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Graphene is a nonmagnetic semimetal and cannot be directly used as electronic or spintronic de-
vices. We demonstrate that graphene quantum dots (GQDs) can exhibit strong edge magnetism and
tunable energy gaps due to the presence of localized edge states. By using large-scale first principle
density functional theory (DFT) calculations and detailed analysis based on model Hamiltonians,
we can show that the zigzag edge states in GQDs become much stronger and more localized as the
system size increases. The enhanced edge states induce strong electron-electron interactions along
the edges of GQDs, ultimately resulting in a magnetic phase transition from nonmagnetic to intra-
edge ferromagnetic and inter-edge antiferromagnetic, when the diameter is larger than 4.5 nm. Our
analysis shows that the inter-edge superexchange interaction of antiferromagnetic states between
two nearest-neighbor zigzag edges in GQDs is much stronger than that exists between two parallel
zigzag edges in GQDs and graphene nanoribbons. Furthermore, such strong and localized edge
states also induce GQDs semiconducting with tunable energy gaps, mainly controlled by adjusting
the system size. Our results show that the quantum confinement effect, inter-edge superexchange
(antiferromagnetic), and intra-edge direct exchange (ferromagnetic) interactions are crucial for the
electronic and magnetic properties of zigzag GQDs at the nanoscale.

Engineering techniques that use finite size effect to in-
troduce tunable edge magnetism and energy gap are by
far the most promising ways for enabling graphene [1]
to be used in electronics and spintronics [2, 3]. Exam-
ples of finize sized graphene nanostructures include one-
dimensional (1D) graphene nanoribbons (GNRs) [4–13]
and zero-dimensional (0D) graphene nanoflakes (GNFs)
(also known as graphene quantum dots (GQDs)) [14–
25]. It is well known that electronic and magnetic prop-
erties [26] of GNRs and GNFs depend strongly on the
atomic configuration of their edges, which are of either
the armchair (AC) or zigzag (ZZ) types [8].

Edge magnetism has been predicted theoretically [10]
and observed experimentally [13] in ZZGNRs. The mag-
netism results from the antiferromagnetic (AFM) cou-
pling between two parallel ferromagnetic (FM) zigzag
edges of ZZGNRs. However, the inter-edge superex-
change interaction of such AFM states in ZZGNRs
rapidly weakens (∼ w−2) as the ribbon-width w in-
creases [12]. Furthermore, the energy gap of GNRs de-
pend on several factors, such as the edge type (armchair
or zigzag) and the width of the nanoribbon [8], thus can-
not be easily tuned. Such problem does not exist in GNFs
due to the quantum confinement effect [27]. The abil-
ity to the control GNF energy gap has enabled GNFs
to be used in promising applications in electronics [17].
In addition, triangular ZZGNFs are theoretically pre-
dicted to have strong edge magnetism even in small sys-
tems [28, 29]. Recent experiments [30] have also demon-

strated that edge magnetism can be observed in ZZGNFs
when the edges are passivated by certain chemical groups.
However, triangular ZZGNFs have large formation en-
ergy [21] and have not been synthesized experimentally.
Interestingly, hexagonal ZZGNFs exhibits significantly
improved stability in ambient environment [21]. Theo-
retically, semi-empirical tight-binding model [31, 32] and
first principle density functional theory (DFT) calcula-
tions [22–25] for hexagonal ZZGNFs have been performed
for small sized systems but found no magnetism (NM).
Thus the prospect of finding stable finite sized graphene
easily fabricated in experiments that exhibits both strong
edge magnetism and tunable energy gap seems dim.

In this letter, we systematically study the electronic
and magnetic properties of hexagonal ZZGNFs with the
diameters in the range of 2 nm to 12 nm (with up to
3900 atoms). Using first-principles DFT calculations, we
find that both strong edge magnetism and tunable energy
gap can be realized simultaneously in large ZZGNFs. We
demonstrate that spin polarization plays a crucial role as
the diameter of a ZZGNF increases beyond 4.5 nm. A
spin-unpolarized calculation shows that edge states be-
come increasingly more localized as the size a ZZGNF in-
creases. These edge states form a half-filled pseudo-band
and is thus unstable. Adding spin-polarization allows the
edge states to spontaneously split into spin-polarized oc-
cupied and unoccupied states. This separation results
in a magnetic phase transition from an NM phase to
a strong inter-edge AFM phase. It also opens a tun-
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able band gap that can be easily controlled by quantum
confinement effect. These properties make GNFs better
candidate materials for nanoelectronics than GNRs [8].
We also confirm that ZZGNFs passivated by different
chemical groups all exhibit similar behavior. Such flexi-
bility may facilitate future experimental synthesis of such
ZZGNFs.

We use the Kohn-Sham DFT based electronic struc-
ture analysis tools implemented in the SIESTA (Spanish
Initiative for Electronic Simulations with Thousands of
Atoms) [33] software package. We use the generalized
gradient approximation of Perdew, Burke, and Ernzerhof
(GGA-PBE) [34] exchange correlation functional with
collinear spin polarization, and the double zeta plus po-
larization orbital basis set (DZP) to describe the valence
electrons within the framework of a linear combination
of numerical atomic orbitals (LCAO) [35]. All atomic
coordinates are fully relaxed using the conjugate gradi-
ent (CG) algorithm until the energy and force conver-
gence criteria of 10−4 eV and 0.02 eV/Å respectively are
reached. Due to the large number of atoms contained
in hexagonal hydrogen-passivated ZZGNFs (C6n2H6n, n
= 1 ∼ 25 ), we use the recently developed PEXSI (Pole
EXpansion and Selected Inversion) method [36–38] to ac-
celerate the computation.

We demonstrate the importance of spin polarization
using C864H72 (6 nm) as an example (Figure 1). In spin
unpolarized calculations, strong and localized edge states
are observed (Figure 1(e)), which induce high electron
density on the edges of C864H72. Furthermore, such edge
states in ZZGNFs becomes much stronger and more lo-
calized as the sizes increase [25], which lead to metallic
ZZGNFs at the nanoscale [32]. Figure 1(c) plots the pro-
jected density of states (PDOS) of the carbon edges of
C864H72 and shows considerable high density of states
(DOS) near the Fermi level. This confirms that C864H72

exhibits metallic characteristics in spin unpolarized cal-
culations due to the strong localized edge states [25].

In spin polarized calculations, such half-filled metal-
lic edge states are not stable, and can spontaneously
split into two types of occupied and unoccupied states
as shown in Figure 1(b) and (d). A magnetic phase tran-
sition occurs from the NM phase to a magnetic phase
that exhibits intra-edge FM and inter-edge AFM charac-
ters as shown in Figure 1(f). This can be interpreted as
the Mott-type competition between the kinetic (hopping)
energy and the intra-edge (on-site) electron-electron in-
teraction energy with respect to the spin polarized edge
states. The minimization of the kinetic energy tends to
produce delocalized spin states across all edges, while the
minimization of the electron-electron interaction energy
tends to penalize simultaneous occupation of the same
edge by spin up and spin down electrons. Our calcula-
tion indicates that for small system sizes, the kinetic en-
ergy dominates, which agrees with previous theoretical
prediction of the NM phase for hexagonal ZZGNFs [22–
25, 31, 32]. Only as the system size increases, the effective
electron-electron interaction energy for the edge states

FIG. 1: Electronic structure of edge states in C864H72 in
two different magnetic phases (NM and AFM), including the
schematic illustration of orbital diagram of superexchange in-
teraction of edge states in the (a) NM and (b) AFM phases,
projected density of states (PDOS) of edges in the (c) NM
and (d) AFM phases, (e) local density of states (LDOS) of
Fermi level (pink isosurfaces) in the NM phase and (f) spin
density isosurfaces in the AFM phase. The red and blue iso-
suraces in (f) represent the spin-up and spin-down states, re-
spectively. The red and blue lines in (d) represent the PDOS
contributed by sublattice A (spin-up edges) and B (spin-down
edges) atoms in graphene, respectively. The fermi level is
marked by green dotted lines and set to zero.

starts to dominate and results in the phase transition.

Figure 2(a) shows the variation of relative energy of
NM, AFM and FM coupling between different edges in
ZZGNFs and ZZGNRs with respect to the system size.
Our calculations show the AFM states are much more
stable than the NM and FM states in large-scale cases,
and a magnetic phase transition (Figure 2(b)) occurs
in ZZGNFs as the diameter increases larger than 4.5
nm (C486H54) [28]. In detail, the intra-edge direct ex-
change interactions induce FM states along each zigzag
edge (belong to the same sublattice) and the inter-edge
superexchange interactions induce AFM states between



3

two nearest-neighbor edges (belong to different sublat-
tices) through a carbon-carbon double bond (C=C) at
the corner in ZZGNFs (Figure 1(a)) at the nanoscale.
The local magnetic moment Mi = |< n̂i↑ > - < n̂i↓ >|
(< n̂iσ > is spin electron density and σ = ↑ (spin-up)
or ↓ (spin-down)) at the carbon atom i (defined to be
the one with the largest magnetic moment in the middle
of each zigzag edge in ZZGNFs) increases with the sys-
tem size, and converges to 0.3 uB when the diameter is
larger than than 6 nm (C864H72). Furthermore, there is
no charge transfer (< n̂i↑ > + < n̂i↓ > ≈ 4) between dif-
ferent edge carbon atoms (belong to the same or different
sublattices) in ZZGNFs as the system size increases.

FIG. 2: (a) Relative energy per edge atom (∆E(AFM-NM)
and ∆E(AFM-FM)) of NM, AFM and FM coupling between
different edges in ZZGNFs and ZZGNRs and (b) spin electron
density < n̂iσ > (σ = ↑ (spin-up) or ↓ (spin-down)) at the car-
bon atom i in the middle of each zigzag edge in AFM ZZGNFs
under the variation of the diameter (ZZGNFs) or ribbon-with
length (ZZGNRs). The red and blue regions represent the sta-
ble NM (∆E(AFM-NM) ≈ 0) and AFM (∆E(AFM-NM) <

0) coupling between different edges in ZZGNFs, respectively.

Notice that the intra-edge direct exchange interactions
of FM sates along each zigzag edge in ZZGNFs are simi-
lar to that in ZZGNRs. However, the inter-edge superex-
change interactions of AFM states between two nearest-
neighbor edges through a C=C bond at the corner in
ZZGNFs (Figure 1(a)) are much stronger than that be-
tween two parallel edges through π-electron in ZZGNRs
as shown in Figure 2(a), where such AFM coupling weak-
ens rapidly as the ribbon-width increases [12]. Our DFT
calculations confirm that the energy difference of AFM
and FM coupling between two parallel edges in large-
scale 1D ZZGNRs is negligible compared to ZZGNFs re-
ported here.
The enhanced stability of spin-polarized ZZGNFs can

be understood by using the Heisenberg model. We con-
sider each FM edge as one site and count the edge mag-
netic exchange interactions, and the Hamiltonian can be

written as

Ĥ = −
∑

Ji,j ~Mi
~Mj (1)

where Ji,j is the exchange parameter between two states

i and j, ~Mi and ~Mj are corresponding spin magnetic
moments (The details are given in the Supplemental
Material). There are four different magnetic states in
C864H72, three types of antiferromagnetic (AFM, AFM1
and AFM2) and one type of ferromagnetic (FM) coupling
at the edges as shown in Figure 3. The total energies
of magnetic phases E(AFM), E(AFM1), E(AFM2) and
E(FM) can be computed by the DFT calculations, and
the the exchange parameters can be evaluated by [39]

E(AFM) = (6J1 − 6J2 + 3J3)M
2 + E0

E(AFM1) = (2J1 + 2J2 − J3)M
2 + E0

E(AFM2) = (−J1 + 2J2 + 3J3)M
2 + E0

E(FM) = (−6J1 − 6J2 − 3J3)M
2 + E0

(2)

where J1, J2 and J3 are ortho-, meta- and para- edge
exchange interaction parameters, respectively. M is the
spin magnetic moment at each edge. E0 is nonmagnetic
reference total energy. We find that inter-edge exchange
strength (J1 = -0.038351 eV, J2 = 0.000954 eV and J3 =
0.001633 eV for C864H72) between two nearest-neighbor
edges is ten times stronger than that between two paral-
lel edges in ZZGNFs and ZZGNRs. Therefore, ZZGNFs
can maintain strong edge magnetism as the system size
increases, superior to that in ZZGNRs [7, 12].

FIG. 3: Spin density isosurfaces of hydrogen-passivated
C864H72 in four different magnetic states, three types of an-
tiferromagnetic (AFM, AFM1 and AFM2) and one type of
ferromagnetic (FM) coupling at the inter edges. The red and
blue isosurfaces represent the spin-up and spin-down states,
respectively.

We also check the effects of different types of passi-
vating atoms (bare and fluorine) and the shape (non-
hexagonal) of ZZGNFs on their electronic and magnetic
properties, and find that the results of magnetic phase
transition and semiconductor characteristics are similar
to that in hexagonal hydrogen-passivated ZZGNFs (The
details are given in the Supplemental Material) [40]. Such
robustness provides flexibility in terms of the chemical
environment of ZZGNFs, and thus may facilitate the syn-
thesis of large scales ZZGNFs with tunable edge mag-
netism and energy gaps as candidates for electronic and
spintronic devices [41].
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We remark that the magnetic phase transition and
associated with tunable electronic structures, especially
energy gaps, can also be observed in the Hubbard
model [28]. From our first principle calculations, we find
that choosing the parameters t = 2.5 eV and U = 2.1
eV in the Hubbard model can well reproduce the size-
dependent energy gaps (The details are given in the Sup-
plemental Material). Figure 4 plots how the HOMO-
LUMO energy gap Eg change with respect to the sys-
tem size of ZZGNFs and ACGNFs in two different mag-
netic phases (NM and AFM). Our DFT calculations and
mean-field Hubbard model show similar results that the
energy gaps Eg of ZZGNFs decrease as the system size
increases. In particular, we find that the energy gap of
NM ZZGNFs decreases more rapidly with respect to the
system size than that in AFM ZZGNFs, due to the pres-
ence of edge states whose electron density near the edges
of ZZGNFs as shown in Figure 1(e). This observation
is consistent with previous results obtained from tight-
binding models [31, 32] and DFT calculations [24, 25].
However, AFM semiconducting ZZGNFs show similar
scaling behavior of the energy gap to NM ACGNFs at
the nanoscale [25]. Therefore, edge states should have
little effect on the energy gaps of AFM ZZGNFs and
the quantum confinement effect[27] is the only factor to
control the energy gaps in ZZGNFs and ACGNFs (Fig-
ure 4(a)). In detail, NM ZZGNFs exhibits metallic char-
acters (Eg is smaller than the thermal fluctuation (25
meV ) at room temperature) when the diameter is larger
than 7 nm (C1350H90), but AFM ZZGNFs with the di-
ameter of 12 nm (C3750H150) still behaves as a semicon-
ductor with a sizable energy gap Eg = 0.23 eV, similar
to the case of NM ACGNFs [25].

FIG. 4: Energy gap Eg (eV) of ZZGNFs and ACGNFs in two
different magnetic phases (NM and AFM) as a function of the
diameter size (nm), computed with two different methods, (a)
DFT calculations and (b) Hubbard model (t = 2.5 eV and U

= 2.1 eV).

In summary, using large scale first principle cal-
culations, we show that the electronic and magnetic
properties of hexagonal zigzag graphene quantum dots
(GQDs) can be significantly affected by the system size.
We found that the zigzag edge states in GQDs become
much stronger and more localized as the system size
increases. The presence of these edge states induce
strong electron-electron interactions along the edges of
GQDs, resulting in a magnetic phase transition from
nonmagnetic to intra-edge ferromagnetic and inter-edge
antiferromagnetic when the diameter is larger than 4.5
nm. On the other hand, such strong and localized edge
states also induce GQDs semiconducting with tunable
energy gaps only controlled by adjusting the system
size. Therefore, ZZGNFs with strong edge magnetism
and tunable energy gaps may be promising candidates
and practical electronic and spintronic applications.
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