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Part 1

Background



Part I of this book sets the stage for our exploration of quantum algorithms for scientific compu-
tation by asking two questions: why should we expect quantum computers to offer a computational
advantage, and what are the basic mathematical and physical principles that govern them?

Chapter [I] tackles the first question. We begin by tracing the conceptual origins of quantum
computing and formalizes the notion of quantum speedup. We then introduce a quantum advantage
hierarchy, which classifies applications based on the strength of evidence for quantum speedup.

Chapter[2|addresses the second question by providing a concise overview of elements of quantum
computation. We introduce the postulates of quantum mechanics, the circuit model, and the density
operator formalism. We also cover concepts such as the no-cloning theorem and the principles of
deferred and implicit measurement. The chapter concludes by introducing the operator formalisms
for spin, fermionic, and bosonic systems, which are essential for describing the physical problems
encountered in scientific applications, and presents several example Hamiltonians that will serve as
recurring illustrations throughout the book.



CHAPTER 1

Quantum advantage in scientific computation

In this chapter, we trace the conceptual origins of quantum computing and explain how the
physical nature of information suggests that quantum mechanics may offer computational power
beyond classical Turing machines. We then formalize the notion of quantum speedup. Any claim
of quantum advantage requires accounting for all relevant computational costs, including data
input and output. To structure this assessment, we introduce a quantum advantage hierarchy that
categorizes problems based on the existing evidence for significant speedups. The chapter concludes
with a brief discussion of quantum error correction, and why exponentially large state spaces do
not force exponential error accumulation: in fault-tolerant computation, it suffices to implement
each gate to an accuracy that scales inversely with the gate count.

1.1. Origin and Justification for Quantum Computing

Our aim in this textbook is to provide a concrete understanding of not only how quantum algo-
rithms work, but more importantly why they work and what impact scalable quantum computers
are expected to yield in both the scientific and industrial worlds. Underlying this inquiry, however,
is a deeper philosophical question about what it means to compute and why probing this question
inevitably led to the idea of quantum computing.

Modern computer science traces its roots back to the early 20th century, with luminaries such
as Alan Turing, John von Neumann, and Claude Shannon struggling to mathematically describe
how information is stored and processed. Turing’s great realization was that all such computers
could be mathematically modeled by an abstract device called a “Turing Machine”. The Turing
machine was inspired strongly by the human “computers” (clerks) of the day: it possesses a tape
for storing information and a read head that moves along the tape, updating the data on the tape
in accordance with a stored program [Tur36].

John von Neumann is often credited with providing the first modern computer architecture
that resembles modern computers, featuring dedicated memory, arithmetic and logic units, and
input/output capabilities [VN93|. This architecture provided a far more realistic model of the
postwar computers that were emerging, but conceptually these devices were no more powerful than
the original Turing machine. Specifically, a machine is said to be “Turing Complete” if any function
that a Turing machine can compute can be computed on the device. The von Neumann machine
(given sufficient memory) can be shown to be Turing Complete, and in fact, a Turing machine can
also simulate a machine implementing the von Neumann architecture. In this sense, the device
is more than just Turing Complete: it is actually Turing Equivalent. Indeed, all known classical
computational systems are Turing equivalent in this sense. This observation means that, effectively,
every computational system in the universe could be understood as a Turing machine.

The formal study of algorithms revealed that not all tasks are fundamentally as easy for a Turing
Machine. Some tasks, such as deciding whether a program halts, are strictly uncomputable [Tur36].
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8 1. QUANTUM ADVANTAGE IN SCIENTIFIC COMPUTATION

On the other hand, problems such as multiplying two n-bit numbers can be performed using a
number of steps that scales polynomially in n. Still other problems, such as factoring an n-bit
integer into a product of primes, can have their solution wverified in polynomial time, but to date,
no efficient algorithm has been found on a Turing machine that can find these factors in time that
is polynomial in n (despite centuries of study). This suggested that a more fine-grained notion of
computability needed to be considered than simply “computable” or “uncomputable”. Instead, it
was seen to be useful to categorize computational tasks that can be computed on a Turing Machine
using a polynomial number of operations as “efficiently computable” and all others as inefficient.

This categorization led to a bold hypothesis, which we will later criticize, known as the Ex-
tended Church-Turing Thesis. This statement says that any reasonable model of computing
can be simulated using a polynomial number of computational steps by a probabilistic Turing ma-
chine. The example of von Neumann’s model of computing being simulatable in polynomial time
by a Turing machine has indeed been reinforced by other models of computing based on physical
phenomena, including billiard balls and the Game of Life. However, a challenge would emerge from
an unlikely source: fundamental physics.

At the same time as computer science was being developed, a revolution was happening in
physics. It had long been observed by physicists such as Planck and Einstein that classical physics
could not be used to explain why heated objects (blackbodies) glowed red or how solar panels
worked. Indeed, realistic models of these effects based on Newtonian principles failed to predict
experimental observations. In the case of the stove elements, this failure was so radical that it
predicted that infinite energy would be emitted by a stove burner (the “ultraviolet catastrophe”). A
new type of model, formalized by von Neumann and others, was proposed to describe these systems
that we now know as quantum mechanics (so named for its prediction that light should be emitted
or absorbed in discrete quanta of energy). This language ultimately became the foundation of all
fundamental physical law (gravitation being a notable exception).

Subsequent questions from Einstein, Podolsky, Rosen, and developments by Bell showed that
quantum mechanics could not reasonably be described by classical local realism. Specifically, a
phenomenon known as entanglement, which describes the correlations between measurement out-
comes of coupled quantum systems, could not be described by classical mechanics without incor-
porating a non-local mechanism for updating measurement results. This work began to seriously
question whether quantum systems could be plausibly described as mechanical systems. This,
in turn, would much later be seen to question the Extended Church-Turing Thesis, as a Turing
Machine is at its core a classical mechanical object that relies on local interactions.

A surprising feature of quantum mechanics is that its connection to computing seems to have
taken several decades to be appreciated, despite us owing John von Neumann a great debt for
formalizing both theories. With the benefit of hindsight, it is clear that with the appreciation of
the fact that information is physical, quantum computing could have been developed as early as
the 1940s.

The physical nature of information was elucidated most clearly by Shannon and Landauer.
Shannon showed that the information content of a signal takes the same form as entropy, or disorder,
in thermodynamics. Inspired by this connection, Shannon proposed that the two concepts were the
same, establishing a link between his mathematical theory of information and thermal physics.
Indeed, according to a widely circulated anecdote attributed to Shannon in an article by Tribus,
von Neumann may have been agonizingly close to realizing the connection between physics and
information processing [TMT7I]:
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“What’s in a name? In the case of Shannon’s measure the maming was not
accidental. In 1961 one of us (Tribus) asked Shannon what he had thought about
when he had finally confirmed his famous measure. Shannon replied: ‘My greatest
concern was what to call it. I thought of calling it ‘information’, but the word
was overly used, so I decided to call it ‘uncertainty’. When I discussed it with
John von Neumann, he had a better idea. Von Neumann told me, ‘You should
call it entropy, for two reasons. In the first place your uncertainty function has
been used in statistical mechanics under that name. In the second place, and
more importantly, no one knows what entropy really is, so in a debate you will
always have the advantage.”

Indeed, Shannon’s work provided strong evidence that the two concepts are in fact the same
and that thermodynamics had been telling us a secret lesson about information all along.

Landauer took this insight one step further by showing that thermodynamics places limitations
on computers. Specifically, he showed that any computer that performs a calculation at finite
temperature must pay an energy price for every bit of information erased to avoid violating the laws
of thermodynamics [Lan61]. Similar work studying Maxwell’s Demon, a hypothetical agent that
can raise and lower a gate that allows fast gas molecules through while blocking slow molecules,
revealed that if the thermodynamic cost of measuring and computing were ignored, the laws of
thermodynamics could be violated by such an agent [Ben87]. These works showed a strong link
between information and physics and laid the foundation for the link to quantum computing that
would soon follow.

It took the insight that information is physical to begin to motivate incorporating the formalism
of quantum mechanics into the language of computer science. Quantum computing was born of
this synthesis and was articulated independently by Manin [Man80| and Feynman [Fey82]. The
justification that they had was the fact that the description of the state space of even small quantum
systems scales exponentially with the number of quantum bits. This means that a naive simulation
of the laws of quantum mechanics would require exponentially more time on a classical computer
than the physical system itself requires to evolve. This work opened the possibility that a computer
that exploited the full capabilities of quantum mechanics may be, for certain problems, exponentially
more powerful than the Turing machine. This in turn caused the scientific community to begin to
doubt that the Extended Church-Turing Thesis holds, and now the belief that any realistic model
of computing is polynomially equivalent to a quantum computer has become widespread after the
discovery of the fast factoring algorithm of Shor [Sho99], the quantum simulation algorithms of Lloyd
and others [LI096], as well as the quantum advantage proposals of Aaronson and Arkhipov [AA11].

At a high level though, quantum computing suggests something potentially even stronger. If
the Extended Church-Turing Thesis is replaced by a quantum version, then all of nature could
be described or simulated in polynomial time by a massive quantum computer. In this sense, the
strong link between information and physics reaches a crescendo with quantum computing, which
suggests that all of physical law could be thought of as an algorithm that is run on a quantum
computer, and the set of tasks that a quantum computer cannot perform efficiently are precisely
those that nature also cannot solve at scale. For this reason, the search for exponential algorithmic
advantage plays a central role in quantum computing, not only because it provides us with new
opportunities for our computers, but also because it reveals the limitations that physical systems
impose on information processing, and in turn, the limitations that information processing places
on physical systems. Indeed, the main purpose of this text is to shed light on the origin and utility
of quantum speedups for scientific applications.
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1.2. Quantum speedup

The primary aim of exploring quantum computation is to attain a quantum speedup or
quantum advantage, thereby enhancing problem-solving capabilities in scientific computation.
At first glance, it seems that n qubits can be used to represent a superposition over 2" classical basis
states, and significant quantum speedups should be expected everywhere. However, the situation
is much more ambiguous: does the quantum algorithm require an exponential amount of classical
information to be passed into the quantum computer? Does the quantum algorithm generate an
exponential amount of information that needs to be extracted out of the quantum computer? If the
size of the classical state space is 2™, is it mandatory for the classical algorithm to go through all
states in order to find an approximate solution to a desired precision? If the size of the classical state
space is only n but the computational cost of an existing algorithm is 2", is it possible for a future
classical algorithm to reduce this cost to poly(n)? Readers may be curious about how to evaluate
and answer these questions before dedicating substantial time to learning quantum computation.
Indeed, these discussions can occur at a relatively broad level, largely circumventing the need for
intricate quantum jargon.

One way to formulate the quantum speedup (as a function of the system size n) is

log(min Cost(classical))
log Cost(quantum)

(1.1) Quantum speedup =

The presence of the logarithm can be intuitively understood as follows. For a task with a “system
size” n, assume that the classical and quantum costs are (asymptotically) proportional to n®e and
n®, respectively. Then as n — oo, the quantum speedup defined according to Eq. is ae/ay.
For instance, a quadratic quantum speedup means o/, = 2, a cubic quantum speedup means
ac/ag = 3, and so on. If o — 00 as n — oo but ¢, remains bounded, the quantum speedup is
superpolynomial. There is also a concept called “exponential quantum advantage” (EQA), which
suggests that the classical cost increases at least exponentially in n but the quantum cost increases
only polynomially.

Rigorous proof of EQA can be extraordinarily difficult for practical problems. For example,
given two prime numbers p, g, the product m = p-q can be easily carried out on a classical computer.
However, if we are only given the integer m, finding the prime factors p, ¢ can be very challenging.
This is called the prime factorization problem and has wide applications in cryptography. The
difficulty of the prime factorization problem can be measured in terms of the number of bits in
m. An integer m can always be expressed in binary format. For instance, 12 = 23 + 22 can be
represented as 1100 in binary format, where the number of bits n is 4. The most efficient classical
algorithm, judged by asymptotic scaling in n, is the General Number Field Sieve method [Bri9§].
The computational scaling is proportional to exp[cn% (log n)%], which increases superpolynomially
with n. Shor’s celebrated algorithm [Sho94] [Sho99] addresses the same problem on a quantum
computer, with its cost being proportional to n?lognloglogn, i.e., only polynomial in n. On
one hand, this provides a very clean (and so far the cleanest) quantum solution with a significant
quantum speedup that is superpolynomial in n. On the other hand, even for this problem, the
speedup is not yet exponential in the strict sense above. For practical purposes, we will be (more
than) content with a superpolynomial quantum speedup.

In principle, the classical cost should be minimized with respect to all classical algorithms,
including algorithms that exist today, and those that will ever be developed in the future. A useful
lower bound of the cost of classical algorithms may be obtained for some simple problems. However,
this undertaking is exceedingly challenging for the majority of scientific computing problems. For
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instance, we do not know whether the problem of prime factorization can or cannot be performed in
polynomial time. Therefore, for practical purposes, we will further be satisfied with an estimate of
min Cost(classical) by weighing both theoretical and empirical evidence, based on ezisting classical
algorithms.

Although quantum mechanics is frequently described as a probabilistic theory, a key component
is actually the quantum wavefunction (or quantum amplitude). This can be roughly equated to
the square root of a probability density, along with phase information. This difference between
probability density and quantum amplitude often forms the basis of the quadratic speedup, i.e.,
ac/ay = 2. The most prominent example of this is Grover’s algorithm for unstructured search
(see 77). Although a quadratic speedup is valuable, it is unlikely that this speedup alone will be
the most groundbreaking application of early fault-tolerant quantum computers. Hence, we use the
loose term significant quantum speedup to refer to speedups greater than quadratic (such as cubic
or quartic), or better, to superpolynomial speedups.

The quantum cost can be roughly calculated as the total gate complexity multiplied by the
number of repetitions due to the measurement process. It is also conceptually useful to divide it
into the following three components:

(1) Input cost, or the cost for preparing the input quantum state. Without loss of generality,
the quantum algorithm starts from a clean quantum state such as |0™), and the input
state to the quantum algorithm, denoted by |1;), can be prepared using a unitary matrix
Ur as |¢r) = Ur|0™). Then the input cost is the gate complexity for implementing
U;. Sometimes a quantum algorithm requires multiple accesses to the input oracle Uj
in a coherent fashion. In this case, the input cost is given by the gate complexity for
implementing Uy multiplied by the number of coherent initial state preparations.

(2) Output cost, or the cost of quantum measurement. Without loss of generality, after an
appropriate basis change the measurement can be taken to be performed on one or multiple
qubits in the computational basis at the end of an algorithm. Then the output cost is the
number of repetitions M needed to run the quantum algorithm.

(3) Running cost, or the cost of coherently running the quantum algorithm once. This is given
by the gate complexity for implementing the algorithm (excluding the cost for implement-
ing Uy).

One reason for separating the total gate complexity into the input cost and the running cost
is that it allows us to distinguish the case when the overall cost is dominated by preparing the
input, rather than by coherently executing the rest of the algorithm. In many settings, the input
information is classical, and the nature of its complexity can be very different from that in the
quantum algorithm. There is also an important scenario in which the input state |¢;) is not
generated by a known circuit Uy, but is produced by a quantum experiment. In this case, the
relevant input cost is often the number of times the experiment must be repeated to prepare |1;) (a
sample complexity), rather than the gate complexity of a circuit. For instance, quantum learning
theory studies how efficiently one can infer properties of an unknown quantum state from state
preparations and measurements. Throughout this book, we focus on computational tasks in which
quantum and classical algorithms have access to the same amount of classical input information
and are required to output classical information, and we will not discuss quantum learning theory
in detail (except basic concepts such as parameter estimation in Chapter .

Ultimately, all quantum algorithms must output information that can be processed through
classical means via quantum measurements. If the quantum state itself is the end product, the
procedure to recover the quantum state on a classical computer is called quantum state tomography.
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The cost of the state tomography procedure usually grows exponentially relative to the size of the
quantum system. Therefore, it is unlikely that significant quantum speedup can be achieved for
problems involving a tomography procedure on a large number of qubits. Instead, we should focus
on problems whose end result can be obtained by measuring a small number of observables related
to the quantum state to a desired accuracy, for which the measurement overhead can sometimes be
reduced substantially.

In summary, a quantum computer should not be viewed as an all-purpose computational device
destined to replace classical computers. Rather, it should be seen as an accelerator, capable of
providing significant speedups for specific computational tasks. As emphasized in [Aar14], one must
“read the fine print” when evaluating claims of quantum advantage. Several criteria must be met:
the problem under consideration should be computationally intensive on classical hardware; the
task must be solvable efficiently on a quantum device; and the overhead associated with data input
and output (i.e., loading and extracting data) should not dominate the overall cost. Furthermore,
several proposed quantum speedups for linear algebra and machine learning on classical data rely on
strong data-access assumptions, and in some cases comparable scaling can be achieved by quantum-
inspired classical algorithms under similar assumptions. Meeting all of these conditions is far from
trivial. It represents a significant theoretical, experimental, and algorithmic challenge for the entire
scientific community.

1.3. Quantum advantage hierarchy

|
Highly
structured

Il
Unitary dynamics,
sampling and learning

Existing evidence of
significant
quantum advantage

1
Quantum properties
and effective quantum dynamics

[\
Strong classical baselines
and 1/0 limited

Potential range of
scientific applications

FIGURE 1.1. Quantum advantage hierarchy. The vertical level is determined by
the most compelling application in each category, as demonstrated by the available
evidence of quantum advantage.
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Based on the aforementioned definition of quantum speedups, Fig. organizes various quan-
tum applications related to this book using a pyramid structure of 4 levels: Level I (Highly struc-
tured problems), Level IT (Unitary dynamics, sampling, and learning problems), Level III (Quan-
tum properties and effective dynamics problems), and Level IV (Strong classical baselines and 1/0
limited problems). Significant quantum speedups may exist across all levels. The vertical axis
represents the existing amount of evidence supporting significant quantum speedups, while the hor-
izontal axis represents the potential range of scientific applications. Besides gate complexity, for
learning and sensing tasks the dominant cost can be the sample complexity (the number of experi-
mental repetitions), which we treat as part of the running and output costs in this hierarchy. Now
we give some examples at each level of the hierarchy, and the results are summarized in Table [T}

Level Input Output Running | Classical Examples
Cost Cost Cost Cost

Shor’s algorithm for prime fac-

I Provably torization and discrete loga-

Highly . rithm, decoded quantum inter-

structured CXpenstve ferometry for structured opti-
mization

11 Empirically Hamiltonian simulation, random

Unitary dynamics expensive circuit sampling, learning with

sampling and learning quantum memory

11
Quantum properties ? ?

and effective dynamics .
system dynamics

Ground state energy estima-
Empirically | tion, thermal state preparation,
expensive Green’s function, open quantum

v Efficient

Strong classical except )
& ? ? ? ( P tial equations, unstructured
baselines and very large oL . .
. optimization, classical machine
I/0O limited systems)

learning

Classical  partial differential
equations, stochastic differen-

TABLE 1.1. Examples of problems in the quantum advantage hierarchy and exist-
ing amount of evidence justifying significant quantum speedups.

While prime factorization (and cryptography problems in general) are not typically classified
as scientific computing problems, they occupy a unique position (Level I) at the peak of this hier-
archy, and serves as a reference point for the ideal demonstration of quantum advantage in highly
structured settings. These problems possess specific mathematical structures that allow quantum
algorithms to bypass the exhaustive search often required by classical approaches. By describing
the classical cost as “provably expensive,” we mean that the problem is hard under reasonable
complexity-theoretic conjectures or relative to the best-known classical algorithms. For example,
Shor’s algorithm exploits the periodicity of the modular exponentiation function, a property related
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to the hidden subgroup problem. Another reason for placing Shor’s algorithm at the top of the hier-
archy is that these problems are “verifiable,” meaning a candidate solution can be efficiently checked
by classical means (e.g., by multiplying the returned factors). The recently developed decoded quan-
tum interferometry (DQI) algorithm [JSW™25] also solves highly structured optimization problems
with superpolynomial speedups and has the potential to be classified in Level 1. Unfortunately,
such structures are rare in general scientific computing settings, as most problems in physics and
engineering lack these clean, exploitable properties. To date, only a small number of applications
have presented a comparable level of evidence supporting significant quantum speedups, and the
list of credible candidates continues to evolve.

The most prominent example in Level II is the time evolution of a quantum state under a
Hamiltonian, known as the Hamiltonian simulation problem. Many tasks in quantum physics and
chemistry can be cast in this form. This category also includes sampling from unitary evolutions not
explicitly defined by a Hamiltonian, such as random circuit sampling used in quantum supremacy
experiments. For a physical Hamiltonian acting on n qubits, the description size is typically poly-
nomial in n. We assume simple initial states, such as product states, which can be prepared with
polynomial cost. The cost to simulate the dynamics for time ¢ with precision € then scales as
poly(n,t,1/¢). Under these assumptions, no known classical algorithm is expected to reliably sim-
ulate generic many-body dynamics for long times. However, compared to Level I, the theoretical
justification for speedup is often less rigorous, and verifying quantum advantage can be more diffi-
cult. For instance, verifying the output distribution of random circuit sampling typically demands
exponential classical resources. Consequently, evidence for advantage relies heavily on the empiri-
cal hardness of classical simulation. Certain quantum learning tasks can demonstrate exponential
advantage in sample complexity [HBCT22|. These advantages primarily stem from the quantum
nature of the input data and the availability of quantum memory [CCHL22|. This differs from
the computational tasks addressed in this book, which focus on problems with classical inputs and
outputs. Furthermore, the exponential advantage assumes that we have zero knowledge about the
quantum system being learned, which is often not the case in physical applications.

Level III of the hierarchy includes a large class of problems in quantum physics, quantum
chemistry, and materials science. By “quantum properties,” we refer to static characteristics of the
system, such as ground state energy, excited state energy, stationary states, and spectral properties.
By “effective dynamics,” we refer to processes that are not natively unitary, such as open system
dynamics involving dissipation or imaginary time evolution used for cooling. Compared to Level IT
problems, the mapping from these non-unitary objects to the unitary logic of quantum hardware
is indirect. This mapping often introduces overheads, such as the need for linear combinations
of unitaries, post-selection, or many ancillary qubits. The amount of information that needs to
be extracted from the quantum computer can be comparable to that in the quantum dynamics
simulation and is at most polynomial in n. In the case of the ground-state energy estimation, the
situation is even clearer since we only need to estimate a single number as the output. Compared
to unitary dynamics, there exist a much larger number of powerful classical algorithms for these
tasks. These are approximate methods and often cannot be used to converge to the true solution to
arbitrary precision. However, for many practical problems, they have been shown to be sufficiently
accurate. Input cost is also a major factor placing these problems at Level III. For example,
ground state estimation often requires a good initial guess (an ansatz) to succeed; generating
this ansatz can be computationally expensive or physically difficult, sometimes leading to QMA-
hard bottlenecks. Finally, we may design quantum algorithms to solve problems that are entirely
classical. For instance, we can consider quantum solvers for classical partial differential equations
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(PDEs), stochastic differential equations, unstructured optimization problems, and sampling tasks.
These cover a large variety of problems in scientific computing. However, many such classical
problems fall into Level IV because they have strong classical baselines and/or are I/O limited.
For example, many PDEs on a grid of size N can be solved classically in time polynomial in N
(often approximately linear in N using fast algorithms). Even if a quantum algorithm offers a
speedup in the processing stage, it faces the “I/O limit”: merely loading an arbitrary input vector
of size N into the quantum state takes time linear in IV, which negates any potential exponential
speedup. One exception arises when the classical data possesses significant structure that allows
for efficient loading; a potential advantage in this regime was recently demonstrated for a quantum
solver of a large number of classical oscillators [BBK™23|. Regarding unstructured search problems,
while Grover’s algorithm provides a quadratic speedup, this is often insufficient to overcome the
significant constant-factor overheads of fault-tolerant quantum error correction compared to highly
optimized classical heuristics. Thus, while the range of applications is vast, securing an end-to-
end advantage is difficult. That being said, many cryptography problems can be formulated as
classical optimization problems, and the next breakthrough in quantum algorithms may emerge
from classical problems again.

The ongoing evaluation and pursuit of quantum advantage is a rapidly developing field. When
discussing applications, we will only scratch the surface of the potential indications of quantum
advantage by examining aspects such as quantum input cost, output cost, running cost, and the
cost of classical algorithms, wherever possible. This approach is intended to encourage readers to
seek out these elements in their own research. However, it is important to understand that the
findings presented, while based on existing literature, are far from exhaustive or conclusive. The
rapid pace of advancements means that future developments could significantly alter the current
understanding and conclusions.

1.4. Quantum error correction and fault tolerant computation

All previous discussions assume that quantum operations can be perfectly performed. To this
end, quantum error correction is necessary. The threshold theorem [ABO97] is a central result
in the field of quantum error correction. The theorem essentially states that if the error rate of
quantum operations (including gates and measurements) is below a certain threshold value (around
0.001, though the precise value depends on the detailed assumptions), then it is possible to perform
quantum computation for an arbitrary length of time with arbitrarily high accuracy (see [NCOO,
Section 10.6]).

THEOREM 1.1 (Threshold theorem). There exists an error threshold p; > 0. If the physical
error rate p per gate operation satisfies p < py, there exists a quantum error correction scheme such
that the logical error rate q can be made as small as desired. In other words, ¢ = O((p/p:)*) for
any positive integer £.

We will not study the details of quantum error correction in this book. In classical computing,
modern algorithm design generally does not take error correction into account. Similarly, in the long
term, quantum error correction is expected to be largely a separate issue from the design of quantum
algorithms. We always assume quantum error correction protocols have been implemented, physical
noise has been eliminated, and the resulting quantum computer is fault-tolerant. For the purpose
of this book, all errors come from either approzimation errors at the mathematical level, or Monte
Carlo errors in the readout process due to the probabilistic nature of the measurement process.
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Quantum error correction is a dynamic and rapidly progressing field, and will significantly
impact the development and potential of quantum algorithms, and the landscape of quantum com-
puting. On a very coarse scale, we can categorize quantum algorithms based on the type of quantum
computer architecture they are designed for.

(1) Noisy intermediate-scale quantum (NISQ) computers: These devices represent the current
state of quantum computing technology. Characterized by a relatively small number (tens
to a few hundreds) of physical qubits, these systems are prone to errors and lack full
error correction capabilities. Quantum algorithms designed for NISQ devices, such as the
Variational Quantum Eigensolver (VQE), need to be error resilient and must be capable
of delivering meaningful results despite the presence of noise. Most of this book will not
discuss NISQ algorithms.

(2) Fully fault-tolerant quantum computers: These are the ideal, long-term goal of quan-
tum computing research. In these systems, quantum error correction protocols are fully
implemented, allowing quantum algorithms to run for long durations without being over-
whelmed by errors. This architecture will enable the execution of complex algorithms
that require a large number of qubits and gate operations. Many of the algorithms dis-
cussed in this book are designed for this type of architecture. At the current stage, the
goal of many fully fault-tolerant quantum algorithms is to minimize the total cost (in an
asymptotic sense with respect to certain parameters, such as precision, system size etc.)
for solving a given task.

(3) Early fault-tolerant quantum computers: This category represents a transitional phase
between NISQ devices and fully fault-tolerant quantum computers. These systems would
implement some form of quantum error correction, but they may have constraints such
as a very limited number of logical ancilla qubits. This means that they can only run
quantum algorithms within a certain complexity limit. Despite these constraints, early
fault-tolerant quantum computers provide an opportunity to test and refine fault-tolerant
designs and protocols, and to run quantum algorithms that are beyond the reach of NISQ
devices but do not require the full capabilities of fault-tolerant quantum computers. Some
of the algorithms in this book take such constraints into account and can be suitable on
early fault-tolerant quantum computers.

1.5. Error accumulation mechanisms in classical and quantum computation

Quantum computation aims at processing objects whose natural dimension is exponential, such
as vectors in C2" and matrices of size 2" x 2. No computation can be carried out exactly, so will
the error also accumulate exponentially with the system size? If that were the case, then quantum
algorithms would become useless precisely in the regime where they are designed to operate. In
this section we give a bird’s-eye view of the relevant error accumulation mechanisms.

At first glance, deterministic numerical computation can look discouraging in this respect.
Even a basic task such as forming an inner product involves many elementary operations, and
Example [T.2] shows a worst-case bound for the accumulated rounding effects that is proportional to
N =2,

However, scientific computation has long dealt with exponentially large state spaces without
requiring errors to grow linearly in the dimension. Randomized algorithms on n bits evolve a prob-
ability distribution on a space of size N = 2", yet the accuracy of the computation is governed by
how many transition steps are composed, not by N itself: if each step is implemented to accuracy
€, then the overall error is at most Ke, where K is the number of steps (see Proposition .
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Quantum computation behaves in the same way at the level of circuit synthesis: a quantum algo-
rithm is a product of elementary unitaries, and the accumulated implementation error is controlled
by the number of gates. In particular, if the gate count is K and each gate can be implemented to
precision €/K, then the final error is O(e). In the fault-tolerant setting assumed above, achieving
such per-gate accuracy is a realistic requirement, and the overhead of approximating elementary
unitaries to a desired precision is discussed later (see Chapter |4). The distance notions used to
make these comparisons precise are developed in Chapter |3] and the Monte Carlo errors arising at
readout are discussed further in Chapter [§

1.5.1. Deterministic classical computation. Modern scientific computation on classical
computers is based on floating point arithmetic operations, which express a number in scientific
notation. For instance, the number —.271828 x 10° involves a sign (—), fraction (271828), base
(10), and exponent (5). In binary floating point, one stores a sign bit together with a fixed-length
exponent and fraction. For instance, the IEEE single precision uses 1 bit for the sign, 8 bits for the
exponent, and 23 bits for the fraction (32 bits long). The IEEE double precision uses 1 bit for the
sign, 11 bits for the exponent, and 52 bits for the fraction (64 bits long). For instance, a double
precision ranges from 271022 to 21023 or about 1073%® to 103°®. Numbers outside this range yield
underflow or overflow error and need to be handled separately. This is much more efficient than
the fixed point number representation (see Section , which would require more than 2046 bits
(i.e., more than 2046 logical qubits for a single number) to cover the same range of numbers.

The basic assumption is that any real number a should be represented by fl(a) using a given
number of bits. Similarly, any binary operation a ® b should be represented by fl(a ® b), where ®
is one of the four elementary binary operations +, —, *, /. The difference a ® b — fl(a ® b) is called
the roundoff error. When the number is rounded correctly, i.e., fl(a ® b) is a nearest floating point
number to a ® b, we have

(1.2) fila®b) =(a©b)(1+9),
where |§| is upper bounded by €pacn (called the machine precision).

Example 1.2. Given u,v € RY, consider the error accumulation of computing an inner product
vazl u;v;. The error from each operation in the floating-point arithmetic needs to be counted
separately. The floating-point representation of a product u;v; is given by w;v;(1 + €;), where
l€i] < €mach, and €mach is the machine epsilon.

However, when summing these products, there is an additional error introduced at each addition
step. Let us denote by (5; the relative rounding error incurred when adding the j-th term (so

|6§’ < €mach)- Then the partial sums satisfy
(1.3) ﬂ(Sj_l + ’U,j’Uj(l + Gj)) = (Sj_l + Uj’l}j(l + Ej))(l + (5;),
where s;_1 denotes the computed partial sum from the previous step. After summing over all N

terms, we may write
N
(1.4) 1+6:=1+e) [] 0+5).
j=i+1

Therefore if overflow or underflow does not occur, then

N N
(1.5) fi (Z Uﬂh‘) = Zuivi(l +3:), 18] € (1 + emacn) — 1 < elVemaen 1,
i=1 i=1



18 1. QUANTUM ADVANTAGE IN SCIENTIFIC COMPUTATION

<&

When Nepaen < 1, we have [6;] < 2Ne€pach- So the error grows linearly in N. This is due to
the step of adding N numbers following a linear order. For computing the inner product, the error
accumulation in the summation step can be significantly reduced using a technique called the pair
summation (or cascade summation) to O((log N)éemach). However, such a more accurate summation
method is more difficult to implement in broader scenarios such as matrix-matrix multiplication.
For most of the tasks, the poly(IN) factor in the error accumulation is unavoidable. For instance, for
solving a triangular linear system, the error accumulation is O(Nemach) [GVL13, Chapter 3.1]. For
Gaussian elimination (or LU factorization), standard backward-error bounds involve the growth
factor p and scale polynomially in N, typically of order O(N pemacn) [GVL13, Chapter 3.4].

That being said, not all deterministic computations involving vectors in CV necessarily exhibit
a poly(NN) accumulation of numerical error. Error accumulation is governed not by the ambient
dimension N itself, but by the number of elementary operations performed. For instance, tensor
network methods provide settings in which certain computations on structured vectors in CV can
be carried out using only poly(n) operations, where N = 2. We will not discuss tensor network
methods in this book, and classical probabilistic computation provides a more direct analogy to
quantum computation for tackling high dimensional problems, as discussed next.

1.5.2. Probabilistic classical computation. A probabilistic computation on n bits evolves
a probability distribution on a space of size N = 2", and hence it can be described by a vector in RV
acted on by stochastic matrices. The ambient dimension is exponential in n, but the computation
is specified by a sequence of local update rules. As a result, neither the cost nor the accumulated
implementation error needs to scale exponentially in N. This viewpoint also extends to the com-
parison between quantum and classical algorithms: a probability distribution can be viewed as a
special quantum state, and a transition matrix can be associated with a special quantum channel
(see Section [3.2)).

If we can implement each transition matrix to precision €, the global error of the overall tran-
sition matrix grows at most linearly with respect to the number of transition matrices and is at
most 1, Ke (see Proposition . Equivalently, if the gate complexity is K and we can implement
each transition matrix to precision €/ K, then the final error is upper bounded by €, independent of
N. Compared to deterministic classical algorithms, randomized algorithms introduce another error
mechanism: even when the transition rule is specified, one often estimates quantities of interest by
sampling, and the output is therefore subject to Monte Carlo fluctuations. For example, estimating
an expectation value by N, independent samples typically incurs an error of order O(Ns Y 2)7 in-
dependent of the size of the underlying sample space. The statistical side of this issue is discussed
further in Chapter [§

1.5.3. Quantum computation. Quantum algorithms are designed to handle objects of size
N = 2™ without explicitly storing N numbers. As in probabilistic computation, error accumula-
tion depends on how many steps are composed and on the metric used to compare channels (see
Chapter [3]), and they do not introduce an explicit dependence on N.

Every quantum circuit can be represented by a unitary U, decomposed into a series of simpler
unitaries as U = Uk - - - U;. Each U; can only be implemented approximately by some ﬁi to precision
€. The implementation cost of each simple unitary is independent of the Hilbert space dimension
N (see Chapter [4). This implies that for any vector |1} of size N, the error between U, |¢)) and
U; |1} is less than e with no explicit dependence on N.
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If we can implement each local unitary to precision €, the global error grows at most linearly
with respect to the number of gates and is at most Ke (see Proposition . In other words, if
the gate complexity is K and we can implement each gate to precision ¢/K, then the final error
is upper bounded by € and is independent of N. The same statement holds for quantum channels

(see Section [3.6)).






CHAPTER 2

Elements of quantum computation

This chapter lays the groundwork for our journey into quantum algorithms for scientific compu-
tation. We will review the mathematical and physical principles that underpin quantum computing.
While we assume a basic familiarity with quantum mechanics, our focus will be on establishing the
specific concepts and notational conventions used throughout this book. This chapter is not in-
tended as a comprehensive introduction to quantum computing, but rather as a targeted primer on
the tools we will need to build and analyze sophisticated quantum algorithms. For a more compre-
hensive introduction to quantum computation, we refer the reader to standard textbooks such as
[INCO00, Wat18].

We start with the postulates of quantum mechanics, introducing the Dirac notation and the
core principles governing quantum states and their evolution. We then move to the language of
quantum circuits, which greatly simplifies the tensor manipulations inherent in multi-qubit systems.
To handle scenarios involving noise and subsystems, we introduce the density operator formalism.
We will also discuss the no-cloning theorem, which forbids the copying of arbitrary quantum states,
and the principles of deferred and implicit measurement, which offer flexibility in circuit design.
The latter part of the chapter introduces the representation of structured matrices, including sparse
matrices and operators from fermionic and bosonic systems. We conclude with a selected list of
Hamiltonians from physics, chemistry, and optimization that will serve as motivating examples in
our exploration of quantum simulation and other applications.

2.1. Basic notation

The sets of real and complex numbers are denoted by R and C, respectively. For a complex
number ¢ € C, the notation ¢ or ¢* denotes its complex conjugate.

A complex vector v of size N is an N-tuple of complex numbers, written as v € CV, with its j-th
component denoted by v;. By default, we use O-based indexing, that is, j € [N]:={0,...,N —1}.
When 1-based indexing is used, we will explicitly write j = 1,..., V.

The vector 2-norm of v is denoted by |[v]| = /> iz |u;|>. Unless otherwise specified, a

vector v € CV is considered unnormalized. A nonzero, normalized vector (viewed as a pure quantum
state) is written as |v) = v/ ||[v||. To emphasize that a vector is unnormalized, we sometimes use
the notation |v}.

A matrix A of size M x N is denoted by A € CM*N "and its (i, j)-th entry is A;; or a;;. For
A € CM*N the complex conjugate of A, denoted by A or A*, is obtained by replacing each entry
of A with its complex conjugate. The inverse of A (if A is invertible) is denoted by A~!. The
transpose of A is denoted by AT. The Hermitian conjugate (or adjoint) of A, denoted by AT, is
the complex conjugate of the transpose of A, which can be expressed as AT = (AT)*. A matrix A
is Hermitian if it is equal to its Hermitian conjugate, i.e., A = AT. A matrix A is normal if it
commutes with its Hermitian conjugate, i.e., AAT = ATA. A matrix U is unitary if its Hermitian

21
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conjugate is its inverse, i.e., UT = U~!. The set of all N x N unitary matrices forms the unitary
group, denoted by U(N). The set of all N x N unitary matrices with determinant 1 forms the
special unitary group, denoted by SU(V).

If all eigenvalues of a Hermitian matrix A € CN¥*¥ are nonnegative, A is called a positive
semidefinite matrix, or positive operator, denoted by A = 0. The notation A > B means
A—B = 0,and A < B means B = A. Similarly, if all eigenvalues of A are positive, then A is called
a positive definite matrix, denoted by A > 0. The notation A > B means A — B > 0.

The operator norm (also called induced vector 2-norm)E| of a matrix A is

(2.1) HAM:::SHPIHAUH-

lvll=

In quantum information theory, it is useful to consider the Schatten p-norm of A:

1

(2.2) Al = (Te(aT) )", p>1.
The particularly useful one is the Schatten 1-norm (also called the trace norm)

(2.3) A, == Tr VATA.

For instance, any quantum state (density operator) p is normalized with respect to the trace norm,
i.e., [|p|l; = 1. Furthermore, the Schatten co-norm ||A||  can be shown to coincide with the operator
norm || A||. Many readers may not be familiar with the Schatten norms. We will discuss these norms
in detail in Chapter [3]

We adopt the following asymptotic notations: Let Ry be the set of positive real numbers.
Consider two functions f : R -+ Cand g : R — Ry. For any a € RU{%o0}, if limsup,_,, Eé—g‘
then we write f(z) = O(g(x)) as ¢ — a, or simply f = O(g)ﬂ when x — a is clear from the context.
We write f = Q(g) if g = O(f); f =06(g) if f = O(g) and g = O(f). Note that O(g) can also be
interpreted as a set, so it is also valid to write f € O(g). Similarly we may write f € Q(g), f € ©(g)
etc.

< 00,

The notation (5, ﬁ, O are used to _suppress subdominant polylogarithmic factors. Specifically,
f=0(g) if f = O(gpolylog(g)); f=Q(g) if f = Q(gpolylog(g)); f = O(g) if f = O(g polylog(g)).
Note that these tilde notations usually do not suppress dominant polylogarithmic factors. For
instance, if f = O(loggloglogg), then we write f = 6(logg) instead of f = (5(1) However,
for simplicity of presentation, we may sometimes use the notation O more casually to suppress
dominant polylogarithmic factors. When we do so, we will make an explicit mention of this usage.

Throughout the book, the natural logarithm is denoted by In, and is sometimes written as log
without an explicit base when the context is clear. The logarithm to base 2 is denoted by log,.
When N denotes the dimension of CV, and the notations N and n appear together, it is usually
assumed that N = 2™ for some positive integer n, referred to as the number of quantum bits (or
qubits). Additional notations will be introduced in the book as needed.

"n matrix analysis, the operator norm is sometimes denoted by |All5 to indicate that this is the induced vector
2-norm. More generally, the induced vector p-norm is [|Al|,, = sup), —; [|Az|, where ||z|, = > |zi|p)1/p. For
example, the induced vector 1-norm is ||All; = SUP|| 4|, =1 |Az||; = max; >, |a;;|. This book does not adopt such
a notation.

2Sometimes O(g) is treated as a set of functions, and by this interpretation we can equivalently write f € O(g).
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2.2. Postulates of quantum mechanics

This section encapsulates some of the most important postulates of quantum mechanics. All
postulates concern finite dimensional, closed quantum systems (i.e., systems isolated from environ-
ments). For more details, we refer readers to [NCOQ, Section 2.2].

2.2.1. State space postulate.

Definition 2.1 (Hilbert space). A (complex) Hilbert space denoted by H is a complex vector space
equipped with an inner product (-|-y : H x H — C that satisfies the following properties for all
z,y,z € H and all o, € C:

(1) (Conjugate Symmetry) (z|ly) = (y|z).

(2) (Linearity in the second argument) (z|ax + By) = alz|x) + B{z|y).

(3) (Positive-definiteness) (x|x) > 0 with equality if and only if x = 0.

Furthermore, H s complete with respect to the norm induced by the inner product, where the norm
of a vector x € H is given by ||z|| = v/ (z|z).

The state space postulate assumes that the set of all quantum states of a quantum system,
called the state space, is a Hilbert space. If the state space H is finite dimensional, it is isomorphic
(i.e., there is a one-to-one mapping) to some C", written as H = CV. Throughout the book, unless
otherwise specified, we only consider finite dimensional Hilbert spaces. A state vector (also called
ket vector, wavefunction, or pure quantum state) 1)) € H can be identified with a column vector
in CN

Yo

(01
(2.4) ) = :
YN-1
Let {e;} be the standard basis of CV. The i-th entry of ¥ can be written as an inner product
¥; = (e;|v). We also use the Dirac notation, which uses [¢) to denote a quantum state. We further
postulate that two state vectors |1) and ¢ |¢) for some 0 # ¢ € C always refer to the same physical
state. Hence without loss of generality we always assume |v) is normalized to be a unit vector, i.e.,
(1) = 1. Restricting to normalized state vectors, the complex number ¢ = €? for some 0 € [0, 27)
is called the global phase factor.

Throughout the book, unless otherwise specified, an unnormalized state vector is often denoted
by ¢ without the ket notation |-), and [¢) := 9/ ||¢|| denotes the normalized counterpart.

The bra vector (1| can be interpreted as a linear functional on #H, which maps any |p) € H to
a complex number (¥|p). When H = CV, we have (1|p) = 2ielN] Pip;. It can be identified with
a row vector, which is the Hermitian conjugate of the column vector ¢:

(2.5) oT= (G0 1 - Pnoa).

The set of all bra vectors, or linear functionals on H, is denoted by H*El

Given a state space H, let L(H) denote the set of all linear operators on H. When H = CV,
L(CY) can be identified with the set of N x N matrices, denoted by CV*¥. The ketbra notation
[tX¢| is an element in L(H), which maps any vector |§) € H to another state vector in H as

3The star x acting on a vector space does not mean the complex conjugation of H. This notation is only used
occasionally in the book. A Hilbert space satisfies H 22 H* by the Riesz representation theorem.
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[) {p|€). The matrix representation of |¢))p] is the product of the column vector ¢ and the row
vector of, i.e., Yl € CNXN,

Example 2.2 (Single qubit system and Bloch sphere). A (single) qubit corresponds to a state
space C2. We also define

(26) m=(5). m=(3)-

Since the state space of the spin—% system is also isomorphic to C2, this is also called the single spin
system, where |0),|1) are referred to as the spin-up and spin-down state, respectively. A general
state vector in C? takes the form

(2.7) [6) = alo)+b1) = (b) abeC,

and the normalization condition implies |a|® 4 [b]* = 1. So we may rewrite |t as
- 0 ; 0

(2.8) [) = e (cos 3 |0) + €' sin 3 |1>) , B,0,7€R.

If we ignore the irrelevant global phase e?? (which also absorbs a minus sign in the coefficient of
|0)), then it holds

6 , 6
(2.9) |w>:(;os§|0>—i—e“°sin§|1>7 0<0<m0<p<2m.

So we may identify each single qubit quantum state with a unique point on the unit three-
dimensional sphere (called the Bloch sphere) as

(2.10) a = (sin @ cos @, sin @ sin p, cos §) " .
o

2.2.2. Quantum operator postulate. The quantum operator postulate states that the evo-
lution of a quantum state from [¢) — |[¢') € H is always achieved via a unitary operator U,
ie.,

(2.11) W) =Ul), UU=LI

Here UT is the Hermitian conjugate of U, and I is the identity map that can be identified with a
N-dimensional identity matrix. The set of all NV x N unitary matrices is the unitary group, denoted
by U(N). The set of all N x N unitary matrices with determinant 1 forms the special unitary group,
denoted by SU(N).

This unitary evolution is derived from the system’s Hamiltonian H € L(H), which is a
Hermitian matrix that encapsulates the total energy of the system and thus governs its dynamics.
For a time-independent Hamiltonian H, the state |1)(t)) satisfies the Schrédinger equation

(2.12) i0; [(t)) = H |1(t)) -
The corresponding time evolution operator is
(2.13) Ulty, ty) = e” =t yy > ¢

In particular, U(te,t1) = U(ta — t1,0).
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More generally, starting from an initial quantum state [¢)(0)), the quantum state can evolve in
time, which gives a single parameter family of quantum states denoted by {|t(t))}. These quantum
states are related to each other via a quantum evolution operator U:

(2.14) [¢(t2)) = Ultz, t2) [9(t1))

where U (t2,t1) is unitary for any given tq,to. Here ty > t; refers to quantum evolution forward in
time, to < t; refers to quantum evolution backward in time, and U(¢1,t1) = I for any ¢;.
In quantum computation, a unitary matrix is often referred to as a quantum gate.

Example 2.3. For a single qubit, the Pauli matrices are

0 1 0 —i 1 0
(2.15) O'IX<1 0>, O'yY<Z. 0), JZZ<0 _1).

Together with the two-dimensional identity matrix, they form a basis of all linear operators on
C2. o

Some other commonly used single qubit operators include, to name a few:

¢ Hadamard gate

(2.16) H = % (} _11)

e Phase gate

(2.17) S = (é ?)
o T gate:
(2.18) T= <é ei9/4> =Vs.

When there are notational conflicts, we will use the roman font such as H, X for these single-qubit
gates (for example, to distinguish the Hadamard gate H from a Hamiltonian H). An operator
acting on an n-qubit quantum state space is called an n-qubit operator.

Example 2.4. For P € {X,Y, Z}, the unitary evolution generated by the Hamiltonian H = P is
a rotation about the corresponding Bloch-sphere axis. Concretely,

Ry (21) me—itX — ( cos(t) —z'sin(t)>7

—isin(t)  cos(t)

(
(2.19) R, (2t) :=e Y = < COS((t)) —sin(t) )

sin(t)  cos(t)

—q eiit 0
R.(2t) :=e "% = < 0 it> .

(&

For instance, starting from an initial state |¢)(0)) = |0), under R, (2t) at time ¢t = 7/2 the state
evolves into |[¢(7/2)) = —i|1), i.e., the |1) state up to a global phase. ©

THEOREM 2.5 (Spectral theorem of normal matrices). Given a matriz A € CN*N | the matriz
A is normal (i.e., AYA = AAY), if and only if

(2.20) A=VDVT,
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Here, D € CN*N s q diagonal matriz containing the eigenvalues of A, and V € U(N) is a unitary
matriz whose columns are the eigenvectors of A.

A more general decomposition, which plays a key role throughout the book, is the singular
value decomposition (SVD).

THEOREM 2.6 (Singular value decomposition). Given any matriz A € CM*N | there exist uni-
tary matrices U € U(M) and V € U(N), and a diagonal matriz ¥ € CM*N with non-negative real
numbers on the diagonal, such that

(2.21) A=UxVT.

The diagonal entries of ¥ are called the singular values of A, the columns of U are called the left
singular vectors of A, and the columns of V' are called the right singular vectors of A.

Operator exponentials, also called matrix exponentials, gives us a way to express gates as
operator exponentials and because the algebra of exponentials makes this representation far easier
to work with than explicitly writing the unitary in a matrix representation.

Definition 2.7 (Matrix function). For A € CN*N  and a complex valued function f : C + C, the
matrixz function f(A) is defined as follows:
(1) If f is an analytic function such that f(x) =372, ax’ then f(A) =372, a;A7.
(2) If f is a complex valued function and A is a normal matriz such that A = VDV where V
is unitary and D := diag(Xo, ..., An—1) where f(\;) € C. Then f(A):=V f(D)V where
f(D) = diag(f(Xo) -, f(An-1))-

The definition of a matrix exponential can be seen as a direct consequence of either of the above
definitions, and both definitions find extensive use in quantum computing. Specifically, using the
former definition we have that for any matrix A

o

AJ

A il

(2.22) eti=>" T

=0

Matrix function can also be defined for non-normal matrices using contour integrals (see [Hig08|
Chapter 1]).

Lemma 2.8. Let A € CN*N and let U € U(N) be a unitary matriz, then UeAUT = VAU

The following result can be viewed as the simplest realization of the Baker—Campbell—
Hausdorff formula (BCH).

Lemma 2.9. For any A, B € CN*N | we have
(1) if [A,B] =0, then edeB = A+B,
(2) if [A,[A, B]] = [B,[A, B]] = 0, then e?eB = eATB+3AB]
(3) if [A, B] #0, then e?eP = eATB+314Bl L O(max(||A]l, || B||)?).

In general, we can express any unitary operator as an exponential of a Hermitian operator.
This result is a direct consequence of the definition of the operator exponential.

Lemma 2.10. For any unitary matriz U € U(N), there exists a Hermitian matric H € CN*N

such that U = e *H,
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PROOF. A unitary matrix U is a normal matrix. According to Theorem [2.5] the unitary matrix
U can be diagonalized as
(2.23) U=VDVT,

where V € CV*V is a unitary matrix and D is a diagonal matrix. The diagonal entries satisfy
|Dy;| = 1. Without loss of generality we can write D;; = e~*% where 6; € [0,27). Then define a
diagonal matrix ©;; = 6;, and H = VOV, we obtain U = e~*/. Note that the matrix H is not
unique since each #; can be chosen modulo 27. O

In many scenarios such as the analysis of quantum simulation using Trotter-Suzuki formulas,
we need to find Taylor series expansions of conjugated operators.

Lemma 2.11. Let A, B be normal matrices in CN*N and let t € R. We then have that
A, Bt [A[A B]lt? (A A [A B
A, Bt | [AA B (A A4 B]E

1! 2! 3!

ProoOF. We note that the above result is a power series in ¢, which must coincide with the
Taylor series expansion of the function f(t) = eA*Be~“? because the function is analytic. Thus
the expression is true if the k-th derivative of f(t) at ¢ = 0 is given by the k-fold commutator. We
prove by induction that

(2.24) eM'Be At = B 4+

(2.25) 6f(eAtBe_At) = At [A,[A, -+ ,[A,B] - ]]]e_At,
where the commutator is applied k times. The base case k¥ = 0 holds trivially. Assume the
hypothesis holds for some k& > 0. Then

Ot (e Bem ) = 8, (eM[A [A [+, [A, B] -+ ]lle™™)
(2'26) = eAt (A[A7 [ T [A7 B] T ]] - [A7 [ T [A7 B} o ]]A) e_At

= eAt[A’ [A’ [ B [A>B] T meiAtv

where the final expression contains k+1 commutators. This confirms the inductive step. Evaluating
at t = 0 yields the coefficients of the Taylor series, completing the proof. (Il

2.2.3. Quantum measurement postulate. In quantum mechanics, a quantum observ-
able is always represented by a Hermitian matrix acting on the state space. The reason for using
Hermitian matrices is that they have real eigenvalues, which correspond to the outcome of quan-
tum measurements.

A quantum observable O € L(H) has the spectral decomposition

(2.27) O=> AnPn.

Here A, € R are the eigenvalues of O, and P,,, € L(H) is the projection operator onto the eigenspace
associated with \,,. The quantum measurement postulate states that when conducting a measure-
ment on a quantum state |1) with respect to a quantum observable O, the eigenvalues A, represent
all the possible results of the measurement. Furthermore, the probability of obtaining a particular
outcome A, is

(2.28) Pm = (Y| Pl9) -

Following the measurement, the quantum state collapses to the corresponding eigenspace
P

(2.29) [v) — P 19}

VP
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The set of projection operators satisfies the resolution of identity:
(2.30) }:}%121.
m

This implies the normalization condition

(2.31) D pm =D WIPnlY) = @) =1, VY[¢) € H.

m

Together with p,,, > 0, we find that {p,,} is indeed a probability distribution.
The expectation value of the measurement outcome can be expressed as

(2.32) m®=ZMM=ZMM%M=@<me>

Example 2.12. Let O = X be the Pauli X operator. From the spectral decomposition of X:

w>=wmw.

(2.33) X ) =2z [4),
where |£) := %(\0) +11)), Ay = =+1, we obtain the eigendecomposition
(2.34) O=X=[+){+ -2l
Consider a quantum state |) = |0) = %(H—) +|—)), then
(23) (1P k) = (6IP- 1) = 5.
Therefore the expectation value of the measurement is (¥| X |¢) = 0. o

Exercise 2.1. Prove Eq. (2.34).
2.2.4. Tensor product postulate.

Definition 2.13 (Tensor product). The tensor product of two finite dimensional Hilbert spaces
H1 and Hsy is a complex vector space, denoted by Hi ® Ha, spanned by vectors of the form v ® w
with v € H1 and w € Ho. The bilinear map @ : H1 x Ha — H1 ® Ha satisfies for all v,v' € H,
w,w’ € Ha, and scalars o, € C:

(1) (av+pVY@w=alvew)+ W @w) and v® (acw + Pw’) = a(v @ w) + v @ W').

(2) () @w = alvew) and v @ (fw) = v R w).

The tensor product is associative in the sense that the two vector spaces (H1 @ Hsa) ® Hsz and
Hi ® (Ha ® Hs) are isomorphic. Let Hi,...,Hy be finite-dimensional Hilbert spaces with inner
products (-|-); for ¢ = 1,2,... k. The tensor product of these k spaces can be recursively defined
as H1 @ Ho ® -+ @ Hy := H1 ® (Ha ® -+ ® Hy), which is spanned by all elements of the form
V1 ® Vg ® --- ® v called product states, where v; € H; for i = 1,2,..., k. The inner product
of two vectors v = 11 QU ® --- ® v and w = w; ® wy ® -+ ® wy, in the tensor product space
H1 Q@ Ho ® -+ ® Hy, is defined as

(vlw) = (vi|wi)1 - (v2|wa)2 - - - (Ve |wi) k-

This inner product is extended linearly to the entire tensor product space as

<Z a;V; ijwj> = Zaﬁbj@ﬂwj), ai,bj e C.
i J 4,
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The tensor product postulate states that the state space with k components Hq = CNt, ..., Hy, =
C™e is the tensor product of these spaces H = Hy ® Ho ® - -+ @ Hy. Let {|ji)};,en,] be the basis
of CNi, then a general state vector in #H takes the form

(2.36) ) = > Vjyep 1) @ - @ k) -

J1€[N1],..., k€[ Ng]

Here 1j,...;, € Cis an entry of a k-way tensor. Given another state vector

(2.37) lp) = > Pjregie 171) @ - @ |k) 5
J1€[N1),...,5k €[Ny]

the inner product takes the form

(2.38) (Ylp) = > Vs g Pireein-

J1E[N1],.... ik €[Nk]

The state space of n-qubits is H = (C?)®" = C?". We also use a shorthand notation: the
tensor product ® may be omitted when the context is clear.

(2.39) 01) =10,1) = [0)[1) = |0) @ [1), [0®7) = |o™) = |0)®".

The tensor product operation provides us with a powerful way to describe two independent
copies of different vector spaces as a single larger vector space. Further, the tensor product when
viewed through this lens does not care about the nature of the form of the Hilbert spaces that
are being combined. In fact a particularly important case that we need to consider is the tensor
product between two operators.

Definition 2.14 (Tensor products of linear operators). Given two finite dimensional Hilbert spaces
H1 and Ha, the tensor product of L(H1) and L(Hz), denoted by L(H1) ® L(Hz), is a complex vector
space spanned by linear operators of the form A® B with A € L(H1) and B € L(Hs). The bilinear
map ® : L(H1) X L(H2) — L(H1) ® L(Hz) satisfies for all A,B € L(H1) and C,D € L(Ha),
v € Hy, w € Hy and scalars o, B € C:

(1) (@aA+8B)@C=aAC+BBRC and A® (aC+ BD)=aARC+ AR D.
(2) (tkA)® B=aA® B=A® (aB).

The space L(H1)® L(H2) is isomorphic to L(H1 ® Hz). The tensor product is also associative in
the sense that L(H1) ® (L(Hz2) ® L(H3)) is isomorphic to (L(H1) ® L(H2)) ® L(H3). A consequence
of this definition is further that the application of multiple tensor products of linear operators on
matching tensor products of vectors distributes across the tensor product via

(2.40) (A @A ® - @A) (01 @U2 ® - @ ug) = (A1v1) @ (Aov2) @ -+ - ® (Agvy).

Example 2.15 (Two qubit system). The state space is H = (C?)®? =2 C*. The standard basis is
(row-major order, i.e., last index is the fastest changing one)

0

(2.41) 100) = , o1y = . |10) = 1) =

o O O
O O =

O~ OO
= o O O
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There are many important quantum operators on the two-qubit quantum system. One of them
is the CNOT gate, with matrix representation

1000
0100
(2.42) CNOT= |, o o 1
0010

In other words, when acting on the standard basis, we have

|00y = ]00)
01) =|01

(2.43) CNOT 1) 01)
[10) =]11)
[11) =]10)

This can be compactly written as
(2.44) CNOT |a) |b) = |a) la @ b).
Here a ® b = (a +b) mod 2 is the “exclusive or” (XOR) operation. o

Definition 2.16 (Controlled unitaries). A controlled unitary operation is a quantum gate that
applies a specified unitary operation U to a set of target qubits only when the control qubits are in
a particular state, typically the |1) state for each control qubit. The single qubit controlled unitary
operation can be represented as:

CU=10)(0| @I+ |1)(1|aU.
An n-qubit controlled unitary can be written as:
C'U=(1-|1"{1") I+ [1"{1"eU.

The CNOT gate is the same as CX. Controlled unitaries are ubiquitous in quantum algorithms.
In particular, it enables conditional logic within quantum circuits.

Example 2.17 (Multi-qubit Pauli operators). For a n-qubit quantum system, the Pauli operator
acting on the i-th qubit is denoted by P; (P = X,Y, Z), i.e.,

X;:=1%0"D g X @ 18n=9),
(2.45) Y =1°0"D @y @1,
Z;:=1%0"D @ 7 @ [0,

For example, in a 2-qubit system, following the row-major convention, the matrix representation of
X1, X, are

0010 0100
000 1 1000
(2.46) Xi=xel=|] o4 o] Xe=1ex=|,, o |
0100 0010
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Definition 2.18 (Pauli group). The n-qubit Pauli group, denoted as Py, is a group that consists
of all possible tensor products of n-qubit Pauli matrices along with multiplicative factors of +1 and
+i. Fach element of the n-qubit Pauli group can be represented as

FPRP® - ®P,),

where k € {0,1,2,3}, each P; is one of the Pauli matrices X, Y, Z, or the identity matriz I, and
® denotes the tensor product.

The n-qubit Pauli group contains 4”+! elements due to the 4™ possible tensor products of Pauli
matrices and identity matrices, each multiplied by one of the four possible phase factors £1, +i. It
plays a key role in quantum simulation and quantum error correction. Note that the product of
any two elements is another element of the group (up to a phase factor), and every element is its
own inverse (up to a phase factor).

Definition 2.19 (Clifford group). The n-qubit Clifford group, denoted as Cy,, is a group of unitary
operators that normalizes the n-qubit Pauli group P,. This means that for every Clifford operator
C € C, and every Pauli operator P € P, there exists a Pauli operator P' € P, such that

crct =p.

The Clifford group includes all elements of the Pauli group, the Hadamard gate H, the phase
gate S, and the CNOT gate. It can be generated by {H, S, CNOT}.

Example 2.20. The single-qubit Pauli group P; is defined as the group generated by the Pauli
matrices X, Y, Z together with the phase factor i:

Py ={i*P|kec{0,1,2,3}, P {I,X,Y,Z}}.
We show that P; can be generated by the set {H,S}. First, we obtain the Pauli Z operator by

squaring the phase gate:
2
o (1 0\ _ (1 0} _
5 _<0 i/ \0 -1 =7

Next, we utilize the property that the Hadamard gate transforms Z into X under conjugation.
Since H is Hermitian and unitary, we have:

X=HZH=HS’H.

The Pauli Y operator can be generated by conjugating X by S. We compute the conjugate
transpose ST = diag(1, —i) and verify the relation:

wxs=(0 8 ()6 )
(o)l 1))

Since S is unitary and S* = I, we have ST = §~! = 83, Thus, Y = SX 5.
Finally, since XY Z = iI, we conclude that {H, S} generates the entire Pauli group P;.

Since ,
2 (1 0 (1 0 _
T° = (O 6i7r/4) - (0 6i7r/2> - S7

it immediately follows that {H, T} also generates P;. o
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The Clifford group plays an important role in many areas. In quantum error correction, Clifford
operations can transform certain errors into forms that are more easily correctable. This makes
it desirable to choose Clifford gates to be part of a universal gate set (the most common one is
Clifford + T'). Additionally, the Gottesman—Knill theorem states that any quantum circuit using
only Clifford gates on computational basis states and measurements in the computational basis can
be efficiently simulated classically.

Example 2.21. We can concisely describe block matrices stored within a larger matrix. The
matrix representation of T € L(CNM @ CNM)  when writing in the block form,

Too -+  Ton-1
(2.47) T = : : , T € CMXM,
Tn-10 -+ Tn-1,N—1
can be rewritten as
(2.48) T= Y le)es| @ Ty
i,j€[N]

<

The notation for partial inner products and partial applications of operators is used throughout
this book, particularly in the context of block-encoding.

Definition 2.22 (Partial inner product). Consider two finite dimensional Hilbert spaces Ha = CN
with an orthonormal basis {|e;)}ie(n), and Hp = CM with an orthonormal basis {|fi)}icar). The
partial inner product (-|-) is a map Ha X (Ha ® Hp) — Hp defined as follows. For any v € Ha,
weHARHEB

(2.49) (lw) = ((wles) ei, filw)) 1£;) € Ha.
j
With some abuse of notation, the partial inner product (-|-) also denotes a map: (HaQ@Hp)XHa —
% according to

(2.50) (wlo) =Y ({eslv) (wlei, f)) (f;] € H-
ij

This definition of a partial inner product has been used in the literature in several works such
as [LC17]. A problem with the notation though is that it requires that the reader pay close attention
to the dimensions of the objects in question in order to infer the dimension of the output with a
partial inner product. This runs counter to the advantages of Dirac notation which can be confusing
when used in the context of conventional Dirac notation where the inner product is always a scalar.
While its brevity is an advantage, great care must be taken when using the above notation to avoid
making mistakes about the shape of the output.

Example 2.23. Let |v) = %|O> + %\1) be a one-qubit state, |w) = |0) ® (]00) + |11)) + |1) ®

(|01) 4 |10)) be a three-qubit state, then the partial inner product
1 1
V2 V2

is a two-qubit state. o

(2.51) (v|w) = (]00) 4+ |11)) + —=(|01) + [10))
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Example 2.24. Let w =3}, yjl€i) ® [w;) be reshaped into a matrix
(2.52) W = (’LUU s ’wN71) € (CNXM.

Then the partial inner product (e;|w) for i € [N] picks out the i-th column w;. Similarly, the partial
i

inner product (wle;) picks out the ith row of W1, which is w). o

The partial inner product between pure states provides a natural way to focus our attention
on one of the subspaces involved. Sometimes however, we will wish to apply a transformation on
the system in question. This generalizes the concept of the partial inner product, and will be vital
in our later discussion on block-encoding in Chapter [0

Definition 2.25 (Partial application of operators). Consider two finite dimensional Hilbert spaces
Ha = CN with an orthonormal basis {|e;)}icqn), and Hp = CM with an orthonormal basis
{Ifi) Yieran)- A partial application is a map (H} @ L(Hp)) x (Ha®Hp) — Hp so that for [v) € Ha,
C e L(Hp), |u) e Ha @ Hp,

(2.53) (] @ C) [u) =D ((vlej) (ej, fulw) (C|fr)) € Hp.
ik
Similarly we define
(2.54) (ul (Jo) @ C) = ({ejlv) (ules, fi)) ((fr| C) € HE.
ik
Example 2.26. The partial inner product can also be viewed as a partial application of the identity
gate, i.e., for |v) € Ha, I € L(Hp), |u) € Ha @ Hp
(2.55) (wlu) = (@) |[u),  (ulv) = {ul(jv) @ I).

For T'= 3% lejXek| ® Tjk, the quantity ((e;|® I)T" can be represented as a rectangular matrix
that consists of the i-th block row of 71"

({eil @ DT = ({ea] @ I)Z lejXexrl @ Tin

(2.56) i
= Z (e @Tie = (Tio -+ Tin-1),
%

Similarly, T'(|e;) ® I) picks out the j-th block column of the matrix T
T(le;) @T) = bk lei) ® Tig

ik

(2.57) Th,;
= Z ‘61> ® Tij = R

‘ Tn-1,
and ((e;| ® I)T(|e;) ® I) returns the (i, j)-th block T;; as can be seen via
(2.58) ((eil @ DT (ej) @ 1) = ((es| @ 1) Y _ |ex) @ Tay = Ty

k

With some abuse of notation, we may omit the ®I notation, so ({e;| ® I)T(|e;) ® I) may be
written simply as (e;| T |e;). o
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2.3. Density operator

So far all quantum states encountered have been described by a single state vector |1). How to
describe a classical mixture of state vectors, such as the state after a measurement process? How
can the state of a subsystem within a larger quantum system be defined? The answer to these
questions requires the formulation of the density operator (also called density matrix).

Definition 2.27 (Density operator). A linear operator p € L(CV) is called a density operator, if
p =0, and Trp = 1. The set of all density operators is denoted by D(CN).

The density operator corresponding to a state vector |¢) is a rank-1 matrix

(2.59) p =[Nl

Recall that quantum mechanics postulates that |¢) and |¢)') = €*? |4)) represent the same physical
state. This statement is more natural from the perspective of the density operator, since

(2.60) pl= ' = e ) e (vl = p.

In physics, such an irrelevant phase factor is referred to as a gauge degree of freedom. The density
operator p encapsulates the same physical information as is present in |¢)), but with the added
benefit of being invariant to the gauge choice.

With some abuse of terminology, throughout this book, both the density operator p and the
state vector |¢) are called quantum states. A rank-1 density operator is called a pure state.

Exercise 2.2. Prove that all eigenvalues of a density operator p belong to [0, 1]. Furthermore,
p? =< p, and the equality holds if and only if p is a pure state.

If p is not a pure state, then it is called a mixed state. We can diagonalize the density matrix
as

(2.61) p= Zpi i) (i =: Zpipu

where all state vectors [i);) are orthogonal to each other, and each p; is a pure state. On the other
hand, if we have the ability to prepare each pure state p;, then to create the mixed state p, all we
need to do is prepare a state p; randomly, with the probability of preparing each state given by
pi- In essence, a mixed state can be seen as a classical ensemble of pure quantum states. In
particular, an n-qubit state p = 2% is called the maximally mixed state.

Let {p;} be a set of density operators. With any discrete probability distribution {p;}, define
p' = > ;pjpj- Then p' = 0 and Tr[p'] = >, p; Tr[p;] = > ;p; = 1. Therefore p’ is a density
operator. In other words, a classical ensemble of (pure or mixed) density operators is also a density
operator.

Example 2.28 (Expectation value of a quantum observable). Let us consider the expectation value
of an observable O with respect to a mixed state p. Since the expectation value with respect to a
pure state is

(2.62) (0),, = (¥i|Olh;) = Tr[Opi],

if we obtain the expectation value for a mixed state that obtains a pure state p; with probability
pi, the expectation value is concisely written as

(2.63) (0), = 3" p Tr{0p:] = (O,
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The measurement process can be described without referring to a quantum observable. A
quantum measurement can be described by a set of measurement operators {M,, }, where m labels
the different possible outcomes of the measurement. The operators M,, act on the state space H of
the system and satisfy the completeness relation: ) M,JLLMm = I. After a measurement described
by M,, is made on a quantum system in a state p, the probability of getting result m is given by

(2.64) P = Tr[M,,pM] ].

If outcome m occurs, then the state of the quantum system collapses to a new state
(2.65) o = m

The density operator of the resulting ensemble is

(2.66) P= Pmbl =Y MyppMif,.

If each M, is a projection operator denoted by P,,, then {P,,} is called a projective mea-
surement. When a quantum observable is measured, the action that is performed on the quantum
system is a projective measurement. That is, the state of the system is projected onto an eigenstate
of the observable, corresponding to the obtained result of the measurement.

Example 2.29 (Projective measurement). Let the initial state p = |¢) (¢| be a pure state subject
to a projective measurement {P,, }.,. After measurement, the system collapses into a state |1),,) =
Py b)) //Pm with probability p,, = (¢|Py,|¢). If we attempt to represent it by a pure state, one
natural choice seems to be [¢)') = 3" \/Pm |¢m). However, using the normalization condition of
the projective measurement in Eq.

(2.67) > P W) =3 o P |8) /B = D P [¥0) = [0

In other words, state before and after the measurement is exactly the same! This clearly does not
make sense.
Instead, the resulting state should be be represented by a mixed state

(2.68) P =" [Ym) | = P |90) (0| P = PonpPrn.

&

The partial trace is an operation on a joint quantum state (often representing a composite
system), which effectively “traces out” one or more subsystems to leave a reduced density operator
for the remaining subsystem(s). The operation is widely used in quantum mechanics, especially in
the study of open quantum systems, quantum information, and quantum computation.

Definition 2.30 (Partial trace). Consider two finite dimensional Hilbert spaces Ha = CN with an
orthonormal basis {|e;) }ie(n), and Hp = CM, and T € L(Ha ® Hp). The partial trace over Ha,
denoted by Tra(T) is an element in L(Hp) defined as:

(2.69) Tea(T) = > (el ® DT(Jei) ® ).
1E[N]

The partial trace Trg(T) is defined similarly.



36 2. ELEMENTS OF QUANTUM COMPUTATION

Example 2.31. The matrix representation of 7' € L(CY @ CM) takes the form of a block matrix

Too -+  TonN-1
(2.70) T= : : , Ty € CMxM,
Tn-10 -+ Tn-1,N-1
Then
(2.71) Tra(T) = Y Ti
1€[N]
is the sum of all diagonal blocks. o

Given a density operator p € D(Ha ® Hp), the partial trace
(2.72) pa=Trplp] € D(Ha), pp="Tralp] € D(Hp)
are called reduced density operators. In particular, if p = p; ® ps, then

(2.73) Trglp] = p1, Tralp] = po.

Note that even if p is a pure state, in general, the reduced density operators p 4, pp are mixed states.

If a quantum observable is defined only on the subsystem A, i.e., O = Oy ® Ig and O4 =
> Am P, then when measuring a quantum state p with respect to O, the probability of obtaining
Am, and the expectation value only depend on the reduced density matrix pa:

(2.74)  pm = Te[(Pn @ I)p] = Tx[Py Trplpl] = Tr[Prnpal,  Ep[O] = Tr[(Oa @ I)p] = Tr[Oapal.

Exercise 2.3. The Bell state (also called the EPR pair) is defined to be

1

1 110
= 5000y +111) = = |
1

(2.75) %)

Use the partial trace over the second qubit to prove that the Bell state cannot be written as any
product state |a) ® |b).

Example 2.32 (Purification of mixed state). Any mixed state can always be dilated to a pure state
using ancilla qubits. In particular, any n-qubit mixed state p can be expressed as > ; i1 XA
where |);) are the eigenvectors of p, and p; is the corresponding eigenvalue. Given this we can
construct a 2n-qubit pure state

(2.76) p) = Z\/ITjI/\j>A Ai)g -

Then Trp(|p)pl) = p. o

A more general concept than projective measurement is called generalized measurement,
also called positive operator-valued measure (POVM).

Definition 2.33. A positive operator-valued measure (POVM) is a set of positive semidefinite
operators {En,} that sum to the identity:

(2.77) > En=1I En>0.
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If a quantum system is in state p, the probability of obtaining outcome m is given by
(2.78) Pm = Tr[Eppl.

Unlike projective measurements, the elements E,, of a POVM are not necessarily orthogonal,
nor are they required to be projection operators (i.e., E2, need not equal E,,). However, POVMs
provide the most general description of quantum measurements. On the other hand, the Naimark’s
dilation theorem (see e.g. [Watl8, Chapter 2.3]) tells us that any generalized measurement can be
implemented by coupling the system of interest to an ancilla system and performing a standard
projective measurement on the composite system.

THEOREM 2.34 (Naimark’s dilation theorem). FEvery POVM can be realized as a projective
measurement on a larger Hilbert space. Specifically, given a POVM {E,,} on Ha, there exists
an auziliary Hilbert space Hp, a pure state |0) 5 € Hp, and a projective measurement { Py} on
Ha @ Hp such that for any state p on Ha:

(2.79) Tr[Emp] = Tr[Prn(p @ [0X0] 3)]-

PROOF. Since each E,, is positive semidefinite, we can define M,, = \/E,, such that M M,, =
E... Let Hp be a Hilbert space with an orthonormal basis {|m)} corresponding to the indices of
the POVM elements. We define a linear operator V : H4 — H o ® Hp by its action on an arbitrary
state |¢) € Ha:

(2.80) V) = My |th) ® |m)p.

This operator is an isometry because

(2.81) (V[Vp) = > (| M, My, 1) (mln) =Y (1] M, My, 1)) = (3] (Z Em> W) = (Py).

m,n m

We can extend this isometry to a unitary operator U acting on Ha ® Hp such that U(|¥) ®
|0) 5) = V' |¢). Now, define the projective measurement on the composite system by the projectors
I, = I ® |m)m|p. Let P,, = UL, U. Since U is unitary and {I,,} are orthogonal projectors
summing to identity, {P,,} is a valid projective measurement. Finally, we verify the probability
condition:

Tr [P (p ® |0X0|5)] = Tr[UTL,U (p @ |0)0]5)]
(2.82) = Tr[l1,,U(p @ |0)0]5)U]
= Te[(La ® [m)(m|p)V V).

Using the definition of V', we have VpV1 = Dokl MkleT ® |kXl|p. Substituting this back,

Te [P (p ® |0)0]5)] = Tr | (Ia ® [m)m|5) > MypM, @ |kXI|5
(2.83) k.l

= Tx[MynpM},] = Te[M], My, p] = Tr[Epnp).
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2.4. Quantum circuit

Nearly all quantum algorithms operate on multi-qubit quantum systems. When quantum op-
erators operate on two or more qubits, writing down quantum states in terms of its components as
in Eq. quickly becomes cumbersome. The language of quantum circuit offers a graphical
and compact manner for writing down the procedure of applying a sequence of quantum operators
to a quantum state. For more details see [NCOQ, Section 4.2, 4.3].

In the quantum circuit language, time flows from the left to right, i.e., the input quantum state
appears on the left, and the quantum operator appears on the right, and each “wire” represents a

qubit i.e.,
) U )
Here are a few examples:
0) o ~1) o) +)

which is a graphical way of writing
(2.84) X|0)=11), z[1)=—[1), HI0)=|+).

The relation between these states can be expressed in terms of the following diagram

0)—"—1)

(2.85) H[ [H

+)—Z—=1-)
Also verify that

0 B
0) ——— 10)
which is a graphical way of writing

(2.86) (X ®I)|00) = |10).

Note that the input state can be general, and in particular does not need to be a product state. For

example, if the input is a Bell state , we just apply the quantum operator to |00) and |11),

respectively and multiply the results by 1/ v/2 and add together. To distinguish with other symbols,

these single qubit gates may be either written as X, Y, Z, H or (using the roman font) X,Y,Z, H.
The quantum circuit for the CNOT gate is

@) —4— o)

b)) —— la® D)

Here the “dot” means that the quantum gate connected to the dot only becomes active if the state of
the qubit 0 (called the control qubit) is @ = 1. This justifies the name of the CNOT gate (controlled
NOT).

Similarly,
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|a) |a)
1) U o)
is the controlled U gate for some unitary U. Here U* = I if a = 0. The CNOT gate can be obtained

by setting U = X. Sometimes we want to control a unitary only if the control qubit is zero rather
than 1. In this case, we represent the control using a hollow circle as shown below.

) —o— |a) |a) |a)

l1—a B
16) Umen (U] U= |b)

Another commonly used two-qubit gate is the SWAP gate, which swaps the state in the 0-th
and the 1-st qubits.

|a) —>%—1b)

[b) —%— la)

Exercise 2.4. Write down the matrix representation of the SWAP gate.
Quantum operators applied to multiple qubits can be written in a similar manner:

qubit 0: |0) — [—
bit 1: |0) —  |—
qubit 1+ 10) —
qubit 2: |0) — 7 —
qubit 3: |0) —  +—

For a multi-qubit quantum circuit, unless stated otherwise, the first qubit will be referred to as the
qubit 0, and the second qubit as the qubit 1, etc.
When the context is clear, we may also use a more compact notation for the multi-qubit

quantum operators:
0% AU f= < 0 < 0™ —{U}—
One useful multiple qubit gate is the Toffoli gate (or controlled-controlled-NOT, CCNOT gate).
|a) —¢— la)
b)) —— o)

|e) —B— |(ab) ®c)

We may also want to apply a n-qubit unitary U only when certain conditions are met

1) —— 1)

) )
10) 10)

|z) Ulx)




40 2. ELEMENTS OF QUANTUM COMPUTATION

where the empty circle means that the gate being controlled only becomes active when the value of
the control qubit is 0. This can be used to write down the quantum “if” statements, i.e., when the
qubits 0,1 are at the |1) state and the qubit 2 is at the |0) state, then apply U to |x).

A set of qubits is often called a quantum register (or register for short). For example, in
the picture above, the main quantum state of interest (an n qubit quantum state |x})) is called the
system register. The first 3 qubits can be called the control register. When multiple registers are
present, we can distinguish them by writing |z) 4 |y) 5, so that we can refer to the quantum state
associated with the qubits in registers A and B, respectively.

In quantum computation, a classical bit-string is denoted as z € {0,1}", and the corresponding
|x) is called a classical state. The set of all classical states form the computational basis of an
n-qubit system. It is worth noting that {|z) (z||x € {0,1}"} forms a set of projective measurement
operators, which can be identified with the simultaneous measurement with respect to Pauli-Z
operators 71, ..., Z,. Consequently, when a measurement is performed with respect to the Pauli-Z
operator, it is called a measurement in the computational basis.

The circuit symbol for the quantum measurement with respect to a single Pauli-Z is

Example 2.35 (Measure Pauli-Z operators). For a quantum state |¢), the measurement of a
multi-qubit Pauli-Z operator of the form (Z1)* - - (Z,)%", where ay, ..., a, € {0,1} can be directly
implemented at the circuit level. For example, for a 3-qubit system, the following circuit

(2.87)

measures the outcome of Z; and Zs, yielding 4 possible outcomes {00,01,10,11} with respective
probabilities {p(00), p(01),p(10),p(11)}. Now consider an observable O = Z; Z3 whose eigenvalues
are 1 and —1. The probability of obtaining each eigenvalue is

(2.88) p(0 =1) =p(00) +p(11), p(O = —1) = p(01) + p(10).

<&

Example 2.36 (Hadamard test circuit). The Hadamard test is a useful tool for computing the
expectation value of an unitary operator with respect to a state, i.e., (¢|U]®). It can be used to
solve the phase estimation problem. The Hadamard test uses two circuits to estimate the real and
imaginary part of the expectation value separately.

The (real) Hadamard test is the quantum circuit in Fig. for estimating Re (¢|U|v).

FIGURE 2.1. Hadamard test for Re (¢|U|¢).
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To verify this, we find that the circuit transforms |0) |¢) as
Hol 1
0) |v) 225~ _(jo) + |1
10) [¥) \/§(| )+ 1) 1)
c-U 1
——=(|0 +|1HU
\/i(l )y + 1)U 4))
Hel 1 1
00 110y (uy + U ) + 2 1 () - U ).
The probability of measuring the qubit 0 to be in state |0) is
1
(2.89) p(0) = 5 (1 +Re (¥|U[4)).
This is well defined since —1 < Re (¢|U|y) < 1.

To obtain the imaginary part, we can use the circuit in Fig. called the (imaginary) Hadamard
test, where

(2.90) 5= ((1) ?)

is called the phase gate.

FIGURE 2.2. Hadamard test for Im (¢0|U])).

Similar calculation shows the circuit transforms |0) |¢)) to the state

(291) 210) () — iU 1)) + 5 1) () + U [4).

Therefore the probability of measuring the qubit 0 to be in state |0) is

(292) p(0) = 51+ I (410]9))

Combining the results from the two circuits, we obtain the estimate to (¢|U|¢).
o

Example 2.37 (Overlap estimate using the SWAP test). A special case of the Hadamard test is
called the SWAP test, which can be used to estimate the overlap of two quantum states |(p|i)|.
The quantum circuit for the swap test is
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FIGURE 2.3. Circuit for the SWAP test.

Note that this is exactly the Hadamard test with U being the swap gate. Direct calculation
shows that the probability of measuring the first qubit and obtaining outcome 0 is

(299) p(0) = 51+ Re (o, vl ) = £ (1+|(ph) ).

2.5. Copy operation and no-cloning theorem

Most computer programs on classical computers have an assignment of the form y = =z, or
y = copy(z), which stores the value in the variable z in a new location in memory as a variable
y. In scientific computation, this is the foundation of iterative methods, which solve a problem by
making progress gradually. For example, classical iterative algorithms for solving linear systems
require storing intermediate variables. It is therefore striking that such a basic step is explicitly
ruled out by quantum mechanics.

The no-cloning theorem is an early result in quantum computation: it forbids a universal
quantum copy operation (see also [NCOQ, Section 12.1]).

THEOREM 2.38 (No cloning). Given a fized state |s) (e.g. |s) = |0™)), there is no unitary
operator U that acts as a copy operation, in the sense that for every state |x),

(2.94) Ulr)®|s) = |z) @ |z) .
PROOF. Assume such a U exists. Take two states |z1),|z2) such that 0 < [{(x1]|z2)| < 1. Then
(2.95) U(lz1) @1s)) = lz1) @ [a1),  U(lz2) ® [s)) = |22) ® |22)-
Taking the inner product of the two equations and using unitarity,
(2.96) (z1|22) = (21, 8|22, 8) = (w1, 8|UTU |22, 8) = (21, T1| 0, 72) = (w1 |22)% .
Hence (x1|z2) € {0,1}, contradicting 0 < |[{(z1]|z2)| < 1. O

There are two important special cases in which copying is possible without contradicting Theo-
rem m The first is that |x) is not arbitrary: it is a specific state for which we know a preparation
procedure, i.e., |z) = U, |s) for a known unitary U, and some fixed state |s). Then we can prepare
a second copy of |z) via

(2.97) (IU,)|z)®|s) =|z) ® |x) .

The second is copying classical information in the computational basis, using the CNOT gate.
ie.,

(2.98) CNOT |z,0) = |z,z), z€{0,1}.
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The same principle applies to copying classical information from multiple qubits. Fig. gives an
example of copying the classical information stored in 3 bits.

|z1) |z1)
|z2) |z2)
|3?3> |3?3>
|0) — |21)
|0) D |z2)
0) D— |z3)

FI1GURE 2.4. Copying classical information using multi-qubit CNOT gates.

In general, multi-qubit CNOT operations can be used to perform classical copying in the com-
putational basis. Note that in the circuit model, this can be implemented with a depth-1 circuit,
since these CNOT gates act on disjoint sets of qubits.

The copying of classical information is compatible with Theorem [2:38] in the following sense.
The proof of Theorem uses two non-orthogonal states |z1),|z2) to obtain a contradiction.
However, all states in the computational basis are orthogonal to each other. Therefore, there exist
unitaries that copy a specified orthonormal set of states, but a universal quantum copy operation
is impossible.

Example 2.39. Let us verify that the CNOT gate does not violate the no-cloning theorem, i.e., it
cannot be used to copy a general superposition |z) = a|0) + b|1). Direct calculation shows

(2.99) CNOT |z) ® |0) = a|00) 4+ b |11) # |z) @ |x)

unless ab = 0. In particular, if |z) = |4), then CNOT creates a Bell state. o

Similar to the quantum no-cloning theorem, there does not exist a unitary U that performs a
“deleting” operation which resets an unknown state |x) to |0™):

(2.100) U0™) ®|z) =|0") ® [0™)
for all |x). Indeed, if |z1),|z2) are orthogonal, then unitarity implies
(2.101) 0= (0", 21|0", x2) = <On,$1‘UTU|On,$2> = (0",0"]0™,0™) =1,

a contradiction.

A more general version of the no-deleting theorem is as follows: given two copies of an arbitrary
quantum state, it is impossible to delete one of the copies. Specifically, there is no unitary U
performing the following operation using fixed known states |s) , |s'),

(2.102) Ulx) |z)[s) = |2)[0™) |s)
for an arbitrary unknown state |z).

Exercise 2.5. Prove the version of the no-deleting theorem in Eq. (2.102]).
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2.6. Deferred and implicit measurements

There are two important principles related to quantum measurements: the principle of deferred
measurement, and the principle of implicit measurement. At first glance, both principles may seem
counterintuitive.

Example 2.40 (Deferring quantum measurements). Consider the circuit

Here the double line denotes a classical control operation. The outcome is that qubit 0 has prob-
ability 1/2 of outputting 0, and qubit 1 is in the state |0). Qubit O also has probability 1/2 of
outputting 1, and qubit 1 is in the state |1).

However, we may replace the classical control operation after the measurement by a quantum
controlled X (i.e. CNOT), and measure qubit 0 afterwards:

0

0) S

It can be verified that the result is the same. In this sense, CNOT copies the measurement outcome
of qubit 0 to qubit 1 in the computational basis. o

Example 2.41 (Deferring measurement requires extra qubits). The procedure of deferring quantum
measurements using CNOTs is general, and important. Consider the following circuit:

0) = A 1=~

The probability of obtaining 0 or 1 is 1/2. However, if we simply “defer” the measurement to the
end by removing the intermediate measurement, we obtain

0

The result of the measurement is deterministically 0! The correct way of deferring the intermediate
quantum measurement is to introduce another qubit

0) —{1}—

|0) S

WV

Measuring the qubit 0, we obtain 0 or 1 w.p. 1/2, respectively. Hence when deferring quantum
measurements, it is necessary to store the intermediate information in extra (ancilla) qubits, even
if such information is not used afterwards. o

Exercise 2.6. Consider a quantum circuit with three qubits, initially all in state |0). The
circuit is as follows:
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Design a quantum circuit that defers the measurements of the first two qubits to the end, using
two additional ancilla qubits to store the intermediate measurement information. After the deferred
measurements, describe the final states of all qubits. Ensure the overall effect on the ancilla qubits
is the same as if the measurements were performed immediately.

The principle of deferred measurement states that in a quantum circuit, measurement
operations can be postponed from an intermediate stage to the end of the circuit. This remains true
even when a measurement at an intermediate step determines the conditional control of subsequent
gates: such classical controls can be replaced by quantum controls. One use of this principle is to
simplify quantum circuits and their analysis, by expressing the computation as a unitary circuit
(possibly using ancilla qubits) followed by measurements at the end.

The principle of implicit measurements states that, for predicting the statistics of the
qubits that are measured at the end of a circuit, it is irrelevant whether other qubits are explicitly
measured at the end or simply left unmeasured.

Example 2.42. Consider the circuit:

0
0) @ [~]

Before the measurement, the final state is % (]00) 4 |01)) + 3 (|10) — |11)). So measuring qubit 1
yields 0 and 1 with equal probability.
If we measure qubit 0 first, verify that qubit 1 will be in the mixed state

1 1
(2.103) p = 310)0] + 31X,
so if we measure qubit 1 afterwards, we again obtain 0 and 1 with equal probability. o

Why does the principle of implicit measurement hold? Assume the quantum system consists of
two subsystems A and B. Recall from Eq. that a measurement on subsystem A only depends
on the reduced density matrix p4. Thus it suffices to show that p4 does not depend on whether B
is measured. Let {P;} be the projectors onto the computational basis of B, and let the joint state
be p. If we measure subsystem B and discard the outcome, the joint state becomes

(2.104) p=> (IaP)p(IoP).

3

Then
(2.105)

pa = Trplp] = ZTYB[(I ® P)p(I ® By)] = ZTYB[P(I ® P;)] =Trp = Trplp] = pa.

p(I® ZPZ)
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Therefore, if the qubits in A are to be measured at the end of the circuit, the measurement statistics
do not depend on whether the qubits in B are measured or not.

2.7. Sparse matrix, Majorana, fermionic, and bosonic operators

Sparse matrices are among the most important examples of very large matrices that can be
efficiently encoded on quantum computers. They are also closely related to many physical Hamil-
tonians in practical applications.

Definition 2.43 (s-sparse matrix). A matriv A € CM*N s called s-sparse if each row and column
of the matrixz contains at most s non-zero entries.

Example 2.44. A diagonal matrix is 1-sparse. Any diagonal matrix A € C2"*2" can be written
as a linear combination of Pauli Z-operators

(2.106) A= > Ju i Oha T,
i1ynin€{0,1}

where 0, is equal to Zj; if s =1 and I if s = 0. Any permutation matrix II is 1-sparse. A row and
column permutation of a 1-sparse matrix is 1-sparse. Any l-sparse matrix A can be written as 11D
or DII', where D is a diagonal matrix and IT, I’ are permutation matrices. A tridiagonal matrix is
3-sparse. The following matrix

10 -+ 0
10 --- 0 N

(2.107) A=, : :(Z@)elTERNXN
: : i=1
10 - 0

has only one nonzero entry per row, but it is not 1-sparse since the first column has N nonzero
entries. o

Definition 2.45. The mazimal absolute value of the entries of A € CM*N | also called the max
norm, is defined as:

(2.108) [IA]

mae 7= max [ Ay
Lemma 2.46. Let A € CN*YN be s-sparse. Then
(2.109) [A] < s [|A]

max *

PRrROOF. For any row ¢ of A, the set of nonzero column indices is denoted by C;. By Cauchy-
Schwarz,

2
(2.110) (Az)i* = |3 Ay < D 1AG1E Y loil” < sl Al D 2l

J€C; J€EC; J€EC; J€EC;
Then
2 2 2
(2.111) [AZ]|* < s | Al pax > >l

i jeC;
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The condition that A is s-sparse implies that for each j, there are at most s indices i such that
A;; # 0, i.e., j belongs to at most s sets among {C;};. Therefore each j can appear at most s times
in the double sum. This means

2 2 2 2 2
(2.112) JAz]? < 52 A2 3 2 = 8 A 0 2l

J

Taking the supremum over z # 0 yields || 4| < s||4]| O

max "’

The equality in Lemma can be reached by considering a matrix B whose upper left s x s
block is ||A]|,.. ee', where e is an all 1 vector of length s. Direct computation shows that | B|| =
S ||AHma,x

A useful lemma is that the product of any 1-sparse matrices is 1-sparse.

Lemma 2.47. Let A and B be N x N 1-sparse matrices. Then C = AB 1is also 1-sparse.

PROOF. Since A, B are 1-sparse, there exists permutation matrices IT, II' and diagonal matrices
D, D’ so that A =1ID, B = D'II'. Therefore

(2.113) C =1(DD"HII
is a permutation of a diagonal matrix, and is therefore 1-sparse. O

Example 2.48. All Pauli gates in P,, are 1-sparse. This can be proved by induction. First, all
Pauli matrices I, X, Y, Z are 1-sparse matrices. Assume all Pauli gates in P, _; are 1-sparse, then
an element in P, can always be constructed (up to a reordering of qubits) as

(2.114) PP, PeP,_1,P €P.

This replaces a nonzero entry in P by a 2 X 2 matrix that is 1-sparse, so the overall matrix is still
1-sparse. o

Example 2.49 (Majorana operator). For a fermionic system defined on n modes, the state space
F =@ C? C?" is called the Fock space. The Majorana fermion operators (or Majorana
operators for short) denoted by {v;}2%,, are Hermitian operators in L(C?") satisfying the anticom-
mutation relations:

(2115) {’}/,“’y]} =5 + YiVi = 26@‘, ’L,j = 1, ey 2n.

The canonical realization of Majorana operators is through Pauli operators. When n = 1, we simply
have

For the n mode system, the Majorana operators can be defined using the Jordan—Wigner trans-
formation,

Jj—1 j—1
(2117) Y2i—-1 = <H Zk> X]‘, Y25 = (H Zk> Y;‘, ] = ]., s, n.
k=1 k=1

So Majorana operators are also 1-sparse matrices. Furthermore, any product of Majorana operators
Vi Yips U150 0k € {1,...,2n} is 1-sparse. o
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Example 2.50 (Fermionic operator). For a fermionic system defined on n modes with the Fock
space F = @7, C? = C?", the fermionic creation and annihilation operators, denoted by al and

a; respectively, are operators in L((CQH) that satisfy the canonical anticommutation relations
(CAR):
(2.118) {ai,a;f»} = aia; + a;f»ai = 0ij, {ai,a;} = {a},a}} =0, 4,j=1,...,n.
The creation operator a;r adds a fermion to the mode ¢, while the annihilation operator a; removes
a fermion from the mode 3.

For a single mode system,

1 0 1 1 0 0
Xt =< V) — N N . L

(2.119) a=X 2(X +14Y) <0 0) , a' =X 2(X 1Y) <1 0) .
In this convention a' [0) = |1),af|1) =0, a|1) = |0),a|0) = 0. Here |s) denotes the state with s
fermions (s = 0,1). The number operator 7 = a'a = 1(1 — Z) satisfies 7 |s) = s|s).

For an n-mode system, the fermionic operators are related to the Majorana operators according
to the relation:

1 . 1 . .

(2.120) a; = 5(721'71 + i2i), aj- = 5(721‘71 — i), i=1,...,n,
where 9,1 and ~; are the Majorana operators associated with the i-th fermionic mode. Therefore
any operator defined using a linear combination of fermionic creation and annihilation operators
can be expressed as a linear combination of Majorana operators, and vice versa.

From the Jordan—Wigner transformation,

j—1 j—1
(2.121) aj = (H Zk> XF, dl= (H Zk> X7,
k=1 k=1

with
1 ) _ 1 .
(2.122) X = 3 (X +iYy), X7 = (X, —iY)).
Since X* are 1-sparse matrices, a}aj,a;rvaj,aja;f are also l-sparse. Furthermore, any product of

T T

fermionic operators a; ---a; aj, ---ay is 1-sparse. o

Example 2.51 (Bosonic operator). For an n-mode bosonic systems, the bosonic creation and
annihilation operators, denoted by bz and b; respectively, are operators that satisfy the canonical
commutation relations (CCR):

(2.123) [bi,bl] = bibl — blb; = 655, [bi,b;] = [b],b]] =0, di,j=1,...

; i 9 n.

)

The creation operator b;r adds a boson to the mode ¢, while the annihilation operator b; removes a
boson from the mode i.
When n = 1, these operators satisfy

(2.124) bl0) =0, bls)=+/s|s—1),s=1,2,...,
and
(2.125) bils) =vVs+1|s+1),5s=0,1,2,....

Here |s) denotes a state with s bosons. We also have

(2.126) bib|s) =s|s).
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In the matrix form, we can write

V1

0

V1
(2.127) b= 0
0

o O O O

0 0 0
0 - 0 0
0 V3

These operators are infinite dimensional operators, i.e., operators defined in an infinite dimensional
space. They are also 1-sparse. Furthermore, |||, HbTH = 00, so unlike any finite dimensional
matrices, these operators are unbounded. The physical reason is that a single bosonic mode can
accommodate an infinite number of bosons, and the energy of a system with an infinite number of
bosons in a single mode is infinity.

Due to the commutation relation, multi-mode bosonic operators can be defined using tensor
products:

(2.128) bi = 120D @ pg =0 pl = 186D g pf @ [®0=D ;=1 . n,

where the identity operator I |s) = |s) also acts on an infinite dimensional space.

The precise characterization of the Hilbert space for unbounded operators is beyond the scope
of this book. However, if we truncate the state space of each bosonic mode to a finite dimensional
space with d levels, i.e., C%, the state space of a bosonic system defined on n modes with d levels
per mode is F = ®7_;C? =2 C?" and is finite dimensional.

In a single-mode truncated bosonic system, b, b’ are finite dimensional matrices:

0 vi 0 0 - 0 0 0 0 0 0
0 0 V2 0 - 0 Vi o0 0 0 0
0 0 0 V3 - 0 0 V2 0 0 0
(2120) b= | .=l 0 3 0 0

d—1 S : :

0 0 0 0 -+ V/d—1 0
These are 1-sparse matrices of size d x d. Then the multi-mode operators defined in Eq. (2.128))
are l-sparse matrices. Using Lemma [2.47] the product of any multi-mode bosonic operators
b; ~-~b;b- -++bj,, where b, bl are truncated bosonic creation and annihilation operators defined

J1
in Eq. (2.129) are 1-sparse matrices. o

Exercise 2.7. Prove that the truncated bosonic creation and annihilation operators defined
in Eq. (2.129)) satisfy the modified commutation relation

(d il 1! RNCI

o O
o O
o O

(2.130) [b,07]=1—

2.8. Selected Examples of Hamiltonians in Physics, Chemistry, and Optimization

With the introduction of spin, Majorana, fermionic, and bosonic operators, we can provide
several examples of Hamiltonians encountered in applications. Although we will not use all of these
examples to illustrate the performance of quantum algorithms, the algorithms in this book can be
applied to any of them.
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2.8.1. Condensed matter physics.

Example 2.52 (Transverse field Ising model). The Hamiltonian for the one dimensional transverse
field Ising model (TFIM) with nearest neighbor interaction of length n is

n—1 n
(2.131) H=-% ZZi1-gy X
i=1 1=1

where g is the coupling constant. o

Example 2.53 (1D Heisenberg model). The Hamiltonian for the 1D Heisenberg model with nearest
neighbor interaction is given by

n—1

(2.132) H=-J) 8;-Sin
i=1
where J is the interaction strength and S; represents the spin operator at site i, defined as
p (X
(2.133) S; = 3 Y;
Zi

We can decompose this Hamiltonian into three terms, each associated with the z, y, and z compo-
nents of the spins:

n—1 n—1 n—1
J J J
(2.134) H, = -1 E XiXip1, Hy= 1 E YiYip:, H.= 1 g ZiZita.
im1 i—1 i=1

When J > 0 the problem is called ferromagnetic, and when J < 0 it is called anti-ferromagnetic. ¢

Example 2.54 (2D Heisenberg model). The Hamiltonian for the 2D Heisenberg model on a square
lattice is given by:

n—1ln—1

(2.135) H=—JY > (Si;-Sit1;+Si;-Sijs)

i=1 j=1
We decompose this Hamiltonian into three terms associated with the x, y, and z components of the
spins:
J n—1n—1
He=—7 DD (X Xiwr + X Xi ),
i=1 j=1
J n—1n—1
(2.136) Hy=- Z Z(Yi,jYiH,j +Y5,;Yi41),
i=1 j=1
n—1ln—1

J
H,=- NN (ZiZiva i+ ZiiZin).

i=1 j=1
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Example 2.55 (k-Local Hamiltonian). A k-local Hamiltonian is a quantum Hamiltonian where
each term acts nontrivially on at most k& qubits. One convenient way to write such a Hamiltonian
on n qubits is as a linear combination of Pauli strings of weight at most k. For example, one may
write

(2137) H = Z Z JS,oc Ho-a(i),iv

SCn],|S|<k «a€{0,1,2,3}5 €S

where 00,i = I, 01,i = Xi, 02,4 = }/% and 03, = Z'L~
For example, consider a 2-local Hamiltonian for an n-qubit system:

(2138) H = ZJ,']‘CTZ'O']',

i<j
where 05, 0; are Pauli operators acting on qubits 7 and j, respectively. Transverse Ising models and
Heisenberg models are 2-local Hamiltonians. o

Example 2.56 (Quadratic fermionic Hamiltonians). Consider the following n-mode fermionic

Hamiltonian
n

(2.139) H= Z/\kck = Z 7" (1= Zy),

where c;fC and ¢ are new fermionic creation and annihilation operators, and \j are real eigenvalues

representing the energy levels of the system. The Hamiltonian H is a linear combination of Pauli
Z operators and is thus a diagonal matrix.
Now, consider a general quadratic fermionic Hamiltonian of the form:

(2.140) H=Y" Ajala,,
=1

where A is a Hermitian matrix. Since A is Hermitian, we can diagonalize it using a unitary
transformation U such that:

(2.141) UTAU = A,

where A is a diagonal matrix containing the eigenvalues A\p. Then define

n

(2.142) cp = Z(U’r i, Za Up, k=1,...,n.

i=1

Direct calculation shows that the new set of creation and annihilation operators {CL, ¢k + satisty the
canonical anticommutation relation. Substituting these transformations into the Hamiltonian,

(2.143) H =Y Upa(U)yjala; = Z Akcler,
3,5,k
we have transformed H into a diagonal Hamiltonian. o

Example 2.57 (1D spinless Hubbard model). The Hamiltonian for the 1D spinless Hubbard model
with nearest-neighbor interaction is given by:

n—1 n—1
(2.144) H=—t Z(a!aiﬂ + aL_laZ-) +U Z niMit1,

i=1 i=1
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where t is the hopping parameter, representing the kinetic energy term, and U is the nearest-
neighbor interaction strength. The operators a;r and a; are the fermionic creation and annihilation
operators at site i, respectively, and n; = a;rai is the number operator at site :. When U = 0, the
Hamiltonian is a quadratic in the fermionic operators and can be turned into a diagonalized form.
When U # 0, the Hamiltonian is no longer quadratic and cannot be turned into a diagonalized

Hamiltonian using the same strategy. o

Example 2.58 (Uniform electron gas in a plane wave basis). In a plane wave basis, the Hamiltonian
for a box of uniform electron gas can be expressed in second quantization as follows:

(2.145) H= Zekckck—l—* D V@, 4otk qtrati s
ki.,k2,q

where CL and ¢y are fermionic creation and annihilation operators for an electron with wave vector

k € R3, e = |k|? /2 is the kinetic energy. The interaction potential V(q) = 47/q2 in a plane wave
basis is the Fourier transform of the Coulomb potential. o

Example 2.59 (Harmonic oscillator). The Hamiltonian for a quantum harmonic oscillator in the
first quantization (i.e., real space representation) is given by

2 2
(2.146) H="r ;m ,
where p = —i0, is the momentum operator and z is the position operator. Define

1 1
2.147 b= —(z+ip), b =—(x—ip),
(2.147) \/5( p) \/Q( p)
then b,b' satisfy the canonical commutation relation [b,b'] = 1. Furthermore, the Hamiltonian
takes the form
1

(2.148) H=0'b+ 3

If we truncate the bosonic mode to include d levels, the state space is F = C%, and H is a diagonal
matrix of size d x d. o

2.8.2. Quantum chemistry.

Example 2.60 (Quantum chemistry in first quantization). In first quantization, the Hamiltonian
for a many-electron system is given in terms of the coordinates and momenta of the electrons. The
non-relativistic electronic Hamiltonian for a molecule in atomic units can be expressed as:

N T2 N M 7 7.7
4 A A4LB
2.149 H=-— — — g
( ) Z 2 Zz\ri—RA|+Z|rl—rj| R4 —R5|’
i=1 i=1 A=1 i<j A<B

where N is the number of electrons, M is the number of nuclei, r; and R 4 are the positions of the
i-th electron and the A-th nucleus, respectively, Z,4 is the atomic number of the A-th nucleus. This
is an unbounded operator. o

Example 2.61 (Quantum chemistry in second quantization). In quantum chemistry, the electronic
structure of molecules can be described using the formalism of second quantization with n molecular
orbitals. The state space F = ®7_;C? is finite dimensional. The use of second quantization allows
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for a compact and efficient representation of the Hamiltonian and facilitates the expression of the
Hamiltonian on quantum computers via the Jordan—Wigner transformation. The Hamiltonian of a
many-electron system in second quantization is given by

(2.150) H = Z hpqa aq+ Z quma aras,

p,q=1 p,q,rs 1

where a;L and a4 are fermionic creation and annihilation operators, respectively. The creation
operator a;f) adds an electron to the molecular orbital p, and the annihilation operator a, removes
an electron from the molecular orbital q. For simplicity we only consider the spatial part of the
orbital and omit the spin part. The indices p,q,r, and s label the molecular orbitals, h,, are the
one-electron integrals, and V4,5 are the two-electron integrals.

The one-electron integrals hy,, are given by

(2.151) /w ( =+ Vexe(r )) thg(r) dr

where 9, (r) is the spatial part of the molecular orbital and Ve (r) = — 2%21 @_Ziﬁﬂ is the external
potential due to the nuclei. The two-electron integrals V4,5 are given by
1
(2152) Vs = [ [ 03000005 52) e (o) o0 i
ry —r
The nuclei-nuclei interaction is a constant and is dropped for simplicity. o

Example 2.62 (PPP Model). The Pariser-Parr-Pople (PPP) model is used in quantum chemistry
to describe the m-electron systems in conjugated organic molecules. The Hamiltonian for the PPP
model can be written as

n n
(2.153) H=>" hpqaj,aﬁ% > Vegnpng,
p,q=1 p,q=1
where h,, are hopping integral elements, V,, are Coulomb interaction elements, a;g and a, are the
fermionic creation and annihilation operators at site p, and n, = a;f,ap is the number operator.
The Hubbard model is a special case of the PPP model with short ranged hopping and Coulomb
interaction elements. Compared to the full chemistry Hamiltonian in second quantization, the
two-body interaction coeflicients Vj, have only O(n?) entries but can still represent long range
interactions. o

2.8.3. Quantum field theory.

Example 2.63 (Schwinger Model in 1D). The Schwinger model describes quantum electrodynamics
in 1+ 1 dimensions. The state space for the Schwinger model is the tensor product of two spaces:
a tensor product of n 4+ 1 fermionic spaces and a product of n gauge field spaces. The total Fock
space is given by

n+1 n
(2.154) F= <® <CQ> ®(ct|,
i=1 j=1

where d = 2L + 1 is the number of levels the gauge field can take. There are two operators that we
need to define that act on the gauge field space. The first is EJQ-, which is a diagonal operator that
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counts the energy stored in the gauge field with index j € {1,...,n}. The second is U;, which adds
one to the value stored in the gauge field register and is analogous to a bosonic creation operator.
The action of these operators is given formally below:

L L L
(2.155) E2= ")l U= D> le+1), (e, U= le—1),¢l,.
e=—L e=—L e=—L

Here we assume for U; and its adjoint that the gauge field satisfies periodic boundary conditions
at the cutoff located at e = £L.
The Hamiltonian for the Schwinger model is given by:

n n n
(2156) H=Y B2V 40" U@ alazn — Ul @ agaly, | + 0> (-1 15" @ alay,
j=1 j=1 j=1
where a; and a;( are the fermionic annihilation and creation operators at site 4, and I,,, denotes the

identity operator of dimension m. The parameters u, v are related to parameters such as the lattice
spacing. o

Example 2.64 (Quadratic Majorana operators). From the Jordan—-Wigner transformation in
Eq. (2.117)), and use the fact that XY =iZ, we find that

(2.157) H=—iY Myok—172r = D MZk, M €R
k=1 k=1

is a diagonal Hamiltonian.
Consider a quadratic Hamiltonian of the form:

. 2n

. i

(2.158) H=— Z quCqu = _5 Z quCPClI’
1<p<q<2n p,q=1
where A is a real antisymmetric matrix, and {¢, 12,7;1 is a set of Majorana operators. There exists
an orthogonal matrix O such that:
(2.159) 0T A0 = é 0 M)y
—Ar 0
k=1
where )\; are the singular values of A. Now define a set of transformed Majorana operators
(2.160) Y= GOp =Y (0)jpG, i=1,....2n,
P P

then we still have

(2.161) {770y =205
The transformed Hamiltonian takes a diagonal form

i <
(2.162) H= —3 Z v (A)jv5 = —zZMWzml’Y%-

1<4,5'<2n k=1

The quadratic fermionic Hamiltonian in Example [2:56] is a special case of this example. o
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Example 2.65 (SYK Model). The Sachdev-Ye-Kitaev (SYK) model is a quantum mechanical
model of n Majorana fermions with random all-to-all interactions. The Hamiltonian for the SYK
model is given by

(2.163) H = Z Jigki ViV Ve
1<i<j<k<l<2n

where «; are the Majorana fermion operators, and J;jx; are random coupling constants, typically
drawn from a Gaussian distribution. The SYK model is of particular interest due to its connections
to quantum chaos, holography, and black hole physics. o

2.8.4. Optimization.

Example 2.66 (k-SAT problem). Classical optimization problems, such as the k-SAT problem,
can be represented using a Hamiltonian. The k-SAT problem is a type of Boolean satisfiability
problem where each clause contains exactly k literals. The goal is to find an assignment to the
Boolean variables that satisfies all the clauses. The most famous examples are 2-SAT (classically
easy), and 3-SAT (NP-complete).

Consider a k-SAT problem with n Boolean variables x1, xo, . . ., 2, and m clauses Cy,Cs, ..., Cp,.
Each clause C; is a disjunction of exactly k literals.

We can construct a Hamiltonian H such that its ground state corresponds to the solution of
the k-SAT problem. The Hamiltonian for the k-SAT problem can be written as:

m
(2.164) H=> Hc,,

i=1
where H¢, is the Hamiltonian for the i-th clause. Each clause Hamiltonian H¢, is designed to be
zero if the clause is satisfied and positive otherwise. For clauses involving single literals, such as

Cy = (zp) or C; = (Z,), the Hamiltonians H¢, and Hg, are:

1 1

(2.165) He, = 5(1—|—Zp)7 He, = 5(1—Zq).

For a clause C; = (z, V Z,), the corresponding Hamiltonian H¢, can be written using the product
1

(2.166) Ho, = 7 (1+2,) (1~ 2,).

For a general clause C; = (I; VIa V- -- V), where [; represents either x,,, or Z,, the corresponding
Hamiltonian H¢, can be written using the Pauli-Z operator Z:

k
L+ 2jZp,
(2.167) He, = H —
Jj=1
where z; = +1if [; = xp, and z; = —1if [; = 7,,,. The Hamiltonian H is diagonal and positive

semidefinite. If the smallest eigenvalue (called the ground state energy) of H is 0, then the associated
eigenvector (called the ground state, which may not be unique) corresponds to the Boolean variable
assignment that satisfies all the clauses of the k-SAT problem. o

Example 2.67 (MAX-CUT problem). The MAX-CUT problem is a well-known combinatorial
optimization problem. Given a graph G = (V, F) with a set of vertices V and a set of edges E, the
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goal is to partition the vertices into two subsets such that the number of edges between the subsets
is maximized. Assume the graph has n vertices, and the Hamiltonian for the MAX-CUT problem
can be written as:

1
(2.168) H=- > 5 (1=2:2;).
(i,)€E
Each term —3(1 — Z;Z;) equals —1 if vertices i and j are in different subsets and 0 if they are in
the same subset. Therefore, minimizing H is equivalent to maximizing the number of edges that
are cut by the partition. o
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CHAPTER 3

Probability, quantum channel, and distances

We begin by reviewing basic concepts in classical probability theory, which provides intuition
for how errors propagate in randomized processes. We then introduce quantum channels as the
general framework for quantum dynamics. Unlike ideal quantum circuits which are unitary, real-
world quantum processes often involve noise and decoherence. Quantum channels allow us to
model these effects, as well as measurements and interactions with the environment. We explain
the requirements (specifically, the concept of complete positivity) for a map to be a valid quantum
channel and describe standard representations such as the Kraus and Stinespring forms.

With this framework in place, we introduce distance measures for quantum states. For pure
states, we use norms that account for the global phase. For mixed states, we introduce the trace
distance and fidelity. These two measures are complementary: trace distance relates to the distin-
guishability of states via measurement, while fidelity captures their overlap and behaves well under
quantum operations.

Finally, we discuss how to compare quantum channels. This requires norms that are stable
even when the channels act on part of an entangled system. This leads us to the diamond norm,
which is the standard metric for quantifying the error of quantum operations.

3.1. Basic notions in probability theory

Probability theory is a subject that carries nearly as many profound surprises as quantum
theory itself. In this section, we introduce some basic concepts in probability theory, focusing on
finite-dimensional spaces. In quantum computing, the probability distributions associated with an
n-qubit system reside in 2"-dimensional spaces.

Definition 3.1. Let X be a finite set called a sample space, where each element of ¥ is called an
event. A probability distribution is a function P : ¥ — [0,1], which can be represented as a
vector in a Buclidean space, and satisfies ) . P(s) = 1.

Let ¥4 and ¥Xp be sample spaces and let P4 and Pp be probability distributions on the two
sample spaces. These distributions are said to be independent if the joint distribution, P45 on the
set X4 X X obeys Pap = P4 ®Pg. The expectation value (or average value) of a function mapping
[ ¥ = Cis defined to be E(f) := > .. f(5)P(s) = (f, P).

Example 3.2. As an example, let us consider rolling a four-sided die. Here the random variable
is the outcome of the experiment; the sample space is {1,2,3,4} and the probability distribution
(for a fair die) is 1/4 for each of these outcomes. The random variable, z, in this case corresponds
to the result of the die.
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In the event that we wanted to find the probability that the sample is a prime number, we
could redefine the sample space and the underlying distribution but it is easier to use the indicator-
function property of the distribution to see that

11 1
In general, this approach is often the easiest way to compute a probability because it constructs an
indicator function which projects onto the fraction of the sample space that we want to measure.
Note this is also true in quantum theory wherein the probability of measuring a mixed state, p, to

be a pure state [¢)) is

(3.2) P(ly)) = Tr([)eblp) = (bl p ) -
Here the projector |1)v| plays the same role as the indicator function used above, and further
illustrates the close ties between probability theory and quantum theory. o

Similar to the amplitude of the wave function in quantum theory, there is not a single unifying
interpretation of probability. For this reason we recommend that the reader be well versed in both
interpretations as each can convey useful intuitions.

The following bound, known as the union bound, is very useful for estimating probabilities of
events. We provide it as well as its proof as an elementary example of probability theory.

THEOREM 3.3 (Union Bound). Let ¥ be a sample space and let A,B C ¥ and let P be a
probability distribution on X. We then have

(3.3) P(AUB)=E(14+ 15 —1415) <P(A) +P(B).

PROOF. Intuitively, by looking at a Venn diagram for events A and B it is clear that the
region AU B contains region A and region B but also may include region AN B. Thus the upper
bound given above overcounts the probability in the intersection and therefore it is an upper bound.
Formally, we use linearity of expectation:

(3.4) E(IA—I-lB—lAlB)ZE(]_A)—I—E(IB)—E(].AIB).
Next, E(141p) = >, cx P(s)(1a(s)1p(s)) > 0, and E(14) = P(A), E(1p) = P(B). Combining
these gives the claim. O

Example 3.4 (Failure Propagation Bound). Consider the following problem: you have a quantum
algorithm that succeeds with probability 1 — § and fails with probability §. Suppose we run the
algorithm independently N times; determine a value of § that guarantees the probability of at least
one failure is at most 1/3. This problem appears ubiquitously in quantum computing in problems
such as phase estimation or quantum error correction where the probability of failure needs to be
considered and extra computational resources are needed to suppress them.

The N events each have a probability of § assigned to them and so we expect that the total
probability of at least one error happening will be from the union bound Né. We can validate this
inductively. For the base case we see trivially that the claim holds for N = 1. For the induction
step, let us assume that the probability of at least one error occuring in the first N — 1 steps is at
most (N —1)d. From the union bound the probability of failing in the next sample is § and thus the
total failure probability is at most (N — 1)0 4+ 6 = NJ. Thus if we want to see a failure probability
of 1/3 it suffices to take

1

(3.5) 6 < o
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This example shows that worst case scenario that the failure probability for our algorithm
grows linearly. This actually might seem strange to the reader since the error probability com-
pounds exponentially in practice; however, linear growth of error is actually in this context worst
than exponential because for large enough N the union bound will be greater than 1 whereas the
exponential upper bound is always less than 1. In this context, surprisingly, linear growth is worse
than exponential but nonetheless the simplicity and generality of union bounds often provide good
enough bounds that are easy to manipulate. o

The natural operations on probability distributions are stochastic transformations, which can
be represented as transition matrices. We define these transformations below.

Definition 3.5. Let ¥ be a sample space of size N and let p € RN be the column vector represen-
tation of a probability distribution. A wvalid transformation on the state space of the register X to
itself has a matriz representation P : RN — RN, which maps p to Pp. The matriz P is called a
transition matrixz and satisfies

(2) Ziew Pis =1, Vi€[N].

Remark 3.6. In classical probability theory, the probability distribution is often written as a row
vector. Then the transition matrix is applied from the right as pP, and the transition matrix needs
to be right stochastic or row stochastic, i.e., ZjE[N] P;; =1for all i € [N]. Given a probability

distribution p € RY, a natural quantum state encoding the distribution p (also called a coherent
version of p) is

(3.6) IVp) = Z Vi li) -

This is a normalized state. It is thus more natural to view p as a column vector so that the usual rule
of applying an operator to a state vector applies. A matrix satisfying the properties in Definition
is also called left stochastic or column stochastic. Any j-th column of P, denoted by P. ;, is a
probability distribution. If P is both left and right stochastic, then it is called a doubly stochastic
matrix. o

Example 3.7. Let us consider how we would represent an AND gate in this language. The AND
gate has the property that for any =,y € {0,1}, AND(z,y) = zy. This operation is an example of
an irreversible operation, meaning that it cannot be inverted from the outputs to find the inputs.
In this case the natural vector space for probability distributions for two bits can be represented as
a probability vector in R? @ R%. As we are using square matrices to represent these transformations
we will take AND(e, ® e,) = eg ® ey, for computational basis vectors ep,e; and z,y € {0,1}.
Specifically then we have that the gate can be represented as a stochastic matrix Panp

S o o
o O o
O O = O

1
0
(3.7 Panp = 0
0

We see that the matrix representation is stochastic, but not doubly stochastic.
If we consider taking two distributions for our bits p, = [a,1 — a]" and p, = [b,1 — b]T for
a,b € [0,1] then we can see that the distribution that we get from applying the AND operation to
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the distribution on the bits is

1110 ab (a+0b) —ab

o001 a(l=b) | _ |1-(a+b)+ad
(3.8) Panp (pz ® py) = 00 0 0 b(1 —a) o 0
000 0/ \(1—a)(l-b) 0

This output distribution makes intuitive sense. The AND output is 1 only if both inputs are 1,
which occurs with probability (1 —a)(1—b), corresponding to the second entry above. Equivalently,
the probability that the AND output is 0 is the probability that at least one input is 0, namely
a + b — ab, corresponding to the first entry. o

3.2. Quantum Channels

The concept of a quantum channel generalizes both the unitary evolution of isolated quantum
systems, as governed by the Schrédinger equation, and the stochastic evolution of classical prob-
ability distributions. It provides a unified framework for describing the most general physically
permissible evolution of quantum states, encompassing coherent dynamics (e.g., unitary transfor-
mations) and incoherent processes such as measurement, decoherence, and interactions with an
environment.

We begin by defining the mathematical objects under consideration. A superoperator is a
linear map Q : L(CY) — L(CM). We denote the action of Q on an operator A € L(CY) by Q[A]
or Q(A).

Given two superoperators Q; : L(CN1) — L(CM1) and Qy : L(CM?) — L(CM2), their tensor
product Q; ® Qs is the unique linear map L(CNt @ CN2) — L(CM: @ CM2) satisfying

(3.9) (Q1® Q2)[A1 ® As] = Q1[A1] ® O2[As)

for all A; € L(CM) and Ay € L(CN2). This definition extends to all operators by linearity.

Just as a unitary transformation maps a state vector to another state vector while preserving
its norm, a quantum channel is a superoperator intended to map a density operator to another
density operator. A fundamental example is the identity channel Z : L(CY) — L(CY), defined
by Z[A] = A for any A € L(CY).

Example 3.8. The action of the tensor product of superoperators is particularly important when
analyzing local operations on composite systems. Let Zx : L(CK) — L(C¥) be the identity map
and Q : L(CY) — L(CM) be a linear map. Consider an operator A € L(CKX @ CV). We can
represent A in block form with respect to an orthonormal basis {|i)} of CX:

(3.10) A= 3" i)l ® Ay, Ay € L(CV).
i,J€[K]
The action of Zx ® Q is given by applying Q to each block:
(3.11) Tk ® QA = Y |i)i| ® QAj].
i,j€[K]
For instance, if K = 2, the matrix representation is

(3.12) (I» ® Q) Kﬁ?g i‘l’m = @ﬁl’fﬂ gﬁﬂ) € L(C? @ CM).
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To ensure that a superoperator maps density operators (which are positive semidefinite and
have unit trace) to density operators, it must satisfy certain constraints.

Definition 3.9. A linear map Q : L(CN) — L(CM) is called: positive if Q[A] is positive
semidefinite for every positive semidefinite A € L(CYN). Q is called trace preserving (TP) if
Tr(Q[A]) = Tr(A) for every A € L(CN).

While it might seem sufficient to define a quantum channel simply as a positive, trace-preserving
map, the structure of quantum mechanics demands a stronger condition. Quantum systems often
exist as subsystems of larger, composite systems. If Q describes the evolution of a system S, and S
is potentially entangled with an ancillary system A, the evolution of the joint system is described
by T4 ® Q. For this joint evolution to be physically valid, Z4 ® Q must also map density operators
to density operators, meaning it must be a positive map, regardless of the dimension of the ancilla
A. This requirement leads to the concept of complete positivity.

Definition 3.10. A linear map Q : L(CY) — L(CM) is completely positive (CP) if for all
integers K > 1, the map T ® Q : L(CK @ CN) — L(CK @ CM) is positive.

It is worth noting that the ordering of the tensor product in the definition is immaterial. One
could equivalently require that Q ® Zx be positive for all K. Physically, this reflects the fact that
the labeling of the ancillary system is arbitrary. Mathematically, the maps Z ® Q and Q ® Z are
related via the SWAP operator (the isomorphism that exchanges the tensor factors). Specifically,
they are unitarily equivalent:

(3.13) Q& T =Uswar o (Z® Q) o Usyap:

where the superoperator Uswap acts as Uswap[X] = SWAP - X - SWAP'. Since X > 0 if and only
if UXU' = 0 for any unitary U, it follows that Z ® Q is positive if and only if Q ® T is positive.

While positivity ensures that the channel acts correctly on the system itself, complete positivity
is strictly stronger, ensuring correct action even when the system is entangled with an ancilla.

Example 3.11 (Positive map that is not completely positive). Consider the transpose map T :
L(C?) — L(C?), defined by T[A] = AT with respect to the computational basis. If A is positive,
its eigenvalues are non-negative. Since A and AT share the same spectrum, A" is also positive.
Thus, 7T is a positive map.

However, 7 is not completely positive. To illustrate this, consider a two-qubit system in the
maximally entangled Bell state [1)) = %(\OO) + |11)). The corresponding density operator is:

1

(3.14) p = )| = 5(00) {00] +]00) (1] +[11) (00| + |11) 11]).

We apply the map Z® T (the partial transpose with respect to the second subsystem) to this state:
1

(3.15) (ZoT)p] = §(|OO> (00] + |01) (10] + |10) (01| + |11) (11)).

In the standard basis {]|00),|01),|10),|11)}, the matrix representation is

(3.16)

N | =

10 0 0
0 010
0 1 0 0
0 0 01

This matrix has eigenvalues { %, %, %, —%} Since one eigenvalue is negative, the resulting operator
is not positive. Thus, T is not completely positive. o
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We now arrive at the formal definition of a quantum channel.

Definition 3.12 (Quantum channel, or CPTP map). A quantum channel Q is a linear map
L(CN) — L(CM) that is completely positive (CP) and trace preserving (TP).

If Q is a quantum channel, it maps any density operator p € D(C") to a density operator
Q[p] € D(CM). The complete positivity condition ensures that if Q acts locally on a subsystem of
a larger entangled state p € D(CX @ CY), the resulting state (Zx ® Q)[p] remains a valid density
operator in D(CK @ CM). This property is fundamental to the consistency of quantum mechanics.

Example 3.13. A fundamental class of quantum channels is the unitary channel. This requires
the input and output dimensions to be equal, N = M. Given a unitary matrix U € U(N), the
corresponding channel I : L(CY) — L(CY) acts by conjugation:

(3.17) Ulp] = UpUT.

This map is trace-preserving, as Tr[UpU'] = Tr[pUTU] = Tr[p]. It is also completely positive, as
we will see shortly. The identity channel 7 is a unitary channel with U = I. o

A powerful way to characterize and construct quantum channels is through the Kraus repre-
sentation.

Proposition 3.14. Let {K;};c[r] be a set of matrices in CM*N satisfying the completeness relation
(3.18) > KK =1Iy.
JE[R]
Then the linear map Q : L(CN) — L(CM) defined by
(3.19) Qlp] = Y K;pK]
JjelR]

is a quantum channel (CPTP).

ProoOF. We first verify complete positivity. Let L be an arbitrary integer and consider any
positive operator X € L(CF @ CV). The action of the extended map is

(3.20) (TL®QX]= > (IL®K;)X(IL @ K;)T.
JEIR]

For any operator A, if X is positive, then AX At is also positive. Thus, each term in the summation
is a positive operator. Since the sum of positive operators is positive, Zr, ® Q is a positive map for
all L. Thus, Q is completely positive.

Next, we verify the trace-preserving property. For any p € L(CY), using the linearity and the
cyclic property of the trace, we have

(3.21) Q] = Y Tr[KpK]]=Tr |p | Y KIK;
JE[R] JE[R]

Substituting the completeness relation 3z K}Kj = Iy, we obtain Tr[pIy] = Tr[p]. Therefore,
@ is trace-preserving. O
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The representation in Eq. is called the Kraus form or the operator sum representa-
tion of the channel. The operators {K;} are known as Kraus operators. For example, the unitary
channel in Example is in Kraus form with a single Kraus operator Ko = U.

We can now explore the connection between classical stochastic evolution and quantum chan-
nels. This correspondence highlights that quantum mechanics is a generalization of classical prob-
ability theory.

For any probability distribution p € RY, we can embed it into a quantum state

(3.22) o= miliYil

i€[N]

This diagonal density matrix is called a classical state or probabilistic state.

Given a (column) stochastic matrix P € RM*N (ie, P; > 0 and Yiepn Py = 1 for all
j € [N]), which defines a classical Markov process mapping distribution p to p’ = Pp, we can
construct a corresponding classical channel Q : L(CY) — L(CM) defined by

(3.23) Al = > PyliXilplsXil.

i€[M],j€[N]

If p is a classical state, Q[p] is also a classical state corresponding to the evolved probability
distribution p'.

Exercise 3.1. Prove that the classical channel Q defined in Eq. is indeed a quantum
channel (CPTP).

The fact that classical channels are a subset of quantum channels suggests that any advantage
offered by quantum computation must stem from the utilization of the off-diagonal entries of the
density matrix (coherence) and the structure of non-classical channels.

We now present several examples of important quantum channels, typically modeling different
types of noise processes in qubits (N = M = 2).

Example 3.15 (Bit flip and phase flip channels). The bit flip channel Q¢ describes a process where
the qubit state is flipped (i.e., X gate applied) with probability 1 — p, and remains unchanged with
probability p:

(3.24) Quelpl =pp+ (1 —p)XpX, 0<p<L

This is in Kraus form with Ky = Pl and K1 = /1 —pX.
Similarly, the phase flip channel O flips the relative phase (i.e., Z gate applied) with proba-
bility 1 — p:

(3.25) Qutlp) =pp+(1-p)ZpZ, 0<p<l.
This channel is also known as the dephasing channel, as it suppresses coherences while leaving
populations unchanged. o

Example 3.16 (Depolarizing channel). The depolarizing channel Qq;, : L(CY) — L(CY) models a
process where the state remains intact with probability p, and is replaced by the maximally mixed
state I /N with probability 1 — p:

1—
(3.26) Quplpl =pp+ —~1, 0<ps<1l
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Example 3.17 (Amplitude damping channel). The amplitude damping channel Q.4 : L(C?) —
L(C?) models energy dissipation, such as spontaneous emission, where an excited state |1) decays
to the ground state |0) with probability . It is described by the Kraus operators

(3.27) K0:<1 \/10_70 K1:<8 \?) 0<~y<1.

<&

Perhaps surprisingly, the converse of Proposition [3.14]is also true: every quantum channel can
be written in the Kraus form. This fundamental result demonstrates that the abstract definition of a
CPTP map is equivalent to the constructive definition provided by the operator sum representation.

THEOREM 3.18 (Choi—Kraus Representation). A linear map Q : L(CYN) — L(CM) is a quantum
channel if and only if there exists a set of matrices {K;};e[r) in CM*N “with R < NM, satisfying

the completeness relation ZJ—G[R] K}Kj = Iy, such that Q takes the form
(3.28) Ap) = Y Kjpk].
JElR]

PROOF. The “if” part is established by Proposition[3.14 We now prove the “only if” part using
a technique known as the Choi-Jamiotkowski isomorphism.
Let Q be a quantum channel. Define an unnormalized maximally entangled state on CV ® C/:

(3:29) =D i) ®1i).
€[N

Let Zn denote the identity map on the first N-dimensional register (the ancilla). By the complete
positivity of Q, the map Zy ® Q is positive. Therefore, the Choi matrix defined as

(3.30) o= (In ® Q)Y )Xy|] € L(CN @ CM)

is a positive operator.

The Choi matrix completely characterizes the channel Q. To see this, we use a key property
of the maximally entangled state. For any vector |¢) = >, 4; |i) € CN, let |[¢) = >, 4; |i) be its
element-wise conjugate in the computational basis. We can verify the identity:

(3.31) (@1 In) 1) = Y0410 @ 1) = 3" wili) = o).

We can recover the action of the channel on [¢)1| by taking the partial inner product of o
with |¢) on the first register. By the definition of the tensor product map and the identity above,
we have:

(91 ® Lo (1) & ) = (@] @ 1) (@n © QNI @ Tar)
(332) = o[l & I (1) @ In)
= Q).

Since o is positive, we can perform its eigendecomposition. Let R = rank(c) < NM. We write

(3.33) o= |s;Xs;l,

J€[R]
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where |s;) € CN @ CM are (potentially unnormalized) eigenvectors scaled by the square root of the
eigenvalues.

For each j € [R], we define a linear operator K; : CY — CM via the relation (sometimes called
vectorization or flattening):

(3.34) Kj[v) == (] @ Ing) [s5) -

Substituting the decomposition of ¢ back into the recovery formula:

QX)) = (W] @ In) | D Is¥ssl | (1) @ Iar)
JE[R]

(3.35) =3 [Wlennls)] [l () @ )]
Jj€[R]
= 300G DG ) = Y KWK
J€lR] JE[R]

Since this holds for arbitrary |+), by linearity it holds for all operators p € L(CV).
Finally, we must verify the completeness relation. The trace-preserving property Tr[Q(p)] =
Tr[p] implies

(3.36) T | > KjpKl| =Tr || Y KIK; | p| =Te[Ivp].
JE[R] JE[R]
Since this equality holds for all p, we must have el K]TK ;=1In. O

The definition of complete positivity in Definition [3.10] requires verifying positivity for all di-
mensions K, which is operationally cumbersome. However, the proof of the Choi—Kraus theorem
reveals that a much simpler criterion suffices. Let Zy denote the identity channel on L(CN ). If
we assume only that the map Zy ® Q is positive, then the Choi matrix o (defined in the proof of
Theorem must be positive, as it is the image of the positive operator |y)}~| under this map.
As shown in the proof, the positivity of o guarantees the existence of a Kraus representation for
Q. Finally, by Proposition any map with a Kraus representation is completely positive (i.e.,
Tk ® Q is positive for all K). This establishes the equivalence between the original definition and
a condition involving only an ancilla of the input dimension:

Proposition 3.19 (Choi’s Theorem). A linear map Q : L(CN) — L(CM) is completely positive if
and only if its Choi matriz o is positive semidefinite. FEquivalently, Q is CP if and only if the map
In ® Q is positive.

The Kraus representation provides deep insight into the structure of quantum channels. An-
other fundamental structural result is the Stinespring dilation theorem, which connects general
quantum channels (which may involve decoherence or dissipation) to coherent evolution on a larger
Hilbert space.

THEOREM 3.20 (Stinespring dilation). Given any quantum channel Q : L(CN) — L(CM), there
exists an ancilla system A of dimension R < NM, and an isometry V : CN — CM @ CF (i.e.,
VIV = Iy) such that

(3.37) Q(p) = Tra [VpVT].
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Furthermore, this isometry can always be realized by a unitary evolution U on a sufficiently large
joint system initialized with the ancilla in a fized state |0):
(3.38) Qp) =Tra [U(p @ |0)X0))UT] .

PRrOOF. By the Choi-Kraus theorem (Theorem [3.18), Q has a Kraus representation Q(p) =
Zje[R] ijKJT, where R < NM.

We construct the isometry V : C¥ — CM @ CE. Let {|j)} be an orthonormal basis for the
ancilla space CE. Define V by

(339) Vig)= > (K; ) @1j).
JE[R]
We verify that V is an isometry. For any |¢) € CV:
WIVIVIR) = IV IDIF = D I 1))

JE[R]
(3.40)

Y WIKIE ) = (0l [ D KK, | 1)

Jj€[R] J

By the completeness relation, this equals (1[¢)). Thus VIV = I.
Now we verify the representation in Eq. (3.37). We compute VpVT. It is helpful to view V/
formally as V' =3, K; ® |j). Then

(3.41) Vvt = (Zm@ |i)> p ZK} @ (jl | = D (KipK}) @ |i)j]-

,J
Tracing over the ancilla (the second register) yields
(3.42) Tra[VeVT =Y (KipK]) Tr Z K;pK| = Q(p).
0,J

To realize this via a unitary evolution, we define U such that its action on the subspace corre-
sponding to the initial state p ® |0)0| matches the isometry V. Let the joint space be large enough
(e.g., dimension D = max(N, M)R). We define U such that
(3.43) U(lv) @ [0) =VI), V) eC.

(We might need to embed CV and CM @ C” into the larger space C”). Since V is an isometry,
this definition is norm-preserving. We can always extend this definition to a full unitary U on the
joint space.

Finally, we verify the representation in Eq. (3.38). Let p = ), pr|tr)¢x| be the spectral
decomposition.

U(p®[0)0)UT = ZpkU [¥r) © 10)) (| @ (O)UT

(3.44)
= Zpk Vo)) (V [0 = Vvt
k

Therefore, Q(p) = Tra[VpVT] = Tra [U(p ® |0)0))UT]. O
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Theorem [3.20| states that any quantum channel, no matter how noisy or irreversible it appears,
can always be modeled as a unitary interaction between the system and an environment (ancilla),
followed by discarding the environment. This provides a powerful conceptual tool, showing that all
quantum evolution is fundamentally unitary if we consider a large enough closed system.

3.3. Distance between state vectors and unitaries

A distance (also called a metric) on a set X is a function d : X x X — R that assigns a real
number d(z,y) to each pair of points z,y € X. This function satisfies the following properties for
all x,y,z € X:

(1) (Non-negativity) d(z,y) > 0.
(2) (Identity of indiscernibles) d(z,y) = 0 if and only if z = y.
(3) (Symmetry) d(z,y) = d(y,z).
(4) (Triangle inequality) d(z,y) < d(z,2) + d(z,y).

For example, the vector 2-norm defines a metric on CV : (z,y) — ||z — y||, and the operator
norm defines a metric on U(N): (U, V) — ||[U = V||.

The difference for the product of K unitaries can be bounded using a simple technique some-
times referred to as a “hybrid argument”. This technique is used to bound the distance between
two states by considering a sequence of “hybrid” unitaries, each of which differs from the next in
the sequence by a small amount.

Proposition 3.21 (Linear error growth for products of unitaries). Given unitaries Uy, 5’1, ..., Uk, Tj’K S
U(N) satisfying

(3.45) “Ui—(?i <e Vi=1,...,K,
we have
(3.46) HUK~~~U1—T7K-~-[71H < Ke.

PROOF. Use a telescoping series
U Uy —Ug - U
=(Ug - UsUy — U -~ UsUy) + (Ugc - - UsUsUy — Uk - - UsUsUy ) + -+
+ (UxUg—1---Ur — UxUg—1 -+ Uy)
=Ug - Us(Uy — Uy) + Ug -+ Us(Ua = U)Uy + -+ + (U — Ug)Ug—1 -+ Uy

(3.47)

Since all U;, Tj’l are unitary matrices, we readily have

K
(348) HUKUl_inﬁIHSZHUl_ﬁ’ SKE
i=1

O

For most of this book, the vector 2-norm and the operator norm distances are both convenient
and sufficient. However, they are only applicable to pure states. For measuring the distance between
mixed states, new tools will be needed. Even for pure states, unitaries may differ by a phase which
should be inconsequential for measuring physical observables. These require the introduction of
new metrics.
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Two state vectors [1)) ,|¢) € CV are physically indistinguishable if they only differ by a global
phase. Similarly, two unitary matrices U, V' € U(NN) induce the same evolution on density operators
if they only differ by a global phase. Consider the matrices

(3.49) I, := <(1) (1)> I := <_01 _01>.

We have in this case that ||[I; — I_|| = 2. However, for an arbitrary density matrix p, the induced
evolution of the density operator under these two operators is
(3.50) [Lpl = I-pI_|| = |[p = (=1)%p|| = 0.

This motivates the definition of the global phase invariant distance for vectors and unitary matrices.
The subscript p in D, stands for phase.

Definition 3.22. Let 1)), |¢) € CV be two state vectors, their global phase invariant distance
18

(3.51) Dy([9) ;1)) = gg§|||w> — )]

Definition 3.23. For two unitaries U,V € U(N), their global phase invariant distance is
3.52 Dy(U,V) = min ||U — V||
(3.52) p(U.V) = min |[U = V]|

An equivalence relation on a set X is a binary relation ~ that satisfies the following three
properties for all a,b,c € X:
(1) (Reflexivity) a ~ a.
(2) (Symmetry) If @ ~ b, then b ~ a.
(3) (Transitivity) If a ~ b and b ~ ¢, then a ~ c.
A relation that satisfies these properties is called an equivalence relation, and it partitions the
set X into disjoint equivalence classes.

Definition 3.24. Let X be a set and ~ be an equivalence relation on X. The quotient space (or
quotient set) X/ ~ is defined as the set of equivalence classes of X under the relation ~. An
equivalence class [x] of an element x € X is the set of all elements in X that are equivalent to x,
i.e.,

(3.53) [zl ={y e X |y ~x}.

The quotient space X/ ~ is the set of all such equivalence classes:

(3.54) X/ ~={[z] |z € X}.

Example 3.25. Define an equivalence relation on CV:

(3.55) r~y < x=M\yforsome A € C\ {0}, z,yeCV\{0}.

Then PCY := CV \ {0}/ ~ is called the complex projective space, which is isomorphic to the
set of all nonzero physical states. The real dimension of a manifold M is the number of real
coordinates needed to locally describe the manifold. For example, the real dimension of CV is 2N,
and the real dimension of PC¥ is 2N — 2.

We may identify each single qubit quantum state with a unique point on the Bloch sphere as

(3.56) a = (sinf cos @, sinfsin p,cosf) ", 6,9 € R.
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This agrees with the previous statement that the real dimension of PC? is 2. o

Exercise 3.2. Prove that the global phase invariant distance is a distance on the complex
projective space PCV.

Example 3.26. Define an equivalence relation on U(N):
(3.57) U~V < U=¢"%V forsome e R, U,V e U(N).

Then PU(N) := U(N)/ ~ is called the projective unitary group. The real dimension of U(NV)
is N2, and the real dimension of PU(N) is N2 — 1.

Recall that the special unitary group SU(NV) consists of all unitary matrices with determinant
1. So the real dimension of SU(N) is N2 — 1. However, the equivalence relation on SU(N) is

(3.58) U~V = U=e?"/NV for some k € [N], U,V e SU(N).

So each equivalence class only consists of N discrete elements and does not reduce the dimension.
Therefore the real dimension of the projective special unitary group denoted by PSU(N) is still
N? 1. o

Exercise 3.3. Prove that the global phase invariant distance is a distance on the projective
unitary group PU(N).

Exercise 3.4. Given unitaries Uy, [717 ..., Uk, Uk € U(N) satisfying

(3.59) DU, U) <e, Vi=1,... K,
prove that
(3.60) Dy(Ug - Uy, Ugc ---U) < Ke.

Let |¢) = €™ cosf |¢p) +sin@ | L), where (¢p| L) =0 and 0 < 6 < m/2. Then cosf = |(p|)] is
the overlap between the two vectors. We can perform a unitary operation that rotates e [1)) to
|0) and | L) to |1). Direct calculation shows

(3.61) Dp(|v), |¢}) = min [10) — e (e" cos §10) +sin6 |1))[| = v/2(1 — cos ) = /2(1 — [(¢[4))]).

Therefore the global phase invariant distance between two vectors can be directly computed from
the overlap.

Exercise 3.5. For U,V € U(N), prove that

Aj

(3.62) D,(U, V)= Zm(gn max
J

sin

where {1} are eigenvalues of V1U.
Exercise 3.6. For U,V € U(N), another distance that is invariant to the global phase is

1 . i

Prove that

T
. N Y A i i)
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3.4. Distance between classical states and classical channels

In this section, we provide a connection between concepts in classical probabilistic computa-
tion and density operators and quantum channels in quantum computation. For two probability
distributions p,q € RY, the total variation distance is

1
(3.65) D(p.q) =5 D Ipi —ail.
1€[N]

The name total variation distance comes from that it measures the largest difference between p and
g for some subset (also called event) S. The total variation distance is the default metric we will
use between probability distributions and will be denoted by D without subscripts.

Proposition 3.27. For any two classical probability distributions p,q € RV,

(3.66) D(p, q) = max(p(5) — q(5)) := max (Z pi—Y %’) :

i€es =
where the maximization is over all subsets S.

ProOF. For any subset S, let S be its complement. Then
(3.67) 0= "pi—> 6= (pi—a)+Y (pi—a)
i i €S i€S

Hence

(3.68) =Y a= % > pi—a) =Y (pi—a) | <D(p,q)

ies i€s = icS

Now let S = {i|p; > q;}. Then

€S €S

(3.69) % > i—a) =Y i—a)| = % Z lpi — ail = D(p,q),

and the equality is achieved. (|
We now prove that the application of a transition matrix does not increase the total variation

distance.

Proposition 3.28. Given a transition matriz P € RNXN

butions p,q € RV,

(3.70) D(Pp,Pq) < D(p,q).

, and any two classical probability distri-

If the equality holds for any p,q € RY, then P is a permutation matriz.

PRrROOF. Use the left stochasticity of the transition matrix, we have

1 1 1
(3.71) D(PP,PQ)=§Z > Pilp; —q)) §§ZZR-J- |pj—qy'\:§Z|pj—qy‘\=D(p,Q)~
i T i

%
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If the equality holds for any p,q € RY, we prove that each row of P has only one nonzero entry. If
this is not the case, assume that there exists a row index ¢ and two distinct column indices j; # jo
such that P;;, > 0 and F;;, > 0. Choose p = e;, and ¢ = e;,. Then for this row ¢,

(3.72) me =|Pijy = Pignl < Pijy +Pijy =D Pilp; —ajl,
J

which contradicts equality in the triangle inequality step above. Hence each row has exactly one
nonzero entry. By left stochasticity, each column must also have exactly one nonzero entry, which
must equal 1. This proves that P is a permutation matrix. O

The induced total variation distance between two transition matrices P,Q € RVY*V js
defined as

(3.73) D(P,Q) = max D(P.j,Q.;)-

Exercise 3.7. Prove that D(-,-) is a distance on the set of N x N transition matrices.
Finally, we prove that the difference for the composition of K classical channels grows linearly.

Proposition 3.29 (Linear error growth for product of transition matrices). Given the transition

matrices Py, Py,..., Pk, Py € RN*N " the induced total variation distance satisfies
K

(3.74) D(Pk -+ Py, Pg---P) <Y D(P;, P).
i=1

PROOF. Using the telescope series Proposition [3.21] it is sufficient to consider the case for
K =2. Then

D(PyPy, P,P,) <D(PyPy, P,Py) + D(P, Py, P,P;)
- D((PyP;). - (PoPy). D((PyP). - (PoPy).
max ((PaPr). g, (P2 1).,J)+jlg[f§vx] (P2Py). j, (P2 Py). 5)

< D((P1). 5, (P, + D((P3).q, (P3).
(.75 s DR (B + s (s DR (P20 ) (P

<max D((P1). ;, (P D((Py).1, (Pa).
max D((P1):,j0 ( Py)., 3) + max D((F2)., ( P)..)

=D(Py, P\) + D(Py, P,).
Here we have used Proposition and the left stochasticity of ]51. O

3.5. Distance between quantum states

Quantifying the similarity or difference between quantum states is fundamental to quantum
information theory. It allows us to analyze the performance of quantum algorithms, assess the
errors in quantum communication protocols, and understand the distinguishability of quantum
states through measurements. In this section, we introduce the two most widely used measures: the
trace distance and the fidelity. These generalize the corresponding concepts for classical probability
distributions, such as the total variation distance discussed in Section [3:4 For a comprehensive
treatment, we refer readers to [NC0O0, Chapter 9] and [Watl8, Chapter 3].
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3.5.1. Schatten norms and the trace norm. To define distances between density opera-
tors, which are matrices, we first need appropriate matrix norms. The Schatten norms provide a
family of norms generalizing the 7 norms for vectors to the space of operators.

Let A € CM*N_ The singular values of A, denoted o;(A), are the square roots of the non-
negative eigenvalues of ATA. The matrix norm!Schatten p-norm of A for p > 1 is defined as the P
norm of its singular values:

(3.76) Al : (Z oi(A ) .

This can also be expressed using the trace function. Let |A| := vV AT A denote the positive semidef-
inite square root of ATA. Then

(3.77) 1], = (Tx[|AP)»

The following choices of p are particularly important:

e The Schatten 1-norm, also known as the trace norm, is the sum of the singular values:

(3.78) [A]l, = Tx[|A]] = Zoz

If A is positive semidefinite, |A| = A, so [|Al|; = Tr[A].
e The Schatten 2-norm (also called the Hilbert-Schmidt norm or Frobenius norm) is the
Euclidean norm of the singular values:

(3.79) | All, = /Tr[ATA] = (Zaz )

e The Schatten co-norm is the maximum singular value:

(3.80) 4]l = lim [[A], = maxoi(A).

Nl

This is identical to the standard operator norm (the induced ¢ — ¢? norm), often denoted
|A|| (equivalently || Al ).

A basic but useful property relates the trace of a matrix to its trace norm.
Proposition 3.30. For any square matriz A € L(CV),
(3.81) Te[A]] < [[A]l; -

PrOOF. Consider the singular value decomposition A = ULV, where U,V are unitary and
Y = diag(o;) contains the singular values. Using the cyclic property of the trace:

(3.82) Tr[A] = TI[UZVT] = Te[RVTU].
Let W = VTU. Since W is unitary, its entries satisfy |W;;| < 1 for all i. Therefore, by the triangle

inequality,

(3.83) ITe[A]] =

ZUiWii

< ZO’Z' Wil < Zai = [|A]; .
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The Schatten norms share many properties with the /? norms for vectors, including the triangle
inequality and Holder’s inequality. We state these fundamental results without proof, referring the
reader to texts on matrix analysis such as [Bha97].

Proposition 3.31 (Properties of Schatten p-norms). Let A, B be operators.
(1) (Triangle inequality) For 1 < p < oo, ||[A+ Bl|, <[|A[, +[|B],.
(2) (Holder’s inequality, [Bha97, Corollary IV.2.6]) For 1 < p,q < oo satisfying % + % =1, if
the product AB s defined, then ||AB||, < ||A|, B,

We are primarily interested in the trace norm (p = 1) and the operator norm (p = c0). An
important specialization of Hélder’s inequality is the case p = 0o, q = 1:

(3.84) [AB]l, < [ Allo 1Bl -

This inequality is frequently used to bound the trace norm of a product. Another useful variation
involves the trace of a product, which can be viewed as a generalization of the Cauchy-Schwarz
inequality. We provide a self-contained proof of this specific case.

Lemma 3.32 (Holder’s inequality for trace). For any operators A,B € L(CY), the following
inequality holds:

(3.85) |Tr(A™B)| < ||All IBll, -

PROOF. Let B = UXVT be the SVD of B, with singular values s;. By definition, || B, =", s;.
Using the cyclic property of the trace:

(3.86) Tr(A'B) = Te(ATUSVT) = Te(VTATUY).

Let W = VTA'U. Since U and V are unitary, the operator norm is invariant under unitary
multiplication: |[W|| = HATHOO. Furthermore, ||ATH(><> = [|A]|, as they share the same singular
values. The trace is the sum of the diagonal elements of W weighted by the singular values:

(3.87) Te(WS) =) Wiisi.

We can now bound the magnitude of the trace usinlg the triangle inequality:
Z Wiisi| < Z |Wiilsi

< Z Wl s =114l D si = Al IBIl; -

|Tr(ATB)| =

(3.88)

K2

O

We now consider how the trace norm behaves under the partial trace operation, which often
arises when dealing with composite systems.

Exercise 3.8. Let |u),|v) be normalized state vectors in H4 ® Hp. Show that

(3.89) 1T u)olll, < 1.

(Hint: use Holder’s inequality for the Schatten 2-norm.)
More generally, the partial trace is a contraction with respect to the trace norm.
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Proposition 3.33 (Partial trace does not increase the trace norm). For any operator O € L(H 4 ®
HB):

(3.90) ITrp O, < [[O]; -

PRrROOF. Consider the singular value decomposition of the operator O:

(3.91) 0= oplur)vl,
k

where o, > 0 are the singular values, and {|ux)}, {|vr)} are sets of orthonormal vectors in H4 @ Hp.
The trace norm is ||O|; = >, o%.
Applying the partial trace and using the triangle inequality (Proposition [3.31)):

(3.92) |Trg O, =

Z o Trp |ug vk
k

<D ok e ug) vl -
1 k

By Exercise |Tr 5 |ug Yvk|||; < 1. Therefore,

(3.93) ITrs Ol <) or =0,
k

]

The trace norm and the operator norm are dual to each other with respect to the trace in-
ner product, a property that is frequently exploited in optimization problems and for deriving
operational interpretations of these norms.

Lemma 3.34 (Duality of Trace and Operator Norms). For any operator Y € L(CY), the following
identities hold:

(3.94) Y], = sup |Tx(Z'Y)],
1Z]l . <1

and

(3.95) Vo= sup |Te(YiX)].
Ix1,<1

Proor. We first prove Eq. . Let S; denote the right-hand side. Applying Holder’s
inequality (Lemma [3.32), we have | Tr(ZTY)| < ||Z|| [V, If we restrict the optimization to
1Z||. <1, then |Tr(Z7Y)| < ||Y]|,. Taking the supremum yields S; < ||Yl,.

To show S; > ||Y]|,, we construct an operator Z that achieves the bound. Let Y = USVT be
the SVD of Y. Define Z = UV'. Since Z is unitary, ||Z|| = 1. We compute the trace:

Te(Z'Y) = Te(UVHT(UZVT) = Te(VUTURVT)

(3.96) =Tr(VEVh) = Te(2) = ||V, .

Thus, S1 > ||Y]];.
Next, we prove Eq. . Let S denote the right-hand side. Applying Lemma we have
| Tr(YTX)| < IVl IX]l;- Restricting to ||X||; <1 and taking the supremum yields So < [|Y]| ..
To show Soc > ||Y]|,, we construct an optimal X. Let Y = >, s;u;)}v;| be the SVD of
Y, ordered such that s; = [|Y]| . Define the rank-1 operator X = |uj)(vi|. Since |u;),|vi) are
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normalized, || X||; = 1. We compute the trace:

Tr(YTX) =Tr ((Z 51|vz><uz|> |U1><U1|>

%

=Tr (Z Si‘Ui><’l}1| <u1|u1>> .
i
Due to the orthonormality of {|u;)}, only the i = 1 term survives:
(3.98) Tr(YTX) = Tr(s1|vi)vi]) = s1 = |V, -
Thus, Soo > [|Y| .- O

(3.97)

When the operator Y is Hermitian, the optimization domains in these duality relations can also
be restricted to Hermitian operators.

Lemma 3.35 (Duality for Hermitian Operators). Let H € L(CN) be a Hermitian operator.

(1) The trace norm is achieved by mazimizing over Hermitian operators in the unit operator-
norm ball (i.e., =1 2 Z <1):

(3.99) IH||, = sup{| Te(ZH)| : Z = Z", || Z]| , < 1}.
(2) The operator norm is achieved by mazimizing over density operators:
(3.100) |||, = sup{| Tx(Hp)| : p € D(CY)}.

PROOF. In both cases, the inequality < (for the left-hand side) follows immediately from
Lemma [3:34] as the restricted optimization domains are subsets of the original domains. We only
need to show that the bounds can be achieved within these restricted domains.

1. Proof of Eq. (3.99). Let H = Y, Ai|t;)(t);| be the spectral decomposition, where A; € R. The
trace norm is ||H||; = >, |\i|. Define the sign operator Z = 3" sgn(\;)|1;)¢;|. Z is Hermitian,
and its eigenvalues are in {—1,0,1}, so || Z]|, < 1.

(3.101) Te(ZH) = ngn()\i))\i = Z il = [ H|, -

2. Proof of Eq. (3.100)). The operator norm is ||H||, = max;|\;|. Let k£ be an index achieving
the maximum. Define the pure state p = |[¢; k|, which is a density operator.

(3.102) | Te(Hp)| = | (Y| H|tbr) | = [Ax] = [ H]| -
]

3.5.2. Trace distance. The trace norm provides a natural way to define a distance metric
on the space of quantum states, generalizing the classical total variation distance.

Definition 3.36 (Trace distance). The trace distance between two quantum states p,o € D(CV)
is defined as

1
(3.103) D(p,0) =5 llo = ol

The factor of 1/2 ensures that the distance lies in the range [0,1]. Since ||p[|; = 1 and ||o|; =1,
the triangle inequality (Proposition [3.31)) gives ||p —oll; < |lpll; + lloll; = 2.
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Example 3.37 (Trace distance for classical states). Consider classical probability distributions
p,s € RN embedded as classical states:

(3.104) p= Z pili)il, o= Z sii)il.
i€[N] i€[N]

The difference p — o is a diagonal matrix with entries p; — s;. The trace norm is the sum of the
absolute values of the eigenvalues:

1 1
(3.105) D(p.0) =5 lp—olly =5 > _Ipi = sil

This is exactly the total variation distance D(p, s) between the probability distributions p and s. ¢

The trace distance has an operational interpretation related to the distinguishability of quantum
states through measurement. This is the quantum generalization of Proposition [3.27]

Proposition 3.38 (Operational interpretation of trace distance). For any quantum states p,o €
D(CN), the trace distance satisfies

(3.106) D(p,o) = omax Tr[M(p — o))

The mazimum is achieved when M is the projector onto the subspace where p — o is positive.

PROOF. Let A = p — 0. A is Hermitian and Tr[A] = 0. We want to maximize Tr[MA] over
0=<M=<1I.

We utilize the duality results established earlier. Consider an operator M such that 0 < M < 1.
Define Z = 2M — I. Then Z is Hermitian, and —I < Z < I, which means || Z| < 1. We have
(3.107) Tr[ZA] = Tr[(2M — I)A] = 2 Tr[M A].

By the Hermitian duality relation (Lemma [3.35 Eq. (3.99)), ||All; = sup{| Txr(Z'A)| : Z' =
Z'"||1Z'||, < 1}. Since Z is admissible for this optimization, we have
(3.108) 2Tr[MA] = Tr[ZA] < ||A]|; -

Thus, TI‘[MA] < % ”AHl = D(p, G)'

To show equality, we construct an optimal M. Let A = A, — A_, where A, A_ are positive
semidefinite operators with orthogonal support. Since Tr[A] = 0, we have Tr[A;] = Tr[A_]. The
trace norm is

(3.109) |A]l; = Tr[A4] 4+ Tr[A_] = 2Tr[A4].
So D(p,o) = Tr[A4].
Let P be the projector onto the support of Ay with PA; = A;. We evaluate the trace:
(3.110) Tr[PA] = Tr[P(AL — A_)] = Tr[A4] = D(p, 0).
Therefore, the maximum is achieved. O

Proposition implies that D(p, o) is the maximum difference in the probability of obtaining
a specific measurement outcome when measuring p versus o.

A fundamental property of the trace distance is that it cannot increase under the action of a
quantum channel. This reflects the physical intuition that noise or information loss (modeled by
the channel) makes states harder to distinguish. This result parallels Proposition for classical
channels.
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THEOREM 3.39 (Quantum channels are contractive). Let Q : L(CY) — L(CM) be a quantum
channel. For any p,o € D(CV),

(3.111) D(Q[pl, Qlo]) < D(p, 0).

PROOF. Let p’ = Q[p] and ¢/ = Q[o]. By Proposition [3.38] there exists a projector P (specifi-
cally, onto the positive subspace of p’ — ¢’) such that

(3.112) D(p',0') =Tr[P(p’ — 0')] = Tx[PQ[p — o]].

Consider the decomposition p—o = A, —A_, where A, A_ > 0 are the positive and negative
parts, respectively. As shown in the proof of Proposition D(p,0) = Tr[A ] = Tr[A_].
Substituting the decomposition and using linearity:

(3.113) D(p',o’) = TH{PQ[A, — A_]| = TH[PQIA,]] - Tr[PQIA_]]

We analyze the two terms. Since Q is a positive map, and A_ > 0, the output Q[A_] is positive
semidefinite. Since P > 0, the trace of the product of two positive operators is non-negative:
Tr[PQ[A_]] > 0. Therefore,

(3.114) D(p',0') < Tr[PQ[A.]].

Next, since Q[A4] = 0 and P < I, we have I — P > 0. Thus Tr[(I — P)Q[A]] > 0, which implies
Tr[PO[AL]] < Tr[Q[A4]]. Therefore,

(3.115) D(p,o") < TH[QIA.]].
Finally, since Q is trace-preserving, Tr[Q[A]] = Tr[A,]. Combining the inequalities, we obtain
(3.116) D(Q[p], Qlo]) < Tr[A4] = D(p, 0).

O

3.5.3. Fidelity. While the trace distance is an operationally useful metric for the distance be-
tween quantum states, another widely used measure is the fidelity. Fidelity quantifies the “overlap”
between two quantum states, and generalizes the inner product between pure state vectors.

Definition 3.40 (Fidelity). The fidelity between two quantum states p,o € D(CV) is defined as

(3.117) F(p,o) :=Tr [W} .

This definition can be rewritten using the trace norm. A more symmetric expression involves
the operator A = p'/25'/2. Recall that the trace norm of A is ||Al|, = Tr[|A]] = Tr[V AT A]. Here
AYA = ¢'/2po'/2. The singular values of A are the square roots of the eigenvalues of ATA (and
also AAT = p'/25p'/2). Thus,

(3.118) F(p,0) = le/%l/?H .
1

This immediately establishes that fidelity is symmetric: F(p,0) = F(c, p), since [|A[|; = [|AT||,.

Remark 3.41. Nomenclature can be confusing. Sometimes the quantity defined above is called the
square root fidelity, and F(p, o)? is called the fidelity. The infidelity is then defined as 1 — F(p, o)2.
We will adhere to Definition [3.40l o
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Fidelity satisfies 0 < F(p,0) < 1. The upper bound follows from Holder’s inequality (Proposi-
tion [3.31} p = ¢ = 2):

o o) = o], < [ 7],
1 2 2

Since Hp1/2||§ = Tr[p'/2p'/?] = Tr[p] = 1, we have F(p,0) < 1. Furthermore, F(p,o) = 1 if and
only if p = 0.

Fidelity itself is not a distance metric (it does not satisfy the triangle inequality). However, it
can be converted into a metric known as the angle or Bures angle.

Definition 3.42 (Angle between quantum states). The angle between two quantum states p,o €
D(CN) is

(3.120) 0(p, o) := arccos(F(p,0)) € [0,7/2].

Example 3.43 (Pure states). If p = [)}¢| and o = |¢)g| are two pure states.

(3.121) p'2ap'? = [)ylleXellwXvl = | (Wle) Plo)Xl.
This is a rank-1 operator. Its only non-zero eigenvalue is | (1[) |?
is | (¥|e) |. Thus,

(3.122) F(p,0) = |{¢lo} .

The fidelity is the absolute value of the overlap between the state vectors.
More generally, if only one state is pure, say p = |¢) (1|, then

(3.123) F(p,0) =/ {¥lol).

It is the square root of the overlap between the pure state |¢)) and the mixed state o.

Let us relate the trace distance and fidelity for pure states p,o. Let the angle be 6 = 0(p, o),
so F(p,0) = cosf. We can choose a basis such that |¢)) = |0) and |¢) = cos8|0) + sinf|1) (by
adjusting global phase). In this 2D subspace, the difference p — o is represented by the matrix:

. The square root of this eigenvalue

10 cos?f  cosfsind sin? @ —cosfsind
(3.124) A= (0 0) B (cos@sinﬁ sin? @ ) B <— cosfsingd  —sin?6 ) ’
The eigenvalues of A are £sinf. The trace norm is [|A|; = |sinf| + | — sinf| = 2sinf (since
0<0<m/2).
1
(3.125) D(p,o) = §||p70H1 = sin6.

We can express this in terms of fidelity F' = cos8:
(3.126) D(p,0) =+/1—F(p,0)>.
o

Example 3.44 (Classical states). Let p,o be classical states corresponding to probability distri-
butions p, ¢ (see Example |3.37)). Since the operators are diagonal, the definition simplifies:

(3.127) F(p,0) = Z VG-
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This is the classical Bhattacharyya coefficient. The relationship between trace distance and fidelity
for classical states is characterized by the inequality:

Dip.0) =5 3 Ipi — 4l = 5 S (V55 — V&)

J

(3.128)
1
=52 i+a; = 2/Bi0) =1 b =1-F(p,0).
J J
The inequality step uses |a? — b2| > (a — b)? for a,b > 0. o

We have seen two extremes: for pure states D = /1 — F2, while for classical states D > 1— F.
These relationships are generalized by the Fuchs—van de Graaf inequalities (see [NCO0, Section 9.2]),
which provide tight bounds relating the two measures for arbitrary quantum states.

THEOREM 3.45 (Fuchs—van de Graaf inequalities). For any p,o € D(CV),

(3.129) 1—F(p,0) < D(p,0) <+/1—F(p,0)2

We state a few important properties of fidelity without proof. Their proofs typically rely on a
powerful result known as Uhlmann’s theorem, which relates the fidelity between two mixed states
to the maximum overlap between their purifications (see [NC00, Chapter 9], [Watl8, Chapter 3]).

Proposition 3.46 (Properties of Fidelity and Angle). Let p,o € D(CY).

(1) (Metric property) The angle §(p, o) is a distance metric on D(CY).
(2) (Contractivity) For any quantum channel Q, the angle is contractive:

(3.130) 0(Qlp], Qlo]) < (p, o).
Equivalently, fidelity increases (or stays the same) under quantum channels:
(3.131) F(Ql), Qo) = F(p,o).

The Fuchs—van de Graaf inequalities (Theorem [3.45)) can be rewritten in terms of the angle
0 =06(p,0):

0
(3.132) 25sin? 3 < D(p,0) < siné.

When the states are close (1), we can use the approximations sinf =~ 6 and 2sin?(0/2) ~ 62/2.
This gives
(3.133) %92 < D(p,o) < 6.
This quadratic difference in scaling suggests that while the different distance metrics are related,
they can behave very differently.
Example 3.47. Consider a target state p = |0)0]. Let 6 € [0,7/2] and define two pure states:
(3.134) |04) = cos@|0) +sinf|1), |6_)=cosf|0) —sind|1).
Let o0 and o_ be the corresponding density operators. We also consider the mixed state oy =
oy +0o).
(3.135) oy = cos? 0|0)0| + sin? 9|1)(1].

We compare the fidelities and trace distances to the target state p. The fidelities are identical:
(3.136) F(p,04+) = F(p,0-) = F(p,on0) = cos¥.
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However, the trace distances differ significantly. For the pure states (using Example [3.43):

(3.137) D(p,0+) =siné.
For the mixed state o (using Example |3.37)):
(3.138) D(p, o) = sin® 6.

If 6 is small, D(p,04+) ~ 6 while D(p,op) ~ 62. The mixed state is quadratically closer
to the target state in trace distance than its pure components, even though they all share the
same fidelity. The coherent superpositions in oy and o_ (the off-diagonal terms) cancel out in the
incoherent mixture o/, leading to a state that is statistically closer to p. o

Which measure, fidelity or trace distance, is more physically relevant? The answer depends
on the context. Fidelity can often be estimated experimentally (e.g., via the SWAP test), while
estimating the trace distance generally requires full quantum state tomography.

On the other hand, the trace distance directly bounds the difference in measurement statistics.
According to Proposition [3:38] the maximum difference in the probability of any measurement
outcome M is bounded by the trace distance:

(3.139) |Tr[Mp] — Tr[Mo]| < D(p, o).

If the trace distance is small, the states are statistically indistinguishable by any measurement.

3.6. Distance between quantum channels

Quantifying the distance between quantum channels is important for analyzing the precision
of quantum gates, the robustness of quantum algorithms, and the distinguishability of physical
processes. This section introduces the primary tools used for this purpose: the induced trace norm
and the diamond norm.

3.6.1. Induced trace norm. We begin by considering norms induced on the space of linear
maps (superoperators) by the Schatten norms on the input and output spaces.

Definition 3.48. For a linear map Q : L(CN) — L(CM), the induced trace morm (or the
induced 1 — 1 norm) is defined as

(3.140) 19l = sup Q[X]Il; -
XeL(EV),[|X[,<1

This norm quantifies the mazimum amplification of the trace norm under the action of Q.
Analogously, the induced operator norm (or the induced co — 0o norm) is defined using the
operator norm ||-|| -

(3.141) 190l oo i= sup 1Q1X]|l -
XeL(CV), | X[, <1

Induced norms are inherently submultiplicative, a property useful when analyzing compositions
of maps.

Proposition 3.49 (Submultiplicativity). Let R : L(CN) — L(CN") and Q : L(CN") — L(CM) be
linear maps. Then

(3.142) Qo Ry < Q1 IRl -
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PrOOF. For any X € L(CY), by the definition of the induced norm:

(3.143) (Lo R) (X, = IQIRIX]IIl, < 11Qlly - IRIXTI < 111l IRl 1X4 -

Taking the supremum over X with || X||; <1 yields the result. O
To analyze these norms, we introduce the concept of the adjoint map. The space of linear

operators L(C") forms a Hilbert space under the Hilbert-Schmidt inner product (A4, B) = Tr(A'B).

The adjoint map Qf : L(CM) — L(CY) is uniquely defined by the relation

(3.144) (Y, Q(X)) = (Q"(Y), X),

for all X € L(CY) and Y € L(CM).
The induced trace norm and the induced operator norm exhibit a duality relationship analogous
to the duality between the trace norm and operator norm for matrices (Lemma [3.34)).

Proposition 3.50 (Duality of Induced Norms). For any linear map Q : L(CN) — L(CM), the
following duality relation holds:

(3.145) 121, = [1Q7]

PROOF. We begin with the definition of the induced trace norm and apply the variational
characterization of the trace norm (Lemma Eq. (3.94))):

1Rl = sup QX

co—00

X1, <1

(3.146)
~ sup ( sup |Tr<YTQ[X]>|>.
(1X1, <1 \|IY]| <1

We exchange the order of the suprema and employ the definition of the adjoint map (Eq. (3.144)):

(3.147) 1Rl = sup (l sup ITr((QT(Y))TXN)-

Y1l <1 \IX]l; <1

The inner supremum is the characterization of the operator norm via duality (Lemma Eq. (3.95)),
applied to the operator W = Qf(Y). That is, Sup| x|, <1 | Tr(WTX)| = |[W] .

— o« Ty — T )
1 19, = s Q)] = 1]

O

To compute the induced trace norm, it is helpful to characterize the inputs that achieve the
maximum. We first establish that for general linear maps, the maximum is attained on rank-1
operators.

Lemma 3.51. For any linear map Q, the induced 1 — 1 norm is achieved by a rank-1 operator:

(3.149) 1111 = sup{[|QUlu)vDIly : flull, =1, [[oll; = 1}-

PRrROOF. Let C; = {X : || X|; < 1} be the unit ball in the trace norm. The function f(X) =
[|Q(X)]|; is convex. Since C; is a compact, convex set, the maximum of f(X) over C; must be
achieved at an extreme point of C;. The extreme points of C'; are precisely the rank-1 operators of
the form |u)(v| with normalized vectors |u) , |v).
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Explicitly, let X maximize the norm, with || X||; = 1. Its SVD X = >, s;|u;}(v;| is a convex
combination (since Y.s; = 1,s; > 0) of the rank-1 operators X; = |u;)v;|. By the triangle
inequality:

(3.150) 1RX), =

ZSiQ(Xi>

Thus, the maximum is achieved by one of the rank-1 operators X;. O

<D sl Q)] < max [ QX)) -
1 4

We now investigate how these norms behave for positive maps. We first state the following
result for positive maps without proof [Watl8 Eq. (3.329)].

Lemma 3.52. Let Q : L(CN) — L(CM) be a positive linear map. Then
(3.151) 19l -1 = HQT(IM)Hoo'

A celebrated result known as the Russo-Dye theorem [Watl8l Theorem 3.39] simplifies the
calculation of the induced norm for such maps.

THEOREM 3.53 (Russo-Dye). Let Q : L(CY) — L(CM) be a positive linear map. Then
(3.152) 1Qll1s1 = jex Tr (Q (Ju)ul)) -

lull,=1

PROOF. Since Qf(I),) is Hermitian (in fact positive semidefinite), its operator norm is the
largest eigenvalue:

(3.153) QT (Im)||, = sup (ul QT(Iar)[u) = sup Tr(Q(lu)ul)).
HUH2:1 ‘u”2:1
The result follows from Lemma O

As an immediate consequence, if Q is a quantum channel, it is positive and trace-preserving.
Thus,

(3.154) 19, -, = maxTr (Q (Ju){u])) = maxTr (ju)ul) = 1.

The fact that quantum channels have an induced trace norm of 1 leads to an important stability
property for compositions of channels.

Proposition 3.54. Let Qq,...,Qk and él, ceey QK be sequences of quantum channels. Then

1—1

(3.155) HQKO"'OgléKO"'OélulﬁlgiHQi@i
i=1

ProOOF. We use a telescoping sum argument. For K = 2:
(3.156) Q001 — Q2001 =(Qs—D2)0 Q1 +Qs0(Q1 — Q).
By the triangle inequality and submultiplicativity (Proposition [3.49)):

HQ2OQ1—@20@1 1~>1§HQ2_@/2H1~>1 19111
+[e],, o -2

(3.157)

11 11

Since Q1 and Qs are quantum channels, their induced trace norms are 1.

(3.158) |00~ 0200 <]@-G) +]|a-a

1—1

‘1*}1 151
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The general case follows by induction. (Il

3.6.2. The diamond norm. The induced trace norm quantifies how much a map Q acting
on a system S changes the state of S. However, this is insufficient in quantum mechanics due
to entanglement. If S is entangled with an auxiliary system A, the action of Q on S (described
by Q ® Z4) might alter the joint state of SA significantly more than predicted by [|Q||,_,;. To
capture the true behavior of the map in the presence of arbitrary entanglement, we must consider
its stabilized action. This leads to the diamond norm, also known as the completely bounded
trace norm.

Definition 3.55 (Diamond Norm). Let Q : L(CY) — L(CM) be a linear map. The diamond norm
of Q is defined as

(3.159) [Qll, == sup |Q ® Ty, = sup || ZTu ® Qll;_,;
E>1 E>1

where Ty, denotes the identity map on L(CF).

If Q is a quantum channel, then for every k the map Q ® Z; is also a quantum channel, and
hence has induced trace norm 1. Therefore,

(3.160) 12l = sup 1Q® Lyl = 1.

While the definition involves a supremum over all dimensions k, a remarkable result shows that
the supremum is achieved when the auxiliary dimension matches the input dimension of the map.

Proposition 3.56 (Stabilization of the Diamond Norm). For any linear map Q : L(CN) — L(CM),
the supremum in Eq. (3.159)) is achieved for k = N. That is,

(3.161) 121l =12 ® Inll;_, -

PROOF. We aim to show that for any £ > 1, |[Q @ Ty, ; < |12 ZN|l;_;-
Let £ > 1. By Lemma the induced norm is achieved by a rank-1 input. There exist
normalized vectors |a), |3) € CN ® C* such that

(3.162) 1Q ® Zilly 1 = (L @ Zi)(|)XBDI; -
Consider the Schmidt decompositions of |a) and |3). The Schmidt ranks r, s are at most N.

(3.163) @) =Y Viila) @ o). 18) = 3" Va1 @ ).

j=1
Here, {|a;)},{|b;)} € CN and {|z;)}, {|y;)} C C* are orthonormal sets. Let Y = (Q ® Zy)(Ja)3]).
(3.164) Y =Y Vg Qlaib;l) © |zi)y;].
2
We construct corresponding vectors in CV @ CV. Let {|e;)}Y; be a basis for CV. Define

normalized vectors |o/),|8') € CN ® CN by replacing |x;) with |e;) and |y;) with |e;). Let Y/ =
(Q®In)(la')XB'])-

(3.165) Y = pig; Qlai)b;]) @ lei)e;].

i,J
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We show that [|Y|, = [|Y’||;- Define partial isometries V,W : C¥ — Ck. Let V map
span{|e;) }i_, isometrically onto span{|z;)}i_,, and similarly for W and {|y;)}. We can relate
Y and Y:

(3.166) Y = Iy @ V)Y Iy @ WT).

Extend V' and W to unitaries 17, W on Ck (by choosing orthonormal complements). Since Y’ only
has support on the subspaces where V and W act isometrically, we have

(3.167) Y = Iy @ V)Y (Iny @ WH.
By unitary invariance of the trace norm, ||Y||; = [|Y”||;.

We have established ||Q ® Zy ||, _,; = |[Y”]|;. Since |||a/)B'|||; = 1, we have |[Y'||; < [|Q ® Zn||;_;-
This completes the proof. O

The diamond norm inherits the submultiplicativity property from the induced trace norm.

Proposition 3.57 (Submultiplicativity of the Diamond Norm). Let R : L(CY) — L(CN') and
Q: L(CN") = L(CM) be linear maps. Then

(3.168) 1QoR, < [IQl, IRl -

PROOF. We use the definition of the diamond norm and the property that (QoR) ® 7, =
(Q®Iy) o (R TLk).

(3.169) 190 R, =supll(Q® L) o (R & Till1 -1 -

By the submultiplicativity of the induced trace norm (Proposition [3.49):
Qo R, < Sl}ip (1R ® Lyl 51 IR ® Ll 1)

(3.170) < (Sl;p||Q®Ik||1_>1> (SI;PHR@Ikl—n)

= ||QH<> ||R||<> .
O

We can derive useful bounds on the diamond norm for specific types of maps. We start with
maps defined by a single Kraus operator.

Lemma 3.58. Let Qa(X) = AXA" and Qp(X) = BXB'. Then the diamond norm of their
difference is bounded by

(3.171) 14 — @all, < (14l + I1Blloo) 1A = Bll -

PROOF. Let ® = Q4 — Qp. By stabilization (Proposition [3.56)), we evaluate ||® ® Zn||;_,;-
Let Xgr be an input operator with || Xgg|, = 1.

(3.172) (®®In)(Xsr) = (A® [ Xsr(AT®I) — (B ) Xsr(B' @ I).
We use the identity AA" — BBT = A(AT — B) 4+ (A — B)B".
(@ ®In)(Xsr) = (A® Xsr((AT - BY) @ 1)

(3.173)
+(A-B)@ ) Xsr(B'®1).
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We bound the trace norm using the triangle inequality and Hélder’s inequality (||Y1XY3|, <
Y1l 1X111 (Y2l o) Since || Xsgll; =1 and [[Y @ I = [[Y][:

(3.174) (@ © In)(Xsr)lly < 1Al 14" = BT + 14 = Bl [|B'] .-

Using ||AT — BTHOO =||A-B| and ||BT||OO = ||B||,,, we obtain the bound. O

Example 3.59 (Distance between unitary channels). Consider unitary channels #(X) = UXUT
and V(X) = VXVT. Since |U| . =V, =1, Lemma@yields the bound:

(3.175) -y, <2|U-V|.-
©

While the bound in Eq. (3.175)) is widely used, it is not always tight. Furthermore, one might
expect that stabilization is necessary for unitary channels. However, the difference between unitary
channels exhibits a special structure that renders stabilization unnecessary.

Proposition 3.60. Let U,V be two unitary channels defined by unitaries U and V. Then the
diamond norm of their difference is equal to the induced trace norm:

(3.176) U=Vl =lth = VIl -

This norm can be computed explicitly using the numerical range of W = UtV :

(3.177) o=Vl =2y/1 - &2,

where dyin = inf{|z| : z € W(W)} is the minimum distance from the origin to the numerical range

WW) = {{z[ W z) : [z}, = 1}.

PROOF. Let ® =1/ — V. We first establish a lower bound for the induced trace norm ||®||,_,;.
According to Lemma the induced trace norm is defined by the supremum over rank-1 inputs.
Restricting the optimization to pure states p = |x)z| yields a lower bound:

(3.178) 12l 2 sup 1@ ()z)]; -

The output is
(3.179) O(Je)x|) = Ula)z|UT = Via)z|VT = [pu)vu| = [¢v)Xiv],

where |¢y) = U |z) and [¢py) = V |z). The trace norm of the difference between two pure states is
determined by their overlap (see Example [3.43)):

(3.180) Yo )Xol = [PvXevill, =21 = | (Yulbv) 2.

The overlap is (Yy|yv) = (2| UTV |2) = (x| W |x). To maximize the norm, we must minimize the
magnitude of the overlap. The set of values {(z| W |z) : ||z|, = 1} is the numerical range W(W).
Thus, the supremum over pure states is

3.181 2 [1— inf |z]2=24/1—-d2. .
(3.181) ¢ =21,

zEW(W

Next, we consider the diamond norm ||®||,. By the stabilization property (Proposition [3.56)),
[|®]|, = ||® ® Zn]|;_,;- Unlike the induced trace norm, the diamond norm is achieved on pure states
(see [Wat18, Theorem 3.51]). Let |¥) € C¥ @ CY be a normalized pure state. The action of the map
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on p = |UYP| yields the difference of two pure states |Uy) = (U ® I) [¥) and |[Py) = (V1) |P).
The norm is again given by 24/1 — | (¥| Uy ) |2. The overlap is

(3.182) (WolWy) = (@] (U & (V& D) 8) = (9] (Ve T)|¥),
We express this overlap in terms of the reduced density operator py = Tr[| ¥} ¥|]:
(3.183) (W (W I)|¥) =Tr[(W e I)|¥XY|] = Tr[Wpal.

As | W) varies over all pure states in the joint space, p4 varies over all density operators in D(C™).
The set of achievable overlaps is therefore the set of expectation values {Tr[Wp| : p € D(CN)}.
This set is the convex hull of the numerical range W(W). By the Toeplitz—Hausdorff theorem
(see [Bha97, Chapter 1]), the numerical range W(W) is a convex set. Therefore, the convex hull
of W(W) is W(W) itself. This implies that allowing entanglement does not extend the range of
possible overlaps:

(3.184) |\q}ﬁf:1| (WWenWw)|=_inf 1z = dun-

Consequently,

(3185) ||(I)||<> =2 \/ 1- dr2nin'

Combining this with Eq. (3.181)) and the inequality ||®||,_,; < ||®|l,, we conclude || ®|, = ||®||,_,;-
]

Example 3.61. Consider the 2 x 2 unitaries U = (_01 é) and V =1 = (é (1)) We calculate

the operator norm of their difference:
-1 1
(3.186) U-V= (_1 _1> .
The singular values are the square roots of the eigenvalues of (U — V)T(U — V) = diag(2,2). Thus,

|U - V|, = V2. The general bound in Eq. (3.175) gives ||/ — V||, < 2v/2 ~ 2.828.

However, as W = UT = ?

W(W) is the convex hull of the eigenvalues, i.e., the segment [—i,i] on the imaginary axis. The
minimum distance to the origin is dy;, = 0. Thus, the exact diamond norm is 2v/1 — 02 = 2. o

_01), the eigenvalues of W are ¢ and —i. Since W is normal,

Example 3.62 (Qubit Phase Shift Channel). We illustrate the computation using a single-qubit
example. Consider the identity channel Z (U = I) and the phase shift channel Py, defined by the
unitary V = Py = diag(1,e%). We wish to compute ||Z — Py|,.

We apply Propositionm We compute W = UTV = Pj. We need to determine the numerical
range W(Py). Since Py is a normal operator, its numerical range is the convex hull of its eigenvalues,
{1,¢?}. This is the line segment (chord) connecting 1 and ¢*? in the complex plane.

We seek the minimum distance dyin from the origin to this segment. Geometrically, this
distance is the altitude of the isosceles triangle formed by the origin and the two eigenvalues.

The length of the base of the triangle (the chord) is |1 — €| = \/(1 —cosf)? +sin’f =
V2 —2cosf = 2[sin(f/2)|. The area of the triangle is 3|sinf|. Let h be the altitude, which

corresponds to dpi,. The area is also % - base - h.

. |sinf]  2|sin(6/2)cos(0/2)|
(3.187) Amin = h = sm(8/2)] 2sin(0/2)] = | cos(6/2)].
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Substituting this minimum value into Eq. (3.177):

(3.188) |Z — Pall, = 21/1 — cos2(8/2) = 24/sin*(0/2) = 2|sin(6/2)].

By Proposition [3.60} the induced trace norm is identical: [|Z — Py|,_,; = 2|sin(6/2)].
For instance, if § = 7, the channel is the Pauli-Z channel Z. The diamond norm is 2|sin(7/2)| =
2. The minimum overlap is dyin, = 0. This is achieved by the input state |+) = %(K}) + 1)), since

(+|Z|+)=0. o

The following example illustrates that the standard induced trace norm can drastically under-
estimate the “size” of a map that is not completely positive.

Example 3.63 (Transpose Map). Let 7 : CNXN — CN*N be the transpose map, 7(X) = X T,
defined in a fixed basis. Since the transpose preserves the eigenvalues of Hermitian matrices and
maps density matrices to density matrices, it preserves the 1-norm for positive inputs. It can be
shown that || 7,_,, = 1.

However, consider the action of 7 ® Zn on the unnormalized maximally entangled state Q) =
vazl i) ® |i). The corresponding density matrix is w = >, . [i)(j| ® [i)(j|. Applying the partial
transpose yields

(3.189) (T ®In)(w) = Z |9)l @ [i)31,

which is the SWAP operator. The eigenvalues of the SWAP operator on CY ® CV are +1 (on the
symmetric subspace of dimension N(N+1)/2) and —1 (on the antisymmetric subspace of dimension
N(N —1)/2). The trace norm is the sum of singular values (absolute values of eigenvalues):

N(N +1 N(N -1
(3.190) (T @ Zn) (W), = ( 5 )+ ( 5 ) = N2
Since |lwl||; = 112)]|> = N, we find that for this specific state, the ratio of output norm to input
norm is N. Thus [|T|, > N. o

3.6.3. Induced trace distance and diamond distance. The induced trace distance
between two linear maps Q, R is

1
(3.191) DQR) =512 ~Rli-

Example 3.64 (Trace distance for classical channel). Given two transition matrices Q, R € RV*V
the corresponding classical channels are

(3.192) Qlpl = > QulddiloliXil, Rlpl= D Risli)iloliXil.

i,jE[N] 4,jE[N]
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Then

D(Q,R) =5 sup [|Q[p] —R[olll,

ol =1

sup Z Z(Qij — Rij)p;;

lloll, =177 j

1
<5 sup (mj’dXZQij—Rij> Tr [p]

lloll,=1

1
<— sup (mjaXZQij—Rij> HP||1

N |

N |

(3.193)

T2 jpl,=1
=D(Q, R),

which is the induced total variation distance between the transition matrices @@, R. Here we have
used Proposition in the last inequality. On the other hand, choosing p = [7/Xj’| with j' =
argmax; » ., |Qi; — Rij|, we have D(Q,R) > D(Q, R). This proves that the induced trace distance
is consistent with the induced total variation distance on classical channels:

(3.194) D(Q,R) = D(Q, R).
<

The metric induced by the diamond norm is known as the diamond distance. The factor of 1/2
normalizes the metric such that perfectly distinguishable channels have a distance of 1, analogous
to the trace distance for quantum states.

Definition 3.65 (Diamond Distance). Let Q,R : CNXN — CM*M e tyo linear maps. The
diamond distance between them is defined as

(3.195) Do(Q,R) = % 1Q—RI,-

Quantum channels satisfy the linear error growth property with respect to the diamond distance.
The proof is also very similar to Proposition [3.54

Proposition 3.66. Let {U;}, and {U;}K | be sequences of unitary channels generated by the
unitary operators {U; } X\ and {U;}E |, respectively. The diamond distance between the composite
channels is bounded by

K
(3.196) Do(Usc U, U - Uh) <3 HU ~ U
i=1

oo

PROOF. First, we observe that quantum channels satisfy a linear error growth property with
respect to the diamond distance. The proof of this property relies on a telescoping sum argument,
which is strictly analogous to the proof of Proposition [3.54] and is therefore omitted. This yields
the bound

1 K

. o U) < = . — 1Y
(3.197) Do(Us - Uy, Uk ul)_Qi;‘ul U

<
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It suffices to bound the diamond norm difference for a single step. Recalling Eq. (3.175)), we have
the general bound HZL —U;ll <2 HUZ — l'_NfZ
<&

inequality completes the proof. O

. Substituting this estimate into the linear error growth

Notes and further reading

The formalism of quantum channels rests on foundational results in operator theory. The
operator-sum representation (Theorem is due to Kraus [KBDWS3|, while the dilation the-
orem (Theorem was established by Stinespring [Sti55]. The isomorphism characterizing
completely positive maps via their action on entangled states is attributed to Choi [Cho75| and
Jamiotkowski [Jam72].

The induced trace distance provides a useful way to compare two channels via their action on
input states. It is worth noting that the contractivity properties of the trace distance used in this
context rely on positivity and trace preservation, and do not require complete positivity. By con-
trast, complete positivity is required to ensure that a channel remains positive when extended by
an identity map on an arbitrary ancillary register. This distinction becomes operationally visible in
the channel discrimination task: for some pairs of channels, optimal discrimination is only possible
when the input is entangled with an ancillary register. This motivates the use of stabilized distances
such as the diamond norm (the completely bounded trace norm), which explicitly accounts for an-
cillary extensions. For distance measures, Helstrom [Hel69] provided the operational interpretation
of the trace distance in terms of state discrimination. Fidelity was studied by Uhlmann [UhI76]
as transition probability. The tight relationship between these two measures (Theorem was
established by Fuchs and van de Graaf [FVDGO02]. The diamond norm was introduced to quantum
computing by Kitaev [Kit97] to quantify the accuracy of quantum gates in a manner robust to
entanglement, and is closely related to the completely bounded norm in operator algebra. We refer
readers to [Wat18, Chapter 3.3] for further discussion.

Most of the discussions in this book will be restricted to unitary channels, and these unitary
channels are often applied to pure states. Nevertheless, the concept of a quantum channel is helpful
for understanding the probabilistic nature of quantum algorithms. For a systematic treatment
of density operators and quantum channels, we refer readers to [Watl8, Chapter 2] and [NCOO,
Section 2.4, 8.2]. We refer readers to [Wat18, Chapter 3| for properties of the norms and distances
introduced here, and their applications in discrimination-type problems. For matrix analysis tools,
such as Schatten norms, we refer to [Bha97].






CHAPTER 4

Universality of quantum circuits
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CHAPTER 5

Quantum processing of classical information

Quantum algorithms often require classical data to be loaded, processed, and manipulated
within a quantum circuit. This chapter explores how classical information can be encoded and
operated on in a quantum computing framework. We begin with the reversible simulation of classical
logic gates, a prerequisite for embedding classical computation into quantum circuits. We then
discuss uncomputation, which is very useful for cleaning up intermediate states without disturbing
the computation’s outcome. The chapter proceeds to cover fixed-point number representation and
quantum random access memory (QRAM). Finally, we present methods for implementing certain
classical arithmetic operations within quantum circuits.

5.1. Reversible simulation of classical gates

How can we compare the computational power of quantum computers to that of classical com-
puters? While it remains extremely difficult to prove that quantum computers are fundamentally
more powerful than classical ones, it is well established that quantum computers are at least as pow-
erful. More precisely, any classical circuit can be simulated asymptotically efficiently by a quantum
circuit.

The key idea behind this equivalence lies in the reversible simulation of classical gates. Some
classical logic gates, such as the NOT gate, are already reversible and can be directly implemented
by the Pauli X gate. However, many commonly used gates, including AND, OR, and NAND,
are not reversible and cannot be directly translated into unitary transformations. This leads to a
foundational step: expressing classical computation in terms of reversible logic gates.

Reversible computation, which predates quantum computing, was originally studied in the
context of thermodynamics and the fundamental limits of energy dissipation. It refers to models of
computation in which each operation can be uniquely reversed, preserving information throughout
the process. To simulate arbitrary classical circuits in a reversible form, it is sufficient to construct
reversible versions of universal gates such as the NAND gate. Once a reversible version of a universal
gate is available, the entire classical computation can be lifted into a reversible framework, which
can then be efficiently embedded into a quantum circuit using unitary operations.

Example 5.1 (Toffoli is universal for classical computation). All boolean logic can be implemented
using only NAND gates. NAND and FANOUT (i.e., making a copy of a classical bit z) are together
universal for classical computation. The Toffoli gate is a controlled-controlled-NOT gate, and with
an ancilla initialized to |0) it computes x AND y into the target register. We can use the Toffoli gate
to simulate NAND and FANOUT. Therefore the Toffoli gate is universal for classical computation.

95
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[1) —@— [« NANDy)  [0) —D— |z)
F1GURE 5.1. Using the Toffoli gate to implement NAND and FANOUT

<&

Exercise 5.1. Give explicit expressions for using Toffoli gates to implement AND, NOT, XOR,
and OR.

A classical computation procedure can be expressed as the evaluation of a boolean map f :
{0,1}™ — {0,1}"™, which may be irreversible. However, it can be made into a reversible classical
gate

(5-1) (z,2) = (2@ f(z),2).

In particular, (0™, z) — (f(z),z) is a reversible map that can then be implemented using unitary
operations. Efficient implementation of x — f(z) on a classical computer means that the number
of elementary classical gates (e.g., AND, NOT, NAND gates) is at most poly(n), and the classical
implementation of the map uses at most poly(n) additional bits for storage. By converting each of
the elementary classical gate into a reversible gate, we can implement

(5.2) Uy [0 [0)°™ |2) = |g()) | £ (@) |) .
Using w = poly(n) ancilla qubits, the depth of the quantum circuit is poly(n).

THEOREM 5.2. Any irreversible classical computation using poly(n) classical gates can be sim-
ulated on a quantum computer using poly(n) simple quantum gates and poly(n) qubits.

Up to a polynomial slowdown, a quantum computer is at least as powerful as classical com-
puters. It should be noted that such a procedure is likely to be extremely inefficient. Thus the
construction used in Theorem is not expected to be practically useful beyond the simplest
scenario.

5.2. Uncomputation

Unlike classical bits, qubits can exist in superpositions of computational basis states, which
enables interference effects in computation. However, qubits are also prone to interference and can
easily lose their coherence, causing computational errors. When a quantum computer performs a
computation, it can create a large number of ancilla qubits (also called working qubits, or garbage
register) that are entangled with the qubits carrying the actual result of the computation. If these
ancilla qubits are not properly reset back to their initial state (usually \0>®a), they can interfere
with subsequent computations and cause errors. This resetting process is called uncomputation.
Other than avoiding interference, uncomputation is also important for the purpose of resource
management. Quantum systems available today have a limited number of qubits. By uncomputing,
we can reuse qubits more efficiently.

Uncomputation needs to be done in a very specific way to maintain the integrity of the quantum
computation. Simply resetting qubits (for example, by measuring the ancilla qubits and resetting
them to |0)) is not sufficient, as it can destroy the superposition and entanglement of the other
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qubits in the system. Furthermore, due to the no-deleting theorem, there is no generic unitary
operator that can set a black-box state to |0>®w.

Let us now consider how to perform uncomputation when implementing a classical mapping.
In quantum computing, an oracle means a black box operation that for a given input provides
an output, usually the result of evaluating a function on that input. With the help of a working
register, we assume that the oracle implementing Eq. is available.
In order to set the working register back to \0>®w while keeping the input and output state, we
must use the information stored in Uy explicitly. We introduce yet another m-qubit ancilla register

initialized at |0>®m. Then we can use an m-qubit CNOT controlled on the output register and
obtain
(5.3) 0)°™ g(@)) | f(@)) |2) = |f()) |9(2)) |f(2)) |z) -

—— N ——

ancilla working output input

It is important to remember that in the operation above, the multi-qubit CNOT gate only performs
the classical copying operation in the computational basis, and does not violate the no-cloning
theorem.

Recall that U;l = U}, SO

(5.4) (1= @ UN |f (@) lg(@) |£(2)) |2) = |f(@)) 0)%* [0)*™ |)
Finally we apply an m-qubit SWAP operator on the ancilla and output registers to obtain
(5.5) (@) 1005 [0)™ [z) = [0)™ [0)F* | f (2)) |) -

After this procedure, both the ancilla and the working register are set to the initial state. They
are no longer entangled to the input or output register, and can be reused for other purposes. The
circuit for this uncomputation step is shown in Fig.

|0y S 0y

0)*" — 0)*"

0)*™ — Uy Uj |f ()
) — |z)

F1GURE 5.2. Circuit for uncomputation. The CNOT and SWAP operators indicate
the multi-qubit copy and swap operations, respectively.

Remark 5.3 (Discarding working registers). After the uncomputation as shown in Fig. the
first two registers are unchanged before and after the application of the circuit (though they are
changed during the intermediate steps). Therefore Fig. effectively implements a unitary

(5.6) (1500 @ Vp) [0)7 [0) 10) ¥ J2) = 10) 97 0) | f (@) |<)
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or equivalently

(5.7) Vr[0)®™ |z) = [ f(x)) |2) -

In the definition of V%, all working registers have been discarded. This allows us to simplify the
notation and focus on the essence of the quantum algorithms under study. Using the technique of
uncomputation, if the map z — f(z) can be efficiently implemented on a classical computer, then
we can implement this map efficiently on a quantum computer as well with a controllable amount
of quantum resources. ©

Example 5.4. Given f : {0,1}" — {0,1}", in general, the transformation |z) — |f(x)) is not
unitary. However, when f is a bijection, and we have access to both f, f~! as follows:

(5.8) Up:la)lz) = 2@ f@) o), Upr:le)z) = 2@ f7(2)) |2)

we can use them to construct the unitary transformation U} : |z) = | f(2)).

To implement U}, we will use an ancilla register initialized in the 10)®™ state to hold the result
of applying f or f~!. Apply U; to the state 10)%™ |z) to get |f(x)) |z). This setup now contains
the desired mapping in the first register, but it is entangled with the input in the second register.
Next apply SWAP to the two registers and the state becomes |z) |f(z)). Apply Us-1 to the state
) 1£(@) to get [2@ f1(f@)) 1f@) = lo@a)|f(z)) = [0)°" |f(z)). The ancilla register is
restored to [0)®™ and can be discarded. This gives our desired U - The circuit is as follows.

0" — i
Up| |SWAP| |Us
2y — — @)

&

Example 5.5. Another common usage of the uncomputation is to disentangle two registers. Con-
sider the following sequence of operations

D 0 005 1005 =2 3 ey ) fug) 10}
(5.9) ! . ! b .
=5 2 sl u) (810)° + 1= 1857 [ 15)-

Here U, only acts on the first and second register, U, only acts on the second and third register,
and |L;) is a state that is orthogonal to 0)®”. Our goal is to obtain a state proportional to

(5.10) Z%ﬂj [0;) [0)%¢ [0) =" .

This cannot be done by measuring the third register and check whether the outcome is 0°, since it
will lead to >, ¢;B; [vj) |uy) 10)®®, which entangles the first two registers. The correct procedure is
to perform uncomputation by applying U] to the first two registers, which gives a state

(5.11) ch 0;) 10)2% (87 10)=" + /1 = [8; 7| L;)).-

Then measuring the third register produces the desired state. o
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5.3. Fixed point number representation and quantum random access memory

When we want to perform arithmetic operations on a quantum computer, such as addition,
multiplication, or more complex functions, we need to encode the numbers we are working with
into qubit states. On classical computers, floating point number representations are an efficient way
to represent numbers with a wide numerical range. However, on quantum computers, it is often
convenient to encode numbers into amplitudes or phases (e.g., via phase kickback). Therefore it
is difficult in general to handle numbers that are too large or too small (e.g., 3.14 x 10%!2). The
standard practice is to use a binary fixed point representation of real numbers.

Any integer k € [N] where N = 2" can be expressed as an n-bit string as k = (k,_1 - - - ko) with
k; € {0,1}. This is called the binary representation of the integer k. It should be interpreted as

n—1
(5.12) k= k2.
=0

The number k divided by 2™ (0 < m < n) can be written as (note that the binary point is shifted
to be after k,):

n—1
k ,
(5.13) o= = > k2 =t (b1 Kkt ko).
i=0
The most common case is m = n, where
k n—1 )
(5.14) o= = S k2 = 0k ko)
i=0

Sometimes we may also write a = 0.ky - - - ky,, which is simply a relabeling of the digits. For a
given real number 0 < a < 1 written as

(5.15) a =0k Epkngr--),

the number (0.k; - - ky,) is called the n-bit fixed point representation (or n-bit binary represen-
tation) of a. Therefore to represent a to additive precision €, we will need n = [log,(1/€)] bits of
precision. If the sign of a is also important, we may reserve one extra bit s € {0,1} to indicate its
sign and interpret (s.ky --- k) as (—1)%(0.ky1 - - - kp,). A complex number z can be represented using
two real numbers as z = a + ib, where a,b € R are given in the fixed point number representation.

Definition 5.6. For a length N = 2™ classical data vector x, assume that each component x; has a
d-bit representation. Then the quantum random access memory (QRAM) is a unitary Uqgram
acting on n + d qubits:

(5.16) Uqrawm [0} |y) = [i) [y © x;) .

The implementation of Ugram often uses working registers, and such a dependence is hidden in
Eq. after the uncomputation step. Sometimes QRAM is called the quantum random access
classical memory (QRACM). Ideally, the cost for implementing QRAM is poly(n), but this may
not be possible if x represents an unstructured classical data set, and the cost for implementing
QRAM may be as high as poly (V).
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5.4. Classical arithmetic operations

Using the fixed point number representation and reversible computation, we can approximately
implement classical arithmetic operations on quantum computers. The map = — f(z) can be
implemented as Uy |Z) |y) = |Z) |y ® f(z)) using e.g., a QRAM. Here 7 and f(z) are n-bit fixed point
representation of z, f(z) in the computational basis of the quantum register, respectively. However,
it may be much more efficient to implement certain classical arithmetic operations on-the-fly on
quantum computers without referring to a QRAM. For instance, x — 2z can be implemented as a
shift operation in the binary format that can be implemented via a sequence of SWAP gates. Other
arithmetic mappings, such as  +— 22, as well as binary operations (z,y) — z +y, (7,y) — zy are
harder to implement. Furthermore, these operations can be implemented on quantum computers
without going through the process of the reversible implementation of elementary classical gates.
Some other classical functions, such as x +— arccos(z) can be even more difficult to implement.
In general, implementation of classical arithmetic operations on quantum computers will incur a
significant overhead, both in terms of the number of ancilla qubits and the circuit depth.

Many arithmetic operations involve a procedure called the controlled rotation, which transforms
the information stored in a register from a fixed point representation to the amplitude of the
wavefunction.

Proposition 5.7 (Controlled rotation given rotation angles). Let 0 < 6 < 1 have ezact d-bit fized
point representation 0 = (.0q_1---6p). Then there is a (d + 1)-qubit unitary Uy such that

(5.17) Up : |0)]0) — (cos(76)|0) + sin(70)|1))|6).

PRrROOF. First (by e.g. Taylor expansion)

(5.18) exp (—ito,) = ( cos(r)  —sin(7) ) = R, (27).

sin(r)  cos(7)

Here R,(-) performs a single-qubit rotation around the y-axis. For any j € [2¢] with its binary
representation j = jq_1 - jo, we have

(5.19) 3/2% = (a—1 -+ Jo)-

So choose 7 = w(.jg—1 " jo), and define

(5.20) Up=Y_ exp(=im(ar -+ jo)oy) @ i)l
JE24]

Applying Uy to |0) |6) gives the desired results. This is a sequence of single-qubit rotations on the
signal qubit, each controlled by a single qubit. O
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0) —{ Ry(m) = Ry(7/2) —+— Ry(r/277") |—

|60)

FIGURE 5.3. Quantum circuit for the controlled rotation operation Uy.

Example 5.8 (Diagonal matrix multiplication using controlled rotation). Let 0 < a < 1 be given
by an d-bit fixed point representation using an d-qubit register, f : R — R be a function satisfying
|f(a)] <1forall0<a< 1. For simplicity assume f(a) > 0; the case of signed f(a) can be handled
by additionally computing the sign of f(a) and applying a controlled phase flip on the |1) branch.
We would like to construct a circuit that approximately implements

(5.21) la) — f(a)la).

More generally, the state [¢)) = > 1 |a) is mapped to Y 1 f(a)|a). This can be viewed as
multiplying a diagonal matrix D = diag{f(a)} to |¢).
To implement such a mapping, we first define

(5.22) O(a) = %arcsin f(a).

Note that even though a is exactly given by d-bits, 6(a) may not be. So we assume that it can be

rounded to an d’-bit number 6(a). For simplicity we assume d’ is large enough so that the error of

the fixed point representation is negligible in this step. To implement the mapping a — 6(a), we
can construct a classical arithmetics circuit

(5.23) Uangle |04 %) |a) = |6(a)) ,

whose construction may require poly(m) gates and an additional working register of poly(m) qubits,
which are not displayed here. Therefore the entire controlled rotation operation needed is given by

the circuit in Fig.
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|0) cos(0(a)) |0 + sin(7B(a)) |1)
|Od’—d> ] — Uy I |Od’—d>
Uangle U;fngle
|a) — — — la)

FI1GURE 5.4. Circuit for using controlled rotation to implement the multiplication
of a diagonal matrix (not including additional working register for classical arith-
metic operations).

Note that through the uncomputation U f the d’ — d ancilla qubits also become a working

angle’
register. After uncomputation, the ancillas are returned to |04 ~%) (together with any additional
workspace used in Uangle), s0 they may be reused. We obtain a unitary Ucr satisfying

(5:24)  Ucr|0) la) = (cos(nd(a))[0) + sin(nd(a)) [1) ) la) ~ (/1= F(@)2[0) + f(a) 1)) |a)

Measure the single ancilla qubit. If the result is 1, the data register is projected onto a state
proportional to ) v, f(a)|a), i.e., the mapping in Eq. (5.21) up to renormalization. If the input
state is |¢) = >, ¥4 |a), the probability of obtaining 1 after measuring the ancilla qubit is

(5.25) P(1) ~ Y [val*[f(a)]*.
<

Example 5.9 (Use of arithmetic operations in the HHL algorithm). The last step of the Harrow—
Hassidim—Lloyd (HHL) algorithm for solving a linear system of equations Az = b with a Hermitian
matrix A involves the following arithmetic operations. For simplicity assume A; (eigenvalues of A)
are given exactly in a d-bit fixed point number representation, and \; € [, 1] for some § > 0. Start
from a linear combination of states [¢)) = >, 8;10) [A;) |v;), we would like to construct a state

CpB;
(5.26) [0y = 30 52 1) ) ) + [0 1)

" J

J
Here C is a normalization constant chosen so that |C'/A;| < 1 for all A\; € [4,1], and |L) is
an irrelevant unnormalized state. Viewing this as a diagonal matrix multiplication problem, the
function of interest is

(5.27) fla)=—, ac][d1].

The implementation involves the classical arithmetic circuit for computing
1 1

(5.28) f(a) = — arcsin f(a) = — arcsin(C'/a)
T T

using d’ bits (d’ > d).
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Once [¢) is prepared, we can uncompute |);) to obtain a state

CB,;
(5.29) > S 107 fog) + [0y [ 1)
N
J
to disentangle the A; register from the v; register. If we measure the first ancilla register and obtain
1, we obtain the desired form of the solution in the HHL algorithm. o

Notes and further reading

Reversible computation predates quantum computing and has both physical and algorithmic
motivations. Landauer related logical irreversibility to dissipation [Lan61]. For background on
reversible embeddings of classical circuits into unitary dynamics, see [NC00, Section 3.2.5]. For
fixed-point encodings and reversible arithmetic (addition, multiplication, and function evaluation), a
detailed treatment is given in [RP11, Chapter 6]. For standard universal classical gate constructions
and decompositions into elementary quantum gates, see [BBCT95]. There is also opportunity to
optimize the cost of the uncomputation stage. An example is Gidney’s construction [Gid18| of the
quantum adder circuit. The QRAM model [GLMO8| should be interpreted as an assumption about
data access rather than an automatic feature of a fault-tolerant architecture.
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CHAPTER 9

Block encoding

This chapter introduces block encoding as an input model for matrix problems on a quantum
computer. The basic difficulty is that many tasks in scientific computation are naturally phrased
in terms of non-unitary linear maps, whereas the native operations available to quantum hardware
are unitary. Block encoding addresses this mismatch by representing a target matrix A (up to a
subnormalization factor and a prescribed error tolerance) as a distinguished submatrix block of a
larger unitary Uy, so that applying U and post-selecting on ancilla qubits effectively applies A to
a state.

The possibility of constructing an efficiently implementable U4 depends strongly on the struc-
ture of A and on the assumed access model. For a dense matrix without additional structure,
any reasonable input model is typically prohibitive, since the input description may itself require
exponential resources. We therefore focus on representative settings in which block encodings can
be constructed efficiently under suitable oracle access assumptions.

The true power of block encoding does not come directly from the ability to represent arbitrary
matrices within blocks of a larger unitary. Rather, it stems from the ability to compose block encod-
ings to block encode more complicated matrices and functions of matrices. We then describe how
block encodings can be combined to obtain encodings of matrix additions and multiplications, while
tracking the corresponding subnormalization factors and errors. Linear combinations of unitaries
provide a flexible mechanism for such constructions. In this way, block encoding serves as an inter-
face between matrix-oriented problem statements and unitary circuit realizations used throughout
subsequent chapters.

9.1. Block encoding

The simplest example of block encoding is the following: assume we can find a (n + 1)-qubit
unitary matrix Us € U(2N) (where N = 2") such that

A
=10

where * means that the corresponding matrix entries are irrelevant, then for any n-qubit quantum
state |b), we can consider the state

0.) 0.6 =10y = (7).
and
Ab

(9.2) Ual0,b) = ( ) = [0) A|b) + |L).

113
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Here the (unnormalized) state | L) can be written as |1) |1} for some (unnormalized) state |¢) that
is irrelevant to the computation of A |b). In particular, it satisfies the orthogonality relation.

(9-3) (10) (0] & I) | L) = 0.

In order to obtain A |b), we measure the ancilla qubit and postselect on the outcome 0. This can
be summarized into the following quantum circuit:

keep 0
10) |
Ua
|b) o Ab)

F1GURE 9.1. Circuit for block encoding of A using one ancilla qubit. By measuring
the ancilla qubit and postselecting on the outcome 0, the state in the system register
is a normalized state proportional to A |b).

Note that the output state is normalized after the measurement takes place. The success
probability of obtaining 0 from the measurement can be computed as

(9-4) p(0) = [ A[B)]* = (b|ATAp) .

So the missing information of the norm || A|b)|| can be recovered via the success probability p(0)
if needed. We find that the success probability is only determined by A, |b), and is independent of
other irrelevant components of Uy.

Example 9.1. Consider the 2 x 2 matrix

3 1 0.75 0.25
(©:5) A=glrX= (0.25 0.75) '
Consider the following circuit (¢ = %)
|0> ] Ry(_¢) Ry(¢) —
) %
Here
cos (2) —sin (¢ )
(96) Ry(e) — . (2) (3) — e—lGY/Q
sin (5) cos (5)

is the Y-rotation matrix. One may directly verify that U, is an exact block encoding of A using
one ancilla qubit. o
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Note that we may not need to restrict the matrix U4 to be an (n + 1)-qubit matrix. If we can
find any (n + m)-qubit unitary matrix U4 so that

A % - %
(9.7) Ua =

Here each * stands for an n-qubit matrix, and there are 2™ block rows / columns in U,. Using
the partial application of operators in Definition [2.25] the relation above can be written compactly
using the braket notation as

(9.8) A= (0™|U4]0™) .

Exercise 9.1. Given a unitary matrix U and any submatrix block A, prove that ||A] < 1.
In order to find such a block encoding U4, Exercise shows that a necessary condition for
the existence of Uy is that ||A]| < 1. However, if we can find sufficiently large oo and U4 so that

(9.9) Afa = (0™|UA)0™) .

By measuring the m ancilla qubits and postselecting on the outcome 0™, we still obtain the nor-

malized state %. The number « is hidden in the success probability:

(9.10) p(O™) = 5 IAIBI = 5 (BlATAD).

So if « is chosen to be too large, the probability of obtaining all 0’s from the measurement can be
vanishingly small.

Finally, it can be difficult to find U4 to block encode A exactly. This is not a problem, since it
is sufficient if we can find Uy to block encode A up to some error e. We are now ready to give the
definition of block encoding in Definition [9.2

Definition 9.2 (Block encoding). Given an n-qubit matriz A, if we can find a, e € Ry, and an
(m 4 n)-qubit unitary matriz Uy so that

(9-11) A = a{0™[Ual0™)]] <e,

then Uy is called an (o, m, €)-block-encoding of A. When the block encoding is exact with e =0, Uy
is called an (a, m)-block-encoding of A. The set of all (c, m, €)-block-encodings of A is denoted by
BEa,m (A, €). The parameter « is referred to as the block encoding factor, or the subnormalization
factor.

When discussing block encodings, we often ignore certain errors such as the error in the finite
precision number representation. We define a shorthand notation BE, ,,(A) = BE, ,n(A4,0). As-
sume we know each matrix element of the n-qubit matrix A;;, and we are given an (n + m)-qubit
unitary Uga. In order to verify that Us € BEq ,,(A4), we only need to verify that

(9.12) (0™, i|UAl0™, 5) = Aij,
and Uy applied to any vector |0™,b) can be obtained via the superposition principle.
Therefore we may first evaluate the state Uy |0™,5), perform an inner product with [0™,4),

and verify the resulting inner product is A;;. We will also use the following technique frequently.
Assume Uy = UgUg, and then

(9.13) O™, |UA|0™, 5) = (0™, i|UgUc|0™, 5) = (UL [0™, i) (Ue [0, 5)).
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So we can evaluate the states U]Tg [0™, i), Uc |0™, j) independently, and then verify the inner product
is A;;. Such a calculation amounts to running the circuit Fig. and if the ancilla qubits are
measured to be 0™, the system qubits return the normalized state ), A;; [i) /[1>°; Aij |9)]|-

keep 0™
|0m> Iil
Ua
17) o< Y2, Aij 1)

F1GURE 9.2. Circuit for general block encoding of A.

Example 9.3. For any n-qubit matrix A with ||A|| < 1 with singular value decomposition A =
WX V1 all singular values in the diagonal matrix ¥ are in [0,1]. Then we may construct an
(n + 1)-qubit unitary matrix (N = 2")

(50 (e ST L)

9.14
(6-14) B A Wiy — %2
T\ VIy -2 -3
which is a (1, 1)-block-encoding of A. ©

Example [9.3|shows that in principle, any matrix A with ||A|| <1 can be accessed via a (1,1, 0)-
block-encoding. However, this construction does not state how to construct A using simple one and
two qubit gates.

Example 9.4 (Random circuit block encoded matrix). How can we construct a pseudo-random
non-unitary matrix on a quantum computer? A naive approach would be to generate a dense
pseudo-random matrix A classically and then encode it into a quantum circuit. However, this is
highly inefficient in practice, particularly for large matrices, due to the exponential overhead in
loading dense classical data into a quantum system.

Instead, we seek to work with matrices that are inherently easy to generate within a quantum
circuit model. This motivates the random circuit based block-encoded matrix (RACBEM)
model. Rather than first constructing a matrix A and then searching for a block-encoding unitary
U4, the RACBEM model reverses the thought process: we begin by constructing a unitary U4 that
is easy to implement on a quantum computer, typically using random quantum circuits, and then
extract A as a subblock of Ua. This provides a practical and scalable way to generate structured
pseudo-random non-unitary matrices compatible with quantum algorithm design. Similar to the
LINPACK benchmark, which is used to rank classical supercomputers in the TOP500 list by solving
Az = b for pseudorandom matrices A, such block-encoded pseudorandom matrices can serve as a
useful tool for benchmarking scientific computing applications on quantum computers. o

9.2. Linear combination of unitaries

The linear combination of unitaries (LCU) is an important quantum primitive, which
allows quantum algorithms to be implemented as a superposition of unitary matrices rather than
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attempting to find a single unitary that accomplishes a desired task. This often simplifies the design
and analysis of quantum algorithms. LCU can also be viewed as a special way for constructing block
encoding. Combined with a technique called qubitization, which will be discussed in detail in 77,
LCU can be used to implement a large class of matrix functions (eigenvalue transformations) and
generalized matrix functions (singular value transformations).

Let T = Zfigl «;U; be a linear combination of unitary matrices U;. For simplicity let K = 2°.
Then
(915) UsgL = Z |Z> <Z| ® U,
1€[K]
implements the selection of U; conditioned on the value of the a-qubit ancilla register (also called
the control register). Ugsgy, is called a select oracle.
If all linear combination coefficients «; > 0, we can let Vprgp be a unitary operation satisfying

—— 3 vaili,

(9.16) Verep [0%) = |
|Oé||1 i€[K]

which is called a prepare oracle. The 1-norm of the coefficients is given by
(9.17) lodly = >l

In matrix form,
) Voo ook e x

VPREP = W : x .o
VU A\VaRDT o+
where the first column is Vprgp [0%), and all other columns are orthogonal to it. Then
/aO PR /aKfl
1 * e *

Viogp = ———
PR

(9.18)

(9.19)

More generally, we can arbitrarily decompose a; = §;7;, so that

Bo . Yo 0 YK-1
1 - 1 * P *
(9.20) VPREP = 75— : , VPREP = 77—
181 5 : 71l
K—-1 % 0 % * *

are unitaries and can be efficiently implemented. When «; > 0, we can choose 8; = ; = /a; which
gives Vprpp = VgREP. Then T can be implemented using the unitary given in Lemma

Lemma 9.5 (Linear combination of unitaries). For
K—1

(9.21) T=> al; ai=Bv K=2% U U2,
=0

let USEL,VPREP,VPREP be given in Egs. 1' and li respectively. Define
(9.22) W = (Vorep ® I)UseL(Verep ® I,)
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as implemented in Fig. . Then W € BEH5||2|M2’G(T). The smallest subnormalization factor is
obtained by setting

(9.23) 181 = il = V]el, i€ [K],
and W € BEHaHl,a(T)-

PRrOOF. For any n-qubit state |1)),

(9.24) User (Verep © In) [09) |¢) = USEL”ﬁ” Zﬂv ) ) = ||»3|| > Bl Uily) .
2

Let the state |J_) collect all the states marked by * orthogonal to |0%), and use §;y; = ay,
(9.25)

(Verep®I,) User(Verep®1,) [0%) 1) = 0%) Y ails [¢) +H 1) = 10%) T o)+ L)
||5||2 IIWHQ ; Hﬁllz 1712

Use Cauchy-Schwarz

(9.26) lledly =D leil = Y 1Bl < 1Bl 17,

we find that the optimal prepare oracle should satisfy |5;| = |vi| = v/|cul, Vi. O

The LCU Lemma states that the number of ancilla qubits needed only depends logarithmically
on K, the number of terms in the linear combination. Hence it is possible to implement the linear
combination of a very large number of terms efficiently. From a practical perspective, the select and
prepare oracles use multi-qubit controls, and may be difficult to implement. If implemented directly,
the number of multi-qubit controls again depends linearly on K and is not desirable. Therefore
an efficient implementation using LCU (in terms of the gate complexity) also requires additional
structure in the prepare and select oracles.

0) —{Verer [ 1| Vonee

UskeL

|¢)

FIGURE 9.3. Circuit for linear combination of unitaries. When all coefficients are
nonnegative, we may set Vprgp = VIIREP.

Example 9.6. If we apply W to |0%) [¢)) and measure the ancilla qubits, then the probability of
obtaining the outcome 0% in the ancilla qubits (and therefore obtaining the state T |¢) / [|T |¢)]|
in the system register) is (||7°[)]| / lall,)*. The expected number of repetition needed to succeed
is (|ledly / IT [)|)?. Using amplitude amplification (AA) in ??, this number can be reduced to

O (llelly /1T 1)11)-

i

An important application of LCU is that if A, B can be accessed via their block encodings,
then we can construct a block encoding of the matrix addition A + B.
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Example 9.7 (Linear combination of two block encoded matrices). Let Us,Up be two n-qubit
unitaries, and we would like to construct a block encoding of T'= U4 + Up.

There are two terms in total, so one ancilla qubit is needed. The prepare oracle needs to
implement

(9.27) Verep |0) = %OO) +11)),

so this is the Hadamard gate. The circuit is given by Fig. which constructs W € BE; 1(T).
o T — -
) Us

FIGURE 9.4. Circuit for linear combination of two unitaries.

&

Exercise 9.2. Let A, B be two n-qubit matrices encoded by Uy € BE; ,,,(A), Up € BE1 ,,,(B).
Construct a circuit to block encode C' = A+ B. What about U € BE, , . (A),Up € BEqy, m(B)?

Exercise 9.3. Consider a system described by the linear combination T'= X +Y + 27, where
X,Y, Z are the Pauli matrices. Construct a select oracle U for this system, and describe how to
use the LCU technique to construct a block encoding of T

Example 9.8. Consider the following TFIM model with periodic boundary conditions (Z,, = Zy),
and n = 2",

(9.28) -3 ZiZia - > X
i€[n] i1€[n]

In order to use LCU, we need (n+ 1) ancilla qubits. In this case, the prepare oracle can be simply
constructed from the Hadamard gate

(9.29) Verep = HO D),
and the select oracle implements
(9.30) Usgr, = Z\ (=Z:Zit1) +Z|z+n (i +n|®(—X;).
i€[n] i€[n]
The corresponding W € BEgn)n+1(]A{). o

Example 9.9 (Highly oscillatory integral). Consider evaluating the matrix integral fol A(s) ds,
where A(s) € C?"*2" A(0) = A(1) and supsepo,1] [[A(s)]l < 1. Given that the entries of A(s) exhibit
significant oscillations as a function of s, in general there is no known efficient method (classical or
quantum) to compute this integral without using a sufficiently fine grid and numerical quadrature.
For simplicity, we adopt a uniform grid defined by {s; = %},Ic”:o, where M is sufficiently large, to
implement the quadrature method.

M-1

(9.31) / A(s Z A(t/M)+E, |B|| <e
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For each s, assume that A(s) has a (1, a, 0)-block encoding denoted by Ua(s), and the s-dependence
can be implemented coherently using e.g., classical arithmetic operations. In a discretized setting,
let M = 2™, this means that the following select oracle defined on a register with m + a +n qubits:

M—-1

(9.32) Usgr, = Z |EXE] @ Uae/ar s
k=0

which we assume can be efficiently implemented with cost poly(mn). The prepare oracle is simply
the m-qubit Hadamard gate H®™. Then the circuit (H®" @I,4,)Usgr(H®™ ®@1,4,,) is a (1,a +
m, €)-block encoding of the matrix-valued integral fol A(s)ds. It uses m ancilla qubits, and the
gate complexity is dominated by that of the select oracle and is poly(mn). This is an exponential
improvement in the parameter M for constructing such a block encoding, compared to a direct
classical quadrature implementation whose cost is at least linear in M. o

9.3. Block encodings of matrix additions and multiplications

We now record basic composition rules for block encodings that will be used throughout the
book.

The linear combination of unitaries (LCU) construction from Section immediately yields a
block encoding of a sum of block-encoded matrices. For simplicity, we state the result for M = 2™
summands.

Proposition 9.10 (Sum of M block-encoded matrices). Let M = 2™ and let Ag,...,Ap—1 be
matrices of the same dimension. Assume that for each j € [M] we are given a block encoding

(9.33) Ua; € BEa, o(45,¢;),  a; >0.

Set y = ZjM:al o > 0. Let Uspr == > e 17| ® Ua, be the select oracle acting on an m-qubit
control register, the a-qubit ancilla register, and the system register. Let Vprpp be any unitary on
the m-qubit control register satisfying

M-1

(9.34) Verep [07) = \1ﬁ Jz:_;) Vagli) .

Define
Then
M-1 M-1
(9.36) W €BEyatm | D A5 Y€
j=0 j=0

Proor. Write B; := (0?|U4,|0%), so that [|A; — a;B;|| < ¢; and || B[] < 1. By direct compu-
tation of the (]0™,0%)) block,

M—-1
(9.37) (™, 0t wlom, 07 = - %Bj.
=0
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Therefore
M-1
(9.38) Z Aj — (0™, 0%W[0™, 07| < Z 14; — ;B[ < e,
7=0
which is the claimed block-encoding statement. O

We next record a simple (though not always ancilla-optimal) rule for block encoding a product.

Proposition 9.11 (Product of M block-encoded matrices). Let Ag,...,Ap—1 be matrices with
compatible dimensions. Assume that for each j € [M] we are given

(939) UAj S BEaj,aj (Aj, ej).
Let U be the unitary obtained by applying Ua,,Ua,,...,Ua,,_, sequentially on disjoint ancilla
registers (of sizes ag,...,ar—1) and a common system register. Then
M—1 M—-1
(940) U e BEij_ol aj, ZMola (AM—l .. .AO’ H (Oéj + ej) — H Olj).
§=0 j=0

PROOF. For each j, define B; := (09|U4,[0%) so that ||A; — a;B;|| < ¢; and ||B;]| < 1. Since
the ancilla registers are disjoint, we have

(9.41) (090 D]0P0F ) = By By,
It remains to bound

M—1
(9.42) Apr1-+- Ao — (H Oéj)BM—l"‘BO

§=0

We prove by induction on M the inequality

M-—1

M—-1 M-1
(943) H A H aij) < H (aj + Cj) — H Q.
7=0 3=0 =0

The case M = 1 is immediate. For the induction step, write P := Hj]\/i62 Aj and P = HinBQ(aij).
Then

HAM—1P - (OéM—1BM—1)13H < [[(Ap—1 — ap—1By—1) Pl + HCYM—lBM—l(P - JB)H
(9.44) b
<em—1||P|| + anr—1 HP - PH .

Using || A;]| < aj+¢€; (by | A;]| < [|[A; — o Bjl|+a; || Bj]]), we have [|P|| < TTj25%(e+¢€;). Applying
the induction hypothesis to HP —-P H yields

M-—2 M-—2 M—2
HAM 1P (OLM 1By PH <€em_1 H OLJ+€j)+OLM 1(1_[ Q; +€J H Oz])
7=0 7=0 7=0

M—-1

completing the induction. |
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Example 9.12 (Multiplication of block encoded matrices). If A, B are given by their block encod-
ings Us € BE, 4(A),Up € BEg (B), then the product AB can also be block encoded (see Fig. ,
which uses @+ b ancilla qubits. This is because AB/(afB) = (091?|(Ua ® I) (I, ® Ug)|0°*?). Hence
(UA & Ib)(Ia & UB) € BEaﬁ’a+b(AB).

) {7 ——

0%) —
Ug

vy —{uaH

FIGURE 9.5. Quantum circuit for block encoding the product of matrices using
a + b ancilla qubits.

However, this is not the most efficient way for block encoding the product of matrices. In 77,
we have demonstrated that using deferred measurement, we only need one extra ancilla qubit to
record whether the ancilla register is in the all 0 state. Specifically, assume a = b for simplicity;
Fig. is a schematic circuit (the control denotes a check of the ancilla register being in |0%)) that
constructs a unitary in BE,g q+1(AB).

o —{5——H
0y — [~

Ua Ug

FIGURE 9.6. Quantum circuit for block encoding the product of matrices using
a+ 1 ancilla qubits (assuming a = b).

Following this strategy, when multiplying L matrices A; each given by Uya, € BEq, o(4;), we

can introduce L — 1 ancilla qubits to obtain a unitary in BErz . .7 1(AL -+ A1). Even more
i=1 Yi»

efficiently, using the compression gadget in 77, the number of ancilla qubits can be reduced to

a+ [logy (L + 1)]. o

Note that the matrix power A" is a special case of multiplying L matrices. However, the
method in Example for encoding A% can be highly inefficient. To see this, consider a matrix
A with spectral radius
(9.46) p(A) =max {|A| | A € Spec(A) },

where Spec(A) denotes the set of eigenvalues of A. Suppose that p(A) < 1. Then there exists a
constant C such that sup;cy ||A®|| < C. However, it is still possible that ||A| > 1, which means
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subnormalization factor for encoding A’ using the method in Example [9.12 would scale as o,

growing exponentially with L. This discrepancy in computing matrix powers is closely related to
the challenges of solving linear differential equations. This is a topic that will be discussed in 77.

that the block encoding subnormalization factor of A must satisfy o > ||A|| > 1. As a result, the
“

9.4. Example: implementing generalized measurements
9.5. Example: Quantum error correction as block encoding
9.6. Query models for matrix entries

Throughout the discussion we assume A is an n-qubit, square matrix, and the max norm of A

(see Definition [2.45) satisfies ||A|[, ... < 1.
To query the entries of a matrix, one of the most convenient form is to encode the information

of the matrix as the amplitude of a known vector, e.g.,
(9.47) O l0) [i) 1) = (Aij 0) +4/1 — |4;; [ |1>> |2} 17) -

In other words, given i, j € [N], O4 performs a controlled rotation (controlling on 4, j) on the ancilla
qubit, which encodes the information in terms of amplitude of |0). We refer to Eq. (9.47)) as the
amplitude oracle or phase oracle.

Example 9.13 (Construction of amplitude oracle). Assume || Al
and that we have access to a bit oracle

(9.48) 04 107) [3) [5) = |Aij) 1) |3) -

Here gij is a d'-bit fixed point representation of A;;, and the value of ﬁij is either computed on-
the-fly with a quantum computer, or obtained through an external database using e.g., QRAM in
Definition [5.6] Using the classical arithmetic operations, we can first convert this oracle into an
oracle

(9.49) O'4 10%) [8) 1) = 1635 16} 1) +

where 0 < gij < 1, and gij is a d-bit representation of 6,; = arccos(A;;)/m, and with some abuse

< 1and A;; € R for all 4,7,

max

of notation we redefine /L-j = cos(w@j). This step may require some additional work registers not
shown here. N

Now using the controlled rotation in Proposition and Fig. the information of 6;; can
now be transferred to the amplitude of the ancilla qubit. We should then perform uncomputation
and free the work register storing such intermediate information 6;;. The procedure is as follows

0) 0% [i) l4) 10)16:5) 14 17)
~—~

work register

9.50) o, (Aﬁ o+ /1= |4 |1>> 301613
] CLAE ET

After the uncomputation, the d-bit working register can be discarded, and we obtain the desired
amplitude oracle of the input matrix A. o

I,®0',
. TN
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Exercise 9.4. Construct a query oracle O4 similar to that in Eq. (9.50)), when A;; € C with
HAHmax < L.

9.7. Block encoding of s-sparse matrices

Example 9.14 (Block encoding of a diagonal matrix). As a special case, let us consider the block
encoding of a diagonal matrix, which is also a 1-sparse matrix. Since the row and column indices
are the same, we may simplify the oracle Eq. (9.47)) into

9.51) 0.410) li) = (A 0) + /1 — [Auf? |1>) i)

Let Uy = O 4. Direct calculation shows that for any 4, j € [V],

(9.52) (O (2| U |0) |5) = Aqidi.-

This proves that Us € BEq1(4), i.e., Uy is a (1, 1)-block-encoding of the diagonal matrix A. o
Example 9.15 (General 1-sparse matrices). In a 1-sparse matrices, there is only one nonzero entry
in each row and each column of the matrix. This means that for each j € [N], there is a unique
c(j) € [N] such that A.;); # 0, and the mapping c is a permutation. Assume that there exists a
unitary O, satisfying that

(9.53) Oclj) = le(3)), Olle(h)) = 17) -

The implementation of O, may require the usage of some work registers that are omitted here.

We assume the matrix entry A, ; can be queried via

(9.54) 0.410) 1) = (Ac(j),j 10) /1= Ay |1>) ).

Now we construct Ug = (I ® O.)O 4, and compute the matrix element

. . . 2 .
(9.55) (01 (i U [0) [5) = (O] (il <Ac<j),j 10) + /1 = [Ac 41 |1>) () = Ac().ii i)

This proves that Us € BEq 1(A). o

For a general s-sparse matrix, we have [[A] < s||A||,,.. according to Lemma and the
explicit construction of the block encoding matrix often requires to choose the subnormalization
factor a = s||Al| .- WLOG we assume each row and each column has exactly s nonzero entries
(otherwise we can always treat some zero entries as nonzeros). For simplicity, let s = 2°. For each
column j, the row index for the ¢-th nonzero entry is denoted by c(j, ¢).

Example 9.16 (Banded matrix). In a banded matrix, we have
(9.56) c(4,0)=j+4L—4y (mod N),

for some ¢y € Z. The bandwidth is s. Using an adder circuit to perform the addition of j,/
coherently, we can construct a unitary O, such that

(9.57) Oc €} 17) = 1€) e(5,£)) -
Here the first register is an s-qubit register. It also holds that O} ) |c(j,¢)) = |¢) |j). This means

that for each row index i = ¢(j,£), we can recover the column index j given the value of . From
Eq. (9.57), we assume that the matrix entries can be queried via

. 2 .
(9.58) 040} 1€) 5) = (Ac(j,e),j 10) + /1 = [Acio,4 |1>> 1€)15) -
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We then define D = H®® (the s-qubit Hadamard transform) satisfying
1
9.59 DI0%) = — fy.
(9.59) 07) NE %:] 1£)

We now claim that the circuit in Fig. defines a unitary U, that is a (s,s + 1,0)-block encoding
of A.

0 s
o) (B os - -]

FIGURE 9.7. Quantum circuit for block encoding a banded matrix. The measure-
ment means that to obtain a state oc A |b), the ancilla register should all return
the value 0.

Proposition 9.17. The circuit in Fig. defines Ug € BE; 541(A).
Proor. We may write
(9.60) Us=IDNHI®0.,)04sI®DRI).

In order to compute the inner product (0| (0°| (¢| U4 |0) |0°) |j), we apply D,O4,0,. to |0)|0°) |5)
successively as

)10 15) = ZIO 1€)17)

46[5
= j j — . . 2 .
(961) —>\/»/§ ( c(4,£),J |O> +14/1 |AC(J,£)7]’ |1>) |€> |,7>
\[z%; ( c(,0),4 10) + ‘Ac(]l ] |1>) 10) |e(5,0)) .

Instead of multiplying the leftmost factor I ® D ® I to the last line, we apply it to |0) |0%) |¢) first
to obtain (note that D is Hermitian)

(9-62) 10)10°) [2) \[ > loyie) i

€]

Finally, taking the inner product yields

S 5 1
(9.63) (01(0°[ (i| U4 10} |0°) |3) = ZA (G0,0,eG,0) = S Aig-
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Example 9.18. Let us use the circuit in Fig. to construct a block encoding of
Qo Q1

(9.64) A{O‘l 0‘2}, 0<a; <1, i=12.

This matrix satisfies | A, ...
use CNOT as the O, circuit by examining the truth table

L j ¢ c4,?)
00 0 0
01 —= 0 1
10 11
11 10

Meanwhile O4 can be implemented using controlled R, (6;), 6, = 2arccos(a;),i = 1,2.

10) — By(01) —{ Ry(02) |—
) —
17)
For example, when a; = 1, s = 0.5, The resulting matrix is

0.500  0.250  0.500 —0.250 0.0 —0.433 0.0 0.433
0.250  0.500 —0.250 0.500 —0.433 0.0 0.433 0.0
0.500 —0.250 0.500  0.250 0.0 0.433 0.0 —0.433
—-0.250 0.500  0.250  0.500  0.433 0.0 —0.433 0.0

(9.65)  Ua = 0.0 0.433 0.0 —-0.433 0.500  0.250 0.500 —0.250
0.433 0.0 —0.433 0.0 0.250  0.500 —0.250 0.500
0.0 —0.433 0.0 0.433 0.500 —0.250 0.500 0.250

—0.433 0.0 0.433 0.0 —0.250 0.500 0.250  0.500
This is a (2, 2)-block-encoding of A.

=1, and can be viewed as a 2-sparse, banded matrix. We can simply

&

Exercise 9.5. Construct an s-sparse matrix so that the oracle of the form Eq. (9.57) does not

exist.

For more general s-sparse matrices, we need to consider a more general input model to construct

its block encoding. We assume access to the following two (2n)-qubit oracles
Or[6) 1) = r(i, 0)) |2) ,

(9.66) Oc [6)13) = le(G, 0) 1) -

Here 7(i,¢), c(4,¢) gives the ¢-th nonzero entry in the i-th row and j-th column, respectively. It
should be noted that although the index ¢ € [s], we should expand it into an n-qubit state (e.g. let

¢ take the last s qubits of the n-qubit register following the binary representation of integers).

Similar to the discussion before, we need an operator D satisfying
1
(9.67) D"y =—>"10.
\/E Le(s]
This can be implemented using Hadamard gates as

(9.68) D =H®®I,_,.
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o) fd
=l Ao | A2

O SWAP| |Of
h—— H H

FI1GURE 9.8. Quantum circuit for block encoding of general sparse matrices. The
measurement means that to obtain a state oc A|b), the ancilla register should all
return the value 0.

We assume that the matrix entries are queried using the following oracle using controlled
rotations

(9.69) Oal0)[i) |5) = (Az‘j 0) + /1 — Ay |1>) ) 17) 5

where the rotation is controlled by both row and column indices. However, if A;; = 0 for some ¢, j,
the rotation can be arbitrary, as there will be no contribution due to the usage of O, O..

Proposition 9.19. Fig. defines Ug € BEg ,11(A).

PROOF. We apply the first four gate sets to the source state
0)10™) |5)

D,0.,04 1 2 . .
A>ﬁ > (Acowé),j 10) + /1= | Acisie 4 |1>) le(4,€)) |5)
(€ls)
SWAP, 1 2 o
§j( 10+ 1—L%@AA|n)qum@»

We then apply D and O, to the target state

(9.71) |0)[07%) i) —— Z 10) Ir(@, ) ) -

K’e[s]

(9.70)

Then the inner product gives

<0| <0n| < | Ua |0> |0n> |.7 ZAC(j Z),](sz c(4, Z)‘Sr(z 2,5
E@’

1 1
:75 Aoy 8 oiipy = = Ay,
s & c(4,€),5%,c(j4,£) Pl

If A;; # 0, then there exists a unique ¢ such that i = ¢(j,¢) and a unique ¢’ such that j = r(i, ');
if A;; =0, then the same computation gives (0] (0™] (i| U4 |0) |0™) |5) = 0. O

(9.72)

We remark that the quantum circuit in Fig. is essentially the construction in [GSLW1S|
Lemma 48], which gives a (s,n + 3)-block-encoding. The construction above slightly simplifies the
procedure and saves two extra qubits (used to mark whether £ > s).
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8. Hermitian block encoding

So far we have considered general s-sparse matrices. Note that if A is a Hermitian matrix, its
(a, m, €)-block-encoding U, does not need to be Hermitian. Even if ¢ = 0, we only have that the
upper-left n-qubit block of U, is Hermitian. For instance, even the block encoding of a Hermitian,
diagonal matrix in Example [9.14] may not be Hermitian. On the other hand, there are cases when
Ug = UI‘ is a Hermitian matrix, and hence the definition:

Definition 9.20 (Hermitian block encoding). Let Us be an (a,m, €)-block-encoding of A. If Ua
is also Hermitian, then it is called an (o, m,€)-Hermitian-block-encoding of A. When e = 0, it is
called an (o, m)-Hermitian-block-encoding. The set of all («, m, €)-Hermitian-block-encodings of A
is denoted by HBE, (A, €), and we define HBE, ,,,(A) = HBE, (4, 0).

The Hermitian block encoding provides the simplest scenario of the qubitization process in ?77.
Next we consider the Hermitian block encoding of an s-sparse Hermitian matrix. Since A is
Hermitian, we only need one oracle to query the location of the nonzero entries

(9.73) Ocll) 17) = 1¢(3: ) 17) -

Here ¢(j, ) gives the ¢-th nonzero entry in the j-th column. It can also be interpreted as the ¢-th
nonzero entry in the j-th row. Again the first register needs to be interpreted as an n-qubit register.
The operator D is the same as in Eq. .

Unlike all discussions before, we introduce two control qubits, and a quantum state in the
computational basis takes the form |a) |7) |b) |j), where a,b € {0,1},4,j € [N]. In other words, we
may view |a)|é) as the first register, and |b)|j) as the second register. The (n + 1)-qubit SWAP
gate is defined as

(9.74) SWAP [a) [i) [b) |7) = |b) |5} |a) |4} -

To query matrix entries, we need access to the square root of A;; as (note that act on the second
single-qubit register)

(9.75) 0.4 1) [0) 1) = |9 (ﬁo 1—|A“-||1>) ).

Throughout we assume |[[A[|,.. < 1, so that the right-hand side is normalized. The square root
operation is well defined if A;; > 0 for all entries. If A has negative (or complex) entries, we first
write A;; = |Ay;] €%, 0;; € [0,27), and the square root is uniquely defined as \/A;; = /] A;;]e%/2.

Proposition 9.21. Fig. defines Ua € HBE; 42(A).

PROOF. Apply the first four gate sets to the source state gives

10) 107 [0y [5) 2522

0} (). ¢ (\/Ac 0100 /T~ s |1>) )
(9.76) \[z;[s (4,£),3 | (J é)J|

SWAP, 1 . .
Z( Acij,510) + 1—!Ac(j,e),j||1>> 17) 10) (4, €))

ze[
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SWAP
|0) O4 H L1 (04)1 @

FIGURE 9.9. Quantum circuit for Hermitian block encoding of a general Hermitian matrix

Apply the last three gate sets to the target state
0) 107)[0) [i) 2=

oa 1 . .
22 52 0166 (Ao 100+ 1= Al 1) 1)
]

rels

(9.77)

Finally, take the inner product as
(00" [ (0[ (| Ua |0} [0") |0) |5)

1 *
(9.78) 5 Z mméi,c(j,z)(sc(i,e'),j

N
1

1 N 1 2
:;m\/Aji = g(\/ATJ) = gAij-

In this equality, we have used that A is Hermitian: A;; = A%, and there exists a unique £ such that

i =c(j,¢), as well as a unique ¢ such that j = ¢(i,¢') when A;; is nonzero. O

Exercise 9.6. Let A € CV*N (N = 2") be a Hermitian matrix with entries on the complex
unit circle A;; = i 6;; € [0, 2m), which can be accessed via a 2n qubit unitary V' € CN**N? guch

that )
VoM |j) = — i1y 15), 4 € [N].
10™) 1) \/NZ i) l5), €N
i€[N]
Use V' to implement a block encoding U of A with n ancilla qubits. What is the subnormalization

factor a for this block encoding?

Notes and further reading

The mathematical idea underlying block encodings is a form of unitary dilation: linear maps
that are not themselves unitary can often be realized as a sub-block of a larger unitary acting on an
extended space. In quantum information, this viewpoint is closely related to dilation theorems for
completely positive maps. In quantum algorithms, the block-encoding terminology (together with
explicit bookkeeping of the subnormalization factor and approximation error) was systematized as
part of the modern polynomial-transformation framework; see [GSLW19.
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The linear combination of unitaries (LCU) primitive used here originates in the Hamiltonian
simulation algorithm [CW12| IBCCT14|. In particular, the sparse-matrix block-encoding construc-
tions in this chapter are closely aligned with the query models developed for sparse Hamiltonian
simulation (see, e.g., [BACS07]) and with the block-encoding-based linear-systems framework (see,
e.g., [CKS17|, which can be directly connected to the quantum circuit for Hermitian block encod-
ing in Fig. . The connection between block encodings and quantum walks is mediated by the
fact that many walk operators are themselves natural block encodings; see Szegedy’s quantization
of Markov chains [Sze04] for an early and influential formulation, which will be discussed in detail
in 7?. The RACBEM input model for pseudorandom nonunitary matrices was introduced in [DL21].
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