

Next, intuitively we expect as n increases for any random walk algorithm to become increasingly
trapped near the center of the graph. To see this, consider the following Markov chain Monte Carlo
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algorithm (Algorithm. At first, this algorithm can efficiently explore the graph. After starting
at s, it moves to an adjacent vertex which will always be closer to the vertex ¢. In the second step,
because the Markov Chain does not have memory, it will have a 1/3 probability of moving back
to s and a 2/3 probability of moving closer to ¢. This situation reverses, however, after reaching
the center of the graph. Now the probability of progressing towards the label ¢ is only 1/3 and the
probability of returning closer to the center is 2/3. This means that the walker tends to be trapped
near the center for a long time without moving towards the label ¢.

We may analyze the long-time behavior of the Markov chain by examining its stationary distri-
bution. The specific vertex occupied by the random walker is not essential. Rather, what matters is
the column in which the walker resides. Since the walker begins in the first column and terminates
in the last, the individual vertex labels in the intermediate steps carry no additional information.
Consequently, it suffices to track the column-level transitions rather than individual vertex tran-
sitions. When we aggregate the graph by columns, the graph simplifies dramatically to a path
graph, as shown in the lower panel of Fig. [I7.2} Labeling the first n + 1 columns as 0, ...,n and
the remaining n + 1 columns as n + 1,...,2n + 1, the transition probability from the column 7 to
the column j is:

1 ifi=0and j=1,orifi=2n+1and j =2n

2/3 fl1<i<nandj=i+l,orifn+1<i<2nandj=i-1
1/3 ifl<i<nandj=i—1,orifn+1<i<2nandj=i+1"
0 otherwise

(17.82) Pji =

The stationary distribution 7 can be obtained from the detailed balance condition Pj;m; = P;j7;.
We have that 7 - (1) = 71 - (1/3) and similarly, m - (2/3) = 72+ (1/3) and so forth. We then see that
mn(2/3) = mp+1(2/3) which implies that the two columns in the middle of the graph must have
the same probabilities (as anticipated from symmetry). From this, we see that the following is a
stationary distribution that satisfies the detailed balance condition and further because the graph
is irreducible we know that the state is unique.

(17.83) m=[1/(3-2"" 1), 1/2" 71 . 1/2,1,1,1/2,.. ., 127 1/(3 - 27 )] |-

As the stationary distribution has exponentially small probability at the vertices s and ¢, the walker
sampled from the stationary distribution will have a vanishingly small probability of reaching the
exit vertex ¢. Thus, even if we are able to efficiently prepare the stationary distribution, it does not
help us solve the hitting problem. This also implies that Szegedy’s quantum walk, which accelerates
the process of reaching the stationary distribution, cannot resolve this problem either.

In fact, it can be shown that actually no classical algorithm can find the label of the exit vertex
t using a sub-exponential in n number of queries to the graph. The proof of this theorem involves
a series of reductions and is omitted here.

THEOREM 17.15 (JCCD™03, Theorem 6]). For the glued tree problem of depth 2n, any classical
algorithm that finds the exit vertex t with success probability at least Q(27™/%) must make at least
Q(2”/6) queries to the adjacency matrix, where the adjacency matrix serves as an oracle that returns
the neighbors of a vertex x € V.

17.4.2. Continuous-time quantum walk. For an undirected graph G = (V, E), its adja-
cency matrix A is a real symmetric matrix with

1 if FE
(17.84) Ay =4 " (z.y) € B,
0 otherwise.
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Therefore A can be viewed as a Hamiltonian that defines a quantum dynamics. The continuous-
time quantum walk refers to the following time-evolved state

(17.85) (1)) = e~ [1(0)) .

We first note that, unlike in the classical random walk, a continuous-time quantum walk cannot
drive an arbitrary initial state to the stationary distribution. The only stationary states are the
eigenvectors of the adjacency matrix A. To solve a hitting problem, that is, to reach a target state
|¢), we instead evolve the system for a random amount of time chosen uniformly from the interval
[0,T]. The success probability is then given by the time-averaged transition probability, computed
as

(17.56) =7 | Il

As noted earlier, the adjacency matrix generates transitions between the columns of the glued
trees graph. Specifically, let |C;) denote a quantum state in column j which is supported over the set
of all vertices that are graph distance j away from s (where the graph distance gives the minimum
number of edges that need to be traversed to go between two vertices). Specifically, we have that
if z is in the second column of the glued tree and y is in the fourth column then A, , = 0 because
the two vertices are not adjacent. Similarly, if x,y are in the same column then A4, , = 0 because
the glued tree has no edges between the same column of vertices. Thus the adjacency matrix only
leads to non-trivial dynamics in the columns of the matrix as does the graph Laplacian.

This observation allows us to define a column space for the graph. In particular, if we let C}
be the set of vertices in column j then

(17.87) IC}) = > )

Vv |C zeCy

This notation also then directly implies that |Cy) = |s) and |Capq1) = |t). We then have that in
this sub-space of column states

(Cj1] A]C)) = |C oA > D (@l Aly)
+1 ze€Cji1 yel;y
2|0y 0< i<
(17.88) _ ) Vieane TSl =
' Gl n+1<j<2n.

V1Cji+111C;|

\/5 ]7&”7
2 7 =n.

This is true because if we consider all columns less than n then the subsequent column will contain
twice as many vertices in it than the previous column. Past this point there will be half as many
in every subsequent column. This implies that |Cji1]| = 2|C;| if j < n, |Chii| = |Cyl, and
|Cj4+1| =1Cj|/2 if j > n, and the final claim in Eq. follows by substitution.

Furthermore the matrix A will only generate transitions between vectors within this space. The
simplest way to see this is by considering the following complete basis whose elements are defined
for any p € Z¢;|

(17.89) CP) =
z e

e~ 127mpr;(2)/C;] ),
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where 7;(z) gives the location of the vertex z in a sorted list of the vertices in the set C; (the
particular sorting order does not matter for the definition). As argued in our discussion of the
quantum Fourier transform, these states form an orthonormal basis in each column C; which
implies that (CJ(-q)|CJ(p)> = Jpq. Also note that |C](O)> = |C;). Similarly, we see that the inner
product between any two vectors from different columns is zero because they contain disjoint sets
of vertices. We then have that for any j <n—1landp>0

|C T Z Z e~ 12mpri+1(2)/1C; 41| (z| Aly)
Vv J+1 z€Cjt1 yel,y

= L Z e—iQTrij+1($)/|Cj+l‘ =0.
1CillC5l &7,

The same argument can be repeated for the remaining cases, which shows that the matrix A does
not generate transitions between the p = 0 vectors of this complete basis and the remainder of the
space. Thus as the vector space is complete, we then have that set {|C}) : j =0,...,2n+ 1} forms
a basis for A*|Cy) = A¥|s) without needing to include p > 0. Thus by Taylor’s theorem, it also
forms a basis for every state of the form e~#4*|s) for t € R.

From this perspective, we can see that the A matrix is the adjacency matrix for a path graph
when represented in the column space, as illustrated by Figure If we were to examine the
dynamics in the continuum, A could be easily diagonalized with the eigenvectors being sine/cosine
functions with appropriate periods. However, this intuition breaks down, apart from the obvious
fact that we are focusing on a discrete problem, due to the defect at the center of the graph where
<Cr(£21| A |Cy(,,p)> = 2 rather than v/2.

Now let us consider the reflection operator R such that for any j < n

(17.91) RI|C;) = |Cony15) -

(P 1A1C) =
(17.90)

Hence the set {|C})} also remains closed under applications of R. We then further have that
(17.92) AR|C;) = RA|Cj) .

If we define A and R to be the restriction of the operators onto the subspace formed by the span
of these column space vectors, then [A, ]:'i} = (0. Then the eigenvectors of A can be re-written in
terms of simultaneous eigenvectors of A and R. We can find eigenvectors by noting that due to
the required symmetry (or anti-symmetry) under reflection imposed on any eigenvector of R, the
eigenvectors must also possess the same reflection parity. Thus, a reasonable guess to make is that
the solution will be a linear combination of sine functions, with appropriate periodicity, and with
the parity of the solution flipping at j = n + 1 if the eigenvalue of Ris negative for the eigenvector
in question and positive otherwise. This guess can be written as [CCD™03]

2n+1
(17.93) By =Y s G+ D))+ 3 sinloE@n+2 - ) 105)
j=0 j=n+1

with eigenvalues Ef =22 COS(p,:i:) where p,f is a solution of the equation
. 9 +

sin((n £ 2008) _

sin((n + 1)p; )

We will also prove these relations below.

(17.94)
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Algorithm[17.2)describes a quantum algorithm for solving the glued tree problem using continuous-
time quantum walk. The walker is initialized in the known state |label(s)), and the goal is to reach
the target state |¢) = |label(t)). Crucially, this target state is not directly accessible; it can only be
identified via a projective measurement onto |¢). Similar to Grover’s search, the ability to verify a
candidate label ¢ does not imply knowledge of how to construct or locate the state |label(t)).

Algorithm 17.2 Continuous-Time Quantum Walk for Glued Trees

Input: Maximum simulation time T'; oracle that implements Hamiltonian evolution e for any
u € [0,T], where A is the adjacency matrix of the glued tree graph; oracle that performs projective
measurement onto P = [label(¢))label(t)].
1: Prepare the initial state [1/(0)) = [label(s)).
2: Sample a time w uniformly at random from the interval [0, T], and evolve the state as |1)(u)) =
e A [1p(0)).
3: Perform a projective measurement onto P. If the outcome is successful, return label(¢) in the
computational basis. Otherwise, repeat the procedure.

—iAu

To justify the efficiency of Algorithm for solving the glued tree problem, we analyze the
quantum dynamics of the continuous-time walk in the column space of the graph. In this reduced
representation, the quantum walk exhibits coherent propagation from the entrance to the exit, in
stark contrast to the classical random walk which becomes trapped near the central region. As a
result, we can find the exit vertex label with high probability using only poly(n) quantum queries
to the Hamiltonian and measurement oracles (Theorem .

Proposition 17.16. For the glued tree problem of depth 2n, let min |E — E’| be the minimum
difference between any two eigenvalues ofA (that is, A restricted to the column subspace). Then for
any T > 0, the time averaged probability of the continuous time quantum walk transitioning from
the entrance, |s), to the exit, |t) is bounded below as

2
Tmin |E — E'|’

(17.95) 1/T|<t|em“|5>’2du> L
' T Jo T 2n+2

ProoF. We will argue by symmetry and the Cauchy—Schwarz inequality that the time averaged
probability of transitioning from the entrance to the exit is only polynomially small in the depth of
the glued trees. As a unitary process cannot have a unique fixed point for all inputs, we compute
this probability in terms of a time averaged probability of finding the exit node for times chosen
uniformly over the interval [0,7T]. Specifically we have that if we expand the time average in an
eigenbasis |E) of A,

(17.96)
T T
T, Wl ) = 52 [ 1) ) (Bl o) 5
_ 2 )2 1 7ei(E_E/)T_1 ! s) (s|E’
=SB B+ 7 3 Sy () 10 (Bl (o).

Next using the symmetry condition set by the fact that |E) is a simultaneous eigenvector of the
reflection operator R, we know that | (t|E)|* = | (s|E)|*. Thus the Cauchy-Schwarz inequality
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implies that

(17.97) 2n+2)) |(tE)* > <Z|<tE>|2> =1.
E

Hence
(17.98) STIHE [Els) > 1/(2n+2).

Repeating a similar argument using the Cauchy—Schwarz inequality allows us to bound the term
where E # E’ by

(17.99) % >

E+£E'

ei(E—E')T -1 2

TWE-F) (t|E) (E'|t) (Els) (s|E")| < Tmin|E— B

Thus from the triangle inequality

1 2
(2n+2) Tmin|E—E'|

1 /T . ,
(17.100) 1 / (£ =A% 5) s[4 ) du >
T 0
|

The above result shows that if the eigenvalue gap is large enough then we can simply simulate
the evolution under A for randomly chosen evolution times ¢ chosen from [0,7] and then if T is
large enough then the probability of finding the exit is (1/n). This means that the number of
trials needed to find the exit vertex ¢ is geometrically distributed with a mean of O(n). Thus we
can show that the total evolution time needed to find the label of ¢ is polynomial if the gap is at
least polynomial. The following lemma demonstrates precisely such a claim.

Lemma 17.17. Let A be the restriction of the adjacency matriz to the column subspace described
in Proposition 17.16. The minimum eigenvalue gap between any two eigenvalues of A obeys

2\/5#2

17.101 min |[E — E'| > +O(1/n").
(17.101) B~ B> s +Ol1n)
PROOF. The eigenvalue equation implies that
(17.102) (C5| ABE) = 2v/2 cos(p) (G| EE)
Then by explicitly evaluating the action of the adjacency matrix on the column space vectors,
(17.103) V2{Crial BE) + (Cal EE) = 2cos(p) (Crsa|BE).
Similarly, the use of ((17.93|) further allows us to see that
(17.104) +v2sin((n + 2)pi) + sin((n + 1)pif) = 2sin((n + 1)p) cos(pi).
This yields the following non-linear expression for the quantization condition p,
3 ) +

(17.105) sin((n + 2)py;) = ++/2.

sin((n + 1)pf)

as alluded to previously.
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Let us consider for simplicity the negative branch of the expression. An analytic solution to
this expression is difficult to obtain, however, we can find an asymptotic solution for large n. In
particular, let

(17.106) p, =7m(k+1)/(n+1) =0

where J;, = 0 corresponds to the root of sin((n + 1)p, ) so we are looking, in essence, for solutions
that are perturbations away from the k*® root of the denominator which is justified because the
function will vary rapidly in this vicinity as it approaches the singularity at d; = 0. Expressing the
eigenvalue relation in this limit gives

(k+ 1)

(17.107) sin((n 4 1), — CESY

+ 0k) = —V/2sin((n + 1)d).

Expanding &;, in powers of 1/(n + 1) yields 6, ' = co + ¢1/(n + 1) + O(1/n?). Substituting this
into (|17.107) and eliminating any terms that are first order or higher in 1/(n + 1)

(17.108) —V/2sin(co) = sin(co).

This expression must hold for all n thus we must have that ¢ = mmx for integer . For simplicity,
we choose the trivial root of ¢g = 0. The expression for all first order terms in 1/(n + 1) (neglecting
all higher order terms) is

: c1 . c1 (k+1)m
—V2sin| —— | = sin —
n+1 n+1l (n+1)

(17.109) = V2 (nil 1) +0(1/n) = (ni - - &’;Tf;) +0(1/n?)

This expression must be true for all n sufficiently large. As a result, the only way this expression
can asymptotically hold is if
(k+1)m (k+ )7

(17.110) T T TENILEET +0(1/n%).

We can apply similar reasoning to find the positive roots are asymptotically

_(k+)m (k+1)m
P = m+1) 1 vDmt1)y +0(/n).

(17.111) P

From these expressions, we note that the two closest solutions to p,; will both be positive solutions
corresponding to the same k£ and the subsequent one. This gives us that the gap between the two
nearest p,f to p, is

(k+1)mv/2 (k+ 1)
1+v2)(n+1)2" (14 v2)(n+1)2

(17.112) A}, := min (( ) +0(1/n?).
The smallest gap corresponds to k = 0 which yields

™

(1+V2)(n+1)?

(17113) AInin = =+ O(l/n3)
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The minimum eigenvalue gap then can be found by substituting this into the eigenvalue expression
to find that the eigenvalue gap is minimal for ¥’ = 0 and k£ = 1 and hence is of the form

min(|Ey, — Ew|) = 2v2(cos(p} (k+ 1)) — cos(py, (K +1)))
> 9v3 (cos(rt) — cos(pp)

Pi-ro g
22 / Ex cos(pg + s)ds
0 s

p
p

Pl —Po
= 2V2 / sin(pg + s)ds
0

= 2v2[pf —pq |Isin(py (k + 1)+ O(1/n*)

2o . T
S et (n+ 1> +ou/m)
S 2\/§7T2

1+V2)(n+1)3 +0a/n)

(17.114)
O

From this result we have a bound on the minimum eigenvalue gap for the adjacency matrix.
This allows us to then use this result to prove a bound on the total time needed to find the vertex
label of ¢ with inverse polynomial probability in .

THEOREM 17.18. For the glued tree problem of depth 2n, it is sufficient to choose T = ©(n?)
so that the time averaged probability of the continuous time quantum walk transitioning from the
entrance, |s), to the exit, |t) is bounded below by 1/4(n + 1).

PROOF. Proof follows directly from substituting the result of Lemma [17.17] into Proposi-
tion [17.16] and requiring that the higher-order terms in the probability expansion add up to at
most half of the probability that would be seen in the limit of 7" — oco. |

Notes and further reading

Classical Markov chains, including both discrete-time and continuous-time variants (the latter
not discussed here), provide the foundation for quantum walks. Their convergence properties,
mixing times, and spectral characteristics are treated in [Liu0ll, [LP17], and they underpin the
definition of the discriminant matrix used in Szegedy’s quantum walk [Sze04]. Historically, Szegedy’s
construction directly inspired the development of block encodings for Hermitian matrices, with
applications in Hamiltonian simulation [BC12| and quantum algorithms for solving linear systems
of equations [CKS17]. As discussed in earlier chapters, the Szegedy walk operator is now best
understood as a special case of qubitization; see also [AGJ21].

We introduced both discrete-time and continuous-time quantum walks. These two models
differ significantly in their operational mechanisms; for a comparative overview, see [Chil0]. The
exponential query advantage of the continuous-time quantum walk was demonstrated in the glued
trees problem |[CCD™03|, which subsequently motivated further research in quantum adiabatic
algorithms [SNK12| I(GHV21].
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