Supplemental material for displaced path integral formulation for the momentum distribution of quantum particles

Lin Lin, Joseph A. Morrone, Roberto Car, and Michele Parrinello

1Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544
2Department of Chemistry, Princeton University, Princeton, NJ 08544
3Department of Physics, Princeton University, Princeton, NJ 08544
4Computational Science, Department of Chemistry and Applied Biosciences, ETH Zurich, USI Campus, Via Giuseppe Buffi 12, CH-6900 Lugano, Switzerland

Derivation of Eq. (3) in the text:
Within Feynman’s path integral representation the density operator is given by:
\[\rho(\mathbf{r}, \mathbf{r}') = \int_{\mathbf{r}(0)=\mathbf{r}, \mathbf{r}(\beta\hbar)=\mathbf{r}'} \mathcal{D}\mathbf{r}(\tau) e^{-\frac{1}{\hbar} \int_0^{\beta\hbar} d\tau \left(\frac{m\dot{\mathbf{r}}^2(\tau)}{2} + V[\mathbf{r}(\tau)] \right)} \],
and the end-to-end distribution is:
\[\bar{n}(\mathbf{x}) = \frac{1}{Z} \int d\mathbf{r} d\mathbf{r}' \delta(\mathbf{r} - \mathbf{r}') \rho(\mathbf{r}, \mathbf{r}') = \frac{1}{Z} \int_{\mathbf{r}(0)-\mathbf{r}(\beta\hbar)=\mathbf{x}} \mathcal{D}\mathbf{r}(\tau) e^{-\frac{1}{\hbar} \int_0^{\beta\hbar} d\tau \left(\frac{m\dot{\mathbf{r}}^2(\tau)}{2} + V[\mathbf{r}(\tau)] \right)} \]

\[= e^{-\frac{m\dot{\mathbf{r}}^2}{2\beta\hbar}} \int_{\mathbf{r}(\beta\hbar)=\mathbf{r}(0)} \mathcal{D}\mathbf{r}(\tau) e^{-\frac{1}{\hbar} \int_0^{\beta\hbar} d\tau \left(\frac{m\dot{\mathbf{r}}^2(\tau)}{2} + V[\mathbf{r}(\tau)] \right)} \].

Eq. (3) transforms the open path \(\mathbf{r}(\tau) \) into the closed path \(\mathbf{r}(\tau) \), and the free particle contribution comes naturally from the derivative of \(y(\tau) \). The choice of the constant \(C \) influences the variance of free energy perturbation and thermodynamic integration estimators in the text. It is found that the lowest variance is achieved when \(C = 1/2 \), since this choice has the smallest displacement from the closed path configuration. This is Eq. (3) in the text.

Next we present the derivation of Eq. (6) in the text:
The Compton profile is given by
\[J(\mathbf{q}, y) = \int n(\mathbf{p}) \delta(\mathbf{y} - \mathbf{p} \cdot \mathbf{q}) d\mathbf{p} \].

The direction \(\mathbf{q} \) is defined by the experimental setup, and the momentum distribution \(n(\mathbf{p}) \) can be expressed in terms of the end-to-end distribution \(\bar{n}(\mathbf{x}) \) as
\[n(\mathbf{p}) = \frac{1}{(2\pi\hbar)^3} \int d\mathbf{x} e^{i\mathbf{p} \cdot \mathbf{x}} \bar{n}(\mathbf{x}). \]

We indicate by \(x_|| = \mathbf{x} \cdot \mathbf{q} \), and \(x_\perp \) the \(\mathbf{x} \) component orthogonal to \(\mathbf{q} \). Correspondingly \(p_|| = \mathbf{p} \cdot \mathbf{q} \), and \(p_\perp \) is the \(\mathbf{p} \) component orthogonal to \(\mathbf{q} \). One has
\[J(\mathbf{q}, y) = \frac{1}{(2\pi\hbar)^3} \int d\mathbf{x} dp_\perp \bar{n}(\mathbf{x}) e^{i\mathbf{p}_\perp \cdot \mathbf{x}_\perp} \delta(\mathbf{y} - \mathbf{p}_\perp) \]
\[= \frac{1}{(2\pi\hbar)^3} \int dx_\perp dp_\perp \bar{n}(\mathbf{x}) e^{i\mathbf{p}_\perp \cdot \mathbf{x}_\perp} \delta(y - p_\perp) \]
\[= \frac{1}{2\pi\hbar} \int dx_\perp \bar{n}(x_\perp \mathbf{q}) e^{i\mathbf{x}_\perp \mathbf{p}_\perp}. \]
Given the end to end distribution can be expressed as

\[\tilde{n}(x) = e^{-\frac{mx^2}{2\hbar^2}} e^{-U(x)}, \]
(8)

the potential of mean force \(U(x) \) can be obtained from the Compton profile as

\[U(x\parallel \hat{q}) = -\frac{mx^2}{2\beta\hbar^2} \ln \int dy J(\hat{q}, y)e^{-\frac{x\parallel y}{\hbar}}. \]
(9)

The mean force \(\mathbf{F}(x) \) is the gradient of \(U(x) \). Taking into account that \(J(\hat{q}, y) \) is an even function of \(y \) one obtains

\[\hat{q} \cdot \mathbf{F}(x\parallel \hat{q}) = -\frac{mx^2}{\beta\hbar^2} + \frac{1}{\hbar} \int_0^\infty dy \cos(x\parallel y/\hbar)J(\hat{q}, y). \]
(10)

This is Eq. (6) in the text.

* Present address: Department of Chemistry, Columbia University, New York NY 10027
† Electronic address: rcar@princeton.edu